
Chapter 10

DEVELOPING AN OWL ONTOLOGY FOR E-
TOURISM

Jorge Cardoso
Department of Mathematics and Engineering, University of Madeira, 9000-390, Funchal,
Portugal -jcardoso@uma.pt

1. INTRODUCTION

Currently, the World Wide Web is mainly composed of documents
written in Hyper Text Markup Language (HTML). HTML is a language that
is useful for visual presentation and for direct human processing (reading,
searching, browsing, querying, filling in forms, etc). HTML documents are
often handwritten or machine generated and often active HTML pages. Most
of the information on the Web is designed only for human consumption.
Humans can read HTML documents and understand them, but their inherent
meaning is not shown to allow their interpretation by computers.

To surpass this limitation, the W3C (World Wide Web Consortium,
www.w3.org) has been working on approaches to define the information on
the Web in a way that it can be used by computers not only for display
purposes, but also for automation, interoperability, and integration between
systems and applications. One way to enable machine-to-machine
understanding, exchange, and automated processing is to make Web
resources more readily accessible by adding meta-data annotations that
describe their content in such a way that computers can understand it. This is
precisely the objective of the semantic Web - to make the information on the
Web understandable and useful to computer applications in addition to
humans. "The semantic Web is not a separate Web but an extension of the
current one, in which information is given well-defined meaning, better
enabling computers and people to work in cooperation." (Berners-Lee,
Hendler et al. 2001).

250 Semantic Web Services, Processes and Applications

The W3C has proposed a language designed for publishing and sharing
data, and automating data understanding by computers using ontologies on
the Web. The language, called OWL (Web Ontology Language), will
transform the current Web to the concept of Semantic Web. OWL is being
planned and designed to provide a language that can be used for applications
that need to understand the meaning of information instead of just parsing
data for display purposes.

2. OWL AND THE SEMANTIC WEB STACK

The semantic Web identifies a set of technologies, tools, and standards
which form the basic building blocks of an infrastructure to support the
vision of the Web associated with meaning. The semantic Web architecture
is composed of a series of standards organized into a structure that is an
expression of their interrelationships. This architecture is often represented
using a diagram first proposed by Tim Bemers-Lee (Bemers-Lee, Hendler et
al. 2001). Figure 10-1 illustrates the different parts of the semantic Web
architecture. It starts with the foundation of URIs and Unicode. On top of
that we can find the syntactic interoperability layer in the form of XML,
which in turn underlies RDF and RDF Schema (RDFS). Web ontology
languages are built on top of RDF and RDFS. The last three layers are logic,
proof, and trust, which have not been significandy explored. Some of the
layers rely on the digital signature component to ensure security.

O W L I 6 !/r-:i:'-:!:-i:jy vocai-iijiiMY i; 5 .9 .

Figure 10-1. Semantic Web layered architecture (Bemers-Lee, Hendler et al. 2001)

In the following sections we briefly describe these layers. While the
notions presented have been simplified, they give a reasonable
conceptualization of the various components of the semantic Web.

Developing an OWL Ontology for e-Tourism 251

2.1 URI and Unicode

A Universal Resource Identifier (URI) is a formatted string that serves as
a way for identifying abstract or physical resource. Uniform Resource
Locator (URL) refers to the subset of URI that identify resources via a
representation of their primary access mechanism. A Uniform Resource
Name (URN) refers to the subset of URI that are required to remain globally
unique and persistent even when the resource ceases to exist or becomes
unavailable. For example,

• The URL http://dme.uma.pt/jcardoso/index.htm identifies the
location where a Web page can be retrieved from

• The URN um:isbn:3-540-24328-3 identifies a book using its ISBN
Unicode provides a unique number for every character, independently of

the underlying platform, program, or language. Before the creation of
Unicode, there were various different encoding systems that made the
manipulation of data too complex. Any given computer needed to support
many different encodings. There was always the risk of encoding conflict,
since two encodings could use the same number for two different characters,
or use different numbers for the same character.

2.2 XML

XML is accepted as a standard for data interchange on the Web allowing
the structuring of data but without communicating its meaning. It is a
language for semi-structured data and has been proposed as a solution to
solve integration problems, because it allows a flexible coding and display of
data.

While XML has gained much of the world's attention it is important to
recognize that XML is simply a way to standardize data formats. But, from
the point of view of semantic interoperability, XML has limitations. One
significant aspect is that there is no way to recognize the semantics from a
particular domain because XML aims at document structure and imposes no
common interpretation of the data (Decker, Melnik et al. 2000). Another
problem is that XML has a weak data model incapable of capturing
relationships or constraints. While it is possible to extend XML to
incorporate rich metadata, XML does not allow supporting automated
interoperability of systems without human involvement. Even though XML
is simply a data-format standard, it is part of the set of technologies that
constitute the foundations of the semantic Web.

252

2.3

Semantic Web Services, Processes and Applications

RDF

On the top of XML, the W3C has developed the Resource Description
Framework (RDF) (RDF 2002) language to standardize the definition and
use of metadata. Therefore, XML and RDF each have their merits as a
foundation for the semantic Web, but RDF provides more suitable
mechanisms for developing ontology representation languages like OIL
(Horrocks, Harmelen et al. 2001) or OWL (OWL 2004).

RDF uses XML and it is at the base of the semantic Web, so that all the
other languages corresponding to the upper layers are built on top of it. RDF
is a formal data model for machine understandable metadata used to provide
standard descriptions of Web resources. By providing a standard way of
referring to metadata elements, specific metadata element names, and actual
metadata content, RDF builds standards for applications so that they can
interoperate and intercommunicate more easily, facilitating data and system
integration and interoperability. In a first approach it may seen that RDF is
very similar to XML, but a closer analysis reveals that they are conceptually
different. If we model the information present in a RDF model using XML,
human readers would probably be able to infer the underlying semantic
structure, but applications would not.

<subjec1, predicate, object>

subject: a ti ng identified by its URL object; the value of this type of metadata

predicate: the type of metadata, also identified by a URL

x •" " x

- " " • ^ ^ . ^ _ • ' ' '

Creator +
Jorge Cardoso

Resource Property type Property value

Figure 10-2. An RDF statement

RDF is a simple general purpose metadata language for representing
information in the Web and provides a model for describing and creating
relationships between resources. A resource can be a thing, such as a person,
a song, or a Web page. With RDF it is possible to add pre-defined modeling
primitives for expressing semantics of data to a document without making
any assumptions about the structure of the document. RDF defines a
resource as any object that is uniquely identifiable by a URI (Universal

Developing an OWL Ontology for e-Tourism 253

Resource Identifier). Resources have properties associated to them.
Properties are identified by property-types, and property-types have
corresponding values. Property-types express the relationships of values
associated with resources. The basic structure of RDF is very simple and
basically uses RDF triples of the form <subject, predicate, object> as
illustrated in Figure 10-2.

2.4 RDF Schema

The RDF Schema (RDFS 2004) provides a type system for RDF. The
RDFS is technologically advanced compared to RDF since it provides a way
to build an object model from which the actual data is referenced and which
tells what things really mean.

Briefly, the RDF Schema (RDFS) allows users to define resources with
classes, properties, and values. The concept of RDF class is similar to the
concept of class in object-oriented programming languages such as Java and
C+-t-. A class is a structure of similar things and inheritance is allowed. This
allows resources to be defined as instances of classes and subclasses of
classes allowing classes to be organized in a hierarchical fashion. For
example, the class First_Line_Manager might be defined as a subclass of
Manager which is a subclass of Staff, meaning that any resource which is in
class Staff is also implicitly in class First_Line_Manager as well.

An RDFS property can be viewed as an attribute of a class. RDFS
properties may inherit from other properties, and domain and range
constraints can be applied to focus their use. For example, a domain
constraint is used to limit what class or classes a specific property may have
and a range constraint is used to limit its possible values. With these
extensions, RDFS comes closer to existing ontology languages. As with
RDF, the XML namespace mechanism serves to identify RDFS.

2.5 Ontologies

An ontology is an agreed vocabulary that provides a set of well-founded
constructs to build meaningful higher level knowledge for specifying the
semantics of terminology systems in a well defined and unambiguous
manner. For a particular domain, an ontology represents a richer language
for providing complex constraints on the types of resources and their
properties. Compared to a taxonomy, ontologies enhances the semantics by
providing richer relationships between the terms of a vocabulary. Ontologies
are usually expressed in a logic-based language, so that detailed and
meaningful distinctions can be made among the classes, properties, and
relations.

254 Semantic Web Services, Processes and Applications

Ontologies can be used to increase communication both between humans
and computers. The three major uses of ontologies (Jasper and Uschold
1999) are:
• To assist in communication between humans.
• To achieve interoperability and communication among software systems.
• To improve the design and the quality of software systems.

Currently, the most prominent ontology language is OWL (OWL 2004),
the language we will cover in this chapter. OWL is a vocabulary extension
of RDF and is derived from the DAML+OIL language (DAML 2001), with
the objective of facilitating a better machine interpretability of Web content
than the one supported by XML and RDF. This evolution of semantic Web
languages is illustrated in Figure 10-3.

OWL
(Web Ontology Language)

DAML+OIL

DAML
(Darpa Agent Markup Language)

OIL
(Ontology Inference Layer)

RDF
(Resource Descnption Framework)

Figure 10-3. Evolution of Semantic Web Languages

DAML+OIL resulted from the integration of the DAML and OIL
languages. DAML (DARPA Agent Markup Language) was created as part
of a research program (www.daml.org) started in August 2000 by DARPA, a
US governmental research organization. OIL (Ontology Inference Layer) is
an initiative funded by the European Union programme for Information
Society Technologies. OIL was intended to support e-commerce and enable
knowledge management. OIL and DAML were merged originating
DAML+OIL, which later evolved into OWL.

3. LIMITATIONS OFRDFS

RDF Schema is a semantic extension of RDF and it is used for describing
vocabularies in RDF. It provides mechanisms for describing groups of
related resources and the relationships between resources. These resources

Developing an OWL Ontology for e-Tourism 255

are used to determine characteristics of other resources, such as the domains
and ranges of properties.

However, RDFS is a very primitive language and a more expressive
solution is advantageous to describe resources in more detail. In order to
fully understand the potentialities of OWL, it is important to identify the
limitations that RDFS suffers from. It is the recognition of the limitations of
RDFS that led to the development of OWL.

Let's analyze some of the limitations of RDFS to identify the extensions
that are needed:

1. RDFS cannot express equivalence between concepts. This is important to
be able to express the equivalence of ontological concepts developed by
separate working groups.

2. RDFS does not have the capability of expressing the uniqueness and the
cardinality of properties. In some cases, it may be necessary to express
that a particular property value may have only one value in a particular
class instance. For example, a sedan car has exactly four wheels and a
book is written by at least one author.

3. RDFS can express the values of a particular property but cannot express
that this is a closed set by enumeration. . For example, the gender of a
person should have only two values: male and female.

4. RDFS cannot express disjointedness. For example, the gender of a person
can be male and female. While it is possible in RDFS to express that
John is a male and Julie a female, there is no way of saying that John is
not a female and Julie is not a male.

5. RDFS cannot build new classes by combining other classes using union,
intersection, and complement. For example, the class "staff might be the
union of the classes "CEO", "manager" and "clerk". The class "staff
may also be described as the intersection of the classes "person" and
"organization employee". Another example is the ability to express that a
person is the disjoint union of the classes male and female.

6. RDFS cannot declare range restrictions that apply to some classes only.
The element rdfs:range defines the range of a property for all classes. For
example, for the property "eats", it is not possible to express that cows
eat only plants, while other animals may eat meat, too.

7. RDFS cannot express special characteristics of properties such as
transitive property (e.g. "more complex than"), unique property (e.g. "is
mother o f) , and that a property is the inverse of another property (e.g.
"writes" and "is written by")

256 Semantic Web Services, Processes and Applications

4. THREE TYPES OF OWL

Ontology is a term borrowed from philosophy that refers to the science of
describing the kinds of entities in the world and how they are related. In
OWL, an ontology is a set of definitions of classes and properties, and
constraints on the way those classes and properties can be employed.

In the previous sections, we have established that RDFS was one of the
base models for the semantic Web, but that it suffered from several
limitations. At the top of the RDFS layer it is possible to define more
powerful languages to describe semantics. The most prominent markup
language for publishing and sharing data using ontologies on the Internet is
the Web Ontology Language (OWL). OWL adds a layer of expressive power
to RDFS, providing powerful mechanisms for defining complex conceptual
structures, and formally describes the semantics of classes and properties
using a logical formalism.

OWL has been designed to meet the need for a Web ontology language.
As already mentioned, XML gives a syntax for semi-structured documents
but does not associate an XML tag with semantics. Therefore, XML tags do
not carry out any meaning, at least for computers. XML Schema gives a
schema to XML documents and extends XML with a broad set of data types.
RDF is a simple data model represented using the XML syntax for resources
and the relations between them. The RDF Schema provides a type system
for RDF which allows users to define resources with classes, properties, and
values. It provides a vocabulary for describing properties and classes of RDF
resources. The RDFS is technologically advanced compared to RDF since it
provides a way to build an object model from which the actual data is
referenced and which tells what things really mean. OWL goes a step further
and allows for describing properties and classes, such as property type
restrictions, equality, property characteristics, class intersection, and
restricted cardinality.

OWL is the proposed standard for Web ontologies. It builds upon RDF
and RDF Schema. XML-based RDF syntax is used, instances are defined
using RDF descriptions, and most RDFS modeling primitives are also used.
The W3C's Web Ontology Working Group defined OWL as three different
sublanguages:

• OWL Lite
• OWL DL
• OWL Full
Each sublanguage fulfils different requirements. OWL Lite supports

those users primarily needing a classification hierarchy and simple constraint
features. The advantage of OWL Lite is that it is a language that is easier for
users to understand and it is also easier for developers to implement tools

Developing an OWL Ontology for e-Tourism 257

and applications tlian the more complicated and wide-ranging DL and Full
versions. The main disadvantage is that it has a restricted expressivity. For
example, it does not support the concept of disjunction, excludes enumerated
classes, and cardinality is restricted to only 0 or 1.

OWL DL supports those users who want maximum expressiveness.
OWL DL is more expressive but still ensures completeness and decidability,
i.e. all the calculations will compute and terminate. OWL DL (DL for
description logics) corresponds to a field of research concerning a particular
fragment of decidable first order logic.

OWL Full has maximum expressivity and the syntactic freedom of RDF
but does not guarantee computation. It uses all the OWL language primitives
and the combination of these primitives in arbitrary ways with RDF and
RDF Schema. One major problem is that OWL Full is so expressive that it is
undecidable.

Figure 10-4. OWL sublanguages

According to Figure 10-4, every OWL Lite ontology or conclusion is a
legal OWL DL ontology or conclusion, but not the inverse, and so on for
OWL DL and OWL Full.

5. OWL ONTOLOGY DEVELOPMENT

Tourism is a data rich domain. Data is stored in many hundreds of data
sources and many of these sources need to be used in concert during the
development of tourism information systems. Our e-tourism ontology
provides a way of viewing the world of tourism. It organizes tourism related
information and concepts. The e-tourism ontology provides a way to achieve
integration and interoperability through the use of a shared vocabulary and
meanings for terms with respect to other terms.

258 Semantic Web Services, Processes and Applications

:7i
When

What Wher

Figure 10-5. What, Where, and When

The e-tourism ontology was built to answer three main questions (Figure
10-5) that can be asked when developing tourism applications: What, Where,
and When.

• What. What can a tourist see, visit and what can he do while staying at a
tourism destination?

• Where. Where are the interesting places to see and visit located? Where
can a tourist carry out a specific activity, such as playing golfer tennis.

• When. When can the tourist visit a particular place? This includes not
only the day of the week and the hours of the day, but also the
atmospheric conditions of the weather. Some activities cannot be
undertaken if it is raining for example.

Constructing an ontology is a time-consuming task since it is necessary
to find out information about real tourism activities and infrastructures and
feed them into the knowledge base.

In the next section, we will be construction an OWL ontology for e-
tourism. Since RDFS and OWL are compatible, the ontology developed will
contain RDFS elements within the OWL syntax. For those who dislike
writing ontologies by hand, a few ontology editors are available. We
recommend using one of the most well-know ontology editors. Protege,
which is illustrated in Figure 10-6, to develop the ontology presented in the
next section.

Developing an OWL Ontology for e-Tourism 259

• • • • • i s fc^B^^^^^^Si iMi^BBB^ i lW^^ I^BBHB:
1 PJc 1<B P;i*)rt C</*i lM:::mts ijxy Writiaw iUu

1 f : C2 E '•% '-Q '"•J. f!/ 't? i> P. *̂ if' =*?' >> Ei S <1 r- -''-'^protige

1 c;j. Oi^X'asses * T j l j Pn^trttss ™ temi ' I-:, rrfvkw^ \ %^{)iMsM& \

1 . ,_.,^. , ,,, . 1- tc tf-" ''/^ g .^ j Skim * 'SmmA^ ' mimiwmmi I '. .,.,..,,..,,,. *." -"H-'^* *: •

1-.*:*.-•..vi-'t-.f i - I 1 R -̂u;a.,rt-, ^ 1 i Pio].«ii \';*Mi L*iii .

Iiii i" : !! >:i.-:--!.-, :. j ! 1 ;
| : ' f .e,^.fi.-»v • 1 ,.,!„.«...: " * i * ^
1: c:f.|./«t'; <! ""' ; |
1 w- .^.Bd&taihjii i i j ; ! :
| : c:«fc!iii-«i j l : • 1 !

1 > c :a , |« i^-n. i I I - ' '• '^- ^ •
I : "*' ^••^'"'^ i j Ass^it^j : ^tjM!«i: j

j : ,C:ikMr.Hh:«i.j 1 i j '•••-•-> '- • -.":•.••.*••! !

1 * '^."'"^•,""'* 1 M •••F'™^i-^y C s , J i 1

1 ^ ••"'*'s 1 1 i • i 1

H:•.,:,^:2:;Q-#_•^ «;^J

«
j . C:Uixi: , _ . T J U :•-• l"'h-
1 *• . }-_ i .-j !,/ » li^avtew .". fts^MiesView

Figure 10-6. Creating the e-tourism ontology using Protege editor

5.1 Header

An OWL ontology starts with a set of XML namespace declarations
enclosed in an opening rdf:RDF tag. XML namespaces allow a means to
unambiguously interpret identifiers and make the rest of the ontology
presentation much more readable. A namespace is declared using three
elements: the reserved XML attribute xmlns, a short prefix to identify the
namespace, and the value which must be a URI (Uniform Resource
Identifier) reference. An example of a namespace for our e-tourism ontology
is:

<rdf:RDF

xmlns;weather="http://dme.uma.pt/owl/weather#"

Our initial set of XML namespace declarations which is enclosed in an
opening rdf:RDF tag is the following:

<rdf :RDF
xmlns:owl ="http://www.w3.org/2002/07/owl#"

260 Semantic Web Services, Processes and Applications

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-SYntax-
ns#"
xmlns:rdfs="http://www.w3.org/2 000/01/rdf-schema#"
xmlns:xsd ="http://www.w3.org/2001/XMLSchema#">
xmlns =" http://dme .uitia .pt/jcardoso/owl/e-tourism#"
xml:base="http://dme.uma.pt/jCardoso/owl/e-

tourisin#">
xmlns:weather="http://dme.uma.pt/owl/weather#"

The first four namespace declarations are conventional declarations.
They are used to introduce the OWL (xmlns:owl), RDF (xmlnsirdf), and
RDFS (xmlns:rdfs) vocabularies, and XML Schema (xmlns:xsd) datatypes.

The following three declarations identify the namespace associated with
our ontology. The first makes it the default namespace, stating that
unprefixed qualified names refer to the current ontology. The second
identifies the base URI for our ontology. The third declaration identifies the
namespace of the supporting weather ontology with the prefix weather. The
URI for an identifier is the concatenation of the xmhbase value (or the
document URL if there is no xmhbase) with "#" and the identifier. Thus, the
complete URI for an OWL class named ABC is http;//dme.uma.pt/owl/e-
tourism#ABC.

Once the namespaces are specified, an OWL ontology specifies a set of
assertions grouped under the owhOntology element. The assertions include
the version information which assumes that different versions of the
ontology may possibly be developed. The main assertions that can be made
about the versioning are:

• owliversionlnfo - a statement which generally contains a string giving
information about the version of the ontology.

• owlipriorVersion - a statement that makes reference to another ontology
indicating earlier versions of the current ontology. This statement can be
used by ontology management tools and applications.

• owhbackwardCompatibleWith - contains a reference to another ontology
and indicates that all identifiers from the previous version have the same
intended interpretations in the new version.

• owhincompatibleWith - a statement contains a reference to another
ontology indicating that the ontology is a newest version of the
referenced ontology but is not backward compatible with it.

• owlnmports - provides support for integrating definitions specified in
another OWL ontology published on the Web and identified by a URI.
The meaning of the imported ontology is considered to be part of the
meaning of the importing ontology.

Developing an OWL Ontology for e-Tourism 261

For example:

<rd f :RDF

<owl:Ontology rdf:about="">
<rdf s : comment>E-Tourisin OWL Ontology
</rdfs:comment>
<owl:versionInfo> v.l 2005-10-25
</owl:versionInfo>
<owl:priorVersion>
<owl:Ontology rdf:about=

"http://dme.uma.pt/jcardoso/owl/tourism.owl"/>
</owl:priorVersion>
<owlrbackwardCompatibleWith

rdf:resource="http://dme.uma.pt/owl/tourism"/>
<owl:imports

rdf:resource="http://math.uma.pt/owl/places"/>
<rdfs:label>E-Tourism Ontology</rdfs:label>

</owl:Ontology>

</rdf;RDF>

Between the header and the closing rdf:RDF tag is the definition of the
ontology itself.

5.2 Classes

The main components of the tourism ontology are concepts, relations,
instances, and axioms. A concept represents a set or class of entities within
the tourism domain.

Each class defined by an ontology describes common characteristics of
individuals. OWL classes permit much greater expressiveness than RDF
Schema classes. Consequently, OWL has created their own classes,
owhClass. owhThing is a predefined OWL class. All instances are members
of owhThing. The owhNothing is also a predefined class and represents the
empty class. Each defined class is of type owl:Class. What, Where, and
When are examples of classes used in our e-tourism ontology. These
concepts are represented in OWL in the following way:

<owl:Class rdf:ID="What"/>

262 Semantic Web Services, Processes and Applications

<owl:Class rdf:ID="Where"/>
<owl:Class rdf:ID="When"/>
<owl:Class rdf:ID="Tourist">
<rdf s : coitiment> Describes a tourist </rdfs : comment>

</owl:Class>

The class What refers to activities that tourists can carry out, such as golf,
sightseeing, shopping, or visiting a theatre. The class Where refers to the
places where a tourist can stay (such as a Hotel) and places where he can
carry out an activity. Examples of infrastructures that provide the means for
exerting an activity include restaurants, cinemas, or museums. The class
When refers to the time when a tourist can carry out an activity at a certain
place.

The ontology also includes relations which describe the interactions
between classes or properties. A class hierarchy may be defined by stating
that a class is a subclass (owhsubClassOf) of another class. For example, in
the tourism domain, the class Squash, Paintball, and Golf are subclasses of
the class What. These three classes and their relationship are defined using
the OWL vocabulary:

<owl:Class rdf:ID="Squash">
<rdfs:comment> Squash is an activity a tourist

can carry out
</rdfs:comment>
<rdfs:subClassOf>
<owl:Class rdf:about="#What"/>

</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="Paintball">
<rdfs:subClassOf rdf;resource="#What"/>

</owl;Class>

<owl:Class rdf:ID="Golf">
<rdfs:subClassOf rdf:resource="#What"/>

</owl:Class>

The first statement states that in order to be an instance of the class
Squash, an individual must also be an instance of the class What. However,

Developing an OWL Ontology for e-Tourism 263

there may be instances of the class What that are not instances of Squash.
Thus being a What is a necessary condition for Squash, but is not sufficient.

In our example, we have defined the three subclasses using two different
notations. The semantics of the two notations are the same. Nevertheless, we
prefer the second one, since it is easier to read.

Two classes can be made equivalent using the assertion
owl:equivalentClass. This property, when applied to two classes, A and B, is
to be interpreted as "classes A and B contain exactly the same set of
individuals." This property is especially useful to be able to indicate that a
particular class in an ontology is equivalent to a class defined in a second
ontology. For example, the class What can be defined equivalent to the class
Activity:

<owl:Class rdf:ID="Activity"/>
<owl:Class rdf:ID="What">
<rdfs:coniment> Describes an activity a tourist

can carry out
< /rdf s : coinment>
<owl:eguivalentClass rdf:resource^"#Activity"/>

</owl:Class>

It is also possible to state that two classes are disjoint using the
owlidisjointWith statement. This statement guarantees that an individual that
is a member of one class cannot simultaneously be an instance of another
class. For example, we can express that the activity Golf is disjoint with the
activities Squash and Paintball.

<owl:Class rdf:ID="Golf">
<rdf s : cominent> Golf is an activity a tourist

can carry out
</rdfs:comment>
<rdfs:subClassOf rdf:resource="#What"/>
<owl:disjointWith rdf;resource="#Sguash"/>
<owl:disjointWith rdf:resource="#Paintball"/>

</owl:Class>

This example expresses that instances belonging to one subclass, e.g.
Golf, cannot belong to another subclass, e.g. Squash or Paintball. A
reasoning engine could identify an inconsistency when an individual of the
class Golf is stated to be an instance of the class Squash. The reasoning
engine could also deduce that if G is an instance of Golf, then G is not an
instance of Squash or Paintball.

264 Semantic Web Services, Processes and Applications

5.3 Complex Classes

The OWL language provides a set of statements for building complex
class descriptions from simpler ones by allowing the specification of the
Boolean combination of classes. Boolean connectives (owhcomplementOf,
owhintersectionOf, and owliunionOf) combine class descriptions using
logical connectives. For example, two classes, A and B, can be intersected
yielding a new class C. Additional set operators include the union and the
complement. With OWL Lite only the intersection of classes is allowed.

The owlicomplementOf element is applied to a single class and describes
the set of all individuals which are known not to be instances of the class.
For example, we can state that tourists from the European Union are not
tourists from the non-European Union countries.

<owl:Class rdf:ID="EUTourist">
<rdfs:subClassOf rdf:resource="#Tourist"/>

</owl:Class>

<owl;Class rdf:ID="NonEUTourist">
<rdfs:subClassOf rdf:resource="#Tourist"/>
<owl:complementOf rdf:resource="#EUTourist" />

</owl:Class>

In this example, the class NonEUTourist refers to a very large set of
individuals. The class has as its members all individuals that do not belong
to the EUTourist class. This means that an individual of any class, such as
Locals, Countries, and SiteSeeingPackage, other than the class EUTourist,
belongs to the class NonEUTourist.

As the name suggests, the owhintersectionOf, can be used to intersect
two classes, A and B. The new class includes the individuals that were both
in class A and in class B.

This element is often used with the owhRestriction element. For
example, taking the intersection of the class of tourist with the anonymous
class of people that are senior citizens describes the class of senior tourists.

<owl:Class rdf:ID="seniorTourists">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Tourist"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#category"/>
<owl:hasValue rdf:resource="#Senior"/>

</owl:Restriction>

Developing an OWL Ontology for e-Tourism 265

</owl:intersectionOf>
</owl:Class>

The individuals who are members of the seniorTourists class are
precisely those individuals who are members of both the class #Tourist and
the anonymous class created by the restriction on the property #category.
While not shown in this example, the category of a tourist is divided into
Junior, Young, and Senior. Restrictions will be discussed later.

The element owhunionOf when applied to two classes, A and B, works
in a similar way to the owhintersectionOf element, but creates a new class
which has as its members all individuals that are in class A or in class B. The
new class is equal to the union of the two initial classes. For example, the
individuals of the class OutdoorSport are the union of all the individuals that
belong to the class Golf or to the class Paintball.

<owl:Class rdf:ID="OutdoorSport">
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Golf"/>
<owl:Class rdf:about="#Paintball"/>

</owl:unionOf>
</owl:Class>

In other words, the individuals who are members of the class
OutdoorSport are those individuals who are either members of the class Golf
or the class Paintball.

5.4 Enumeration

An OWL class can be described by enumeration of the individuals that
belong to the class. The members of the class are exactly the set of
enumerated individuals. This is achieve using the element owhoneOf and
enables a class to be described by exhaustively enumerating its individuals.
This element is not allowed with OWL Lite. For example, the class of
HotelRoomView can be described by enumerating it individuals: Sea,
Mountain, and City.

<owl;Class rdf:ID="HotelRoomView"/>
<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:ID="#Sea"/>
<owl:Thing rdf:ID="#Mountain"/>
<owl:Thing rdf:ID="#City"/>

</owl:oneOf>

266 Semantic Web Services, Processes and Applications

</owl:Class>

5.5 Properties

5.5.1 Simple Properties

OWL can define the properties of classes. The OWL property is not very
different from a RDFS property. They both use the rdfsidomain and
rdfs:range elements. Simple properties can be defined using:
owl:ObjectProperty and owhDatatypeProperty.

Object properties link individuals to individuals. They relate an instance
of a class to an instance of another class. The other class can actually be the
same class.

For example, the object property hasActivity related the class Where with
the class What. This means that a place (i.e., an individual of the class
Where) may supply a kind of activity (i.e., an individual of the class What)
to its customer, such as Golf and Paintball. The first related class is called
the domain, while the second is called the range:

<owl:ObjectProperty rdf:ID="hasActivity">
<rdfs:domain rdf:resource="#Where"/>
<rdfs:range rdf:resource="#What"/>

</owl:ObjectProperty>

Datatype properties link individuals to data values and can be used to
restrict an individual member of a class to RDF literals and XML Schema
datatypes. Since OWL does not include any data types, it allows the XML
Schema data types to be used. All OWL reasoners are required to support the
xsd:integer and xsd:string datatypes. In the following example, the year a
tourist was bom is specified using the &xsd;positiveInteger data type from
the XML Schema.

<owl:DatatypeProperty rdf:ID="ageYear">
<rdfs;comment> The year a tourist was born
</rdf s :coinment>
<rdfs:range rdf:resource= "&xsd;positiveInteger"/>
<rdfs:domain rdf:resource="#Tourist"/>

</owl:DatatypeProperty>

Developing an OWL Ontology for e-Tourism 267

5.5.2 Property Characteristics

Property characteristics allow data to be made more expressive in such a
way that reasoning engines can carry out powerful inference. They enhance
reasoning by extending the meaning behind relationships. In OWL, it is
possible to define relations from one property to other properties. Two
examples are the elements owhequivalentProperty and owlnnverseOf.

The equivalence of properties is defined using the
owhequivalentProperty element. Property equivalence is not the same as
property equality. Equivalent properties have the same property extension,
but may have different meanings. The following example expresses that
stating that "a Person plays a sport" is equivalent to stating that "a Person
engages in a sport".

<owl:ObjectProperty rdf:ID="plays">
<rdfs:domain rdf:resource="#Person"/>

<owl:eguivalentProperty rdf:resource="#engages"/>
</owl:ObjectProperty>

The owhinverseOf construct can be used to define inverse relation
between properties. If the property P' is stated to be the inverse of the
property P'', then if X'' is related to Y'' by the P'' property, then Y'' is
related to X" by the P' property. For example, "a tourist plays an activity"
and "an activity isPlayedBy a tourist" are cases of an inverse relation
between properties. In such a scenario, if the tourist John plays the activity
Golf, then a reasoner may infer that Golf isPlayedBy John. This can be
expressed formally in OWL as:

<owl:Obj ectProperty rdf:ID="isPlayedBy">
<owl:inverseOf rdf:resource="#plays"/>

</owl:ObjectProperty>

Functional properties (owhFunctionalProperty) express the fact that a
property may have no more than one value for each instance. Functional
properties have a unique value or no values, i.e. the property's minimum
cardinality is zero and its maximum cardinality is 1. If an individual instance
of Tourist has the PassportID property, then that individual may not have
more than one ID. However, this does not state that every Tourist must have
at least one passport ID. This is illustrated in the following example with the
hasPassportID property, which ensures that a Tourist has only one passport
ID:

268 Semantic Web Services, Processes and Applications

<owl:ObjectProperty rdf:ID="hasPassportID">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Tourist"/>
<rdfs:range rdf:resource="#PassportID"/>

</owl:ObjectProperty>

The same semantic can be expressed as:

<owl:ObjectProperty rdf:ID="hasPassportID">
<rdfs:domain rdf:resource="#Tourist"/>
<rdfs:range rdf:resource="#PassportID"/>

</owl:ObjectProperty>
<owl:FunctionalProperty rdf:about="#hasPassportID"/>

Common examples of functional properties include age, height, date of
birth, sex, marital status, etc.

Properties may be stated to be inverse functional with the element
owl:InverseFunctionalProperty. If a property is inverse functional then the
inverse of the property is functional and the inverse functional property
defines a property for which two different objects cannot have the same
value. The inverse of the property has at most one value. The following
example states that the property isThePassportlDof is to be inverse
functional:

<owl:InverseFunctionalProperty
rdf:ID="isThePassportlDof">

<rdfs:domain rdf:resource="#PassportID"/>
<rdfs:range rdf:resource="#Tourist"/>

</owl:InverseFunctionalProperty>

Therefore, there can only be one passport ID for a tourist. The inverse
property of isThePassportlDof, i.e. the functional property hasPassportID
has at most one value.

A reasoning engine can infer that no two tourists can have the same
passport ID and that if two tourists have the same passport number, then they
refer to the same individual.

FunctionalProperty and InverseFunctionalProperty can be used to relate
resources to resources, or resources to an RDF Schema Literal or an XML
Schema datatype.

Developing an OWL Ontology for e-Tourism 269

Properties may be also stated to be symmetric. The symmetric property
(owl:SymmetricProperty) is interpreted as follows: if the pair (x, y) is an
instance of A, then the pair (y, x) is also an instance of A.

For example, the property b2bLink of the class Hotel of our e-tourism
ontology may be stated to be a symmetric property:

<owl:ObjectProperty rdf:ID="b2bLink">
<rdf:type rdf:resource="&owl;SymmetricProperty"/>
<rdfs:domain rdf:resource="#Hotel"/>
<rdfs:range rdf:resource="#LeisureOrganization"/>

</owl:ObjectProperty>

This expresses the fact that a Hotel can establish B2B (Business-to-
Business) links with several leisure organizations from the tourism industry.
For example, a Hotel can establish a B2B link with a Golf course and a SPA.
When a reasoner is given the fact that a Hotel A has established a B2B link
with a Golf course B, the reasoner can infer that the Golf course B has also a
B2B link with the Hotel A.

When a property is stated to be transitive with the element
owhTransitiveProperty, then if the pair (x, y) is an instance of the transitive
property P, and the pair (y, z) is an instance of P, we can infer the pair (x, z)
is also an instance of P

For example, if busTour is stated to be transitive, and if there is a bus
tour from Funchal to Porto Moniz and there is a bus tour from Porto Moniz
to Sao Vicente, then a reasoner can infer that there is a bus tour from
Funchal to Sao Vicente. Funchal, Porto Moniz, and Sao Vicente are
individuals of the class Where. This is expressed in OWL in the following
way:

<owl:TransitiveProperty rdf:ID="busTour">
<rdfs;domain rdf:resource="#Where"/>
<rdfs:range rdf:resource="#Where"/>

</owl:TransitiveProperty>

Or equivalently;

<owl:ObjectProperty rdf:ID="busTour">
<rdf:type rdf:resource="&owl;TransitiveProperty"/>
<rdfs:domain rdf:resource="#Where"/>
<rdfs:range rdf:resource="#Where"/>

</owl:ObjectProperty>

270 Semantic Web Services, Processes and Applications

Both the owliSymmetricProperty and owl:TransitiveProperty properties
are used to relate resources to resources.

5.6 Property Restrictions

Restrictions differ from characteristics since restrictions apply to
properties with specific values. Property restrictions allow specifying a class
for which its instances satisfy a condition. A restriction is achieved through
the owhRestriction element which contains an owhonProperty element and
one or more restriction declarations. Examples of restrictions include
owl:allValuesFrom (specifies universal quantification), owhhasValue
(specifies a specific value), and owlisomeValuesFrom (specifies existential
quantification).

The owhallValuesFrom element is stated on a property with respect to a
class. A class may have a property P restricted to have all the values from
the class C, i.e. the constraint demands that all values of P should be of type
C (if no such values exist, the constraint is trivially true). Let us see an
example to better understand this concept:

<owl:Class rdf:ID="TouristOutdoorSportPlayer">
<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#plays"/>
<owl:allValuesFrom

rdf:resource="#OutdoorSport"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

The individuals that are members of the class TouristOutdoorSportPlayer
are those such that if there is an object that is related to them via the #plays
property, then it must be #OutdoorSport. No assertion about the existence of
the relationship #plays is made, but if the relationship holds then the related
object must be of the class #OutdoorSport.

Using the owlihasValue element, a property can be required to have a
specific value. For example, individuals of the class FunchalSiteSeeing can
be characterized as those places that have 9000 as a value of their zip code.
This is expressed with the following statements:

<owl:Class rdf:ID="FunchalSiteSeeing">

Developing an OWL Ontology for e-Tourism 271

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="ihasZipCode"/>

<owl:hasValue rdf:datatype="&xsd;string">

9000

</owl:hasValue>

</owl:Restriction>

</rdfs:subClassOf>

</owl;Class>

In terms of logic, the owlisomeValuesFrom element allows expression of
existential quantification. This element describes those individuals that have
a relationship with other individuals of a particular class. Unlike
owhallValuesFrom, owhsomeValuesFrom does not restrict all the values of
the property to be individuals of the same class. When owlisomeValuesFrom
is stated on a property P with respect to a class C, it specifies that at least one
value for that property is of a certain type.

For example, the class TouristGolfPlayer may have a
owl:someValuesFrom restriction on the #plays property that states that some
value for the plays property should be an instance of the class Golf. This
expresses the fact that any tourist can play multiple sports (e.g. Golf,
PaintBall, Tennis, etc.) as long as one or more is an instance of the class
Golf.

<owl:Class rdf:ID="TouristGolfPlayer">

<owl:intersectionOf rdf:parseType="Collection">

<owl;Class rdf:about="#Tourist"/>

<owl;Restriction>

<owl:onProperty rdf;resource="#plays"/>

<owl:soraeValuesFrom rdf:resource="#Golf"/>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

The individuals that are members of the class TouristGolfPlayer are those
that are related via the #plays property to at least one instance of the Golf
class. The owhsomeValuesFrom element makes no restriction about other
relationships that may be present. Therefore, an individual of the class
TouristGolfPlayer may play other sports.

272 Semantic Web Services, Processes and Applications

5.7 Cardinality Restrictions

Cardinality restrictions are also property restrictions. In OWL, three
different cardinality restrictions exist:
• owl:maxCardinality - specifies the maximum number of individuals,
• owliminCardinality - specifies the minimum number of individuals, and
• owl:cardinality - specifies the exact number of individuals.

The element owlimaxCardinality: is stated on a property P with respect to
a particular class C. If a owl:maxCardinality with the value n is stated on a
property with respect to a class, then any instance of that class will be related
to at most n individuals by property P. The variable n should be a non-
negative integer.

For example, the property #visitLocal of the class SiteSeeingPackage
may have a maximum cardinality of 10 since it is considered that a site
seeing package should not include more than 10 places to visit.

<owl :Class rdf : ID="SiteSeeingPack;age">

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#visitLocal"/>
<owl :inaxCardinality rdf : datatype=

"&xsd;norLNegativeInteger"> 10
</owl:maxCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

The element owliminCardinality is very similar to the element
owlimaxCardinality. As the name suggests, the only difference lies in the
fact that it specified a lower boundary for the cardinality of a property P of a
class C. The following example shows that the property visitLocal of the
class SiteSeeingPackage has a minimum cardinality of 2. It expressed that a
site seeing package should include the visit to at least 2 site seeing locals.

<owl:Class rdf:ID="SiteSeeingPackage">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#visitLocal"/>

<owltminCardinality

Developing an OWL Ontology for e-Tourism 273

rdf ;da ta tYpe="&xsd;nor iNegat iveIn teger"> 2
</owl : in inCardina l i ty>
< / o w l : R e s t r i c t i o n >

< / rd fs : subClassOf>
</owl :Class>

The owlicardinality, the last cardinaHty restriction statement, is a useful
element when it is necessary to expresse that a property has a minimum
cardinality which is equal to the maximum cardinality. This is a convenience
element.

It should be noticed that when using OWL Lite the cardinality elements,
owhmaxCardinality, owliminCardinality, and owlxardinality, can only
specify the values 0 and \. On the other hand, OWL Full allows cardinality
statements for arbitrary non-negative integers. Furthermore, when using
OWL DL, no cardinality restrictions may be placed on transitive properties

6. PUTTING ALL TOGETHER: THE E-TOURISM
ONTOLOGY

The following example describes the e-tourism ontology. This ontology
can be use to integrate tourist information systems or simply serve as a
schema to carry out inferencing.

<!DOCTYPE rdf:RDF [
<!ENTITY xsd "http://www.w3.Org/2001/XMLSchema#">
<!ENTITY owl "http://www.w3.Org/2002/07/owl#">

]>

<rdf:RDF
xmlns:owl="http://www.w3.org/2002/07/owl# "
xinlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-

ns#"
xmlns:rdfs="http://www.w3.org/2 000/Ol/rdf-schemat"
xmlns:xsd="http://www.w3.org/2 001/XMLSchema#"
xmlns ="http://dme.uma.pt/jcardoso/owl/e-tourism#"
xml:base="http://dme.uma.pt/jcardoso/owl/e~

tourism#">

<owl:Ontology rdf:about="">
<rdfs:comment>E-Tourism OWL Ontology
</rdfs:comment>

274 Semantic Web Services, Processes and Applications

<owl:versionInfo> v.l 2005-10-25
</owl:versioninfo>
<owl;priorVersion>
<owl:Ontology rdf:about=
"http://dme.uma,pt/jcardoso/owl/tourism.owl"/>
</owl:priorVersion>
<owl:backwardCompatibleWith rdf:resource=

"http://dme.uma.pt/jcardoso/owl/tourism.owl"/>
<rdfs:label>E-Tourism Ontology</rdfs:label>

</owl:Ontology>

<owl:Class rdf:ID="When">
<rdfs:comment> Describes when a tourist can carry

out a particular activity
</rdfs:comment>

</owl •.Class>

<owl:Class rdf:ID="Place"/>
<owl;Class rdf:ID="Where">
<rdfs:comment> Describes where a tourist can carry

out a particular activity or stay
overnight

</rdfs:comment>
<owl: ecjuivalentClass rdf :resource="#Place" />

</owl:Class>

<owl:Class rdf:ID="Activity"/>
<owl:Class rdf:ID="What">
<rdfs:comment> Describes an activity a tourist

can carry out
</rdfs:comment>
<owl:eguivalentClass rdf:resource="#Activity"/>

</owl;Class>

<owl:Class rdf:ID="Tourist">
<rdfs:comment> Describes a tourist. Every tourist

is a person
</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Person"/>

</owl:Class>

<owl:Class rdf:ID="EUTourist">

Developing an OWL Ontology for e-Tourism 275

<rdfs:subClassOf rdf:resource="#Tourist"/>
</owl:Class>

<owl:Class rdf:ID="NonEUTourist">

<rdfs:subClassOf rdf;resource="#Tourist"/>

<owl:complementOf rdf:resource="#EUTourist" />

</owl:Class>

<owl:Class rdf:ID="PassportID">

<rdfs:comment> Tourists have passports with an ID

</rdf s : coniment>

</owl;Class>

<owl:Class rdf:ID="Hotel">

<rdfs :coinment> Hotel is a place where a tourist

can stay overnight

</rdf s :coinment>

<rdfs:subClassOf rdf:resource="#Where"/>

</owl:Class>

<owl:Class rdf:ID="HotelRoomView">

<rdf s : coniment> Enumerates the views a hotel room

can have

</rdfs:comment>

<owl:oneOf rdf:parseType="CQllection">

<owl:Thing rdf:about="#Sea"/>

<owl:Thing rdf:about="#MQuntain"/>

<owl:Thing rdf:about="#City"/>

</owl:oneOf>

</owl:Class>

<owl:Class rdf:ID="LeisureOrganization">

<rdfs:comment> A leisure organization provides

activities that tourists can carry out

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Where"/>

</owl:Class>

<owl:Class rdf:ID="Squash">

<rdfs:comment> Squash is an activity a tourist

can carry out

</rdfs:comment>

276 Semantic Web Services, Processes and Applications

<rdfs:subClassOf rdf:resource="#What"/>
</owl :Class>

<owl:Class rdf:ID="Paintball">
<rdf s: coininent> Paintbal l i s also an a c t i v i t y

a t o u r i s t can carry out
</rdf s : coiranent>
<rdfs:subClassOf rdf:resQurce="#What"/>

</owl:Class>

<owl;Class rdf:ID="Golf">
<rdf s: coinment> Golf is an activity a tourist

can carry out
</rdf s : coininent>
<rdfs:subClassOf rdf:resource="#What"/>
<owl:disjointWith rdf:resource="#Sguash"/>
<owl:disjointWith rdf;resource="ttPaintball"/>

</owl:Class>

<owl:DatatypeProperty rdf:ID="ageYear">
<rdf s ;coinment> The year a tourist was born
</rdf s : cominent>
<rdfs:range rdf:resource= "&xsd;positiveInteger"/>
<rdfs:domain rdf:resource="#Tourist"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="category">
<rdfs:coinment> The category of a tourist (e.g.

Junior, Young, Senior)
</rdf s :coinment>
<rdfs:domain rdf:resource="#Tourist"/>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="hasActivity">
<rdfs:comment> Describes an activity that can be

carried out a certain place
</rdfs:comment>
<rdfs:domain rdf:resource="#Where"/>
<rdfs:range rdf:resource="#What"/>

</owl;ObjectProperty>

<owl:DatatypeProperty rdf:ID="hasZipCode">

Developing an OWL Ontology for e-Tourism 277

<rdfs:comment> Each place has a zip code
</rdfs:comment>
<rdfs:domain rdf:resource="#Where"/>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="plays">
<rdf s: coinment> The activity that a person

carries out
</rdf s : coiranent>
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="tSguash"/>
<owl:Class rdf:about="#Golf"/>
<owl:Class rdf:about="#Paintball"/>
</owl:unionOf>

</owl:Class>
</rdfs:range>

<owl:ecjuivalentProperty rdf:resource="#engages"/>
</owl:ObjectProperty>

<owl:Obj ectProperty rdf:ID="isPlayedBy">
<owl:inverseOf rdf:resource="#plays"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasPassportID">
<rdfs:comment> Carrying out an activity or engaging

in an activity are two equivalent
properties

</rdfs:comment>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Tourist"/>
<rdfs;range rdf;resource="#PassportID"/>

</owl;ObjectProperty>

<owl:InverseFunctionalProperty
rdf:ID="isthePassportlDof">

<rdfs:domain rdf:resource="#PassportID"/>
<rdfs:range rdf:resource="#Tourist"/>

</owl:InverseFunctionalProperty>

278 Semantic Web Services, Processes and Applications

<owl: ObjectProperty rdf : ID="b2bIjink">
<rdfs:comment> Hotels establish B2B links with

leisure organizations
</rdf s : coinment>
<rdf:type rdf:resource="&owl;SyiranetricProperty"/>
<rdfs:domain rdf:resource="#Hotel"/>
<rdfs:range rdf:resource="#LeisureOrganization"/>

</owl:ObjectProperty>

<owl:TransitiveProperty rdf:ID="busTour">
<rdfs:coinment> Bus tours are offered from place A

to place B
</rdfs:comment>
<rdfs:domain rdf:resource="#Where"/>
<rdfs:range rdf:resource="iWhere"/>

</owl:TransitiveProperty>

<owl:Class rdf:ID="GoodWeather"/>
<owl:Class rdf;ID="BadWeather"/>
<owl:Class rdf:ID="AverageWeather"/>

<owl:ObjectProperty rdf:ID="hasWeather">
<rdfs:CQmment> Describes the weather at a

particular place
</rdf s : cornment>
<rdfs:domain rdf:resource="#Where"/>

</owl:ObjectProperty>

<owl;Class rdf:ID="PlacesWithGoodWeather">
<rdfs:coinment> Describes the tourist places with a

good weather
</rdfs:comment>
<rdfs:subClassOf>
<owl:Restriction>
<owltonProperty rdf:resource="#hasWeather"/>
<owl:allValuesFrom rdf:resource="#GoodWeather"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="FunchalSiteSeeing">

Developing an OWL Ontology for e-Tourism 279

<rdf s: coitiment> Describes the places that tourist can

see in Funchal. These places have the zip code 9000,

i.e. the city of Funchal.

</rdfs:comment>

<rdfs:subClassOf>

<owl:Restriction>

<owlronProperty rdf:resource="#hasZipCode"/>

<owl:hasValue rdf:datatype="&xsd;string"> 9000

</owl;hasValue>

</owl:RestrictiQn>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="SiteSeeingPackage">

<rdfs:comment> A site seeing package should include

at least 2 places to visit, but no more than 10.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Where"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasZipCode"/>

<owl:minCardinality

rdf:datatype="&xsd;nohNegativeInteger"> 2

</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasZipCode"/>

<owl:maxCardinality

rdf:datatype="&xsd;norLNegativeInteger"> 10

</owl:maxCardinality>

</owl;Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl;Class rdf:ID="TouristGolfPlayer">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Tourist"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#engages"/>

<owl:someValuesFrom rdf:resource="#Golf"/>

280 Semantic Web Services, Processes and Applications

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

<owl:Class rdf:ID="TouristOutdoorSportPlayer">
<rdfs:coiranent> Describes the tourist places with a

good weather
</rdf s : coinment>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#engages"/>
<owl:allValuesFrom

rdf:resource="#OutdoorSport"/>
</owl:Restriction>

</rdfs;subClassOf>
</owl;Class>

<owl:Class rdf:ID="OutdQorSport">
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Golf"/>
<owl;Class rdf:about="#Paintball"/>

</owl:unionOf>
</owl:Class>

</rdf:RDF>

7. QUESTIONS FOR DISCUSSION

Beginner:
1. RDF, RDFS, and OWL are languages that correspond to layers of the

semantic Web stack and are built on top of XML. Why is XML not itself
a semantic language?

2. What are the limitations of RDFS that make it not sufficiently expressive
to describe the semantics of Web resources?

Intermediate:
I. Two instance with a different rdf:ID can actually represent the same

individual. With OWL, how can you make it explicit that the two
instances are different?

Developing an OWL Ontology for e-Tourism 281

2. Use the XMLSchema to define a complex data type to model a student
record (e.g. name, degree, ID, etc.) and reference this data type within an
OWL ontology.

Advanced:
1. OWL is based on the open world assumption. Identify the characteristics

that do not make OWL follow the closed world assumption.
2. Describe a scenario that illustrates how reasoning engines can use the

owl:unionOf and owhintersectionOf elements to carry out inference.

Practical Exercises:
1. Select a Web site, such as www.amazon.com, and develop an OWL

ontology to model the information present on its main page.
2. Validate the OWL ontology developed with an OWL validator (e.g.

http://owl.bbn.com/validator/)
3. Use a reasoning engine, such as JESS (herzberg.ca.sandia.gov/jess/) to

infer knowledge from the developed ontology.

SUGGESTED ADDITIONAL READING

Antoniou, G. and van Harmelen, F. A semantic Web primer. Cambridge,
MA: MIT Press, 2004. pp. 238: This book is a good introduction to
Semantic Web languages.
Shelley Powers, Practical RDF, O'Reilly, 2003, pp. 331: This book
covers RDF, RDFS, and OWL. It provides a good source of information
for those interested in programming with RDF with Perl, PHP, Java, and
Python.
Seffen Staab, Ontology Handbook, Springer, 2003, pp. 499: This book
covers provides a good introduction to Description Logics and OWL.
OWL Overview - http://www.w3.org/TR/owl-features/
OWL Reference - http://www.w3.org/TR/owl-ref/
OWL Guide - http://www.w3.org/TR/owl-guide/

9. REFERENCES

Berners-Lee, T., J. Hendler, et al. (2001). The Semantic Web. Scientific American. IMay
2001.

Berners-Lee, T., J. Hendler, et al. (2001). The Semantic Web: A new form of Web content
that is meaningful to computers will unleash a revolution of new possibilities. Scientific
American.

282 Semantic Web Services, Processes and Applications

DAML (2001). DAML+OIL, http://www.daml.org/language/.
Decker, S., S. Melnik, et al. (2000). "The Semantic Web: The Roles of XML and RDF."

Internet Computing 4(5): 63-74.
Horrocks, I., F. v. Harmelen, et al. (2001). DAML+OIL, DAML.
Jasper, R. and M. Uschold (1999). A framework for understanding and classifying ontology

applications. IJCAI99 Workshop on Ontologies and Problem-Solving Methods.Vol: pp.
OWL (2004). OWL Web Ontology Language Reference, W3C Recommendation, World

Wide Web Consortium, http://www.w3.org/TR/owl-ref/. 2004.
RDF (2002). Resource Description Framework (RDF), http://www.w3.org/RDF/.
RDFS (2004). RDF Vocabulary Description Language 1.0: RDF Schema, W3C,

http://www.w3 .org/TR/rdf-schema/.

