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1. WEB SERVICES AS REACTIVE SYSTEMS 

Computing systems can be conceptually partitioned into two primitive 
categories: Transformational and Reactive. Transformational systems, as 
shown in Figure 5-1 are generally modelled by abstracting away the 
computations and specifying the system as an input-output function. The 
non-termination of a transformational system is usually considered a failure. 
Compilers, assemblers and routines in a library of mathematical functions 
are examples of transformational systems. The objective of Reactive 
systems' (D. Harel and A. Pnueli 1985) on the other hand is not necessarily 
terminating after producing some result, but maintaining an ongoing 
interaction with their environment and responding with appropriate actions 
to the external stimuli. When designing, describing and reasoning (Kim 
Sunesen 1998) about reactive systems, the focus is not just on what is 
computed but equally on how and when it is computed, in terms of 
interaction capabilities over time. Conventional examples of reactive 
systems include flight control systems, nuclear reactors, web applications, 
electronic games and touch screens. Reactive systems as illustrated in Figure 
5-2 cannot be specified by a relation between initial and final states. 

' The term was coined by Harel and Pnueli (D. Harel and A. Pnueli 1985). A 
brief but useful discussion can be found in (Harel and M. Politi 1998). 
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Figure 5-1 A simple transformational system 

Although traditionally, Web services have been thought of as being 
information intensive, transformational programs, most useful Web services 
are in fact reactive systems. Examples include, web services deployed and 
composed as e-commerce applications, where an order once placed, can be 
cancelled, changed or put on hold because of unexpected conditions, 
anytime before its fulfillment. In certain cases a refund may also be 
requested later, if the service/product does not meet its specifications. In 
corporate e-business, it may not be a simple database query that generates a 
document, but an entire business process involving multiple partners. The 
final generation of the document may span several days. Web services 
deployed on wireless devices may take more than expected time to provide 
the requested service due to poor connection facilities. 
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Figure 5-2. A Reactive system 

Consider a typical example of a flight reservation service. The service 
provides results for a flight search and reserves tickets for the selected flight, 
thus changing the status of a seat from unbooked to booked i.e. transforming 
information by execution of a database query. However, the final selection 
of flight by a travel agent can span over an unlimited period of time, going 
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through several rounds of selection. A typical interaction is shown in Figure 
5-3. The service may also exert control over the environment by terminating 
the user session after pre-specified time limits of inactive sessions. In case of 
flight search the database server itself is reactive as it allows the 
environment i.e. service requesters to ask queries. Further, once a flight has 
been booked, the agent also has the option of cancelling the booking within a 
stipulated time period. 
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Figure J-J. A Typical Flight Reservation Scenario 

Further, service composition represent long running interactions between 
service requesters and providers that extend beyond single step execution of 
services. In order to correctly specify their behaviour, properties of services 
need to be expressed in a form that enables reasoning about their behaviour 
during such extended execution. Current XML-based and ontological 
specification standards for the description of service behaviour, do not have 
the capability to specify compositional properties. Languages like WSDL 
(Roberto Chinnic et al. 2005) and WSBPEL (Tony Andrews et al. 2003) 
provide an operational approach to service specification. They do not have 
the provision for specifying the conditions that restrict the execution of 
services to a limited set of valid behaviours. In other frameworks like OWL-
S (The OWL-S Coalition 2004) and WSMO, specification of pre/post­
conditions and effects contribute to some extent towards their behavioural 
specification. However they are limited to static behaviour descriptions in 
the sense that they are predicates required to hold only at the initial and final 
states. 

The need for more expressive service specification also becomes evident, 
while reasoning about the composition of services and validation of the com­
position at runtime. Model checking (E.M. Clarke et al 1999) and theorem 
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proving are commonly used techniques for formal verification. In the 
context of analysing services and their composition at runtime, these 
techniques are not feasible due to the possible exponential growth in the 
number of reachable global states. In contrast to formal verification, 
practical validation techniques provide a mechanism to verify only 
properties which are of interest to the service requester or provider. Our 
notion of validation is different from the classical technique of "testing", 
generally associated with it. We believe, validation is a process of checking 
for inconsistent, redundant, incomplete or incorrect properties for a service. 
Properties are checked not for all possible behaviours (Shikun Zhou 2003) as 
in verification, but for a particular trace or execution of a service. As shown 
in our earlier work on service composition (M. Solanki et al, 2004), the 
objective of runtime validation is not to prove individual service 
implementation correct. It is to ensure that no undesirable behaviour 
emerges, when the service is composed with other services. 

In this chapter, we propose a methodology to compositionally augment 
the semantic description of a reactive service, with temporal properties that 
provide the required support for reasoning about "ongoing" behaviour. The 
properties are specified in Interval Temporal Logic (ITL) (B. Moszkowski, 
1986, 1994, 1996), our underlying formalism for reasoning about service 
behaviour over periods of time. These properties are specified only over 
observable behaviour, and do not depend on any additional knowledge about 
the underlying execution mechanism of the services. We present "TeSCO-
S", a framework for enriching Web service interface specifications, 
described as OWL (Mike Dean and Guus Schreiber 2004) ontologies with 
temporal assertions. TeSCO-S provides an OWL ontology for specifying 
properties in ITL, a pre-processor, "OntoITL" for transforming ontology 
instances into ITL formulae and an interpreter, "AnaTempura" that executes 
and validates temporal properties in "Tempura", an executable subset of 
ITL. 

2. A MOTIVATING EXAMPLE: AN ONLINE 
BOOKSTORE 

An Online Bookstore as shown in Figure 5-5 is a sequential composition 
of four services: Book search. Book buy. Payment validation and Book 
delivery. Each of these services is a reactive service, as they continuously 
interact with the customer as illustrated in Figure 5-4. The e-Bookshop 
requires the customer to be registered with the service, in order to search or 
buy a book. The customer sends the ISBN number of the book to the Book 
search service, which returns a message with the search results. The 
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customer can continue searching for more books, always supplying the 
ISBN number or proceed to buy the book. The Book buying service, takes as 
input the list of books selected by the customer, the delivery address and the 
credit card details. The Card details and address are passed to the Payment 
validation service. If the card is validated, then depending on the amount 
paid and mode of delivery selected (standard or express), the book is 
arranged to be delivered to the customer. We informally define properties of 
the composition, some of which we formalise in the subsequent sections. We 
perceive Web services as black boxes and hence the properties strictly 
characterise the observable behaviour of services in the composition. 
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Figure 5-4.Interactions in an Online Bookstore 

At all times during the execution of the composed service, the customer 
is required to be a registered member of the e-Bookshop. This is a useful 
property to vaHdate, when an inactive customer session is activated after 
a considerable period of time. Most services store customer registration 
details as session data, which is reset after a predefined period of 
inactivity. 

Once a customer starts searching for a book, the price of the book has to 
be constant till the search is over or if the customer buys the book, the 
price has to be constant till the book has been delivered to the customer. 

During the search, at any time if the customer sends an ISBN number, he 
gets back the search results, for the same ISBN number. 
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• Once a book or a list of books have been selected and ordered, the 
parameters of the book (title, language etc) should not change, till the 
book has been delivered to the customer. 
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Figure 5-5. A Typical Book Buying Scenario 

• In order to buy a book, the customer needs to have a valid credit card. 
• Once the credit card has been validated, the e-Bookshop makes a 

commitment to deliver the book as per the delivery terms and conditions 
agreed with the customer. 

We use the Online Bookstore as a running example throughout the 
chapter to explain various concepts 

3. INTERVAL TEMPORAL LOGIC 

ITL is an important class of temporal logic which was initially devised 
by Ben Moszkowski in the 1980's in order to model digital circuits (B 
Moszkowski, 1983). Later it was designed particularly as a formalism for the 
specification and design of software systems (B Moszkowski, 1995, 1994, 
1996). ITL is an extension of classical first order logic especially designed 
for representing time dependent behaviour. It has proved to be an efficient 
formalism for specifying and reasoning about concurrently executing, real 
time critical systems. 

3.1 Model 

ITL is a linear-time temporal logic with a discrete model of time for both 
finite and infinite intervals. The model of behaviour used in ITL is quite 
natural. The idea is to describe the system of interest by taking a number of 
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"snapshots" at various points in time?,., for / < n and linking these snapshots 
together (to . . . tj. This link is the key notion in ITL and is called an 
"interval". Snap- shots define various relevant "states" for modelling the 
system and an interval is considered as an (in)finite, nonempty sequence of 
states (TQCT, • • • 

(T:(To(T,cr2"-
Each state represents a mapping from the set of variables Var and their 

values Val. 
State: Var —> Val 

The length CT of a finite interval C is equal to the number of states in the 
interval minus one. An empty interval has exactly one state and its length is 
equal to 0. The notation (T^.j denotes the subinterval of lengthy-/ with states 

3.2 Syntax 

The syntax of ITL is defined in Figure 5-6, where jU is an integer value, 
a is a static variable (does not change within an interval), A is a state variable 
(can change within an interval), v a static or state variable, ^ is a function 
symbol, and pis a predicate symbol. 

ExpiTMkins 
e ::= n\a\A\ giexpj^,.,,, expj 

Fornudae 
/ ::= p(ei , . . . , e„) | -./ | / i A /a | Vv • / | skip | ft ; h I ,f 

1. Operators: 
Figure 5-5. Syntax of ITL 

ITL contains conventional propositional connectives such as A,—i and 
first order ones such as V, 3 and =. Extending the logic to temporal reasoning 
are operators like "; (chop)", "* (chopstar)" and "skip". Additional temporal 
operators defined in ITL include O (next) and D (always). 

2. Expressions: 

Expressions are built inductively from variables, constants and functions 
as follows: 
• Constant: jU 

A constant is denoted by a function without parameter. These are fixed 
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values 
Examples: true, false, 2, 3, 5, [2, 3, 4, 5]. 

• Variables: A, B, C,. . . , a, b, c 
The value of a state variable can change within the interval, while the 
value of a static variable remains constant throughout the reference 
interval. Conventionally capital letters denote state variables, while small 
letters denote static variables. The letter v is used as a meta-variable in 
definitions to range over all variables. 

• Function: g( exp,, • • •, exp„), where n > 0 
The function symbols include arithmetic operators such as +,-, mod and * 
(multiplication). Constants such as 0 and 1 are treated as zero place 
functions. 
Examples: A + B, a-b, A-\- a, v mod C 

• ia: f : An expression of the form ia : / is called a temporal expression. 
It returns a value a for which the formula/holds in the reference interval. 
If there is no such an a then ia : / takes an arbitrary value from a's range. 

Some examples of syntactically legal expressions are given below: 
• I+(oj) + 2 

This expression adds the value of / in the current state, the value of J in 
the next state and the constant "2". 

. I+(o j ) -oo( I ) 
This expression adds the value of I in the current state to the value of J in 
the next state and subtracts the value of I in the next to next state from the 
result. 

3. Formulae: 

Formulae are built inductively from predicates and logical connectives as 
follows: 
• Atomic formulae are constructed using relation symbols such as = 

and<. 
Examples: CQ < e, 

• Logical connectives: - / , /j A / J where / , / i , / j are formulae. 

• Universal Quantifier: Vv./ 
• Temporal Operators: skip,";", "(chop) and "*" (chopstar) Examples: 

j \ i 111 J 

Some examples of syntactically legal formulae are given below: 
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• (J=2)0(K=4) 
This formula states that the value of J is "2" in the current state and the 
value of K is "4" in the next state. 

• 0(n[I=2]AOn[J=2]) 
The formula states that from the next state, the value of / would always 

be equal to "2" and the value of / in the next to next state will be equal to 
"2"'. 

Many more examples can be found in (B. Moszkowski 1986). 

3.3 Informal Semantics 

Expressions and Formulae in ITL are evaluated relative to the beginning 
of an interval. Formulae with no temporal operators are called "state" 
formulae. With respect to an interval, a state formula is required to hold only 
at the initial state of that interval. 
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Figure 5-7. Pictorial illustration of ITL Semantics 

The informal semantics of the most interesting temporal constructs are 
defined as follows: 

• skip; unit interval (length 1). 
The formula skip has no operands and is true on an interval iff the 
interval has length 1 (i.e. exactly two states). 

• / ,; /2 : A formula / j ; f^ is true on an interval a with states 

(JQ • • • Oj I iff the interval can be "chopped" into two sequential parts 

(i.e. a prefix and a suffix interval) sharing a single state (y^. for some 

k < \(J\ and in which the subformula /, is true on the left part 

CTQ • • • cr̂  and the subformula f^^ is true on the right part (T̂  • • • 0^,. 
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• / *: A formula / * is true over an interval iff the interval can be 
chopped into zero or more sequential parts and the subformula/is 
true on each. 

Figure 5-7 pictorially represents the semantics of skip, chop and 
chopstar. Some ITL formulae together with intervals which satisfy them are 
shown in Figure 5-8 

1=1 

I=l;skip 

I: 1 1 1 

I: 1 2 

£kip;I=l • • • • 
(OI=l) I: 2 1 4 5 

fmite;I^l • 9 V • • 
(01=1) I: 1 1 4 1 1 

I O T I # • • • • 

( n l = l ) I: I 1 1 1 1 

Figure 5-8. Some sample ITL formulae and satisfying intervals 
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Figure 5-9. Non-temporal constructs 

3.4 Derived Constructs 

The following constructs can be derived from primitives of the logic. 
Non-temporal constructs are presented in Figure 5-9. Frequently used 
temporal modalities are represented in Figure 5-10. The formula "f' is used 
as a reference formula for defining the constructs. 
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Figure 5-10. Frequently used temporal abbreviations 

3.5 Types in ITL 

There are two basic inbuilt types in ITL. These are integers A'̂  and 
Boolean (true and false). In addition the executable subset of ITL (tempura) 
has basic types: integer, character, boolean, list and arrays. Further types can 
be built from these by means of X and the power set operator P (in a 
similar fashion as adopted in the specification language Z (M Imperato, 
1991). For example the following introduces a variable x of type T. 

def 

(3x: T).f = 3x.type(x, T) A / 
Here type(x, T) denotes a formula that describes x to be of type T. 

Although this might seem to be a rather inexpressive type system, richer 
types can be added following that of (Spivey, 1996). 

3.6 Formal Semantics 

In this section we present the formal semantics of expressions (terms) 
and formulae in ITL. We define the data domain to be a set of integers 
denoted by Z . We assume "tt, ff' to represent the set of truth values. A state 
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(<T) is then a function mapping from variables Var to values in Z . We let 
Z denote the set of all such functions, 

C7ieZ = Var -> Z 
Each n-ary function symbol g is associated with a total function 

geZ" ^Z 
Interpretations of n-ary relational symbols {p) are similar but map to 

truth values. 
p&Z"-^tt,jf 

Function symbols, e.g. + and - , and relation symbols, e.g. > and -, 
are assumed to have their standard meanings. We define 1^ and E'" to 
denote sets of finite and infinite intervals respectively. The relation 

is defined to be true iff the interval (J and o', ((T, (j'e Z'̂  uE*") have 
the same length and agree on the behaviour of all variables except possibly 
the variable V . 

3.6.1 Semantics of Expressions 

The construct ''''r-^Pl denotes the function that defines the value in % of 
the expression exp on the interval O. 

• Safa] = <Jo(o) and 

for all i s.t. 0 < •« < |c7|, (T,-(«) = ao(a). 

m 6VI/1] = CTo(A), 

• Salgiexpi,..., expn)j = 9{Salexpij,... ,£„\expn\). 

m F ha- n - l '̂f"̂  '''"'̂ *̂  
• ^ a | » a . i J - j .^^y^^i^^^ olheroise 

where n = {a'{a) \ a ~a a' A Sa'lfl — ''} 

3.6.2. Semantics of Formulae 

The construct '•'<' denotes the function that defines the value in (tt, ff} 

of the formula / on the interval (J. 
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f ; . | / l e ( S + U S - ) - - { « , / / } , 

£^lp{expi,..., e:t:p„)j = tl iffp(i-:,;rIea'Pil, • • •, î ,T[earj>„]). 

^ ^ K I = ltilTi:^[/l = ff. 

S4fi A /3I = tt iff ^<,I/il = ft and £,4/2! = tt. 

i:^f/v . / I = tt iff for all <T' s.t. a ~„ a', £a>lfl - tt-

-̂<T|skip] = ttiff |<7| = 1. 

£alfrj2J = ttm 
(exists a k, s.t. ĉro,.,,,̂  | / i l = It and 

((a is infinite and •̂(.T(,,.,„[/2I = M) o'' 
(cT is finite and k < \a\ and £aii...a-,^, I/2I = tt))) 

or (a is infinite and i^I/i]). 

if tT is infinite then 
(exist: lo, ,, lu s.t. lo = 0 and ^'crj„,,,[/] = tt and 

for all 0 < i < n, /, < k+i and '?aĵ ...crĵ _̂ ,j I / ] = tt.) 
or 
(exist an infinite number of i:i s.t. lo = 0 and 

for all 0 < i., /i < k+i imde,^,^,.,a>^^Jfj = tt.) 
else 

(exist I.Q,..., In s.t, 0̂ = 0 and „̂ = |tT| and 

4. Compositional Reasoning for Web Services 

Web services cannot exist in isolation. Most Web services interact with 
other services, users, devices or sensors to achieve a goal. The fundamental 
problem of composing specification of services, is to prove that a composite 
service satisfies its specification if all of the component services satisfy their 
specifications. For a compositional and modular specification of services, 
the description of interfaces between services and their environment is of 
utmost importance. The interface of a service provides the static/dynamic 
(logical) connection between the service and its environment. An interface 
description is a specification of those properties of a service that influences 
the overall behaviour of the composed system as well as those of the 
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individual services. Interface specification of reactive services cannot simply 
be described in terms of functions or relation on states, a more expressive 
representation format is needed. 

4.1 Compositionality 

Compositionality refers to the technical property that enables reasoning 
about a composed system on the basis of its constituent parts without any 
additional need for information about the implementation of those parts. The 
notion of compositionality (W.P. de Roever, 1985, 2001, J. Zwiers, 1989) is 
very important in computer science as it facilitates modular design and 
maintenance of complex systems following the verify-while-develop 
paradigm. Compositional proof techniques have the advantage that they 
allow the systematic top-down development of systems from their 
specifications. Compositionality is also a desired criterion for verification 
methodologies particularly for the development and analysis of large scale 
systems. The idea was first suggested by E. W. Dijkstra (E. W. Dijkstra 
1965) in where he discusses hierarchical decomposition and verification of a 
given program on the basis of its subprograms, and formalised by (Floyd, 
1967) where properties of a sequential program are derived from the 
properties of its atomic actions. For reasoning satisfactorily about composed 
system, systems and their components are specified using assertional 
specifications i.e. state predicates, only over their observable behaviour. 

4.2 Applying the Assumption-Commitment Paradigm to 
Web Services 

For the development of a compositional framework that allows the 
specification and validation of services and their composition, we choose the 
Assumption-Commitment paradigm. The objective of an Assumption-
Commitment style of specification is to specify a process within a network. 
In its most general form Assumption-Commitment (P. K. Pandya 1990, 
Qiwen Xu and Mohalik Swarup, 1998) reasoning, allows the verification of 
a service under the assumption that the environment behaves in a certain 
way. The Assumption-Commitment style of specification has been applied 
extensively as a proof technique to networks of processes executing 
concurrently via synchronous message passing in a seminal work by (J. 
Misra and K.M. Chandy 1981). 

In our earlier work on service composition, we have shown the power of 
assumption-commitment style of specification for compositional reasoning 
of ongoing service behaviour. We have proposed a methodology (Solanki et 
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al. 2004) to augment the specification of a service, with properties that are 
temporal and compositional, called assumption and commitment. 
Assumption-Commitment properties are specified only over observable 
behaviour, and do not depend on any additional knowledge about the 
underlying execution mechanism of the services. Interestingly, Interval 
Temporal Logic, our underlying formal framework can be used both for 
establishing the validity of the behaviour of a service and for proving the 
soundness of the compositional rules. 

The assumption-commitment specification can be thought of as a pair of 
predicates {As, Co) where the assumption As specifies the environment in 
which the specified service is supposed to run, and the commitment Co 
states the requirement which any correct implementation of the service must 
fulfill whenever it is executed in an environment that satisfies the 
assumption. Since we are interested in the observable, ongoing behaviour of 
services, we model assumption-commitment as temporal properties defined 
over their interface specification. 

4.3 An ITL Formalisation of Assumption-Commitment 

A service, S , in ITL is expressed as a quadruple 

{As,Co):{o)}S{co'] 

where. 

uj : slate formula about initial state 
.43 : a tem]5oral formula six-iclfying properties about the environment 
Co : a temporal formula s|>etifyiiig properties al̂ out the ajivice 
a; : stale formula about linal state 

Figure 5-10. Frequently used temporal abbreviations 

Figure 5-11. ITL representation of Assumption-Commitment 

Formally in ITL, the validity of the Assumption-Commitment 
representation as illustrated in Figure 5-11 has the following form: 

{As,Co) : {<AJ)S{J) ' M W A S D ([II(emptyV((/isAC'o);Skip) Z) CoAjin J)) 
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We have also proposed compositional proof rules based on assumption-
commitment properties that allow validation of ongoing behaviour of 
services. Keeping in perspective the e-Bookshop service which is 
sequentially composed, we present the rules here for sequential composition. 

We consider the sequential composition (ref. Figure 5-12) of two 
services, S^ and 52. For a detailed explanation of the rules and its proof 
obligations, the interested reader is referred to (Solanki et al. 2004). 

Sj l%2 

Figure 5-12 Sequential Composition 
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5. Formalisation of the Online Bookstore 

We now formalise some of the interesting properties of the e-Bookshop 
service from section 2. 
• At all states (crQ...(T;) during the execution of the composed service, the 

customer is required to be a registered member of the e-Bookshop. 
n(isRegistered (userlD)) 

• Once a customer starts searching for a book, the price of any book 
returned as a result has to be constant till the search is over or if the 
customer buys the book, the price has to be constant till the book has 
been delivered to the customer i.e. the price of the book has to be 
constant at all states (cyQ-.-CT,). 

D(isNotChanged (bookPrice)) 
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• During the search ( (TQ.. . (7^) , at any state if the customer sends an ISBN 

number, he gets back the search results, for the same ISBN number in the 
next state. 

Q(isearchBook(ISBN)) => (searchResults(ISBN))) 

• Once a book or a list of books have been selected and ordered, the 
parameters of the book (title, language etc) should not change, till the 

book has been delivered to the customer (cr^.. .C7,). 

D(isBook{selectedBook)) 

• In order to buy a book, the customer needs to have a valid credit card, that 
stays valid atleast till the book has been delivered to the customer 

D(validCard{userID,cardN umber)) 

• Once the credit card has been validated, the e-Bookshop makes a 
commitment to deliver the book as per the delivery terms and conditions 
agreed with the customer ((J^.. .<7,) . 
{finvalidCard{UserID,CardNumher)){DeliveryPeriod = CalculatedDays) 

For sequential composition of services, the proof obligations require that 
we choose Assumption-Commitment properties of the form: 

h As = •.4s 
\-Co = C(f 

We now define the assumption and commitment properties required to 
hold for the composition defined between states {O'Q...(7^). Keeping in 
perspective the nature of properties, we informally define the assumption as, 

At all states during the execution of the composed service, the customer 
is required to be a registered member of the e-Bookshop. 
We define the corresponding commitment as 

At all states during the execution, the e-Bookshop allows registered users 
to search and buy a book. 

It is worth noting that these properties are specified as part of the 
behavourial specification of the e-Bookshop as well as the Customer. They 
are however required to be validated by the e-Bookshop. Formalising the 
above properties, 

\I\{isRe.gistefte.d{n.serlD)) 

(valickJiistorner (userlD)) * 

For the composition between states (T, and (Jj, we define an additional 
commitment while keeping the assumption same, 
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Once a customer is returned the results of search, the price of book(s) 
selected should remain constant till the user finishes all transaction. 

Formalising the above, 
(unchangedPrice(userID, ISBN))' 

6. SEMANTIC ANNOTATION OF TEMPORAL 
SPECIFICATION: TESCO-S 

Web services are discovered and composed based on the declarative 
specification of their interfaces as exposed by service providers in service 
registries or repositories. Temporal properties for services, need to be made 
a part of this declarative specification. In the context of temporal properties 
and Web services, the notion of "Temporal" can be interpreted in terms of 
the following two intuitive contexts: 
• Time-related properties of Web services: expressing facts about dates 

(calendar) of events ("Order placed on 4th July"), duration of activities 
("Shipping the product takes 24 hrs once an order is received") and 
absolute time i.e. clock ("Confirmation of a Shipped good will be sent 
out at 9.00 a.m. 1ST"). The vocabulary to describe these concepts 
include time as a first class citizen as part of their syntactic and semantic 
representation. 

• Behaviour-related properties of Web services: expressing facts about 
ordering of services ("Check the credentials of the supplier, before 
placing an order "), constraints during service execution ("Do not 
modify a submitted order while the transaction is in progress", "As long 
as the supplier continues proves the authenticity of his goods, we shall 
continue to place orders with him."). 

When describing temporal properties of services at a declarative level, 
we focus on the second notion i.e. reasoning about behaviour of services 
relative to time. The objective of declarative representation of temporal 
properties and constraints is to enable their automated reasoning and further 
their runtime validation for automated discovery, composition and execution 
of services. In the case of services that are semantically described, an 
important part of this effort is the development of representative ontologies 
of the most commonly used domains. 

TeSCO-S (Temporal Semantics for OWL enabled Services) is a 
framework for semantically annotating and validating Web service 
specifications with temporal properties, defined using ITL and its executable 
subset "Tempura". The objective is: 
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• to provide an ontology for service providers to declaratively specify 
temporal properties in ITL. 

• to provide a pre-processor for service requesters/composing 
middleware/software agents to process the declarative markup of 
properties and transform them into concrete ITL/Tempura formulae. 

• to provide an execution engine for the generated tempura formulae, 
which can be used to validate properties about the service as well as 
perform runtime validation of assumption - commitment properties for 
service composition. 

The semantics of the formulae and expressions modeled using TeSCO-S 
are the semantics as defined in ITL and implemented in its executable subset 
Tempura. TeSCO-S uses OWL as the ontology representation language. The 
choice of OWL as a representation format over XML is motivated by two 
objectives: (a) Our ultimate goal is to be able to automate reasoning about 
ITL formulae and expressions, (b) we want to be able to seamlessly use the 
ontology within standrads like OWL-S for services. Tools for reasoning 
about ITL-Tempura ontology, can be integrated with automated reasoning 
tools for services specified in OWL. For realising the objectives highlighted 
above, TeSCO-S includes the following components: 

• An OWL ontology for first order formulae, expressions and temporal 
constructs as defined in ITL and Tempura. 

• A pre-processor that transforms ontological representations of ITL and 
Tempura constructs defined in the ontology above to concrete formulae 
and expressions. 

• An interpreter,"AnaTempura" that provides execution support for 
Tempura. 

The following sections present a detailed discussion of each of these 
components. 

6.1 The ITL-Tempura Ontology 

The objective of the ITL-Tempura ontology is to express the syntactical 
framework of ITL and Tempura, as concepts and properties in OWL. ITL is 
very expressive and provides a number of primitive and derived constructs 
for the specification of a wide variety of temporal assertions. We have 
restricted the ontology to only a specific set, which we believe will be most 
useful and sufficient to express the kind of properties that most service 
providers would want to expose. On the other hand, the ontology itself is 
very modularly structured to enable future extensions. As discussed in 
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section (3), the syntax of ITL is defined primarily by Expressions and 
Formulae. Expressions can be of various types for e.g. static and state 
variables, functions, and constants. Similarly formulae can be subclassed as 
being atomic: e.g. " ".composite: e.g. " / i / j " and predicates: e.g. 
" isRegistered(userID) " amongst others. Expressions and Formulae in the 
ontology are built incrementally. The root class of all Formulae is 
"Formula", while that of Expressions is "Expression". Formula has several 
subclasses such as "Atomic", "Composite" and "Prefixed" amongst others. 
"TempuraFormula", defines formulae specified in Tempura and which can 
be executed by AnaTempura. "Operator" denotes the kind of operators that 
can be used with formulae and expressions. Classes have properties and 
restrictions associated that define the kind of parameters that are required to 
build the expression or formula. Properties provide the link between 
expressions/formulae and operators. We follow an incremental approach to 
building ontology instances using the ITL-Tempura ontology as shown in 
the e-Bookshop example presented in secton 6.5. The modular approach to 
building ITL and Tempura formulae allows reusability of formulae and 
expression instances between ontologies. We use the Protege OWL plugin 
for modelling the ontology. 

Figure 5-13 shows how formulae and expressions are structured. A 
complete description of the ontology is beyond the scope of the paper. A 
graphical and hierarchical representation of the classes in the ontology can 
be found at (Solanki 2005). The complete ontology itself can be found at 
(Solanki 2005). 

ITL-Tempura Ontology::= Formula | Expressions | Tom]HiraConsluct 
Connective | Operator | Quaniifler 

Fcirniiila::= Atomic | TempuroAtomic | Equality | 
Composite | CotripositeWitliExpressions | Leii | 
Negated | i'refixed | PrefixedWilliExpressions 
Ptedicato | Quantified | Suffixed | 

Expression::= StaloVarittbIc | StaticVariable | Constant | 
Function | CompositeExprcsions | MatliFunc | 
NextExpression | PicfixExpression 

0|Krator::= EqualityO|5e,rator | TemporalO|ierutor 
Tempora!0]Krator::= InfjxOpeartor | PrefixOperator | SuffixOperator 

Figure 5-13 Primitives for tlie ITL-Tempura Ontology 
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6.2 OntoITL: A Pre-processor for Temporal Ontologies 

So far, we have seen how ITL formulae and expressions can be modelled 
using the ITL-Tempura ontology. This enables service providers to specify 
temporal constraints as part of their service specification. In order to 
interpret this semantic markup of temporal properties, a utility is needed to 
generate concrete formulae and expressions from the OWL representation. 
The idea behind providing such a tool is to automate the process of 
generating, interpreting and analysing temporal properties of services. 
Service requestors and composers can use the tool to extract temporal 
properties that they would like to validate, while interacting with the service. 
At runtime, the properties are monitored against the behaviour of the 
interacting services. 

OntoITL is a pre-processor that generates concrete ITL and executable 
Tempura formulae from instance ontologies built using the ITL-Tempura 
Ontology. The instances are defined using the core ontology as described in 
Section 6.1 or from ontologies that import these instances. It provides as 
output, complete information about instances of State and Static variables. 
Expressions, Formulae and Temporal Formulae modeled in the ontology. An 
output of the pre-processor for properties of the e-Bookshop, modeled using 
the ITL-Tempura Ontology and as explained in section 6.5 is shown in the 
Figure 5-16 

OntoITL takes as input, the instance ontology in OWL for a formula or a 
set of formulae. It then generates ITL/Tempura formulae keeping the 
syntactical structure of the formula intact. OntoITL offers several options to 
store the generated ITL and Tempura formulae. It also provides the facility 
to directly pass the tempura formula to the AnaTempura interpreter, that 
executes the formulae and validates temporal properties. Alternatively, 
OntoITL stores the generated outputs in files that can be executed via the 
Tcl/Tk interface of AnaTempura as discussed in section 6.3. 

6.3 AnaTempura: Validation of Tempura Specification 

AnaTempura (available from (A. Cau, 2005)), which is built upon C-
Tempura, is an integrated workbench for the runtime verification of systems 
using ITL and its executable subset Tempura. AnaTempura provides 
• specification support 
• verification and validation support in the form of simulation and runtime 

testing in conjunction with formal specification. 

An overview of the run-time analysis process in AnaTempura is depicted 
in Figure 5-14. 
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Figure 5-14 The Analysis Process 

There are two ways of validating properties via AnaTempura: 

• Concrete Tempura formulae generated by the OntoITL pre-processor are 

directly passed to AnaTempura. The results of the validation and 
execution are returned to OntoITL for display. 

• Concrete Tempura formulae generated by the OntoITL pre-processor are 
stored in files for validation at a later stage. The results of the validation 
and execution can be displayed via the Tcl/Tk interface of AnaTempura. 

Rasulls 

Figure 5-15 General Architecture for Web services 
AnaTempura generates a state-by-state analysis of the system behaviour 

as the computation progresses. At various states of execution, values for 
variables of interest are passed from the system to AnaTempura. The 
Tempura properties are validated against the values received. If the 
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properties are not satisfied AnaTempura indicates tlie errors by displaying 
what is expected and what the current system actually provides. The 
approach goes beyond a "keep tracking" approach, i.e. giving the running 
results of certain properties of the system, by not only capturing the 
execution results but also comparing them with formal properties. The 
general architecture that employs AnaTempura for validation of service 
properties is shown in Figure 5-15. 

The validation results of the instance-ontology-formulae, generated from 
the TeSCO-S framework, can be returned to the composing agents, the 
middleware or to the service requestor depending on the design of the 
service composition. 

6.4 Validating the Customer: e-Boolishop Composition 

We have validated the assumption-commitment properties of the e-
Bookshop as formalised in section 5.1. 

We adopt the second approach to validating properties as mentioned in 
section 6.3. The property is extracted as a tempura formula, from its 
ontological representation using the OntoITL pre-processor and stored in a 
file. At the initial state, the customer registers using his login details^. The 
login details are set for the customer session and passed to AnaTempura. As 
illustrated in the Figure 5-16 for each phase of the composition (search, buy 
etc.) and for every interaction between the e-Bookshop and the customer, at 
all states, the property is validated. 

Tempura interpreter validates the property against the values set in the 
session for that state. We have developed a minimalistic GUI for dislaying 
the results of the property validation. The blue circle indicates that a 
property holds for that state, while a red circle indicates that a property has 
been violated. In the example shown, a " 1 " indicates the first service in the 
composition i.e. the "Book Search", while a "2" indicates the second service 
i.e. the "Book Buy". If the values in the session are found to be reset and do 
not match the ones passed to the interpreter in the initial state, a warning 
message is sent to the e-Bookshop as indicated by the red circle. It is worth 
noting that the interpreter only validates the properties of interest. It does not 
define the behaviour of the service in case the properties are not satisfied. 

^For practical purposes, we do not model the registration process over an 
interval, although this may well be the case if the user enters incorrect login 
details, and takes several attempts to correct login. 
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This is a design decision that has to be taken before the composition is 
realised. 

isRegistered(userlD) 
A. 

r isRegi5tered(».5eiID) 

AnaTempura 

Book Search Book Buy 

JtUlb /SUi. StBi. ddllX. 
flow BSffl flnu WsSS 

V::!;d;ili;io bS!".î  

o 

Figure 5-16 Validating the customer -e-bookshop composition 

6.5 Specifying Properties in the ITL-Tempura Ontology 

In this section, we model some interesting properties of the e-Bookshop 
service 5 using the ITL-Tempura ontology. For the sake of brevity in 
representation we model them as A-Box representations. 
Recalling the definition of a composite formula, 
Composite 6 Formula 6 (V hasPrefixedSubFormula.Formula) 
6 (V hasSuffixedSubFormula.Formula) 6 (=1 hasInfixOperator.Operator) 
6 (=1 hasPrefixedSubFormula.Formula) 6 (=1 
hasSuffixedSubFormula.Formula) 
We choose the following properties from the e-Bookshop example 
Property (1): During the search, at any state if the user sends an ISBN 
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number, he gets back the search results, for the same ISBN number in the 
next state. 
{{searchBookilSBN)) Z) {searchResults{ISBN))) 
We define the properties as assertional axioms (ABox) in Description Logic. 
We build the formula incrementally as shown below: 
ABox representation of Property (1): 
ISBN:StateVariable, PI :Predicate, P2:Predicate 
(PI, searchNook):hasName, (PI, ISBN):hasExpressionList 
(P2, searchResults):hasName, (P2, ISBN):hasExpressionList 
PRl:Prefixed, (PRl, Next):hasPrefixOperator, (PR2, P2):hasSubFormu]a 
Cl:Composite, (CI, Imp):hasInfixOperator 
(Cl,Pl):hasPrefixedSubFormula, (CI, PRl):hasSuffixedSubFormula 
PR2:Prefixed, (PR2, Always): hasPrefixOperator, (PR2, Cl):hasSubFormula 
Property (2): Once the credit card has been validated, the e-Bookshop 
makes a commitment to deliver the book as per the delivery terms and 
conditions agreed with the user. 

(finvalidCard(UserID, CardNumber)){DeliveryPeriod = CalculatedDays) 

ABox representation of Property (2): 

UserID:StateVariable, CardNumber:StateVariable 
DeliveryPeriod:StateVariable, CalculatedDays:StateVariable 
Pl:Predicate, (PI, validCard):hasName, (PI, 
UserID,CardNumber)):hasExpressionList 
PRl:Prefixed, (PRl, fin):hasPrefixOperator, (PR2, Pl):hasSubFormula 
EQl:Equality, (EQl, Equals):hasEqualityOperator, (EQl, 
DeliveryPeriod):hasPrefixExpression 
(EQl, CalculatedDays):hasSuffixExpression 
Cl:Composite, (CI, Chop):hasInfixOperator 
(Cl,Pl):hasPrefixedSubFormula, (CI, EQl):hasSuffixedSubFormula 

7. CONCLUSIONS 

From a historical perspective, research on Web services was initiated 
with a focus on automating business process composition within different 
enterprises. Such coordinations are long-lived processes and may last from a 
few minutes to a few months. An extensive review of state-of-the-art 
research in the domain of Web service composition reveals that current 
interface specification approaches do not provide capabilities to expose the 
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reactive aspect of Web service behaviour. Based on service interfaces 
definitions (Roberto Cliinnic et al 2005) and message exchange protocols 
(Martin Gudgin et al.2003), standards have been proposed for specifying 
composite services, by defining declaratively, their data and control flows. 
BPEL4WS (Tony Andrews et al. 2003) provides distinct constructs for 
specifying abstract and executable processes. BPEL, however does not 
prevent complex computation from being included in an abstract process, 
thus revealing implementation details. 

Within the context of semantic Web services frameworks like OWL-S 
and WSMO, specification of pre/post-conditions and effects contribute to 
some extent towards their behavioural description. However they are limited 
to describing transformational behaviour. There is no support available for 
describing and reasoning about changes over time. This is due to the lack of 
explicit modelling of "states" in these languages. Rule languages for the web 
include RuleML and within the context of semantic web, initiatives such as 
SWRL (Ian Horrocks et al. 2003) and DRS (Drew McDermott and Dejing 
Dou 2002). These approaches are limited to describing only certain kinds of 
properties. The expressivity of the languages is restricted to specifying static 
rules and constraints. There are no constructs available for specifying 
ongoing behavioural semantics or temporal properties of services. Other 
related work in this area is mostly concerned with representation of time as a 
first-class citizen, (Feng Pan and Jerry R. Hobbs 2004, F. Bry and S. 
Spranger 2003) i.e. reasoning about time points, complex time intervals, 
calendars and durations. 

For dynamic composition of services, compositional properties need to 
be abstracted at a level where service requesters, providers, composing 
engines and matchmakers can discover these properties of services. 
Assumption-Commitment properties can be suitably specified in any service 
description language, rich enough to capture the underlying expressiveness 
of these properties. In this chapter, we provide a modular approach, TeSCO-
S, to building and executing temporal properties of services, with interfaces 
described as OWL ontologies. TeSCO-S is based on Interval Temporal 
Logic (ITL) and Tempura, its executable subset. Our pre-processor 
"OntoITL" enables transformation of the bulky XML representation of 
temporal properties into concrete ITL and Tempura formulae, that can be 
handled readily by AnaTempura. The ontology within the TeSCO-S 
framework can be used by service providers to describe temporal capabilities 
of services. Service requestors and composing agents can use "OntoITL" 
and AnaTempura for on-the-fly transformation and validation of these 
temporal properties. The ontology provides constructs not only for 
specifying temporal expressions and formulae, but general first order 
predicates and formulae as well. It can therefore, also be used to specify pre-
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conditions/post-conditions and effects in frameworks like OWL-S and 
WSMO. Ongoing work in TeSCO-S is providing reasoning support over 
temporal ontologies and tools for exploiting ITL formulae to build temporal 
ontologies. It is planned to have a protege plugin for defining temporal 
ontologies, that could be used along with the OWL-S editor for modelling 
OWL-S services. 

8. QUESTIONS FOR DISCUSSIONS 

Beginner: 
1. What are the main categories under which computing systems can be 

partitioned? 
2. What are the characteristics of reactive systems? 
3. How does temporal logic help in formalising system behaviour? 

Intermediate: 
1. Discuss why Web services should be modelled as reactive systems. 
2. What properties of a dynamically composed service can be formalised 

using temporal logic? 
3. Discuss why the notion of Compositionality is important while defining 

composition of services. 
4. Why should temporal properties of services be modelled as ontologies? 
5. How does a service composition benefit from runtime validation of 

desired properties? 

Advanced: 
1. Discuss how properties of a holiday booking service can be formalised 

using Interval Temporal Logic. 
2. How can properties of the holiday booking service be expressed using the 

ITL-Tempura ontology? 
3. Identify assumption-commitment properties for the holiday booking 

services. 
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