
Chapter 9

MATCHING AND MAPPING FOR SEMANTIC
WEB PROCESSES

Tanveer Syeda-Mahmood , Richard Goodwin , Rama Alciciraju , Anca-
Andreea Ivan^
'iBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120 -.
stf@almaden.ibm.com

^IBM Watson Research Center, 19 Skyline Drive, Hawthorne, NY-
rgoodwin, akkiraju, ivananca @ us. ibm. com

1. INTRODUCTION

A semantic revolution is iiappening in tlie world of enterprise
information integration. This is a new and emerging field that blurs the
boundaries between the traditional fields of business process integration,
data warehousing and enterprise application integration. By information
integration, we mean the process by which related items from disparate
sources are integrated to achieve a stated purpose. For example, in data
warehousing, data from two separate databases may need to be merged into
a single database. This is particularly needed during mergers and
acquisitions, where the respective company information from two separate
databases may need to be merged into a single database. The terminology
used to describe the same information in two disparate sources is hardly
identical, subject to the vagaries of human use. Figure 9-1 illustrates two
schemas from two databases that need to be reconciled during a data
warehousing task. The two tables are called PurchaseOrder and POrder,
respectively. They consist of 4 columns with names as shown. To properly
merge such schemas, we need to reconcile the two terminologies and find
their semantic relationships. Ordinarily, this is the job of a data warehousing
specialist, who manually identifies the relationships using an application's
user interface. Recent research is trying to make this process semi-automated
by performing candidate matching between the names automatically, and
having people verify the mappings.

228 Semantic Web Services, Processes and Applications

POrder

Sale
Price

ItemID Item Number UnitOfMesaure

Purchase Order

BrandID Price Qty UoM

Figure 9-1. Illustration of schema matching in a data warehousing scenario.

Consider another scenario, now in the context of business process
integration. Here a typical task may be a business flow that routes the data
between suppliers and their associated applications. Typically, such flows
are composed by business analysts who have limited programming skills,
and work with user-interfaces that aid in the creation of business flows. They
work with an abstraction of data being routed through schemas called
business objects. Examples include generic business objects and application
specific business objects made popular by CrossWorld (CrossWorld (2002))
a company that was later absorbed by IBM. These business objects are often
encoded in XML syntax but are really structured data as illustrated in Figure
9-2. Here two business objects are depicted that come from two separate
business applications, say, SAP (SAP (2005)) and Oracle e-Business Suite
(Oracle (2002)) that both describe the concept 'Inventory'. The interface
descriptions are shown here in the form of a tree for purpose of illustration
here. In order to transform the output of one application into the next in a
business flow, mapping of attributes from source to target schema is again
needed. One such mapping is shown in Figure 9-2. The closely related terms
shown by the arrows include some obvious cases such as terms
(OrganizationID, OrgID) as well as non-obvious ones such as
(InventoryType, StockType).

Our final example comes from the domain of web services. Service-
oriented architecture is the latest trend in distributed computing where the
need-to-know abstraction of object-oriented programming is again deployed.
In service-oriented architecture, the capability of a code component
anywhere on a network is described through an interface language called
Web Service Definition Language (WSDL) (Chinnici, R., M. Gudgin, et al.
(2003)). A WSDL describes a service as a collection of operational
interfaces and their type specification, together with deployment

Matching and Mapping for Semantic Web Processes 229

information. Let's look at an extract of a WSDL description of an inventory
checking service of an electronics company XYZ as depicted in Figure 9-3 a.

InventoryDescription'

Organizationlnfj

OrganizationID CustomWiD

InventorylD lnventory)£ocation
InventoryType

OrgID
o o

StockType VendorlD
o

nventorylD

o

InvLocationID

Figure 9-2. Illustration of semantic schema matching in a business process modeling
scenario.

We can observe that the WSDL document follows the XML syntax. A set
of operations supported by a service are encapsulated in a description using
the PortType tag. The PortType in turn lists the operations supported by the
service. Each operation lists the inputs and outputs the service takes in the
form of messages. In this example, the actual inputs and outputs are
expanded in QueryAvailabilityServiceRequest and
QueryAvailabilityServiceResponse message tags. Inside each message
declaration are the name and type declarations of the inputs and outputs.
Here the message shows that it takes the requested item's part number,
delivery date and the requested quantity as inputs, and returns the quantity
available to be delivered on the requested date as output.

Despite the advancement in service abstraction, the WSDL specification
does not prescribe the use of consistent terminology to express the
capabilities and requirements of services. Thus two services that accomplish
the same task may use different terms to describe similar operations. In some
cases, the similarlity between the terms could be spotted through lexical
similarity of names, while in other cases, such similarity can only be
discovered through the use of domain-specific information. To illustrate this,
let's consider a service related to the one depicted in Figure 9-3a. This web
service is offered by ABC Inc. and also checks inventory. Its description is

230 Semantic Web Services, Processes and Applications

shown in Figure 9-3b. We notice first that ABC calls it
ChecklnventoryService and its inputs and outputs are different from the ones
offered by XYZ company's QueryAvailabilityService. ABC's service
requires a Universal Product Code instead of a manufacture's part number.
The term dueDate is used rather than DeliveryDate and NumberOfltems is
used rather than Quantity, Also, ABC's service just returns an
ItemAvailabilityConfirmation, which is true if the requested quantity is
available and false otherwise. On the other hand, XYZ's service indicates
when a request can be partially filled, by returning the number of available
items.

As can be seen, there are differences in the interfaces of the services.
However, if the objective is to find a service that gives information about the
availability of a given part, both services could be semantically similar. In
order to chain a sequences of services such as the one above, or to select a
similar service from a pool based on a desired interface such as the one
shown in Figure 9-3a, we need to find the semantic match between the input
or output descriptions present in these WSDL schemas.

This last example also illustrates that finding semantic relationship may
require the use of both domain-independent and domain-specific
information. A domain independent source of clues gives us a breadth of
coverage for common terms, while a domain specific ontology can give a
depth of coverage by providing clues based on industry and application
specific terms and relationships.

Matching and Mapping for Semantic Web Processes 231

--• message iv;ime= "';>jeryAydilibi.litySer'.'ic;eRec)uest":=-
-̂ p art T! d m e= "p j r tNi j m b af_ in" t y pe = "nsd; stfin g" / >

<fi^rt ri-3rrie-"de!iyaryDiiCs_iri" Lype =^"nsdi s t r ing" / >
•< Part r iame= "qu jn t i t ' ^Reqj i=;stisd_in" type= '>;.di <3:rir!g".i''>

•<^:/majoage>
<mss i sq4 riame="C.^Jery"wail abi iilvSsrvJceF-lespdnse">

-< pa rt n i i n t - " qu i ntttyAija ii j b I e_ o ut" Cyp e= "K sd; stri ri g" />
</rriessaga>

•<p0rtTvpe nam4= "QuaryAuii!;)biiitySatyica">•
•-": cper-ation r iane="query™ai iabi l i tyS6r ' . ' ic i i ' >

< input message= "f i is; queryftJailabiiitybai'UicekeqLiest"
n a ma = "q ue ry A'.'s i la b il ityS ecj ics Re q ue st",'>

< output r!"iess-sga= "tna qijaryA%ailabiliti34ivii:cRescii)rise"
r iarf ia="queryAuailabii i tySai"j iceResponst"/ ' ' -

•</opar-jtio-!>
•<,i''poitType:=-

(a)

<messaga riame= "CheLl-lriyentury3af'.' ice ' '>
•̂ p -SIT n a m e= "UPC_i n" ryp s =" [<sd; jt^• in g "/•=-

<par t riari-ie = ''dMiT!date_!ri" t ypa= ";-:sd: st-'inq"/:--
•<part riariie= "njrrberC+T;tem:E_iri" type="Hs:d; s:»ir!g'/>

' ; /ma<' i igG>
••: rn e s-saq e n am a =" Ch e c!<iri va ntory Se rvi ra Re sp on se ">

-:• p art n a rr: e= "i ta rrT A1.1 a il ab i lit?,; O: nt'irn"! atio n_o LTC" f ^ p e= "H ad: Jtrin g"/' >•
--:/rnaisags>
<p0rtTy pa n a rn e= ''Check Jr '.• ento ?ySeri;ice">

< opsfation narr;£= 'crifidilNvtirit'i.hySarvii:*;" >•
•=: input mes>aqe= "tns; <:heckin'.'antijrySarviceRecuest"

n a rna = "ch eck IP •.' anti) ryGe I'A ceR eqij a st"/ >
•=; OLj'put rna?saqa= ' t n s crieckln'.-irntcirySaf'.'icaRasponje"

n a rna = "ch eck Ih v ento ry Sa ryi ceR asp 0 nse "/>
•-:/ri|-ief.=(tiiVin:=-

</portTypa>

(b)

Figure 9-3. Illustration of the schema matching in a web service scenario.

232 Semantic Web Services, Processes and Applications

Semantic Matchir:
Engine

Figure 9-4. Generalized schema matching by normalizing schemas of different origin.

SEMANTIC MATCHING AND MAPPING

As we saw from the above scenarios, matching and mapping of schemas
is a problem that is applicable in different contexts and would need to be
independent of the nature of schemas used in the semantic web process.
Further, we saw that there is a need for bridging the semantic gap between
the descriptions in order to make true information integration feasible. The
field of semantic matching and mapping has now emerged as a new and
exciting field to address these problems of semantic mismatch of
descriptions using automated relationship discovery techniques.

We can now define the semantic schema matching problem as follows.
Given a source and a target schema defined it terms of its attributes and
relationships, find a way to semantically match the schema attributes in a
way that is independent of the schema origin. Since different schema origins
have different nuances, the schema matching techniques would have to be
agnostic to the details of the schema format, but at the same time, capture the
underlying name, type and structure relationships described therein. One
way to achieve this is to develop a generic schema representation that
captures the essential information across different schema formats, and then
use this general schema representation as the basis for matching. This
approach is illustrated in Figure 9-4. Here schemas arising from different

Matching and Mapping for Semantic Web Processes 233

application domains are reduced to a normalized format called the
generalized schema. The semantic schema matching is then performed
between a pair of source and target generalized schemas.

2.1 Generalized Schema

Schemas of different origin such as code APIs, Web services, XSD
(XMLSchema (2004) can be reduced to a normalized format called the
Generalized Schema using the following simple grammar.

Gs->NaCtTyRsUdOjGs* (1)

Where Na stands for the name of the schema, Ct stands for its category
(eg. Its origin as WSDL, XSD, etc.), Ty stands for its type (eg. A
complexType or simpleType), Rs stands for any restrictions on its values
(eg. Range of values supported), Ud stands for a simple user-friendly name
for the schema (as exposed through user interfaces), and Oj stands for the
original schema object from which the normalized schema is derived. The
Generalized schema can be recursively expanded to describe the structure in
its full detail. The type expansions of each of the symbols in the above
grammar are given below:

Na->a String
Ct-> a String
Ty->primitive type|language-defined type
Rs->language-defined restrictions
Ud->User-friendly name
Oj->Language-defined object instance
Primitive type -> int|char|String|double|Boolean|Byte|Char|Short|Integer|Long|Float|Double

The above normalized format for schemas has been used earlier for
representing code objects (D. Caragea et al. (2004)) and for web services
(Syeda-Mahmood et al. (2005)). It can be shown that many abstract data
types supported in schemas can be modeled by the above generalized
schema. In fact, automatic conversion programs can be written to transform
incoming schemas from any of the formats described in Figure 9-4 into
Generalized Schema.

3. A FRAMEWORK FOR SCHEMA MATCHING

Let us now consider the problem of semantic schema matching using the
generalized schema representation. As defined in Section 2, this is the

234 Semantic Web Services, Processes and Applications

problem of matching the attributes of the source and target schemas. Ideally,
we would like the matching to be 'best' in some objective sense. In other
words, we seek a 'best' correspondence of source and target schema
attributes. A general way to model such correspondence is to treat the source
and target schema attributes as two sets of nodes of a bipartite graph as
shown in Figure 9-5. An edge can then be drawn between a source and target
node, if the corresponding attributes are semantically similar. Finding the
best set of matching attributes then reduces to the problem of finding the
maximum matching in the bipartite graph, i.e. with the largest pair of nodes
matching. A matching in a bipartite graph is formally defined as a subset of
edges of the bipartite graph such that there is a unique assignment for the
selected source and target attributes.

Thus the problem of determining an optimal correspondence between the
source and target schemas can be expressed as the problem of finding a
maximum matching in the bipartite graph. Figure 9-5 illustrates such a
maximum matching. On the left is the original bipartite graph formed from
the attributes in the pair of source and target schemas. Here we see that
multiple edges emanate from source and target attributes indicating there is
more than one possible match for an attribute. In the maximum matching,
selected attributes are paired with unique matches. The size of the matching
is 5 indicating that at most 5 attributes find a match in this arrangement.

In practice, the semantic similarity between attributes is actually reflected
through a similarity score which can be treated as a weighted edge. The
optimal matching desired in that case is then a matching of maximum
cardinality and maximum weight as well. Well-known algorithms are
available in literature to obtain such a matching using variants of the
maximum flow algorithm (A. Goldberg and Kennedy (1993), I.E. Hopcroft,
R.M. Karp (1973)). In these algorithms, the matching is computed by setting
up a flow network, with weights such that the maximum flow corresponds to
a maximum matching.

Matching and Mapping for Semantic Web Processes 235

Source
metadata
attributes

Target
metadata
attributes

. —. i

Source
metadata
attributes

& 1

Target
metadata
attr ibute;

Ivlaximum matching = 5

Figure 9-5. Bipartite graph matching framework for schema matching.

Algorithms for finding the maximum matching involve compute-
intensive operations as they solve the network flow optimization problem.
Often, a good lower bound on the size of the matching can be quickly
obtained using a greedy matching algorithm in which the edges are sorted in
cost and picked in descending order starting with the highest scoring edge
and deleting all edges emanating from the selected pair of attributes.

Notice we have not yet described how the similarity between attributes
can be determined. But assuming that such a similarity score can be
developed, we now have a general way of picking the best possible subset of
edges, and hence a best matching of the attributes of the respective schemas
using the above framework for bipartite graph matching.

4. FINDING SEMANTIC SIMILARITIES BETWEEN
ATTRIBUTES

Several cues can be exploited to define the cost of edges in the above
framework. In particular, we can exploit the similarity in name, type, or
structure to define a semantic similarity score. In this section, we describe
some of the popular approaches to capturing semantic similarity between
attributes.

236 Semantic Web Services, Processes and Applications

4.1 Lexical Comparison of Terms

The simplest one is to do a lexical comparison of their names using a
variant of string matching algorithms. A popular approach is to take the
longest common subsequence of the two names of attributes being
considered (Gormen et al, (1994)). For example, the longest common
subsequence between pair 'customer' and 'custmr' is 'custmr' of length 6. A
popular formula for finding the similarity between terms on a lexical basis
is:

Lex(A,B)= |LCS(A,B)|/|A|+|B| (2)

Where LCS(A,B) is the longest common subsequence between strings A
and B and the | | stands for the length of the strings. The LCS measure is
good for capturing obvious similarities in name of the type above, and also
when terms differ by numeric values, or are abbreviations. Examples
include, (Addressl, Address2), (Num, Number), etc. However, a score value
has to be sufficiently high to be a meaningful similarity to avoid false
positives. It is very easy for a sequence of symbols to be common without
any basis of semantic similarity. Examples include (Address, Adroit),
(summary, summon), etc.

4.2 Semantic Similarity of Terms

Next, we address cases where the terms are not syntactically similar but
semantically related. A thesaurus is usually employed for this purpose.
Among the popular ones are WordNet, a free thesaurus (G.A. Miller (1995)),
and SureWord (SureWord (2005)), a commercial thesaurus software for
English language.

To determine the semantic similarity of terms we have to first tokenize
the multi-word term. Part-of-speech tagging and stop-word filtering has to
be performed. Abbreviation expansion may have to be done for the retained
words. A thesaurus can then be used to find the similarity of the tokens
based on synonyms. The resulting synonyms are assembled back to
determine matches to candidate multi-term word attributes, after taking into
account the tags associated with the attributes. The details of these
operations are described below.

Matching and Mapping for Semantic Web Processes Til

4.2.1 Work Tokenization

To tokenize words, common naming conventions used by programmer
analysts, DBAs and business analysts may have to be exploited. In
particular, word boundaries in a multi-term word attribute can be found
using changes in font, presence of delimiters, such as underscore, spaces,
and numeric to alphanumeric transitions. Thus words such as
CustomerPurchase can be separated into Customer and Purchase. Address_l,
Address_2 would be separated into Address, 1 and Address, 2 respectively.

4.2.2 Part-of-speech tagging and filtering

Simple grammar rules can be used to detect noun phrases and adjectives.
Stop-word filtering when performed using a pre-supplied list can help
further pruning. Common stop words in the English language similar to
those used in search engines include words such as and, or, the, etc.

4.2.3 Abbreviation expansion

The abbreviation expansion operation can exploit domain-independent as
well as domain-specific vocabularies. It is possible to have multiple
expansions for a candidate words. All such words and their synonyms can be
retained for later processing. Thus, a word such as CustPurch can be
expanded into CustomerPurchase, CustomaryPurchase, etc.

4.2.4 Synonym search

A language thesaurus such as Sure Word or WordNet can be used to find
matching synonyms to words. Using SureWord, it is possible to assign to
each synonym, a similarity score based on the sense index, and the order of
the synonym in the matches returned.

4.2.5 Semantic similarity scores

Given a pair of candidate matching multi-term attributes (A, B) from the
source and destination schemas, we can generate a similarity score between
the attributes by combining the match scores returned by a thesaurus for
their word tokens as follows.

Let A and B have m and n valid tokens respectively, and let S^ and
SyhQ their expanded synonym lists based on semantic processing. We
consider each token i in source attribute A to match a token j in destination

238 Semantic Web Services, Processes and Applications

attribute B where i z Sx and j e Sy. The semantic similarity between attributes
A and B is then given by

Sem(A, B) = 2*Match(A,B)/(ra + n) (3)

where Match(A, B) are the matching tokens based on the definition
above.

Using the similarity scoring such as above, we can determine
semantically similar attributes such as (state, province) for the single token
case, to (Customerldentification, ClientlD), (CustomerClass,
ClientCategory), for the multi-term attributes.

4.3 Ontological Similarity of Terms

In addition to domain-independent thesaurus, schema matching can be
aided by domain-specific terminology. In fact, each organization usually has
a glossary of terms compiled that are specific to their domains, such as a
banking glossary, electronics parts glossary, etc. With the newly developed
standards, it is now possible to represent complete ontologies in formats
such as OWL (OWL, (2004)).

Uhique M

Figure 9-6. Illustration of a simple domain ontology.

To discover similarities between attributes by consulting ontologies, they
would first have to be loaded into an ontology management system. An
example of such a system is SNOBASE (Lee et al. (2003)), that can reason
with concepts and supply similar concepts by derivation from the defined
concepts in the ontology. A simple domain-specific ontology that models the

Matching and Mapping for Semantic Web Processes 239

relationships between electronic parts is indicated in Figure 9-6. As can be
seen, four different types of relationships between two concepts A and B are
modeled, namely, subClassOf, superClassOf, instanceOf, and
equivalenceClass. Larger ontologies may model many more relationships.

4.3.1 Finding related terms in an ontology

Given a domain-specific ontology and a term from the source schema,
how can we find a matching term in the destination schema? Using rule-
based inference in the ontology, we can recover all potential similar terms
that are in one of the specified relationships, such as subclass, superclass,
etc. The matches returned are a set of related concepts along with distance
scores representing distance between them. A simple scoring scheme to
compute distance between related concepts in the ontology could be as
shown in Table 9-1. The discretization of the score into three values (0, 0.5,
1.0) gives a coarse idea of semantic separation between ontological
concepts. For example, in the electronics domain ontology shown in Figure
9-6, concepts DueDate and DeliveryDate have a distance of 0 while
EANCode and UPC have a distance of 0.5. More refined scoring schemes
are possible, but a simple choice such as the one in Table 9-1 works well in
practice, without causing a deep semantic bias. Thus given a source attribute
DueDate, we can retrieve ontologically matching concepts as the terms
DeliveryDate, while a source term "UPC" will return as related concepts
(EAC code. Part Number, EAN8, EAN13,UPCversion A, and UPC version
E using inference in the ontology of Figure 9-6. In practice, we can choose a
suitable threshold T so that all related concepts with distance scores above T
can be ignored.

Once the related concepts are found, we can search for these terms in the
destination schema and record them as matching attributes to the given
attributes from the source schema. Instead of finding ontologically similar
terms directly from the attributes of the source schema, it often makes sense
to invoke such similarity on annotations associated with the source and
destination schemas. Such annotations are usually manually attached by
domain experts and are likely to be well-defined terms rather than the cryptic
abbreviated multi-term phrases that technical personnel used to name
attributes of database and other schemas. As for the inference itself, several
rule-based engines are available for reasoning with ontologies including the
ABLE (Bigus et al. (2001)) system that uses Boolean and fuzzy logic,
forward chaining, backward chaining etc. Rule sets created using the ABLE
Rule Language can be used by any of the provided inference engines, which
range from simple if-then scripting to light-weight inference to heavy-weight
AI algorithms using pattern matching and unification.

240 Semantic Web Services, Processes and Applications

Table 9-1. Illustration of a Ont(A,B) for different relationships in the ontology.

Concept
Pair

(A,B)
(A,B)
(B,A)
(A,B)
(A,B)

Relationship

EquivalentClass
RDFType
SubClassOf
SubClassOf
Other

Distance
Score

Ont(A,B)
0
0
0.5
0.5
1

4.4 Type and Structural Similarity of Attributes

So far, we have considered each attribute on an individual basis.
However, there are inter-relationships between attributes that need to be
respected such as their associated types and positions in schema structure.
We now discuss how type and structural information can be taken into
account during similarity computations.

4.4.1 Type similarity

For schemas that correspond to code APIs the type of attributes is a
strong cue in matching. Specifically, unless the type can be properly cast, the
destination component cannot be launched even if the schema matching says
otherwise. One way to capture the type similarity is to take the help of the
reference type hierarchy defined for the language specification such as XSD,
Java, etc. If the conversion is possible but will cause a loss of data {eg. float
to int conversion), then we attach a lower weight. Lossless type conversion
(eg. int to float) and other equivalent subclass type inheritance and
polymorphism can be given higher weights. If the similarity cannot be
inferred using the reference type hierarchy, explicit user-defined data type
conversion functions may exist. For example, a 2D to ID data type
conversion, such as an array to vector conversion is not allowed in the
reference type hierarchy but can be achieved through an explicitly written
conversion function.

A simple reference type similarity measure can be given by

TvDefA B") = [' •'̂ ̂ °^ lossless type conversion or if type conversion function exists ^A-^
< 0.5 for lossy type conversion
0.0 otherwise

Matching and Mapping for Semantic Web Processes 241

4.4.2 Structural similarity

The structural similarity of schemas can be captured in many ways. A
simple way is to consider each level in the schema as representing a
grouping of related concepts. For example, all related aspects of a data
structure are grouped under an abstract data type by programmers. These in
turn may be composed of substructures which are suitable abstract data types
formed from lower level type structures. The leaf level attributes in such
cases are usually attributes with type primitives such as int, float, etc. Thus
structural similarity in the attributes can be measured by the difference in the
tree depth at which the attribute occurs. If we record the depth of the
attribute from the root node of the schema, the structural similarity between
two attributes A and B from source and destination schemas respectively can
be given by

i\D(A)-D(B)\)
Struct(A,B) = 1 ^̂ ^=—^ ' (5)

max{D(G,),D{G,)}

where D(A) and D(B) are the depths of the attributes in their respective
schema trees GA and GB .

4.5 Combining Similarity of Attributes

As we saw in the above sections, there are many cues that can be used to
compute the similarity of attributes. To use these measures in the graph
matching framework of Section 3, we need to combine them into an overall
similarity measure. Here again, several choices are possible, including linear
combination, probabilistic fusion (Kahler et al., (2004)), etc. Here we
describe a simple weighted linear combination, where the relative
contributions of each cue can be tuned based on the origin of the schemas.
For example, the type cue may be more important for API schemas, while
the name may be more important for business objects. The overall similarity
of a pair of attributes A, B from source and destination schemas respectively
can then be given by.

Sim{A, B) = a, Lex{A, B) + a^Sem{A, B) + afint(A, B) + a^TypeiA, B) + a^StmctiA, B) ,^-.

The above similarity score can be used as the edge score in the graph
matching framework and a maximum matching can be derived used network
flow optimization methods as described in Section 3.

242 Semantic Web Services, Processes and Applications

5. SUMMARY

In this chapter the matching and mapping problem for web processes has
been introduced. We have seen that the matching of schemas is a general
problem for schemas derived from a variety of application domains. A graph
matching framework has been described for addressing the mapping and
matching of semantic web process. Multiple cues for determining the
similarity of attributes has been defined based on name semantics, type and
structural information. The emergence of a general paradigm for
accommodating the matching and mapping problem from several different
domains ranging from business process modeling to schema integration, is a
significant advancement in the development of semantic web processes.

6. RELATED WORK

The schema matching problem has been addressed by a number of
researchers from both database and web service communities. Recently,
clustering and classification techniques from machine learning are being
applied to the problem of web service matching and classification at either
the whole web service level (Hess et al. (2003)) or at the operation level
(Dong, (2004)). In (Hess et al. (2003)) for example, all terms from
portTypes, operations and messages in a WSDL document are treated as a
bag of words and multi-dimensional vectors created from these bag of words
are used for web service classification. The paper by Dong et al. addresses
this aspect by focusing on matching of operations in web services.
Specifically, it clusters parameters present in input and outputs of operations
(i.e. messages) based on their co-occurrence into parameter concept clusters.
This information is exploited at the parameter, the inputs and output, and
operation levels to determine similarity of operations in web services. The
notion of elemental and structural level schema matching has been present in
the METEOR-S project (Patil et al. (2004)), where the engine can perform
both element and structure level schema matching for Web services. The
element level matching is based on a combination of Porter-Stemmer (Porter
, (1980)) for root word selection, WordNet dictionary for synonyms (Miller
(1995)), abbreviation dictionary to handle acronyms and NGram algorithm
for linguistic similarity of the names of the two concepts. The schema
matching examines the structural similarity between two concepts. Both
element match score and schema match score are then used to determine the
final match score.

The problem of automatically finding semantic relationships between
schemas has also been addressed by a number of database researchers lately

Matching and Mapping for Semantic Web Processes 243

(Madhavan et al., (2003)), (Rahm and Bernstein, (2001)), (Madhavan et al.
(2001)). Thus algorithms are available for XML schema matching such as
Clio (Miller et al. 2001), Cupid (Madhavan et al. (2001)), and similarity
flooding (Melnik et al. (2002)). In the case of database schema matching
both schema content (i.e. data) and names of attributes are exploited for
schema matching.

The use of ontology match making engines for semantic matching has
also been explored by a number of researchers. One of the earliest ontology-
based semantic matchmaking engines is Sycara et al MatchMaker (Sycara,
(1999)) that is available on the Web as a service. In addition to utilizing a
capability-based semantic match, the engine also uses various other IR-
based filters. Another related effort is Racer (Li and Horrocks, (2003)), that
focuses solely on a service capability-based semantic match for application
in e-commerce systems. In a recent work, both ontological and semantic
similarity cues were combined to address the larger problem of semantic
search which embeds semantic schema matching (Syeda-Mahmood et al,
(2005)).

7. QUESTIONS FOR DISCUSSION

Beginner:
1. Name some real-world problems that have been solved by maximum

matching in bipartite graphs.
2. What is the difference between schema matching and schema mapping?

Intermediate:
1. If both domain-specific and domain-independent ontologies had to be

used, how would you prioritize the matches to attributes?
2. Suggest other combination schemes for cues besides the linear

combination described in text.
3. Think of other cues that can be used for capturing similarity of attributes.

Describe how they can be measured.

Advanced:
1. Can the service composition problem by addressed by the bipartite graph

matching framework? If not, suggest modifications to the framework to
model composition.

2. In practice, a combination of source attributes may map to a single target
attribute (eg. A database join) and vice versa. Can such mappings be
handled in the graph matching framework? If not, show how the
framework can be adapted to handle such combination mappings.

244 Semantic Web Services, Processes and Applications

Practical Exercises;
1. Go to xmlmethods.com. Hand-simulate the schema matching on a pair of

web services and postulate what the mappings would be.
2. Now write a program to generate the candidate mappings for an arbitrary

pair of web services selected from xmlmethods.com.

SUGGESTED ADDITIONAL READING

R. Fagin and P. Kolaitis and L. Popa and W. Tan (2004), "Composing
schema mappings: Second-order dependencies to the rescue", in Proc. of
PODS, 2004.
P, Bernstein et al. (2004): "Industrial-strength schema matching," in
SIGMOD Record, Vol. 33, No. 4, pp.38-43, December 2004.

9. REFERENCES

CrossWorlds (2002), http://www306.ibm.com/software/info 1/websphere/cwOl 1402.isp.
SAP (2005), http://www.sap.com.
Oracle (2005), http://www.oracle.com.
Chinnici, R., M. Gudgin, et al. (2003). Web Services Description Language (WSDL) Version

1.2, W3C Working Draft 24, http ://www. w3.org/TR/2003/WD-wsdl 12-20030124/.
XMLSchema (2004). XML Schema Part 2: Datatypes Second Edition, W3C

Recommendation 28 October 2004.
D. Caragea and T. Syeda-Mahmood (2004), "Semantic API matching for web service

composition" in Proc. ACM WWW 2004 conference. New York, NY.,pp., 436-439, June
'04.

T. Syeda-Mahmood et al. (2005): Semantic search of schema repositories. IEEE Int.
Conference on World-Wide Web (WWW), 1126-112.

A. Goldberg and Kennedy (1993) : An efficient cost-scaling algorithm for the assignment
problem. SIAM Journal on Discrete Mathematics, 6(3):443-459, 1993.

J.E. Hopcroft, R.M. Karp (1973): An n 5=2 algorithm for maximum matching in bipartite
graphs, SIAM Journal on Computing 2, 225-231, 1973.

T.H. Cormen, C.E. Lieserson, and R.L. Rivest (1990): Introduction to Algorithms. New York:
McGraw Hill, Cambridge: MIT Press, 1990.

G.A. Miller (1995): Wordnet: A lexical database for English. Communications of the ACM,
38(11):39-41, 1995.

SureWord (2005): http://www.patternsoft.com/sureword.htm.
OWL (2004). OWL Web Ontology Language Reference, W3C Recommendation, World

Wide Web Consortium, http://www.w3.org/TR/owl-ref/. 2004.
Lee J., Goodwin R. T., Akkiraju R., Doshi P., Ye Y.(2003): SNoBASE: A Semantic

Network-based Ontology Ontology Management.
http://alphaWorks.ibm.com/tech/snobase.

Matching and Mapping for Semantic Web Processes 245

Bigus J., and Schlosnagle D. 2001. Agent Building and Learning Environment Project:
ABLE, http://www.research.ibm.com/able/

Olaf Kahler, Joachim Denzler, and Jochen Triesch (2004) : Hierarchical Sensor Data Fusion
by Probabilistic Cue Integration for Object Tracking, Image Analysis and Interpretation,
2004. 6th IEEE Southwest Symposium on Object Traclcing, pages 216-220.

UDDI Technical Committee. "Universal Description, Discovery and Integration (UDDI)".
http://www.oasis-open.org/committees/uddi-spec/

X. Dong et al (2004): "Similarity search for web services," in Proc, VLDB, pp.372-283,
Toronto, CA, 2004.

A.Hess and N. Kushmerick (2003): "Learning to attach metadata to web services," in Proc.
Intl. Semantic web conference, 2003.

E. Rahm and P. Bernstein (2001): A survey of approaches to automatic schema matching, in
VLDB Journal 10:334-350, 2001.

J. Madhavan et al (2001), "Generic schema matching with cupid," in Proc. VLDB 2001.
S. Melnik et al, "Similarity flooding: A versatile graph matching algorithm and its application

to schema matching," in Proc, ICDE, 2002.
A.Patil et al. (2004): "Meteor-s web service annotation framework", in Proc. WWW

conference, pp. 553-562, 2004.
Porter, M. F. (1980): "An Algorithm for Suffix Stripping." Program 14, 1980, 130-137.
S. Melnik et al. (2002): Similarity flooding; A versatile graph matching algorithm and its

application to schema matching. In Proc. ICDE, 2002.

Renee J. Miller et al. (2001): The Clio project: managing heterogeneity. SIGMOD Record
(ACM Special Interest Group on Management of Data), 30(l):78-83, 2001.

K. Sycara et al. (1999): "Dynamic service match making among agents in open information
environments," in Jl. ACM SIGMOD Record, 1999.

L. Li and I. Horrocks, (2003): " A software framework for matchmaking based on semantic
web terminology," in Proc. WWW Conference, 2003.

T. Syeda-Mahmood et al. (2005): "Searching schema repositories by combining semantic and
ontological matching," in Proc. IEEE Intl. Conf. on Web Services, (ICWS), pp. 13-20,
2005.

J. Madhavan et al. (2003). Corpus-based Schema Matching. In Workshop on Information
Integration on the Web at IJCAI, 2003.

