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1. INTRODUCTION 

A semantic revolution is iiappening in tlie world of enterprise 
information integration. This is a new and emerging field that blurs the 
boundaries between the traditional fields of business process integration, 
data warehousing and enterprise application integration. By information 
integration, we mean the process by which related items from disparate 
sources are integrated to achieve a stated purpose. For example, in data 
warehousing, data from two separate databases may need to be merged into 
a single database. This is particularly needed during mergers and 
acquisitions, where the respective company information from two separate 
databases may need to be merged into a single database. The terminology 
used to describe the same information in two disparate sources is hardly 
identical, subject to the vagaries of human use. Figure 9-1 illustrates two 
schemas from two databases that need to be reconciled during a data 
warehousing task. The two tables are called PurchaseOrder and POrder, 
respectively. They consist of 4 columns with names as shown. To properly 
merge such schemas, we need to reconcile the two terminologies and find 
their semantic relationships. Ordinarily, this is the job of a data warehousing 
specialist, who manually identifies the relationships using an application's 
user interface. Recent research is trying to make this process semi-automated 
by performing candidate matching between the names automatically, and 
having people verify the mappings. 
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Figure 9-1. Illustration of schema matching in a data warehousing scenario. 

Consider another scenario, now in the context of business process 
integration. Here a typical task may be a business flow that routes the data 
between suppliers and their associated applications. Typically, such flows 
are composed by business analysts who have limited programming skills, 
and work with user-interfaces that aid in the creation of business flows. They 
work with an abstraction of data being routed through schemas called 
business objects. Examples include generic business objects and application 
specific business objects made popular by CrossWorld (CrossWorld (2002)) 
a company that was later absorbed by IBM. These business objects are often 
encoded in XML syntax but are really structured data as illustrated in Figure 
9-2. Here two business objects are depicted that come from two separate 
business applications, say, SAP (SAP (2005)) and Oracle e-Business Suite 
(Oracle (2002)) that both describe the concept 'Inventory'. The interface 
descriptions are shown here in the form of a tree for purpose of illustration 
here. In order to transform the output of one application into the next in a 
business flow, mapping of attributes from source to target schema is again 
needed. One such mapping is shown in Figure 9-2. The closely related terms 
shown by the arrows include some obvious cases such as terms 
(OrganizationID, OrgID) as well as non-obvious ones such as 
(InventoryType, StockType). 

Our final example comes from the domain of web services. Service-
oriented architecture is the latest trend in distributed computing where the 
need-to-know abstraction of object-oriented programming is again deployed. 
In service-oriented architecture, the capability of a code component 
anywhere on a network is described through an interface language called 
Web Service Definition Language (WSDL) (Chinnici, R., M. Gudgin, et al. 
(2003)). A WSDL describes a service as a collection of operational 
interfaces and their type specification, together with deployment 
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information. Let's look at an extract of a WSDL description of an inventory 
checking service of an electronics company XYZ as depicted in Figure 9-3 a. 

InventoryDescription' 

Organizationlnfj 

OrganizationID CustomWiD 

InventorylD lnventory)£ocation 
InventoryType 

OrgID 
o o 

StockType VendorlD 
o 

nventorylD 

o 

InvLocationID 

Figure 9-2. Illustration of semantic schema matching in a business process modeling 
scenario. 

We can observe that the WSDL document follows the XML syntax. A set 
of operations supported by a service are encapsulated in a description using 
the PortType tag. The PortType in turn lists the operations supported by the 
service. Each operation lists the inputs and outputs the service takes in the 
form of messages. In this example, the actual inputs and outputs are 
expanded in QueryAvailabilityServiceRequest and 
QueryAvailabilityServiceResponse message tags. Inside each message 
declaration are the name and type declarations of the inputs and outputs. 
Here the message shows that it takes the requested item's part number, 
delivery date and the requested quantity as inputs, and returns the quantity 
available to be delivered on the requested date as output. 

Despite the advancement in service abstraction, the WSDL specification 
does not prescribe the use of consistent terminology to express the 
capabilities and requirements of services. Thus two services that accomplish 
the same task may use different terms to describe similar operations. In some 
cases, the similarlity between the terms could be spotted through lexical 
similarity of names, while in other cases, such similarity can only be 
discovered through the use of domain-specific information. To illustrate this, 
let's consider a service related to the one depicted in Figure 9-3a. This web 
service is offered by ABC Inc. and also checks inventory. Its description is 



230 Semantic Web Services, Processes and Applications 

shown in Figure 9-3b. We notice first that ABC calls it 
ChecklnventoryService and its inputs and outputs are different from the ones 
offered by XYZ company's QueryAvailabilityService. ABC's service 
requires a Universal Product Code instead of a manufacture's part number. 
The term dueDate is used rather than DeliveryDate and NumberOfltems is 
used rather than Quantity, Also, ABC's service just returns an 
ItemAvailabilityConfirmation, which is true if the requested quantity is 
available and false otherwise. On the other hand, XYZ's service indicates 
when a request can be partially filled, by returning the number of available 
items. 

As can be seen, there are differences in the interfaces of the services. 
However, if the objective is to find a service that gives information about the 
availability of a given part, both services could be semantically similar. In 
order to chain a sequences of services such as the one above, or to select a 
similar service from a pool based on a desired interface such as the one 
shown in Figure 9-3a, we need to find the semantic match between the input 
or output descriptions present in these WSDL schemas. 

This last example also illustrates that finding semantic relationship may 
require the use of both domain-independent and domain-specific 
information. A domain independent source of clues gives us a breadth of 
coverage for common terms, while a domain specific ontology can give a 
depth of coverage by providing clues based on industry and application 
specific terms and relationships. 
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Figure 9-3. Illustration of the schema matching in a web service scenario. 
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Semantic Matchir: 
Engine 

Figure 9-4. Generalized schema matching by normalizing schemas of different origin. 

SEMANTIC MATCHING AND MAPPING 

As we saw from the above scenarios, matching and mapping of schemas 
is a problem that is applicable in different contexts and would need to be 
independent of the nature of schemas used in the semantic web process. 
Further, we saw that there is a need for bridging the semantic gap between 
the descriptions in order to make true information integration feasible. The 
field of semantic matching and mapping has now emerged as a new and 
exciting field to address these problems of semantic mismatch of 
descriptions using automated relationship discovery techniques. 

We can now define the semantic schema matching problem as follows. 
Given a source and a target schema defined it terms of its attributes and 
relationships, find a way to semantically match the schema attributes in a 
way that is independent of the schema origin. Since different schema origins 
have different nuances, the schema matching techniques would have to be 
agnostic to the details of the schema format, but at the same time, capture the 
underlying name, type and structure relationships described therein. One 
way to achieve this is to develop a generic schema representation that 
captures the essential information across different schema formats, and then 
use this general schema representation as the basis for matching. This 
approach is illustrated in Figure 9-4. Here schemas arising from different 
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application domains are reduced to a normalized format called the 
generalized schema. The semantic schema matching is then performed 
between a pair of source and target generalized schemas. 

2.1 Generalized Schema 

Schemas of different origin such as code APIs, Web services, XSD 
(XMLSchema (2004) can be reduced to a normalized format called the 
Generalized Schema using the following simple grammar. 

Gs->NaCtTyRsUdOjGs* (1) 

Where Na stands for the name of the schema, Ct stands for its category 
(eg. Its origin as WSDL, XSD, etc.), Ty stands for its type (eg. A 
complexType or simpleType), Rs stands for any restrictions on its values 
(eg. Range of values supported), Ud stands for a simple user-friendly name 
for the schema (as exposed through user interfaces), and Oj stands for the 
original schema object from which the normalized schema is derived. The 
Generalized schema can be recursively expanded to describe the structure in 
its full detail. The type expansions of each of the symbols in the above 
grammar are given below: 

Na->a String 
Ct-> a String 
Ty->primitive type|language-defined type 
Rs->language-defined restrictions 
Ud->User-friendly name 
Oj->Language-defined object instance 
Primitive type -> int|char|String|double|Boolean|Byte|Char|Short|Integer|Long|Float|Double 

The above normalized format for schemas has been used earlier for 
representing code objects (D. Caragea et al. (2004)) and for web services 
(Syeda-Mahmood et al. (2005)). It can be shown that many abstract data 
types supported in schemas can be modeled by the above generalized 
schema. In fact, automatic conversion programs can be written to transform 
incoming schemas from any of the formats described in Figure 9-4 into 
Generalized Schema. 

3. A FRAMEWORK FOR SCHEMA MATCHING 

Let us now consider the problem of semantic schema matching using the 
generalized schema representation. As defined in Section 2, this is the 
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problem of matching the attributes of the source and target schemas. Ideally, 
we would like the matching to be 'best' in some objective sense. In other 
words, we seek a 'best' correspondence of source and target schema 
attributes. A general way to model such correspondence is to treat the source 
and target schema attributes as two sets of nodes of a bipartite graph as 
shown in Figure 9-5. An edge can then be drawn between a source and target 
node, if the corresponding attributes are semantically similar. Finding the 
best set of matching attributes then reduces to the problem of finding the 
maximum matching in the bipartite graph, i.e. with the largest pair of nodes 
matching. A matching in a bipartite graph is formally defined as a subset of 
edges of the bipartite graph such that there is a unique assignment for the 
selected source and target attributes. 

Thus the problem of determining an optimal correspondence between the 
source and target schemas can be expressed as the problem of finding a 
maximum matching in the bipartite graph. Figure 9-5 illustrates such a 
maximum matching. On the left is the original bipartite graph formed from 
the attributes in the pair of source and target schemas. Here we see that 
multiple edges emanate from source and target attributes indicating there is 
more than one possible match for an attribute. In the maximum matching, 
selected attributes are paired with unique matches. The size of the matching 
is 5 indicating that at most 5 attributes find a match in this arrangement. 

In practice, the semantic similarity between attributes is actually reflected 
through a similarity score which can be treated as a weighted edge. The 
optimal matching desired in that case is then a matching of maximum 
cardinality and maximum weight as well. Well-known algorithms are 
available in literature to obtain such a matching using variants of the 
maximum flow algorithm (A. Goldberg and Kennedy (1993), I.E. Hopcroft, 
R.M. Karp (1973)). In these algorithms, the matching is computed by setting 
up a flow network, with weights such that the maximum flow corresponds to 
a maximum matching. 
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Figure 9-5. Bipartite graph matching framework for schema matching. 

Algorithms for finding the maximum matching involve compute-
intensive operations as they solve the network flow optimization problem. 
Often, a good lower bound on the size of the matching can be quickly 
obtained using a greedy matching algorithm in which the edges are sorted in 
cost and picked in descending order starting with the highest scoring edge 
and deleting all edges emanating from the selected pair of attributes. 

Notice we have not yet described how the similarity between attributes 
can be determined. But assuming that such a similarity score can be 
developed, we now have a general way of picking the best possible subset of 
edges, and hence a best matching of the attributes of the respective schemas 
using the above framework for bipartite graph matching. 

4. FINDING SEMANTIC SIMILARITIES BETWEEN 
ATTRIBUTES 

Several cues can be exploited to define the cost of edges in the above 
framework. In particular, we can exploit the similarity in name, type, or 
structure to define a semantic similarity score. In this section, we describe 
some of the popular approaches to capturing semantic similarity between 
attributes. 
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4.1 Lexical Comparison of Terms 

The simplest one is to do a lexical comparison of their names using a 
variant of string matching algorithms. A popular approach is to take the 
longest common subsequence of the two names of attributes being 
considered (Gormen et al, (1994)). For example, the longest common 
subsequence between pair 'customer' and 'custmr' is 'custmr' of length 6. A 
popular formula for finding the similarity between terms on a lexical basis 
is: 

Lex(A,B)= |LCS(A,B)|/|A|+|B| (2) 

Where LCS(A,B) is the longest common subsequence between strings A 
and B and the | | stands for the length of the strings. The LCS measure is 
good for capturing obvious similarities in name of the type above, and also 
when terms differ by numeric values, or are abbreviations. Examples 
include, (Addressl, Address2), (Num, Number), etc. However, a score value 
has to be sufficiently high to be a meaningful similarity to avoid false 
positives. It is very easy for a sequence of symbols to be common without 
any basis of semantic similarity. Examples include (Address, Adroit), 
(summary, summon), etc. 

4.2 Semantic Similarity of Terms 

Next, we address cases where the terms are not syntactically similar but 
semantically related. A thesaurus is usually employed for this purpose. 
Among the popular ones are WordNet, a free thesaurus (G.A. Miller (1995)), 
and SureWord (SureWord (2005)), a commercial thesaurus software for 
English language. 

To determine the semantic similarity of terms we have to first tokenize 
the multi-word term. Part-of-speech tagging and stop-word filtering has to 
be performed. Abbreviation expansion may have to be done for the retained 
words. A thesaurus can then be used to find the similarity of the tokens 
based on synonyms. The resulting synonyms are assembled back to 
determine matches to candidate multi-term word attributes, after taking into 
account the tags associated with the attributes. The details of these 
operations are described below. 
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4.2.1 Work Tokenization 

To tokenize words, common naming conventions used by programmer 
analysts, DBAs and business analysts may have to be exploited. In 
particular, word boundaries in a multi-term word attribute can be found 
using changes in font, presence of delimiters, such as underscore, spaces, 
and numeric to alphanumeric transitions. Thus words such as 
CustomerPurchase can be separated into Customer and Purchase. Address_l, 
Address_2 would be separated into Address, 1 and Address, 2 respectively. 

4.2.2 Part-of-speech tagging and filtering 

Simple grammar rules can be used to detect noun phrases and adjectives. 
Stop-word filtering when performed using a pre-supplied list can help 
further pruning. Common stop words in the English language similar to 
those used in search engines include words such as and, or, the, etc. 

4.2.3 Abbreviation expansion 

The abbreviation expansion operation can exploit domain-independent as 
well as domain-specific vocabularies. It is possible to have multiple 
expansions for a candidate words. All such words and their synonyms can be 
retained for later processing. Thus, a word such as CustPurch can be 
expanded into CustomerPurchase, CustomaryPurchase, etc. 

4.2.4 Synonym search 

A language thesaurus such as Sure Word or WordNet can be used to find 
matching synonyms to words. Using SureWord, it is possible to assign to 
each synonym, a similarity score based on the sense index, and the order of 
the synonym in the matches returned. 

4.2.5 Semantic similarity scores 

Given a pair of candidate matching multi-term attributes (A, B) from the 
source and destination schemas, we can generate a similarity score between 
the attributes by combining the match scores returned by a thesaurus for 
their word tokens as follows. 

Let A and B have m and n valid tokens respectively, and let S^ and 
SyhQ their expanded synonym lists based on semantic processing. We 
consider each token i in source attribute A to match a token j in destination 
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attribute B where i z Sx and j e Sy. The semantic similarity between attributes 
A and B is then given by 

Sem(A, B) = 2*Match(A,B)/(ra + n) (3) 

where Match(A, B) are the matching tokens based on the definition 
above. 

Using the similarity scoring such as above, we can determine 
semantically similar attributes such as (state, province) for the single token 
case, to (Customerldentification, ClientlD), (CustomerClass, 
ClientCategory), for the multi-term attributes. 

4.3 Ontological Similarity of Terms 

In addition to domain-independent thesaurus, schema matching can be 
aided by domain-specific terminology. In fact, each organization usually has 
a glossary of terms compiled that are specific to their domains, such as a 
banking glossary, electronics parts glossary, etc. With the newly developed 
standards, it is now possible to represent complete ontologies in formats 
such as OWL (OWL, (2004)). 

Uhique M 

Figure 9-6. Illustration of a simple domain ontology. 

To discover similarities between attributes by consulting ontologies, they 
would first have to be loaded into an ontology management system. An 
example of such a system is SNOBASE (Lee et al. (2003)), that can reason 
with concepts and supply similar concepts by derivation from the defined 
concepts in the ontology. A simple domain-specific ontology that models the 
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relationships between electronic parts is indicated in Figure 9-6. As can be 
seen, four different types of relationships between two concepts A and B are 
modeled, namely, subClassOf, superClassOf, instanceOf, and 
equivalenceClass. Larger ontologies may model many more relationships. 

4.3.1 Finding related terms in an ontology 

Given a domain-specific ontology and a term from the source schema, 
how can we find a matching term in the destination schema? Using rule-
based inference in the ontology, we can recover all potential similar terms 
that are in one of the specified relationships, such as subclass, superclass, 
etc. The matches returned are a set of related concepts along with distance 
scores representing distance between them. A simple scoring scheme to 
compute distance between related concepts in the ontology could be as 
shown in Table 9-1. The discretization of the score into three values (0, 0.5, 
1.0) gives a coarse idea of semantic separation between ontological 
concepts. For example, in the electronics domain ontology shown in Figure 
9-6, concepts DueDate and DeliveryDate have a distance of 0 while 
EANCode and UPC have a distance of 0.5. More refined scoring schemes 
are possible, but a simple choice such as the one in Table 9-1 works well in 
practice, without causing a deep semantic bias. Thus given a source attribute 
DueDate, we can retrieve ontologically matching concepts as the terms 
DeliveryDate, while a source term "UPC" will return as related concepts 
(EAC code. Part Number, EAN8, EAN13,UPCversion A, and UPC version 
E using inference in the ontology of Figure 9-6. In practice, we can choose a 
suitable threshold T so that all related concepts with distance scores above T 
can be ignored. 

Once the related concepts are found, we can search for these terms in the 
destination schema and record them as matching attributes to the given 
attributes from the source schema. Instead of finding ontologically similar 
terms directly from the attributes of the source schema, it often makes sense 
to invoke such similarity on annotations associated with the source and 
destination schemas. Such annotations are usually manually attached by 
domain experts and are likely to be well-defined terms rather than the cryptic 
abbreviated multi-term phrases that technical personnel used to name 
attributes of database and other schemas. As for the inference itself, several 
rule-based engines are available for reasoning with ontologies including the 
ABLE (Bigus et al. (2001)) system that uses Boolean and fuzzy logic, 
forward chaining, backward chaining etc. Rule sets created using the ABLE 
Rule Language can be used by any of the provided inference engines, which 
range from simple if-then scripting to light-weight inference to heavy-weight 
AI algorithms using pattern matching and unification. 
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Table 9-1. Illustration of a Ont(A,B) for different relationships in the ontology. 

Concept 
Pair 

(A,B) 
(A,B) 
(B,A) 
(A,B) 
(A,B) 

Relationship 

EquivalentClass 
RDFType 
SubClassOf 
SubClassOf 
Other 

Distance 
Score 

Ont(A,B) 
0 
0 
0.5 
0.5 
1 

4.4 Type and Structural Similarity of Attributes 

So far, we have considered each attribute on an individual basis. 
However, there are inter-relationships between attributes that need to be 
respected such as their associated types and positions in schema structure. 
We now discuss how type and structural information can be taken into 
account during similarity computations. 

4.4.1 Type similarity 

For schemas that correspond to code APIs the type of attributes is a 
strong cue in matching. Specifically, unless the type can be properly cast, the 
destination component cannot be launched even if the schema matching says 
otherwise. One way to capture the type similarity is to take the help of the 
reference type hierarchy defined for the language specification such as XSD, 
Java, etc. If the conversion is possible but will cause a loss of data {eg. float 
to int conversion), then we attach a lower weight. Lossless type conversion 
(eg. int to float) and other equivalent subclass type inheritance and 
polymorphism can be given higher weights. If the similarity cannot be 
inferred using the reference type hierarchy, explicit user-defined data type 
conversion functions may exist. For example, a 2D to ID data type 
conversion, such as an array to vector conversion is not allowed in the 
reference type hierarchy but can be achieved through an explicitly written 
conversion function. 

A simple reference type similarity measure can be given by 

TvDefA B") = [' •'̂  ̂ °^ lossless type conversion or if type conversion function exists ^A-^ 
< 0.5 for lossy type conversion 
0.0 otherwise 
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4.4.2 Structural similarity 

The structural similarity of schemas can be captured in many ways. A 
simple way is to consider each level in the schema as representing a 
grouping of related concepts. For example, all related aspects of a data 
structure are grouped under an abstract data type by programmers. These in 
turn may be composed of substructures which are suitable abstract data types 
formed from lower level type structures. The leaf level attributes in such 
cases are usually attributes with type primitives such as int, float, etc. Thus 
structural similarity in the attributes can be measured by the difference in the 
tree depth at which the attribute occurs. If we record the depth of the 
attribute from the root node of the schema, the structural similarity between 
two attributes A and B from source and destination schemas respectively can 
be given by 

i\D(A)-D(B)\) 
Struct(A,B) = 1 ^̂  ^=—^ ' (5) 

max{D(G,),D{G,)} 

where D(A) and D(B) are the depths of the attributes in their respective 
schema trees GA and GB . 

4.5 Combining Similarity of Attributes 

As we saw in the above sections, there are many cues that can be used to 
compute the similarity of attributes. To use these measures in the graph 
matching framework of Section 3, we need to combine them into an overall 
similarity measure. Here again, several choices are possible, including linear 
combination, probabilistic fusion (Kahler et al., (2004)), etc. Here we 
describe a simple weighted linear combination, where the relative 
contributions of each cue can be tuned based on the origin of the schemas. 
For example, the type cue may be more important for API schemas, while 
the name may be more important for business objects. The overall similarity 
of a pair of attributes A, B from source and destination schemas respectively 
can then be given by. 

Sim{A, B) = a, Lex{A, B) + a^Sem{A, B) + afint(A, B) + a^TypeiA, B) + a^StmctiA, B) ,^-. 

The above similarity score can be used as the edge score in the graph 
matching framework and a maximum matching can be derived used network 
flow optimization methods as described in Section 3. 
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5. SUMMARY 

In this chapter the matching and mapping problem for web processes has 
been introduced. We have seen that the matching of schemas is a general 
problem for schemas derived from a variety of application domains. A graph 
matching framework has been described for addressing the mapping and 
matching of semantic web process. Multiple cues for determining the 
similarity of attributes has been defined based on name semantics, type and 
structural information. The emergence of a general paradigm for 
accommodating the matching and mapping problem from several different 
domains ranging from business process modeling to schema integration, is a 
significant advancement in the development of semantic web processes. 

6. RELATED WORK 

The schema matching problem has been addressed by a number of 
researchers from both database and web service communities. Recently, 
clustering and classification techniques from machine learning are being 
applied to the problem of web service matching and classification at either 
the whole web service level (Hess et al. (2003)) or at the operation level 
(Dong, (2004)). In (Hess et al. (2003)) for example, all terms from 
portTypes, operations and messages in a WSDL document are treated as a 
bag of words and multi-dimensional vectors created from these bag of words 
are used for web service classification. The paper by Dong et al. addresses 
this aspect by focusing on matching of operations in web services. 
Specifically, it clusters parameters present in input and outputs of operations 
(i.e. messages) based on their co-occurrence into parameter concept clusters. 
This information is exploited at the parameter, the inputs and output, and 
operation levels to determine similarity of operations in web services. The 
notion of elemental and structural level schema matching has been present in 
the METEOR-S project (Patil et al. (2004)), where the engine can perform 
both element and structure level schema matching for Web services. The 
element level matching is based on a combination of Porter-Stemmer (Porter 
, (1980)) for root word selection, WordNet dictionary for synonyms (Miller 
(1995)), abbreviation dictionary to handle acronyms and NGram algorithm 
for linguistic similarity of the names of the two concepts. The schema 
matching examines the structural similarity between two concepts. Both 
element match score and schema match score are then used to determine the 
final match score. 

The problem of automatically finding semantic relationships between 
schemas has also been addressed by a number of database researchers lately 
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(Madhavan et al., (2003)), (Rahm and Bernstein, (2001)), (Madhavan et al. 
(2001)). Thus algorithms are available for XML schema matching such as 
Clio (Miller et al. 2001), Cupid (Madhavan et al. (2001)), and similarity 
flooding (Melnik et al. (2002)). In the case of database schema matching 
both schema content (i.e. data) and names of attributes are exploited for 
schema matching. 

The use of ontology match making engines for semantic matching has 
also been explored by a number of researchers. One of the earliest ontology-
based semantic matchmaking engines is Sycara et al MatchMaker (Sycara, 
(1999)) that is available on the Web as a service. In addition to utilizing a 
capability-based semantic match, the engine also uses various other IR-
based filters. Another related effort is Racer (Li and Horrocks, (2003)), that 
focuses solely on a service capability-based semantic match for application 
in e-commerce systems. In a recent work, both ontological and semantic 
similarity cues were combined to address the larger problem of semantic 
search which embeds semantic schema matching (Syeda-Mahmood et al, 
(2005)). 

7. QUESTIONS FOR DISCUSSION 

Beginner: 
1. Name some real-world problems that have been solved by maximum 

matching in bipartite graphs. 
2. What is the difference between schema matching and schema mapping? 

Intermediate: 
1. If both domain-specific and domain-independent ontologies had to be 

used, how would you prioritize the matches to attributes? 
2. Suggest other combination schemes for cues besides the linear 

combination described in text. 
3. Think of other cues that can be used for capturing similarity of attributes. 

Describe how they can be measured. 

Advanced: 
1. Can the service composition problem by addressed by the bipartite graph 

matching framework? If not, suggest modifications to the framework to 
model composition. 

2. In practice, a combination of source attributes may map to a single target 
attribute (eg. A database join) and vice versa. Can such mappings be 
handled in the graph matching framework? If not, show how the 
framework can be adapted to handle such combination mappings. 
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Practical Exercises; 
1. Go to xmlmethods.com. Hand-simulate the schema matching on a pair of 

web services and postulate what the mappings would be. 
2. Now write a program to generate the candidate mappings for an arbitrary 

pair of web services selected from xmlmethods.com. 
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