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Chapter 17

ROLE OF THE RED BLOOD CELL IN 
NITRIC OXIDE HOMEOSTASIS AND

HYPOXIC VASODILATION

Mark T. Gladwin

Abstract: Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeo-
static functions such as thrombosis, cellular proliferation, and adhesion molecule ex-
pression. Recent data implicate a critical function for hemoglobin and the erythrocyte 
in regulating the bioavailability of NO in the vascular compartment. Under normoxic 
conditions the erythrocytic hemoglobin scavenges NO and produces a vasopressor 
effect that is limited by diffusional barriers along the endothelium and in the un-
stirred layer around the erythrocyte. In hemolytic diseases, intravascular hemolysis 
releases hemoglobin from the red blood cell into plasma (decompartmentalizes the 
hemoglobin), which is then able to scavenge endothelial derived NO 600-fold faster 
than erythrocytic hemoglobin, thereby dysregulating NO homoestasis. In addition to 
releasing plasma hemoglobin, the red cell contains arginase which when released into 
plasma further dysregulates arginine metabolism. These data support the existence of 
a novel mechanism of human disease, hemolysis associated endothelial dysfunction, 
that potentially participates in the vasculopathy of iatrogenic and hereditary hemo-
lytic conditions. In addition to providing an NO scavenging role in the physiologi-
cal regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may 
deliver NO as the hemoglobin deoxygenates. Two mechanisms have been proposed to 
explain this principle: 1) Oxygen linked allosteric delivery of S-nitrosothiols from S-
nitrosated hemoglobin (SNO-Hb), and 2) a nitrite reductase activity of deoxygenated 
hemoglobin that reduces nitrite to NO and vasodilates the human circulation along 
the physiological oxygen gradient. The later newly described role of hemoglobin as a 

-
lation and oxygen sensing.
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INTRODUCTION

Hypoxic vasodilation is a highly conserved physiological response required to match 

been appreciated for more than 100 years since the initial description by Roy and Brown 
in 1879 (76). Feedback hypoxic vasodilation requires oxygen or pH sensing to detect an 
“error signal” in the normal relationship between delivered blood oxygen content and tis-
sue oxygen consumption (90). This error signal leads to the feedback generation of vaso-

oxygen consumption. In mammals such vasodilation occurs as the hemoglobin desaturates 
-

cent measurements of microcirculatory oxygen tension and hemoglobin oxygen saturation 
suggest that this degree of deoxygenation occurs within the resistance arterioles, especially 
in the case of skeletal muscle (87). In other tissues, such as heart and brain, more oxygen 
is extracted within the capillary network. Work by Segal and Duling suggests that NO or 
ATP delivery to the capillary circulation produces retrograde intracellular propagation of a 
vasodilating signal to the precapillary resistance vessels (80-82). These data in aggregate 
suggest that the oxygen or pH sensor is responsive to tissue oxygen partial pressures of 20-

50).
-
-

mains uncertain and controversial. Even the site of sensing remains unknown with oxygen 

network with retrograde propagation of a vasodilating signal through endothelium to the 
precapillary resistance arterioles. A number of mediators have been considered, including 
adenosine, nitric oxide (NO), KATP channels, endothelium derived hyperpolarizing factor 
(candidates include CO, H2O2 or ONOO-), and prostacyclin, however, blockade of many 
of these pathways fails to completely inhibit hypoxic vasodilation (90, 91). These studies 
suggest that the system is either intricate and overbuilt with multiple effectors or that other 
undiscovered pathways exist.

An alternative paradigm has been advanced since 1995: That hemoglobin per se is the 
oxygen sensor with the oxygen linked allosteric structural transition of the hemoglobin 
tetramer from the oxygenated conformation (relaxed or R state) to the deoxygenated con-
formation (tense or T state) signaling the release or generation of a vasodilating signal 

produced a release of ATP from the erythrocyte, which by binding to purinergic receptors 

observation of increasing concentrations of ATP in venous blood following hypoxia, and 
the in vitro generation of ATP from hypoxic or acidic erythrocytes. Evidence for retrograde 
propogation of the ATP/purinergic receptor/eNOS signal from the capillaries to precapil-
lary arterioles further supports this hypothesis (12). The details and experimental evidence 
supporting this hypothesis will be covered in detail by Dr. Sprague’s contribution to this 
series.

The second two hypotheses suggest that hemoglobin deoxygenation results in NO 
(equivalent) release from the red blood cell and subsequent NO-dependent vasodilation, 

-
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anism is that S-nitrosated hemoglobin (SNO-Hb) releases S-nitrosothiols during hemoglo-

second proposed mechanism suggests that hemoglobin is an allosterically regulated nitrite 
reductase which reduces nitrite to NO by deoxyheme as hemoglobin deoxygenates (5, 56). 

summarize the mechanism and emerging data supporting the nitrite reductase hypothesis.

NITRIC OXIDE AS A PARACRINE AND ENDOCRINE
VASODILATOR (Figure 1)

Nitric oxide is produced from endothelial NO synthase and participates in the regula-
tion of basal blood vessel tone and vascular homeostasis (antiplatelet activity, modula-
tion of oxidant stress, endothelial and smooth muscle proliferation and adhesion molecule 

endothelium and then diffuses to vicinal smooth muscle, binds avidly to the heme of sol-
uble guanylyl cyclase which produces cGMP, activates cGMP dependent protein kinases 
ultimately leading to smooth muscle relaxation. NO that diffuses into the lumen of the 
blood vessel is expected to react at a nearly diffusion limited rate (107 M-1sec-1) with both 
oxy- and deoxyhemoglobin to form methemoglobin/nitrate and iron-nitrosyl-hemoglobin 
(HbFeII-NO), respectively (62). These reactions limit the half life and diffusional distance 
of NO in blood (<2 millisecond half time) and maintain NO as a paracrine vasoregulator . 
The rapid irreversible nature of these NO-hemoglobin reactions and the massive concen-

biology: while we know that NO is a paracrine vasodilator, kinetic calculations suggest 
that all of the NO produced by endothelium should be inactivated by hemoglobin and the 
sphere of diffusion of NO should be extremely limited, i.e. diffusion to adjacent smooth 
muscle should be impossible (44).

However, we know that such diffusion is indeed possible, and the proposed solution 
to the paradox is illustrated in the central panel of Figure 1: during normal physiology 
the reaction of NO with hemoglobin is limited by compartmentalization of hemoglobin 
within the erythrocyte membrane (79). This compartmentalization of hemoglobin from 
endothelium creates two diffusional barriers: a cell free diffusion barrier along the endo-

the erythrocyte membrane (49). Additional studies suggest an intrinsic barrier within the 
membrane and submembrane protein matrix that further limits NO entry (29). Similar dif-
fusional barriers modulate oxygen diffusion across the erythrocyte (4). Such barriers sug-
gest a potential role for plasma enrichment in the microcirculation in NO homeostasis (the 
“Fahreus-Lindqvist” effect) and explain the morbidity and mortality of stroma-based blood 

Indeed, hemolytic diseases such as sickle cell disease and paroxysmal nocturnal hemo-
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globinuria are associated with relative hypertension (compared to the hypotension of non-

dystonias during paroxysms of hemolysis (28), and recently, in the case of sickle cell dis-

NO donors (nitroprusside, nitroglycerin, NONOates) is blunted in patients with sickle cell 

plasma hemoglobin released during hemolysis disrupt the normal diffusional barriers but 
may also extravate into the extracellular space and directly intercept NO diffusing between 
endothelium to smooth muscle (58, 62). In addition to the release of hemoglobin during 
hemolysis, the red blood cell also contains large quantities of arginase, such that hemolysis 
increases plasma levels of this enzyme and metabolizes arginine to ornithine, reducing the 

vasodilation leads to a state of hemolysis associated endothelial dysfunction, and with 
chronic hemolysis, a progressive proliferative vasculopathy. It is increasingly clear that 
multiple systems have evolved to limit the toxicity of cell free plasma hemoglobin, includ-
ing the high molecular weight haptoglobin system (prevents extravasation of hemoglobin 

(which not only mediates haptoglobin-hemoglobin clearance but also upregulates IL-10 
and hemeoxygenase 1) (69), and the hemeoxygenase 1/biliverdin reductase/p21 pathways 

77).

In addition to a paracrine vasodilator function, there is increasing appreciation that NO 

by oxidation to the anion nitrite. The principle that NO may be thus stabilized in blood, and 

and Stamler. They hypothesized that NO (abstraction of an electron required) could form 
a covalent bond with cysteine residues on albumin to form S-nitrosated albumin (SNO-
albumin) (78, 85). This paradigm was later extended by the Stamler group to S-nitrosated 

to major questions about the concentrations and importance of SNO-albumin and SNO-he-

with more modern methodologies documenting levels of less than 10 nM) (18, 20, 50, 70, 
71, 84, 92), it is likely that there are a number of intravascular species capable of endo-
crine vasodilation, including S-nitrosothiols (61, 85), nitrite (5), N-nitrosamines (27, 48, 

review the SNO-Hb hypothesis, the major challenges to this theory, and then focus on the 
role of nitrite in vasoregulation and hypoxic vasodilation.
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The SNO-hemoglobin hypothesis
Based on observed artery-to-vein gradients in SNO-Hb in the rat and the ability of S-ni-

trosated hemoglobin to vasodilate aortic ring preparations and the rat circulation it was pro-

A complicated mechanism was proposed suggesting that NO produced by the endothelium 
would react with a vacant heme on oxygenated hemoglobin (three HbFeII-O2 per tetramer 
and one HbFeII-NO per tetramer) and thus trap and “preserve” the NO on hemoglobin (25, 
52). The NO would lose an electron (mechanism not demonstrated) and then migrate to the 

transfer the NO+ group by transnitrosation to the erythrocyte membrane anion exchange 
-

cies (called X-NO) (68). This would presumably be an S-nitrosothiol which would need to 
be reduced to NO to activate soluble guanylate cyclase.

While the principle was elegant, the mechanism has been severely challenged (Figure 2) 
(17). Multiple laboratories have now shown that NO does not bind preferentially to vacant 

40, 96). The required transfer of NO from the heme to the cysteine has not been observed 
using electron paramagnetic resonance spectroscopy (unless large concentrations of nitrite 
contaminate the experiment) (95). Importantly, this transfer requires the abstraction of an 
electron from the NO and a mechanism for this reduction has not been determined over 
the last 9 years. Finally, multiple groups have been unable to reproduce the levels of both 
SNO-albumin or SNO-hemoglobin reported by the Stamler group, and the artery-to-vein 
gradients have not been detected in the human circulation by other groups (18, 22, 50, 61, 
70-72, 95). Finally, SNO-Hb is not stable in the reductive intra-erythrocytic environment at 

the mechanism for formation, levels in the circulation, and oxygen dependent delivery of 
the S-NO group have all been challenged.

While our work suggests that SNO-Hb does not participate in the process of hypoxic 

red blood cell and hemoglobin participates in oxygen dependent NO homeostasis. Rather 

an enzymatic nitrite reductase with a deoxyheme-nitrite reaction generating NO as hemo-
globin deoxygenates within the circulation (5, 16).

While large doses of nitrite given as an antidote for cyanide poisoning clearly produces 
hypotension in humans (94), the large concentrations of nitrite required to vasodilate aortic 
ring bioassay systems led to a dismissal of nitrite as a vasoactive reservoir of NO in the 

aortic ring bioassays by Furchgott as far back as 1952, and shown by Murad and Ignarro 

studies published by Laur and colleagues suggested that nitrite had no intrinsic vasodilator 
activity and led to a premature dismissal of nitrite as a physiological vasodilator (45, 51, 
67).
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Despite the apparent lack of bioactivity of nitrite in these more recent studies, we ob-
served arterial-to-vein gradients in nitrite across the human forearm, with increased con-
sumption of nitrite during exercise stress, suggesting that nitrite was metabolized across 
the peripheral circulation (21). We therefore hypothesized that nitrite might be reduced to 

or by acidic reduction (disproportionation) (97). To test this we infused nitrite into the 
forearm brachial artery of 18 healthy volunteers and to our surprise, observed substantial 
vasodilation, even without exercise stress. Nitrite was remarkable potent, increasing blood 

vasodilation at these concentrations under normal physiological non-stress conditions was 
inconsistent with a mechanism of reduction by xanthine oxidoreductase or disproportion-
ation, as both of these pathways require very low pH and extreme hypoxia, thus suggesting 
an alternative mechanism of nitrite bioactivation. Additional studies have been published 

Figure 2. Mechanism proposed for SNO-hemoglobin mediated hypoxic vasodilation (left panel). A 
complicated mechanism was proposed suggesting that NO produced by the endothelium would react 
with a vacant heme on oxygenated hemoglobin (three HbFeII-O2 per tetramer and one HbFeII-NO
per tetramer) and thus trap and “preserve” the NO on hemoglobin (25, 52). The NO would lose an 

form an S-nitrothiol bond. This SNO-Hb would then transfer the NO+ group by transnitrosation to 

which would need to be reduced to NO to activate soluble guanylate cyclase. The question marks 

from: Gladwin MT, Lancaster JR, Freeman BA, and Schechter AN. Nitric oxide’s reactions with 
hemoglobin: a view through the SNO-storm. Nat Med
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Figure 3. Nitrite vasodilates the human circulation at near physiological concentrations. Panel A: 

occurs at rest, during exercise and during exercise with NO synthase inhibition and L-NMMA in-

formation of iron-nitrosyl-hemoglobin from artery-to-vein. Figure reproduced with permission from 
Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, Yang BK, Waclawiw MA, Zalos 
G, Xu X, Huang KT, Shields H, Kim-Shapiro DB, Schechter AN, Cannon RO, and Gladwin MT. 
Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med 9: 
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Hemoglobin as an allosterically and electronically regulated nitrite 
reductase

During nitrite infusions into the brachial artery we observed the artery-to-venous for-
mation of iron-nitrosyl-hemoglobin (HbFeII-NO) suggesting that nitrite was being reduced 
to NO rapidly within one half-circulatory time (5). An analysis of the iron-nitrosyl-he-
moglobin levels during all experimental conditions revealed a striking inverse correlation 
with oxyhemoglobin saturation, i.e. as hemoglobin deoxygenated more NO formed. These 
physiological observations were consistent with a reaction between nitrite and deoxyhemo-
globin to form NO as described by Doyle and colleagues in 1981 (9):

NO2
- + HbFeII (deoxyhemoglobin) +H+ III + OH-

Much of the formed NO is then captured as iron nitrosyl-hemoglobin (HbFeII-NO) on 
viscinal hemes and measured as a “dosimeter” of NO production in venous blood:

NO + HbFeII II-NO (iron-nitrosyl-hemoglobin)

Consider the potential physiological implications of this simple equation. The reac-
tion requires deoxyhemoglobin and a proton, providing oxygen and pH sensor chemistry, 
and generates NO, a potent vasodilator. Methemoglobin formed during the reaction will 
not autocapture and inactivate the NO formed. In additional experiments we found that 
nitrite, red cells (or hemoglobin), and hypoxia were required for in vitro hypoxic vasodi-
lation of rat aortic rings. Indeed, in the presence of hypoxia and erythrocytes (conditions 
never tested in historical aortic ring bioassay studies) nitrite now vasodilated aortic rings at 
physiological concentrations of 200-500 nM (Figure 4) (5).

Using an in vitro aortic ring bioassay systems designed by the Patel lab to simultaneously 

potentiated by as low as 200 nM nitrite under hypoxic conditions (5). Importantly, these 
studies reveal that nitrite-red blood cell dependent vasodilation is initiated at an oxygen 
tension around the intrinsic hemoglobin P50 (PaO2
mm Hg for human erythrocytes). In ongoing unpublished work from four laboratories (the 
Gladwin, Patel, Kim-Shapiro, and Hogg groups) we have now found that this vasodilation 

-
ated by a maximal nitrite reductase activity of hemoglobin allosterically linked to its intrin-
sic P50. This maximal reductase activity is allosterically regulated as oxygen binding to one 
heme decreases the redox potential of the other hemes in the tetramer, thus increasing the 
ability of the hemes to donate an electron and reduce nitrite. An ideal balance of available 
deoxyhemes for nitrite binding and oxyhemes - required to lower redox potential of the 

50). Indeed the measured rate 
of nitrite reduction by hemoglobin is maximal at a hemoglobin-oxygen saturation between 

50 is biochemically consistent with a role in 
hypoxic vasodilation because physiological studies demontrate an onset of hypoxic vaso-
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INTEGRATED BIOCHEMICAL PHYSIOLOGY

-
-

In the normal skeletal muscle circulation oxygen tension decreases from the A1 caliber 

as low as 20 mm Hg prior to the capillary circulation (87). These data suggest that much 
of the oxygen delivery occurs within the arterioles allowing for spacially linked oxygen 
delivery and vasomotor control. Additional mechanisms suggest that NO or ATP delivery 
to the capillary circulation produces retrograde intracellular propagation of vasodilating 

Figure 4. In the presence of hypoxia and erythrocytes nitrite vasodilates aortic 
rings at a PaO2
designed by the Patel laboratory to simultaneously measure vessel force tension 

nitrite under hypoxic conditions. While control rat aortic rings and nitrite alone 
vasodilate at an oxygen tension of approximately 10 mm Hg, nitrite and red 
blood cells vasodilate at an oxygen tension around the intrinsic hemoglobin P50
(PaO2

Crawford JH, Patel RP, Reiter CD, Martyr S, Yang BK, Waclawiw MA, Zalos 
G, Xu X, Huang KT, Shields H, Kim-Shapiro DB, Schechter AN, Cannon RO, 
and Gladwin MT. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodi-
lates the human circulation. Nat Med
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signal to the precapillary resistance vessels (80-82). Thus a maximal nitrite reductase activ-
ity at the hemoglobin P50 appears ideal for oxygen sensing and hypoxic vasodilation as this 
allosteric point is thermally, chemically and electronically responsive to physiologically 
relevant tissue metabolic stress. We speculate that the erythrocyte membrane proteins pro-
vide a potential nitrite reductase metabolon function composed of deoxyhemoglobin and 
methemoglobin, anion exchange protein, carbonic anhydrase, aquaporin and Rh channels 

Figure 5. Putative nitrite reductase metabolon. We speculate that the erythrocyte 
membrane proteins provide a potential nitrite reductase metabolon function composed 
of deoxyhemoglobin and methemoglobin, anion exchange protein, carbonic anhy-
drase, aquaporin and Rh channels. Such as system would concentrate nitrite, proton, 
deoxyheme and highly hydrophobic channels at the membrane complex. Reproduced 
with permission from: Gladwin MT, Crawford JH, and Patel RP. The biochemistry of 

Med
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(16). Such as system would concentrate nitrite, proton, deoxyheme and highly hydrophobic 
channels at the membrane complex (Figure 5) (16). The lipophilicity and potency of NO 
(EC50 of only 1-5 nM) requires very little NO escape to regulate vasodilation, especially 
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