
Chapter 8

WEB SERVICES COMPOSITION

Daniela Barreiro Claro''^ and Patrick Albers' and Jin-Kao Hao^
'ESEO, 4 me Merlet de la Boulaye, BP 30926 49009 Angers cedex 01 France.
daniela.claro@eseo.fr, patrick.albers@eseo.fr

^LERIA, University of Angers, 2 Boulevard Lavoisier, 49045, Angers cedex 01 France,
jin-kao. hao@un iv-angers.fr

1. INTRODUCTION

Nowadays many enterprises publish their applications functionalities on
the Internet. This new generation of applications allows greater efficiency
and availability for business. In fact, more and more applications make
functionalities available using a web service format.

However there are many services around the web, each one, taken alone,
has a limited functionality. In many cases, a single service is not sufficient to
respond to the user's request and often services should be combined through
services composition to achieve a specific goal. For example, if a user wants
to travel, it is not sufficient to book a flight, but she should also take care of
reserving a hotel, renting a car, getting entertained, and so on. Such
composition is carried out manually today, it means that the user needs to
execute all these services one by one and these tasks can be time and effort
consuming.

For that reason, the notion of composite services is starting to be used as
a collection of services combined to achieve a user's request. In other words,
from a user perspective, this composition will continue to be considered as a
simple service, even though it is composed of several web services.

Nevertheless, prior to composing web services, candidate services should
first be discovered and then selected. One difficulty is that many functionally

196 Semantic Web Services, Processes and Applications

similar services are available and thus, the number of discovered services by
search mechanisms increases as a consequence. The discovery process
returns a set of candidate services from which the subset of those belonging
to the composition should be extracted according to non-functional criteria
(i.e. cost, availability, reputation). In fact, discovery is a prerequisite for
selection, but selection is the main problem (Sreenath and Singh 2004). The
non-functional criteria are here characterized by the QoS model presented in
each web service. The QoS model has more than one criterion to be
evaluated. Thus, services composition can be considered as a multiobjective
optimization problem.

Planning Discovery Selection &
Optimization

Execution

RE-CHOOSI\G

Figure 8-1. SPOC Architecture

As depicted in Figure 8-1, we propose SPOC (Semantic based Planning
for Optimal web services Composition), an architecture to compose web
services. In our point of view, the problem of composing web services can
be reduced into four fundamental phases: the first one is planning, which
determines the execution order of the tasks, we consider here a task as being
a service functionality or a service activity. The second one is discovery that
aims at finding candidate services for each task in the plan. The third phase
aims at optimizing services composition and is the point treated in this
chapter, and, finally, the fourth concerns execution. This fourth phase is
characterized as a problem because, even during the execution process, the
services may not be found and another tradeoff composition needs to be used
or other plan needs to be envisioned.

The composition of web services starts by creating the initial plan based
on tasks definition. All the definitions of existing tasks should be located in a
repository that the planner can consult for obtaining tasks interfaces. This
repository can be represented as an ontology and for us, it can be an
improvement over UDDI registries. Hence, we propose a UDDI (Universal
Description, Discovery and Integration) that is actually an ontology which
describes the services and their providers in an unambiguous way. The name

Selecting Web Services for Optimal Compositions 197

we give to this new UDDI is UDDI-O, standing for ontology. Thus, prior to
knowing task interfaces, it is necessary to find a plan that satisfies the users'
request. After creating the initial plan, the discovery process will take place.
The discovery process aims at matching service descriptions with task
definitions that belong to the plan. The present work will not cover the
matchmaking problem concerning web services discovery. The optimization
phase is the main topic of this chapter and will be explained in detail in the
next sections. As a result of this phase we obtain a set of Pareto optimal
solutions to execute services composition. In the execution phase, if some
service is not available such as an invalid URL or changed location, the
environment proposes another Pareto optimal solution to be executed (this
corresponds to "re-choosing" in figure 8-1. If after some predefined time the
problem continues, the environment will propose to construct another plan,
for example, by reordering the tasks (this corresponds to re-plan in Figure 8-
1.

This work proposes an analysis of quality criteria in order to select from
a set of services those that will belong to the composition. It is organized as
follows: the next section describes the selection process and the QoS model.
Here, we reinforced the concepts of reputation, because the original concept
(Zeng et al. 2003) did not measure the pertinence of the rank given to a
service by a user. Thus, in our model, rankings from users with good
knowledge of the service domain are considered more accurate. For this
purpose, we use fuzzy numbers to measure this criterion. The third section
describes web services composition emphasizing its structure and the models
that exist to compose web services. The fourth section explains the problem
model with its objectives and constraints. In the fifth section we explain the
multiobjective approach emphasizing the Pareto and Non-Pareto approach.
The sixth section presents existing works related to ours and the seventh
highlights our experimentations. We conclude in the last section.

2. WEB SERVICES SELECTION

The current web service architecture and semantic web efforts address
the problem of web service discovery but not of web services selection.
Discovery deals with finding a set of services that corresponds to a
predetermined user request while selection deals with choosing a service
between those that are discovered. Moreover, selection seems to be the main
problem. In fact, if the discovery process is exhaustive, a very large number
of services may be found. Due to the number of services, and consequently
the number of candidate services, the selection process will be harder
(Sreenath and Singh 2004).

198 Semantic Web Services, Processes and Applications

Discovering services mean matching a user request with service
functionalities. Works have been undergone concerning service architecture
(Sreenath and Singh 2004) in order to better describe web services. Even
though more functionalities are incorporated into service descriptions, it still
remains difficult for selection to find the subset of services that will be part
of the composition (Sreenath and Singh 2004).

Despite the fact that functional attributes have been incorporated by web
services architecture, selection should consider more than functional criteria
to make a distinction between discovered services. As a result, a quality of
service (QoS) model composed of time, cost, availability and reputation is
proposed as non-functional criteria. Since non-functional criteria have been
incorporated by each service, selection can use these QoS variables in order
to choose the optimal subset from all the discovered services.

2.1 QoS (Non-functional) Model

The aim of the selection process is to choose among services discovered
according to their functionalities, those that will belong to the composition.
The set of discovered services can be subdivided into the subsets of services
that are all candidates for a given task. Therefore, in the discovered set, there
are subsets of services that execute a determined task and other subsets that
execute another kind of tasks. As mentioned earlier, we consider here a task
as being a service functionality or a service activity. Thus, in the selection
process we should determine a set of candidate services si, i 6[l..n] that can
execute a set of tasks tj,j €[l..m]. Our main goal, considering that there is a
set of candidate services for each task, is to determine which service fulfills
each task, thus finding services composition.

The QoS model that we propose is composed of four criteria as
parameters for the quality model: cost, time, availability and reputation.
Each of the candidate services will receive a value for representing these
quality criteria. Each of these criteria is presented below.

Cost. (Zeng et al. 2003) (Cardoso et al. 2004)(Liu et al. 2004) The cost
quality Cy is the amount that a service requester needs to pay to execute
service / using task7:

Cij,ie[l..nlje[l..m]

We consider that cy is undetermined when service i cannot execute task t.
Time. (Zeng et al. 2003) (Cardoso et al. 2004) (Liu et al. 2004) The time

quality fy measures the execution time between the moment the request is
sent and the moment the results are received:

t.,ie[l..n\je[l..m]

Selecting Web Services for Optimal Compositions 199

Availability. (Zeng et al. 2003) The availability quality ay is the
probability that the service can be accessed and used. It is a function of the
number of times the service responds to a request and of the number of total
requests made to the service. We can express by:

;; = -.tot:: ^OJe [l.nlje [l..m] a,-i =

tot. u

where reqij is the number of successful requests to service ; using task 7,
and totij is the total number of invocations.

Reputation. The reputation quality ry is the measure of its
trustworthiness. It depends on the user's experience using the service.
Different end users can have different opinions about the same service.

For many authors (Zeng et al. 2003) (Liu et al. 2004), reputation can be
defined as the average ranking given to the service by end users. The
reputation of a given service is usually defined as;

where k], is the b^ ranking given to the service and A'' is the number of
times the service has been ranked.

However, there is no consensus concerning measuring reputation. Here,
we propose a new way of measuring reputation. We tried to translate a real
world judgment into our example. Thus, in real world, when something is
judged for example, a paper in a conference, the reviewers have to give their
knowledge domain, prior to giving their judgment. In the case where a
reviewer receives a paper that she classifies as belonging only 60% to her
area (knowledge domain), the grade that is given must be moderated based
on 60% of knowledge. If the same grade is given by a reviewer with 90% of
know-how on the domain, for sure her grade will be more accurate.
Translating this real scenario into our reputation quality, we must have
another way to measure reputation, including the knowledge domain of end
users. After service execution, the user ranks the service, and gives a
percentage about her knowledge on the service's domain. It will be, for
instance, a simple question as "how much do I know about this area".

In order to measure this criterion, we used fuzzy logic to represent an
imprecise quantity, as "nearly 8" or "practically 15" (Moura 2001). We used
the notion of fuzzy number which is represented as

a =\a,a,a\

200 Semantic Web Services, Processes and Applications

where a is the fuzzy number with minimal limit, modal value and maximal
limit respectively. The linguistic variables that represent our reputation
values are: bad, average and good, as shown in Figure 8-2.

Figure 8-2. Fuzzy set representation

Figure 8-2 shows that until 4, all grades are considered bad, from 5 to 7,
grades are average, and after 8, all grades are good. The measure between 4
and 5, for example, depends on membership values. The membership or
degree of pertinence means how much a value is inside a set, for example
the bad set or inside the average set. Thus, if a service has a rank of 4.8 we
need to analyze its membership n{dl). If its membership has the value 0.33,
it means that it belongs to the bad set. On the other hand, if it has 0.66 as
membership value, it belongs to the average set. Each service will be ranked
several times and thus we will have a set of fuzzy numbers. However, at the
end, what we need is a crisp number that characterizes the reputation value,
and for that we need to convert fuzzy sets to a crisp number. Defuzzification
is the final phase that does this conversion. There are several defuzzification
methods, but we use the CENTROID method that calculates the hypothetical
center of gravity for the output fuzzy set (Lostedt et al. 2000) (Fuzzy 2005).
Thus, our reputation criterion is characterized as:

Selecting Web Services for Optimal Compositions 201

r , v = ^ ^ ; d,i e [0,10l//(rf„.)6 [0,llie [l .4yG [l..«

where d^ represents the domain value (ranking) of service Si for task tj
and ij(dbi) is the membership value for that domain point. Using this model,
reputation ranking is more precise and trustworthy.

We showed above that non-functional quality criteria such as cost, time,
availability and reputation, could be defined to better describe services. In
the next sections, we will present web services composition and how these
criteria can help in obtaining optimal compositions.

3. WEB SERVICES COMPOSITION

Web service composition originated from the necessity to achieve a
predetermined goal that cannot be realized by a standalone service.
Internally, in a composition, services can interact with each other to
exchange parameters, for example a service's result could be another
service's input parameter.

3.1 Problem Description

As an illustrative example, we will consider in this work a Travel
problem. This scenario is a typical web services composition problem
(Narayanam and Mcllraith 2002) (OWL-S 2005). As far as creating the
Travel service, we can use three atomic services (which are not composed)
that will internally execute the travel; each one independently executes a
task. A task can be described as an activity that applies to a specific domain.
In this work, we treat activities and tasks identically. In our problem we will
consider 3 tasks (BookFlight, BookHotel and RentCar) executed by 3
services (Airplane service. Hotel service and CarRental service). As
explained in section 1 the planner will determine the execution order of these
tasks. All the services resulting from the discovery process for a given task
are candidate to execute this task. The aim of composition is to determine,
out of all these candidate services, which one will belong to the composition.

Xii

•^21

i^-^ml

Xn

^ 2 2 '

^mZ '

X\n

' ^In

^mnj

202 Semantic Web Services, Processes and Applications

3.2 Structure of Web Services Composition

The problem of composing web services can be characterized as a
combinatory problem. As explained earlier, in the composition we have a set
of services si, i€[l..n] that can execute a set of tasks tjj€[l..m]. However, it
is necessary to consider that one service can be dependent of other services.
The main goal is to find the trade-off services composition, considering that
there is a set of candidate services for each task.

In a composition, each service s\ is allocated to one task tj. This
association can be represented by a matrix (xy) where si represents the
services and tj represents the tasks. The matrix/ thus represents the services
allocated to a composition.

Z =

In our scenario the number of tasks and of services, m and n, are both
limited to 3.

Actually, we can consider that a composition is a set of atomic web
services or a set of composed web services. For instance, in the case of
atomic services, if service S\ is allocated to task ti, it cannot be allocated to
another task, because its domain is restricted to execution of task ti- If we
consider our Travel problem, a Hotel service cannot execute the bookFlight
task, since it only deals with hotel reservations. On the other hand,
considering that the composition may also have composed (non atomic)
services, it means that one service can execute several tasks in the same
composition. In our experimentations, we only consider atomic web
services; this means that the sum of lines and that of columns in matrix /
should be 1.

V(e[l..4y/e[l..m]
f 1, if service i is allocated to task ;

^ [0, otherwise

The equation above determines whether a service belongs to a
composition or not. It actually gives the result of our composition, since it
defines, in the previous matrix whether service / is allocated to tasky.

For instance, matrix 2' below represents one of the possible
combinations in which service 3̂ will execute task fi, service si will execute

Selecting Web Services for Optimal Compositions 203

task f2 and task ?3 will be executed by service S2. As a result, this composition
will be formed by services S3, s^ and S2 respectively.

'0 0 r

Z'= I 0 0

[0 1 oj
An undetermined number of tasks, m, can be used to compose a service

and an unlimited number of services, n, for each task tj can be found. In fact,
these possible combinations are considered for a predefined plan, which
determines exactly in which order the tasks should be composed. However,
concerning our architecture, the plan can also be changed, and so other
possible combinations might be overseen. Moreover, if it is considered that/?
plans using m tasks can be created, the problem becomes even harder.

3.3 Models to Compose Web Services

The Web Service community is dealing with composition,
interoperability between services, automated discovery and composition.
Efforts have already been made by industrials and researches in order to
achieve this goal. There are two main languages created in order to compose
web services: BPEL4WS and OWL-S. Both languages are created focusing
on activity-based models. In this way, BPEL4WS provides the basis for
manually specifying composite web services. On the other hand, OWL-S is
more ambitious and it provides a machine-readable description of web
services which will enable automated discovery and composition (Hull and
Su 2004). Indeed, there are other models to compose services such as:
workflows, graphs, Petri nets and also currently programming languages as
Java and C. Depending on each choice, composing web services can be
harder and time consuming. Here we will focus on the two specific
languages mentioned above: BPEL4WS and OWL-S. We will then illustrate
some works using different models to compose web services.

3.3.1 Composing using BPEL4WS

Web services composition using BPEL4WS allows the manipulation of
services as activities and processes. Actually, BPEL4WS language is a
merge between Microsoft's XLang and IBM's WSFL, but all of them are
considered as a web service flow language (van der Aalst 2003). As an
executable process implementation language, the role of BPEL4WS is to
define a new web service by composing a set of existing ones. The interface
of the composite service is described as a collection of WSDL PortTypes.

204 Semantic Web Services, Processes and Applications

A BPEL4WS process defines the roles involved in a composition as
abstract processes. A buyer and a seller are examples of two roles. They are
expressed using partner link definitions. We can have a role for each web
service that is composed and does some activity. In order to integrate
services, they are treated as partners that fill roles (Mandel and Mcllraith
2003). BPEL4WS depends directly on the WSDL of the service. A business
process defines how to coordinate the interactions between a process
instance and its partners. Thus, a BPEL4WS process provides one or more
WSDL services. The BPEL4WS process is defined only in an abstract
manner, allowing only references to service portTypes in the partnerLink
(Andrews et al. 2003). Each partner is characterized by a partner link and a
role name. In summary, the main idea of business process is to create an
organizer that point to each service endpoint that will be actually executed.

Characteristics. The distinction between roles and partners in a business
process is an important characteristic of BPEL4WS. This allows more
simple and intuitive integration between enterprises. Another important
characteristic of BPEL4WS is the fault handlers. Faults handlers have the
ability to catch errors in BPEL4WS. Another characteristic from BPEL4WS
is message correlation that allows processes to participate in stateful
conversations. It can be used to match returning or known customers to
long-running business process. Furthermore, correlation mechanisms allow
interaction between a service instance and a partner. BPEL4WS addresses
correlations scenarios by providing a declarative mechanism to specify
correlated groups of operations within a service instance (Andrews et al.
2002).

In a BPEL4WS process we define the interactions between these
activities that compose the service. Thus, there are some types of interaction
like sequence, flow, switch, pick, moreover, each one can be combined.

Implementation. We developed a prototype using BPEL4WS. We
created our composition based on our simple Travel. Our composition has
three services: Airplane, Hotel and CarRental. In BPEL4WS we define a
composed service, such as Travel by describing which others services it
contains. Figure 8-3, adapted from (Khalaf 2004), shows the relation
between the Travel service and the others that compose it.

Selecting Web Services for Optimal Compositions 205

Client

Figure 8-3. Internal view of Travel Service (BPEL4WS)

We put these three services in sequence, using the sequence structure.
The receive structure indicates the location of the input variables in the
sequence. The invoke structure is actually the service invocation. The reply
is the response given by the sequence that here is the total cost of the travel.
Between each structure, we can add an assign structure that is responsible
for passing values between invoked services. See below our example using
BPEL4WS:

<secjuence name="TravelSeguence">
<receive partnerLink="client"

portTYpe="tns:travelPT"
operation="trip"
variable="request"
createlnstance="yes"/>

<invoke name="invokeAirplane"
partnerLink="airplane"
portTYpe="sairplane:Airplane"
operation="bookAirplane"
inputVariable="request"
outputVariable="airplaneReturn">

</invoke>
<invoke name="invokeHotel"

partnerLink="hotel"
portTYpe="shot:Hotel"

206 Semantic Web Services, Processes and Applications

operation="bookHotel"
inputVariable="request"
outputVariable="hotelReturn">

</invoke>
<invoke naine="invokeCar"

partnerLink="car"
portType="scar:Car"
operation="rentcar"
inputVariable="request"
outputVariable="totalReturn">

</invoke>
<reply partnerLink="client"

portType="tns:travelPT"
operation="trip"
variable="carReturn"/>

</sequence>

After constructing the composition, we need to deploy our composite
Travel service, making it available for execution. At this moment, the
deployment engine will require the WSDL files that were related to partner's
links. As we have an interaction with each service developed, we must have
a WSDL for each one. We have to mention in each WSDL the grounding tag
in order to actually find the service. Additionally, we invoke the composition
using an API created by IBM called BPWS4J1.1 (BPWS4J 2004). Using this
API to execute our composite service, we call a broker and we use the
endpoint given by the Travel deployment to do the connection between the
client and services' providers. Using the endpoint, the broker can find the
service, and then it can pass the first parameters that are sent by the client.

3.3.2 Composing using OWL-S

The process of composing services using a semantic web language like
OWL-S increases the automatic discovery and composition. In fact, OWL-S
is based on ontology and OWL. This means that OWL-S is also based and
constructed using resources and hierarchical concepts. With such a language,
software agents can find services based on their computer-interpretable
description.

The main motivating task for OWL-S was the ability to automatically
discover web services. Other motivating tasks are automatic invocation of a
service, with which a software agent can interpret markup to understand
what input is necessary for the service call, what information will be
returned and how to execute the service.

Selecting Web Services for Optimal Compositions 207

Additionally, the composed web service is actually an abstract service. In
fact, the composition file has only the service calls. In OWL-S each service
that is part of composition has the same structure as the composed one.

Characteristics. OWL-S is composed of three other structures called:
service Profile, service Model and service Grounding, used to describe
different aspects of the service (OWL-S 2005). The service Profile is
responsible for presenting the service to other services or agents that want to
use it. It describes the service in order to facilitate the search process,
specifying what organization provides the service and what functions the
service provides. See below a Profile example:

<profile:Profile rdf:ID="TravelProfile">
<service:isPresentedBy

rdf:resource="#TravelService"/>
<profile:serviceName xml:lang="en"> Travel
</prof ile: serviceNaine>

<profile:textDescription xml:lang="en">
Return travel: book flight, hotel, car rental.

</prof i l e : t e x t D e s c r i p t i o n > ...

The service Model describes the service with regards to its inputs,
outputs, effects and preconditions parameters. Furthermore, the process
model is the core of OWL-S architecture; it defines how the process will be
executed. Services can be composed using a combination of atomic or
composite services. This implies that a composition can have services that
are themselves composed. Additionally, in the service model we can say
how the services will be executed: sequentially {sequence) or in parallel
(split/split+join) or some other way (OWL-S 2005).

The service grounding is responsible for giving the endpoint of a service.
A service grounding can be thought of as a mapping between an abstract and
a concrete specification (OWL-S 2005). It is also in the grounding that we
put the reference to each WSDL document.

208 Semantic Web Services, Processes and Applications

• ^ • •! I i i . .

Client

: l ' : I lJ!rM I

\ l : i i ! r . : " i ;.k .

l l . l < () i) l } > i M

Figure 8-4. Internal view of Travel service (OWL-S)

Implementation. In our implementation using OWL-S composition, we
defined the Travel service as being composed of three atomic services called
Airplane, Hotel and CarRental services. We must define the OWL file for
each atomic service. Furthermore, in these files we must put the grounding
reference positioning exactly where the service is running. The Travel.owl
file is only an abstract service where we define the input/output parameters
and which service will be called. Figure 8-4 shows the internal view of
Travel service.

After creating the OWL-S file containing the three services above, we
can invoke the Travel service, sending it the parameters: date_arrival,
date_departure and destination_city. As a result we will obtain the total
amount for traveling. We also used a sequence structure in order to compose
our services. In OWL-S we can pass values between services using
process:sameValues structure.

<process:ProcessModel rdf:ID="TravelProcessModel">
<service:describes

rdf:resource="#TravelService"/>
<process:hasProcess

rdf:resource="#TravelProcess"/>
</process:ProcessModel>
<process:CompositeProcess rdf:ID="TravelProcess">
<process:haslnput rdf:resource="#dt_arrival"/>
<process:haslnput rdf:resource="#dt_departure"/>

Selecting Web Services for Optimal Compositions 209

<process:haslnput
rdf:resource="#destination_city"/>

<process:hasOutput rdf:resource="#total"/>
<process:composedof>
<process:Seguence>
<process:components

rdf:parseTYpe="Collection">
<process :AtoinicProcess
rdf:abQut="Airplane.owl#AirplaneProcess"/>
<process:AtomicProcess

rdf:about="Hotel.owl#HotelProcess"/>
<process;AtomicProcess
rdf:about="CarRental.owl#CarRentalProcess"/>
</process:components>

</process:Sequence>
</process:composedOf>

</process:CompositeProcess>

In order to execute the travel service, we have used OWL-S API
(Mindswap 2004). For a cHent side, we defined an endpoint called Travel as
the name of our service. Continue the execution, we invoke the Travel
service and the OWL-S works on executing the others services that belongs
to this composition.

It is important to highlight that these two examples were done in a
statically way. In other words, we knew in advance which services would be
part of the composition.

3.3.3 Other Web Service Composition Models

Many works opted for neither using BPEL4WS nor OWL-S. They
modeled web services composition using other types of procedures.

In (Grigori and Bouzeghoub 2005) they propose modeling web services
composition as graphs. In their work, even though they were worried about
services match, the user requirements and the published service are graph
based. The service retrieval approach is based on process graphs. Thus, a
process is represented as a directed graph, whose nodes are activities. Edges
have associated transition conditions expressing the control flow
dependencies between activities.

In (Cardoso et al. 2004), they model web services composition using a
workflow. In this work, a web service is considered as being a part of the
workflow and it is argued that tasks and web services are treated with no
difference. Between workflow and web services, both require tasks to have a

210 Semantic Web Services, Processes and Applications

structure which includes information such as tasli name, formal parameters,
etc. Concerning web processes and workflows, in the authors' opinion, web
processes can be viewed as workflows that manage web services instead of
tasks. Thus, a workflow is composed of tasks and these tasks are actually
web services.

In the work presented in (Narayanam and McIIraith 2002), web services
compositions are modeled as Petri nets. In fact, all approaches mentioned
above use graph representations. For instance, a Petri net is a bipartite graph
containing places (drawn as circles) and transitions (drawn as rectangles).

Summarizing, several different manners exist for modeling web services
composition; using various types of graphs, specific languages, etc.

4. PROBLEM MODEL

Many authors have studied the problem of web services composition, but
only a few have worried about how complex this composition could be.
Concerning our Travel problem, consider that we can now have more than
ten tasks to be executed and over a hundred candidate services; with the
daily growth of the Internet, these figures may soon be realistic. Thus,
combining each task, respecting their restrictions and respectively finding
the service to execute the tasks can be considered as a combinatory problem.
Since we treat our services composition as a combinatory problem it requires
optimization, so our Travel problem can be treated as an optimization
problem.

Optimization problems require basically two elements: a search space
composed of potential solutions and an objective function to be optimized.
The search space may be restricted by a set of constraints. In our example,
prior to execute the services, it is necessary to find optimal composition. In
order to achieve optimal compositions we defined four main objectives that
should be optimized: cost, time, reputation and availability. In addition to
these objectives, we restricted the search space using constraints stating, for
example, that one service can only be allocated to one task. Actually these
objectives are our QoS model explained earlier. Since each QoS variable
will be described inside a service, our optimization problem will retrieve
these values in order to make possible combinations. The QoS (non
functional criteria) model was used as the objectives to be optimized because
we need to differentiate candidate services with identical functionalities. In
the next subsections we explain our objectives and the constraints we used in
detail.

Selecting Web Services for Optimal Compositions 211

4.1 Objectives

Our problem consists of four objectives. The first one is cost
minimization:

n m

In this problem, cy represents the cost criterion in the quality model. It
defines the cost of using service si for executing task tj. pij indicates the
service's ability to execute a given task. Since we can have atomic or
composed services belonging to the composition, not all of the discovered
services will be able to execute all the tasks. Thus, py is a binary variable
informing whether service si is able to execute a task tj or not. The binary
variable xg is responsible for expressing if a service belongs or not to the
composition. This is represented in matrix x-

Another objective concerns time. As explained in the QoS model, time is
the elapsed time between the request and the response. The time objective
also needs to be minimized:

n in

Min^Y^'ljPyXy
i=i y=i

In our model, tij concerns the time taken by service si to execute task ty
The other variables py and xy are those explained above.

The availability objective shows the probability that a service can be
accessed and used. In our case, it should be maximized, because it is
preferable that this probability is as high as possible.

n m

Variable ay should belong to [0,1].
The last objective is related to the reputation a service has in a

determined field.

n m

(=1 M

rij stands for the reputation service s^ has when executing task t,. This
objective needs to be maximized because the higher the reputation the better
the service is judged.

Using our objectives, we can now reconsider our Travel problem. Cost
represents the price of a service execution and Time is the execution time of
a service. Moreover, Availability is the probability a service is "alive" and

212 Semantic Web Services, Processes and Applications

Reputation is the trustworthiness of the service in a determined field. We can
easily understand that some clients do not give any preference to cost and
prefer spending more money on travel, provided it is on a reliable airline
company. In fact, we want to consider the four objectives simultaneously for
travel.

In fact, even if the four objectives are contradictory with each other, we
do not give any preference to any one of them. This means that we do not
need to give them a weight. For instance, we do not want to give any
preference to cost over time. Thus, the service with the smallest cost will not
necessarily be part of our composition, since its other measures of quality
must be considered. We will explain how one can treat this kind of problem
in section 5.

4.2 Constraints

In our model the solutions of our problem must also satisfy two
constraints. The first one states that only one service in a composition is
allocated to each task. It can be represented by:

n

where xy specifies whether or not a service belongs to a composition.
Variable pg represents the capacity of service si to execute task tj. Thus, this
first constraint specifies that each task in the composition must be executed
by exactly one service.

The second constraint concerns the user's budget.
n m

This constraint states that the cost of using the resulting composition
should not exceed a given value W.

5. MULTIOBJECTIVE OPTIMIZATION

As explained in section 4 we have four objectives that we want to
minimize and maximize. However, neither a preference nor a weight should
be given to any one of them. We want to treat all of them together and
simultaneously. Although single-objective optimization problems may have
a unique optimal solution, Multiobjective Optimization Problems (MOP)
present a possibly uncountable set of solutions, which when evaluated.

Selecting Web Services for Optimal Compositions 213

produce vectors whose components represent tradeoffs in objective space. A
decision malcer tiien implicitly chooses an acceptable solution by selecting
one or more of these vectors (Coello et al. 2002;Tan et al. 2005;Deb
2001;Collette and Siarry 2003).

Multiobjective optimization allows the co-existence between two or more
objectives that are normally contradictory. Two objectives are contradictory
if the decrease of one of them implies the increase of the other. Another
important feature is that in a multiobjective problem we do not have only
one optimal solution but a set of solutions. These solutions are called Pareto
solutions (Tan et al. 2005).

Thus, MOP can be defined as finding (Osyczka 1985): "a vector of
decision variables which satisfies constraints and optimizes a vector of
function whose elements represent the objective functions." This is formally
defined in (Coello et al. 2002) as:

Find the vector x = [xi,x2,—,x„Y which satisfies the minequality
constraint s:
g;(3c)>0, (= 1,2 m

and optimize the vector function

f(x)=[Mx),f2(x),...,Mx)Y

The constraints define the feasible region and any point in x defines a
feasible solution. T stands for vector transposition. Thus, the points inside
the feasible region satisfy all defined constraints.

A large number of approaches exist to resolve multiobjective
optimization problems. Some of them use the knowledge they have about the
problem to give preferences to some objectives, thus bypassing the
multiobjective aspect. Others give all objectives the same level of
importance, etc. Among these approaches, we should distinguish between
two categories: non-Pareto and Pareto approaches. Non-Pareto approaches
do not actually treat the problem as a multiobjective problem. They try to
convert it into a mono-objective problem. On the other hand, Pareto
approaches do not transform the problem's objectives, but try to optimize
them simultaneously.

5.1 Non-Pareto Approach

There are many non-Pareto approaches; however, we focus here on two
of them used in multiobjective problems.

214 Semantic Web Services, Processes and Applications

5.1.1 Objective aggregation method

This method is the most commonly used in multiobjective optimization
problems. The goal is to transform the multiobjective problem into a mono-
objective problem. Hence, they use a weight mechanism to aggregate all
objectives into a unique objective. This approach has the advantage of being
able to reuse all classic algorithms used for solving mono-objective
optimization problems. However, the weights must be given with attention
because it impacts directly into the solutions.

5.1.2 E-Constraint

This is another manner of transforming a multiobjective problem into a
mono-objective one. When confronted with a problem consisting of m
objectives, we convert m-1 of them into constraints. Thus, the idea is to
optimize the preferred objective, considering all the others as constraints.
This method is also known as the trade-off method.

5.2 Pareto Approach

Having several objective functions, the notion of "optimum" changes,
because in MOP, the aim is to find good compromises ("tradeoffs") rather
than a single solution. We can say that x is Pareto optimal if there exists no
feasible vector y which decreases some criterion without causing a
simultaneous increase in at least one other criterion (Coello et al. 2002).

5.2.1 The Relation of Dominance

Despite the fact that we have obtained many solutions resolving our
multiobjective problem, only a restricted number of them will actually be
relevant. Thus, in multiobjective problems, in order to consider an
interesting solution, we need to have a means of determining the most
relevant solutions. In order to determine these solutions, a relation of
dominance is defined as follows:

Definition: The relation of dominance in a minimization problem is
defined in (Coello et al. 2002) as:

Vector V dominates vector f (v :< ?) if, and only if:

V is partially less than f

i.e. Vie {l,..., k\vi < r,- A 3(6 {l,..., k}:Vj < r,-

Selecting Web Services for Optimal Compositions 215

Solutions that dominate other solutions but which do not dominate each
other are called optimal solutions in the sense of Pareto (or nondominated
solution).

5.2.2 MultiObjective Evolutionary Algorithms

The use of Evolutionary Algorithms (EA) to solve Multiobjective
problems has been motivated mainly because of the population-based nature
of EAs which allows the generation of several elements of the Pareto
optimal set in a single run. The Multiobjective Evolutionary Algorithms
(MOEA) are among the most powerful resolution methods for
multiobjective optimization (Coello et al. 2002). MOEA take into account
contradictory objectives and allow finding a set of nondominated solutions.
An evolutionary algorithm is composed of three fundamental elements:

• Population; it is composed of individuals that represent potential
solutions

• Evaluation: it is a mechanism that allows individual evaluations in order
to measure the individual adaptation into an environment.

• Evolution: it is the mechanism that allows the population evolution.
Evolution is ensured by selection, crossover and mutation.

The selection mechanism determines the individuals that can reproduce
its characteristics in future generations. The crossover is the mechanism
responsible to create new individuals based on parents' characteristics. The
mutation mechanism introduces limited changes in the individuals.

Genetic Algorithm to MOP (NSGA-II). The NSGA-II (Nondominated
Sorting Genetic Algorithm) (Deb el al. 2002) used in this work is one
variation of Goldberg's Pareto ranking (Goldberg 1989), though any other
MOEA such as SPEA(Zitizler and Thiele 1998), PAES (Knowles and Corne
1999) and PICPA (Barichard and Hao 2003) could have been used.

In NSGA-II, the tournament selection, crossover and mutation operators
are used to create a child population that will be added to a result population
given by the later generation. The new population is sorted based on non-
domination. In this step, elitism is ensured because the best nondominated
sets will be chosen for the next population. Using constraints, the relation of
domination between two individuals can be characterized as a feasible or
unfeasible solution. Thus, the ranking will be done based also on feasible
solutions.

216 Semantic Web Services, Processes and Applications

Applying NSGA-II to our Travel problem, a chromosome corresponds to
a services composition which is defined by a 0/1 string. Each binary variable
that represents a gene indicates whether the service belongs to the optimal
composition or not. The example below shows a chromosome representing a
solution of a services composition problem using 15 services and 3 tasks
(each of them having 5 candidate services):

0 0 0 1 0

genes: 1-5

1 0 0 0 0

genes: 6-10

0 0 1 0 0

genes: 11-15

Each service is represented in the above chromosome by a binary
variable (a gene) and the binary variables (genes) are grouped according to
the task they are candidate for (genes 1-5: task 1, genes 6-10: task 2, genes
11-15: task 3). For each group of 5 binary variables, only one service will
belong to our composition. This chromosome corresponds exactly to our
matrix % and means that service 4̂ is allocated to task ti. Task ti will be
executed by service 6̂ and task tj, by service S13.

6. RELATED WORK

Many authors have proposed quality of service models for selecting web
services. Some authors applied their QoS model to agents based
architectures, others to centralized registries or to individual services.

In (Ran 2003) the main idea is to include a QoS model into UDDI
registries so that QoS parameters can be included as search criteria. In fact,
they propose to use a QoS model as non-functional requirements to enable a
service search based on functional and non-functional (QoS) parameters.
They also explain that the current UDDI model limits the service discovery
to functional requirements. Due to this limitation, they propose to
incorporate a QoS model into UDDI registries. The proposed model will
coexist with the current UDDI. If no services are found with these qualities,
feed-back is returned to clients and so they can reduce their quality values.

In (Sreenath and Singh 2004) the authors propose a mutual evaluation
process between agents to select a web service. It selects the best service
based on rates given to providers by agents. A provider is ranked by an agent
and the agent's evaluations are, themselves, evaluated by other agents. Thus,
selecting a service provider involves getting a list of rated service providers
and choosing the best based on a weighted average calculation. The result of
the execution of the chosen service is then feedback into the service provider
rating mechanism.

Selecting Web Services for Optimal Compositions 217

The main idea in (Cardoso et al. 2004) is an adaptation of Workflow
Quality of Services and its transposition to web service technologies. First of
all, they propose to characterize workflows based on their QoS in order to
better fulfill customers' expectations. The QoS model is composed of: time,
cost, fidelity and reliability. Fidelity means how well workflows, instances
and tasks are meeting user specifications. Concerning reliability, it is the
measure of the likelihood that the component performs a task demanded by a
user. These QoS constraints are implemented into METEOR workflow
management systems for Genomic Projects.

Ideas in (Zeng et al. 2003) are very close to our proposition regarding the
QoS model and also to the resolution method. This work treats the services
selection during the execution process and so it takes into account multiple
criteria. Thus, the idea is that services are selected by the composite service
execution engine based on a set of criteria. This paper presents a quality
model that is characterized by non-functional properties: price, duration,
reputation and availability. Service selection is then formulated as an
optimization problem and a linear programming method is used to compute
optimal services execution plans to compose services. This work is an
example of objective aggregation approach. In other words, they weight the
objectives and then sum them all in order to create a single aggregate
objective. The transformed problem is solved using linear programming.
Notice that this approach cannot lead to alternative solutions and is not able
to handle automatically non-linear constraints. The most important
difference between our work and Zeng et al's work (Zeng et al. 2003) is that,
as opposed to their work, we do not give any weight to any objective. We
treat all objectives with the same importance using a multiobjective
optimization approach. Even though our objectives are contradictory, they
are taken into account simultaneously by our resolution algorithm.

In (Liu et al. 2004), in order to improve the work of (Zeng et al. 2003),
the authors propose specific domain criteria for each service that will be
selected. Thus, QoS information is collected from the properties of services
as they are pubhshed by providers. The main idea is that some users want to
select services based on time while others only want to consider cost. Thus
this paper proposes a QoS model based on user preferences.

In (Canfora et al. 2005), the authors propose a QoS-aware composition
based on run-time values. They argue that QoS values based on estimation
may differ from those at runtime. Thus they prefer to use runtime QoS value
when composing services in order not to go against SLA accords. An
example is that, at runtime, some services may not be available when,
according to estimations, they should be. Thus, this framework needs to
reconsider services composition in order to change the bindings between
abstract and concrete services.

218 Semantic Web Services, Processes and Applications

Ideas in (Jaeger et al. 2005) discuss how the selection can consider
different QoS categories to determine the most suitable candidates for the
composition. If more than one category is used for optimization, a multi
dimensional optimization problem arises. On the other hand, if exactly one
category is relevant, an algorithm chooses the candidate that offers the
optimal value. For each task the candidate that offers the best QoS constraint
category is assigned. Thus, if a combination which respects the constraints
exists, it is found.

In (Bonatti and Festa 2005) the authors consider optimal services
selection based on a given set of service requests (i.e. activities occurring in
a workflow), a set of available services (offered services), result of the
matchmaking process (association of the request and the offer) and a
numeric preference measure. Their selection is based on cost and two
different QoS-like criteria. These criteria are ordered and static.

7. CASE STUDY

One of the main contributions of this work concerns the multiobjective
optimization approach. As explained earlier, we consider that objectives and
solutions should be searched considering these four criteria simultaneously.
To achieve this, we use the multiobjective evolutionary algorithm NSGA-II.
The next sections describe our experimentation using the NSGA-II for
composing web services.

7.1 Experimentation

Applying this algorithm to our problem, several experiments using our
composition model were done in order to find optimal compositions.

7.1.1 Tests set

The main objective of our tests was to find a set of Pareto optimal
compositions from which a user can select her preferred solution. The first
test that we did was to analyze the same number of services and tasks,
changing the number of generations and populations. The number of
services was set to 30 and the number of tasks to 3. We chose to allocate the
same number of candidate services to each task. The aim of this
experimentation was to analyze how the algorithm treats services
composition.

The next test that we did was aimed at studying the scalability of the
services composition algorithm with respects to the number of candidate

Selecting Web Services for Optimal Compositions 219

services and to the number of tasks. Population and generation were kept
constant in all experiments, but the number of services and tasks was
changed. In fact, we increased candidate services for each tasks. The
population was fixed to 200 individuals and the generations were fixed to
500. These values were taken considering other experiments using the
NSGA-II algorithm.

As for the previous experiment, we also consider that the numbers of
candidate services for each task are equal. The number of services is thus
equal to the number of variables, because each service is represented as a
variable in our model.

7.1.2 Algorithm Parameters

In the first experiment we used population ranges from 10 to 200 and
generation ranges from 10 to 500. The crossover probability was 0.9 and the
mutation was 1// where / is the number of binary variables. In our case, we
used 30 binary variables because we have 30 services. These 30 binary
variables represent 3 tasks and each task can be executed by 10 candidate
services. The crossover used was single-point. We used 4 objective functions
and 2 constraints as previously defined in our model. The first constraint
determines the candidate services and the other one represents the maximal
budget given by the user. This value was fixed for all compositions. The
QoS values were given randomly to each service.

In the second test, the population size was set to 200 and generation to
500. We did these experiments using 30 and 60 services with 3 and 5 tasks.
It means that, for example, using 60 services and 3 tasks, we have 20
candidate services equally distributed for each task. The crossover mutation
and probability was maintained (of course they changed according to the
number of variables). In both experiments, all constraints must be satisfied
in all generations and thus only feasible solutions were selected for the next
generation.

7.1.3 Results

The results of our experiments consist of a set of chromosomes; each one
representing a services composition. Since we defined a population size of
200, the maximum number of solutions found was also 200. However, out of
these solutions we only highlighted the distinct Pareto optimal solutions.

In Figure 8-5, we show the evolution of our model based on the number
of distinct Pareto optimal solutions found for 30 services and 3 tasks. We
can see that 70 distinct solutions are found for a population size of 200 and a
generation size of 500. The tradeoff solutions do not violate any constraints.

220 Semantic Web Services, Processes and Applications

Using 30 services for 3 tasks, the algorithm gives 70 distinct nondominated
solutions in approximately 18 seconds.

3 tasks. 30 services: distinct solut ions

50-

I
o

M

A / , ' ' ^ « *—— — _ _ ^

-Li-JL:i:rJLl::i3:-ri^^

- • - popOOii
- • - pop 010
-*- popoa
- • • popaM
•* pnfi 1C0

50 ICO '150 ZOO im 300 3M 100 4S0 600

GuneratiOR

Figure 8-5. Distinct Pareto solutions

Selecting Web Services for Optimal Compositions 221

3 tntilts, 30 i!oiv)o4is; otupsfK) timE)

?00 2S0 300 a w 400 4» 403

Figure 8-6. Elapsed Time

We notice, in Figure 8-6, that it is not necessary to use large Distinct
Pareto solutions populations since for a population size of 100, the 47
distinct solutions are obtained in 7 seconds.

The next experiment consisted in changing the number of services and
the number of tasks. In Figure 8-6 we observe that as the number of services
increases, more solutions are found. In addition, as the number of candidate
services increases, the elapsed time to find the solutions also increases.

For example, using 60 services for 3 tasks means that there are 20
candidate services. However using 60 services for 5 tasks, there are only 12
candidate services. The difficulty in finding tradeoff solutions increases with
the number of candidate services. Augmenting the number of tasks also
means increasing the number of constraints and so facilitating the
achievement of Pareto optimal compositions, as shown in Figure 8-7.

222 Semantic Web Services, Processes and Applications

.;eneralioiis

Figure 8-7. Services and Tasks

8. CONCLUSIONS

In this paper we have explained how services could be selected in order
to make optimized compositions. We proposed some improvement on
quality models, highlighting the reputation criterion. We based the
calculation of reputation on fuzzy numbers. Using non-functional features
(QoS) for the optimization of composite services may lead to contradictory
objectives. However, we do not wish to give any preference (weight) to any
of these objectives. Thus we chose to treat services composition as a
multiobjective problem. We used the multiobjective evolutionary algorithm
called NSGA-II and obtained a set of optimized compositions representing
different tradeoffs. The experimentations carried out validate our approach
and show its feasibility in solving the Travel problem.

QUESTIONS FOR DISCUSSION

Beginner:
1. Why do we need to compose web services?

Selecting Web Services for Optimal Compositions 223

2. What is the difference between static composition and automatic
composition?

3. List different techniques used for composing automatically web services.

Intermediate:
1. Should QoS values be assigned to web services or should they be

associated to service providers?
2. List other possible approaches to solve the multiobjective model for the

optimization of web services composition?
3. Could the availability criterion be a continuous measure? Why?
4. Why is it necessary to optimize the composition?

Advanced:
L In our problem, what happens if the number of services and tasks is

increased?
2. What are the benefits of using multiobjective approaches?

Practical Exercises:
1. Choose an example to compose statically using three services. Develop it

using OWL-S or BPEL4WS.
2. Take a composition example, enumerate all possible compositions,

choose a quality criterion and try to optimize using a linear programming
approach.

10. SUGGESTED ADDITIONAL READING

• Coello Carlos A., van Veldhuizen D.A., Lamont G.B.; Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer
Academic/Plenum Publishers, New York, 2002: This book is a
reference in the domain of Evolutionary Multiobjective
Optimization.

11. ACKNOWLEDGMENT

Daniela Barreiro Claro is supported by a research scholarship given by
the Region du Pays de La Loire (2003-2006).

224 Semantic Web Services, Processes and Applications

12. REFERENCES

Andrews T., Curbera F., Dholakia H., Goland Y., Klein J., Leymann F., Liu K., Roller D.,
Smith D., Thatte S., Trickovic I. and Weerawarana S. Specification: BPEL4WS - Business
Process Execution Language for Web Services - Version 1.1. Retrieved May 30, 2005,
from ftp://www6.software.ibm.com/software/ developer/library/ws-bpel.pdf, May (2003).

Barichard H., Hao J-K. A population and Interval Constraint Propagation Algorithm. In
Second International Conference Evolutionary Multi-Criterion Optimization (EMO),
Lecture Notes in Computer Science 2632:88-101(2003).

Bonatti P., Festa P. On Optimal Service Selection. In International World Wide Web
Conference (WWW'2005), May 10-14, Chiba, Japan (2005).

BPWS4J API. Retrieved November 26, 2004, from http://www.alphaworks.ibm.coni/
tech/bpws4j.

Canfora G., di Penta M., Esposito R., Villani M.L. QoS-Aware Replanning of Composite
Web Services. In International Conference of Web Services (ICWS'2005), July 11-17,
Orlando (2005).

Cardoso J., Sheth A., Miller J., Arnold J., Kochut K. Quality of Service for Workflows and
Web Service Processes. In Web Semantics: Sciences, Services and Agents on the World
Wide Web 281-308, 1 (2004).

Collette Y., Siarry P. Multiobjective Optimization: Principles and Case Studies, Springer,
NY, Berlin (2003).

Coello C.C.A., Van Veldhuizen D.A, Lament G.B. Evolutionary Algorithms for Solving
Multi-objective Problems. Kluwer Academic Publishers, New York (2002).

Deb K. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley \& Sons,
ISBN 0-471-87339-X, Chichester, UK (2001).

Deb K., Pratap A., Agarwal S., Meyarivan T. A Fast and Elitist Multi-Objective Genetic
Algorithm: NSGA-II. IEEE Trans Evol Computat, Volume 6, pp. 182-197, April, (2002).

Fuzzy Logic Fundamentals, Chapter 3, pg 61-103. Retrieved February 8, 2005. Available on
http://www.informit.coni/content/images/0135705991/ samplechapter/0135705991.pdf
(2005).

Goldberg D.E, Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley Publishing Company, Reading, Massachusetts (1989).

Grigori D., Bouzeghoub M. Service retrieval based on behavioral specification. In
International Conference of Web Services (ICWS'05), July 11-17, Orlando (2005).

Hull R., Su J. Tools for Design of Composite Web Services. In SIGMOD 2004, June 13-18,
Paris (2004).

Jaeger M.C., Miihl G., Golze S. QoS-aware Composition of Web Services: A Look at
Selection Algorithms. In International Conference of Web Services (ICWS'2005), July 11-
17, Orlando (2005).

Khalaf R. Business Process with BPEL4WS, Part 2. Retrieved October 27, 2004. Available
on http://www-I28.ibm.com/developerworks/webservices/library/ws-bpelcol2/

Knowles J., Come D. The Pareto archived evolution strategy: A new baseline algorithm for
multiobjective optimization. In Congress of Evolutionary Computation, Piscataway, New
Jersey: IEEE Service Center, 98-105 (1999)

Liu Y., Ngu A.H.H., Zeng L. QoS Computation and Policing in Dynamic Web Service. In
Thirteenth International Conference of WWW 2004, May 17-22, New York, New York
(2004).

Lostedt J., Svensson M. Baltazar - A Fuzzy Expert for Driving Situation Detection. Master
Diss., Department of Sciences, Lund University (2000).

Selecting Web Services for Optimal Compositions 225

Mandel D.J., Mcllraith S.A. Adapting BPEL4WS for the Semantic Web Bottom-up Approach
to Web Services Interoperation. In Second International Semantic Web Conference
(ISWC), Sanibel Island, Florida (2003).

Mindswap G. Maryland Information and Network dynamics lab semantic web agents
projects. Retrieved October 28, 2004. Available on http://www.mindswap.org/ 2004/owl-
s/api/index.shtml (2004).

Moura L. A Genetic algorithm to fuzzy multiobjective optimization. Master diss. Department
of Electric Engineer, Campinas University (2001).

Narayanan S., Mcllraith S.A. Simulation, Verification and Automated Composition of Web
Services. In Eleventh International World Wide Web Conference (WWW 2002),
Honolulu, May 7-10 (2002).

Osyczka A. Multicriteria optimization for engineering design. In Gero, J.S., editor Design
Optimization, pg.193-227. Academic Press (1985).

OWL-S Coalition. OWL-S: Semantic Markup for Web Services. Retrieved April 12, 2005.
Available on http://www.daml.0rg/services/0wl-s/l.l/ (2005).

Ran S. A Model for Web Services Discovery with QoS. In ACM SIGecom Exchanges,
Volume 4, Issue 1, Spring, pp. 1-10, ACM Press, New York, NY (2003)

Sreenath R.M., Singh M.P. Agent-based service selection. In Web Semantics: Science,
Service and Agents on the World Wide Web, 261-279 (2004).

Tan K.C., Khor E.F., Lee T.H. Multiobjective Evolutionary Algorithms and Applications.
Springer-Verlag, ISBN 1-85233-836-9, London (2005).

van der Aalst W.M.P. Don't Go with the Flow: Web Services Composition Standards
Exposed. IEEE Inteligent Systems, 18(l):72-76 (2003).

Zeng L., Benatallah B., Dumas M., Kalagnanam J., Sheng Q.Z. Quality Driven Web Services
Composition. In Twelfth International Conference of WWW, May 20-24, Budapest
(2003).

Zitizler E., Thiele L. Multiobjective Optimization using Evolutionary Algorithms - A
Comparative Case Study. Parallel Problem Solving from Nature V, A.E.Eiben, T.Back,
M.Schoenauer and H-P. Schwefel Eds. Berlin, Germany: Springer, 292-301 (1998).

