
Chapter 4

KEYWORDS, PORT TYPES AND SEMANTICS: A
JOURNEY IN THE LAND OF WEB SERVICE
DISCOVERY

Karthik Gomadam, Kunal Verma, Amit Sheth and Ke Li.
Large Scale Distributed Information Systems (LSDIS) Lab, Department of Computer Science,
University of Georgia, GA, USA. - (karthik,verma,amit)@cs.uga.edu

1. INTRODUCTION

The evolution of Service Oriented Technology in the recent years has
made SOA and Web Services the candidate technologies to realize
application integration. Web Services are a set of protocols based on XML.
The basic protocols are
1. SOAP: The Simple Object Access Protocol is the messaging protocol for

request and response. SOAP is independent of platforms and network
transport protocols.

2. WSDL: Web Services Description Language describes in a
programmatic manner, the services capabilities and the end point to
invoke a service.

3. UDDI: Universal Discovery, Description, Integration is a cross industry
initiative to facilitate Web Service publication and discovery.

Figure 4-1 describes a basic architecture to realize Web Services using
the above mentioned simple protocols.

In addition to the above mentioned basic protocols additional protocols
have been specified to capture issues related to policies (WS-Policy and WS-
Agreement), security (WS-Security), message reliability (WS-Reliable
Messaging), transactions (WS-Transaction), etc.

90 Semantic Web Services, Processes and Applications

Figure 4-1. The basic Web Service Protocols in action

The growth in SOA has in turn also fueled a growth in the area of Web
Processes, with WS-BPEL emerging as a de-facto specification to specify
Web processes. Figure 4-2 is an illustration of the list of other protocols in
the WS stack. A more comprehensive list can be found at (Wilkes. L).

Business Domain Specific ,, .

Distributed f^anagem^nt W^DM, WS-fiflanagebitity

Provisioning WS-Provisiooing

Security WS-Security

Security Policy WS-S^curtty Poiicy

Transaction WS-Transaction, WS- Coordination

Orchesiratioii WS-BPEL

Routing^Addressing WS-AddressIng

Message Packaging SOAP

Publication and Disc&v&ry UDDi

Service descHptiori WSDL

Business
Domain

Management

Security

TratisacUons
and

business

M^sisagrng

Metadata

Figure 4-2. Partial view of current WS Stack

In this chapter we introduce the UDDI registry framework for Web
Service discovery and pubhcation. The UDDI data types and the different
sections of the UDDI are introduced first. This is followed by a section
introducing the UDDI4J API and using the API to discover and pubhsh Web

Keywords, Port Types and Semantics: A Journey in the Land of Web 91
Service Discovery

Services. In this context the UDDI best practices for Web Service
publication is also discussed.

The inadequacies of syntactic service publication and discovery are
presented in the next section and the reader is introduced to the ideas of
publishing and discovery of semantic Web Services. Web Service
publication and discovery in the METEOR-S and WSMO frameworks is
presented. Later in the chapter Registry federation is discussed in brief. This
followed by a short discussion on UDDI version, suggested reading and
questions for discussion.

2. UDDI

UDDI (UDDI) stands for Universal Discovery, Description, and
Integration. UDDI is a specification for creating a distributed Web based
registry for Web Services. UDDI can be compared to that of a local phone
book. In the same way a phone book has information about businesses and
what they offer and how to reach them, the UDDI registry stores information
about businesses, the services they offer and the technical information about
those services. The End Point Reference (EPR) of a service can be thought
of the phone number of a business in the phone book. UDDI provides three
basic operations.
1. Publish : How service providers publish in the registry
2. Find : How service requestors find the service they want
3. Bind: How service requestors can connect to the service they want.

The rest of the section describes the how different kinds of registry data
which UDDI supports, the data structures in UDDI, how WSDL maps onto
UDDI, followed by publication and discovery (find) in UDDI.

2.1 UDDI Organization: Wliite, Yellow and Green Pages

UDDI is organized into White, Yellow and Green pages.

a. White Pages:
White pages contain information about businesses by organizing
them by business names. The contain information on a business
including the name and the contact details. In addition to these
information, a publisher can also add other information like DUNS
Identifier to uniquely identify himself.

92 Semantic Web Services, Processes and Applications

In UDDI BusinessEntity is used to publish the white page
infoi-mation. BusinessEntity will be discussed with other UDDI data
models.

b. Yellow Pages:
Yellow pages contain categorized information about businesses. One
or more taxonomies are assigned to businesses and users can search
on the taxonomy categories to get all businesses that offer services in
those categories. BusinessEntity is also used to publish the yellow
pages information in UDDI.

c. Green Pages
The technical information about services is stored in Green pages.
All information that are needed to use a particular service can be
found in the Green pages. Green page information can be used via
the BusinessEntity and BindingTemplate data models of UDDI.

The next section introduces the different UDDI data models.

2.2 UDDI Data Models

Having looked at the different ways UDDI organizes its content, in this
section we will look at how the various data models in UDDI are used in
publication and discovery of Web services. UDDI has four different data
structures to specify entry in the registry. The UDDI data structures are
represented as XML documents. Figure 4-3 captures the relationships
between the five data structures.

Business Entity

Business Servte

—»

—•

Binding Template

Binding Template

I ^

[^

T-Mo(tel

T-Mo(tel

Figure 4-3. UDDI data structures

Keywords, Port Types and Semantics: A Journey in the Land of Web 93
Service Discovery

1. <businessEntity>
The BusinessEntity structure contains information about the business and
all the services that it offers. It has all relevant publisher information like
name, contact, relationships with other businesses and description of the
business.

2. <businessService>
A categorized set of services offered by a business is represented using
the businessService data structure. A businessService structure can be a
part of one or more businessElement structures and in the same way a
businessElement can have one or more businessService structures.

3. <bindingTemplate>
After a service is discovered, the binding information about the service is
required to invoke the service. This information is captured using the
bindingTemplate data structure. Each bindingTemplate belongs to one
businessService element.

4. <tModel>
A tModel describes the specification, behavior, concept or a design to
which the service complies. Specific information about interacting with a
service is captured here. Each tModel element has a key, name and a
URL from which more information can be found out about this service.

In addition to these four basic data structures, UDDI also has identifiers
and categories for categorization of the published information. The two xml
elements are specified in the UDDI, viz. <identifierBag> and
<categoryBag>. Identifiers are key value pairs, which can be used to tag an
entry in the registry with additional information like DUNS ID.

UDDI also has a <publisherAssertion> to capture relationship between
various businessEntities. publisherAssertion contains a key for each of the
two businesses whose relationship is being captured, a keyed reference
which points to the asserted relationship in terms of a name-value pair within
a tModel.

2.3 How Does WSDL Map to UDDI?

This section briefly outlines how WSDL maps onto UDDI. As shown in
Figure 4-4, the WSDL types, messages, portType and binding information
are bound to the tModel in UDDI. The EPR's in WSDL are published in

94 Semantic Web Services, Processes and Applications

bindingTemplate. The Service element in WSDL is published in Business
Service.

Service IrnptemantBition

«:|mport>

>F
<pwt |~-

Service Interface

<typeB>
<tTi«s9agB>
<por(Typ9>
-^binding*

UDDI

BusirwssEnlRy

-# j BuainassSefwce

»•>] BInJIngTamptate

^'^.•iBInriingTafnptata

• ^ (Ntoctel | o —

Figure 4-4. Mapping WSDL elements onto UDDI

2.4 Publishing in UDDI

In this section we will look at publishing services in UDDI.

2.4.1 Registry and API infrastructure:

For publication, it is best recommended to set up an UDDI registry. One
can download an open source registry like jUDDI for this purpose. Once you
have your registry up and running, it advised to make sure the permissions
for publication. The relevance of it will become clear as we go on the road to
publication in UDDI. Services can be published in the UDDI using the
UDDI4J API. UDDI4J is an open source API for publishing and discovering
services using an UDDI registry. UDDI4J can be downloaded from
(UDDI4J).

2.4.2 Publisliing using UDDI4J:

Figure 4-5 outlines publishing a service using UDDI4J. The steps give a
brief oudine of publishing a service in UDDI. However to get the exact
methods of various data structures, the reader is advised to consult UDDI4J
documentation before publishing.

Keywords, Port Types and Semantics: A Journey in the Land of Web
Service Discovery

95

Create UDDI Proxy

Obtain the UUID of the
BusinessEntity

Create
BuainessServlce and
assign UUIOofths

BusinsssEntity

Publish the service

Set AuthToken

f>opulaie
BusinessEntity and

publish

Assign properties to
BuslnessService

Add the
BindrngTemplate to the

Create BusinessEntity

Locate tModei /
Category

Create
BindingTemplate

Bind the service to a
tModei

Figure 4-5. Publishing using UDDI4J

3. UDDI BEST PRACTICES

In this section we will describe in brief the UDDI Best Practices
(Curbera. F et al 2002). Although UDDI is not intended to be used only with
WSDL, given the popularity of WSDL amongst service developers and
publishers, OASIS has published a best practices docuement for usage of
WSDL with UDDI. tModels and businessService data structures discussed in
Section 2,2 are most relevant in the UDDI from the perspective of WSDL.

Every WSDL captures the service interface and service implementation.
The key to realize useful synthesis between UDDI and WSDL is to separate
the interface and the implementation. WSDL elements such as message
formats, types, portTypes and bindings form the interface, whilst the service
element that includes the EPR, is the implementation. Such a separation
allows for publishing the various interfaces as tModels in UDDI. These
tModels are referred to as "wsdlSpec tModels". The actual WSDL is referred
to using the overviewDoc field in the tModei.

The main advantage is this practice allows standardization of interfaces.
Service developers can search for suitable interfaces and create the
implementations. Such implementations can then be deployed in the UDDI.

The impact of such a practice can best seen during discovery. Service
Discovery can be done using:
1. Keywords based on Operation names. In operation name based discovery

services are discovered based on operation names. The search is keyword
drive.

96 Semantic Web Services, Processes and Applications

2. Port Types based on published interfaces. In port type or interface driven
discovery, services are discovered based on the wsdlSpec tModels that
they implement.

The best practice document allows for services to be searched based on
port types which are described using service interfaces. This makes
searching for services more efficient than just searching using operation
names. Operation names can in often cases mean nothing about what the
operation does. For example a service might contain an operation named
RequestPurchaseOrder, while that operation in reality might be adding two
integers. However, if a service implements the wsdlSpec tModel for
RequestPurchaseOrder, then there is more guarantee of discovering a service
that meets the user requirements. In the next section we will discuss, why
even portType or interface driven discovery is not sufficient enough.

4. NEED FOR SEMANTICS IN WS-DISCOVERY

Although portType based discovery offers to standardize service
interfaces to facilitate better discovery of services, it is insufficient because
1. It is very difficult to standardize all service interfaces
2. Standardization alone cannot guarantee interoperability at all times. Eg.

A service might implement the RequestPurchaseOrder interface, but
might still have different units for representing weight, money etc.

3. It is hard for machines to understand what an interface or an operation
does, unless the semantics is sufficiently captured. This would make run
time binding of services to processes almost impossible.

4. In the event of a data type mismatch, it would be very difficult to mediate
between services to realize service execution.

Taking these limitations into consideration, we define four types of
semantics for Web Services (A. Sheth, 2003). The semantics are defined
based on the life cycle of Web Processes. Figure 4-6 illustrates the usage the
different types of semantics during the various stages of Web process life
cycle.

We now present the four types of semantics in detail with examples. The
examples are created using WSDL-S. The reader is recommended to look
into OWL-S and WSMO frameworks to understand in depth how they
capture the semantics for Web services. WSDL I.l syntax is throughout to
maintain consistency.

Keywords, Port Types and Semantics: A Journey in the Land of Web
Service Discovery

97

Exception handling
Verification

M
\

- i

Execution

Non-F

Optimization

Constraint rtnaiysia

unctional

_ . i
%

\

k
w—

Data

Interoperability
Discovery

i

i

1
Functional

r .,_l

i Discovery
Composition

Figure 4-6. Semantics during the various stages of Web process life cycle

4.1 Data Semantics

Data semantics is the formal definition of data in input and output
messages of a Web service. Data semantics is created to realize service
discovery and interoperability. Data semantics can be added by annotating
input/output data of Web services using ontologies. In WSDL-S Data
Semantics can be added by using modelReference extensibility element on
messages and types. Figure 4-7 illustrates Data Semantics in WSDL-S.

•««vall: massage nama^ 'Purc*tas6>0rd6rRi9t|ua6iM6SB£>ge">
<w&dl:part name=i"POR«]iiesf type="tnB:PORequBst"
wssem:modelReference«"POOntologyfffNjrchaseOnderRj8quest"/>

<Awdl: message"

Figure 4-7. Capturing Data semantics using WSDL-S

In the above figure, we capture the Data semantics by adding the
ontology type PurchaseOrderRequest to the WSDL message
PurchaseOrderRequestMessage. In the same way we add the ontology type
PurchaseOrderConfirmation to the WSDL message PurchaseOrderResponse.
The ontology used in the examples can be found at (RosettaOntolgy).

98 Semantic Web Services, Processes and Applications

4.2 Functional Semantics

Functional semantics is used to formally capturing the capabilities of
Web service. This is used in discovery and composition of Web Services.
Functional semantics can be realized by annotating operations of Web
Services as well as provide preconditions and effects. In WSDL-S,
functional semantics can be captured by adding ModelReference, Category,
Pre-Conditions and Effects. Figure 4-8 illustrates an example of capturing
functional semantics using WSDL-S.

^"yjperalion nama="Q9tOneQuote"
•wssem: modelReferenca^tJntology 1 #FinarscialTranisacstion>
•̂Aifflisemicfllegory categof5iiName="S!Eiok (luotatian services"
ta)oonomyURN"http:/AviVw,cirisus.giw/^»d/nalcs02r
'taxonomyCQde«"52399r^^

«:input rr»essage="sO:GelOneQiK5teSoapln"/>
<^vssBim;prea)nditton narr»e="»tockSymW'
:wssftm:n»d«IRefer«!iice="Ontolo0yO*st«kSy(T*)Qr,'>

^outpulmessage '̂sOiGetOneQiioteSoapOut'V^
•sivssBtn:effect narrve='pflc»*
wss8m:rr»d#Ref«irftiic0="OnEology1)*prics"/>

</opBration>

Figure 4-8. Capturing Functional Semantics for WSDL-S

The above example illustrates capturing the functional semantics of a
Web service using modelReference to the Ontology type Financial
Transaction. The Category is captured using NAICS classification. The
Preconditions and effects are captured using modelReference to ontology
types stockSymbol and price. The ontology used in the examples can be
found at (SUMO).

4.3 Non-Functional Semantics

Non-Functional semantics capture the QoS requirements/ constraints
(such as delivery time) and also policy requirements/ constraints (such as
reliable messaging). The QoS requirements could be both quantitative
constraints and non-quantitative constraints.

Keywords, Port Types and Semantics: A Journey in the Land of Web
Service Discovery

99

Feature

Cost (Quantltntlve)

Supply time
(Quantltatlvo)

Cost (Quantflattvi))

Preferred Logtcal
Supplier (Logical)

Compatible Suppliers
(PI and P2)

Scope

Process

Process

Process

Partrver

Process

Goal

Optimize

Satisfy

Satisfy

Satisfy

Satisfy

Value

<7

<46000

True

True

Unit

Dollars

Days

Dollars

Aggretiatlon

Summation

Maximum

Summation

Figure 4-9. Capturing Non-Functional semantics

In Figure 4-9 we present an example of capturing QoS constraints using
ILP and SWRL. The above example illustrates the constraints for a
workflow that is being used to purchase various products. Quantitative
constraints such as total cost must be less that USD 50,000 is represented as
ILP constraints. Non-Quantitative constraints such as the partners must be
preferred suppliers is captured using SWRL. QoS based process modeling is
discussed in detail in (Cardoso. J 2002).

4.4 Execution Semantics

Execution semantics formally capture the execution or flow of services in
a process or operations within a service. Execution semantics play a role in
verification and exception handling. In the next section we will discuss using
data and functional semantics in Web service publication and discovery.

5. PUBLISHING AND DISCOVERING SEMANTIC
WEB SERVICES

Unlike publication using UDDI, publishing Semantic Web Services is
still an area of active research. Various research groups like OWL-S,
WSMO and METEOR-S have created frameworks for publishing and
discovering semantic Web Services. We will present the METEOR-S Web
Service Discovery and Publication framework (MWSDP).

MWSDP is based on WSDL-S (Akkiraju. R et al 2005). The data and
functional semantics captured in WSDL-S services are used to publish the
service in the UDDI registry. Semantic templates (discussed later in the
section), created using WSDL-S, allow for template based discovery in
MWSDP. The data and functional semantics of a Web service can be seen

100 Semantic Web Services, Processes and Applications

mapping to a tModel in UDDI. We will now in discuss the MWSDP
interface for publishing and discovering WSDL-S services.

5.1 METEOR-S Framework

We will now discuss publishing WSDL-S services using METEOR-S
publication framework. We will follow this with a discussion on template
based service discovery.

5.1.1 Publishing WSDL-S Services

In order to create WSDL-S services, use the METEOR-S Radiant plugin
(Gomadam. K et al 2005-A) or the WSDLS4J API. WSDLS4J API allows
programmatic addition semantic annotations to WSDL. METEOR-S Radiant
is an eclipse plug-in to annotate WSDL. METEOR-S Radiant plug-in also
has discovery extensions that will publish WSDL-S files into registry.
Alternatively, the METEOR-S Discovery and Publication Interface allows
for publishing from within applications. The publication interface has
wrappers which given the WSDL-S files, and registry category semantically
publish the service into the registry.

5.1.2 Template based Discovery

In this section we describe a semantic template and propose a discovery
mechanism based on semantic templates. Figure 4-10 conceptually
illustrates a semantic template.

Stinanlic 'rvnipliito
IndiislryCalegoi'y = NAICS:lileclronics
Prodi.ic(Ciilcgoiy = DUNSlRAM
Locaciori = Alliens, GA
Operation) = RoseltaSrequestl'iircliasoOrder

Input = RosellaffPurchasBOrdoi'Deiails
Output = RosetiaSI'urehaseCotilH'maiioii
Non-l''unc<ionnl Rcqtiiremenis

lincryplion = RSA
ResponseTime < 5 sec

Operation » l'.nsettai<0«ieryOt'dei'S(iitiis

Input" Rosetta* PiircliaseOrderStatiisQuet '̂

Output = Roscttti* PurcliasoOrd«rStatiisRe5p<)nse

Figure 4-10. Semantic Template illustration

Keywords, Port Types and Semantics: A Journey in the Land of Web
Service Discovery

101

A semantic template captures the requirements of service requestor using
data, functional and non-functional semantics. In the example illustrated
above in Fig 4-10, the data requirements are captured using Ontology types:
Rosetta#PurchaseOrderDetails and Rosetta#PurchaseConfirmation. The
functional requirement is captured using ontology type:
Rosetta#requestPurchaseOrder. The non-functional quantitative
requirement is captured as ResponseTime < 5 sec. The non-functional non-
quantitative requirement is captured using Encryption = RSA.

6. REGISTRY FEDERATION

The increasing popularity of Web Services means that sooner or later
more and more services are going to be published into registries. Thus the
performance of the UDDI is essential to efficient service publication and
discovery. An brief study of UDDI performance is presented in (Georgina
Saez Et.Al 2004). Further, with the growth in semantic Web Services, there
is also a need for some categorization at registry level. In this section we will
take a brief look at registry federation using METEOR-S Web Service
Discovery Infrastructure (MWSDI) (Verma. K, K. Sivashanmugam et al
2005).

MWSDI is a peer to peer registry framework. MWSDI addresses two
fundamental issues related to service discovery: 1. locating the correct
registry and 2. finding the correct service within the registry. The peer to
peer framework of registries allows for creating a scalable distribution of
registries and adding semantics at the registry level enables registries to be
categorized based on various domains. This approach helps in discovering
the most appropriate registry for a specific discovery request.

Q

tn
c:
0

Is

, I

Operator Services Layer

CommunloaUons Layer

Data Layer

Registry Operator Services

P2P Environment

Rflglstries

Orilologtes

Fisure 4-11. Layered Architecture of MWSDI (MWSDI)

The above Figure illustrates the layered architecture of the MWSDI
framework. The data layer is composed of the registries. The P2P messaging

102 Semantic Web Services, Processes and Applications

is handled at the communications layer and the semantic discovery and
publishing are handled at the Operation services layer.

["^C3WP"""''|1

Clterit Pear

(p«t.-) (pm,i>)

R@Btstiy 1

(PmrN-y

f^egistr>' S Registry K igistry H

GWP CUitcway Peer controls access to the peer-to-peer network for
new registiy operators

Peer 1 * - Peer N* Operator Peere run Operator Services and act as provkleis of
AV,vrw/7c,v OntoU'^y

Peer X", Peer Y* Auxiliary Peers only act as providers of (he Ri!f;isrries
Oimiltjgy

Rccistrv I - Rcitistry N Web service rccistrics

Figure 4-12. Peer and Registry architecture in MWSDI (MWSDI)

The semantic specifications such as registry ontologies and registry-
registry relationships are given by the semantic specifications component
across the three layers. The main advantage is that the architecture allows for
registries to process non-semantic service discoveries as well as act in a
standalone manner away from the P2P networli.

The P2P framework of the peers in the registry collection is illustrated in
Figure 4-12. The Gateway peer is not associated with any registry and is the
entry point for new registries joining the registry collection. It is also
responsible for propagating changes such as changes to the registries
ontology to all peers. Operator peers controls a reigistry, provides the
operator services to that registry and also acts as a provider of the registries
ontology.

The auxiliary peers are simply providers of the registry ontology. The
framework proposes two protocols:
1. Operator peer initiation protocol: This defines the process involved in

adding new registries to the framework.

Keywords, Port Types and Semantics: A Journey in the Land of Web 103
Service Discovery

2. Client Peer interaction protocol: This defines the protocol for client
communications in accessing the operator services.

In this section we have provided a brief overview of research towards
scalability and performance of registries. In the recommended reading
section we suggest research papers that will allow readers to get a more
comprehensive picture about this area of research.

7. CONCLUSIONS

Registries play a very important role in the Web Services stack. This
chapter discusses the basics of UDDI which is the widely used and
recommended registry architecture. We have covered the various data
models of UDDI, their usage as well as using the UDDI4J API. The
discussion also covered the role of semantics in service discovery, the
different types of semantics for entire Web process lifecycle and using
semantic Web Services in UDDI.

Keywords, portTypes and template based discovery approaches have
been discussed and compared. We also provide a brief insight into some of
the state-of-the-art research in the area of Web Services publication and
discovery.

We would like readers to look at the recommended reading section to
find more material for comprehensive understanding of Web Service
discovery and publication.

Further readers are recommended to try and use the UDDI4J API along
with open source implementations of UDDI (like jUDDI), to better
understand the usage.

8. QUESTIONS FOR DISCUSSION

Beginner:
1. What role does semantics play in enhancing service discovery and

publication?
2. What are the main data structures of UDDI and how do they map to

WSDL?

104 Semantic Web Services, Processes and Applications

Intermediate:
1. "UDDI can be used for publishing any service. Not just Web Services". Is

the validity of the above statement true?
2. From the perspective of database design discuss the efficiency of the

UDDI schema.

Advanced:
1. "Relationships are the heart of Semantic Web". Discuss the importance of

exploiting interesting relationships in a P2P registry environment.
2. How does having little semantics at registries help realize SOA go a long

way?

Practical Questions:
1. Discover and publish registries using UDDI4J and an open source UDDI

implementation (like jUDDI).
2. Create wrappers over UDDI4J to publish and discover any service.

SUGGESTED ADDITIONAL READING

Abhijit Patil, Swapna Oundhakar, Amit Sheth, Kunal Verma, METEOR-
S Web service Annotation Framework, The Proceedings of the
Thirteenth International World Wide Web Conference, May, 2004
(WWW2004), pp. 553-562

Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant
Kalagnanam, Quan Z. Sheng: Quality driven web services composition.
Proceedings of WWW 2003, PP 411 -421
Rohit Aggarwal, Kunal Verma, John A. Miller and William Milnor,
"Constraint Driven Web Service Composition in METEOR-S,"
Proceedings of the 2004 IEEE International Conference on Services
Computing (SCC 2004), Shanghai, China, September 2004 , pp. 23-30

UDDI V3 from http://uddi.org/pubs/uddi_v3.htm
WSMX, http://www.wsmx.org/

10. REFERENCES

Sheth.A et al (2003), Semantic Web Process Lifecycle: Role of Semantics in Annotation,
Discovery, Composition and Orchestration , invited talk at WWW 2003 Workshop on E-
Services and the Semantic Web . Budapest, Hungary, May 20, 2003

Cardoso. J (2002). Quality of Service and Semantic Composition of Workflows . Ph.D.
Dissertation. Department of Computer Science, University of Georgia, Athens, GA.

Keywords, Port Types and Semantics: A Journey in the Land of Web 105
Service Discovery

Curbera. F et al (2002), Using WSDL in a UDDI Registry, Version 1.07, UDDI Best Practice,
http://www.uddi.org/pubs/wsdlbestpractices-Vl.07-Open-20020521.pdf

Gomadam. K, K. Verma et al (2005-A), Radiant: A tool for semantic annotation of Web
Services, International Semantic Web Conference (ISWC) 2005, Galway.

Gomadam. K, K. Verma et al (2005-B), Demonstrating Dynamic Configuration and
Execution of Web Processes, International Conference on Service Computing (ICSOC),
2005, pp: 502 - 507

Verma. K, K. Sivashanmugam et al (2005), METEOR-S WSDI: A Scalable Infrastructure of
Registries for Semantic Publication and Discovery of Web Services, Journal of
Information Technology and Management, Special Issue on Universal Global Integration,
Vol. 6, No. 1 (2005) pp. 17-39. Kluwer Academic Publishers.

Verma. K, K Gomadam et al (2005)"The METEOR-S Approach for Configuring and
Executing Dynamic Web Processes", LSDIS Lab Technical Report

Wilkes. L, http://roadmap.cbdiforum.com/reports/protocols/
Akkiraju. R, J. Farreil, et al, (2005) "Web Service Semantics - WSDL-S,Position Paper for

the W3C Workshop on Frameworks for Semantics in Web Services, Innsbruck, Austria,
June 2005.

RossettaNet, http://www.rosettanet.org/RosettaNet/
RosettaOntolgy,http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/ontologies/rosetta.owl
Saez. G, A.L. Sliva Et.Al (2004), Web Services-Based Data Management: Evaluating the

Performance of UDDI Registries, Proceedings of the International Conference on Web
Services (ICWS), 2004, pp 830-831.

SUMO, http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/ontologies/SUMO-Finance.owl
UDDI4J, http://uddi4j.sourceforge.net/
UDDI: http://uddi.org

