
Chapter 5

TEMPORAL REASONING OF REACTIVE WEB
SERVICES

Monika Solanki, Antonio Cau and Hussein Zedan.
Software Technology Research Laboratory, De Montfort University, Leicester, LE4 OGL, UK-
monika@dmu.ac.uk, acau@dmu.ac.uk, zedan@dmu.ac.uk

1. WEB SERVICES AS REACTIVE SYSTEMS

Computing systems can be conceptually partitioned into two primitive
categories: Transformational and Reactive. Transformational systems, as
shown in Figure 5-1 are generally modelled by abstracting away the
computations and specifying the system as an input-output function. The
non-termination of a transformational system is usually considered a failure.
Compilers, assemblers and routines in a library of mathematical functions
are examples of transformational systems. The objective of Reactive
systems' (D. Harel and A. Pnueli 1985) on the other hand is not necessarily
terminating after producing some result, but maintaining an ongoing
interaction with their environment and responding with appropriate actions
to the external stimuli. When designing, describing and reasoning (Kim
Sunesen 1998) about reactive systems, the focus is not just on what is
computed but equally on how and when it is computed, in terms of
interaction capabilities over time. Conventional examples of reactive
systems include flight control systems, nuclear reactors, web applications,
electronic games and touch screens. Reactive systems as illustrated in Figure
5-2 cannot be specified by a relation between initial and final states.

' The term was coined by Harel and Pnueli (D. Harel and A. Pnueli 1985). A
brief but useful discussion can be found in (Harel and M. Politi 1998).

108 Semantic Web Services, Processes and Applications

^

1

niiiu

\

Transtbnnational

' A
nput .

•
.vluli;

System

T " "

i
- -''
Output

• - » 7

Behavioui
Final state
•• • •

Time

Figure 5-1 A simple transformational system

Although traditionally, Web services have been thought of as being
information intensive, transformational programs, most useful Web services
are in fact reactive systems. Examples include, web services deployed and
composed as e-commerce applications, where an order once placed, can be
cancelled, changed or put on hold because of unexpected conditions,
anytime before its fulfillment. In certain cases a refund may also be
requested later, if the service/product does not meet its specifications. In
corporate e-business, it may not be a simple database query that generates a
document, but an entire business process involving multiple partners. The
final generation of the document may span several days. Web services
deployed on wireless devices may take more than expected time to provide
the requested service due to poor connection facilities.

Reactive
System

I : i . i lEnvironiTioril

.J..-T • • T : , •

Time

Figure 5-2. A Reactive system

Consider a typical example of a flight reservation service. The service
provides results for a flight search and reserves tickets for the selected flight,
thus changing the status of a seat from unbooked to booked i.e. transforming
information by execution of a database query. However, the final selection
of flight by a travel agent can span over an unlimited period of time, going

Temporal Reasoning of Reactive Web Services 109

through several rounds of selection. A typical interaction is shown in Figure
5-3. The service may also exert control over the environment by terminating
the user session after pre-specified time limits of inactive sessions. In case of
flight search the database server itself is reactive as it allows the
environment i.e. service requesters to ask queries. Further, once a flight has
been booked, the agent also has the option of cancelling the booking within a
stipulated time period.

Right Booking Sei"vice

i i i

I : ! I ' I l i ii Ŝ
^ f i ; iK fA Hi S] «j

Travel Agent

Time

Figure J-J. A Typical Flight Reservation Scenario

Further, service composition represent long running interactions between
service requesters and providers that extend beyond single step execution of
services. In order to correctly specify their behaviour, properties of services
need to be expressed in a form that enables reasoning about their behaviour
during such extended execution. Current XML-based and ontological
specification standards for the description of service behaviour, do not have
the capability to specify compositional properties. Languages like WSDL
(Roberto Chinnic et al. 2005) and WSBPEL (Tony Andrews et al. 2003)
provide an operational approach to service specification. They do not have
the provision for specifying the conditions that restrict the execution of
services to a limited set of valid behaviours. In other frameworks like OWL-
S (The OWL-S Coalition 2004) and WSMO, specification of pre/post­
conditions and effects contribute to some extent towards their behavioural
specification. However they are limited to static behaviour descriptions in
the sense that they are predicates required to hold only at the initial and final
states.

The need for more expressive service specification also becomes evident,
while reasoning about the composition of services and validation of the com­
position at runtime. Model checking (E.M. Clarke et al 1999) and theorem

110 Semantic Web Services, Processes and Applications

proving are commonly used techniques for formal verification. In the
context of analysing services and their composition at runtime, these
techniques are not feasible due to the possible exponential growth in the
number of reachable global states. In contrast to formal verification,
practical validation techniques provide a mechanism to verify only
properties which are of interest to the service requester or provider. Our
notion of validation is different from the classical technique of "testing",
generally associated with it. We believe, validation is a process of checking
for inconsistent, redundant, incomplete or incorrect properties for a service.
Properties are checked not for all possible behaviours (Shikun Zhou 2003) as
in verification, but for a particular trace or execution of a service. As shown
in our earlier work on service composition (M. Solanki et al, 2004), the
objective of runtime validation is not to prove individual service
implementation correct. It is to ensure that no undesirable behaviour
emerges, when the service is composed with other services.

In this chapter, we propose a methodology to compositionally augment
the semantic description of a reactive service, with temporal properties that
provide the required support for reasoning about "ongoing" behaviour. The
properties are specified in Interval Temporal Logic (ITL) (B. Moszkowski,
1986, 1994, 1996), our underlying formalism for reasoning about service
behaviour over periods of time. These properties are specified only over
observable behaviour, and do not depend on any additional knowledge about
the underlying execution mechanism of the services. We present "TeSCO-
S", a framework for enriching Web service interface specifications,
described as OWL (Mike Dean and Guus Schreiber 2004) ontologies with
temporal assertions. TeSCO-S provides an OWL ontology for specifying
properties in ITL, a pre-processor, "OntoITL" for transforming ontology
instances into ITL formulae and an interpreter, "AnaTempura" that executes
and validates temporal properties in "Tempura", an executable subset of
ITL.

2. A MOTIVATING EXAMPLE: AN ONLINE
BOOKSTORE

An Online Bookstore as shown in Figure 5-5 is a sequential composition
of four services: Book search. Book buy. Payment validation and Book
delivery. Each of these services is a reactive service, as they continuously
interact with the customer as illustrated in Figure 5-4. The e-Bookshop
requires the customer to be registered with the service, in order to search or
buy a book. The customer sends the ISBN number of the book to the Book
search service, which returns a message with the search results. The

Temporal Reasoning of Reactive Web Services 111

customer can continue searching for more books, always supplying the
ISBN number or proceed to buy the book. The Book buying service, takes as
input the list of books selected by the customer, the delivery address and the
credit card details. The Card details and address are passed to the Payment
validation service. If the card is validated, then depending on the amount
paid and mode of delivery selected (standard or express), the book is
arranged to be delivered to the customer. We informally define properties of
the composition, some of which we formalise in the subsequent sections. We
perceive Web services as black boxes and hence the properties strictly
characterise the observable behaviour of services in the composition.

Buy BOOK ;tomer

sclld(u.serl>)

suiKl(U)g,inliitb)

soiiddSBN)

M.'iii.Iiinv,ilidlSBN)

', SCIKHISBN)

.sciKl(iiivalidlSHN)
sciidUSBN)

\ .scnd(.scarchRi;sulls,

: send(lSBN)

Search Book

1^

»-

•- ;

•^ send(I.SBN)

^
1 1

1
1"'

sendiWcc)

sonddnvoice)

Figure 5-4.Interactions in an Online Bookstore

At all times during the execution of the composed service, the customer
is required to be a registered member of the e-Bookshop. This is a useful
property to vaHdate, when an inactive customer session is activated after
a considerable period of time. Most services store customer registration
details as session data, which is reset after a predefined period of
inactivity.

Once a customer starts searching for a book, the price of the book has to
be constant till the search is over or if the customer buys the book, the
price has to be constant till the book has been delivered to the customer.

During the search, at any time if the customer sends an ISBN number, he
gets back the search results, for the same ISBN number.

112 Semantic Web Services, Processes and Applications

• Once a book or a list of books have been selected and ordered, the
parameters of the book (title, language etc) should not change, till the
book has been delivered to the customer.

Bi^tk i(2^.f '̂h ' Bc'oV. &u\ ' t, , 's !^K k Dc-U\(.TV Rijturn took

•Vfcssagc
exchange

i i kk kkk kkk. I i i"

..I _ f f . f ,f f _xl - _U __L.l.

I inie

Figure 5-5. A Typical Book Buying Scenario

• In order to buy a book, the customer needs to have a valid credit card.
• Once the credit card has been validated, the e-Bookshop makes a

commitment to deliver the book as per the delivery terms and conditions
agreed with the customer.

We use the Online Bookstore as a running example throughout the
chapter to explain various concepts

3. INTERVAL TEMPORAL LOGIC

ITL is an important class of temporal logic which was initially devised
by Ben Moszkowski in the 1980's in order to model digital circuits (B
Moszkowski, 1983). Later it was designed particularly as a formalism for the
specification and design of software systems (B Moszkowski, 1995, 1994,
1996). ITL is an extension of classical first order logic especially designed
for representing time dependent behaviour. It has proved to be an efficient
formalism for specifying and reasoning about concurrently executing, real
time critical systems.

3.1 Model

ITL is a linear-time temporal logic with a discrete model of time for both
finite and infinite intervals. The model of behaviour used in ITL is quite
natural. The idea is to describe the system of interest by taking a number of

Temporal Reasoning of Reactive Web Services 113

"snapshots" at various points in time?,., for / < n and linking these snapshots
together (to . . . tj. This link is the key notion in ITL and is called an
"interval". Snap- shots define various relevant "states" for modelling the
system and an interval is considered as an (in)finite, nonempty sequence of
states (TQCT, • • •

(T:(To(T,cr2"-
Each state represents a mapping from the set of variables Var and their

values Val.
State: Var —> Val

The length CT of a finite interval C is equal to the number of states in the
interval minus one. An empty interval has exactly one state and its length is
equal to 0. The notation (T^.j denotes the subinterval of lengthy-/ with states

3.2 Syntax

The syntax of ITL is defined in Figure 5-6, where jU is an integer value,
a is a static variable (does not change within an interval), A is a state variable
(can change within an interval), v a static or state variable, ^ is a function
symbol, and pis a predicate symbol.

ExpiTMkins
e ::= n\a\A\ giexpj^,.,,, expj

Fornudae
/ ::= p(ei , . . . , e„) | -./ | / i A /a | Vv • / | skip | ft ; h I ,f

1. Operators:
Figure 5-5. Syntax of ITL

ITL contains conventional propositional connectives such as A,—i and
first order ones such as V, 3 and =. Extending the logic to temporal reasoning
are operators like "; (chop)", "* (chopstar)" and "skip". Additional temporal
operators defined in ITL include O (next) and D (always).

2. Expressions:

Expressions are built inductively from variables, constants and functions
as follows:
• Constant: jU

A constant is denoted by a function without parameter. These are fixed

114 Semantic Web Services, Processes and Applications

values
Examples: true, false, 2, 3, 5, [2, 3, 4, 5].

• Variables: A, B, C,. . . , a, b, c
The value of a state variable can change within the interval, while the
value of a static variable remains constant throughout the reference
interval. Conventionally capital letters denote state variables, while small
letters denote static variables. The letter v is used as a meta-variable in
definitions to range over all variables.

• Function: g(exp,, • • •, exp„), where n > 0
The function symbols include arithmetic operators such as +,-, mod and *
(multiplication). Constants such as 0 and 1 are treated as zero place
functions.
Examples: A + B, a-b, A-\- a, v mod C

• ia: f : An expression of the form ia : / is called a temporal expression.
It returns a value a for which the formula/holds in the reference interval.
If there is no such an a then ia : / takes an arbitrary value from a's range.

Some examples of syntactically legal expressions are given below:
• I+(oj) + 2

This expression adds the value of / in the current state, the value of J in
the next state and the constant "2".

. I+(o j) -oo(I)
This expression adds the value of I in the current state to the value of J in
the next state and subtracts the value of I in the next to next state from the
result.

3. Formulae:

Formulae are built inductively from predicates and logical connectives as
follows:
• Atomic formulae are constructed using relation symbols such as =

and<.
Examples: CQ < e,

• Logical connectives: - / , /j A / J where / , / i , / j are formulae.

• Universal Quantifier: Vv./
• Temporal Operators: skip,";", "(chop) and "*" (chopstar) Examples:

j \ i 111 J

Some examples of syntactically legal formulae are given below:

Temporal Reasoning of Reactive Web Services 115

• (J=2)0(K=4)
This formula states that the value of J is "2" in the current state and the
value of K is "4" in the next state.

• 0(n[I=2]AOn[J=2])
The formula states that from the next state, the value of / would always

be equal to "2" and the value of / in the next to next state will be equal to
"2"'.

Many more examples can be found in (B. Moszkowski 1986).

3.3 Informal Semantics

Expressions and Formulae in ITL are evaluated relative to the beginning
of an interval. Formulae with no temporal operators are called "state"
formulae. With respect to an interval, a state formula is required to hold only
at the initial state of that interval.

skip

;f2

f*

•

"\

(T._

Ji.

s~
•

< / • ,

•
'^1

'^t

•

f

• • •

h
•

f

• <

Figure 5-7. Pictorial illustration of ITL Semantics

The informal semantics of the most interesting temporal constructs are
defined as follows:

• skip; unit interval (length 1).
The formula skip has no operands and is true on an interval iff the
interval has length 1 (i.e. exactly two states).

• / ,; /2 : A formula / j ; f^ is true on an interval a with states

(JQ • • • Oj I iff the interval can be "chopped" into two sequential parts

(i.e. a prefix and a suffix interval) sharing a single state (y^. for some

k < \(J\ and in which the subformula /, is true on the left part

CTQ • • • cr̂ and the subformula f^^ is true on the right part (T̂ • • • 0^,.

116 Semantic Web Services, Processes and Applications

• / *: A formula / * is true over an interval iff the interval can be
chopped into zero or more sequential parts and the subformula/is
true on each.

Figure 5-7 pictorially represents the semantics of skip, chop and
chopstar. Some ITL formulae together with intervals which satisfy them are
shown in Figure 5-8

1=1

I=l;skip

I: 1 1 1

I: 1 2

£kip;I=l • • • •
(OI=l) I: 2 1 4 5

fmite;I^l • 9 V • •
(01=1) I: 1 1 4 1 1

I O T I # • • • •

(n l = l) I: I 1 1 1 1

Figure 5-8. Some sample ITL formulae and satisfying intervals

inie

false

/ l V / 2

/ i D .h

h = h
if 5 then
3v • /

h else h

= 0 = 0

= -^mte

= - ' (- ' / i A -1 /2)

== - i / l V / 2

= (/ l -J h) A (/2 3 / 0
= (f l A / i 3 V (- i (7 A / 2)

= -iVi." • - 1 /

true value

false value

or
implies

equivalent

if-then-else

exists

Figure 5-9. Non-temporal constructs

3.4 Derived Constructs

The following constructs can be derived from primitives of the logic.
Non-temporal constructs are presented in Figure 5-9. Frequently used
temporal modalities are represented in Figure 5-10. The formula "f' is used
as a reference formula for defining the constructs.

Temporal Reasoning of Reactive Web Services 117

0 /

more

empty

inf

Jinite

0/
• /
4>/
m/
0/
B /

ball f

Ji»f
Jill exj)

keep f

Oexp

expi«— exp'i

expi gets ea!j^

Stable ea'p

len(ex:p)

= skip; /

= Omie

£ -more

= rriie \ false

= -^inf

=jinm; /

= -0- /
= / ; true

= -{«»-/)
=fimie ; / ; ime

= -'(^-/)
= n(empty = /)
s n(empty D /)
= %a: fiii(e.xp = a)

= I3(skip D /)

£: 80; 0(exp = 0)

=Jiniie A {fin eaipi) = ex'pt

= tep (e»pi «- expi)

= eirp îjrts' ea^

n&xl

non-empty inteival

empty intci'val

infinite interval

finite interval

sometimes

always

some initial suliimervjil

all initial suliintervals

some stibinteival

ail siibinlervnls

terminate inteival when

linal state

cml valtie

all unit sul>inteivols

next value

temporal assignment

gets

stability

= 3 / . (/ = 0) A (/ gets / + 1) A / «- exp) intervsil letiglli

Figure 5-10. Frequently used temporal abbreviations

3.5 Types in ITL

There are two basic inbuilt types in ITL. These are integers A'̂ and
Boolean (true and false). In addition the executable subset of ITL (tempura)
has basic types: integer, character, boolean, list and arrays. Further types can
be built from these by means of X and the power set operator P (in a
similar fashion as adopted in the specification language Z (M Imperato,
1991). For example the following introduces a variable x of type T.

def

(3x: T).f = 3x.type(x, T) A /
Here type(x, T) denotes a formula that describes x to be of type T.

Although this might seem to be a rather inexpressive type system, richer
types can be added following that of (Spivey, 1996).

3.6 Formal Semantics

In this section we present the formal semantics of expressions (terms)
and formulae in ITL. We define the data domain to be a set of integers
denoted by Z . We assume "tt, ff' to represent the set of truth values. A state

118 Semantic Web Services, Processes and Applications

(<T) is then a function mapping from variables Var to values in Z . We let
Z denote the set of all such functions,

C7ieZ = Var -> Z
Each n-ary function symbol g is associated with a total function

geZ" ^Z
Interpretations of n-ary relational symbols {p) are similar but map to

truth values.
p&Z"-^tt,jf

Function symbols, e.g. + and - , and relation symbols, e.g. > and -,
are assumed to have their standard meanings. We define 1^ and E'" to
denote sets of finite and infinite intervals respectively. The relation

is defined to be true iff the interval (J and o', ((T, (j'e Z'̂ uE*") have
the same length and agree on the behaviour of all variables except possibly
the variable V .

3.6.1 Semantics of Expressions

The construct ''''r-^Pl denotes the function that defines the value in % of
the expression exp on the interval O.

• Safa] = <Jo(o) and

for all i s.t. 0 < •« < |c7|, (T,-(«) = ao(a).

m 6VI/1] = CTo(A),

• Salgiexpi,..., expn)j = 9{Salexpij,... ,£„\expn\).

m F ha- n - l '̂f"̂ '''"'̂ *̂
• ^ a | » a . i J - j .^^y^^i^^^ olheroise

where n = {a'{a) \ a ~a a' A Sa'lfl — ''}

3.6.2. Semantics of Formulae

The construct '•'<' denotes the function that defines the value in (tt, ff}

of the formula / on the interval (J.

Temporal Reasoning of Reactive Web Services 119

f ; . | / l e (S + U S -) - - { « , / / } ,

£^lp{expi,..., e:t:p„)j = tl iffp(i-:,;rIea'Pil, • • •, î ,T[earj>„]).

^ ^ K I = ltilTi:^[/l = ff.

S4fi A /3I = tt iff ^<,I/il = ft and £,4/2! = tt.

i:^f/v . / I = tt iff for all <T' s.t. a ~„ a', £a>lfl - tt-

-̂<T|skip] = ttiff |<7| = 1.

£alfrj2J = ttm
(exists a k, s.t. ĉro,.,,,̂ | / i l = It and

((a is infinite and •̂(.T(,,.,„[/2I = M) o''
(cT is finite and k < \a\ and £aii...a-,^, I/2I = tt)))

or (a is infinite and i^I/i]).

if tT is infinite then
(exist: lo, ,, lu s.t. lo = 0 and ^'crj„,,,[/] = tt and

for all 0 < i < n, /, < k+i and '?aĵ ...crĵ _̂ ,j I /] = tt.)
or
(exist an infinite number of i:i s.t. lo = 0 and

for all 0 < i., /i < k+i imde,^,^,.,a>^^Jfj = tt.)
else

(exist I.Q,..., In s.t, 0̂ = 0 and „̂ = |tT| and

4. Compositional Reasoning for Web Services

Web services cannot exist in isolation. Most Web services interact with
other services, users, devices or sensors to achieve a goal. The fundamental
problem of composing specification of services, is to prove that a composite
service satisfies its specification if all of the component services satisfy their
specifications. For a compositional and modular specification of services,
the description of interfaces between services and their environment is of
utmost importance. The interface of a service provides the static/dynamic
(logical) connection between the service and its environment. An interface
description is a specification of those properties of a service that influences
the overall behaviour of the composed system as well as those of the

120 Semantic Web Services, Processes and Applications

individual services. Interface specification of reactive services cannot simply
be described in terms of functions or relation on states, a more expressive
representation format is needed.

4.1 Compositionality

Compositionality refers to the technical property that enables reasoning
about a composed system on the basis of its constituent parts without any
additional need for information about the implementation of those parts. The
notion of compositionality (W.P. de Roever, 1985, 2001, J. Zwiers, 1989) is
very important in computer science as it facilitates modular design and
maintenance of complex systems following the verify-while-develop
paradigm. Compositional proof techniques have the advantage that they
allow the systematic top-down development of systems from their
specifications. Compositionality is also a desired criterion for verification
methodologies particularly for the development and analysis of large scale
systems. The idea was first suggested by E. W. Dijkstra (E. W. Dijkstra
1965) in where he discusses hierarchical decomposition and verification of a
given program on the basis of its subprograms, and formalised by (Floyd,
1967) where properties of a sequential program are derived from the
properties of its atomic actions. For reasoning satisfactorily about composed
system, systems and their components are specified using assertional
specifications i.e. state predicates, only over their observable behaviour.

4.2 Applying the Assumption-Commitment Paradigm to
Web Services

For the development of a compositional framework that allows the
specification and validation of services and their composition, we choose the
Assumption-Commitment paradigm. The objective of an Assumption-
Commitment style of specification is to specify a process within a network.
In its most general form Assumption-Commitment (P. K. Pandya 1990,
Qiwen Xu and Mohalik Swarup, 1998) reasoning, allows the verification of
a service under the assumption that the environment behaves in a certain
way. The Assumption-Commitment style of specification has been applied
extensively as a proof technique to networks of processes executing
concurrently via synchronous message passing in a seminal work by (J.
Misra and K.M. Chandy 1981).

In our earlier work on service composition, we have shown the power of
assumption-commitment style of specification for compositional reasoning
of ongoing service behaviour. We have proposed a methodology (Solanki et

Temporal Reasoning of Reactive Web Services 121

al. 2004) to augment the specification of a service, with properties that are
temporal and compositional, called assumption and commitment.
Assumption-Commitment properties are specified only over observable
behaviour, and do not depend on any additional knowledge about the
underlying execution mechanism of the services. Interestingly, Interval
Temporal Logic, our underlying formal framework can be used both for
establishing the validity of the behaviour of a service and for proving the
soundness of the compositional rules.

The assumption-commitment specification can be thought of as a pair of
predicates {As, Co) where the assumption As specifies the environment in
which the specified service is supposed to run, and the commitment Co
states the requirement which any correct implementation of the service must
fulfill whenever it is executed in an environment that satisfies the
assumption. Since we are interested in the observable, ongoing behaviour of
services, we model assumption-commitment as temporal properties defined
over their interface specification.

4.3 An ITL Formalisation of Assumption-Commitment

A service, S , in ITL is expressed as a quadruple

{As,Co):{o)}S{co']

where.

uj : slate formula about initial state
.43 : a tem]5oral formula six-iclfying properties about the environment
Co : a temporal formula s|>etifyiiig properties al̂ out the ajivice
a; : stale formula about linal state

Figure 5-10. Frequently used temporal abbreviations

Figure 5-11. ITL representation of Assumption-Commitment

Formally in ITL, the validity of the Assumption-Commitment
representation as illustrated in Figure 5-11 has the following form:

{As,Co) : {<AJ)S{J) ' M W A S D ([II(emptyV((/isAC'o);Skip) Z) CoAjin J))

122 Semantic Web Services, Processes and Applications

We have also proposed compositional proof rules based on assumption-
commitment properties that allow validation of ongoing behaviour of
services. Keeping in perspective the e-Bookshop service which is
sequentially composed, we present the rules here for sequential composition.

We consider the sequential composition (ref. Figure 5-12) of two
services, S^ and 52. For a detailed explanation of the rules and its proof
obligations, the interested reader is referred to (Solanki et al. 2004).

Sj l%2

Figure 5-12 Sequential Composition

h

h

t-
h
h

h

[As, CQ)

(As, Co)

O-'i

As
Co

{Aa, Co)

:
-;,

=
EE

{(4Ji}5'i

{ti-'2}i>'2

W2

S.4s
C o '

{wi},Si

{i^i}

{•̂ "'2 }

;S2{w2l

(1)
(2)
(3)
(4)

(5)
(6)

5. Formalisation of the Online Bookstore

We now formalise some of the interesting properties of the e-Bookshop
service from section 2.
• At all states (crQ...(T;) during the execution of the composed service, the

customer is required to be a registered member of the e-Bookshop.
n(isRegistered (userlD))

• Once a customer starts searching for a book, the price of any book
returned as a result has to be constant till the search is over or if the
customer buys the book, the price has to be constant till the book has
been delivered to the customer i.e. the price of the book has to be
constant at all states (cyQ-.-CT,).

D(isNotChanged (bookPrice))

Temporal Reasoning of Reactive Web Services \Ti

• During the search ((TQ.. . (7^) , at any state if the customer sends an ISBN

number, he gets back the search results, for the same ISBN number in the
next state.

Q(isearchBook(ISBN)) => (searchResults(ISBN)))

• Once a book or a list of books have been selected and ordered, the
parameters of the book (title, language etc) should not change, till the

book has been delivered to the customer (cr^.. .C7,).

D(isBook{selectedBook))

• In order to buy a book, the customer needs to have a valid credit card, that
stays valid atleast till the book has been delivered to the customer

D(validCard{userID,cardN umber))

• Once the credit card has been validated, the e-Bookshop makes a
commitment to deliver the book as per the delivery terms and conditions
agreed with the customer ((J^.. .<7,) .
{finvalidCard{UserID,CardNumher)){DeliveryPeriod = CalculatedDays)

For sequential composition of services, the proof obligations require that
we choose Assumption-Commitment properties of the form:

h As = •.4s
\-Co = C(f

We now define the assumption and commitment properties required to
hold for the composition defined between states {O'Q...(7^). Keeping in
perspective the nature of properties, we informally define the assumption as,

At all states during the execution of the composed service, the customer
is required to be a registered member of the e-Bookshop.
We define the corresponding commitment as

At all states during the execution, the e-Bookshop allows registered users
to search and buy a book.

It is worth noting that these properties are specified as part of the
behavourial specification of the e-Bookshop as well as the Customer. They
are however required to be validated by the e-Bookshop. Formalising the
above properties,

\I\{isRe.gistefte.d{n.serlD))

(valickJiistorner (userlD)) *

For the composition between states (T, and (Jj, we define an additional
commitment while keeping the assumption same,

124 Semantic Web Services, Processes and Applications

Once a customer is returned the results of search, the price of book(s)
selected should remain constant till the user finishes all transaction.

Formalising the above,
(unchangedPrice(userID, ISBN))'

6. SEMANTIC ANNOTATION OF TEMPORAL
SPECIFICATION: TESCO-S

Web services are discovered and composed based on the declarative
specification of their interfaces as exposed by service providers in service
registries or repositories. Temporal properties for services, need to be made
a part of this declarative specification. In the context of temporal properties
and Web services, the notion of "Temporal" can be interpreted in terms of
the following two intuitive contexts:
• Time-related properties of Web services: expressing facts about dates

(calendar) of events ("Order placed on 4th July"), duration of activities
("Shipping the product takes 24 hrs once an order is received") and
absolute time i.e. clock ("Confirmation of a Shipped good will be sent
out at 9.00 a.m. 1ST"). The vocabulary to describe these concepts
include time as a first class citizen as part of their syntactic and semantic
representation.

• Behaviour-related properties of Web services: expressing facts about
ordering of services ("Check the credentials of the supplier, before
placing an order "), constraints during service execution ("Do not
modify a submitted order while the transaction is in progress", "As long
as the supplier continues proves the authenticity of his goods, we shall
continue to place orders with him.").

When describing temporal properties of services at a declarative level,
we focus on the second notion i.e. reasoning about behaviour of services
relative to time. The objective of declarative representation of temporal
properties and constraints is to enable their automated reasoning and further
their runtime validation for automated discovery, composition and execution
of services. In the case of services that are semantically described, an
important part of this effort is the development of representative ontologies
of the most commonly used domains.

TeSCO-S (Temporal Semantics for OWL enabled Services) is a
framework for semantically annotating and validating Web service
specifications with temporal properties, defined using ITL and its executable
subset "Tempura". The objective is:

Temporal Reasoning of Reactive Web Services 125

• to provide an ontology for service providers to declaratively specify
temporal properties in ITL.

• to provide a pre-processor for service requesters/composing
middleware/software agents to process the declarative markup of
properties and transform them into concrete ITL/Tempura formulae.

• to provide an execution engine for the generated tempura formulae,
which can be used to validate properties about the service as well as
perform runtime validation of assumption - commitment properties for
service composition.

The semantics of the formulae and expressions modeled using TeSCO-S
are the semantics as defined in ITL and implemented in its executable subset
Tempura. TeSCO-S uses OWL as the ontology representation language. The
choice of OWL as a representation format over XML is motivated by two
objectives: (a) Our ultimate goal is to be able to automate reasoning about
ITL formulae and expressions, (b) we want to be able to seamlessly use the
ontology within standrads like OWL-S for services. Tools for reasoning
about ITL-Tempura ontology, can be integrated with automated reasoning
tools for services specified in OWL. For realising the objectives highlighted
above, TeSCO-S includes the following components:

• An OWL ontology for first order formulae, expressions and temporal
constructs as defined in ITL and Tempura.

• A pre-processor that transforms ontological representations of ITL and
Tempura constructs defined in the ontology above to concrete formulae
and expressions.

• An interpreter,"AnaTempura" that provides execution support for
Tempura.

The following sections present a detailed discussion of each of these
components.

6.1 The ITL-Tempura Ontology

The objective of the ITL-Tempura ontology is to express the syntactical
framework of ITL and Tempura, as concepts and properties in OWL. ITL is
very expressive and provides a number of primitive and derived constructs
for the specification of a wide variety of temporal assertions. We have
restricted the ontology to only a specific set, which we believe will be most
useful and sufficient to express the kind of properties that most service
providers would want to expose. On the other hand, the ontology itself is
very modularly structured to enable future extensions. As discussed in

126 Semantic Web Services, Processes and Applications

section (3), the syntax of ITL is defined primarily by Expressions and
Formulae. Expressions can be of various types for e.g. static and state
variables, functions, and constants. Similarly formulae can be subclassed as
being atomic: e.g. " ".composite: e.g. " / i / j " and predicates: e.g.
" isRegistered(userID) " amongst others. Expressions and Formulae in the
ontology are built incrementally. The root class of all Formulae is
"Formula", while that of Expressions is "Expression". Formula has several
subclasses such as "Atomic", "Composite" and "Prefixed" amongst others.
"TempuraFormula", defines formulae specified in Tempura and which can
be executed by AnaTempura. "Operator" denotes the kind of operators that
can be used with formulae and expressions. Classes have properties and
restrictions associated that define the kind of parameters that are required to
build the expression or formula. Properties provide the link between
expressions/formulae and operators. We follow an incremental approach to
building ontology instances using the ITL-Tempura ontology as shown in
the e-Bookshop example presented in secton 6.5. The modular approach to
building ITL and Tempura formulae allows reusability of formulae and
expression instances between ontologies. We use the Protege OWL plugin
for modelling the ontology.

Figure 5-13 shows how formulae and expressions are structured. A
complete description of the ontology is beyond the scope of the paper. A
graphical and hierarchical representation of the classes in the ontology can
be found at (Solanki 2005). The complete ontology itself can be found at
(Solanki 2005).

ITL-Tempura Ontology::= Formula | Expressions | Tom]HiraConsluct
Connective | Operator | Quaniifler

Fcirniiila::= Atomic | TempuroAtomic | Equality |
Composite | CotripositeWitliExpressions | Leii |
Negated | i'refixed | PrefixedWilliExpressions
Ptedicato | Quantified | Suffixed |

Expression::= StaloVarittbIc | StaticVariable | Constant |
Function | CompositeExprcsions | MatliFunc |
NextExpression | PicfixExpression

0|Krator::= EqualityO|5e,rator | TemporalO|ierutor
Tempora!0]Krator::= InfjxOpeartor | PrefixOperator | SuffixOperator

Figure 5-13 Primitives for tlie ITL-Tempura Ontology

Temporal Reasoning of Reactive Web Services 111

6.2 OntoITL: A Pre-processor for Temporal Ontologies

So far, we have seen how ITL formulae and expressions can be modelled
using the ITL-Tempura ontology. This enables service providers to specify
temporal constraints as part of their service specification. In order to
interpret this semantic markup of temporal properties, a utility is needed to
generate concrete formulae and expressions from the OWL representation.
The idea behind providing such a tool is to automate the process of
generating, interpreting and analysing temporal properties of services.
Service requestors and composers can use the tool to extract temporal
properties that they would like to validate, while interacting with the service.
At runtime, the properties are monitored against the behaviour of the
interacting services.

OntoITL is a pre-processor that generates concrete ITL and executable
Tempura formulae from instance ontologies built using the ITL-Tempura
Ontology. The instances are defined using the core ontology as described in
Section 6.1 or from ontologies that import these instances. It provides as
output, complete information about instances of State and Static variables.
Expressions, Formulae and Temporal Formulae modeled in the ontology. An
output of the pre-processor for properties of the e-Bookshop, modeled using
the ITL-Tempura Ontology and as explained in section 6.5 is shown in the
Figure 5-16

OntoITL takes as input, the instance ontology in OWL for a formula or a
set of formulae. It then generates ITL/Tempura formulae keeping the
syntactical structure of the formula intact. OntoITL offers several options to
store the generated ITL and Tempura formulae. It also provides the facility
to directly pass the tempura formula to the AnaTempura interpreter, that
executes the formulae and validates temporal properties. Alternatively,
OntoITL stores the generated outputs in files that can be executed via the
Tcl/Tk interface of AnaTempura as discussed in section 6.3.

6.3 AnaTempura: Validation of Tempura Specification

AnaTempura (available from (A. Cau, 2005)), which is built upon C-
Tempura, is an integrated workbench for the runtime verification of systems
using ITL and its executable subset Tempura. AnaTempura provides
• specification support
• verification and validation support in the form of simulation and runtime

testing in conjunction with formal specification.

An overview of the run-time analysis process in AnaTempura is depicted
in Figure 5-14.

128 Semantic Web Services, Processes and Applications

Destel
Proj>erties

f renpuia Oode)
Validate

Service
Ini»tenBntation

Figure 5-14 The Analysis Process

There are two ways of validating properties via AnaTempura:

• Concrete Tempura formulae generated by the OntoITL pre-processor are

directly passed to AnaTempura. The results of the validation and
execution are returned to OntoITL for display.

• Concrete Tempura formulae generated by the OntoITL pre-processor are
stored in files for validation at a later stage. The results of the validation
and execution can be displayed via the Tcl/Tk interface of AnaTempura.

Rasulls

Figure 5-15 General Architecture for Web services
AnaTempura generates a state-by-state analysis of the system behaviour

as the computation progresses. At various states of execution, values for
variables of interest are passed from the system to AnaTempura. The
Tempura properties are validated against the values received. If the

Temporal Reasoning of Reactive Web Services 129

properties are not satisfied AnaTempura indicates tlie errors by displaying
what is expected and what the current system actually provides. The
approach goes beyond a "keep tracking" approach, i.e. giving the running
results of certain properties of the system, by not only capturing the
execution results but also comparing them with formal properties. The
general architecture that employs AnaTempura for validation of service
properties is shown in Figure 5-15.

The validation results of the instance-ontology-formulae, generated from
the TeSCO-S framework, can be returned to the composing agents, the
middleware or to the service requestor depending on the design of the
service composition.

6.4 Validating the Customer: e-Boolishop Composition

We have validated the assumption-commitment properties of the e-
Bookshop as formalised in section 5.1.

We adopt the second approach to validating properties as mentioned in
section 6.3. The property is extracted as a tempura formula, from its
ontological representation using the OntoITL pre-processor and stored in a
file. At the initial state, the customer registers using his login details^. The
login details are set for the customer session and passed to AnaTempura. As
illustrated in the Figure 5-16 for each phase of the composition (search, buy
etc.) and for every interaction between the e-Bookshop and the customer, at
all states, the property is validated.

Tempura interpreter validates the property against the values set in the
session for that state. We have developed a minimalistic GUI for dislaying
the results of the property validation. The blue circle indicates that a
property holds for that state, while a red circle indicates that a property has
been violated. In the example shown, a " 1 " indicates the first service in the
composition i.e. the "Book Search", while a "2" indicates the second service
i.e. the "Book Buy". If the values in the session are found to be reset and do
not match the ones passed to the interpreter in the initial state, a warning
message is sent to the e-Bookshop as indicated by the red circle. It is worth
noting that the interpreter only validates the properties of interest. It does not
define the behaviour of the service in case the properties are not satisfied.

^For practical purposes, we do not model the registration process over an
interval, although this may well be the case if the user enters incorrect login
details, and takes several attempts to correct login.

130 Semantic Web Services, Processes and Applications

This is a design decision that has to be taken before the composition is
realised.

isRegistered(userlD)
A.

r isRegi5tered(».5eiID)

AnaTempura

Book Search Book Buy

JtUlb /SUi. StBi. ddllX.
flow BSffl flnu WsSS

V::!;d;ili;io bS!".î

o

Figure 5-16 Validating the customer -e-bookshop composition

6.5 Specifying Properties in the ITL-Tempura Ontology

In this section, we model some interesting properties of the e-Bookshop
service 5 using the ITL-Tempura ontology. For the sake of brevity in
representation we model them as A-Box representations.
Recalling the definition of a composite formula,
Composite 6 Formula 6 (V hasPrefixedSubFormula.Formula)
6 (V hasSuffixedSubFormula.Formula) 6 (=1 hasInfixOperator.Operator)
6 (=1 hasPrefixedSubFormula.Formula) 6 (=1
hasSuffixedSubFormula.Formula)
We choose the following properties from the e-Bookshop example
Property (1): During the search, at any state if the user sends an ISBN

Temporal Reasoning of Reactive Web Services 131

number, he gets back the search results, for the same ISBN number in the
next state.
{{searchBookilSBN)) Z) {searchResults{ISBN)))
We define the properties as assertional axioms (ABox) in Description Logic.
We build the formula incrementally as shown below:
ABox representation of Property (1):
ISBN:StateVariable, PI :Predicate, P2:Predicate
(PI, searchNook):hasName, (PI, ISBN):hasExpressionList
(P2, searchResults):hasName, (P2, ISBN):hasExpressionList
PRl:Prefixed, (PRl, Next):hasPrefixOperator, (PR2, P2):hasSubFormu]a
Cl:Composite, (CI, Imp):hasInfixOperator
(Cl,Pl):hasPrefixedSubFormula, (CI, PRl):hasSuffixedSubFormula
PR2:Prefixed, (PR2, Always): hasPrefixOperator, (PR2, Cl):hasSubFormula
Property (2): Once the credit card has been validated, the e-Bookshop
makes a commitment to deliver the book as per the delivery terms and
conditions agreed with the user.

(finvalidCard(UserID, CardNumber)){DeliveryPeriod = CalculatedDays)

ABox representation of Property (2):

UserID:StateVariable, CardNumber:StateVariable
DeliveryPeriod:StateVariable, CalculatedDays:StateVariable
Pl:Predicate, (PI, validCard):hasName, (PI,
UserID,CardNumber)):hasExpressionList
PRl:Prefixed, (PRl, fin):hasPrefixOperator, (PR2, Pl):hasSubFormula
EQl:Equality, (EQl, Equals):hasEqualityOperator, (EQl,
DeliveryPeriod):hasPrefixExpression
(EQl, CalculatedDays):hasSuffixExpression
Cl:Composite, (CI, Chop):hasInfixOperator
(Cl,Pl):hasPrefixedSubFormula, (CI, EQl):hasSuffixedSubFormula

7. CONCLUSIONS

From a historical perspective, research on Web services was initiated
with a focus on automating business process composition within different
enterprises. Such coordinations are long-lived processes and may last from a
few minutes to a few months. An extensive review of state-of-the-art
research in the domain of Web service composition reveals that current
interface specification approaches do not provide capabilities to expose the

132 Semantic Web Services, Processes and Applications

reactive aspect of Web service behaviour. Based on service interfaces
definitions (Roberto Cliinnic et al 2005) and message exchange protocols
(Martin Gudgin et al.2003), standards have been proposed for specifying
composite services, by defining declaratively, their data and control flows.
BPEL4WS (Tony Andrews et al. 2003) provides distinct constructs for
specifying abstract and executable processes. BPEL, however does not
prevent complex computation from being included in an abstract process,
thus revealing implementation details.

Within the context of semantic Web services frameworks like OWL-S
and WSMO, specification of pre/post-conditions and effects contribute to
some extent towards their behavioural description. However they are limited
to describing transformational behaviour. There is no support available for
describing and reasoning about changes over time. This is due to the lack of
explicit modelling of "states" in these languages. Rule languages for the web
include RuleML and within the context of semantic web, initiatives such as
SWRL (Ian Horrocks et al. 2003) and DRS (Drew McDermott and Dejing
Dou 2002). These approaches are limited to describing only certain kinds of
properties. The expressivity of the languages is restricted to specifying static
rules and constraints. There are no constructs available for specifying
ongoing behavioural semantics or temporal properties of services. Other
related work in this area is mostly concerned with representation of time as a
first-class citizen, (Feng Pan and Jerry R. Hobbs 2004, F. Bry and S.
Spranger 2003) i.e. reasoning about time points, complex time intervals,
calendars and durations.

For dynamic composition of services, compositional properties need to
be abstracted at a level where service requesters, providers, composing
engines and matchmakers can discover these properties of services.
Assumption-Commitment properties can be suitably specified in any service
description language, rich enough to capture the underlying expressiveness
of these properties. In this chapter, we provide a modular approach, TeSCO-
S, to building and executing temporal properties of services, with interfaces
described as OWL ontologies. TeSCO-S is based on Interval Temporal
Logic (ITL) and Tempura, its executable subset. Our pre-processor
"OntoITL" enables transformation of the bulky XML representation of
temporal properties into concrete ITL and Tempura formulae, that can be
handled readily by AnaTempura. The ontology within the TeSCO-S
framework can be used by service providers to describe temporal capabilities
of services. Service requestors and composing agents can use "OntoITL"
and AnaTempura for on-the-fly transformation and validation of these
temporal properties. The ontology provides constructs not only for
specifying temporal expressions and formulae, but general first order
predicates and formulae as well. It can therefore, also be used to specify pre-

Temporal Reasoning of Reactive Web Services 133

conditions/post-conditions and effects in frameworks like OWL-S and
WSMO. Ongoing work in TeSCO-S is providing reasoning support over
temporal ontologies and tools for exploiting ITL formulae to build temporal
ontologies. It is planned to have a protege plugin for defining temporal
ontologies, that could be used along with the OWL-S editor for modelling
OWL-S services.

8. QUESTIONS FOR DISCUSSIONS

Beginner:
1. What are the main categories under which computing systems can be

partitioned?
2. What are the characteristics of reactive systems?
3. How does temporal logic help in formalising system behaviour?

Intermediate:
1. Discuss why Web services should be modelled as reactive systems.
2. What properties of a dynamically composed service can be formalised

using temporal logic?
3. Discuss why the notion of Compositionality is important while defining

composition of services.
4. Why should temporal properties of services be modelled as ontologies?
5. How does a service composition benefit from runtime validation of

desired properties?

Advanced:
1. Discuss how properties of a holiday booking service can be formalised

using Interval Temporal Logic.
2. How can properties of the holiday booking service be expressed using the

ITL-Tempura ontology?
3. Identify assumption-commitment properties for the holiday booking

services.

SUGGESTED ADDITIONAL READING

Monika Solanki and Antonio Cau and Hussein Zedan. Introducing
Compositionality in Web Service Descriptions. In Proceedings of the
10th International Workshop on Future Trends in Distributed Computing
Systems - FTDCS 2004, Suzhou, China, May 26-28 2004. IEEE
Computer Society Press.

134 Semantic Web Services, Processes and Applications

• Antonio Cau. ITL and (Ana)Tempura Home page on the web.
http://www.cse.dmu.ac.ukrcau/itlhomepage/itlhomepage.htnil.

• Z. Manna and A. Pnueli.The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer-Verlag, New York, 1991.

• B. Moszkowski. Executing temporal Logic Programs. Cambridge
University Press, Cambridge, England, 1986.

10. REFERENCES

F. Bry and S. Spranger (2003). Temporal constructs for a web language.
A. Cau, (2005). ITL and (Ana)Tempura Home page on the web.

http://www.cse.dmu.ac.uk/~cau/itlhomepage/itlhomepage.html.
Antonio Cau and Hussein Zedan (1997). Refining interval temporal logic specifications. In

ARTS, pages 79-94,1997.
Roberto Chinnic, Hugo Haas, Amy Lewis, Jeans Jacque Moreau, David Orchard, and Sanjiva

Weerawarana (2005). Web services description language (WSDL) version 2.0 part 1: Core
language w3c working draft 3rd August, 2005. http://www.w3.org/TR/2005/WDwsdi20-
20050803/.

W.P. de Roever (1985). The quest for compositionality a survey of assertion based proof
systems for concurrent programs. In Neuhold EJ, editor, Proc of the IFIP conference: the
role of abstract models in computer science,, Vienna. North Holland, Amsterdam.

W. P. de Roever et al (2001). Concurrency Verification: Introduction to Compositional and
Noncompositional Methods. Cambridge University Press, Cambridge, England, 2001.

E. W. Dijkstra (1965). Solution of a problem in concurrent programming control. Commun.
ACM, 8(9):569.

E. W. Dijkstra (1976). A Discipline of Programming. PrenticeHall.
Jurgen Dinge (2000), Systematic parallel programming. PhD thesis, Carnegie Mellon

University.
Frank Leymann, IBM Software Group. Web Services Flow Language (WSFL) Version 1.0,

2001.
Drew McDermott and Dejing Dou (2002). Representing Disjunction and Quantifiers in RDF

Embedding Logic in DAML/RDF. In ISWC2002. 1st International Semantic Web Con­
ference, 2002.

E.M. Clarke and O. Grumberg, and D. A. Peled (1999). Model Checking. The MIT Press,
Cambridge, Massachusetts.

R. W. Floyd. Assigning meaning to programs (1967). In Symposium in Applied Mathematics,
volume 19, pages 19-31. American Mathematical Society, 1967.

Martin Gudgin, Marc Hadley, Noah Mendelsohn, JeanJacques Moreau, and Henrik Frystyk
Nielsen (2003). SOAP Version 1.2 Part 1: Messaging Framework W3C Recommendation
24 June. http://www.w3.org/TR/soapl2partl/.

D. Harel and A. Pnueli. (1985) On the development of reactive systems, pages 477-498.
SpringerVerlag New York, Inc., New York, NY, USA .

D. Harel and M. Politi.(1998). Modeling Reactive Systems with Statecharts: The
STATEMATE Approach. McGrawHill.

The Rule Markup Initiative, http://www.dfki,unikl.de/ruleml/.
C,A,R Hoare, An axiomatic basis for computer programming, Comm, ACM, 12 (1969) 576-

580, 583, 1969.

Temporal Reasoning of Reactive Web Services 135

Ian Horrocks, Peter F. PatelSchneider, Harold Boley, Said Tabet, Benjamin Grosof, Mike
Dean (2003). SWRL: A Semantic Web Rule Language Combining OWL and RuleML .
Technical report, University of Manchester, Version 0.5 of 19 November.

M Imperato (1991). An introduction to Z. ChartwelIBratt, 1991.
Z. Manna and A. Pnueli (1991). The Temporal Logic of Reactive and Concurrent Systems:

Specification. SpringerVerlag, New York.
Zohar Manna and Amir Pnueli .(1993) Models for reactivity. Acta Inf., 30(7):609-678.
Mike Dean and Guus Schreiber (eds.) 2004. OWL Web Ontology Language Reference, 10

February 2004. http://www.w3.org/TR/owlref/.
J. Misra and K.M. Chandy (1981). Proofs of networks of processes. In IEEE Transactions on

Software Engineering, volume 7(7):417426.
Monika Solanki and Antonio Cau and Hussein Zedan (2003). Introducing compositionality in

Webservice Descriptions. In Proceedings of the 3rd International Anwire Workshop on
Adaptable Service Provision, Paris, France, 2003. SpringerVerlag.

Monika Solanki and Antonio Cau and Hussein Zedan (2004). Introducing Compositionality in
Web Service Descriptions. In Proceedings of the 10th International Workshop on Future
Trends in Distributed Computing Systems FTDCS 2004, Suzhou, China, May, 2004. IEEE
Computer Society Press.

B Moszkowski (1983). Reasoning about Digital Circuits. PhD thesis. Department of
Computer Science, Stanford University

B. Moszkowski (1986). Executing temporal Logic Programs. Cambridge University Press,
Cambridge, England.

B. Moszkowski (1994). Programming Concepts, Methods and Calculi, IFIP Transactions, A-
56., Some Very Compositional Temporal Properties, pages 307-326. Elsevier Science, B.
v., NorthHolland, 1994.

B. Moszkowski (1995). Compositional reasoning about projected and infinite time. In Pro­
ceedings of the First IEEE Int'l Conf. on Engineering of Complex Computer Systems
(ICECCS'95). In , pages 238245. IEEE Computer Society Press.

B. Moszkowski (1995). A temporal logic for multilevel reasoning about hardware. IEEE
Computer, pages 10-19.

B. Moszkowski (1996). Compositionahty: The Significant Difference, volume 1536 of LNCS,
chapter Compositional reasoning using Interval Temporal Logic and Tempura, pages 439-
464. Springer Verlag, Berlin, 1996.

B. Moszkowski (1996). Using temporal flxpoints to compositionally reason about liveness. In
He Jifeng, John Cooke, and Peter Wallis, editors, BCSFACS 7th Refinement Workshop,
electronic Workshops in Computing. "SpringerVerlag and British Computer Society",
London.

Nickolas Kavantzas, David Burdett, Gregory Ritzinger, Tony Fletcher, Yves Lafon (2004).
Web Services Choreography Description Language Version 1.0: W3C Working Draft 17
December.

Feng Pan and Jerry R. Hobbs (2004). Time in OWLS. In Proceedings of AAAI Spring
Symposium Series on Semantic Web Services, 2004.

P. K. Pandya (1990). Some comments on the assumptioncommitment framework for
compositional verification of distributed programs. In REX workshop: Proceedings on
Stepwise refinement of distributed systems: models, formalisms, correctness, pages 622-
640, New York, NY, USA. SpringerVerlag New York, Inc.

Satish Thatte. XLANG: Web Services for Business Process Design, 2002.
Amazon Web Service, www.amazon.com.
Monika Solanki. (2005) A Graphical representation of Class Hierarchies in the ITLTempura

Ontology. http://www.cse.dmu.ac.uk/~monika/TeSCOS/OntoITL.jpg.

136 Semantic Web Services, Processes and Applications

Monika Solanki. (2005) An Ontology for ITL and Tempura.
http://www.cse.dmu.ac.uk/~monika/TeSCOS/OntoITL.owl.

Monika Solanki, Antonio Cau, and Hussein Zedan (2004), Augmenting semantic web service
descriptions with compositional specification. In Proceedings of the 13th international
conference on World Wide Web, pages 544-552. ACM Press.

I Michael Spivey (1996). Richer types for Z. Formal Asp. Comput., 8(5):565-584,1996.
The protege ontology editor and knowledge acquisition system.

http://protege.stanford.edu/index.html.
Ketil Stolen (1990). Development of parallel programs on shared datastructures. Technical

report, Department of Computer Science, University of Manchester.
Kim Sunesen (1998). Reasoning about Reactive Systems. PhD thesis, BRICS, Department of

Computer Science University of Aarhus.
The OWL-S Coalition, (2004). OWLS 1.1 Release. http://www.daml.0rg/services/owls/l.O/.
Tony Andrews et al. (2003) Business Process Execution Language for Web Services, Version

1.1, 2003. http://wwwl06.ibm.conVdeveloperworks/library/wsbpel/.
Web Service Modelling Ontology, (2004). http://www.wsmo.org.
R. J. Wieringa (2003). Design Methods for Reactive Systems. MorganKaufmann: Elsevier

Science, San Francisco.
Qiwen Xu and Mohalik Swarup, (1998). Compositional reasoning using the assumption-

commitment paradigm. Lecture Notes in Computer Science, 1536:565-583.
Cau A. Xu Q. W. and CoUette P (1994). On unifying assumptioncommitment style proof

rules for concurrency. In B. Jonsson and Eds. J. Parrow, editors. In CONCUR'94, LNCS
836.

Shikun Zhou (2003). Compositional Framework for the Guided Evolution of TimeCritical
Systems. PhD thesis. Software Technology Research Laboratory, De Montfort University
UK.

J. Zwiers (1989). Corapositionality, concurrency and partial correctness. SpringerVerlag New
York, Inc., New York, NY, USA.

