
Chapter 3

WEB SERVICES MODELING ONTOLOGY

Michal Zaremba, Mick Kerrigan, Adrian Mocan and Matt Moran
Digital Enterprise Research Institute (DERI), Ireland, National University of Ireland,
Galway, Ireland- <firstname.lastname>@deri.org

1. INTRODUCTION

Existing technologies enabling the integration of enterprise systems, use
very few of the capabilities of modern computers. For example, the activity
of finding services, which should deliver expected enterprise functionality,
has to be driven by humans. The process of assembling pieces of
functionality into complex business processes also involves human
interaction. Finally translating between different message formats, which are
exchanged between enterprises systems, cannot be done automatically.
Computers and computer networks are used mainly for storing and sending
information, but the interpretation of this information is done by software
engineers and domain experts. It is currently a manager's responsibility, not
a computer's, to find services and to make decisions about their suitability.
A software programmer has the responsibility of assembling these services
into a complex process block. Finally a domain expert is responsible for
defining mappings between the message formats sent by one system and the
formats expected by the second.

Web Services have promised to solve some of these problems, but
because of their syntactical nature', they have failed in most of these cases

' existing specifications cannot formally specify what services provide and how they should
be used, so these descriptions can not be automatically processed by machines

64 Semantic Web Services, Processes and Applications

and humans must still be kept in the loop. According to Tidwell (Tidwell),
Web Services are self-contained, self-describing, modular applications that
can be published, located, and invoked over the Web. This definition, like
any of many such definitions describing Web Services, makes no comment
on who should publish, locate and invoke them. The hidden answer is that
these are the humans, who are involved in almost every step of Web
Services usage process. The unquestionable success of existing Web Service
specifications lies in their ability to separate service interface from its
implementation, based on standards which were accepted by all the major
players of the IT industry. However these standards lack an appropriate
semantic framework allowing for automation of many of the processes
which are currently handled manually.

The application of semantics to Web Services can be used to remove
humans from the integration jigsaw and substitute them with machines.
There are many problems which Semantic Web Services (SWS) could be
used to resolve. SWS will put in place an automated process for machine
driven dynamic discovery, mediation and invocation. Work that will be
presented in this chapter does not question the enormous success of Web
Services, but rather this chapter recognizes the need to extend the existing
Web Service standards with semantics to enable their full automation. The
purpose of this chapter is to introduce and provide an overview of the Web
Services Modeling Ontology (WSMO), a fully-fledged framework for SWS,
showing a reader practical examples aimed at explaining the application of
WSMO concepts to a real world scenario. First we present a very simply use
case from the e-banking domain, which is used in an overview of WSMO
concepts. One of the major intentions of this chapter is to present the
technological framework for SWS development around WSMO. We discuss
and present some of the key technologies related to the conceptual
framework of WSMO, especially the Web Services Modeling Execution
Environment (WSMX), which is its reference implementation.

The chapter is structured as follows: Section 2 presents a motivational
use case for Semantic Web Services, Section 3 introduces WSMO and its
top level concepts, Section 4 discusses selected technologies for WSMO,
Section 5 compares competitive approaches, and Section 6 concludes the
chapter.

2. CASE STUDY - APPLICATION FOR SEMANTIC
WEB SERVICES

In this section we introduce an application from the banking industry as
an example of how Semantic Web Services can be used to provide an

Web Services Modeling Ontology 65

improved customer service. Our aim is to illustrate the benefits offered by
Semantic Web Services in a familiar scenario. The application, for this use
case, allows the comparison of the mortgage interest rates being offered by
banks online. The emergence of internet banking has greatly increased the
competitiveness of the market for services such as mortgage lending. Banks
within the European Union (EU) can provide online banking facilities to any
citizen of the EU. Many offer online tools allowing prospective bank
customers to see, at a glance, current mortgage rates and the amount they
could borrow. These tools are often constrained by being limited to the
mortgage products offered by just one bank.

Third party websites are increasingly available that aggregate
information from multiple banks allowing the comparison of the various
mortgage products on offer. Different techniques can be used by these
websites to retrieve data from the individual banks. In the next paragraphs,
we describe three of the most common.

Manual population involves one or more humans researching the
products offered by various banks based on telephone calls and investigation
of marketing material - both print and internet based. This works best when
interest rates are stable and the number of banks in the marketplace remains
static. The reality is that neither of these conditions is likely to be true.
Interest rates change and new online banks appear regularly.

Screen scraping is where a software application reads the HTML
content of a Web page and extracts the required data. For example, the
scraper may read the Web page used by a bank to publish details of the
mortgage rates the bank is offering. The advantage is that, when it works, the
information is always up-to-date. However, the technique tightly links the
scraping application with the structure of the HTML page advertising the
mortgage rates. These pages change frequently and each change requires the
scraping application to be redesigned.

Web Services are where the banks themselves provide an online
application using standard Web technology that allows their interest rates to
be requested on demand. The advantage is that the interface to this
application usually remains quite stable - requiring less ongoing
maintenance at the client application side. Another advantage is that Web
service technology is increasingly standards based. A drawback with Web
Services is that the technology, by itself, does not help service requesters
understand the meaning of the data or messages that they should exchange
with the service. This must be determined by a human before the service is
invoked for the first time.

Although Web Services provide the best solution of the three approaches
described above, human intervention is still required to find services offered
by banks online, interpret the data and the messages that the various banks'

66 Semantic Web Services, Processes and Applications

services can support, and know how to invoke those services. Semantic Web
Services address these problems by providing machine-understandable
descriptions of what the service can do {capability) and how to communicate
with it (interface). The use of ontologies as the basis for the descriptions
guarantees that they are unambiguous and machine-understandable. In our
banking example, an application would automatically discover new
Semantic Web Services offering mortgage rate information as they became
available. When such a service is located, the description of the interface
would be examined automatically to determine how the application and
service should communicate. Once data mismatches have been resolved, the
application retrieves the information about mortgages as required. The whole
operation is transparent to the customer and is always up-to-date.

3. THE WEB SERVICES MODELING ONTOLOGY

The Web Services Modelling Ontology (WSMO) initiative provides a
complete framework enhancing syntactic description of Web Services with
semantic metadata. The WSMO project^ is an ongoing research and
development initiative aiming to define a complete framework for SWS and
consisting of three activities:
• WSMO, which provides formal specification of concepts for Semantic

Web Services,
• WSML (Web Services Modelling Language), which defines the language

for representing WSMO concepts;
• WSMX (Web Services Execution Environment), which defines and

provides reference implementation allowing the execution of SWS

As depicted in Figure 3-1, there are four top level WSMO concepts:
Ontologies, Goals, Web Services and Mediators.

In a nutshell. Ontologies provide formal terminologies which interweave
human and machine understanding; Goals formally specify objectives,
which clients would like to achieve by using Web Services; Web Services
are the formal descriptions required to enable the automatic processing of
Web Services, and finally Mediators enable handling any possible
heterogeneity problems. More detailed explanation with the examples can be
found in the following sections.

^ http://www.wsmo.org

Web Services Modeling Ontology 67

Objectives that a client wants to
actiieve by using Web Services

Goals

Provide the m^^J^^^^^^^^ Sennantic description
formally specified ^ ^ H i °^ ^^ '^ Services:
terminology Ontologies ^^^M ^ ^ ^ H ^^ '^ Services - Capability (functional)
of the information ^ ^ | ^ ^ H " Interfaces (usage)
used by all other
components

Mediators

Connectors between components
with mediation facilities for handling
heterogeneities

Figure 3-1. WSMO Top Level Concepts

3.1 Ontologies

The Web has revolutionised the publishing and sharing of information.
The only obstacle to gaining access to this information is a communication
link and simple software that can render and display HTML Web pages. The
openness of the Web means the volume of published information is growing
exponentially resulting in what is commonly termed 'information overload'.
Finding specific data in this sea of information becomes increasingly
difficult. Already, today's most valuable Web tools are search engines - the
most popular of which accept keywords as input and get the results back
fast. Each search engine uses its own proprietary, and usually secret,
algorithm when determining what results to give back and in what order the
results should be displayed.

It can often be difficult to extract relevant information from the retrieved
search results. Sometimes, relevance can only be determined by sifting
through the result, one by one. Although not difficult for a small number of
search results this becomes impractical as the number of links increases.
Ontologies provide a means to greatly help in querying for knowledge on the
Web by enriching information with descriptions of its meaning.
Significantly, these rich descriptions can be interpreted by computer systems
allowing them to provide intelligently interpret the results of Web queries.

Ontology is a philosophical term meaning the study of things that
actually exist. In the context of computer science, ontologies define formal
shared descriptions of the things that exist in particular domains of interest
as well as the relationships that exist between those things. Gruber (Gruber,
1993) defines an ontology as a formal specification of a shared
conceptualization - formal because the descriptions it contains must have a

68 Semantic Web Services, Processes and Applications

precise provable meaning, and shared as an ontology is only valid if its
definitions are accepted by a community of users.

Ontologies by themselves are static sources of knowledge but become
very powerful instruments when combined with logic and reasoning.
Knowledge can be represented formally, using logical languages, as facts
that can be interpreted and reasoned about by machines. Reasoning allows
implicit knowledge to be inferred from existing knowledge and form an
extremely powerful tool when combined with ontologies. In the case of a
search engine returning results based on logical reasoning, the engine could
also provide the user with the logical proof of where the results came from,
if this was necessary.

In WSMO, the basic building blocks of an ontology are concepts,
relations, functions, instances, and axioms. Concepts are descriptions of
things that exist in the domain of the ontology. For example, a banking
ontology would probably include concept definitions for bank, account,
customer, deposit, loan, and so on. Here is an example of a simplified
WSMO concept definition for a bank account:

concept bank_account
accountNumber ofType validAccountNumber
owner ofType customer
balance ofType currency
overdraftLimit ofType currency

Concepts may contain attributes with names and types. Relations
describe interdependencies between multiple concepts. The relation married-
to describes an interdependency between a man and a woman. Functions are
special relations that result in a single typed value. For example, a function
might be defined to return the amount of a monthly loan repayment based on
the amount of the loan, its duration and the interest rate.

Where ontologies describe the conceptual model for a particular domain,
instances are the actual facts described using these concepts. For example
the details of each individual customer would be used to populate instances
of the customer concept. Axioms are the logical expressions used in WSMO
for various purposes including the definition of constraints of data, the
definition of relations.

3.2 Goals

A service requester uses Goals to represent the type of service that they
are seeking by specifying what capability they would like that service to
offer and what public interface they would like it to provide. Where Web

Web Services Modeling Ontology 69

Service descriptions are intended to provide detailed descriptions of the
mechanics of how a service provides its capability and behaviour, Goal
descriptions describe what capability and behaviour the requester would like
to find. Importantly, the Goal is described in terms of ontologies used by the
requester. The ability to model both Goals and Web Services provide a
distinct conceptual separation between the points of view of service
requesters and providers. This allows more flexibility in how service
requesters and providers are brought together than is possible with current
Web Service technology.

For example, the following steps would be needed to search for a Web
Service offering mortgage interest rate comparisons. First, a suitable service
must be located in a UDDI repository. The requester might try looking for
services with the name 'mortgage'. If no services were located, they might
try a search on 'home loan' or 'banking services'. If a service is located, its
textual description can be checked to see if it fits the requirements. However,
as service descriptions provided in UDDI are informal, the requester must
assume that their understanding is the same as that intended by the service
provider. If the requester is satisfied with the Web Service, the associated
WSDL document provides the syntactic description of what messages the
service accepts and what transport protocol to use when interacting with the
service. The input and output messages are described in XML, in terms of an
XML schema. To make an invocation of the Web Service, the requester may
have to adjust their data to fit the service description. This example would
require the interaction between service requester and service provider to be
tightly coupled together. If the requester wants to use another banking
service later, they will have to repeat the entire process of finding and
binding to a suitable service again.

Describing both Goals and Web Services separately using the Web
Service Modelling Ontology shifts the responsibility of matching service
requests to service descriptions from the requester to Semantic Execution
Environments, such as WSMX, which can interpret the requester's Goal and
carry out whatever discovery, mediation and invocation mechanisms are
required to connect the service requester to the service provider at run-time.
This is distinct from the design-time binding required in the WSDL example
described in the last paragraph. WSMO Goals comprise of the following sub
concepts: Capability, Interface, Imported Ontologies and Used Mediators.

3.3 Web Services

Informally, in terms of current specification, the term "Web Service" is
usually understood as a composition of three major elements: (1) interface
descriptions captured by WSDL documents, (2) the communication protocol.

70 Semantic Web Services, Processes and Applications

SOAP using XML to exchange messages and (3) UDDI repositories
allowing potential users to find services that are offered by providers. In
WSMO the Web Services concept is not directly related to WSDL, SOAP
and UDDI. In the WSMO context, a Web Service is a formal description
required to enable the automatic processing of Web Services. With WSDL,
SOAP and UDDI anybody can use a Web Service regardless of the
programming language, which has been used to implement the functionality
of the service. Similarly, WSMO focuses on the external Interface of the
Web Service, while its internal implementation remains out of the scope of
WSMO. The Web Service description in WSMO provides rich descriptions
enabling not only humans, but also software entities "understand" the
capabilities and interfaces of the service. Such an unambiguous description
of a Web Service with well-defined semantics can be processed and
interpreted by software agents without human intervention. This enables the
automation of the tasks involved in the Web Service usage process such as
discovery, selection, mediation, composition, execution and monitoring.
Having appropriate information, software agents can provide automatic
matching between Goals received from bank clients and Web Services
offered by banks. While the interest rates from a particular bank would not
be directly included in a Web Service definition, the capabilities of the
service would be defined in a way, that the software agent can "draw"
conclusions about the service and its suitability for obtaining information
about interest rates.

All the information, stored in the WSMO Web Service description,
contains certain aspects of the functionality and behavior of the actual
service. The functional aspects are described by the Capability of the
service. The behavioral aspects are addressed by the Interface of the service,
which contains both the Choreography, which expresses the interface for
consumption and the Orchestration, which defines how functionality can be
achieved by aggregating other Web Services.

The Capability describes the functionality of a Web Services from the
black box perspective allowing for automated Web Services discovery. This
functionality is captured by conditions that need to hold before the Web
Service can be executed and by the results that have been achieved after its
execution. Web Service Capabilities are defined by four notions:
• Preconditions - conditions on the information space that have to hold

before execution; For the e-banking Web Service these can be inputs,
which have to be provided by a client e.g. in the following example these
could be two inputs: (1) an amount of money, which client would like to
borrow and (2) repayment period for a requested mortgage.

Web Services Modeling Ontology 71

capability aibBankWSCapability
precondition

definedBy
?interestRateRequest[

borrowedAmount hasValue ?ainount,
repaymentPeriod hasValue ?period

] memberOf aib#interestRateRequest.

• Assumptions - conditions on the world that have to hold before execution
e.g. the fact that a client is coming from a member country of European
Union would be an assumption,

• Postconditions - conditions on the information space after execution.
There are no postconditions for the simple example of e-banking use
case. But if after checking interest rates, the client would decide to go
ahead and request a mortgage from one particular bank, as a result of
Web Service execution (its postconditions) the mortgage money would
become available to the client.

• Effects - conditions on the world that hold after service execution. Again
there are no effects for a simple example of requesting interest rates. But
in a complex scenario, as a result of Web Service execution, money
would be transferred to client account.

WSMO differentiates two parts of the Web Service Interface that are
concerned with the interaction behavior of the Web Service. WSMO
Choreography specifies how the service achieves its capability by means of
interactions with its user i.e. the communication with the user of the service.
WSMO Orchestration specifies how the service achieves its capability by
making use of other services - i.e. the coordination of other services. We
provide some more details on choreography and orchestration in upcoming
sections. Anyway WSMO Choreography and Orchestration are complicated
topics and the reader is advised to consult the WSMO specifications for
more information and the WSMO deliverables for practical examples of
choreography and orchestration interfaces.

3.4 Mediators

For decades, the attempt to make machines or applications work together,
interoperate with each other, exchange data and share functionality has been
a great challenge both from the technological and efficiency point of view.
The Web has pushed these problems to the extreme by offering an
environment which adds to the practically infinite quantity of information
available. That is, business entities wilUng to interact bring with them

72 Semantic Web Services, Processes and Applications

completely independent applications with various ways of representing and
structuring data. This drives the need for mediators-', third-party systems able
to deal with the potential mismatches that may appear both on the data and
behaviour level between the interacting parties.

The techniques used in developing mediators have to be dynamic and
scalable - hard-coded and one-scenario solutions are not feasible anymore.
Mediators should be flexible systems and easy to extend, assuring loose
coupling between various business entities.

WSMO provides the means of semantically describing mediator systems
by introducing four classes of mediators able to cope with the heterogeneity
problems that might occur between ontologies, web services and goals:
ontology-to-ontology mediators (ooMediators), goal-to-goal mediators
(ggMediators), web services-to-goal mediators (wgMediators) and web
service-to-web service mediators (wwMediators).

ooMediators describe the class of mediators able to solve the
heterogeneity problems between ontologies. Indeed, the ontologies could
represent very helpful tools in classifying and describing the huge amount of
data available on the Web, but they could also be developed in isolation, by
different parties. As a consequence, one can find ontologies describing the
same domain in different terms and, without mediators, applications using
these kinds of ontologies would not be able to exchange data. Also the reuse
of external ontologies might not be possible if the heterogeneity problems
are solved in advance. For example, in our banking scenario, the bank can
use a specific ontology for modelling the details related to mortgages and
interest rates. If the application that aggregates mortgage information from
different sources uses a different ontology to represent its data, an
ooMediator can be used to solve the potential mismatches and conflicts.
Such a mediator points to a concrete mediation solution (as the one
described in Section 4.2) able to actually solve the heterogeneity problems
between the specified source and target ontologies (i.e. the ontology used by
the bank and the ontology used by the application, respectively).

ggMediators are used for coping with the differences and for exploiting
the similarities that may exist between different goals. Constructing goal
ontologies, or explicitly expressing the differences/similarities between
different goals, might facilitate the entire process of discovering a Web
service, or even the process of invoking a particular goal. Any ggMediator
may use the services of ooMediators, in case the goals, between which it

^ One of the first definitions of mediator systems appears in (Wiederhold, 1992) in 1992: "A
mediator is a software module that exploits encoded knowledge about some sets or subsets
of data to create information for a higher layer of applications."

Web Services Modeling Ontology 73

mediates, are expressed using different ontologies. If a client has as goal to
find the mortgage interest rate and there is an already defined goal that asks
for mortgage interest rate and the eligibility of the inquiring client for this
mortgage, a ggMediator can be defined to link these two goals. The
ggMediator assures that any web service that can satisfy the second goal can
satisfy the first one as well.

wgMediators are the class of mediators that address the heterogeneity
problems between a goal and a Web service at two different levels:
functionality (can the Web service completely satisfy the goal?) and
communication (how can the two partners communicate?). The first level
can be addressed in two steps:
• find a goal that is completely satisfied by the Web service
• use the services of a ggMediator that defines the relation between the

initial goal and the newly discovered one.

The communication problem addresses the interface heterogeneity - each
partner in a communication defines its own way of communicating
(communication pattern) with the other one. In case the two patterns do not
exactly match (for example, at some point in time one of them may expect
something that the other one intends to send later), a communication
mediator, also known as process mediator will have to accommodate these
mismatches. In the online banking scenario a wgMediator can link the goal
that asks for mortgage interest rate directly with the web service offering
both the mortgage rates and the eligibility details of the client.

wwMediators are the most complex class of mediators in WSMO,
addressing the heterogeneity problems between different Web services.
These problems may occur when a Web service is invoking one or many
other Web services in order to achieve certain functionality, and implies
three levels of mediation: functionality, communication and cooperation.
The first level can be address in the similar way as for the wgMediators: find
goals that can be completely satisfied by the given Web services, and use
ggMediators for expressing functional relations; the second level can be
address by using wgMediators; the third level, which represents the most
complex one, deals with how multiple Web services can be combined (that
is, in what order should the Web services be combined). Also known as a
problem of composing Web services, this particular level is investigated by
different well-known researchers (Milanovic and Malek, 2004), but no truly
automatic solutions are discovered so far. In our example, if the web service
described above, achieves its functionality by using two other web services,
one for retrieving the mortgage interest rates and the other one to check the
eligibility of a given client for a particular mortgage type, it is the task of a

74 Semantic Web Services, Processes and Applications

wwMediator to take care of how these two web services have to be
combined.

4. SELECTED TECHNOLOGIES FOR WSMO

Creating ontologies and semantic descriptions for Web Services is only
useful if these descriptions can ultimately be applied. Infrastructure is vital
for a technology to be applied. Web servers and web browsers are the
infrastructure that has lead to the success of HTML on the web. An
execution environment for Semantic Web Services is the infrastructure
required to enable automated discover, mediation, selection and invocation
of these services. This section presents the Web Service Execution
Environment (WSMX), by introducing the technologies used and solutions
provided by it. WSMX is an execution environment for finding and using
Semantic Web Services that are described using WSMO. WSMX is a
reference implementation of WSMO and takes the full conceptual model of
WSMO into consideration. Considering current Web Service technologies
there is a large amount of human effort required in the process of finding and
using Web Services. Firstly the user must browse a repository of Web
Services to find a service that meets their requirements. Once the Web
Service has been found the user needs to understand the interface of the
service, the inputs it requires and outputs it provides. Finally the user would
write some code that can interact with the Web Service in order to use it.
The aim of WSMX is to automate as much of this process as is possible. The
user provides WSMX with a WSMO Goal that formally describes what they
would like to achieve. WSMX then uses the Discovery component to find
Web Services, which have semantic descriptions registered with WSMX that
can fulfill this Goal. During the discovery process the users Goal and the
Web Services description may use different ontologies. If this occurs Data
Mediation is needed to resolve heterogeneity issues. Data Mediation in
WSMX is a semi-automatic process that requires a domain expert to create
mappings between two ontologies that have an overlap in the domain that
they describe. Once these mappings have been registered with WSMX the
runtime data Mediation component can perform automatic mediation
between the two ontologies. Once this mediation has occurred and a given
service has been chosen that can fulfill the users Goal WSMX can begin the
process of invoking the service. Every Semantic Web Service has a specific
choreography that describes they way in which the user should interact with
it. This choreography describes semantically the control and data flow of
messages the Web Service can exchange. In cases where the choreography
of the user and the choreography of the Web Service do not match process

Web Services Modeling Ontology 75

mediation is required. The Process Mediation component in WSMX is
responsible for resolving mismatches between the Choreographies (often
referred to as public processes) of the user and Web Service. Running to the
case study in section 2, an example of the sort of mismatches that the
Process Mediator is likely to encounter is where the user wants to login to an
online banking system using a Web Service, in this case the user may want
to send the usemame and password together in one message where as the
Web Service expects two messages, the first containing the usemame and
the second containing the password. In this case the Process Mediator needs
to take the message sent by the user and break it up into two messages,
which are then sent in the correct order to the Web Service. At this point it is
now possible to interact with the Web Service and the users Goal of logging
into the system can be achieved.

More information on discovery can be found in section 4.1, mediation is
described in section 4.2, choreographies of Web Services are presented in
section 4.3 and a selection of front-end tools for use with WSMO and
WSMX are shown in section 4.4.

4.1 Discovery

As already mentioned, with current Web Service technology the process
of finding a Web Service is a manual one. The user must search by hand
through a Web Service repository, which usually provides free-text
descriptions of what the service does. This is a time consuming process and
can be seen as a barrier to quick and efficient integration between potential
business partners. With WSMX it is possible to perform automated
discovery of Web Services on a semantic description of the service. When
the user provides WSMX with a Goal that semantically describes what they
want to achieve, WSMX can perform two types of discovery to find
matching services. These two types of discovery will both return an ordered
list of Web Services, ordered by how well they match the users Goal and are
described in the following paragraphs.

Keyword Based Discovery. The keyword based discovery process
involves matching keywords present in the user's Goal with keywords
present in the Web Services semantic description. While this particular
approach does not have well defined semantics and could suffer from natural
language ambiguity issues it is useful to filter a large amount of Web
Services down to a smaller more manageable set on which more advanced
techniques can be used. There are a number of places that keywords can be
found in the Web Service description, in the value sections of non-functional
properties, for example title, subject and description, in the identifiers of the

76 Semantic Web Services, Processes and Applications

concepts used in the Web Service description and in the logical expressions
defining the capability of the Web Service.

Semantic Based Discovery. Semantic based discovery is a more formal
mechanism for determining if a given Web Service can fulfill a users Goal.
As described in section 3.2 a Web Service description is made up of a formal
description of the capability of the Web Service and the interface of the Web
Service. Performing discovery based on a Web Service involves matching
the capability of the Web Service with the requested capability in the users
Goal, by comparing the pre-conditions, post-conditions, assumptions and
effects of both. When performing this discovery the relationship between the
Goal and Web Service can be a number of different types:
• Exact match: where the Web Service can provide exactly what the Goal

requires.
• Subsumption match: where the Web Service can provide part of what the

Goal requires.
• Plug-in match: where the Web Service can provide what the Goal

requires and provides other functionality also.
• Intersection match: where the Web Service can provide part of what the

Goal requires and provides other functionality also.
• Non-Match: where the Web Service does not provide what the Goal

requires.

Different levels of semantics can be provided in this matching, the richer
the semantics the more time consuming the operation.

4.2 Data Mediation

One of the most important principles of WSMO and of the Web in
general implies that resources are developed in isolation by various parties
and than made available over the internet. In this context, the semantics
meant to disambiguate and to describe data, Web Services or Goals is
expressed in different terms. That is, different ontologies are developed to
model the same domains of activity, this fact adding an additional level of
complexity to all the operations related to Semantic Web Services.

Data mediation has the role of coping with the heterogeneity problems
that may appear at the data level, for example between the requester and a
provider of a Web Service. These problems appear when the application
existing on one side uses a data format or representation unknown to the
other party. In the context of WSMO and WSMX, we assume that both
parties have described their data in terms of ontologies and the solution we
propose tries to resolve the potential mismatches at the semantic level and to

Web Services Modeling Ontology 77

apply the findings from tliis level to the actual data that is exchanged. The
ontology mismatches are solved during design-time by an Ontology
Mapping Tool and the results are applied during run-time by a Runtime
Mediation Component. We describe each of these modules in more detail in
the next subsections.

Ontology Mapping Tool. At this step of the mediation process, the
mismatches existing between the ontologies used to describe the exchanged
data have to be identified and captured in what it is called an alignment
between these ontologies. In WSMX, the alignment consists of set of
mappings that logically express the semantic relation between terms from
one ontology and terms from the other ontology. As in most of the cases, the
initial designers of one or both ontologies fails to completely capture the
semantic of the domain in their model, the tool cannot determine the
alignment in completely automatic and accurate manner''. As a consequence,
the WSMX Ontology Mapping Tool is a design-time, graphical tool that
provides support for semi-automatic mappings creation. The human user (i.e.
the domain expert) is guided through the whole mapping process and they
are asked to validate the suggestions offered by the tool.

The main advantage of this semi-automatic approach is that the tool
transforms the mapping process from a laborious and error-prone task in to
simple choices and validation using a graphical user interface. In particular,
the mappings are expressed as logical rules and their manual editing would
require domain experts with strong background in logics. With this approach
the complexity of the mappings and the burdensome of logics are hidden
under the system's hood: the domain expert places his inputs only through
the graphical interfaces, while the underlying system automatically generates
the corresponding mapping rules.

In the banking domain, the Ontology Mapping Tool can be used to create
mappings between two ontologies that both model the mortgage concept. By
such mappings it is stated that there is a semantic relationship between the
two definitions of the concept; the mappings also describe what this
semantic relationship means.

Runtime Mediation Component. The mappings created by using the
Ontology Mapping Tool are saved in a persistent storage and made available
to the Runtime Mediation Component for use during run-time. At this

'' There are tools that automatically generate an alignment between two given ontologies, but
they cannot guarantee the correctness and the accuracy of these alignments. As WSMX is
a business oriented framework we consider these requirements a must.

78 Semantic Web Services, Processes and Applications

second stage, the mappings are used for a specific mediation scenario, i.e.
instance transformation^ Tliis scenario requires that incoming data
described in terms of one given ontology (i.e. source ontology) has to be
transformed in order to comply with the definitions from another given
ontology (i.e. target ontology). In other words, the source data represented as
source ontology instances has to be transformed and expressed as target
ontology instances.

In order to perform these transformations, the mapping rules generated
during design-time are evaluated in a reasoner and applied on the source
instances. The result consists of a set of target ontology instances, modelling
exacUy the same information as the source instances but conforming to the
specifications in the target ontology.

It is worth mentioning that the run-time mediation process is a
completely automatic one, no human intervention being necessary as long as
the required mappings are available.

4.3 Choreography

An important part of Web Services interface is the choreography^. The
choreography of a Web Service describes the way one can interact with the
service in order to consume its functionality. In other words, the
choreography defines the requester expected behaviour during the Web
Service invocation. The requestors can also define their own choreographies
as part of the goal they want to be accomplished - that is, the requested
choreography, the behaviour they are able to comply with when invoking a
Web Service.

WSMO choreography is expressed in terms of Abstract State Machine
also formerly known as Evolving Algebra. This mechanism is used to
describe systems in a precise manner using semantically well founded
mathematical notations.

There are two main components in WSMX used to manage and to
maintain the interaction between a requester and a provider of a Web Service

Another well known mediation scenario (not required in WSMX) is instance
transformation. By using a mediator that supports this scenario is possible to retrieve data
expressed in terms of various ontologies by posting queries in terms of only one particular
ontology.

The other part of a WSMO Web Service's interface, not discussed in here, is the
Orchestration. It describes the way that the web service functionality can be achieved by
composing several other web services. It is very related as form of representation with
choreography and it is strongly influenced the choreographies of the orchestrated web

Web Services Modeling Ontology 79

in terms of their clioreographies: tiie Choreography Engine and the Process
Mediator.

Choreography Engine. The Choreography Engine has the role of
managing all the operations regarding the choreographies of the two parties
involved in a conversation: This implies:
• Identifying and loading the two choreographies;
• Creating a copy for each of the choreographies (i.e. choreography

instances). These copies are used further as long as the communication
session is maintained.

• Updating the choreography instances in respect with the incoming
messages.

These messages might be sent by the communication partner provoking
an update in the receiver's choreography instance. A response message
could be generated and it will create in its turn an update in the target
choreography instance.

Process Mediator, Choreography describes the behaviour of the service
from the provider point of view, implying that all the requesters of that
particular service should comply with that particular choreography. That is,
the choreography of a requester should be compatible (but not necessarily
equivalent) with the choreography of the service provider in order to enable
communication. As one of the WSMO principles states that all entities
involved in communication are equal partners, we should assume that none
of them is willing to adjust its own choreography to match the other
partner's choreography.

As a consequence there is a need for a Process Mediator, a component
able to solve the communication mismatches that can appear during the
conversation. It takes as inputs each party's choreography and analyses each
incoming message to check if it is expected by the receiver choreography. If
it is, it means that the message can be forwarded to the receiver; if it is not
expected, the message can be transformed (as dictated by Data Mediator for
example) or postponed for later stages of the conversation. The Process
Mediator interacts directly with the Choreography Engine, acting as a
middle layer between the choreographies of the requester and the provider.
Such a process mediator (as well as the Data Mediator) is one of the
technologies that can be used in realizing the types of mediators described
by WSMO (i.e. ggMediators, wgMediators and wwMediators).

If we consider for example the service that checks the eligibility of an
inquiring client for a particular type of mortgage, its choreography can
specify that it expects first a message containing the incoming per year and

80 Semantic Web Services, Processes and Applications

than a message containing the type of mortgage the client is interested in.
Unfortunately, the client application is designed to send first the requested
type of mortgage, to expect for a confirmation and only then to send annual
income of the client. It is the role of the process mediator to inverse the order
of messages and to generate a dummy acknowledgement to enable the
interaction.

4.4 Front-end Tools

As with any emergent technology it is important that end-users can
actually use the technology. Providing high quality front-end tools is a good
way to get a technology adopted. To this end a number of software projects
have emerged attempting to create tools for modeling and using WSMO and
Semantic Web Services. From the case study in section 2, banks providing
Semantic Web Services for obtaining mortgage quotes would use these tools
to create ontologies that model the banking domain and use these ontologies
to semantically describe the Web Services capabilities and interfaces, while
users would use these tools to describe their requirements in the form of a
Goal. Each of these tools is available for download; links are available in
section 9.

Web Services Modeling Toolkit (WSMT)
The Web Services Modeling Toolkit (WSMT) is a framework for the

rapid creation and deployment of homogeneous tools for Semantic Web
Services. A homogeneous toolkit improves the users experience while using
the toolkit, as the tools have a common look and feel. Usability is also
improved as the user does not need to releam how to use the application
when switching between tools. The WSMT was designed to be the front-end
of the WSMX system and provides a number of tools to users:

WSML Editor. The WSML Editor is used to create and manage WSML
documents. It can be used to edit WSMO Ontologies, Mediators, Web
Services and Goals. The first versions of the WSML Editor focused on
the creation of semantic descriptions in WSMO and reading and writing
these semantic descriptions to and from the local machine using the
WSML syntax. Subsequent versions have looked at mechanisms for
visualizing ontologies using directed graphs. These ontology
visualizations make it easier for the domain expert to understand the
relationships between entities in the WSML document.

WSMX Data Mediation Mapping Tool. As described in section 4.2,
data mediation in WSMX is a semi automatic process. Mappings are

Web Services Modeling Ontology 81

required where mediation between two ontologies is required. The
WSMX Data Mediation Mapping Tool is used to create these mappings
between two ontologies. These mappings can then be used by WSMX to
transform instances of the source ontology into instances of the target
ontology, thus resolving data mismatches between partners that use
different ontologies to describe their web services.

WSMX Invoker. The WSMT contains a web service invocation
component that can be used to send messages to and receive messages
from web services. Messages can be received from the web services
both synchronously (immediately following a sent message) and
asynchronously (where the service calls the user back later with a
response). The WSMX Invoker tool makes these components within the
WSMT available to the end-user. The tool allows to user to send
messages to a given service within the WSMX architecture, view the
messages sent to services in the past and view responses received from
these services.

Distributed Ontology Management Environment (DOME)
The DOME project aims to produce a suite of tools for the efficient and

effective management of ontologies. DOME is implemented as a collection
of Eclipse plug-ins that allows users to edit and manage WSMO Ontologies.
These plugins include:

Editing and Browsing. The Editing and Browsing tool provides a tree
structure for representing the concept and relation hierarchies within an
ontology. Users can add new concepts and relations into these
hierarchies as well as adding attributes and parameters to those already
present. The tool also provides a real-time mechanism for switching
between the graphical tree structure and the underlying file format. This
allows users to make changes in one and see those changes reflected in
the other.

Versioning and Evolution. The Versioning and Evolution tool allows
users to mark the versions of a given ontologies. This is necessary as
when an ontology reaches a stable position and individuals start using it,
it becomes necessary to track which versions of a given ontology are
being used by different individuals. Versions of a given ontology are
tracked using the URI that identifies them; this URI is incrementally
changed as the version of the ontology changes. This allows multiple
versions of the same ontology to exist within the same knowledge base.

82 Semantic Web Services, Processes and Applications

Mapping & Merging. The Mapping & Merging tool deals with cases
where there are two ontologies that have an overlap in the domain that
they describe. This tool is used to create mappings between these two
ontologies so that execution environments, for example WSMX, can
perform instance transformation, query rewriting and ontology merging.
The mappings are created by opening two copies of the Editing and
Browsing Tool and dragging items from one ontology to the other.

WSMO Studio
The aim of WSMO Studio is to create a collection of tools to assist

potential users with ontology creation, service description, service discovery
and service composition. These tools are implemented as a collection of
plug-ins for the Eclipse framework. These tools include a WSMO Navigator
for showing the entities in the WSMO description along with individual
form-based editors for each of the WSMO entities. A syntax highlighting
text editor is also available for editing the underlying WSML format for
more advanced user. WSMO Studio also provides interfaces for interacting
with WSMO repositories for storing and retrieving WSMO descriptions.

5. RELATED WORK - RELATIONSHIPS WITH
COMPETITIVE APPROCHES

In addition to WSMO there are two major research initiatives in
Semantic Web Services. The first and largest of these is OWL-S (Martin), a
joint effort by BBN Technologies, Carnegie Mellon University, Nokia,
Stanford University, SRI International and Yale University. OWL-S is an
ontology for semantic markup of Web Services based on the Web Ontology
Language (OWL) (Dean and Schreiber, 2004). The second effort is WSDL-S
(Web Service Semantics) from the LSDIS Laboratory at the University of
Georgia in co-operation with IBM. The next subsections describe these
approaches in more detail using a small set of criteria, followed by a matrix
that summarizes the comparison.

5.1 OWL-S

OWL-S is an OWL ontology for describing Web Services by annotating
them with semantic information described in OWL (a W3C
Recommendation, http://www.w3.org/TR/owl-semantics/). The top-most
concept is Service and this in turn consists of three sub-concepts -
ServiceProfile, ServiceModel and ServiceGrounding.

V^eb Services Modeling Ontology 83

The ServiceProfile describes what the service does at a high level and
provides the means by which the service can be advertised. It also provides
the means by which a service requester can advertise a service that is
required. Within the ServiceProfile, the capability description allows for the
definition of preconditions, inputs, outputs and effects. There are also slots
available in the ServiceProfile description for security parameters, quality
rating and for descriptions based on standard business taxonomies.

The ServiceModel describes how a service works and, as a result, how to
interact with the service. This part of the OWL-S description is responsible
for specifying the service interaction protocol in terms of the messages that
should be exchanged with the service and the control flow of that exchange.

The ServiceGrounding is where the abstract description of the service
process model is grounded to operations in a WSDL document. Through the
ServiceGrounding the actual communication protocols, transport mechanism
and the communication languages used by the service are specified. The
grounding provides the bridge that links the implementation of a Web
Service with its semantic description

Both WSMO and OWL-S address the same problem space. After
identifying fundamental drawbacks with the OWL-S approach, the WSMO
working group was formed to devise a more complete conceptual model for
describing Web Services. Conceptually, unlike WSMO, OWL-S does not
explicitly model separate concepts for Goals and Web Services. Additionally
OWL-S does not explicitly model mediators; rather they are as considered
specific types of services. A detailed discussion of this rationale is provided
in (Lara et al., 2004).

5.2 W S D L - S

WSDL-S is a lightweight approach for adding semantics to Web
Services. It allows semantic representation of inputs, outputs, preconditions
and effects of Web Service operations, by adding extensions to WSDL.
WSDL-S allows semantic annotations using domain models, which are
agnostic to the ontology used to describe the Web Services or its
representation language. It means that ontologies can be used in the
annotation process and be directly included in the WSDL documents. The
annotations of the inputs and outputs in WSDL will be represented as
concepts in an ontology. Additionally, the preconditions and effects
associated with WSDL operations will be defined by the preconditions and
effects of a specific Semantic Web Service description.

84 Semantic Web Services, Processes and Applications

5.3 Matrix of Features and Approaches

The comparison is based on the following features:
• Viewpoint - provider vs. requester
• Mediation - handling heterogeneity between data and process models
• Non-functional properties - additional information about aspects that

may affect service usage
• Grounding - how service descriptions relate to Web Service standards
• Availability of execution environments - how do SWS get used

Table 3-1. Comparison of WSMO, OWL-S and WSDL-S

Approach

OWL-S

WSDL-S

WSMO

Supported
Viewpoints
Single
modeling
element for
both views

Service
provider
view-
same as
with WSDL

Mediation

Does not
treat
heterogeneit
y as a
modeling
issue.
Adopts the
behaviour
of the
ontology
used to
describe
annotations
Supports
mediation
of data and
processes

Non-funct.
props.
Restricted
to the
Service
Profile

Agnostic

Available
to all
WSMO
elements

Grounding

Grounding of
behaviour to
WSDL and
data to XML

WSDL-S is a
legal
extension to
WSDL and,
as such is
directly
grounded
Grounding of
behaviour to
WSDL and
data to XML

Execution
Environment
Described but
details of
impl. are
unavailable.

Any WSDL
compliant
execution
engine could
be extended
for WSDL-S

Open source
provided by
WSMX

6. CONCLUSIONS AND DISCUSSION

Web Services have become another milestone towards providing
interoperability among distributed and independent software systems. But
one major problem has remained unresolved. Although there is abundance of
technologies which theoretically should enable interoperability for disperse
systems, from the practical perspective the process of dynamic creation of
ad-hoc interactions between companies, as envision by Web Services, is still
a fiction. So it is the interoperability issue, not the communication, which
has to be addressed next to enable dynamic collaboration of independent
software entities on the Internet. Web Services specifications based on

Web Services Modeling Ontology 85

commonly agreed standards and implemented in .NET and J2EE
frameworks, are struggling to overcome existing limitations of Web
architecture. Data that is exchanged between Web servers and Web browsers
remains solely dedicated for human consumption, and cannot be readily
processed by automatic software agents. Similarly Web Services and their
underlying XML technology still deal mainly with infrastructure, syntax and
basic representational issues, but not with the meaning of data and processes
that are used by particular systems. Adding semantics to the existing Web
Services technologies is a fundamental requirement if we want to deliver
workable integration solutions for the next Web generation.

Commercial successes of Semantic Web Services are not yet apparent
because the underlying technologies such as presented in this chapter are
still in their infancy. Available specifications and technologies will have to
go through the lengthy standardization process and real effort of consequent
prototype developments, before first commercial solutions are available to
the market. There is widespread agreement and recognition that dynamic
interoperability on the Internet is only possible if resources are semantically
described. WSMO and its related specifications and technologies are
principal candidates to become the backbone on the next Web generation,
enabling software entities to dynamically interoperate over the Internet.

7. ACKNOWLEDGEMENT

This work is supported by the SFI (Science Foundation Ireland) under the
DERI-Lion project and by the European Commission under the projects
DIP, Knowledge Web and ASG. The authors thank all members of the
WSMO (cf. http://www.wsmo.org/) and WSMX (cf. http://www.wsmx.org/)
working groups for fruitful discussions on this chapter.

8. QUESTIONS FOR DISCUSSION

Beginners:
1. Discuss different techniques used by automatic agents to retrieve data

from existing computer systems.
2. Why screen scraping cannot scale?
3. Install WSMT and WSMX on your machine. Create ontologies, Web

Services, Goal and Mediators. Register them with WSMX.

86 Semantic Web Services, Processes and Applications

Intermediate:
1. Explain why existing Web Services specifications are not suitable to

enable automated collaboration between distributed software systems.
2. Discuss each of four building blocks of WSMO. Which of them is the

most important?

Advanced:
1. Thinking about some real use case scenario (different than presented in

this chapter), please explain which elements of automation are the more
important from the others. Why?

2. Imagine an interaction scenario similar with the one exemplified in
Section 4.3 on Choreography. In which case you would require the usage
of both the data and process mediators?

3. Discuss which of the mediation techniques described in this chapter (i.e.
data mediation and process mediation) can be used in creating the four
types of WSMO mediators? Hint: An ooMediator relay on data mediation
for solving the heterogeneity problems between two ontologies.

9. SUGGESTED ADDITIONAL READING

Some key papers that provide more information on WSMO, WSML and
WSMX are:
• D.Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A.

Polleres, C. Feier, C. Bussler and D. Fensel: Web Service Modeling
Ontology. Applied Ontology. Vol. 1, No. 1, 2005.

• H. Lausen, J. de Bruijn, A. Polleres, and D. Fensel: WSML - a Language
Framework for Semantic Web Services. W3C Rules Workshop. In
Proceedings of the W3C Workshop on Rule Languages for
Interoperability, Washington DC, USA, April 2005. Position Paper:
http://www.w3.org/2004/12/rules-ws/paper/44.

• M. Moran, M. Zaremba, A. Mocan and C. Bussler: Using WSMX to bind
Requester & Provider at Runtime when Executing Semantic Web
Services, In Proceedings of the 1st WSMO Implementation Workshop
(WIW2004). Frankfurt, Germany, 2004.

For more information consider reading the following books:
• D. Fensel, Ontologies: A Silver Bullet for Knowledge Management and

Electronic Commerce.
• H. Alesso and C. Smith, Developing Semantic Web Services.
• G. Antoniou and F. van Harmelen, A Semantic Web Primer.

'Web Services Modeling Ontology 87

10. ONLINE RESOURCES (INCLUDING OPEN
SOURCE TOOLS)

Tool
WSMX Execution Environment (WSMX)

Web Services Modeling Toolkit (WSMT)

Distributed Ontology Management Environment
(DOME)

WSMO Studio

URL
http://www.wsmx.org

http://www.wsmx.org

http://dome.sourcel'orge.net

http://www.wsmostudio.org

11. REFERENCES

Dean M. and Schreiber G. (eds.): OWL Web Ontology Language Reference. 2004. W3C
Recommendation 10 February 2004

Gruber T. R., "A translation approach to portable ontology specifications, Knowledge,"
Knowledge Acquisition, vol. 5, pp. 199-220,1993

Lara, R., Roman, D., PoUeres, A. and Fensel, D., "A Conceptual Comparison of WSMO and
OWL-S", Proceedings of The European Conference on Web Services, Erfurt, Germany,
Sept 27-30, 2004, pp 254-269.

Martin D. (editor): OWL-S: Semantic Markup for Web Services, version 1.1 available at
http://www.daml.Org/services/owl-s/l. 1/overview/

Milanovic N., Malek M., Current Solutions for Web Service Composition, IEEE Internet
Computing, vol. 08, no. 6, pp. 51-59, November/December, 2004.

Tidwell D., "Web Services: the Web's next revolution", http://www-
128.ibm.com/developerworks/edu/ws-dw-wsbasics-i.html

Web Service Semantics - WSDL-S," A joint UGA-IBM Technical Note, version 1.0, April
18, 2005. http://lsdis.cs.uga.edu/librarv/download/WSDL-S-Vl.pdf

Wiederhold G., Mediators in the architecture of future information systems, IEEE Computer,
25(3):38-49, March 1992

