
Error Simulation in a Maturity 
Environment for Software Engineering 

Teaching 

Luiz Carlos Begosso'"^ and Luiz Ricardo Begosso' 
1 Funda9ao Educacional do Municipio de Assis (FEMA) 

Av. Getulio Vargas, 1200 Assis, SP Brazil 19807-634 
{Ibegosso, begosso}@femanet.com.br 

http://www.fema.edu.br 
2 Faculdade de Tecnologia de Ourinhos (FATEC) 

Av. Vitalina Marcusso, 1400 Ourinhos, SP Brazil 19917-206 

Abstract. The software industry blames universities for their graduates 
lacking necessary skills, meaning that just the possession of knowledge does 
not necessarily imply the competent performance required by the profession. 
Professional maturity in software engineering is one of software industry's 
major needs and in-office training can not address this need as efficiently as 
university education can. This paper exposes the experience reached in a 
software engineering course in which students develop their software projects 
in a mature environment. The emphasis here is to use a tool inside a maturity 
environment that can simulate user errors when operating the software, so that 
students can learn how to prevent them in their software projects. 

1 Introduction 

In the last ten years, the software industry has been concerned with a maturity 
movement, dedicating a significant share of resources to worker training in quality 
models such as SEI-CMM, ISO, PSP and others. In Brazil, many software 
organizations implemented those models, but one of their main obstacles was the 
professional culture in which workers were not used to working in a quality 
environment and thus had bad habits that needed to be changed. 

The software industry blames universities for their graduates lacking necessary 
skills, meaning that just the possession of knowledge does not necessarily imply the 
competent performance required by the profession. Bach [1] emphasizes the 
difference between what software engineers do and what they should do. Although 
most software engineering books are centered on methods, computer science 
undergraduate courses experience difficulties in teaching abilities and attitudes. 

Please use the following formatwhen citing this chapter: 

Begosso, L.C., Begosso, L.R., 2006, in International Federation for Information Processing, Volume 210, Education for 
the 21'' Centiuy-Impact of ICT and Digital Resources, eds. D. Kumar, and Turner J., (Boston: Springer), pp. 27-34. 



28 Luiz Carlos Begosso and Luiz Ricardo Begosso 

There must be an effort for computer science courses to prepare their students 
for long term needs and non-technical skills, such as social, interpersonal, 
managerial and strategic skills. So these courses must teach cognitive, attitude and 
skill characteristics, which are considered the maturity characteristics for software 
engineering [2]. 

This paper exposes the experience reached in a software engineering course in 
which students develop their software projects in a mature environment. This is 
important because usually students make their projects as a non-experienced 
developer behavior. This way, they do not know the main kind of errors the user can 
make when operating the software. So this paper also presents a computer tool that 
simulates human performance under error, the S. PERERE, allowing students to put 
into practice errors that they did not know about, so that they can prevent them in 
their projects. 

S. PERERE simulates human behavior during interaction with computer 
software. So this paper contributes to the possibility of minimizing the problems 
related to computer users and to the students' capacity for preventing human errors. 

We believe that the simulator S. PERERE has a great potential to contribute to 
the studies of software development in a mature environment. This contribution is 
related to use the simulator, which prints out the several possibilities of human errors 
associated with some task. So the student can evaluate each possible situation and 
increase functionalities of his or her software, in this way permitting a better 
integration of the user with the software under development. 

This paper is organized as follows: Section 2 describes the Maturity 
Environment; Section 3 describes the tool S. PERERE; Section 4 presents a project 
case and Section 5 presents the conclusions. 

2 The Software Engineering Maturity Environment 

Numerous studies address the software industry no-return path towards maturity 
through the establishment of software development processes [3] [4] [5]). This 
movement is strengthened by a global market requirement for quality in software 
development, not only as a means of establishing productivity and competitive 
advantages but in many cases as a safe means of exchanging software products 
within a globally distributed organization. 

The 1990 decade was characterized by application of SEP s Capability Maturity 
Model in many software organizations in order to respond to the international 
tendency. Only recently, however, the SWEBOK - Software Engineering Body of 
Knowledge - definition process by SWECC has established the need to move 
software development quality and maturity from the level of training to the level of 
education. 

Nonetheless, people have always been the fulcrum in a quality improvement 
process. Organization employees must be trained to understand the value of their 
cooperation and their responsibility in organization improvement, as training is an 
important issue in the quality improvement process. 

In this direction, many software development organizations promote training 
programs so that their employees can access the necessary knowledge to engage in a 



Error simulation in a maturity environment for software engineering teaching 29 

quality improvement process. Software quality training intends to increase the 
employee's ability to develop his or her work in the organizational way, at the same 
time increasing efficiency and reducing rework. 

However, employee training costs can become very high, and in some cases, 
especially for small companies, this cost can overwhelm the quality improvement 
effort. Considering natural persormel rotation at IT companies, permanently-offered 
training may be necessary. In some software industry centers competition is 
reinforced and personnel rotation is maximized. 

Knowledge and practice in a mature enviroimient is one of the desired 
professional characteristics in such situations. As a consequence, it is now important 
to change the inclination of computer science courses from just presenting software 
engineering concepts to presenting those concepts within a maturity enviroimient, so 
that the practice of software development quality can be incorporated into these 
students before they are delivered to the job market. Educational organizations must 
quickly take the mature professional formation activity from industry's hands in 
order to provide the demanded professional profile. 

Part of this project defined a pedagogical structure in order to permeate a 
computer science undergraduate curriculum with Software Maturity concepts. This 
pedagogical structure has been implemented and tested for 5 years by Begosso and 
Filgueiras [2]. The Matirrity Enviroimient definition started from the identification 
of learning objectives for cognitive, skill and attitude concepts, after evaluation of 
concepts embedded in SEI CMM, SWEBOK and also the requirements of the 
software industry as presented in software literature. SEI CMM's KPAs and 
SWEBOK's KAs have been scrutinized in order to identify the required concepts, 
which were mapped to related courses in a computer science curriculum. 

In the beginning of this project, a broad literature review provided the desired 
profile for a software engineer, which unfortunately is not currently developed in 
computer science courses. Table 1 summarizes this profile, grouped regarding the 
significant learning objective categories. 

Table 1 - Software Engineering Maturity Characteristics 

Cognitive 
Characteristics 
SE Best Practices 
Documentation 
Project 

Management 
SE Methods 
Quality Standards 

Attitude Characteristics 
^ 

Professional Market 
Acknowledgement 

Professional Ethics 
Continued Education 
Humanistic Perspective 
Sociability 

Skill Characteristics 

New Practice Adaptability 
Work Environment Adaptability 
Oral and Written Communication 
Experience in Maturity Environ. 
Software Engineering Tools 
Other's work maintenance 
Team Work 

The Maturity Environment has been implemented in a controlled way, so that it 
would be possible to assess the change in student's maturity after this process. The 
assessment method should evaluate the student progress towards the characteristics 
in Table 1. 



30 Luiz Carlos Begosso and Luiz Ricardo Begosso 

The evaluation mechanism is a 92-question form that is filled in by last term 
computer science students. The questionnaire explores cognitive, attitude and skill 
learning objectives, asking the student to evaluate his or her behavior when 
developing software engineering projects. 

Each discipline inside the Maturity Environment must have its own learning 
environment which addresses its specific requirements. When developing their 
projects, students conduct work using a Spiral Model approach. So they plan, 
implement, test and validate. In the validatation phase, they use the tool S. PERERE, 
described in the next section. 

3 Description of the Simulator S. PERERE 

A simulator of human performance, developed by Begosso [6] and named S. 
PERERE, Simulation of Performance in Error, is a human behavior computational 
simulator whose main objective is to produce, in a random way, human error states. 
S. PERERE is a human action simulator that considers the error. Some important 
characteristics of the simulator are: it is possible to explore human error diversity 
under interaction with software; and human error is treated as an expression of 
human variability. 

When developing their software, students must consider all possible kind of 
errors that can happen in the interaction between humans and software. Generally, 
only the most critical errors are considered or those that take the system to 
undesirable situations. 

3.1 Behavior Units 

The definition of a set of elementary behaviors is necessary to restrict the 
complexity of the human performance simulator. Berliner et al [7] suggested a 
taxonomy of elementary human behavior and defined a set of verbs to represent 
perceptive, cognitive and action processes. 

The behavior units of the cognitive process were defined by authors as: 
Calculate, Choose, Decide, Compare, Interpolate, Verify and Remember. The 
behavior units of the perceptive process were defined as: Inspect, Observe, Read, 
Monitor, Scan, Detect, Identify and Find. Finally, the behavior units of the motor 
process were defined as: Move, Hold, Push/Pull, Attach, Give, Remove, Discard, 
Give back, Position, Adjust, Type and Install. 

These verbs are implemented in S. PERERE as the set of possible human 
behaviors. Any task simulated by S. PERERE must be defined in terms of these 
verbs. 



Error simulation in a maturity environment for software engineering teaching 31 

3.2 Human Error 

Several attempts to define "human error" are found in the literature; however, it 
seems that there is no agreement among the authors on a unique definition for the 
term. 

In this paper, we will use the definition proposed by Reason [8], who considers 
that erroneous actions include all situations in which a plarmed sequence of physical 
or mental activities failed to obtain a result and those errors can not be attributed to 
interventions of external causes. Reason [8] proposes that the erroneous actions can 
be of two kinds: involuntary and intentional actions. 

Involuntary actions are those that deviate from plarmed intentions and, thus, 
don't reach their goals. This can happen in situations when the task, is done in an 
automatic way: someone misplaces a tool, for example. Those are named slips by 
Reason [8]. 

Intentional actions occur as planned and still can be considered as erroneous, if 
they fail in achieving the desired result. The task is performed consciously: the 
worker selects the right tools but is mistaken about the object to be repaired. Those 
errors are named mistakes. 

From Reason's work, Begosso [6] implemented some human errors into S. 
PERERE, which will be considered in this paper: omission, repetition, inversion and 
perceptive confusion. 

3.3 Specification of S. PERERE 

S. PERERE has mechanisms to simulate several kinds of human behavior: it can 
represent knowledge to perform a task, to be aware of the envirormient and update its 
situation awareness, as well as to act on the environment. To reach this objective, it 
is necessary to use a cognitive architecture that is able to produce elementary human 
behavior and can be affected by errors. 

Cognitive architectures are computational improvements of aspects inherent in 
the cognitive, perceptive and motor process of human beings. The architecture that 
supports S. PERERE is the ACT-R, maintained by the ACT-R Research Group from 
Carnegie Mellon University, used to help the development of intelligent systems. 

S. PERERE is made of the trigger module, the disturber module and the pre­
processor module. Data input to S. PERERE is a task description, composed of task 
elements from the Berliner et al [7] taxonomy that translate the correct (expected, 
assumed) behavior of a person carrying out that task. 

Also, the initial state of the mental model is input to S. PERERE. This allows 
the system to recognize the starting point for the accomplishment of the task. 
Concerning the output, S. PERERE generates the task affected by the disturbances, 
as well as a list of disturbances that occurred. 

A brief description of each module follows. 



32 Luiz Carlos Begosso and Luiz Ricardo Begosso 

3.3.1 Pre-Processor Module 

This module reads each part of knowledge stored in the system and understands it as 
a unit of elementary behavior, according to Berliner et al [7]. Moreover, the relation 
also enables the pre-processor to read the production rules to generate the task to be 
simulated in a syntactically correct way for the performance, in the conditions set 
forth in the cognitive architecture. 

3.3.2 Trigger Module 

S. PERERE's trigger module must represent the mechanics of triggering the error. 
S. PERERE enables the user to configure the trigger mechanism by selecting 

one type of error for a specific behavior. For example, the error of omission may be 
selected for a typing behavior. This working option for S. PERERE establishes the 
random choice of knowledge from declarative memory, one which includes the 
motor process of typing, obviously, and results in the omission of said task step. 

3.3.3 Disturber Module 

The Disturber Module is responsible for simulating the task affected by errors. The 
module has mechanisms for simulating errors in perceptive and motor processes. 

As soon as the disturber reads the disturbance chosen by the trigger module, it 
sends to the pre-processor the disturbance to be included in a certain behavior, and 
the disturbed task is output. In other words, one can say that the disturber generates 
erroneous situations that impact the simulated behaviors for performing the task. 

For each error that is generated, S. PERERE creates a text file, syntactically 
correct from the point of view of the ACT-R language, to be run in the environment 
of cognitive architecture. 

3.4 Error Specification 

In order to understand the error generation in S. PERERE, a specification, in 
structured English, of the errors generated by the simulator, follows: 
Omission 

The disturber chooses at random one of the task elements and omits the 
production that would execute that task. 
Repetition 

The disturber chooses at random one of the task elements and repeats its 
execution. 
Inversion 

The disturber chooses at random one of the task elements and inverts its order 
with the immediately next element. 



Error simulation in a maturity environment for software engineering teaching 33 

Perceptive Confusion 
The disturber triggers the production rule after visuahzing the object and selects 

the next element physically located next to the one visualized. 

4 A Project Case 

It was necessary to create some cases in which students develop software projects 
with the objective to evaluate students' maturity growth inside the maturity 
enviromnent. This session presents an example where a student group developed a 
project under the rules of the environment and, at validation phase, they ran the 
simulator S. PERERE, which generated human errors over the developed software. 
The main result expected in this case is to observe if the students can see how user 
error can affect the execution of their software, and so how they can improve the 
quality of their products. 

The project was a commercial system for product sales control and this example 
concerns an operation over an interface where the user must input data to the system 
and then press the "Confirm" key. 

For this case, the simulator will generate two kinds of errors that the user could 
have undertaken: omission and perceptive confusion. 

To illustrate the operation, we have considered the following simple task for the 
user: 

i. The user verifies the initial interface for data input and presses the "New 
Record" key. 

ii. The user types data for product code, name, and price. 
iii. The user presses the "Confirm" key to write the new record on the database. 
For the generation of omission in typing, the simulator chooses at random one of 

the typing information items for the specified task. In this case, it omitted the field 
name and verified whether the software developed by the students accepts this 
condition. If so, the students are advised about it and they make sure that all 
required fields are typed. 

For the generation of perceptive confusion error, after typing all the required 
fields the user should press the "Confirm" key. However, the simulator tries to press 
a neighboring key that is activated. For example, if the neighboring key is "Delete", 
the user can make an error without wishing to do it. If so, the students are advised 
about it and make sure that only permitted keys are activated. 

The two situations illustrated in this example indicate the presence of a latent 
error status in the software and contribute to the learning environment. 

5 Conclusion 

In the development of students' projects, it was possible to observe the 
generation of errors for the categories omission, repetition, inversion and perceptive 
confusion, which enabled students to learn about these errors and prevent them in 
their software. 



34 Luiz Carlos Begosso and Luiz Ricardo Begosso 

The mechanisms created in this work have permitted the growth of students' 
software engineering maturity as intended. The evaluation method was successful in 
instrumenting this process and indicating that this growth is really happening, and 
more than that, has succeeded in pointing where changes must be made for the next 
applications. 

Simulations generated over the example task, although very simple, allow us to 
think positively about S. PERERE's potential in generating errors on the simulated 
behavior. 

The authors believe that this research contributes to creating an undergraduate 
teaching enviroimient to form a mature professional for the software development 
process. The process is open and easily reconfigurable, so that it can be used in 
other disciplines. 

References 

1. J. Bach, What Software ReaUty is Really About, Computer 32(12), 148-151, (1999). 

2. L. R. Begosso and L. V. L. Filgueiras, Environment for Maturity Development in a 
Computer Science Graduation Program. In: Proc. of the International Conference on 
Software Engineering Research and Practice, (Las Vegas, USA, 2002), pp. 400-405. 

3. L. R. Begosso and L. V. L. Filgueiras, Implanta9ao de CMM Nfvel 3 para ensino de 
Ciencia da Computafao Orientado a Qualidade. In: Proc. of Symposium on Software 
Technology'99 - 28* JAIIO, (Buenos Aires, Argentina, 1999), pp. 21-25. 

4. C. Jones, Patterns of Software Systems Failure and Success (International Thomson 
Computer Press, USA, 1996). 

5. S. H. Kan, Metrics and Models in Software Quality Engineering, (Addison-Wesley 
PublishingCo, USA, 1995). 

6. L. C. Begosso, PERERE: Uma Ferramenta Apoiada por Arquiteturas Cognitivas para o 
Estudo da Confiabilidade Humana, doctoral thesis, (Sao Paulo University, Sao Paulo, 
2005). 

7. D. C. Berliner, D. Angell, J. Shearer, Behaviors, measures and instruments for 
performance evaluation in simulated environments. In: Symposium and Workshop on the 
Quantification of Human Performance, (The University of New Mexico, Albuquerque, 
1964),p.277-296. 

8. J. Reason, Human Error (Cambridge University Press, Cambridge, 1990). 




