

Semantic Web
Services, Processes
and Applications

SEMANTIC WEB AND BEYOND
Computing for Human Experience

Series Editors:

Ramesh Jain Amit Sheth
University of California, Irvine University of Georgia

http://ngs.ics.uci.edu/ http://lsdis.cs.uga.edu/~amit

As computing becomes ubiquitous and pervasive, computing is increasingly becoming
an extension of human, modifying or enhancing human experience. Today's car reacts to
human perception of danger with a series of computers participating in how to handle the
vehicle for human command and environmental conditions. Proliferating sensors help
with observations, decision making as well as sensory modifications. The emergent
semantic web will lead to machine understanding of data and help exploit
heterogeneous, multi-source digital media. Emerging applications in situation
monitoring and entertainment applications are resulting in development of experiential
environments.

SEMANTIC WEB AND BEYOND
Computing for Human Experience

addresses the following goals:
> brings together forward looking research and technology that will shape our

world more intimately than ever before as computing becomes an extension of
human experience;

> covers all aspects of computing that is very closely tied to human perception,
understanding and experience;

> brings together computing that deal with semantics, perception and experience;
> serves as the platform for exchange of both practical technologies and far

reaching research.
Additional information about this series can be obtained from

http ://www. springer.com

AdditionalTitles in the Series:
Canadian Semantic Web edited by Mamadou T. Kone., Daniel Lemire; ISBN 0-387-29815-0
Semantic Management of Middleware by Daniel Oberie; ISBN-10: 0-387-27630-0

Semantic Web
Services, Processes
and Applications

edited by

Jorge Cardoso
University of Madeira, Portugal

Amit P. Sheth
University of Georgia, USA

^ Springer

Jorge Cardoso Amit P. Sheth
Universidade da Madeira Large Scale Distributed
Department de Matematica e Information Systems (LSDIS) Lab
Engenharias Department of Computer Science
9000-390 PUNCH AL University of Georgia
PORTUGAL Athens, GA 30602

USA

Library of Congress Control Number: 2006926729

Edited by Jorge Cardoso and Amit P. Sheth

ISBN-10: 0-387- 30239-5
ISBN-13: 978-0-387-30239-3
e-lSBN-10:0-387-34685-6
e-ISBN-13: 978-0-387-34685-4

Printed on acid-free paper.

© 2006 Springer Science+Business Media, LLC.
All rights reserved. This work may not be translated or copied in whole or
in part without the written permission of the publisher (Springer
Science+Business Media, LLC, 233 Spring Street, New York, NY 10013,
USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and
similar terms, even if the are not identified as such, is not to be taken as
an expression of opinion as to whether or not they are subject to
proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1

springer.com

Dedication

To all researchers that devote weekends and evenings to take science always
a step further.

Jorge Cardoso

To my parents. Professor Pravin Sheth and Surbhi Sheth. Their support and
sacrifies for my education became the foundation of my career.

Amit Sheth

Contents

Dedication v

Contributing Autiiors xvii

Foreword xxi

Preface xxiii
SUGGESTED COURSE STRUCTURE xxviii

PART I: Semantic Web Services 1

The Semantic Web and its Applications 3
1. INTRODUCTION 3
2. SEMIOTICS - SYNTAX, SEMANTICS, AND PRAGMATICS 5

3. SEMANTIC HETEROGENEITY ON THE WEB 7
4. METADATA 9

4.1 Syntactic Metadata 10
4.2 Structural Metadata 11
4.3 Semantic Metadata 11
4.4 Creating and Extracting Semantic Metadata 13

5. EMPIRICAL CONSIDERATIONS ON THE USE OF SEMANTICS
AND ONTOLOGIES 14

6. APPLICATIONS OF SEMANTICS AND ONTOLOGIES 15
6.1 Semantic Web Services 15
6.2 Semantic Web Service Discovery 17
6.3 Semantic Integration of Tourism Information Sources 19

Vlll

6.4 Semantic Digital Libraries 21
6.5 Semantic Grid 22
6.6 Semantic Enterprise Information Integration 23
6.7 Semantic Web Search 24
6.8 Semantic Web and AI 25
6.9 Semantic Web and Databases 25
6.10 Bio informatics Ontologies 26

7. CONCLUSIONS 27

8. QUESTIONS FOR DISCUSSION 29

9. SUGGESTED ADDITIONAL READING 30

10. REFERENCES 30

Semantic Annotations in Web Services 35
1. INTRODUCTION 35

1.1 Generic Semantic Annotation Architecture 36
1.2 Semantic Annotation Applications 40

2. SEMANTIC ANNOTATION IN WEB SERVICES 42

2.1 Annotating a Web Service 43
2.2 Four Types of Semantics in Web Services 44

3. CREATING SEMANTIC ANNOTATIONS 45

3.1 Matching 46
3.2 Mapping 47

4. SEMANTIC ANNOTATION OF WEB SERVICES - EFFORTS 51

4.1 OWL-S and WSMO 52
4.2 WSDL-S 53

5. CONCLUSIONS 57

6. QUESTIONS FOR DISCUSSION 58

7. SUGGESTED ADDITIONAL READING 58

8. REFERENCES 59

Web Services Modeling Ontology 63
1. INTRODUCTION 63

2. CASE STUDY - APPLICATION FOR SEMANTIC WEB SERVICES 64

3. THE WEB SERVICES MODELING ONTOLOGY 66

3.1 Ontologies 67
3.2 Goals 68
3.3 Web Services 69
3.4 Mediators 71

4. SELECTED TECHNOLOGIES FOR WSMO 74
4.1 Discovery 75
4.2 Data Mediation 76
4.3 Choreography 78

Semantic Web Services, Processes and Applications ix

4.4 Front-end Tools 80
5. RELATED WORK - RELATIONSHIPS WITH

COMPETITIVE APPROCHES 82
5.1 OWL-S 82
5.2 WSDL-S 83
5.3 Matrix of Features and Approaches 84

6. CONCLUSIONS AND DISCUSSION 84
7. ACKNOWLEDGEMENT 85
8. QUESTIONS FOR DISCUSSION 85
9. SUGGESTED ADDITIONAL READING 86
10. ONLINE RESOURCES (INCLUDING OPEN SOURCE TOOLS) 87

11. REFERENCES 87

Keywords, Port Types and Semantics: A Journey in the Land of Web
Service Discovery 89
1. INTRODUCTION 89
2. UDDI 91

2.1 UDDI Organization: White, Yellow and Green Pages 91
2.2 UDDI Data Models 92
2.3 How Does WSDL Map to UDDI? 93
2.4 Publishing in UDDI 94

3. UDDI BEST PRACTICES 95
4. NEED FOR SEMANTICS IN WS-DISCOVERY 96

4.1 Data Semantics 97
4.2 Functional Semantics 98
4.3 Non-Functional Semantics 98
4.4 Execution Semantics 99

5. PUBLISHING AND DISCOVERING SEMANTIC WEB SERVICES 99
5.1 METEOR-S Framework 100

6. REGISTRY FEDERATION 101
7. CONCLUSIONS 103
8. QUESTIONS FOR DISCUSSION 103
9. SUGGESTED ADDITIONAL READING 104
10. REFERENCES 104

Temporal Reasoning of Reactive Web Services 107
1. WEB SERVICES AS REACTIVE SYSTEMS 107
2. A MOTIVATING EXAMPLE: AN ONLINE BOOKSTORE 110
3. INTERVAL TEMPORAL LOGIC 112

3.1 Model 112
3.2 Syntax 113
3.3 Informal Semantics 115

3.4 Derived Constructs 116
3.5 Types in ITL 117
3.6 Formal Semantics 117

4. COMPOSITIONAL REASONING FOR WEB SERVICES 119
4.1 Compositionality 120
4.2 Applying the Assumption-Commitment Paradigm to

Web Services 120
4.3 An ITL Formalisation of Assumption-Commitment 121

5. FORMALISATION OF THE ONLINE BOOKSTORE 122
6. SEMANTIC ANNOTATION OF TEMPORAL SPECIFICATION:

TESCO-S 124

6.1 The ITL-Tempura Ontology 125
6.2 OntoITL; A Pre-processor for Temporal Ontologies 127
6.3 AnaTempura: Validation of Tempura Specification 127
6.4 Validating the Customer: e-Bookshop Composition 129
6.5 Specifying Properties in the ITL-Tempura Ontology 130

7. CONCLUSIONS 131
8. QUESTIONS FOR DISCUSSIONS 133
9. SUGGESTED ADDITIONAL READING 133
10. REFERENCES 134

PART II: Semantic Web Processes 137

Basic Concepts in Choreography 139
1. INTRODUCTION 139
2. LITERATURE REVIEW 141

2.1 Business Process Languages 142
2.2 Choreography Languages 143
2.3 Semantic-driven Choreography Initiatives 146

3. DRIVING PRINCIPLES 147
4. GOALS : SEPARATION OF MODELS AND MEDIATION 148

4.1 Separation of Models 149
4.2 Mediation 150

5. SOPHIE: SEMANTIC WEB SERVICES CHOREOGRAPHI
ENGINE 150

5.1 Overall Architecture 151
5.2 Models 152
5.3 Interface Functions 153

6. CASE STUDY 155
7. CONCLUSIONS 156

8. QUESTIONS FOR DISCUSSION 157
9. SUGGESTED READINGS 157

Semantic Web Services, Processes and Applications xi

10. REFERENCES 158

Designing Semantic Web Processes: The WSDL-S Approach 161
1. INTRODUCTION 161

2. BACKGROUND 163

3. DESIGN SEMANTIC WEB PROCESS USING W S D L - S 163

3.1 Service Annotation and Publish using Radiant 163
3.2 Semantic Discovery using Lumina 166
3.3 Process Design using Saros 169

4. SAMPLE USE CASE 174

5. RELATED WORK 181

6. CONCLUSION 182

7. QUESTIONS FOR DISCUSSION 183

8. SUGGESTED ADDITIONAL READING 184

9. REFERENCES 184

10. APPENDIX 188

10.1 Appendix A: Semantic Template for the "Stock
Quote" Service 188

10.2 Appendix B: The BPEL File for the User Case 189
10.3 Appendix C: The Process WSDL File for the User

Case 192

Web Services Composition 195
1. INTRODUCTION 195

2. WEB SERVICES SELECTION 197

2.1 QoS (Non-functional) Model 198
3. WEB SERVICES COMPOSITION 201

3.1 Problem Description 201
3.2 Structure of Web Services Composition 202
3.3 Models to Compose Web Services 203

4. PROBLEM MODEL 210

4.1 Objectives 211
4.2 Constraints 212

5. MULTIOBJECTIVE OPTIMIZATION 212

5.1 Non-Pareto Approach 213
5.2 Pareto Approach 214

6. RELATED WORK 216

7. CASE STUDY 218

7.1 Experimentation 218
8. CONCLUSIONS 222

9. QUESTIONS FOR DISCUSSION 222

10. SUGGESTED ADDITIONAL READING 223

XII

11. ACKNOWLEDGMENT 223
12. REFERENCES 224

Matching and Mapping for Semantic Web Processes 227
1. INTRODUCTION 227
2. SEMANTIC MATCIDNG AND MAPPING 232

2.1 Generalized Schema 233
3. A FRAMEWORK FOR SCHEMA MATCHING 233
4. FINDING SEMANTIC SIMILARITIES BETWEEN ATTRIBUTES 235

4.1 Lexical Comparison of Terms 236
4.2 Semantic Similarity of Terms 236
4.3 Ontological Similarity of Terms 238
4.4 Type and Structural Similarity of Attributes 240
4.5 Combining Similarity of Attributes 241

5. SUMMARY 242

6. RELATED WORK 242
7. QUESTIONS FOR DISCUSSION 243

8. SUGGESTED ADDITIONAL READING 244
9. REFERENCES 244

PART III: Real-world Applications 247

Developing an OWL Ontology for E-Tourism 249
1. INTRODUCTION 249
2. OWL AND THE SEMANTIC WEB STACK 250

2.1 URI and Unicode 251
2.2 XML 251
2.3 RDF 252
2.4 RDF Schema 253
2.5 Ontologies 253

3. LIMITATIONS OF RDFS 254
4. THREE TYPES OF OWL 256
5. OWL ONTOLOGY DEVELOPMENT 257

5.1 Header 259
5.2 Classes 261
5.3 Complex Classes 264
5.4 Enumeration 265
5.5 Properties 266
5.6 Property Restrictions 270
5.7 Cardinality Restrictions 272

6. PUTTING ALL TOGETHER: THE E-TOURISM ONTOLOGY 273
7. QUESTIONS FOR DISCUSSION 280

Semantic Web Services, Processes and Applications xiii

8. SUGGESTED ADDITIONAL READING 281
9. REFERENCES 281

Semantic Technology for E-Government 283
1. INTRODUCTION 283
2. THE FEDERAL ENTERPRISE ARCHITECTURE REFERENCE

MODEL (FEA-RM) 284

3. THE FEDERAL ENTERPRISE ARCHITECTURE REFERENCE
MODEL ONTOLOGY (FEA-RMO) 286

4. THE E-GOV ONTOLOGY 289

5. EGOV FEA-BASED CAPABILITIES AND PARTNERING
ADVISOR 292

5.1 Motivating User Scenario 293
5.2 Design of the FEA Capabilities Advisor 294

6. CONCLUSIONS 298
7. QUESTIONS FOR DISCUSSION 299
8. SUGGESTED ADDITIONAL READING 301
9. REFERENCES 301

Bioinformatics Applications of Web Services, Web Processes and
Role of Semantics 305
1. INTRODUCTION 305
2. SEMANTIC WEB SERVICES IN LIFE SCIENCE 306
3. BIOINFORMATICS WEB SERVICES AND PROCESSES 308

3.1 Computational Genomics 308
3.2 Computational Proteomics 313
3.3 Structural Bioinformatics 315

4. CASE STUDY 317
5. CONCLUSION 320
6. ACKNOWLEDGMENT 320
7. QUESTIONS FOR DISCUSSION 321
8. SUGGESTED ADDITIONAL READING 321
9. REFERENCES 321

Building Semantic Business Services 323
1. INTRODUCTION 323
2. TRADING USE CASES IN FUTURE MARKET 325
3. IMPLEMENTATION CHALLENGES 326

3.1 Understanding the Process 326
3.2 Definition of Business Model 327
3.3 Making Business Web Enabled 327
3.4 Access to Information for the Functionaries 328

XIV

3.5 Access to Instruments for End-Users 328
3.6 Negotiation Support 328

4. DEVELOPMENT 328
4.1 Model Act 329
4.2 Development of Business Objects 329
4.3 Exposing Discrete Functionality 329
4.4 Trading in Market 329
4.5 Post Compliance Development 330

5. DEVELOPING AGRICULTURAL MARKETING ONTOLOGY 331
5.1 Approach 331
5.2 Step-by-Step Development 332

6. BUILDING WEB SERVICES 334
6.1 Step-by-Step Development of Web Services 334

7. SEMANTIC WEB SERVICES 338
7.1 Relevant Standards 338
7.2 Approach 339
7.3 Step-by-Step Development 339

8. BUILDING BUSINESS PROCESS MODEL 341
8.1 Relevant Standards 341
8.2 Approach 342
8.3 Step-by-Step Development 342

9. CONCLUSION 347
10. QUESTIONS FOR DISCUSSION 347
11. SUGGESTED ADDITIONAL READING 348
12. REFERENCES 349

Programming the Semantic Web 351
1. INTRODUCTION 351
2. THE SEMANTIC WEB STACK 352
3. SEMANTIC WEB DEVELOPMENT ENVIRONMENTS 355
4. OUR RUNNING ONTOLOGY 357
5. USING JENA 359

5.1 Installing Jena 359
5.2 Creating an Ontology Model 360
5.3 Reading an Ontology Model 361
5.4 Manipulating Classes 362
5.5 Manipulating Properties 363
5.6 Manipulating Instances 365
5.7 Queries with Jena 367
5.8 Inference and Reasoning 370
5.9 Persistence 376

6. QUESTIONS FOR DISCUSSION 377

Semantic Web Services, Processes and Applications xv

7. SUGGESTED ADDITIONAL READINGS 378
8. REFERENCES 378

Index 381

Contributing Authors

Antonio Cau
Software Technology Research Laboratory, De Montfort University,
Leicester, LE4 OGL, UK.

Adrian Mocan
Digital Enterprise Research Institute (DERI), National University of
Ireland, Galway, Ireland.

Amit Sheth
Large Scale Distributed Information Systems (LSDIS) Lab, Department
of Computer Science, University of Georgia, GA, USA.

Anca-Andreea Ivan
IBM Watson Research Center, 19 Skyline Drive, Hawthorne, NY, USA.

Daniela Barreiro Glare
ESEO, 4 rue Merlet de la Boulaye, Angers, France. LERIA, University
of Angers, France.

Dean Allemang
TopQuadrant, Inc., USA

Jin-Kao Hao
LERIA, University of Angers, France.

XVlll

John A. Miller
Large Scale Distributed Information Systems (LSDIS) Lab, Department
of Computer Science, University of Georgia, GA, USA.

Jorge Cardoso
Department of Mathematics and Engineering, University of Madeira,
9000-390, Funchal, Portugal.

Hussein Zedan
Software Technology Research Laboratory, De Montfort University,
Leicester, LE4 OGL, UK.

Karthik Gomadam
Large Scale Distributed Information Systems (LSDIS) Lab, Department
of Computer Science, University of Georgia, GA, USA.

KeLi
Large Scale Distributed Information Systems (LSDIS) Lab, Department
of Computer Science, University of Georgia, GA, USA.

Kunal Verma
Large Scale Distributed Information Systems (LSDIS) Lab, Department
of Computer Science, University of Georgia, GA, USA.

Matt Moran
Digital Enterprise Research Institute (DERI), National University of
Ireland, Galway, Ireland.

Meenakshi Nagarajan
Large Scale Distributed Information Systems (LSDIS) Lab, Department
of Computer Science, University of Georgia, GA, USA.

Michal Zaremba
Digital Enterprise Research Institute (DERI), National University of
Ireland, Galway, Ireland.

Mick Kerrigan
Digital Enterprise Research Institute (DERI), National University of
Ireland, Galway, Ireland.

Semantic Web Services, Processes and Applications xix

Monika Solanki
Software Technology Research Laboratory, De Montfort University,
Leicester, LE4 OGL, UK.

Patrick Albers
ESEO, 4 rue Merlet de la Boulaye, Angers, France.

Ralph Hodgson
TopQuadrant, Inc., USA

Rama Akkiraju
IBM Watson Research Center, 19 Skyline Drive, Hawthorne, NY, USA.

Ranjit Mulye
Large Scale Distributed Information Systems (LSDIS) Lab, Department
of Computer Science, University of Georgia, GA, USA.

Reiman Rabbani
Large Scale Distributed Information Systems (LSDIS) Lab, Department
of Computer Science, University of Georgia, GA, USA.

Richard Goodwin
IBM Watson Research Center, 19 Skyline Drive, Hawthorne, NY, USA.

Sanjay Chaudhary
Dhirubhai Ambani Institute of Information and Communication
Technology, Gujarat, India.

Satya Sanket Sahoo
Large Scale Distributed Information Systems (LSDIS) Lab, Department
of Computer Science, University of Georgia, GA, USA.

Sinuhe Arroyo
Digital Enterprise Research Institute (DERI), Innsbruck, Austria.

Tanveer Syeda-Mahmood
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120,
USA.

Vikram Sorathia
Dhirubhai Ambani Institute of Information and Communication
Technology, Gujarat, India.

XX

Zakir Laliwala
Dhirubhai Ambani Institute of Information and Communication
Technology, Gujarat, India.

Foreword

In order to stay competitive today, each company must be able to react
fast to changes within its business environment. At the IT level this demands
high flexibility of the application systems supporting the operation of the
company and the cooperation with its partners. A key contributor to this high
flexibility is "loose coupling" between these application systems as well as
between the ingredients of each application system itself. Loose coupling
basically means that interacting components make as few assumptions about
each other as possible: the fewer assumptions made the easier it is to
exchange one component by another without even noticing. Ultimately, a
component providing certain required functionality can be discovered and
used as late as when this functionality is actually needed. Such a component
is said to behave like a "service".

The discipline of building systems based on such services is referred to
as "service-oriented computing". The corresponding architectural style is
called "service-oriented architecture": fundamentally, it describes how
service requesters and service providers can be decoupled via discovery
mechanisms resulting in loosely coupled systems. In practice, the various
services reside in different environments, i.e. run on different machines,
under different environments, are accessible via different transport protocols
etc. Thus, implementing a service-oriented architecture means to deal with
heterogeneity and interoperability concerns. These concerns must be
addressed by appropriate standards and their implementation: both are
subsumed by the term "Web services".

Consequently, the book at hand is concerned with topics from the area of
building systems in a loosely coupled manner in order to support companies
to stay competitive: this emphasizes the importance of the overall subject

XXll

area the book is devoted to. The overarching theme addressed by each of its
chapters is that of semantics, i.e. of "meaning": how can that what a service
does be appropriately described, and how such a description can be exploited
to build service-oriented systems - in order to significantly increase quality
of discovery of appropriate services. These subjects will become more and
more important as Web services become a mainstream in software
construction.

Standards combining semantics and Web service technology will then
play a key role, especially in heterogeneous environments. Recently,
specifications for standards in this domain have been submitted to standard
bodies. Key contributors to these specifications are amongst the authors of
the book at hand. Thus, readers of the book will get first hand information
about the details of the standards from the domain of "semantic Web
services".

The book provides the basic background for various communities.
Practitioners will enjoy the sections describing some applications of
semantic Web services technologies and the impact of semantics on business
processes. Researchers will find encouragements to consider semantic Web
service technology in their areas of expertise. Lecturers will get a lot of
material for teaching the subject area in advanced undergraduate as well as
postgraduate courses. Students will be able to use the book as a textbook to
get an overview of this new aspect of service-oriented computing. All
readers will benefit from the questions closing each chapter to help readers
to assess and deepen their comprehension of the subject area. Finally, I
found the recommendations for further reading very helpful to quickly get
information about special subjects of interest.

I wish that the book will get the attention it really deserves, and that
readers of this book will enjoy reading it as much as I did.

Institute of Architecture of Application Systems
University of Stuttgart, Germany
February 2006

Frank Leymann

Preface

Chapter 1 discusses the evolution of tlie Web. The semantic Web is not
a separate Web but an extension of the current one, in which information and
services are given well-defined meaning, thereby better enabling computers
and people to work in cooperation. To make possible the creation of the
semantic Web the W3C (World Wide Web Consortium) has been actively
working on the definition of open standards. These standards are important
to define the information on the Web in a way that it can be used by
computers not only for display purposes, but also for interoperability and
integration between systems and applications resolving heterogeneity
problems. Heterogeneity occurs when there are differences in syntax,
representation, and semantics of data. Dealing with heterogeneity has
continued to be a key challenge since the time it has been possible to
exchange and share data between computers and applications. One approach
to the problems of semantic heterogeneity is to rely on the technological
foundations of the semantic Web. In this chapter we also present the state of
the art of the applications that use semantics and ontologies. We describe
various applications ranging from the use of semantic Web services,
semantic integration of tourism information sources, and semantic digital
libraries to the development of bioinformatics ontologies.

In chapter 2, we attempt to point the reader to existing work in the areas
of semantic annotation. Creating semantic markup of Web services to realize
the vision of Semantic Web services has received a lot of attention in the
recent years. A direct offshoot has been the development of agent
technologies that can utilize these annotations to support automated Web
service discovery, composition and interoperability. The issues that need to
be addressed in the context of annotation of Web services are quite different

xxiv Semantic Web Services, Processes and Applications

from traditional Web resource annotation frameworks and therefore deserve
particular attention. This chapter covers different types of metadata,
semantic annotation of Web resources and Web services in particular, types
of semantics used in Web service annotation, current semantic web service
efforts including OWL-S, WSMO and WSDL-S and some Semantic
annotation tools and platforms.

Chapter 3 introduces and provides an overview of the Web Services
Modeling Ontology (WSMO), a fully-fledged framework for Semantic Web
Services (SWS), showing a reader practical examples aimed at explaining
the application of WSMO concepts to a real world scenario. Existing Web
Services specifications lack an appropriate semantic framework to allow for
the automated execution of current business processes over the Web. SWS
technology aims to add enough semantics to the specifications and
implementations of Web Services to make possible the automatic integration
of distributed autonomous systems, with independently designed data and
behavior models. Defining data, behavior and system components in a
machine understandable way using ontologies provides the basis for
reducing the need for humans to be in the loop for system integration
processes. The application of semantics to Web Services can be used to
remove humans from the integration jigsaw and substitute them with
machines. There are many problems which Semantic Web Services could be
used to resolve. SWS will put in place an automated process for machine
driven dynamic discovery, mediation and invocation. One of the major
intentions of this chapter is to present the technological framework for SWS
development around WSMO. We discuss and present some of the key
technologies related to the conceptual framework of WSMO, especially the
Web Services Modeling Execution Environment (WSMX), which is its
reference implementation.

In chapter 4, we discuss the various discovery and publishing schemes
available for Web Services. We present a detailed analysis of UDDI, the
standard registry framework for publishing services. The API for publishing
and discovering services using UDDI is discussed briefly. We present the
best practices in using UDDI as discussed in the OASIS Best Practices
document. The differences, advantages and disadvantages of keyword, port
type and semantics based discovery are presented. The chapter also
introduces the reader to the different flavors of semantics in Services life
cycle. An approach to publish and discover semantic Web Services is
presented. As an insight into the current research, we discuss registry
federation towards the end.

In chapter 5, we propose a methodology to compositionally augment the
semantic description of a reactive service, with temporal properties that
provide the required support for reasoning about "ongoing" behavior. The

Semantic Web Services, Processes and Applications xxv

properties are specified in Interval Temporal Logic, our underlying
formalism for reasoning about service behavior over periods of time. These
properties are specified only over observable behavior, and do not depend on
any additional knowledge about the underlying execution mechanism of the
services. We present "TeSCO-S", a framework for enriching Web service
interface specifications, described as OWL ontologies with temporal
assertions. TeSCO-S provides an OWL ontology for specifying properties in
ITL, a pre-processor, "OntoITL" for transforming ontology instances into
ITL formulae and an interpreter, "AnaTempura" that executes and validates
temporal properties in "Tempura", an executable subset of ITL

Chapter 6 presents the main ideas and principles behind service
choreography. Services need to interoperate with each other in order to
realize the purposes of the software system they define by exchanging
messages, which allow them to make or to respond to requests. Due to the
heterogeneous technological, syntactic and semantic nature of services
realizing semantic web processes, communication requirements become
more complex, clearly necessitating a balance among interoperation and
decoupling. In the context of providing support for choreography (i.e. the
modeling of external, visible behavior of service interactions), a semantic
layer could be supposed to provide the required convertibility between
divergent specifications by the specification in machine-processable form of
the message exchanging patterns (MEP). This chapter carefully reviews the
main initiatives in the field pointing out their core characteristics and main
drawbacks. Taking as starting point this analysis, the major driving
principles and desire features, when it comes to modeling choreographies,
are identified. Later, the most relevant challenges in the field, separation of
models and support for semantic mediation are discussed. Based on this
theoretical work, the core principles and architecture of a choreography
engine that relies on the semantic description of MEPs to allow
interoperation among heterogeneous services is presented. Finally, the
concepts depicted on the framework as applied in the Assurance Integration
Use case hosted by BT and part of the EU-funded project DIP are presented.

Chapter 7 focuses on the design of semantic web processes using
WSDL-S. Many businesses are adopting Web Service technologies to
provide greater access to their applications. Due to the fast-paced E-
Commerce requirements, more and more businesses prefer to only creating
their core applications, and outsourcing the non-critical applications, or
making use of their partners' applications directly. There is a growing
requirement to build complex processes which may include Web Services
supplied by the different partners. However, there are two main difficulties
in building such Web Processes: 1) the current syntactic search mechanism
is ineffective to find out the highly suitable services and 2) there are not

xxvi Semantic Web Services, Processes and Applications

many process designing tools which allow dynamic binding of partner
services. In this chapter, we present a solution for both the problems based
on WSDL-S.

Chapter 8 discusses the composition of Web services based on non
functional properties. Web services are modular applications that can be
described, located and invoked on the Internet. A user request may not only
correspond to one specific service, but also to a set of Web services. Thus, it
is necessary that a composition of services be done in order to obtain the
expected result. Nonetheless, many services with the same goal but different
characteristics can be discovered. Indeed, it is necessary to find non
functional criteria to distinguish them. In this chapter, we used the service
quality variables as non-functional criteria in order to make an optimal
service composition for a goal. Using multiobjective optimisation
techniques, we proposed to find a set of optimal Pareto solutions from which
a user can choose the most interesting tradeoff.

Chapter 9 motivates the need for semantic matching in different
application domains and presents the generic matching framework. A
semantic revolution is happening in the world of enterprise information
integration. This is a new and emerging field that blurs the boundaries
between the traditional fields of business process integration, data
warehousing and enterprise application integration. Information integration
is the process by which related items from disparate sources are integrated to
achieve a stated purpose. There is a need for bridging the semantic gap
between the descriptions in order to make true information integration
feasible. The field of semantic matching and mapping has now emerged as a
new and exciting field to address these problems of semantic mismatch of
descriptions using automated relationship discovery techniques. Since the
schemas arise from many applications, a generic framework for matching
and mapping is needed. In this chapter, one such framework based on
bipartite graph matching is described. This framework allows the best set of
matching to be discovered using a variety of cues to determine semantic
similarity of attributes ranging from name semantics to type and structural
similarity. Related literature is reviewed.

Chapter 10 illustrated and describes the construction an ontology for e-
tourism. Tourism is a data rich domain. Data is stored in many hundreds of
data sources and many of these sources need to be used in concert during the
development of tourism information systems. Our e-tourism ontology
provides a way of viewing the world of tourism. It organizes tourism related
information and concepts. The e-tourism ontology provides a way to achieve
integration and interoperability through the use of a shared vocabulary and
meanings for terms with respect to other terms. The e-tourism ontology was
developed using OWL (Web Ontology Language). OWL was proposed by

Semantic Web Services, Processes and Applications xxvii

the W3C for publishing and sharing data, and automating data understanding
by computers using ontologies on the Web. OWL is being planned and
designed to provide a language that can be used for applications that need to
understand the meaning of information instead of just parsing data for
display purposes.

In chapter 11 we give an account of one of the pilot projects that
happened within the, now-called, Semantic Interoperability Community of
Practice. In the last five years a number of significant developments have
occurred that motivate the use of Semantic Technology in e-Govemment. In
2001, the US President announced 24 e-Govemment initiatives. In 2004 the
Federal Enterprise Architecture (FEA) was first published. It is well-known
that Semantic technology is an enabler for federation, mediation,
aggregation and inferencing over information from diverse sources. Why
then, not advocate its use for helping solve interoperability, integration,
capability reuse, accountability and policy governance in agencies, across
agencies and even across governments? With this vision, TopQuadrant set
out in 2002 to bring Semantic Technology to the attention of the emerging
technology work-groups of the US Government at their "Open
Collaboration" Workshop meetings in Washington DC (Collaborative
Expedition Workshops). What followed is a success story of growing
awareness and advocacy of semantic technology in e-Govemment. In this
chapter we describe the "eGOV FEA-Based Capabilities and Partnering
Advisor", some coverage is also made of EEA-RMO, the Federal Enterprise
Architecture Reference Model Ontology.

Chapter 12 discusses the application of Web services, Web processes
and the role of semantics in the field of bioinformatics. Web services are
being rapidly adopted as the technology of choice to share and integrate data
and computational tools in life sciences. Web Services offers the life
sciences research community the critical advantages of platform-
independence and web-based access. Multi-step, complex processes
characterize biological research. The automation of these processes is
increasingly characterizing life sciences research and forms the framework
for high-throughput experimental biology. In this scenario, it is nearly
impossible for researchers to manually deal with extremely large and rapidly
generated datasets. As the constituent stages of the experimental processes,
are being implemented as Web Services, their integration into Web
processes is a logical next step. The Semantic Web technology ensures that
Web Services are implemented, published, searched and discovered in a
standard and intuitive manner for researchers. Semantic Web also enables
the seamless integration of Web Services into Web processes that will
underpin a high-throughput experimental data management, analysis and
retrieval framework. In this chapter, we discuss the use of Semantic Web

xxviii Semantic Web Services, Processes and Applications

technology in the field of bioinformatics. Specifically, we cover three areas
of bioinformatics research namely computational genomics, computational
proteomics and structural bioinformatics. An in-depth case study of
implementation of a semantic Web Services based glycoproteomics
workflow is also discussed.

Chapter 13 covers the design, development and deployment of semantic
business services driven systems. Web Services is a proven effective
approach for systems integration at a large scale, yet the prevailing diversity
within a specific domain introduces many challenges. This chapter
demonstrates how semantic Web Services based business process
management system can be realized to address these challenges. The chapter
explains the complexities of the business processes and introduces the issues
involved to utilize the power of "Services" effectively. The semantics based
approach is adopted with inclusion of an ontology development to cover all
the concepts and their inter-relationship related to the problem domain. The
development lifecycle contains other known building blocks like generation
of Web Services, enabling service descriptions for semantic discovery,
designing of a business process and finally the deployment of the business
services. The objective is to provide a comprehensive experience of each
building block to develop complete system that exhibit the required
functionality.

In chapter 14 we present several frameworks supporting the
programmatic development of OWL ontologies. We will briefly discuss
those most used by the developer community, namely Jena, Protege-OWL
API and the WonderWeb OWL API, which are all available for Java
language. A more extensive description of the Jena framework will follow.
The API of Jena is large and offers many possibilities. Since Jena supports
several languages, there are interfaces for increasing levels of complexity;
from simple RDF graphs to complex OWL ontologies. We further explain
how OWL knowledge bases can be built up and modified programmatically,
how Jena's query language (RDQL) is used and how reasoning and
inference is carried out.

SUGGESTED COURSE STRUCTURE

This book is for people who want to learn about the main concepts
behind semantic Web, semantic Web services and processes, current
activities aimed towards future standardization and how they can be applied
to develop real world applications. It brings together many of the main ideas
of the semantic Web and Semantic Web services in one place. Although
several researchers have contributed to elaborate this book, it has been

Semantic Web Services, Processes and Applications xxix

designed so that it could be used as a textbook or a reference book for an
advance undergraduate or graduate course. At the end of each chapter,
questions for discussion and a list of suggested additional readings are
provided.

The Web site for this book (a link to which you can find from the Web
sites of book editors) lists the courses that have already adopted this book for
graduate education. It also provides a variety of teaching aid including,

• presentations for majority of chapters prepared by book editors or chapter
authors, compilation of answers to discussion questions,

• pointers to the fee tools that can be used for exercise related to
techniques,

• technologies discussed in some of the chapters, and more.

The following list gives suggested contents for different courses at the
undergraduate and graduate level:

• Beginner (generic, advanced undergraduate or graduate). Chapters 1, 10,
and 14 provide the fundamental building blocks for developing semantic
Web applications. Chapter 1 provides an overview on the technologies
for building the semantic Web. A brief history of the Web and the
concept of the semantic Web are explained. In order to have computers
understand and automatically process Web contents, such contents
cannot be within HTML or XML tags that are only human-
understandable. Chapter 10 introduces the OWL language and serves as
a good introduction before one reads the official OWL manual and OWL
language guide. Chapter 14 introduces Jena, the Java toolkit for
developing semantic Web applications based on W3C recommendations
for RDF and OWL.

• Intermediate (undergraduate or graduate). Chapters 2, 3, 4, 6, 7, 11, and
13 introduce more advanced concepts and topics. Chapters 2, 3, 4, and 7
explain how semantics can be added to existing Web services standards,
such as WSDL, and show how the Web Services Modeling Ontology
(WSMO) provides ontological specifications for the main elements of
semantic Web services using a conceptual model for developing and
describing Web services and their composition based on the maximal
de-coupling and scalable mediation service principles. Chapters 11 and
13 illustrate the role of semantics as an enabler for the interoperability,
integration, mediation, and inferencing over information from diverse
sources.

XXX Semantic Web Services, Processes and Applications

• Advanced (graduate or professional). An advanced student knows about
semantics from past experience acquired while developing and
implementing semantic Web applications involving Web services and
processes. Chapter 5, 8, 9, and 12 introduce advanced topics where
theory has an important role. For example, chapter 5 presents a
formalism for reasoning about service behavior over periods of time is
introduced. Chapter 8 and 9 discusses the composition of Web services
based on non-functional properties using multi-objective optimization
techniques and presents a generic framework for schema matching.
Chapter 12 discusses the application of Web services, Web processes
and the role of semantics in the field of bioinformatics to share and
integrate data and computational tools in life sciences.

The following figure shows the suggested reading plans that are
recommended for the different readers.

Beginner Intermediate Advanced

Chapter 1

Chapter 10

Chapter 14

Chapter 2

Chapter 3

Chapter 4

Chapter 6

Chapter 7

Chapter 11

Chapter 13

Chapter 5

Chapter 8

Chapter 9

Chapter 12

PART I: SEMANTIC WEB SERVICES

Chapter 1

THE SEMANTIC WEB AND ITS APPLICATIONS

Jorge Cardoso' and Amit Sheth^
'Department of Mathematics and Engineering, University of Madeira, 9000-390, Funchal,
Portugal -jcardoso@uma.pt

^Large Scale Distributed Information Systems (LSDIS) Lab, Department of Computer Science,
University of Georgia, GA, USA.-amit@cs.uga.edu

1. INTRODUCTION

Currently, the World Wide Web is primarily composed of documents
written in HTML (Hyper Text Markup Language), a language that is useful
for publishing information. HTML is a set of "markup" symbols contained
in a Web page intended for display on a Web browser. During the first
decade of its existence, most of the information on the Web is designed only
for human consumption. Humans can read Web pages and understand them,
but their inherent meaning is not shown in a way that allows their
interpretation by computers

The information on the Web can be defined in a way that it can be used
by computers not only for display purposes, but also for interoperability and
integration between systems and applications. One way to enable machine-
to-machine exchange and automated processing is to provide the information
in such a way that computers can understand it. This is precisely the
objective of the semantic Web - to make possible the processing of Web
information by computers. "The Semantic Web is not a separate Web but an
extension of the current one, in which information is given well-defined
meaning, better enabling computers and people to work in cooperation."
(Bemers-Lee, Hendler et al. 2001). The next generation of the Web will

4 Semantic Web Services, Processes and Applications

combine existing Web technologies with knowledge representation
formalisms (Grau 2004)

The Semantic Web was made through incremental changes, by bringing
machine-readable descriptions to the data and documents already on the
Web. As already stated, the Web was originally a vast set of static Web
pages linked together. Currently the Web is in evolution, as illustrated in
Figure 1-1, and different approaches are being sought to come up with the
solutions to add semantics to Web resources. On the left side of Figure 1-1, a
graph representation of the syntactic Web is given. Resources are linked
together forming the Web. There is no distinction between resources or the
links that connect resources. To give meaning to resources and links, new
standards and languages are being investigated and developed. The rules and
descriptive information made available by these languages allow to
characterize individually and precisely the type of resources in the Web and
the relationships between resources, as illustrated in the right side of Figure
1-1.

Link I Link iijde I coiieague

Figure 1-1. Evolution of the Web

Due to the widespread importance of integration and interoperability for
intra- and inter-business processes, the research community has tackled this
problem and developed semantic standards such as the Resource Description
Framework (RDF) (RDF 2002) and the Web Ontology Language (OWL)
(OWL 2004). RDF and OWL standards enable the Web to be a global
infrastructure for sharing both documents and data, which make searching
and reusing information easier and more reliable as well. RDF is the W3C
standard for creating descriptions of information, describing their semantics
and reasoning (Lassila and Swick 1999), especially information available on
the World Wide Web. What XML is for syntax, RDF is for semantics. Both
share a unified model and together provide a framework for developing Web
applications that deal with data and semantics (Patel-Schneider and Simeon
2002). Relationships are at the heart of semantics (Sheth, Arpinar et al.
2002). Perhaps the most important characteristic of RDF is that it elevates

The Semantic Web and its Applications 5

relationships to first class object, providing the first representational basis
for giving semantic description. RDF evolved from MCF designed by Guha,
which was motivated for representing metadata. Hence RDF is also well
suited for representing metadata for Web resources. OWL provides a
language for defining structured Web-based ontologies which allows a richer
integration and interoperability of data among communities and domains.

According to TopQuadrant (TopQuadrant 2005), a consulting firm that
specializes in Semantic Web technologies, the market for semantic
technologies will grow at an annual growth rate of between 60% and 70%
until 2010. It will grow from its current size of US$2 billion to US$63
billion. According to William Ruh of CISCO, before the end of 2004, RDF
was applied under the covers of well over 100 identified products and over
25 information service providers. Existing well known applications that add
Semantic Web capabilities include Adobe's Extensible Metadata Platform,
RDF of annotation of most of the product data that Amazon receives or
digital media content a top mobile carrier receives, and well known
infrastructure support include Creative Commons DF based annotations of
license information and Oracle's support for RDF data.

Semantic software is being experimentally used by banks to help them to
comply with the U.S. government's Patriot Act (the Patriot Act requires
banks to track and account for the customers with whom they do
transactions), by European police force to follow crime patterns, and by
telephone service providers to create applications that provides information
about pay-per-view movies (Lee 2005; Sheth 2005). In addition to
investment banks, the Metropolitan Life Insurance Company, the U.S.
Department of Defense and the Tennessee Valley Authority have also used
Semantic software to integrate enterprise data to comply with federal
regulations.

2. SEMIOTICS - SYNTAX, SEMANTICS, AND
PRAGMATICS

Semiotics is the general science of signs - such as icons, images, objects,
tokens, and symbols - and how their meaning is transmitted and understood.
A sign is generally defined as something that stands for something else.

The human language is a particular case of semiotics. A language is a
system of conventional spoken or written symbols by means of which people
communicate. Formal languages, such as logic, are also based on symbols
and, therefore, are also studied by semiotics. Compared to the human
language, formal languages have a precise construction rules for the syntax
and semantics of programs. Semiotics is composed of three fundamental

6 Semantic Web Services, Processes and Applications

components: syntax, semantics, and pragmatics (Peirce 1960). These
components are illustrated in Figure 1-2.

Syntax

Semantics

Pragmatics

[T^ZN-About the form

£] *)-About the meaning

(~~A-About the content

Figure 1-2. Semiotics and its components

Syntax. It deals with the formal or structural relations between signs (or
tokens) and the production of new ones. For example, grammatical syntax is
the study of which sequences of symbols are well formed according to the
recursive rules of grammar. The set of allowed reserved words, their
parameters, and the correct word order in an expression is called the syntax
of a language. In computer science, if a program is syntactically correct
according to its rules of syntax, then the compiler will validate the syntax
and will not generate error messages. This, however, does not ensure that the
program is semantically correct (i.e., return results as expected).

For example, when XML is used to achieve interoperability and
integration of information systems, the data exchanged between systems
must follow a precise syntax. If the rules of the syntax are not followed, a
syntactical error occurs. For example, using a tag spelled <cust> instead of
<customer>, omitting a closing tag, or not following the syntax of a XML
Schema (XMLSchema 2004) will generate a syntactical error. It should be
noticed, that syntax does not include the study of things such as "truth" and
"meaning."

Semantics. It is the study of relations between the system of signs (such
as words, phrases, and sentences) and their meanings. As it can be seen by
this definition, the objective of semantics is totally different from the
objective of syntax. The former concerns to what something means while the
latter pertains to the formal structure/patterns in which something is
expressed. Semantics are distinct from the concept of ontology (ontologies
will be discusses later in this chapter). While the former is about the use of a
word, the latter is related to the nature of the entity or domain referenced by
the word. One important and interesting question in semantics research is if
the meaning is established by looking at the neighborhood in the ontology
that the word is part of or if the meaning is already contained in the word
itself. Second important and interesting question is the formal representation
language to capture the semantics such that it is machine processable with
consistent interpretation. Third important question is the expressiveness of

The Semantic Web and its Applications 1

this representation language that balances computability versus capturing the
true richness of the real world that is being modeled. Correspondingly, the
following three forms of semantics have been defined in (Sheth,
Ramakrishnan et al. 2005):

• Implicit semantics. "This type of semantics refers to the kind that is
implicit in data and that is not represented explicitly in any machine
processable syntax."

• Formal semantics. "Semantics that are represented in some well-formed
syntactic form (governed by syntax rules) is referred to as formal
semantics."

• Powerful (soft) semantics. "Usually, efforts related to formal semantics
have involved limiting expressiveness to allow for acceptable
computational characteristics. Since most KR mechanisms and the
Relational Data Model are based on set theory, the ability to represent
and utilize knowledge that is imprecise, uncertain, partially true, and
approximate is lacking, at least in the base/standard models. Representing
and utilizing these types of more powerful knowledge is, in our opinion,
critical to the success of the Semantic Web. Soft computing has explored
these types of powerful semantics. We deem these powerful (soft)
semantics as distinguished, albeit not distinct from or orthogonal to
formal and implicit semantics."

Pragmatics. It is the study of natural language understanding, and
specifically the study of how context influences the interpretation of
meaning. Pragmatics is interested predominantly in utterances, made up of
sentences, and usually in the context of conversations (Wikipedia 2005). The
context may include any social, environmental, and psychological factors. It
includes the study or relations among signs, their meanings, and users of the
signs, and the repercussions of sign interpretations for the interpreters in the
environment. While semantics deals with the meaning of signs, pragmatics
deals with the origin, uses, and effects of signs within the content, context,
or behavior in which they occur.

3. SEMANTIC HETEROGENEITY ON THE WEB

Problems that might arise due to heterogeneity of the data in the Web are
already well known within the distributed database systems community (e. g.
(Kim and Seo 1991), (Kashyap and Sheth 1996)). Heterogeneity occurs
when there is a disagreement about the meaning, interpretation, or intended
use of the same or related data. As with distributed database systems, four

8 Semantic Web Services, Processes and Applications

types of information heterogeneity (Sheth 1998; Ouskel and Sheth 1999)
may arise in the Web: system heterogeneity, syntactic heterogeneity,
structural or schematic heterogeneity, and semantic heterogeneity.

• System heterogeneity: Applications and data may reside In different
hardware platforms and operating systems.

• Syntactic lieterogeneity: Information sources may use different
representations and encodings for data. Syntactic interoperability can be
achieved when compatible forms of encoding and access protocols are
used to allow information systems to communicate.

• Structural heterogeneity: Different information systems store their data
in different document layouts and formats, data models, data structures
and schemas.

• Semantic heterogeneity: The meaning of the data can be expressed in
different ways leading to heterogeneity. Semantic heterogeneity
considers the content of an information item and its intended meaning.

Approaches to the problems of semantic heterogeneity should equip
heterogeneous, autonomous, and distributed software systems with the
ability to share and exchange information in a semantically consistent way
(Sheth 1999). In the representation languages to support the Semantic Web
approach, as recommended by the W3C, XML supports ability to deal with
syntactic heterogeneity; XML, XPath, and XQuery provide ability to
transcend certain structural heterogeneity, while RDF and OWL (or other
ontology representation languages) provide a key approach to deal with
semantic heterogeneity.

One solution is for developers to write code which translates between the
terminologies of pairs of systems. When the requirement is for a small
number of systems to interoperate, this may be a useful solution. However,
this solution does not scale as the development costs increase as more
systems are added and the degree of semantic heterogeneity increases.
Assuming the development of bidirectional translators, i.e. translators that
enable the interoperation of system A to system B and from system B to
system A, to allow the interoperability of 'n' systems we need (n-l)+(n-
2)+...+l translators. Figure 1-3 shows the translators required to integrate 6
systems.

The Semantic Web and its Applications

Figure 1-3. Using translators to resolve semantic heterogeneity

A more suitable solution to the problem of semantic heterogeneity is to
rely on the technological foundations of the semantic Web. More precisely,
to semantically define the meaning of the terminology of each distributed
system data using the concepts present in a shared ontology to make clear
the relationships and differences between concepts.

Figure 1-4. Using a shared ontology to resolve semantic heterogeneity

Figure 1-4 shows a possible architecture that achieves interoperability
using the semantic Web and ontologies. This solution only requires the
development of 'n' links to interconnect systems.

4. METADATA

Metadata can be defined as "data about data." The goal of incorporating
metadata into data sources is to enable the end-user to find items and
contextually relevant information. Data sources are generally heterogeneous
and can be unstructured, semi-structured, and structured. In the semantic
Web, a data source is typically a document, such as a Web page, containing

10 Semantic Web Services, Processes and Applications

textual content or data. Of course, other types of resources may also include
metadata information, such as records from a digital library.

Metadata can exist in several levels. These "levels of metadata" are not
mutually exclusive; on the contrary, the accumulative combination of each
type of metadata provides a multi-faceted representation of the data
including information about its syntax, structure, and semantic context
(Fisher and Sheth 2004).

The process of attaching semantic metadata to a document or any piece
of content is called semantic. Metadata extraction is the process of
identifying metadata for that document or content. This process could be
manual, semiautomatic (e.g., (Handschuh, Staab et al. 2002)) or fully
automatically (e.g.. Semantic Enhancement Engine (Hammond, Sheth et al.
2002) or SemTag (Dill, Eiron et al. 2003)). Semantic applications are created
by exploiting metadata and ontologies with associated knowledgebase
(Sheth 2004). In essence, in the semantic Web, documents are marked up
with semantic metadata which is machine-understandable about the human-
readable content of documents. Other approaches, which are less expressive,
consist on using purely syntactic or structural metadata.

4.1 Syntactic Metadata

The simplest form of metadata is syntactic metadata. It describes non-
contextual information about content and provides very general information,
such as the document's size, location, or date of creation. Syntactic metadata
attaches labels or tags to data. The following example shows syntactic
metadata describing a document:

<name> = "report.pdf"
<creation> = "30-09-2005"
<modified> = "15-10-2005"
<size> = 2048

Most documents have some degree of syntactic metadata. E-mail headers
provide author, recipient, date, and subject information. While these headers
provide very little or no contextual understanding of what the document says
or implies (assuming value of author is treated as a string or ordered sets of
words, rather than its full semantics involving modeling of author as a
person authoring a document, etc.), this information is useful for certain
applications. For example, a mail client may constantly monitor incoming e-
mail to find documents, related to a particular subject, the user is interested
in.

The Semantic Web and its Applications 11

4.2 Structural Metadata

Structural metadata provides information regarding the structure of
content. It describes how items are put together or arranged. The amount and
type of such metadata will vary widely with the type of document. For
example, an HTML document may have a set of predefined tags, but these
exist primarily for rendering purposes. Therefore, they are not very helpful
in providing contextual information for content. Nevertheless, positional or
structural placement of information within a document can be used to further
embellish metadata (e.g., terms or concepts appear in a title may be give
higher weight to that appearing in the body). On the other hand, XML gives
the ability to enclose content within more meaningful tags. This is clearly
more useful in determining context and relevance when compared to the
limitations of syntactic metadata for providing information about the
document itself.

For example, a DTD or XSD outlines the structural metadata of a
particular document. It lists the elements, attributes, and entities in a
document and it defines the relationships between the different elements and
attributes. A DTD declares a set of XML element names and how they can
be used in a document. The following lines, extracted from a DTD, describe
a set of valid XML documents:

<!ELEMENT contacts (contact*)>

<!ELEMENT contact (name, birthdate)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT birthdate {#PCDATA)>

Structural metadata tell us how data are grouped and put in ordered
arrangements with other data. This DTD sample indicates that a "contacts"
element contains one or more "contact" elements. A "contact" element
contains the elements "name" and "birthdate", and the "name" and
"birthdate" elements contain data.

4.3 Semantic Metadata

Semantic metadata adds relationships, rules, and constraints to syntactic
and structural metadata. This metadata describe contextually relevant or
domain-specific information about content based on a domain specific
metadata model or ontology, providing a context for interpretation. In a
sense, they capture a meaning associated with the content. If a formal
ontology is used for describing and interpreting this type of metadata, then it

12 Semantic Web Services, Processes and Applications

lends itself to machine processability and hence higher degrees of
automation.

Semantic data provides a means for high-precision searching, and,
perhaps most importantly, it enables interoperability among heterogeneous
data sources. Semantic metadata is used to give meaning to the elements
described by the syntactic and structural metadata. These metadata elements
allow applications to "understand" the actual meaning of the data.

By creating a metadata model of data, information, and relationships, we
are able to use reasoning capabilities such as inference engines to draw
logical conclusions based on the metadata model, or path identification and
ranking using graph based processing leading to mining and discovery. For
instance, if we know that the ABC Company sends every year a gift to very
good customers, and that John is a very good customer, then by inference,
we know that the company will ship a gift to John next year. Or if we find a
potential customer has a business partner with another person who is on the
Bank of England list of people involved in money laundering, the potential
customer is a suspect according to the government's anti-money regulations.
Figure 1-5 (Sheth 2003) shows the types of metadata we have discussed.

Types of Metadata and
Semantic Annotations

Figure]-5. Types of metadata

The Semantic Web and its Applications 13

4.4 Creating and Extracting Semantic Metadata

In order to extract optimal value from a document and make it usable, it
needs to be effectively tagged by analyzing and extracting relevant
information of semantic interest. Many techniques can be used to achieve
this based on extracting syntactic and semantic metadata from documents
(Sheth 2003). These include:

Semantic lexicons, nomenclatures, reference sets and thesauri: Match
words, phrases or parts of speech with a static or periodically maintained
dictionary and thesaurus. Semantic lexicon, such as WordNet (Voorhees
1998) which groups English words into sets of synonyms called synsets and
records semantic relations between synonym sets, can be used to identify
and match terms in different directions, finding words that mean the same or
are more general or more specific. WordNet supports various types of
relationships such as synonyms, hypemyms, hyponyms, holonym, and
meronym which can de effectively used to find relationship between words
and extract the meaning of words.

Document analysis: Look for patterns and co-occurrences, and apply
predefined rules to find interesting patterns within and across documents.
Regular expressions and relationships between words can be used to
understand the meaning of documents.

Ontologies: Capturing domain-specific (application or industry)
knowledge including entities and relationships, both at a definitional level
(e.g., a company has a CEO), and capturing real-world facts or knowledge
(e.g., Meg Witman is the CEO of eBay) at an instance or assertional level. If
the ontology deployed is "one size fits all" and is not domain-specific, the
full potential of this approach cannot be exploited.

The last option, also known as ontology-driven meta data extraction, is
the most flexible (assuming the ontology is kept up to date to reflect changes
in the real world) and comprehensive (since it allows modeling of fact-based
domain-specific relationships between entities that are at the heart of
semantic representations).

14 Semantic Web Services, Processes and Applications

5. EMPIRICAL CONSIDERATIONS ON THE USE
OF SEMANTICS AND ONTOLOGIES

Semantics is arguably the single most important ingredient in propelling
the Web to its next phase to provide standards to seamlessly enable
interoperability of applications. Semantics is considered to be the best
framework to deal with the heterogeneity, massive scale, and dynamic nature
of the resources on the Web. Issues pertaining to semantics have been
addressed in other fields like linguistics, knowledge representation, and AI.
Based on the research on semantics, semantic Web, and real-world
applications deployment, we present a set of empirical observations,
considerations, and requirements for the construction of future applications,
extended from the original set presented in (Sheth and Ramakrishnan 2003):

• It is the "ontological commitment" reflecting agreement among the
experts defining the ontology and its uses that is a key basis for semantic
integration. A good case in point is the Gene Ontology (GO) which
despite its use of a representation with limited expressiveness has been
extremely popular among the genomic scientists.

• Ontologies can capture human activities (e.g., modeling domains of
travel or financial services) or natural phenomena and science (e.g.,
protein-protein interactions or glycan structures). Schemas modeling
some domain, especially those modeling natural phenomena and science
could be quite large and complex. For example, the Gycomics Ontology
GlycO (http://lsdis.cs.uga.edu/projects/glycomics/) has over 600 classes,
pushes the expressiveness of the OWL language in modeling the
constraints, and is eleven levels deep.

• Ontology population which captures real world facts and trusted
knowledge of a domain is critical. In the near future, it will not be
uncommon to find ontology with millions of facts. Since it is obvious
that this is the sort of scale Semantic Web applications are going to be
dealing with, means of populating ontologies with instance data need to
be automated.

• Semi-formal ontologies, possibly based on limited expressive power
focusing on relationships but not constraints, can be very practical and
useful. Ontologies represented in more expressive languages such as
OWL (compared to RDF/S) have in practice yielded little value in
industrial applications so far. One reasons for this could be that it is
difficult to capture the knowledge that uses the more expressive
constructs of a representation language. At the same time, when
modeling more complex domains have required use of more expressive

The Semantic Web and its Applications 15

languages and more intensive effort in schema design as well as
population.

• Large scale metadata extraction and semantic annotation is possible, as
exemplified by Semantic Enhancement Engine of Semagix Freedom
(Hammond, Sheth et al. 2002) and SemTag/SemSeeker of IBM
WebFountain (Dill, Eiron et al. 2003). Storage and manipulation of
metadata for millions to hundreds of millions of content items requires
best applications of known database techniques with challenge of
improving upon them for performance and scale in presence of more
complex structures.

• Support for heterogeneous data is key - it is too hard to deploy separate
products within a single enterprise to deal with structured and
unstructured data. New applications involve extensive types of
heterogeneity in format, media and access/delivery mechanisms.
Database researchers have long studied the issue of integrating
heterogeneous data, and many of these come handy.

• A vast majority of the Semantic (Web) applications that have been
developed rely on three crucial capabilities: ontology creation, semantic
annotation, and querying/reasoning. A good percentage of reasoning used
in real world applications is related to path finding and rule processing,
rather than academically popular inferencing. All these capabilities must
scale to millions of documents and concepts.

6. APPLICATIONS OF SEMANTICS AND
ONTOLOGIES

The intention of this section is to present the state of the art of the
applications that use semantics and ontologies. We describe various
applications ranging from the use of semantic Web services, semantic
integration of tourism information sources, and semantic digital libraries to
the development of bioinformatics ontologies.

6.1 Semantic Web Services

Web services are modular, self-describing, self-contained applications
that are accessible over the Internet (Curbera, Nagy et al. 2001). Currently,
Web services are described using the Web Services Description Language
(Chinnici, Gudgin et al. 2003), which provide operational information.
Although the Web Services Description Language (WSDL) does not contain
semantic descriptions, it specifies the structure of message components using

16 Semantic Web Services, Processes and Applications

XML Schema constructs. Semantic Web services are the resuU of the
evolution of the syntactic definition of Web services and the semantic Web
as shown in Figure 1-6.

Dynamic

Static

Web services
s

Semantics
Web services

WWW
o 4>

Semantic
Web

Syntax Semantics

Figure 1-6. The nature of semantic Web services

One solution to create semantic Web services is by mapping concepts in
a Web service description to ontological concepts. Using this approach,
users can explicitly define the semantics of a Web service for a given
domain.

Figure 1-7. Annotating Web services with ontological concepts

Significantly different approaches to specifying semantic Web services
are exemplified by four submissions to the World Wide Web consortium
(W3C): OWL-S (OWL-S 2004), WSMO (WSMO 2004), FLOWS (SWSF
2005) and WSDL-S (Akkiraju, Farrell et al. 2005). WSDL-S is the most

The Semantic Web and its Applications 17

standard compliant and incremental approach that extends WSDL2.0,
W3C's recommendation for Web service specification.

Figure 1-7 illustrates METEOR-S WSDL-S Annotator tool (Patil,
Oundhakar et al. 2004) and the mapping that have been established between
WSDL descriptions and ontological concepts.

Based on the analysis of WSDL descriptions, three types of elements can
have their semantics increased by annotated them with ontological concepts:
operations, messages, and preconditions and effects. All the elements are
explicitly declared in a WSDL description.

Operations. Each WSDL description may have a number of operations
with different functionalities. For example, a WSDL description can have
operations for both booking and canceling flight tickets. In order to add
semantics, the operations must be mapped to ontological concepts to
describe their functionality.

Message. Message parts, which are input and output parameters of
operations, are defined in WSDL using the XML Schema. Ontologies -
which are more expressive than the XML Schema - can be used to annotate
WSDL message parts. Using ontologies, not only brings user requirements
and service advertisements to a common conceptual space, but also helps to
use and apply reasoning mechanisms.

Preconditions and effects. Each WSDL operation may have a number of
preconditions and effects. The preconditions are usually logical conditions,
which must be evaluated to true in order to execute a specific operation.
Effects are changes in the world that occur after the execution of an
operation. After annotating services' operations, inputs, and outputs,
preconditions and effects can also be annotated. The semantic annotation of
preconditions and effects is important for Web services since it is possible
for a number of operations to have the same functionality, as well as, the
same inputs and outputs, but different effects.

6.2 Semantic Web Service Discovery

Given the dynamic nature of e-business environment, the ability to find
best matching Web services that can also be easily integrated to create
business processes is highly desirable. Discovery is the procedure of finding
a set of appropriate Web services, select a specific service that meets user
requirements, and bind it to a Web processes (Verma, Sivashanmugam et al.
2004). The search of Web services to model Web process applications
differs from the search of tasks to model traditional processes, such as

li Semantic Web Services, Processes and Applications

workflows. One of the main differences is in terms of the number of Web
services available to the composition process. In the Web, potentially
thousands of Web services are available. Therefore, one of the problems that
need to be solved is how to efficiently discover Web services (Cardoso and
Sheth 2003).

Currently, the industry standards available to register and discover Web
services are based on the Universal Description Discovery and Integration
specification (UDDI 2002). Unfortunately, discovering Web services using
UDDI is relatively inefficient since the specification does not take into
account the semantics of Web services, even though it provides an interface
for keyword and taxonomy based searching as shown in Figure 1-8.

Provides non-semantic
searcin

Keyword and
attribute-based

match Search retrieves lot of
services (,' •, ',•, in:;

results included)

Which service to select ?
How to select? i

Figure 1-8. State of the art in discovery (Cardoso, Bussler at al. 2005)

The key to the discovery of Web services is having semantics in the
description of services itself (Sheth and Meersman 2002) and then use
semantic matching algorithms (e.g. (Smeaton and Quigley 1996; Klein and
Bernstein 2001; Rodriguez and Egenhofer 2002; Cardoso and Sheth 2003),
to find Web services. An approach for semantic Web service discovery is the
ability to construct queries using concepts defined in a specific ontological
domain. By having both the description and query explicitly declare their
semantics, the results of discovery will be more relevant than keyword or
attribute-based matching.

The semantic discovery of Web services has specific requirements and
challenges compared to previous work on information retrieval systems and

The Semantic Web and its Applications 19

information integration systems. Several issues that need to be considered
include:

• Precision of the discovery process. The search has to be based, not only
on syntactic information, but also on data, functional, and non-
functional/QoS semantics.

• Enable the automatic determination of the degree of integration of the
discovered Web services and the Web process host.

• The integration and interoperation of Web services differs from previous
work on schema integration due to the polarity of the schema that must
be integrated (Cardoso and Sheth 2003).

Adding semantic annotations to WSDL specifications and UDDI
registries allows improving the discovery of Web services. The general
algorithm for semantic Web service discovery requires the users to enter
Web service requirements as templates constructed using ontological
concepts. There phases of the algorithm can be identified. In the first phase,
the algorithm matches Web services based on the functionality (the
functionality is specified using ontological concepts that map to WSDL
operations) they provide. In the second phase, the result set from the first
phase is ranked on the basis of semantic similarity (Cardoso and Sheth 2003)
between the input and output concepts of the selected operations and the
input and output concepts of the initial template, respectively. The optional
third phase involves ranking the services based on the semantic similarity
between the precondition and effect concepts of the selected operations and
preconditions and effect concepts of the template.

6.3 Semantic Integration of Tourism Information
Sources

Dynamic packaging technology helps online travel customers to build
and book vacations. It can be described as the ability for a customer to put
together elements of a (vacation) trip including flights, hotels, car rentals,
local tours and tickets to theatre and sporting events. In the offline world,
such packages used to be put together by tour operators in brochures. The
new technology includes the ability to combine multiple travel components
on demand to create a reservation. The package that is created is handled
seamlessly as one transaction and requires only one payment from the
consumer, hiding the pricing of individual components.

Current dynamic packaging applications are developed using a hard-
coded approach to develop the interfaces among various systems to allow
the interoperability of decentralized, autonomous, and heterogeneous

20 Semantic Web Services, Processes and Applications

tourism information systems. However, such an approach for integration
does not comply with the highly dynamic and decentralized nature of the
tourism industry. Most of the players are small or medium-sized enterprises
with information systems with different scopes, technologies, architectures,
and structures. This diversity makes the interoperability of information
systems and technologies very complex and constitutes a major barrier for
emerging e-marketplaces and dynamic packaging applications that
particularly affects the smaller players (Fodor and Werthner 2004-5).

Two emerging technologies can enable the deployment of a more
integrated solution to implement dynamic application (Cardoso 2005): Web
services and semantics. As opposed to the hard-coded approach, Web
services take a loosely coupled software components approach, which can be
dynamically located and integrated on the Web. Web services are flexible to
easily design processes that model dynamic packaging applications.
Semantics are important to dynamic packaging applications because they
provide a shared and common understanding of data and services of the
tourism information systems to integrate. Semantics can be used to organize
and share tourism information, which allow better interoperability and
integration of inter- and intra-company travel information systems.

Car Rental

Hotels

Airlines

Etc...

End user

HDS

CRS
Airline/Car/etc

Dynamic
Package

h iU- t j r t j i i on

Airline, Hotel,
Car rental, etc

web site

Portals and third
party websites

GDS
V/eb site

On Line
Travel Agent

• *

Figure 1-9. Integration of tourism information systems

Figure 1-9 illustrates the integration of various tourism information
systems to support the concept of dynamic packaging. As it can be seen, new
communication links are established among the various participant of the
distribution model to integrate tourism products.

So far, the travel industry has concentrated its efforts on developing open
specification messages, based on XML, to ensure that messages can flow

The Semantic Web and its Applications 21

between industry segments as easily as within. For example, the OpenTravel
Alliance (OTA 2004) is an organization pioneering the development and use
of specifications that support e-business among all segments of the travel
industry. It has produced more than 140 XML-based specifications for the
travel industry (Cardoso 2004).

The development of open specifications messages based on XML, such
as OTA schema, to ensure the interoperability between trading partners and
working groups is not sufficiently expressive to guarantee an automatic
exchange and processing of information to develop dynamic applications. A
more appropriate solution is the development of suitable ontologies for the
tourism industry that can serve as a common language for tourism-related
terminology and a mechanism for promoting the seamless exchange of
information across all travel industry segments. Ontologies are the key
elements enabling the shift from a purely syntactic to a semantic
interoperability. An ontology can be defined as the explicit, formal
descriptions of concepts and their relationships that exist in a certain
universe of discourse, together with a shared vocabulary to refer to these
concepts. With respect to an ontology a particular user group commits to, the
semantics of data provided by the data sources to integrate can be made
explicit. Ontologies can be applied to the area of dynamic packaging to
explicitly connect data and information from tourism information systems to
its definition and context in machine-processable form. Ontologies can be
used to bring together heterogeneous Web services, Web processes,
applications, data, and components residing in distributed environments.
Semantic Web processes, managing dynamic package determine which Web
services are used, what combinations of Web services are allowed or
required and specific rules determine how the final retail price is computed
(Cardoso, Miller et al. 2004).

6.4 Semantic Digital Libraries

Libraries are a key component of the information infrastructure
indispensable for education. They provide an essential resource for students
and researchers for reference and for research. Metadata has been used in
libraries for centuries, For example, the two most common general
classification systems, which use metadata, are the Dewey Decimal
Classification (DDC) system and the Library of Congress Classification
(LCC) system. In the United States, the DDC is used in 95% of all public
and K-12 school libraries, in 25% of college and university libraries, and in
20% of special libraries. The DDC system has 10 major subjects, each with
10 secondary subjects (DDC 2005). The LCC system uses letters instead of
numbers to organize materials into 21 general branches of knowledge. The

22 Semantic Web Services, Processes and Applications

21 subject categories are further divided into more specific subject areas by
adding one or two additional letters and numbers (LCCS 2005).

As traditional libraries are increasingly converting themselves to digital
libraries, a new set of requirements has emerged. One important feature for
digital libraries is the availability to efficiently browse electronic catalogues
browsed. This requires the use of common metadata to describe the records
of the catalogue (such as author, title, and publisher) and common controlled
vocabularies to allow subject identifiers to be assigned to publications. The
use of a common controlled vocabulary, thesauri, and taxonomy (Smrz,
Sinopalnikova et al. 2003) allows search engines to ensure that the most
relevant items of information are returned. Semantically annotating the
contents of a digital library's database goes beyond the use of a controlled
vocabulary, thesauri, or taxonomy. It allows retrieving books' records using
meaningful information to the existing full text and bibliographic
descriptions.

Semantic Web technologies, such as RDF and OWL, can be used as a
common interchange format for catalogue metadata and shared vocabulary,
which can be used by all libraries and search engines (Shum, Motta et al.
2000) across the Web. This is important since it is not uncommon to find
library systems based on various metadata formats and built by different
persons for their special purposes. By publishing ontologies, which can then
be accessed by all users across the Web, library catalogues can use the same
vocabularies for cataloguing, marking up items with the most relevant terms
for the domain of interest. RDF and OWL provide a single and consistent
encoding so implementers of digital library metadata systems will have their
task simplified when interoperating with other digital library systems.

6.5 Semantic Grid

The concept of Grid (Foster and Kesselman 1999) has been proposed as a
fundamental computing infrastructure to support the vision of e-Science. The
Grid is a service for sharing computer power and data storage capacity over
the Internet and goes well beyond simple communication providing
functionalities that enable the rapid assembly and disassembly of services
into temporary groups.

Recently, the Grid has been evolving towards the Semantic Grid to yield
an intelligent platform which allows process automation, knowledge sharing
and reuse, and collaboration within a community (Roure, Jennings et al.
2001). The Semantic Grid is about the use of semantic Web technologies in
Grid computing; it is an extension of the current Grid. The objective is to
describe information, computing resources, and services in standard ways
that can be processed by computers. Resources and services are represented

The Semantic Web and its Applications 23

using the technologies of the semantic Web, such as RDF. The use of
semantics to locate data has important implications for integrating
computing resources. It implies a two-step access to resources. In step one, a
search of metadata catalogues is used to find the resources containing the
data or service required by an application. In the second step, the data or
service is accessed or invoked.

6.6 Semantic Enterprise Information Integration

The challenges for today's enterprise information integration systems are
well understood. In order to manage and use information effectively within
the enterprise, three barriers that increase the complexity of managing
information have to be overcome: the diverse formats of content, the
disparate nature of content, and the need to derive "intelligence" from this
content.

Current software tools that look at structuring content by leveraging
syntactic search and even syntactic metadata are not sufficient to handle
these problems. What is needed is actionable information from disparate
sources that reveals non-obvious insights and allows timely decisions to be
made. The new concept known as semantic metadata is paving the way to
finally realize the full value of information. By annotating or enhancing
documents with semantic metadata, software programs can automatically
understand the full context and meaning of each document and can make
correct decisions about who can use the documents and how these
documents should be used.

Semantic is a key enabler for deriving business value via enterprise
information integration and can enable the next generation of information
integration and analysis software in the following areas (Sheth 2003);

• Extract, organize, and standardize information from many disparate and
heterogeneous content sources (including structured, semi-structured, and
unstructured sources) and formats (database tables, XML feeds, PDF
files, streaming media, and internal documents)

• For a domain of choice, identify interesting and relevant knowledge
(entities such as people's names, places, organizations, etc., and
relationships between them) from heterogeneous sources and formats.

• Analyze and correlate extracted information to discover previously
unknown or non-obvious relationships between documents and/or entities
based on semantics (not syntax) that can help in making business
decisions.

24 Semantic Web Services, Processes and Applications

• Enable high levels of automation in the processes of extraction,
normalization, and maintenance of knowledge and content for improved
efficiencies of scale.

• Make efficient use of the extracted knowledge and content by providing
tools that enable fast and high-quality (contextual) querying, browsing,
and analysis of relevant and actionable information.

6.7 Semantic Web Search

Swoogle' is a crawler-based indexing and retrieval system for the
semantic Web built on top of the Google API. It was developed in the
context of a research project of the ebiquity research group at the Computer
Science and Electrical Engineering Department of the University of
Maryland.

In contrast to Google (Google 2005), Swoogle discovers, analyzes, and
indexes Semantic Web Documents (SWD) written in RDF and OWL, rather
than plain HTML documents. Documents are indexed using metadata about
classes, properties, and individuals, as well as the relationships among them.
Unlike traditional search engines, Swoogle aims to take advantage of the
semantic metadata available in semantic Web documents. Metadata is
extracted for each discovered document and relations (e.g. similarities)
among documents are computed. Swoogle also defines an ontology ranking
property for SWD which is similar to the pageRank (Brin and Page 1998)
approach from Google and uses this information to sort search results.
Swoogle provides query interfaces and services to Web users. It supports
software agents, programs via service interfaces, and researchers working in
the semantic Web area via the Web interface.

Swoogle's database does not stores all of the content of the SWD
discovered. It only stores metadata about the documents, the terms, and the
individuals they define and use. Currently, the database has information on
more that 275 thousand semantic Web documents which contain more than
40 million triples and define more than 90 thousand classes, 50 thousand
properties, and 6 million individuals.

A much earlier and commercial effort in building semantic search was
Taalee's MediaAnywhere AA^ search engine (Townley 2000; Sheth 2001).
In this system, ontology driven metadata extraction automatically extracted
and refreshed semantic metadata associated with audio/video content rich
Web sites. It used ontologies in areas such as Sports, Entertainment,

http://swoogle.umbc.edu/

The Semantic Web and its Applications 25

Business and News. Ontology-driven forms based querying supported
specification of semantic queries.

6.8 Semantic Web and AI

The merit of the semantic Web is that its concepts and vision are
pragmatically oriented. This is a contrast to the speculative aims of Artificial
Intelligence (AI). A sharp distinction between semantic Web and AI can be
made between the relevance and understanding of data and programs. AI is
concerned with highly complex programs being able to understand data, e.g.
texts and common sense. The semantic Web is more concerned in making its
data "smart" and giving them some machine-readable semantics. While, AI
tends to replace human intelligence, semantic Web asks for human
intelligence.

Inference mechanisms that can deal with the massive number of
assertions that would be encountered by semantic Web applications are
required. The claimed power behind many of the proposed applications of
semantic Web technology is the ability to infer knowledge that is not
explicitly expressed. Needless to say, this feature has attracted the attention
from the AI community since they have been dealing with issues relating to
inference mechanisms in the past. Inference mechanisms are applicable only
in the context of formal ontologies. The idea is to use rules and facts to
assert new facts that were not previously known. One of the most common
knowledge representation languages has been Description Logic (Nardi and
Brachman 2002) on which DAML, one of the earliest semantic Web
languages is based.

6.9 Semantic Web and Databases

Although an ontology schema may resemble at a representational level a
database schema, and instances may reflect database tuples, the fundamental
difference is that ontology is supposed to capture some aspect of real-world
or domain semantics, as well as represent ontological commitment forming
the basis of semantic normalization. Nevertheless, many researchers in the
database community continue to express significant reservations toward the
semantic Web. The following list shows some examples of remarks about
semantic Web technology (Sheth and Ramakrishnan 2003).

"As a constituent technology, ontology work of this sort is defensible. As
the basis for programmatic research and implementation, it is a speculative
and immature technology of uncertain promise. "

26 Semantic Web Services, Processes and Applications

" Users will be able to use programs that can understand semantics of the
data to help them answer complex questions ,.. This sort of hyperbole is
characteristic of much of the genre of semantic web conjectures, papers, and
proposals thus far. It is reminiscent of the AI hype of a decade ago and
practical systems based on these ideas are no more in evidence now than
they were then."

"Such research is fashionable at the moment, due in part to support from
defense agencies, in part because the Web offers the first distributed
environment that makes even the dream seem tractable."

"It (proposed research in Semantic Web) presupposes the availability of
semantic information extracted from the base documents -an unsolved
problem of many years ..."

"Google has shown that huge improvements in search technology can be
made without understanding semantics. Perhaps after a certain point,
semantics are needed for further improvements, but a better argument is
needed."

These reservations likely stem from a variety of reasons. First, this may
be a product of the goals of the semantic Web as depicted in (Bemers-Lee,
Hendler et al. 2001). Specifically, database researchers may have
reservations stemming from the overwhelming role of description logic in
the W3C's Semantic Web Activity and related standards. The vision of the
semantic Web proposed in several articles may seem, to many readers, like a
proposed solution to the long standing AI problems. Lastly, one of the major
reservations is related to the concern about the scalability of the three core
capabilities for the semantic Web to be successful, namely the scalability of
the (a) creation and maintenance of large ontologies, (b) semantic
annotation, and (c) inference mechanisms or other computing approaches
involving large, realistic ontologies, metadata, and heterogeneous data sets.

6.10 Bioinformatics Ontologies

The integration of information sources in the life sciences is one of the
most challenging goals of bioinformatics (Kumar and Smith 2004). In this
area, the Gene Ontology (GO) is one of the most significant
accomplishments. The objective of GO is to supply a mechanism to
guarantee the consistent descriptions of gene products in different databases.
GO is rapidly acquiring the status of a de facto standard in the field of gene
and gene product annotations (Kumar and Smith 2004). The GO effort

The Semantic Web and its Applications 27

includes the development of controlled vocabularies that describe gene
products, establishing associations between the ontologies, the genes, and
the gene products in the databases, and develop tools to create, maintain, and
use ontologies (see http://www.geneontologv.org/). GO has over 17,000
terms and it is organized in three hierarchies for molecular functions, cellular
components, and biological processes (Bodenreider, Aubry et al. 2005).

Another well-known life science ontology is the Microarray Gene
Expression Data (MGED) ontology. MGED provides standard terms in the
form of an ontology organized into classes with properties for the annotation
of microarray experiments (MGED 2005). These terms provide an
unambiguous description of how experiments were performed and enable
structured queries of elements of the experiments. The comparison between
different experiments is only feasible if there is a standardization in the
terminology for describing experimental setup, mathematical post
processing of raw measurements, genes, tissues, and samples. The adoption
of common standards by the research community for describing data makes
it possible to develop systems for the management, storage, transfer, mining,
and sharing of microarray data (Stoeckert, Causton et al. 2002).

If data from every microarray experiment carried out by different
research group were stored with the same structure, in the same type of
database, the manipulation of data would be relatively easy. Unfortunately,
in practice, different research group have very different requirements and,
therefore, applications need mappings and translations between the different
existing formats (Stoeckert, Causton et al. 2002).

Software programs utilizing the MGED ontology generate forms for
annotation, populate databases directly, or generate files in an established
format. The ontology can be used by researchers to annotate their
experiments as well as by software developers to implement practical
applications.

7. CONCLUSIONS

Since its creation, the World Wide Web has allowed computers only to
understand Web page layout for display purposes, without having access to
their intended meaning. Now the Web has advanced to a lot more than a
medium to publish data and documents; a Web resource can be a component
of what is called deep web (such as a queryable database) or a service that
wraps an application. The semantic Web aims to enrich this Web with a
layer of machine-understandable metadata to enable the machine processing
of information and services. The semantic Web is not a separate Web but an
extension of the current one, in which information and services are given

28 Semantic Web Services, Processes and Applications

well-defined meaning, thereby better enabling computers and people to work
in cooperation. To make possible the creation of the semantic Web the W3C
(World Wide Web Consortium) has been actively working on the definition
of open standards, such as the RDF (Resource Description Framework) and
OWL (Web Ontology Language), and encourage their use by both the
industry and academia. These standards are also important for e-commerce
and e-science, involving sharing of services and the integration for intra- and
inter-business processes that have become widespread due to the
development of business-to-business and business-to-customer
infrastructures.

To fully appreciate the objective of semantics and the semantic Web, it is
essential to comprehend what is the place and role of semantics in science in
general and computer science in particular. The heterogeneity of the data
occurs when there are differences in syntax, representation (e.g. format or
structure), and semantics of data. Dealing with heterogeneity has continued
to be a key challenge since the time it has been possible to exchange and
share data between computers and applications. Given the ease of
publication and sharing of data and services on the Web, and the scale
involved, the problem has assumed greater importance on the Web. From the
various types of heterogeneity, the semantic heterogeneity is a particularly
vexing problem. It arises due to a disagreement about the meaning,
interpretation, or intended use of the same or related data. One approach to
the problems of semantic heterogeneity is to rely on the technological
foundations of the semantic Web. More precisely, to define the meaning of
the terminology of data using the concepts present in an ontology to make
clear the relationships and differences between concepts.

The theories, methodologies, algorithms, and technologies associated
with semantic Web make this approach to application and data integration a
strong candidate to solve many problems that current systems face.
Currently, Web services, tourism information systems, digital libraries, and
bioinformatics are some of the leading areas that are studying the potential
brought by semantics and ontologies to solve the integration and
interoperability problems they have been confronted for many years. For
example, semantic Web services are the result of the evolution of the
syntactic definition of Web services and the semantic Web. The idea behind
Web services is to map concepts in a Web service description to ontological
concepts. Using this approach, users can explicitly define the semantics of a
Web service for a given domain. Afterwards, using the semantics added to
Web services we are able to construct queries using concepts defined in an
ontological domain to enable the discovery of service obtaining search
results that are more relevant than keyword or attribute-based matching
algorithms. Even more significant advantages can be realized when

The Semantic Web and its Applications 29

developing mappings for exchanging messages between services
participating in a process.

8. QUESTIONS FOR DISCUSSION

Beginner:
1. Wiiy is the search provided by Google, Yahoo! and MSN not semantic?
2. Why and how can metadata help in dealing with unstructured, semi-

structured, and structured data?

Intermediate:
1. Why almost all of the semantic metadata efforts involve textual data?

Does it make sense to have an ontology of icons or symbols?
2. What would it take to represent concepts found in the natural world, such

as compounds and molecules?
3. Distinguish between database schemas and ontologies in terms of

conceptual models or representation languages, intentions or uses, and
development methodologies.

4. List various techniques used for metadata extraction from different
computer science areas.

5. What are the differences in metadata for Web resources that are data
versus services?

6. How would Amazon benefit from the use of a product ontology?

Advanced:
1. Discuss how would you define the quality of an ontology.
2. Distinguish between ontologies (representation, extraction/population,

etc.) when modeling human activities (e.g., travel, financial services,
sports, entertainment) versus natural phenomena and sciences (e.g.,
earthquakes, complex carbohydrates, protein-protein interactions, cancer
research).

Practical Exercises:
1. Identify unstructured, semi-structured and structured documents on the

same subject matter, such as a new on a football game (although actual
content may be different). Develop a small ontology related to this
subject matter. Annotate each of these documents.

2. Obtain at least one RDF(S) and one OWL ontology and load it using an
ontology editor (e.g.. Protege).

3. Look up a tool or service on the Web for annotating Web pages and Web
services.

30 Semantic Web Services, Processes and Applications

4. Take a Web page on a news site. Design a small ontology related to the
subject matter or domain of that page. Write syntactic, structural, and
semantic metadata of that page.

SUGGESTED ADDITIONAL READING

Antoniou, G. and van Harmelen, F. A semantic Web primer. Cambridge,
MA: MIT Press, 2004. 238 pp.: This book is a good introduction to
Semantic Web languages.
Pollock, J. and Hodgson, R. Adaptive Information: Improving Business
Through Semantic Interoperability, Grid Computing, and Enterprise
Integration, Wiley-Interscience, September 2004: Practitioners should
find this book to be quite valuable companion.
Gomez-Perez, A., Fernandez-Lopez, M., and Corcho, O. Ontological
Engineering: With Examples from the Areas of Knowledge Management,
E-Commerce and the Semantic Web (Advanced Information and
Knowledge Processing), Springer-Verlag, October 2003, 420 pp.: The
book presents the practical aspects of selecting and applying
methodologies, languages, and tools for building ontologies and
describes the most outstanding ontologies that are currently available.

10. REFERENCES

Akkiraju, R., J. Farrell, et al. (2005). Web Service Semantics - WSDL-S,
lmp://lsdis.cs.uga.edii/proiects/meteor-s/wsdl-s/.

Bemers-Lee, T., J. Hendler, et al. (2001). The Semantic Web. Scientific American. May
2001,

Bodenreider, O., M. Aubry, et al. (2005). Non-Lexical Approaches to Identifying Associative
Relations in the Gene Ontology. Pacific Symposium on Biocomputing, Hawaii, USA,
World Scientific.

Brin, S. and L. Page (1998). The anatomy of a large-scale hvpertextual Web search engine.
Seventh World Wide Web Conference, Brisbane, Australia.

Cardoso, J. (2004). Issues of Dynamic Travel Packaging using Web Process Technologv.
International Conference e-Commerce 2004, Lisbon, Portugal.

Cardoso, J. (2005). B-Tourism: Creating Dynamic Packages using Semantic Web Processes.
W3C Workshop on Frameworks for Semantics in Web Services, Innsbruck, Austria.

Cardoso, J., C. Bussler, et al. (2005). Tutorial: Lifecycle of Semantic Web Processes. The
17th Conference on Advanced Information Systems Engineering (CAiSE'05), Porto,
Portugal.

Cardoso, J., J. Miller, et al. (2004). "Modeling Quality of Service for workflows and web
service processes." Web Semantics: Science, Services and Agents on the World Wide
Web Journal 1(3): 281-308.

The Semantic Web and its Applications 31

Cardoso, J. and A. Sheth (2003). "Semantic e-Workflow Composition." Journal of Intelligent
Information Systems (JUS). ZIO): 191-225.

Chinnici, R., M. Gudgin, et al. (2003). Web Services Description Language (WSDL) Version
1.2, W3C Working Draft 24, http://www.w3 .org/TR/2003AVD-wsdl 12-20030124/.

Curbera, F., W. Nagy, et al. (2001). Web Services: Why and How. Workshop on Object-
Oriented Web Services - OOPSLA 2001, Tampa, Florida, USA.

DDC (2005). Dewey Decimal Classification, OCLC Online Computer Library Center,
http://www.oclc.org/dewey/.

Dill, S., N. Eiron, et al. (2003). SemTag and Seeker: Bootstrapping the Semantic Web via
Automated Semantic Annotation. 12th international conference on World Wide Web,
Budapest, Hungary, ACM Press, New York, NY, USA.

Fisher, M. and A. Sheth (2004). Semantic Enterprise Content Management. Practical
Handbook of Internet Computing. C. Press.

Fodor, O. and H. Werthner (2004-5). "Harmonise: A Step Toward an Interoperable E-
Tourism Marketplace." International Journal of Electronic Commerce 9(2): 11-39.

Foster, I. and C. Kesselman (1999). The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann.

Google (2005). Google Search Engine, www.google.com.
Grau, B. C. (2004). A Possible Simplification of the Semantic Web Architecture. WWW

2004, New York, USA.
Hammond, B., A. Sheth, et al. (2002). Semantic Enhancement Engine: A Modular Document

Enhancement Platform for Semantic Applications over Heterogeneous Content. Real
World Semantic Web Applications. V. Kashyap and L. Shklar, lOS Press: 29-49.

Handschuh, S., S. Staab, et al. (2002). S-CREAM - Semi-automatic CREAtion of Metadata.
LNCS - Proceedings of the 13th International Conference on Knowledge Engineering and
Knowledge Management. Ontologies and the Semantic Web. London, UK, Springer-
Verlag. 2473: 358-372.

Kashyap, V. and A. Sheth (1996). Semantic heterogeneity in global information systems; The
role of metadata, context and ontologies. Cooperative Information Systems: Current
Trends and Applications. M. Papzoglou and G. Schlageter. London, UK, Academic Press:
139-178.

Kim, W. and J. Seo (1991). "Classifying schematic and data heterogeinity in multidatabase
systems." IEEE Computer 24(12): 12-18.

Klein, M. and A. Bernstein (2001). Searching for Services on the Semantic Web Using
Process Ontologies. International Semantic Web Working Symposium (SWWS), Stanford
University, California, USA.

Kumar, A. and B. Smith (2004). On Controlled Vocabularies in Bioinformatics: A Case Study
in Gene Ontology. Drug Discovery Today: BIOSILICO. 2: 246-252.

Lassila, O. and R. Swick (1999). Resource Description Framework (RDF) model and syntax
specification., W3C Working Draft WD-rdf-syntax-19981008.
http://www.w3.org/TR/WD-rdf-syntax.

LCCS (2005). The Library of Congress, Library of Congress Classification System,
http://www.loc.goy/catdir/cpso/lcco/lcco.html.

Lee, Y. L. (2005). Apps Make Semantic Web a Reality (http://68.236.189.240/article/story-
20050401-05.html). SDTimes.

MGED (2005). Microarray Gene Expression Data Society, http://www.mged.org/.
Nardi, D. and R. J. Brachman (2002). An Introduction to Description Logics. Description

Logic Handbook. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi and P. F. Patel-
Schneider, Cambridge University Press.: 5-44.

OTA (2004). OpenTravel Alliance.

32 Semantic Web Services, Processes and Applications

Ouskel, A. M. and A. Sheth (1999). "Semantic Interoperability in Global Information
Systems. A brief Introduction to the Research Area and the Special Section." SIGMOD
Record 28(1): 5-12.

OWL (2004). OWL Web Ontology Language Reference, W3C Recommendation, World
Wide Web Consortium, http://www.w3.org/TR/owl-ref/. 2004.

OWL-S (2004). OWL-based Web Service Ontology. 2004.
Patel-Schneider, P. and J. Simeon (2002). The Yin/Yang web: XML syntax and RDF

semantics. 11th international conference on World Wide Web, Honolulu, Hawaii, USA.
Patil, A., S. Oundhakar, et al. (2004). MWSAF - MBTEOR-S Web Service Annotation

Framework. 13th Conference on World Wide Web, New York City, USA.
Peirce, C. (1960). Collected Papers of Ch. S. Peirce (1931-1935). Cambridge, Mass, Harvard

University Press.
RDF (2002). Resource Description Framework (RDF), http://www.w3.org/RDF/.
Rodriguez, A. and M. Egenhofer (2002). "Determining Semantic Similarity Among Entity

Classes from Different Ontologies." IEEE Transactions on Knowledge and Data
Engineering (in press).

Roure, D., N. Jennings, et al. (2001). Research Agenda for the Future Semantic Grid: A
Future e-Science Infrastructure http://www.semanticgrid.0rg/vl.9/semgrid.pdf.

Sheth, A. (1998). Changing Focus on Interoperability in Information Systems: From System,
Syntax, Structure to Semantics. Interoperating Geographic Information Systems. M. F.
Goodchild, M. J. Egenhofer, R. Fegeas and C. A. Kottman, Kluwer, Academic Publishers:
5-30.

Sheth, A. (2001). Semantic Web and Information Brokering: Opportunities. Early
Commercialization, and Challenges. Workshop on Semantic Web: Models, Architectures
and Management, Lisbon, Portugal.

Sheth, A. (2003). Semantic Meta Data For Enterprise Information Integration. DM Review
Magazine. July 2003.

Sheth, A. (2004). From Semantic Search & Integration to Analytics. Dagstuhl Seminar on
Semantic Interoperability and Integration, httn://www.dagstuhl.de/04391/Materials.

Sheth, A. (2005). Enterprise Application of Semantic Web: the Sweet Spot of Risk and
Compliance. IFIP International Conference on Industrial Applications of Semantic Web
(IASW2005), Jyvaskyla, Finland, Springer.

Sheth, A., B. Arpinar, et al. (2002). Relationships at the Heart of Semantic Web: Modeling,
Discovering, and Exploiting Complex Semantic Relationships. Enhancing the Power of
the Internet: Studies in Fuzziness and Soft Computing. M. Nikravesh, B. Azvin, R. Yager
and L. A. Zadeh, Springer-Verlag.

Sheth, A. and R. Meersman (2002). "Amicaloia Report: Database and Information Systems
Research Challenges and Opportunities in Semantic Web and Enterprises." SIGMOD
Record 31(4): pp. 98-106.

Sheth, A. and C. Ramakrishnan (2003). "Semantic (Web) Technology In Action: Ontology
Driven Information Systems for Search, Integration and Analysis." IEEE Data
Engineering Bulletin. Special issue on Making the Semantic Web Real 26(4): 40-48.

Sheth, A., C. Ramakrishnan, et al. (2005). "Semantics for the Semantic Web: The Implicit,
the Formal and the Powerful." Intl. Journal on Semantic Web and Information Systems
1(1): 1-18.

Sheth, A. P. (1999). Changing Focus on Interoperability in Information Systems: From
System, Syntax, Structure to Semantics. Interoperating Geographic Information Systems.
C. A. Kottman, Kluwer Academic Publisher; 5-29.

The Semantic Web and its Applications 33

Shura, S. B., E. Motta, et al. (2000). "ScholOnto: an ontology-based digital library server for
research documents and discourse." International Journal on Digital Libraries 3(3); 237-
248.

Smeaton, A. and I. Quigley (1996). Experiment on Using Semantic Distance Between Words
in Image Caption Retrieval. 19th International Conference on Research and Development
in Information Retrifval SIGIR'96, Zurich, Switzerland.

Smrz, P., A. Sinopalnikova, et al. (2003). Thesauri and Ontologies for Digital Libraries. 5th
Russian Conference on Digital Libraries (RCDL2003), St.-Petersburg, Russia.

Stoeckert, C. J., H. C. Causton, et al. (2002). "Microarray databases; standards and
ontologies." Nature Genetics 32; 469 - 473.

SWSF (2005). Semantic Web Services Framework (SWSF) Overview, W3C Member
Submission 9 September 2005, http://www.w3.org/Submission/SWSF/.

TopQuadrant (2005). TopQuadrant, http://www.topquadrant.com/. 2005.
Townley, J. (2000). The Streaming Search Engine That Reads Your Mind,

http://smw.internet.com/gen/reviews/searchassociation/.
UDDI (2002). Universal Description, Discovery, and Integration.
Verma, K., K. Sivashanmugam, et al. (2004). "METEOR-S WSDI; A Scalable Infrastructure

of Registries for Semantic Publication and Discovery of Web Services." Journal of
Information Technology and Management (in print).

Voorhees, E. (1998). Using WordNet for Text Retrieval. WordNet; An Electronic Lexical
Database. C. Fellbaum. Cambridge, MA., The MIT Press: 285-303.

Wikipedia (2005). Wikipedia, the free encyclopedia, http://en. wikipedia.org/. 2005.
WSMO (2004). Web Services Modeling Ontology (WSMO). 2004.
XMLSchema (2004). XML Schema Part 2: Datatypes Second Edition, W3C

Recommendation 28 October 2004.

Chapter 2

SEMANTIC ANNOTATIONS IN WEB SERVICES

Meenakshi Nagarajan
Large Scale Distributed Information Systems (LSDIS) Lab, Department of Computer Science,
University of Georgia, GA, USA. - nbmeena@uga.edu

1. INTRODUCTION

"The Semantic Web is a vision: the idea of having data on the Web
defined and linked in such a way that it can be used by machines not just for
display purposes, but for automation, integration and reuse of data across
various applications." (Semantic Web Activity Statement)

Meaningful use of any data requires knowledge about its organization
and content. Contextual information that establishes relationships between
the data and the real world aspects it applies to is called metadata. In other
words, metadata is data that describes information about a piece of data,
thereby creating a context in terms of the content and functionality of that
data. Domain conceptualizations, ontologies or world models provide agreed
upon and unambiguous models for capturing data and metadata to which
applications, data providers and consumers can refer. Broadly speaking,
there are two kinds of metadata - structural and syntactic metadata.
Structural metadata provides information about the organization and
structure of some data, e.g. format of the document. Semantic metadata on
the other hand, provides information 'about' the data for example the
meaning or what the data is about and the available semantic relationships
from a domain model in which the data is defined.

The key aspect behind the realization of the Semantic Web vision is the
provision of metadata and the association of metadata with web resources.
The process of associating metadata with resources (audio, video, structured
text, unstructured text, web pages, images etc) is called annotation and

36 Semantic Web Services, Processes and Applications

semantic annotation is the process of annotating resources with semantic
metadata.

Semantic annotations can be coarsely classified as being formal or
informal. Formal semantic annotations, unlike informal semantic annotations
follow representation mechanisms, drawing on conceptual models
represented using well-defined knowledge representation languages. Such
machine processable formal annotations on web resources can result in
vastly improved and automated search capabilities, unambiguous resource
discoveries, information analytics etc. The annotation of web based
resources like text files or digital content is very different from the
annotation of Web services. In this chapter, we will explore the nature of
semantics associated with the Web services and different aspects of semantic
annotation of Web resources and Web services in particular.

1.1 Generic Semantic Annotation Architecture

Semantic annotation of resources supported by an existing world model
(the ontology schema that provides an agreed upon and unambiguous model
for capturing data and metadata) and knowledge base (ontology instances)
follows three primary steps: entity identification, entity disambiguation and
annotation. These three steps vary depending on the kind of resource one is
trying to annotate.

I LBXieal Analysis, Maluraf tanguwye
< ProcesBlrtg, Mtiiiioml ftngujstic
i resources: Thessurys.Dialorsary
I (synonymns, coTimon variations)

Oocum&ri!s to
arritotate

3

7> 0 \

Knowledye Base

Annotated Documents

Figure 2-1. Semantic Annotation of documents

For example, the process of identifying entities that need to be annotated
from a textual document is different from the process of identifying potential
entities from experimental data. The underlying idea however remains the
same. In this section, we will briefly cover the three steps involved in the

Semantic Annotation in Web Services 37

semantic annotation of a resource. For the sake of simplicity, the resource
considered for annotation is a text document and the semantics are brought
in using a single ontology; although there is nothing that prevents the user
from using multiple ontologies.

Figure 2-1 shows the process of semantically annotating a set of
documents with the semantics provided by a world model (ontology schema)
and a knowledge base (ontology instances).

1.1.1 Entity Identification

The process of entity identification (shown as step 1 in Figure 2-1),
involves extracting useful information from a document with the help of
rule-based grammars, natural language processing techniques, user-defined
templates or wrappers, etc. In addition to the above technologies, ontology-
driven extraction of entities also uses the populated ontology (instance level
information, also called the knowledge base that is populated using the
ontology schema) to extract specific instances of different classes. The
approach shown in Figure 2-1 uses a combination of an existing ontology
and knowledge base, lexicons and natural language processing techniques.

When an entity is identified in a document, a check is performed to see if
the entity exists as an instance in the knowledge base. Variations of the
entity like the presence of prefixes or suffixes (such as Jr., Dr., Ill), common
abbreviations (such as US for United States), synonyms, similar strings
(accounting for mis-spellings in the document) etc. are also taken into
consideration while looking for corresponding instances in the knowledge
base. Figure 2-2 shows identified entities in a CNN business article and the
corresponding classes from a Stock ontology. Entities of interest are
underlined (in blue) and the ontology classes they are associated with are
shown in grey. For example. New York is an instance of class City; Microsoft
is an instance of class Company etc.

In addition to making the process of entity identification more scalable
and specialized to a domain, using a knowledge base also allows users to see
relationships (already in knowledge base) between identified entities not
present in the document itself. For example, the fact that Microsoft and
Oracle (see Figure 2-2) are competitors is not in the document and is
available to the user only because it was present in the knowledge base.

38 Semantic Web Services, Processes and Applications

Blue-chip bonanza continues

company ' company company

Dow above 9,000 as OP Hanig l)?pot lead advance, M!iirQ.srt upgrade helps techs.

August 22, 2002 H ^ A M E D T i

t t ' • ; : i " " i "k: i ' t . j j . "uS"Mj; TfSff.i!} I ' • "
By Alexandra Twin, CNN/Money Staff Wnleri '

city company
Neft Yor< (CNN/Money) - An upgrade of software leader teKfSfifi and strength in blue chips including

company osmpany ,.- - ,
I !:'_>' "I'lJ P.'i! terf and I ion «' Di-j)o! were among the factors pushing slocks higher at midday Thursday,

ftoanaal indait
with the D im J v o t LiL4lbl(J»<l sv(» ' j i j j i spending time above the 9,000 level.

tinancsgi index
Around 11 40 a m ET, the P.g.v.,Johr^.nnJu»!U!"4!i!(eii:iiJS gamed 65 06 to 9.022.09, continuing a more

L ^ stock exchange
than 1,300-point resurgence since July 23 The N j s d a g composite gained 9.1210 1,416.37.

financial tnĉ ax
Tlie SJaridad.S Pgcr > "iOO m * x rose 9 61 to 958 97

ccmpany stockSyrn S 5
H^,va! ! -J^ 'A. . t ' l (iJ i^O up SO 33 to S15 03, Research, Estimates) said a report shows its share of j

)
t i e printer market grew in the second quarter, although another report showed that its share of the

continent •., region •• '0r00f$-
computer server market declined in liijtaas. the WlQ\§Jld.ii and fiiii.

company', stockSym S ^ S >
tl.0JTis.Dsj2S.l (IdD: up'$1 07'to'$33.76l Research, Estimates) was up for the third straight day after

topping fiscal second-quarter earnings estimates on Tuesday.
ttoliewaoty "" , .,icompany'

Tech stocl(S managed a turnaround. SsHt'SsS continued to rise after SalBmpn.SmiJJi Bsii"9.y upgraded
.company slocKSym S ' $

No. 1 software maker MlSffiSili (M5E I up $0 55 to $52 83, Research, Estimates) to "outperform"
S S company t

from "neutral" and raised its price target to S59 from S56 Business software makers pi a d * • * '
stockSyra S S company slockSym S , S
(omi up SO 18 to S10 94, Research, Estimates), EeopteSff/l (PSFT up S1 17 to S20 67,

company , slockSyiti S ,' S
Research. Estimates) and EEAi>ysis£iiJS (HCAS: up $0.28^10 S7.12,'Research, Estimates)

ail rose in tandem. '• « . • • , •:, , .„ »

Figure 2-2. Entity identification in an unstructured document (Hammond et al. 2002)

1.1.2 Entity Disambiguation

Very often it is possible that for an entity identified in the document,
there are multiple references to it in the knowledge base. For example, for an
instance John Smith identified in a document, there could be two instances
of John Smith in the knowledge base, one a financial analyst and the other
the CEO of a company. The information pertaining to the entity John Smith
in the document might not exactly correspond to the information available
for the same entity in the knowledge base. For example, the document might
not explicitly mention John Smith as the CEO of the company but could be
an article about the strategies of the company that John Smith is a CEO of.
In such a case, sophisticated methods are required to glean the context in

Semantic Annotation in Web Services 39

which John Smith is mentioned in the document. Different data sources have
different ways of representing the same real world entity. Variations in
representation usually arise due to incorrect spellings, use of abbreviations,
different naming conventions, naming variations over time, etc. Entity
disambiguation (shown as step 2 in Figure 2-1) is the process of identifying
when different references correspond to the same real world entity. Entity
disambiguation is crucial to basic functionalities like database/ontology
integration, population, and to many information management system
applications (Blume 2005). A multitude of approaches exist to disambiguate
entities depending on the nature of the data source and the level of accuracy
required; (Kalashnikov et al. 2005, Dong et al. 2005, Han et al. 2004)
represents a small sample of the literature.

In this example setting, the need is to disambiguate the entity identified
in the document and the multiple candidate references found in the ontology.
Extensive use of context information provides the best evidence for
reconciliation decisions. Context of an entity mentioned in a document could
be defined in terms of the context of the document, the document's
classification in a subject hierarchy etc. to glean what the document is
talking about. Context of an entity in a knowledge base could be defined in
terms of the values for attributes an entity has and the relationships it
participates in. For example, if for the entity "BEAS" appearing in the
document, there are two instances in the ontology appearing in the contexts
"Bureau of Elder and Adult Services BEAS: an organization" and "BEAS:
stock symbol for BEA Systems"; gleaning the context in which "BEAS"
appears in the document i.e. associated with BEA Systems can help
disambiguate the two references in the ontology. Entity disambiguation is a
data and engineering intensive process and usually requires some amount of
user involvement.

1.1.3 Annotation

After the entity disambiguation process (in the presence of ambiguities),
the next step is to associate semantic metadata to the entities in the document
through the process of annotation. Typically intended for use by humans and
agents, these annotations are represented using W3C recommended standard
representation languages like RDF (Resource Description Framework) /
OWL (Web Ontology Language, OWL). Figure 2-3 shows sample metadata
for a few entities in the document shown in Figure 2-2. The annotation made
in XML (Extensible Markup Language (XML)) shows the entity 'Hewlett-
Packard' is an instance of class 'company', 'HPQ' is a 'tickerSymboV etc.

40 Semantic Web Services, Processes and Applications

<Entlt}^ id="494S05" class="company">Henietl-Packard</Enttty> (<Emlty
ld= "3'7S349" class="tickerSymi'ol">I{PQ</Entity>: up <Regexp
typs="money">$0.J3</Regexp> to <Rogexp t)pe="r>ton0y">SlS.O3</Regexp>,
Research, Estimates) said a report shows its share of the printer market grew in
the second qtiatter, although another report showed that its share of the computer
sender luarket declined in <Entffy id="7S52" class="con!tnentReglan">Eiiropf</
Enttty>, the <Enttty id="7SS4" ckss="conHnentRegwn">Mfd(lle Easl</Entity'>

Figure 2-3. Sample Semantic Annotation in XML

Metadata Enhancement: In the process of identifying entities in the
document, it is possible that we find values for attributes or relationships that
were not previously present in the knowledge base. Enhancing the existing
metadata could be as simple as entering values for attributes, in which case
they could be automated; or as complex as modifying the underlying
schema, in which case some user involvement might be required.

1.2 Semantic Annotation Applications

Several efforts have been made towards building scalable, automatic
semantic annotation platforms. Most of these systems focus on manual and
semi-automatic tooling to improve the productivity of a human annotator
rather than on fully automated methods. However, even with machine
assistance, annotation of content is a difficult, time consuming and error-
prone task.

Besides semantic tagging of content, a number of applications also
provide storage of annotations and ontologies, user interfaces, access APIs,
and features to fully support annotation usage. The most interesting aspect of
these applications is the variety of information extraction techniques used.
Rules, discovering patterns, machine learning and bootstrapping from
taxonomies or ontologies are some techniques used. Examples of such
efforts include SemTag (Dill et al. 2003), SHOE (The SHOE Knowledge
Annotator), AeroDAML (Kogut et al. 2001), SEE (Hammond et al. 2002),
OntoAnnotate (Staab et al. 2001), COHSE (Goble et al. 2001), CREAM
(Handschuh et al. 2002), Annotea (Kahan et al. 2002), KIM (Popov et al.
2003) etc. The page on (Annotation Tools) also lists some available tools.
Table 2-1 shows a comparison of some tools on the basis of the technology
used. In this section, we will briefly describe some applications to give a
general idea of the features of annotation frameworks. The reader should
refer to Table 2-1 to relate different components of these applications to
what has been presented earlier in this chapter.

SemTag is an application written on a platform for large-scale text
analytics called Seeker. SemTag performs automated semantic tagging of

Semantic Annotation in Web Services 41

large corpora using the TAP (Guha et al.) ontology. Also used is a
disambiguation algorithm specialized to support ontological disambiguation
of large-scale data. Annotations are represented using RDFS (RDF
Vocabulary Description Language 1.0: RDF Schema).

SHOE, one the earliest systems for adding semantic annotations to web
pages allows users to mark up pages in SHOE (Heflin et al. 1999) guided by
ontologies available locally or via a URL. These marked up pages can also
be reasoned about by SHOE-aware tools such as SHOE Search (Semantic
Search - The SHOE Search Engine).

OntoAnnotate offers comprehensive support for the creation of
semantically interlinked metadata by human annotators. In identifying
entities in web pages, it uses a combination of the following techniques:
wrapper generation, pattern matching and ontology based information
extraction based on a shallow text processing engine. Also included in the
framework is a document management system that stores annotated
documents and their metadata represented in RDF.

Table 2-1. Semantic Annotation Platforms (Reeve et al. 2005)

I'latiomi Metiiod Maciimc Manual Bootstrap
Learning Ili.los Ontology

AeroDAML

Ammclilio

KIM

MuM

MUSE

Ont-0-M.if;
Aiuilcare

Ont-O-Mat:
PAKKOW

SemTag

Rule

Pattern
Dtscoveiy

Rule

Wiappex'
IiicKiclion

Rule

Wrapper
Iiidviction

Paltem
Discoveiy

Rule

N

N

N

Y

•N

Y

K

N

Y

Y

Y

N

Y

N

N

N

WordNet

User

l a M O

KMi

Usee

User

User

TAP

The KIM platform provides a novel Knowledge and Information
Management (KIM) infrastructure and services for automatic semantic
annotation, indexing, and retrieval of unstructured and semi-structured
content. It analyzes texts and recognizes references to entities and tries to

42 Semantic Web Services, Processes and Applications

match the reference with a known entity. The reference in the
document gets annotated with the URI of the entity. KIM is equipped with
an upper-level ontology PROTON (PROTON Ontology) and a knowledge
base KIM KB (KIM Knowledge Base). Other than automatic semantic
annotation, KIM also allows one to perform content retrieval, based on
semantic restrictions, as well as querying and modifying the underlying
ontologies and knowledge bases.

The work in building ontologies and creating semantic annotations for
resources is fundamental to the building of the Semantic Web and is gaining
a lot of momentum (Bemers-Lee et al. 2001). Besides textual and digital
content, the most important Web resources are those that provide 'services'.
Such services also called Web services are non-static in nature i.e. they
allow one to effect some action or change in the world, such as the purchase
of a product. The Semantic Web should enable users and agents to discover,
use, compose, and monitor Web-based services automatically. The semantic
annotation of Web services is however a completely different ball game than
the annotation of other web resources. The semantics associated with Web
services need to be formulated in a way that makes them useful to the
application of Web services. In (Sheth 2003), four types of semantics are
presented for the complete life cycle of a Web process. In the next few
sections, we will see how the technology built for the Semantic Web is being
applied to enhance Web service descriptions to make the aforementioned
tasks possible.

2. SEMANTIC ANNOTATION IN WEB SERVICES

There has been a recent proliferation of Web services as the technology
for business process execution and application integration. Although Web
services are based on widely accepted standards, the lack of a formal
description of the meaning of their functionality and the data exchanged has
been a significant roadblock in the realization of integration promises. As the
number of Web services increase, it is important to have automated tools to
discover and compose Web services. The extent of description available in
the current WSDL standard leaves room for ambiguous interpretations of the
functionality and data of a Web service. Ambiguity in interpretation hinders
the automation of tasks like service discovery, composition, invocation etc.
One of the ways the community is working to address these issues is by
developing a semantic markup language for Web Services. This section of
the chapter discusses different aspects of semantic annotation of Web service
elements.

Semantic Annotation in Web Services 43

2.1 Annotating a Web Service

Semantically annotating a Web service implies explicating the exact
semantics of the Web service data and functionality elements that are crucial
towards the use of the Web service. This is done by annotating the Web
service elements with concepts in domain models or ontologies. Since
ontologies represent an agreed upon view of the modeled domain, any
ambiguity in the interpretation of functionality or data of a Web service is
eliminated. The purpose of annotating Web services is to enable
unambiguous and automated service discovery and composition. For
example, two Web services meant for completely different functionalities
may use the same data types and names for their operations, inputs and
outputs, thus making the interpretation of their functionality ambiguous. To
understand what parts of a Web service need to be annotated, it is important
to understand the interplay of semantics in the life cycle or their usage in a
Web service.

While discovering or composing a Web service, a requestor describes his
requirements in terms of the functionality i.e. operations of a Web service,
and the data used by them i.e. inputs and outputs. Optional specifications
include the preconditions and effects of the operation. Preconditions are
requirements that must be met before a Web service operation is invoked
and effects are the results of invoking an operation. Semantic annotations are
therefore associated with the inputs, outputs, preconditions and effects of an
operation element of a Web service. More advanced discovery mechanisms
however, consider non-functional aspects of Web services and consumer
requirements like quality metrics, reliability, security etc.

The benefits of adding semantics is pervasive in the entire life cycle of a
Web process (see Figure 2-4). Developers can use semantic annotations to
explicate the capabilities of their Web services (1). Once these Web services
are published in the UDDI (Universal Description, Discovery and
Integration) (2), a requestor can formulate his requirements in a semantic
service template (3) (Sivashanmugam et al. 2003) to discover or compose
Web services. A semantic service or process template is an abstract service
or process description, where the control flow is created manually and the
functionality required is described using terms from a domain model or
ontology. Reasoning techniques can be used to compare the requirements in
the service template with the capabilities of Web services available in the
UDDI (4) to discover services (UDDI Technical White Paper 2000). During
composition, the functional aspect of the annotations can be used to create
useful service compositions.

44 Semantic Web Services, Processes and Applications

Finance Domain Ontology

QuoMb

m SemanSc. / r 3 \C^.; ^T'f
™ Annotation f 7" rt:,- '^C-.~\^

— <lnput>
'-CM:put>

_L...'C^'C3 _̂ CJ .C

, ' - WSDL

jMivli:« Ttiif-ptaiM I

isrv
'.ernplafes

g » C''»=ialin(j «S!rvii;«

/ Semantic
publishing"

9
I hipur SvniHcl ^ ^
i Ouipui: Price ^

ItOOl
Semantic
discovers"

©•

Discovsirfflrt Web seivksa^

Figure 2-4. Semantics in tlie life cycle of a Web service

2.2 Four Types of Semantics in Web Services

Table 2-2 illustrates the four types of semantics; data, functional, non
functional and execution semantics associated with Web services and how
they relate to the different stages shown in Figure 2-4. Chapter 4 of this book
gives an example of how these semantics are modeled in Web services.

Table 2-2. Four types of semantics in Web processes

Type of
Semantics

Data
Semantics

Functional
Semantics

Non
functional
Semantics

Description

Formal definition
of data in input
and output
messages of a
Web service
Formal definition
of the
capabilities of a
Web service.
Formal definition
of quantitative or
non-quantitative
constraints like

Use

Service
discovery and
interoperabilit
y between
Web services

Discovery and
composition of
Web Services

Discovery,
composition
and
interoperabilit

Semantic Annotation in Web Services 45

QoS (Quality of y of Web
service) Services
requirements like
minimum cost
and policy
requirements like
message
encryption.
Formal definition
of the execution „

^ „ Process
„ ,. or flow of .n. ^.
Execution . . verification
„ ,. services in a A ^• Semantics ^ and exception process or of , ,,. Z. ^ handling*

operations within
a service.

* Process verification involves verifying the correctness (control and data flow) of a
process composition. (Fu et al. 2004) The objective of exception-handling is to identify
breakdown points in a Web process and define how to overcome from such breakdowns.
(Verma et al. 2005)

Now that we understand why semantics are required in Web service
descriptions and what kind of semantics is useful, we can proceed to explore
how these semantic annotations are created.

3. CREATING SEMANTIC ANNOTATIONS

With the increasing number of Web services and independent domain
models being created, a semi-automatic approach to annotating Web services
is very crucial. The fundamental idea behind the association of semantics
with Web service elements is to find the most appropriate semantic concept
in an ontology for a WSDL element. This is done by matching a WSDL and
a domain model schema. For the sake of simplicity let us assume that the
domain models have been created using OWL, although they could well be
represented in RDF, UML, etc.

Matching a WSDL (basically XML) and OWL schema introduces the
problem of matching two heterogeneous models, each with its own
expressiveness, capabilities and restrictions. The problem of matching two
schemas dates back to the problem of data interoperability in the context of
database schemas. The words matching and mapping have often been used
interchangeably in the literature. In this chapter, the word schema matching
refers to the process of finding semantic correspondences between elements

46 Semantic Web Services, Processes and Applications

of two schemas and mapping deals with the physical representation of the
matches established by schema matching and the rules for transforming
elements of one schema to that of the other. For example in Figure 7 that
shows a WSDL element and an OWL concept, the result of schema
matching is to identify that the POAddress object in the WSDL is
semantically equivalent to the Address concept in the ontology. The
mapping shown as XQuery (XQuery LO: An XML Query Language) and
XSLT (XSL Transformations (XSLT)) scripts make the matching
operational by specifying rules for transforming elements of one schema to
that of the other. Sections 3.1 and 3.2 discuss matching and mapping in the
context of Semantic Web services.

3.1 Matching

As far as the problem of schema matching goes, there has been
significant work in the database community during 1980s and early 1990s on
recognizing the need for data interoperability, schema
mapping/merging/transformations, semantic heterogeneity, and use of
ontology and description logics for schematic and semantic integration, etc.
(e.g., see the discussion in (Sheth 2004)). This was followed by work on
schema matching and mapping as part of the Model Management initiative
(Model Management). There is ongoing work in the above areas especially
in the context of new Web Service technologies and Semantic Web
languages (XML, RDF/RDFS, OWL) (Patil et al. 2004, Kalfoglou et al.
2003, Stumme et al. 2001, F Hakimpour et al. 2005).

However, much of the past work in database integration has focused on
matching homogeneous models, for example, two database schemas. Any
difference in schema representation has been dealt with normalizing the
disparate schemas before matching. In the case of matching a WSDL (XML
schema) and OWL schema, we are really dealing with two different models.
Transforming a less expressive model (XML) to a more expressive model
(OWL) would usually require humans to supply additional semantics, while
transformation in the other direction can be lossy at best.

Current work in the area of model management (Melnik 2004, Melnik
2005) has focused on developing a generic infrastructure that abstracts
operations on models (i.e., schemas) and mappings between models as high
level operations which are generic and independent of the data model and
application of interest. In the area of Web services, (Patil et al. 2004)
addresses the difference in expressiveness between OWL and WSDL (XML)
by normalizing both the representations to a common graph format. The
result of matching is to establish semantic correspondences which are then
represented as annotations. The possible use of machine learning techniques

Semantic Annotation in Web Services 47

to create metadata for Web services has been explored in ASSAM (Hess et
al. 2004a). The annotator component of ASSAM (Hess et al. 2004b) casts
the problem of classifying operations and data types in a Web Service as a
text classification problems. The tool learns from Web Services with
existing semantic annotations and given this training data, semantic labels
for unseen Web Services are predicted. A similar attempt at using machine
learning techniques is presented in (Oldham et al. 2004).

A semi-automated system for creating annotations on Web Service
elements should therefore be able to match a WSDL schema and one or
more domain model schemas and return the semantic correspondences with
the degree of certainty in the matches. In case of ambiguity, user
involvement could help refine the matches produced by the system.
Although the need for schema matching is quite obvious (to generate
semantic annotations), the need for providing mappings deserves more
attention. In Section 3.2, we will discuss the motivation behind mappings,
their common representation formats and uses in the context of Web service
composition.

3.2 Mapping

As we have seen, semantic annotations on Web service elements
facilitate unambiguous service discovery and composition. In the context of
service composition, the ordering of services ensures a semantic
compatibility between their inputs and outputs but does not necessarily
ensure interoperability.

48 Semantic Web Services, Processes and Applications

Mapping required to
convert Weight (kg)
to Weight (poundi.)

Aulo pdftb bu)ing strrvscfct

Oulf-ut InvtfilotyCBldirt

Weight sheeker service
Input: Weight (pounds)
Output: CarifirmatlcKi

In^/erslory update sjervice
Inpyt: fovgntory details

Output Weight ikg)

Figure 2-5. A Web process showing the need for mapping between Web service message
elements

For example, the Web services shown in Figure 2-5 below make a
meaningful process in terms of the semantics of their functionality and the
data they exchange, but the format of the messages they exchange is
incompatible. The output of the Inventory update service and the input of the
Weight checker service are Weight elements and are semantically
compatible but differ in their formats (kilograms and pounds), thus making
the composition useless at runtime. A mapping between the two elements
that converts one message format to another (from Weight in kilograms to
Weight in pounds) is required to make this composition operational.

Table 2-3. Possible schematic / data conflicts between xml input/output messages (WSDL-S,
Web Service Semantics)

Semantic Annotation in Web Services 49

Hotofoaonoitics I Conflrcis Exaiiiplos • conflicted cicmenlii shown In color

Domain IncomprttblHtics - attribute level differences^ that arise beeam a of using <liff»sfent
descriptions for st!mHmiC»fly similar attrlbutex ,,\,"''u

Noming conflicts

l-HvH fir^HfKt: ndfirs |s^HK:nyfiis^
T'.vn aitr butes that 3'e 'ieinantically unrela:ec
riiifji'x! h-ivi^ ti>t- srirnM T-din^^ fhonior-ytiiH i

Data r£iprf?S(jntatiDn coiifllctjj
T»A-i arjibutC'S ;h j i uiu ami j i t i ta l l) ' y i i i la i might
nave d f l f e r t oata typc-s or .'epresenuilajns

Data scaling contlicis
T'A'iD i^ltiihj'.Hy i'yc. HIH ;^fiiiaft«:«iil)' biiTiil.i; mlijiit

tn i l t j i DflfijiUlun - mttlly Imral dUfsmncux thit arise i)ewi / *a of using liitfarwfl desaiptlom for
sanmnUc^ly sitttllar emitiss , '

Wab service 1
Stjdon'fJ.'T, J'^iiMiij;

Wsb senica 1
Saideiru '•;,.'>)jmei

Weil service 1
Sl.i'lpri'1,1 ' ', \,vu>-}
l i |«duf i : '« i !n ; i . l
digit nbmbur

Web service 1
'Aii>,h 1-10(1

Web aervlce 2
Stuc!iiriti.j£'., Nj inoj

Web sotvica 2
BL'̂ JK \li ;f Namej

m . t i t r i = „ ^ . B. B„ ,u™Mi.^™K^n^*

Weto serWce 2
S.i,ids-reii'i(', Nrtrrip)
k! ijfttilwd NS .i 0
elui'. .i.iinbei

Web serwce 2
. 11.:-. A-F

Naming conflicts
St i r j.-i;.caLy ^1 He urirjys myhi have diffoi^i'v.
!Uil|iu">l'jvri.lHMVj,

yrrnvi'iii:;:!!!/ Li-ft-lairKl tiir.f: 6^ iiiiyhl hnve Shn-
^rfirn 'iHiiw;, ;li*jiir.>r'jrriii^

Sr.hemB Isomorphism conflicts
^ f tf.j;f'. '.ut V :i ri,iLJt pplilioii niiiy I «jVfc? ilitliifiwit
ru;iio<3r Df i)"-K.i"os

€:xuy TL i'd,'« N-.i

M/Bb sefv/ce)

Web service 2

I v;'';R-cniiiw,
No-ne)

Weil senrice 2
1l..>',t'T(FlyhlNo

Atr Aifpoit. Dop Arpui".)
Wab ivnicw 1
r r f ! i - ; . ; i INairt; Addfeas.
HomePtor-H, >,V.>fkHte> le i

Web sen/ice 7
i ,.^' .C"N (N.^rne
Add-i-si, PIVXIBI

AbstracHon Level IncompatibHitir - ^rfUty aqd ettribiits Imrel differences Out arise because
two smnmtlcsily simiiiir^ entities or attributes'ate represented at different tevefe o/ abstiaction

Generalization conflicts
Sen'a r..:ali/ similar ertisins, a i? rf?j-esented al

Web service 1
>j|-;''.ii '-Ti..Drt,i fiD,
NHPIH, rviir|i.ir,i

Web service 2
f l i j ' ' l f-MID Nanis,

Aggiotjalioti conllicls.
SeiraaibTaliy 5 milar ertitie-^ a.'e rcpreserterl at
siilfKrtfT levrih 'If ijtrTerH i-'a.-.jr' r UV'-: V^«ri

We i service 1
|JK-. T ! ••.....'i.lD Naiiw
Dept:

Waft service 2
..=.1 11, l\ i D
PrC'.C. Dopt;

Attributo Entity conflicts
Seira.miral.y s,.irilar entity nodelcd a^ an
alta-i'.i^e in (vie s^'vi •.>- dv^i .-i•^ at' H'- ty n ttif̂
Otj'lHI

Web service 1 Web service 2
• ;i..K -h ilD N„ii rt K>-iiBs!wj DEPTi M , 1, ,,.

The generation of mappings like the one in Figure 2-5 is simple and can
be automated. More complex mappings however are difficult to automate
without human intervention. Table 2-3 illustrates some schema and data
conflicts that make the generation of mappings a challenge.

Now that we have recognized the need for such mappings, how would
one go about representing and associating these mappings with Web service
elements? Clearly, creating mappings between the message elements of two
Web services that need to interoperate is not an efficient proposal. Every
time a new Web service is created, all existing interoperable Web services
would have to create mappings with the new Web service's message
elements in the presence of any heterogeneity. An alternative is to create
mappings between the Web service element and the domain model or

50 Semantic Web Services, Processes and Applications

ontology concept with which the Web service element is semantically
associated. The ontologies now become a vehicle through which Web
services resolve their message level structural or syntactic heterogeneities.
Once the mapping is defined and represented, Figure 2-6 shows how two
Web services can interoperate using these mappings to ontology concepts.
Steps (1), (2) and (3) facilitate message exchange between two
communicating Web services. In the first step (1), the WSl output message
is transformed to the OWL concept to which it is mapped (upcast); the OWL
concept is then transformed to the WS2 input message (3) (downcast). It is
possible that two Web services are not annotated with or mapped to the same
ontology. In this case mappings between ontology concepts have to be
defined (2). Since mappings are always provided from the Web service
element to the ontology concept, generating inverse mappings (to be able to
do Step (3) in Figure 2-6) cannot always be automated and requires some
user intervention.

Web Service 1

Inpui message
element

Oulpul message-
• efsment

• " \

mappings
provided ~ "

d
1

Transform WS1
output to C1

i3#i
Dom ain model 1

Transform C2 to

WS2 input

Transform CI 1

to C2 ~ W

Wob Sorvico 2

* Inpytmtjssacje

Oulpul message

mappings
provided

o o ^ : ^ O
Domain m 3del2

Figure 2-6. Domain models as the vehicle for inter-service communication

In addition to the process of automating the generation of mappings,
another research focus has been the representation of the mappings. There
have been several approaches to represent mappings in the database
literature (Calvanese et al. 2001, Kementsietsidis et al. 2003, A Maedche et
al. , Crub'ezy et al. 2003, S.B. Davidson et al. 1995). In the context of Web
services, a popular representation for mappings has been the use of XQuery
(XQuery 1.0: An XML Query Language) and XSLT (XSL Transformations
(XSLT)). Both XQuery and XSLT work on XPATH (XML Linking
Language (XLink) Version 1.0) to transform xml objects from one format to
another. Figure 2-7 shows an example of a mapping between a WSDL
message element and an OWL concept represented using XQuery and
XSLT.

Semantic Annotation in Web Services 51

<coinplexType name="P0Adcir6ss"*^ ——-——
wsSBnii:«chemaMappiiig«"htfp://www.ibm.com/
schemaMapping/POAcidress.xslfittnput-
cloc=ctocCPC) Ad dress, xm [•')"'>

^element nani6s:''streetAddr1'' typ6*="strlng" l> _
<0l6menl nanie="slreetAdd2" type~"string" /> _J
<e]emenl name-'poBox" type'*"slririg" l>
<6lemenE name="cfty" type="strin8" l>
<element name™"zipCode" lype-"strtng" l>
<Blement name^'state" type»"string" />
<:e)ement name^-country" type-"string" />
<eiement name-"'recipientlnstName" type='"string'' l>
</all>
</complex'r'ype>

semantic mateh

mapping required.

Mapping using xquery

for $a in c(oc("POAddress.xmr')/POAddross
return
<POOr>tology:Addressr(lf:ID-'Adcir«»ssl">
<POOtilology;has_.Str@etAddressrdr;dati)type="xs;slring">

{fn:concat('$a/streetAddr1 ,"", $a/slf©etAdtlr2)}
</POOntok)gy;hfis„_Slre&tAddress>
<POOntology:has_Cityr<lf:<:latatype""xs:string">

(fn:strlng($a/ciEy)}
</POOntology:has„City>
<POOnto(ogy:has„Stato rdf;daiatype-"xs:atrina">

{frn8tring($a/st(3l0)}
<:/POOntology:ha8„Stale>
<POOritology:ha8_Country rdf:claEatype=''xs:siring''>

(fn:string($!i/country)}
</P 00 nlol og y; h a8_Coii ri try >
<POOntology:has_.2ipCod0rdf:datatypo^"xs:8tdna">

{fn:stririg($a/zipCode)}
</POOntology:h3s„Z(pCCKte>
</POOntology;Addr0ss>

.SSM=_Siî lMiif™

Mapping using XSLT

<xsi:templ8t© malch=T>
<POOnlology;Addrossrdf;tD=''Addreasr>
<POOfHology:has_Stro0tAddr088 rclf:dal0typo="xs:stiing">

<xsl:value-of seleoi»"conGiit{POAddrBss/
str0etAddr1.POAddfe8S/8tro©W.ddr2)7>

</POOntolooy:has„,Stree (Address >
<POOntology:has_Cily fdf;dataiype^''x8:8tring">

<xg|:valije-of BSlec(="POAddroas/cily'V>
</POOntology:has„Ciiy>
<POOntolt>gy;ha!t„StEiterd{:dalatype~''xs:string">

<xsl:valu0-of sel0cl=="POAdUras8/st9io7>
</POOntology:has.„Slafe>
<POOntology:hasJCouritry rdf;dfltotype-'x8:string">

<xst:value-of saleGt~"POAddr6BB/coiintry"/>
</P 0 Ontolpg y :Ni3_Cou ritf y>
<POOntology:has.„2!ipGod0rdf:daUitypo="xs;switig">

<xat:value-of s«lec(="POAddros3/zipCodo'7>
</POOntology:has_„ZipCode>
</POOntology;Addross>

Figure 2-7. Representing mappings using XQuery and XSLT

4. SEMANTIC ANNOTATION OF WEB SERVICES -
EFFORTS

The most prominent efforts in the semantic marlcup of Web services have
been OWL-S (OWL-S, OWL-based Web Service Ontology), WSMO
(WSMO, Web Services Modeling Ontology) and WSDL-S (WSDL-S, Web
Service Semantics). While WSMO and OWL-S define their own rich
semantic models for Web services, WSDL-S works in a bottom up fashion
by preserving the information already present in the WSDL. In this section,
we will briefly discuss these initiatives.

52 Semantic Web Services, Processes and Applications

4.1 OWL-S and WSMO

4.1.1 OWL-S

"OWL-S (OWL-S: Semantic Markup for Web Services - White Paper)
supplies Web service providers with a core set of markup language
constructs for describing the properties and capabilities of their Web services
in unambiguous, computer-intepretable form. OWL-S markup of Web
services facilitates the automation of Web service tasks including automated
Web service discovery, execution, interoperation, composition and execution
monitoring. Following the layered approach to markup language
development, the current version of OWL-S builds on top of OWL."

OWL-S employs an upper level ontology to describe Web services. The
ontology comprises of a service profile (What does the service provide for
prospective clients?}, service model (How is it used?) and service grounding
(How does one interact with it?).

Figure 2-8. Top level of the OWL-S service ontology (OWL-S: Semantic Markup for Web
Services - White Paper)

Every instance of a published Web service has an instance of the
'Service' class. The properties of the Service class, 'presents', 'describedBy'
and 'supports' point to classes 'ServiceProfile', 'ServiceModel', and
'ServiceGrounding'. "Each instance of a Service will present a
ServiceProfile description, be describedBy a ServiceModel description, and
support a ServiceGrounding description." The ServiceProfile provides the
information needed for an agent to discover a service, while the
ServiceModel and ServiceGrounding together provide information for an
agent to use the service. Figure 2-8 shows the upper level service ontology in
OWL-S.

Semantic Annotation in Web Services 53

4.1.2 WSMO

Web Service Modelling Ontology WSMO, also a W3C submission, is a
conceptual model for Semantic Web services. It comprises of an ontology of
core elements for Semantic Web services, described in a formal description
language (WSML) (WSML, Web Services Modeling Language) and also
has a execution environment (WSMX) (WSMX, Web Service Execution
Environment,). WSMO was derived and based on the Web Service
Modelling Framework (WSMF) (D Fensel et al. 2002).

In WSMO, Ontologies provide the terminology used by other WSMO
elements to describe the relevant aspects of the domains of discourse; Goals
represent user desires which can be fulfilled by executing a Web service; and
Mediators describe elements that overcome interoperability problems
between different WSMO elements. WSMO considers three levels of
mediation - Data Level (to mediate heterogeneous Data Sources), Protocol
Level (to mediate heterogeneous Communication Patterns) and Process
Level (to mediate heterogeneous Business Processes).

WSMO and OWL-S, both adopt the same view towards having service
ontologies to build semantic Web services. OWL-S is based on OWL and
represents rules using the Semantic Web Rule Language (SWRL). WSMO
has it own family of languages WSML which is based on Description Logics
(Description Logics) and Logic programming (Lloyd 1987).

4.2 WSDL-S

WSDL-S, very recently submitted to the W3C, provides a mechanism to
annotate the capabilities and requirements of Web services (described using
WSDL) with semantic concepts defined in an external domain model.
Annotations are achieved using WSDL extensibility elements and attributes.
Figure 2-9 shows how semantic annotations are associated with various
elements of a WSDL document (including inputs, outputs and functional
aspects like operations, preconditions and effects) by referencing the
semantic concepts in an external domain semantic model. The domain model
can consist of one or more ontologies.

54 Semantic Web Services, Processes and Applications

WSDl, Domain Model

Figure 2-9. Externalized representation and association of semantics to WSDL elements
(WSDL-S, Web Service Semantics)

By building on existing Web service standards, something the
community is already familiar with, WSDL-S shows good promise of
acceptance and quick realization. Externalizing the domain models allows
WSDL-S to take an agnostic view towards semantic representation
languages. This allows developers to build domain models in any preferred
language (not necessarily in OWL as required by OWL-S) or reuse existing
domain models. This is a huge advantage since before OWL was popular,
quite a few domain models were developed using RDF/S and UML. Table 2-
4 below shows the basic extensibility elements and attributes used by
WSDL-S and their purpose. The reader should notice that WSDL-S refers to
what OWL-S calls the profile model. The OWL-S process model compares
with BPEL4WS (Business Process Execution Language for Web Services
version 1.1,) and is not a part of the WSDL-S specification.

Figure 2-10 shows an example of a WSDL-S document. In this WSDL-S,
"processPurchaseOrder" is an operation whose output message element
"processPurchaseOrderResponse" has been annotated using the
modelReference and schemaMapping attributes. Also present are semantic
annotations on the preconditions and effects of the operation and a category
annotation on the interface element. Associating semantics with these Web
service elements enables automation of service discovery, composition and
invocation.

Semantic Annotation in Web Services

Table 2-4. WSDL-S Extensions (Goraadam et al. 2005)

55

Extension Element /
Attribute

modelReference
(Elsment: Input and

Output Message types)

schemaMappbg
(Element: Input and

Output Message types)

modelReference
(Element:
Operation)

pre-conditions
(Parent Element:

Operation)

effects
(Parent Element:

Operation)

category
(Parent Element:

Operation)

Description

Semantic annotation of WSDL input
and output message types with
concepts in a semantic model.

Association of stnjctural and syntactic
mappings between WSDL message
types and concepts in a semantic

model.

Captures the semantics of the
functional capabilities of an operation.

Set of semantic statements (or
expressions represented using the

concepts in a semantic model) that are
required to be true before an operation

can be successfully invoked

Set of semantic statements (or
expressions represented using the
concepts in a semantic model) that

must be true after an operation
completes execution.

Service categorization information that
could be used when publishing a
service in a Web Services registry

such as UDDI.

56 Semantic Web Services, Processes and Applications

<xs:element name= "processPurchaseOrderResponse" type="xs:string
wssein:modclRyference="POOntology#OrderConfirmation"
wssem:schem«Mappmg=" http://lsdis.cs.uga.edu/projects/nfieteor-s/wsdI-s/exaniples/
sample.xq"/>
</xs:schema>
</types>
<interface name:="PurchaseOrder">
<wssem:ciitegory name=:"Eiectronics" taxonomyURI="http://www.nalcs.com/"

taxonomyCode="443112">
<operation name="processPurchaseOrder" pattem=wsdl:in-out
modelReference = "rosetta:#RequestQuote" >
<input messageLabel = "processPurchaseOrderRequest"
element="tns;processPurchaseOrderRequest'7>
<output messageLabel ="processPurchaseOrderResponse"
element="processPurchaseOrderResponse"/>
<!—Precondition and effect are added as extensible elements on an operation>
<wssem:precondition name="ExistingAcctPrecond"
wssein:modelRel'erence="POOntology#AccountExists">
orsscnircffcct name="ltemReservedEffect"
\vssem:m«delRefeiencc="POOntology#ItcmReserved"/>
</operation>
</interface>

Figure 2-10. Sample WSDL-S document

4,2.1 Radiant - WSDL-S Annotation Tool

The semi-automatic creation of a WSDL-S document depends on the
automation of the matching and mapping process discussed in Section 3.
Radiant (Gomadam et al. 2005), a manual WSDL-S annotation tool allows
users to create WSDL-S files by providing a 'point and cliclc' and 'drag and
drop' interface to annotate an existing WSDL file using one or more
ontologies. Figure 2-11 shows a snap shot of the tool. The tool offers tree
representations of the source WSDL files (1) and OWL files ((3) and (4))
simultaneously to let the user choose the most appropriate semantic match.
The WSDL-S file that is generated is shown in (2).

Semantic Annotation in Web Services

'^i¥!Mit^mmm«»*fmikffmmMmtim$i:wmi

57

^l^ff^^^s^^ H. . - -J . r . . .

j , . . - i l .

Figure 2-11. Radiant - WSDL-S Annotation tool (Gomadara et al. 2005)

5. CONCLUSIONS

Creating semantic markup of Web services to realize the vision of
Semantic Web services has received a lot of attention in the recent years. A
direct offshoot has been the development of agent technologies that can
utilize these annotations to support automated Web service discovery,
composition and interoperability. For the same reasons we recognize the
value add that automated semantic annotation frameworks can bring to the
Web service community. This chapter has therefore been an attempt to point
the reader to existing work in the areas of semantic annotation of Web
resources and Web services in particular. The issues that need to be
addressed in the context of annotation of Web services are quite different
from traditional Web resource annotation frameworks and therefore deserve
attention. Challenges of automating (or reducing human involvement) the
matching of heterogeneous schemas, representation and use of mappings for
Web services are constantly being addressed.

The interested reader is encouraged to refer to resources mentioned in the
Additional Readings section 7 below to gain an in-depth understanding of

58 Semantic Web Services, Processes and Applications

related topics. A Google Scholar search on topics like Semantic
Heterogeneity that introduces the case for matching, Evaluation of metadata
quality, Disambiguation etc. are possible resources to look at. Projects such
as METEOR-S (METEOR-S: Semantic Web Services and Processes) focus
on the use of semantics in the life cycle of Web services. Readers are
encouraged to visit the web site of METEOR-S and that of similar projects
to stay abreast with the state-of-the-art technology and research.

6. QUESTIONS FOR DISCUSSION

Beginner:
1. Why is there a need for semantic markup of Web resources?
2. What is Entity Disambiguation?
3. What does the semantic markup of Web services offer or enable?
4. What are the four types of semantics that are useful in the life-cycle of a

Web process?
5. Define semantic matching and mapping and give an example.
6. What is the fundamental difference between what WSDL-S advocates

and the approach used by WSMO or OWL-S?

Intermediate:
1. Why do Semantic Web annotation tools need to disambiguation capability

built into them?
2. Discuss how the annotation of Web services is different from annotation

of a text document.
3. At what stages of the life-cycle of a Web process are the four semantics

used?
4. Why is data integration a problem in Web services and how are

ontologies used to facilitate this problem?

Advanced:
1. How can one measure the quality of annotations generated by semantic

annotation tools?
2. Why is a semantic match between message elements not sufficient to

make a service composition operational?
3. Compare and contrast WSDL-S with OWL-S and WSMO?

7. SUGGESTED ADDITIONAL READING

Topic: Matching, Mapping, Disambiguation

Semantic Annotation in Web Services 59

• Semantic Heterogeneity in Global Information Systems - The Role of
Metadata, Context and Ontologies (Kashyap et al. 1998)

• Semi-automatic Composition of Web Services using Semantic
Descriptions (Sirin et al. 2002)

• Generic Model Management: Concepts and Algorithms (Melnik 2004)
• Reference reconciliation / Disambiguation (Dong and al 2005)

Topic; General
• Changing Focus on Interoperability in Information Systems: From

System, Syntax, Structure to Semantics (Sheth 1998)
• Image Annotation (Hollink et al. 2003) (Wenyin et al. 2001)
• Evaluating the quality of metadata or annotations (Metadata Quality

Evaluation)
• A Conceptual Architecture for Semantic Web Enabled Web Services

(Bussler et al. 2002)

Projects and initiatives
• METEOR-S (METEOR-S: Semantic Web Services and Processes)
• Semantic Web Services Interest Group (Semantic Web Services Interest

Group)
• Semantic tools for Web services (Semantic tools for Web services)
• Semantic Web Services Initiative (SWSI) (Semantic Web Services

Initiative)
• Semantic Web Services Home Page (Semantic Web Services Home

Page)

8. REFERENCES

A Maedche et al., MAFRA.
Annotation Tools http://annotation.semanticweb.org/tools
Berners-Lee T et al., The Semantic Web. Scientific American. 2001.
Blume M, Automatic Entity Disambiguation: Benefits to NER, Relation Extraction, Link

Analysis, and Inference. International Conference on Intelligence Analysis, 2005.
Business Process Execution Language for Web Services version LI, http://www-

128.ibm.com/developerworks/library/specification/ws-bpel/
Bussler C et al., A Conceptual Architecture for Semantic Web Enabled Web Services. 2002.
Calvanese D et al., Ontology of integration and integration of ontologies. In Description

Logic Workshop 2001, 10-19.
Crub'ezy M et al. Ontologies in support of problem solving. Springer, 2003.
D Fensel et al.. The Web Service Modeling Framework WSMF. 2002 Electronic Commerce

Research and Applications, 1 (2).
Description Logics http://dl.kr.org/

60 Semantic Web Services, Processes and Applications

Dill S et al., SemTag and seeker: bootstrapping the semantic web via automated semantic
annotation. 2003.

Dong X et al., Reference Reconciliation in Complex Information Spaces. 2005.
Extensible Markup Language (XML) http://www.w3.org/XML/
F Hakimpour et al., Resolution of Semantic Heterogeneity in Database Schema Integration

Using Formal Ontologies. 2005 Information Technology and Management.
Fu Xiang et al., Analysis of interacting BPEL web services. WWW, 2004, 621-630.
Goble CA et al.. Conceptual Open Hypermedia = The Semantic Web? 2001.
Gomadara K et al., Radiant: A tool for semantic annotation of Web Services. The Proceedings

of the 4th International Semantic Web Conference (ISWC 2005) 2005.
Guha R. et al.. Tap: Towards a web of data.. htlp://tap.stanford.edu/.
Hammond et al.. Semantic Enhancement Engine: A Modular Document Enhancement

Platform for Semantic Applications over Heterogeneous Content. 2002.
Han H et al., Two supervised learning approaches for name disambiguation in author

citations. Proceedings of the 4th ACM/IEEE-CS joint conference on Digital libraries,
2004.

Handschuh S et al.. Authoring and annotation of web pages in CREAM. 2002.
Heflin J et al., SHOE: a knowledge representation language for Internet applications. 1999.
Hess A et al, Machine Learning for Annotating Semantic Web Services. 2004a.
Hess A et al., ASSAM: A Tool for Semi-Automatically Annotating Semantic Web Services.

2004b.
Hollink L et al., Semantic annotation of image collections. 2003.
Kahan J et al., Annotea: an open RDF infrastructure for shared Web annotations. 2002.
Kalashnikov DV et al, A probabilistic model for entity disambiguation using relationships.

SIAM International Conference on Data Mining (SDM), 2005.
Kalfoglou Y. et al, Ontology mapping: the state of the art: The Knowledge Engineering

Review. 2003,18(1). 1--31.
Kashyap V et al. Semantic Heterogeneity in Global Information Systems: The Role of

Metadata, Context and Ontologies. 1998.
Kementsietsidis A et al, Mapping Data in Peer-to-Peer Systems: Semantics and Algorithmic

Issues. SIGMOD, 2003, 325-336.
KIM Knowledge Base http://www.ontotext.com/kim/KBStatistics.pdf
Kogut P et al, AeroDAML: Applying Information Extraction to Generate DAML

Annotations from Web Pages. 2001.
Lloyd JW, Foundations of logic programming. 1987.
Melnik S. Model Management: First Steps and Beyond German Database Conference, 2005
Melnik S. Generic Model Management: Concepts and Algorithms, Ph.D. Dissertation,

University of Leipzig, Springer LNCS 2967, 2004.
Metadata Quality Evaluation. SIG CR.

http://www.asis.org/Conferences/AM05/abstracts/216.html
METEOR-S: Semantic Web Services and Processes http://lsdis.cs.uga.edu/projects/meteor-s/
Model Management http://research.microsoft.com/db/ModelMgt/
Oldham N et al, METEOR-S Web Service Annotation Framework with Machine Learning

Classification. Proceedings of the 1st International Workshop on Semantic Web Services
and Web Process Composition (SWSWPC'04), In Conjunction with the 2nd International
Conference on Web Services (ICWS'04), 2004, 137 - 146.

OWL-S, OWL-based Web Service Ontology, http://www.daml.org/services/owl-s/
OWL-S: Semantic Markup for Web Services - White Paper.

http://www.daml.Org/services/owl-s/l.0/owl-s.html

Semantic Annotation in Web Services 61

Patil A et al., METEOR-S Web service Annotation Framework. The Proceedings of the
Thirteenth International World Wide Web Conference, 2004, 553-562.

Popov B et al., KIM - Semantic Annotation Platform. 2003.
PROTON Ontology http://proton.seraanticweb.org/
RDF Vocabulary Description Language 1.0: RDF Schema http://www.w3.org/TR/rdf-

schema/
Reeve L et al., Survey of Semantic Annotation Platforms. 2005.
Resource Description Framework. http://www.w3.org/RDF/
S.B. Davidson et al., Semantics of Database Transformations: Semantics in Databases. 1995.

55-91.
Semantic Search - The SHOE Search Engine

http://www.cs.umd.edu/projects/plus/SHOE/search/
Semantic tools for Web services http://www.alphaworks.ibm.com/tech/wssem
Semantic Web Activity Statement http://www.w3.org/2001/sw/Activity
Semantic Web Services Home Page http://www.daml.org/services/
Semantic Web Services Initiative http://www.swsi.org/
Semantic Web Services Interest Group http://www.w3.org/2002/ws/swsig/
Sheth A., Changing Focus on Interoperability in Information Systems: From System, Syntax,

Structure to Semantics. 1998 Interoperating Geographic Information Systems. 5-30.
Sheth A. Early work in database research on schema mapping/merging/ transformation,

semantic heterogeneity, and use of ontology and description logics for schematic and
semantic integration Dagstuhl Seminar on Semantic Interoperability and Integration, 2004.

Sheth A.P. Semantic Web Process Lifecycle: Role of Semantics in Annotation, Discovery,
Composition and Orchestration, Workshop on E-Services and the Semantic Web, 2003.

The SHOE Knowledge Annotator
http://www.cs.umd.edu/projects/plus/SHOE/KnowledgeAnnotator.html

Sirin E et al.. Semi-automatic Composition of Web Services using Semantic Descriptions.
2002.

Sivashanrnugam K. et al.. Adding Semantics to Web Services Standards. Proceedings of the
1st International Conference on Web Services, 2003.

Staab S et al.. An annotation framework for the semantic web. 2001.
Stunune G et al. FCA-Merge: Bottom-up merging of ontologies 7th Intl. Conf. on Artificial

Intelligence, Seattle, WA, 2001.
UDDI Technical White Paper

http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf
Universal Description, Discovery and Integration http://www.uddi.org/about.html
Verma Kunal et al. Optimal Adaptation in Autonomic Web Processes with Inter-Service

Dependencies LSDIS Lab Technical Report, 2005.
Web Ontology Language, OWL http://www.w3.org/TR/owl-features/
Wenyin L et al.. Semi-automatic image annotation. 2001.
WSDL-S, Web Service Semantics http://www.w3.org/Submission/WSDL-S/
WSML, Web Services Modeling Language, http://www.wsmo.org/wsml/
WSMO, Web Services Modeling Ontology, http://www.wsmo.org/
WSMX, Web Service Execution Environment,. http://www.wsmx.org/
XML Linking Language (XLink) Version 1.0 http://www.w3.org/TR/2001/REC-xlink-

20010627/
XQuery 1.0: An XML Query Language http://www.w3.org/TR/xquery/
XSL Transformations (XSLT) http://www.w3.org/TR/xslt

Chapter 3

WEB SERVICES MODELING ONTOLOGY

Michal Zaremba, Mick Kerrigan, Adrian Mocan and Matt Moran
Digital Enterprise Research Institute (DERI), Ireland, National University of Ireland,
Galway, Ireland- <firstname.lastname>@deri.org

1. INTRODUCTION

Existing technologies enabling the integration of enterprise systems, use
very few of the capabilities of modern computers. For example, the activity
of finding services, which should deliver expected enterprise functionality,
has to be driven by humans. The process of assembling pieces of
functionality into complex business processes also involves human
interaction. Finally translating between different message formats, which are
exchanged between enterprises systems, cannot be done automatically.
Computers and computer networks are used mainly for storing and sending
information, but the interpretation of this information is done by software
engineers and domain experts. It is currently a manager's responsibility, not
a computer's, to find services and to make decisions about their suitability.
A software programmer has the responsibility of assembling these services
into a complex process block. Finally a domain expert is responsible for
defining mappings between the message formats sent by one system and the
formats expected by the second.

Web Services have promised to solve some of these problems, but
because of their syntactical nature', they have failed in most of these cases

' existing specifications cannot formally specify what services provide and how they should
be used, so these descriptions can not be automatically processed by machines

64 Semantic Web Services, Processes and Applications

and humans must still be kept in the loop. According to Tidwell (Tidwell),
Web Services are self-contained, self-describing, modular applications that
can be published, located, and invoked over the Web. This definition, like
any of many such definitions describing Web Services, makes no comment
on who should publish, locate and invoke them. The hidden answer is that
these are the humans, who are involved in almost every step of Web
Services usage process. The unquestionable success of existing Web Service
specifications lies in their ability to separate service interface from its
implementation, based on standards which were accepted by all the major
players of the IT industry. However these standards lack an appropriate
semantic framework allowing for automation of many of the processes
which are currently handled manually.

The application of semantics to Web Services can be used to remove
humans from the integration jigsaw and substitute them with machines.
There are many problems which Semantic Web Services (SWS) could be
used to resolve. SWS will put in place an automated process for machine
driven dynamic discovery, mediation and invocation. Work that will be
presented in this chapter does not question the enormous success of Web
Services, but rather this chapter recognizes the need to extend the existing
Web Service standards with semantics to enable their full automation. The
purpose of this chapter is to introduce and provide an overview of the Web
Services Modeling Ontology (WSMO), a fully-fledged framework for SWS,
showing a reader practical examples aimed at explaining the application of
WSMO concepts to a real world scenario. First we present a very simply use
case from the e-banking domain, which is used in an overview of WSMO
concepts. One of the major intentions of this chapter is to present the
technological framework for SWS development around WSMO. We discuss
and present some of the key technologies related to the conceptual
framework of WSMO, especially the Web Services Modeling Execution
Environment (WSMX), which is its reference implementation.

The chapter is structured as follows: Section 2 presents a motivational
use case for Semantic Web Services, Section 3 introduces WSMO and its
top level concepts, Section 4 discusses selected technologies for WSMO,
Section 5 compares competitive approaches, and Section 6 concludes the
chapter.

2. CASE STUDY - APPLICATION FOR SEMANTIC
WEB SERVICES

In this section we introduce an application from the banking industry as
an example of how Semantic Web Services can be used to provide an

Web Services Modeling Ontology 65

improved customer service. Our aim is to illustrate the benefits offered by
Semantic Web Services in a familiar scenario. The application, for this use
case, allows the comparison of the mortgage interest rates being offered by
banks online. The emergence of internet banking has greatly increased the
competitiveness of the market for services such as mortgage lending. Banks
within the European Union (EU) can provide online banking facilities to any
citizen of the EU. Many offer online tools allowing prospective bank
customers to see, at a glance, current mortgage rates and the amount they
could borrow. These tools are often constrained by being limited to the
mortgage products offered by just one bank.

Third party websites are increasingly available that aggregate
information from multiple banks allowing the comparison of the various
mortgage products on offer. Different techniques can be used by these
websites to retrieve data from the individual banks. In the next paragraphs,
we describe three of the most common.

Manual population involves one or more humans researching the
products offered by various banks based on telephone calls and investigation
of marketing material - both print and internet based. This works best when
interest rates are stable and the number of banks in the marketplace remains
static. The reality is that neither of these conditions is likely to be true.
Interest rates change and new online banks appear regularly.

Screen scraping is where a software application reads the HTML
content of a Web page and extracts the required data. For example, the
scraper may read the Web page used by a bank to publish details of the
mortgage rates the bank is offering. The advantage is that, when it works, the
information is always up-to-date. However, the technique tightly links the
scraping application with the structure of the HTML page advertising the
mortgage rates. These pages change frequently and each change requires the
scraping application to be redesigned.

Web Services are where the banks themselves provide an online
application using standard Web technology that allows their interest rates to
be requested on demand. The advantage is that the interface to this
application usually remains quite stable - requiring less ongoing
maintenance at the client application side. Another advantage is that Web
service technology is increasingly standards based. A drawback with Web
Services is that the technology, by itself, does not help service requesters
understand the meaning of the data or messages that they should exchange
with the service. This must be determined by a human before the service is
invoked for the first time.

Although Web Services provide the best solution of the three approaches
described above, human intervention is still required to find services offered
by banks online, interpret the data and the messages that the various banks'

66 Semantic Web Services, Processes and Applications

services can support, and know how to invoke those services. Semantic Web
Services address these problems by providing machine-understandable
descriptions of what the service can do {capability) and how to communicate
with it (interface). The use of ontologies as the basis for the descriptions
guarantees that they are unambiguous and machine-understandable. In our
banking example, an application would automatically discover new
Semantic Web Services offering mortgage rate information as they became
available. When such a service is located, the description of the interface
would be examined automatically to determine how the application and
service should communicate. Once data mismatches have been resolved, the
application retrieves the information about mortgages as required. The whole
operation is transparent to the customer and is always up-to-date.

3. THE WEB SERVICES MODELING ONTOLOGY

The Web Services Modelling Ontology (WSMO) initiative provides a
complete framework enhancing syntactic description of Web Services with
semantic metadata. The WSMO project^ is an ongoing research and
development initiative aiming to define a complete framework for SWS and
consisting of three activities:
• WSMO, which provides formal specification of concepts for Semantic

Web Services,
• WSML (Web Services Modelling Language), which defines the language

for representing WSMO concepts;
• WSMX (Web Services Execution Environment), which defines and

provides reference implementation allowing the execution of SWS

As depicted in Figure 3-1, there are four top level WSMO concepts:
Ontologies, Goals, Web Services and Mediators.

In a nutshell. Ontologies provide formal terminologies which interweave
human and machine understanding; Goals formally specify objectives,
which clients would like to achieve by using Web Services; Web Services
are the formal descriptions required to enable the automatic processing of
Web Services, and finally Mediators enable handling any possible
heterogeneity problems. More detailed explanation with the examples can be
found in the following sections.

^ http://www.wsmo.org

Web Services Modeling Ontology 67

Objectives that a client wants to
actiieve by using Web Services

Goals

Provide the m^^J^^^^^^^^ Sennantic description
formally specified ^ ^ H i °^ ^^ '^ Services:
terminology Ontologies ^^^M ^ ^ ^ H ^^ '^ Services - Capability (functional)
of the information ^ ^ | ^ ^ H " Interfaces (usage)
used by all other
components

Mediators

Connectors between components
with mediation facilities for handling
heterogeneities

Figure 3-1. WSMO Top Level Concepts

3.1 Ontologies

The Web has revolutionised the publishing and sharing of information.
The only obstacle to gaining access to this information is a communication
link and simple software that can render and display HTML Web pages. The
openness of the Web means the volume of published information is growing
exponentially resulting in what is commonly termed 'information overload'.
Finding specific data in this sea of information becomes increasingly
difficult. Already, today's most valuable Web tools are search engines - the
most popular of which accept keywords as input and get the results back
fast. Each search engine uses its own proprietary, and usually secret,
algorithm when determining what results to give back and in what order the
results should be displayed.

It can often be difficult to extract relevant information from the retrieved
search results. Sometimes, relevance can only be determined by sifting
through the result, one by one. Although not difficult for a small number of
search results this becomes impractical as the number of links increases.
Ontologies provide a means to greatly help in querying for knowledge on the
Web by enriching information with descriptions of its meaning.
Significantly, these rich descriptions can be interpreted by computer systems
allowing them to provide intelligently interpret the results of Web queries.

Ontology is a philosophical term meaning the study of things that
actually exist. In the context of computer science, ontologies define formal
shared descriptions of the things that exist in particular domains of interest
as well as the relationships that exist between those things. Gruber (Gruber,
1993) defines an ontology as a formal specification of a shared
conceptualization - formal because the descriptions it contains must have a

68 Semantic Web Services, Processes and Applications

precise provable meaning, and shared as an ontology is only valid if its
definitions are accepted by a community of users.

Ontologies by themselves are static sources of knowledge but become
very powerful instruments when combined with logic and reasoning.
Knowledge can be represented formally, using logical languages, as facts
that can be interpreted and reasoned about by machines. Reasoning allows
implicit knowledge to be inferred from existing knowledge and form an
extremely powerful tool when combined with ontologies. In the case of a
search engine returning results based on logical reasoning, the engine could
also provide the user with the logical proof of where the results came from,
if this was necessary.

In WSMO, the basic building blocks of an ontology are concepts,
relations, functions, instances, and axioms. Concepts are descriptions of
things that exist in the domain of the ontology. For example, a banking
ontology would probably include concept definitions for bank, account,
customer, deposit, loan, and so on. Here is an example of a simplified
WSMO concept definition for a bank account:

concept bank_account
accountNumber ofType validAccountNumber
owner ofType customer
balance ofType currency
overdraftLimit ofType currency

Concepts may contain attributes with names and types. Relations
describe interdependencies between multiple concepts. The relation married-
to describes an interdependency between a man and a woman. Functions are
special relations that result in a single typed value. For example, a function
might be defined to return the amount of a monthly loan repayment based on
the amount of the loan, its duration and the interest rate.

Where ontologies describe the conceptual model for a particular domain,
instances are the actual facts described using these concepts. For example
the details of each individual customer would be used to populate instances
of the customer concept. Axioms are the logical expressions used in WSMO
for various purposes including the definition of constraints of data, the
definition of relations.

3.2 Goals

A service requester uses Goals to represent the type of service that they
are seeking by specifying what capability they would like that service to
offer and what public interface they would like it to provide. Where Web

Web Services Modeling Ontology 69

Service descriptions are intended to provide detailed descriptions of the
mechanics of how a service provides its capability and behaviour, Goal
descriptions describe what capability and behaviour the requester would like
to find. Importantly, the Goal is described in terms of ontologies used by the
requester. The ability to model both Goals and Web Services provide a
distinct conceptual separation between the points of view of service
requesters and providers. This allows more flexibility in how service
requesters and providers are brought together than is possible with current
Web Service technology.

For example, the following steps would be needed to search for a Web
Service offering mortgage interest rate comparisons. First, a suitable service
must be located in a UDDI repository. The requester might try looking for
services with the name 'mortgage'. If no services were located, they might
try a search on 'home loan' or 'banking services'. If a service is located, its
textual description can be checked to see if it fits the requirements. However,
as service descriptions provided in UDDI are informal, the requester must
assume that their understanding is the same as that intended by the service
provider. If the requester is satisfied with the Web Service, the associated
WSDL document provides the syntactic description of what messages the
service accepts and what transport protocol to use when interacting with the
service. The input and output messages are described in XML, in terms of an
XML schema. To make an invocation of the Web Service, the requester may
have to adjust their data to fit the service description. This example would
require the interaction between service requester and service provider to be
tightly coupled together. If the requester wants to use another banking
service later, they will have to repeat the entire process of finding and
binding to a suitable service again.

Describing both Goals and Web Services separately using the Web
Service Modelling Ontology shifts the responsibility of matching service
requests to service descriptions from the requester to Semantic Execution
Environments, such as WSMX, which can interpret the requester's Goal and
carry out whatever discovery, mediation and invocation mechanisms are
required to connect the service requester to the service provider at run-time.
This is distinct from the design-time binding required in the WSDL example
described in the last paragraph. WSMO Goals comprise of the following sub
concepts: Capability, Interface, Imported Ontologies and Used Mediators.

3.3 Web Services

Informally, in terms of current specification, the term "Web Service" is
usually understood as a composition of three major elements: (1) interface
descriptions captured by WSDL documents, (2) the communication protocol.

70 Semantic Web Services, Processes and Applications

SOAP using XML to exchange messages and (3) UDDI repositories
allowing potential users to find services that are offered by providers. In
WSMO the Web Services concept is not directly related to WSDL, SOAP
and UDDI. In the WSMO context, a Web Service is a formal description
required to enable the automatic processing of Web Services. With WSDL,
SOAP and UDDI anybody can use a Web Service regardless of the
programming language, which has been used to implement the functionality
of the service. Similarly, WSMO focuses on the external Interface of the
Web Service, while its internal implementation remains out of the scope of
WSMO. The Web Service description in WSMO provides rich descriptions
enabling not only humans, but also software entities "understand" the
capabilities and interfaces of the service. Such an unambiguous description
of a Web Service with well-defined semantics can be processed and
interpreted by software agents without human intervention. This enables the
automation of the tasks involved in the Web Service usage process such as
discovery, selection, mediation, composition, execution and monitoring.
Having appropriate information, software agents can provide automatic
matching between Goals received from bank clients and Web Services
offered by banks. While the interest rates from a particular bank would not
be directly included in a Web Service definition, the capabilities of the
service would be defined in a way, that the software agent can "draw"
conclusions about the service and its suitability for obtaining information
about interest rates.

All the information, stored in the WSMO Web Service description,
contains certain aspects of the functionality and behavior of the actual
service. The functional aspects are described by the Capability of the
service. The behavioral aspects are addressed by the Interface of the service,
which contains both the Choreography, which expresses the interface for
consumption and the Orchestration, which defines how functionality can be
achieved by aggregating other Web Services.

The Capability describes the functionality of a Web Services from the
black box perspective allowing for automated Web Services discovery. This
functionality is captured by conditions that need to hold before the Web
Service can be executed and by the results that have been achieved after its
execution. Web Service Capabilities are defined by four notions:
• Preconditions - conditions on the information space that have to hold

before execution; For the e-banking Web Service these can be inputs,
which have to be provided by a client e.g. in the following example these
could be two inputs: (1) an amount of money, which client would like to
borrow and (2) repayment period for a requested mortgage.

Web Services Modeling Ontology 71

capability aibBankWSCapability
precondition

definedBy
?interestRateRequest[

borrowedAmount hasValue ?ainount,
repaymentPeriod hasValue ?period

] memberOf aib#interestRateRequest.

• Assumptions - conditions on the world that have to hold before execution
e.g. the fact that a client is coming from a member country of European
Union would be an assumption,

• Postconditions - conditions on the information space after execution.
There are no postconditions for the simple example of e-banking use
case. But if after checking interest rates, the client would decide to go
ahead and request a mortgage from one particular bank, as a result of
Web Service execution (its postconditions) the mortgage money would
become available to the client.

• Effects - conditions on the world that hold after service execution. Again
there are no effects for a simple example of requesting interest rates. But
in a complex scenario, as a result of Web Service execution, money
would be transferred to client account.

WSMO differentiates two parts of the Web Service Interface that are
concerned with the interaction behavior of the Web Service. WSMO
Choreography specifies how the service achieves its capability by means of
interactions with its user i.e. the communication with the user of the service.
WSMO Orchestration specifies how the service achieves its capability by
making use of other services - i.e. the coordination of other services. We
provide some more details on choreography and orchestration in upcoming
sections. Anyway WSMO Choreography and Orchestration are complicated
topics and the reader is advised to consult the WSMO specifications for
more information and the WSMO deliverables for practical examples of
choreography and orchestration interfaces.

3.4 Mediators

For decades, the attempt to make machines or applications work together,
interoperate with each other, exchange data and share functionality has been
a great challenge both from the technological and efficiency point of view.
The Web has pushed these problems to the extreme by offering an
environment which adds to the practically infinite quantity of information
available. That is, business entities wilUng to interact bring with them

72 Semantic Web Services, Processes and Applications

completely independent applications with various ways of representing and
structuring data. This drives the need for mediators-', third-party systems able
to deal with the potential mismatches that may appear both on the data and
behaviour level between the interacting parties.

The techniques used in developing mediators have to be dynamic and
scalable - hard-coded and one-scenario solutions are not feasible anymore.
Mediators should be flexible systems and easy to extend, assuring loose
coupling between various business entities.

WSMO provides the means of semantically describing mediator systems
by introducing four classes of mediators able to cope with the heterogeneity
problems that might occur between ontologies, web services and goals:
ontology-to-ontology mediators (ooMediators), goal-to-goal mediators
(ggMediators), web services-to-goal mediators (wgMediators) and web
service-to-web service mediators (wwMediators).

ooMediators describe the class of mediators able to solve the
heterogeneity problems between ontologies. Indeed, the ontologies could
represent very helpful tools in classifying and describing the huge amount of
data available on the Web, but they could also be developed in isolation, by
different parties. As a consequence, one can find ontologies describing the
same domain in different terms and, without mediators, applications using
these kinds of ontologies would not be able to exchange data. Also the reuse
of external ontologies might not be possible if the heterogeneity problems
are solved in advance. For example, in our banking scenario, the bank can
use a specific ontology for modelling the details related to mortgages and
interest rates. If the application that aggregates mortgage information from
different sources uses a different ontology to represent its data, an
ooMediator can be used to solve the potential mismatches and conflicts.
Such a mediator points to a concrete mediation solution (as the one
described in Section 4.2) able to actually solve the heterogeneity problems
between the specified source and target ontologies (i.e. the ontology used by
the bank and the ontology used by the application, respectively).

ggMediators are used for coping with the differences and for exploiting
the similarities that may exist between different goals. Constructing goal
ontologies, or explicitly expressing the differences/similarities between
different goals, might facilitate the entire process of discovering a Web
service, or even the process of invoking a particular goal. Any ggMediator
may use the services of ooMediators, in case the goals, between which it

^ One of the first definitions of mediator systems appears in (Wiederhold, 1992) in 1992: "A
mediator is a software module that exploits encoded knowledge about some sets or subsets
of data to create information for a higher layer of applications."

Web Services Modeling Ontology 73

mediates, are expressed using different ontologies. If a client has as goal to
find the mortgage interest rate and there is an already defined goal that asks
for mortgage interest rate and the eligibility of the inquiring client for this
mortgage, a ggMediator can be defined to link these two goals. The
ggMediator assures that any web service that can satisfy the second goal can
satisfy the first one as well.

wgMediators are the class of mediators that address the heterogeneity
problems between a goal and a Web service at two different levels:
functionality (can the Web service completely satisfy the goal?) and
communication (how can the two partners communicate?). The first level
can be addressed in two steps:
• find a goal that is completely satisfied by the Web service
• use the services of a ggMediator that defines the relation between the

initial goal and the newly discovered one.

The communication problem addresses the interface heterogeneity - each
partner in a communication defines its own way of communicating
(communication pattern) with the other one. In case the two patterns do not
exactly match (for example, at some point in time one of them may expect
something that the other one intends to send later), a communication
mediator, also known as process mediator will have to accommodate these
mismatches. In the online banking scenario a wgMediator can link the goal
that asks for mortgage interest rate directly with the web service offering
both the mortgage rates and the eligibility details of the client.

wwMediators are the most complex class of mediators in WSMO,
addressing the heterogeneity problems between different Web services.
These problems may occur when a Web service is invoking one or many
other Web services in order to achieve certain functionality, and implies
three levels of mediation: functionality, communication and cooperation.
The first level can be address in the similar way as for the wgMediators: find
goals that can be completely satisfied by the given Web services, and use
ggMediators for expressing functional relations; the second level can be
address by using wgMediators; the third level, which represents the most
complex one, deals with how multiple Web services can be combined (that
is, in what order should the Web services be combined). Also known as a
problem of composing Web services, this particular level is investigated by
different well-known researchers (Milanovic and Malek, 2004), but no truly
automatic solutions are discovered so far. In our example, if the web service
described above, achieves its functionality by using two other web services,
one for retrieving the mortgage interest rates and the other one to check the
eligibility of a given client for a particular mortgage type, it is the task of a

74 Semantic Web Services, Processes and Applications

wwMediator to take care of how these two web services have to be
combined.

4. SELECTED TECHNOLOGIES FOR WSMO

Creating ontologies and semantic descriptions for Web Services is only
useful if these descriptions can ultimately be applied. Infrastructure is vital
for a technology to be applied. Web servers and web browsers are the
infrastructure that has lead to the success of HTML on the web. An
execution environment for Semantic Web Services is the infrastructure
required to enable automated discover, mediation, selection and invocation
of these services. This section presents the Web Service Execution
Environment (WSMX), by introducing the technologies used and solutions
provided by it. WSMX is an execution environment for finding and using
Semantic Web Services that are described using WSMO. WSMX is a
reference implementation of WSMO and takes the full conceptual model of
WSMO into consideration. Considering current Web Service technologies
there is a large amount of human effort required in the process of finding and
using Web Services. Firstly the user must browse a repository of Web
Services to find a service that meets their requirements. Once the Web
Service has been found the user needs to understand the interface of the
service, the inputs it requires and outputs it provides. Finally the user would
write some code that can interact with the Web Service in order to use it.
The aim of WSMX is to automate as much of this process as is possible. The
user provides WSMX with a WSMO Goal that formally describes what they
would like to achieve. WSMX then uses the Discovery component to find
Web Services, which have semantic descriptions registered with WSMX that
can fulfill this Goal. During the discovery process the users Goal and the
Web Services description may use different ontologies. If this occurs Data
Mediation is needed to resolve heterogeneity issues. Data Mediation in
WSMX is a semi-automatic process that requires a domain expert to create
mappings between two ontologies that have an overlap in the domain that
they describe. Once these mappings have been registered with WSMX the
runtime data Mediation component can perform automatic mediation
between the two ontologies. Once this mediation has occurred and a given
service has been chosen that can fulfill the users Goal WSMX can begin the
process of invoking the service. Every Semantic Web Service has a specific
choreography that describes they way in which the user should interact with
it. This choreography describes semantically the control and data flow of
messages the Web Service can exchange. In cases where the choreography
of the user and the choreography of the Web Service do not match process

Web Services Modeling Ontology 75

mediation is required. The Process Mediation component in WSMX is
responsible for resolving mismatches between the Choreographies (often
referred to as public processes) of the user and Web Service. Running to the
case study in section 2, an example of the sort of mismatches that the
Process Mediator is likely to encounter is where the user wants to login to an
online banking system using a Web Service, in this case the user may want
to send the usemame and password together in one message where as the
Web Service expects two messages, the first containing the usemame and
the second containing the password. In this case the Process Mediator needs
to take the message sent by the user and break it up into two messages,
which are then sent in the correct order to the Web Service. At this point it is
now possible to interact with the Web Service and the users Goal of logging
into the system can be achieved.

More information on discovery can be found in section 4.1, mediation is
described in section 4.2, choreographies of Web Services are presented in
section 4.3 and a selection of front-end tools for use with WSMO and
WSMX are shown in section 4.4.

4.1 Discovery

As already mentioned, with current Web Service technology the process
of finding a Web Service is a manual one. The user must search by hand
through a Web Service repository, which usually provides free-text
descriptions of what the service does. This is a time consuming process and
can be seen as a barrier to quick and efficient integration between potential
business partners. With WSMX it is possible to perform automated
discovery of Web Services on a semantic description of the service. When
the user provides WSMX with a Goal that semantically describes what they
want to achieve, WSMX can perform two types of discovery to find
matching services. These two types of discovery will both return an ordered
list of Web Services, ordered by how well they match the users Goal and are
described in the following paragraphs.

Keyword Based Discovery. The keyword based discovery process
involves matching keywords present in the user's Goal with keywords
present in the Web Services semantic description. While this particular
approach does not have well defined semantics and could suffer from natural
language ambiguity issues it is useful to filter a large amount of Web
Services down to a smaller more manageable set on which more advanced
techniques can be used. There are a number of places that keywords can be
found in the Web Service description, in the value sections of non-functional
properties, for example title, subject and description, in the identifiers of the

76 Semantic Web Services, Processes and Applications

concepts used in the Web Service description and in the logical expressions
defining the capability of the Web Service.

Semantic Based Discovery. Semantic based discovery is a more formal
mechanism for determining if a given Web Service can fulfill a users Goal.
As described in section 3.2 a Web Service description is made up of a formal
description of the capability of the Web Service and the interface of the Web
Service. Performing discovery based on a Web Service involves matching
the capability of the Web Service with the requested capability in the users
Goal, by comparing the pre-conditions, post-conditions, assumptions and
effects of both. When performing this discovery the relationship between the
Goal and Web Service can be a number of different types:
• Exact match: where the Web Service can provide exactly what the Goal

requires.
• Subsumption match: where the Web Service can provide part of what the

Goal requires.
• Plug-in match: where the Web Service can provide what the Goal

requires and provides other functionality also.
• Intersection match: where the Web Service can provide part of what the

Goal requires and provides other functionality also.
• Non-Match: where the Web Service does not provide what the Goal

requires.

Different levels of semantics can be provided in this matching, the richer
the semantics the more time consuming the operation.

4.2 Data Mediation

One of the most important principles of WSMO and of the Web in
general implies that resources are developed in isolation by various parties
and than made available over the internet. In this context, the semantics
meant to disambiguate and to describe data, Web Services or Goals is
expressed in different terms. That is, different ontologies are developed to
model the same domains of activity, this fact adding an additional level of
complexity to all the operations related to Semantic Web Services.

Data mediation has the role of coping with the heterogeneity problems
that may appear at the data level, for example between the requester and a
provider of a Web Service. These problems appear when the application
existing on one side uses a data format or representation unknown to the
other party. In the context of WSMO and WSMX, we assume that both
parties have described their data in terms of ontologies and the solution we
propose tries to resolve the potential mismatches at the semantic level and to

Web Services Modeling Ontology 77

apply the findings from tliis level to the actual data that is exchanged. The
ontology mismatches are solved during design-time by an Ontology
Mapping Tool and the results are applied during run-time by a Runtime
Mediation Component. We describe each of these modules in more detail in
the next subsections.

Ontology Mapping Tool. At this step of the mediation process, the
mismatches existing between the ontologies used to describe the exchanged
data have to be identified and captured in what it is called an alignment
between these ontologies. In WSMX, the alignment consists of set of
mappings that logically express the semantic relation between terms from
one ontology and terms from the other ontology. As in most of the cases, the
initial designers of one or both ontologies fails to completely capture the
semantic of the domain in their model, the tool cannot determine the
alignment in completely automatic and accurate manner''. As a consequence,
the WSMX Ontology Mapping Tool is a design-time, graphical tool that
provides support for semi-automatic mappings creation. The human user (i.e.
the domain expert) is guided through the whole mapping process and they
are asked to validate the suggestions offered by the tool.

The main advantage of this semi-automatic approach is that the tool
transforms the mapping process from a laborious and error-prone task in to
simple choices and validation using a graphical user interface. In particular,
the mappings are expressed as logical rules and their manual editing would
require domain experts with strong background in logics. With this approach
the complexity of the mappings and the burdensome of logics are hidden
under the system's hood: the domain expert places his inputs only through
the graphical interfaces, while the underlying system automatically generates
the corresponding mapping rules.

In the banking domain, the Ontology Mapping Tool can be used to create
mappings between two ontologies that both model the mortgage concept. By
such mappings it is stated that there is a semantic relationship between the
two definitions of the concept; the mappings also describe what this
semantic relationship means.

Runtime Mediation Component. The mappings created by using the
Ontology Mapping Tool are saved in a persistent storage and made available
to the Runtime Mediation Component for use during run-time. At this

'' There are tools that automatically generate an alignment between two given ontologies, but
they cannot guarantee the correctness and the accuracy of these alignments. As WSMX is
a business oriented framework we consider these requirements a must.

78 Semantic Web Services, Processes and Applications

second stage, the mappings are used for a specific mediation scenario, i.e.
instance transformation^ Tliis scenario requires that incoming data
described in terms of one given ontology (i.e. source ontology) has to be
transformed in order to comply with the definitions from another given
ontology (i.e. target ontology). In other words, the source data represented as
source ontology instances has to be transformed and expressed as target
ontology instances.

In order to perform these transformations, the mapping rules generated
during design-time are evaluated in a reasoner and applied on the source
instances. The result consists of a set of target ontology instances, modelling
exacUy the same information as the source instances but conforming to the
specifications in the target ontology.

It is worth mentioning that the run-time mediation process is a
completely automatic one, no human intervention being necessary as long as
the required mappings are available.

4.3 Choreography

An important part of Web Services interface is the choreography^. The
choreography of a Web Service describes the way one can interact with the
service in order to consume its functionality. In other words, the
choreography defines the requester expected behaviour during the Web
Service invocation. The requestors can also define their own choreographies
as part of the goal they want to be accomplished - that is, the requested
choreography, the behaviour they are able to comply with when invoking a
Web Service.

WSMO choreography is expressed in terms of Abstract State Machine
also formerly known as Evolving Algebra. This mechanism is used to
describe systems in a precise manner using semantically well founded
mathematical notations.

There are two main components in WSMX used to manage and to
maintain the interaction between a requester and a provider of a Web Service

Another well known mediation scenario (not required in WSMX) is instance
transformation. By using a mediator that supports this scenario is possible to retrieve data
expressed in terms of various ontologies by posting queries in terms of only one particular
ontology.

The other part of a WSMO Web Service's interface, not discussed in here, is the
Orchestration. It describes the way that the web service functionality can be achieved by
composing several other web services. It is very related as form of representation with
choreography and it is strongly influenced the choreographies of the orchestrated web

Web Services Modeling Ontology 79

in terms of their clioreographies: tiie Choreography Engine and the Process
Mediator.

Choreography Engine. The Choreography Engine has the role of
managing all the operations regarding the choreographies of the two parties
involved in a conversation: This implies:
• Identifying and loading the two choreographies;
• Creating a copy for each of the choreographies (i.e. choreography

instances). These copies are used further as long as the communication
session is maintained.

• Updating the choreography instances in respect with the incoming
messages.

These messages might be sent by the communication partner provoking
an update in the receiver's choreography instance. A response message
could be generated and it will create in its turn an update in the target
choreography instance.

Process Mediator, Choreography describes the behaviour of the service
from the provider point of view, implying that all the requesters of that
particular service should comply with that particular choreography. That is,
the choreography of a requester should be compatible (but not necessarily
equivalent) with the choreography of the service provider in order to enable
communication. As one of the WSMO principles states that all entities
involved in communication are equal partners, we should assume that none
of them is willing to adjust its own choreography to match the other
partner's choreography.

As a consequence there is a need for a Process Mediator, a component
able to solve the communication mismatches that can appear during the
conversation. It takes as inputs each party's choreography and analyses each
incoming message to check if it is expected by the receiver choreography. If
it is, it means that the message can be forwarded to the receiver; if it is not
expected, the message can be transformed (as dictated by Data Mediator for
example) or postponed for later stages of the conversation. The Process
Mediator interacts directly with the Choreography Engine, acting as a
middle layer between the choreographies of the requester and the provider.
Such a process mediator (as well as the Data Mediator) is one of the
technologies that can be used in realizing the types of mediators described
by WSMO (i.e. ggMediators, wgMediators and wwMediators).

If we consider for example the service that checks the eligibility of an
inquiring client for a particular type of mortgage, its choreography can
specify that it expects first a message containing the incoming per year and

80 Semantic Web Services, Processes and Applications

than a message containing the type of mortgage the client is interested in.
Unfortunately, the client application is designed to send first the requested
type of mortgage, to expect for a confirmation and only then to send annual
income of the client. It is the role of the process mediator to inverse the order
of messages and to generate a dummy acknowledgement to enable the
interaction.

4.4 Front-end Tools

As with any emergent technology it is important that end-users can
actually use the technology. Providing high quality front-end tools is a good
way to get a technology adopted. To this end a number of software projects
have emerged attempting to create tools for modeling and using WSMO and
Semantic Web Services. From the case study in section 2, banks providing
Semantic Web Services for obtaining mortgage quotes would use these tools
to create ontologies that model the banking domain and use these ontologies
to semantically describe the Web Services capabilities and interfaces, while
users would use these tools to describe their requirements in the form of a
Goal. Each of these tools is available for download; links are available in
section 9.

Web Services Modeling Toolkit (WSMT)
The Web Services Modeling Toolkit (WSMT) is a framework for the

rapid creation and deployment of homogeneous tools for Semantic Web
Services. A homogeneous toolkit improves the users experience while using
the toolkit, as the tools have a common look and feel. Usability is also
improved as the user does not need to releam how to use the application
when switching between tools. The WSMT was designed to be the front-end
of the WSMX system and provides a number of tools to users:

WSML Editor. The WSML Editor is used to create and manage WSML
documents. It can be used to edit WSMO Ontologies, Mediators, Web
Services and Goals. The first versions of the WSML Editor focused on
the creation of semantic descriptions in WSMO and reading and writing
these semantic descriptions to and from the local machine using the
WSML syntax. Subsequent versions have looked at mechanisms for
visualizing ontologies using directed graphs. These ontology
visualizations make it easier for the domain expert to understand the
relationships between entities in the WSML document.

WSMX Data Mediation Mapping Tool. As described in section 4.2,
data mediation in WSMX is a semi automatic process. Mappings are

Web Services Modeling Ontology 81

required where mediation between two ontologies is required. The
WSMX Data Mediation Mapping Tool is used to create these mappings
between two ontologies. These mappings can then be used by WSMX to
transform instances of the source ontology into instances of the target
ontology, thus resolving data mismatches between partners that use
different ontologies to describe their web services.

WSMX Invoker. The WSMT contains a web service invocation
component that can be used to send messages to and receive messages
from web services. Messages can be received from the web services
both synchronously (immediately following a sent message) and
asynchronously (where the service calls the user back later with a
response). The WSMX Invoker tool makes these components within the
WSMT available to the end-user. The tool allows to user to send
messages to a given service within the WSMX architecture, view the
messages sent to services in the past and view responses received from
these services.

Distributed Ontology Management Environment (DOME)
The DOME project aims to produce a suite of tools for the efficient and

effective management of ontologies. DOME is implemented as a collection
of Eclipse plug-ins that allows users to edit and manage WSMO Ontologies.
These plugins include:

Editing and Browsing. The Editing and Browsing tool provides a tree
structure for representing the concept and relation hierarchies within an
ontology. Users can add new concepts and relations into these
hierarchies as well as adding attributes and parameters to those already
present. The tool also provides a real-time mechanism for switching
between the graphical tree structure and the underlying file format. This
allows users to make changes in one and see those changes reflected in
the other.

Versioning and Evolution. The Versioning and Evolution tool allows
users to mark the versions of a given ontologies. This is necessary as
when an ontology reaches a stable position and individuals start using it,
it becomes necessary to track which versions of a given ontology are
being used by different individuals. Versions of a given ontology are
tracked using the URI that identifies them; this URI is incrementally
changed as the version of the ontology changes. This allows multiple
versions of the same ontology to exist within the same knowledge base.

82 Semantic Web Services, Processes and Applications

Mapping & Merging. The Mapping & Merging tool deals with cases
where there are two ontologies that have an overlap in the domain that
they describe. This tool is used to create mappings between these two
ontologies so that execution environments, for example WSMX, can
perform instance transformation, query rewriting and ontology merging.
The mappings are created by opening two copies of the Editing and
Browsing Tool and dragging items from one ontology to the other.

WSMO Studio
The aim of WSMO Studio is to create a collection of tools to assist

potential users with ontology creation, service description, service discovery
and service composition. These tools are implemented as a collection of
plug-ins for the Eclipse framework. These tools include a WSMO Navigator
for showing the entities in the WSMO description along with individual
form-based editors for each of the WSMO entities. A syntax highlighting
text editor is also available for editing the underlying WSML format for
more advanced user. WSMO Studio also provides interfaces for interacting
with WSMO repositories for storing and retrieving WSMO descriptions.

5. RELATED WORK - RELATIONSHIPS WITH
COMPETITIVE APPROCHES

In addition to WSMO there are two major research initiatives in
Semantic Web Services. The first and largest of these is OWL-S (Martin), a
joint effort by BBN Technologies, Carnegie Mellon University, Nokia,
Stanford University, SRI International and Yale University. OWL-S is an
ontology for semantic markup of Web Services based on the Web Ontology
Language (OWL) (Dean and Schreiber, 2004). The second effort is WSDL-S
(Web Service Semantics) from the LSDIS Laboratory at the University of
Georgia in co-operation with IBM. The next subsections describe these
approaches in more detail using a small set of criteria, followed by a matrix
that summarizes the comparison.

5.1 OWL-S

OWL-S is an OWL ontology for describing Web Services by annotating
them with semantic information described in OWL (a W3C
Recommendation, http://www.w3.org/TR/owl-semantics/). The top-most
concept is Service and this in turn consists of three sub-concepts -
ServiceProfile, ServiceModel and ServiceGrounding.

V^eb Services Modeling Ontology 83

The ServiceProfile describes what the service does at a high level and
provides the means by which the service can be advertised. It also provides
the means by which a service requester can advertise a service that is
required. Within the ServiceProfile, the capability description allows for the
definition of preconditions, inputs, outputs and effects. There are also slots
available in the ServiceProfile description for security parameters, quality
rating and for descriptions based on standard business taxonomies.

The ServiceModel describes how a service works and, as a result, how to
interact with the service. This part of the OWL-S description is responsible
for specifying the service interaction protocol in terms of the messages that
should be exchanged with the service and the control flow of that exchange.

The ServiceGrounding is where the abstract description of the service
process model is grounded to operations in a WSDL document. Through the
ServiceGrounding the actual communication protocols, transport mechanism
and the communication languages used by the service are specified. The
grounding provides the bridge that links the implementation of a Web
Service with its semantic description

Both WSMO and OWL-S address the same problem space. After
identifying fundamental drawbacks with the OWL-S approach, the WSMO
working group was formed to devise a more complete conceptual model for
describing Web Services. Conceptually, unlike WSMO, OWL-S does not
explicitly model separate concepts for Goals and Web Services. Additionally
OWL-S does not explicitly model mediators; rather they are as considered
specific types of services. A detailed discussion of this rationale is provided
in (Lara et al., 2004).

5.2 W S D L - S

WSDL-S is a lightweight approach for adding semantics to Web
Services. It allows semantic representation of inputs, outputs, preconditions
and effects of Web Service operations, by adding extensions to WSDL.
WSDL-S allows semantic annotations using domain models, which are
agnostic to the ontology used to describe the Web Services or its
representation language. It means that ontologies can be used in the
annotation process and be directly included in the WSDL documents. The
annotations of the inputs and outputs in WSDL will be represented as
concepts in an ontology. Additionally, the preconditions and effects
associated with WSDL operations will be defined by the preconditions and
effects of a specific Semantic Web Service description.

84 Semantic Web Services, Processes and Applications

5.3 Matrix of Features and Approaches

The comparison is based on the following features:
• Viewpoint - provider vs. requester
• Mediation - handling heterogeneity between data and process models
• Non-functional properties - additional information about aspects that

may affect service usage
• Grounding - how service descriptions relate to Web Service standards
• Availability of execution environments - how do SWS get used

Table 3-1. Comparison of WSMO, OWL-S and WSDL-S

Approach

OWL-S

WSDL-S

WSMO

Supported
Viewpoints
Single
modeling
element for
both views

Service
provider
view-
same as
with WSDL

Mediation

Does not
treat
heterogeneit
y as a
modeling
issue.
Adopts the
behaviour
of the
ontology
used to
describe
annotations
Supports
mediation
of data and
processes

Non-funct.
props.
Restricted
to the
Service
Profile

Agnostic

Available
to all
WSMO
elements

Grounding

Grounding of
behaviour to
WSDL and
data to XML

WSDL-S is a
legal
extension to
WSDL and,
as such is
directly
grounded
Grounding of
behaviour to
WSDL and
data to XML

Execution
Environment
Described but
details of
impl. are
unavailable.

Any WSDL
compliant
execution
engine could
be extended
for WSDL-S

Open source
provided by
WSMX

6. CONCLUSIONS AND DISCUSSION

Web Services have become another milestone towards providing
interoperability among distributed and independent software systems. But
one major problem has remained unresolved. Although there is abundance of
technologies which theoretically should enable interoperability for disperse
systems, from the practical perspective the process of dynamic creation of
ad-hoc interactions between companies, as envision by Web Services, is still
a fiction. So it is the interoperability issue, not the communication, which
has to be addressed next to enable dynamic collaboration of independent
software entities on the Internet. Web Services specifications based on

Web Services Modeling Ontology 85

commonly agreed standards and implemented in .NET and J2EE
frameworks, are struggling to overcome existing limitations of Web
architecture. Data that is exchanged between Web servers and Web browsers
remains solely dedicated for human consumption, and cannot be readily
processed by automatic software agents. Similarly Web Services and their
underlying XML technology still deal mainly with infrastructure, syntax and
basic representational issues, but not with the meaning of data and processes
that are used by particular systems. Adding semantics to the existing Web
Services technologies is a fundamental requirement if we want to deliver
workable integration solutions for the next Web generation.

Commercial successes of Semantic Web Services are not yet apparent
because the underlying technologies such as presented in this chapter are
still in their infancy. Available specifications and technologies will have to
go through the lengthy standardization process and real effort of consequent
prototype developments, before first commercial solutions are available to
the market. There is widespread agreement and recognition that dynamic
interoperability on the Internet is only possible if resources are semantically
described. WSMO and its related specifications and technologies are
principal candidates to become the backbone on the next Web generation,
enabling software entities to dynamically interoperate over the Internet.

7. ACKNOWLEDGEMENT

This work is supported by the SFI (Science Foundation Ireland) under the
DERI-Lion project and by the European Commission under the projects
DIP, Knowledge Web and ASG. The authors thank all members of the
WSMO (cf. http://www.wsmo.org/) and WSMX (cf. http://www.wsmx.org/)
working groups for fruitful discussions on this chapter.

8. QUESTIONS FOR DISCUSSION

Beginners:
1. Discuss different techniques used by automatic agents to retrieve data

from existing computer systems.
2. Why screen scraping cannot scale?
3. Install WSMT and WSMX on your machine. Create ontologies, Web

Services, Goal and Mediators. Register them with WSMX.

86 Semantic Web Services, Processes and Applications

Intermediate:
1. Explain why existing Web Services specifications are not suitable to

enable automated collaboration between distributed software systems.
2. Discuss each of four building blocks of WSMO. Which of them is the

most important?

Advanced:
1. Thinking about some real use case scenario (different than presented in

this chapter), please explain which elements of automation are the more
important from the others. Why?

2. Imagine an interaction scenario similar with the one exemplified in
Section 4.3 on Choreography. In which case you would require the usage
of both the data and process mediators?

3. Discuss which of the mediation techniques described in this chapter (i.e.
data mediation and process mediation) can be used in creating the four
types of WSMO mediators? Hint: An ooMediator relay on data mediation
for solving the heterogeneity problems between two ontologies.

9. SUGGESTED ADDITIONAL READING

Some key papers that provide more information on WSMO, WSML and
WSMX are:
• D.Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A.

Polleres, C. Feier, C. Bussler and D. Fensel: Web Service Modeling
Ontology. Applied Ontology. Vol. 1, No. 1, 2005.

• H. Lausen, J. de Bruijn, A. Polleres, and D. Fensel: WSML - a Language
Framework for Semantic Web Services. W3C Rules Workshop. In
Proceedings of the W3C Workshop on Rule Languages for
Interoperability, Washington DC, USA, April 2005. Position Paper:
http://www.w3.org/2004/12/rules-ws/paper/44.

• M. Moran, M. Zaremba, A. Mocan and C. Bussler: Using WSMX to bind
Requester & Provider at Runtime when Executing Semantic Web
Services, In Proceedings of the 1st WSMO Implementation Workshop
(WIW2004). Frankfurt, Germany, 2004.

For more information consider reading the following books:
• D. Fensel, Ontologies: A Silver Bullet for Knowledge Management and

Electronic Commerce.
• H. Alesso and C. Smith, Developing Semantic Web Services.
• G. Antoniou and F. van Harmelen, A Semantic Web Primer.

'Web Services Modeling Ontology 87

10. ONLINE RESOURCES (INCLUDING OPEN
SOURCE TOOLS)

Tool
WSMX Execution Environment (WSMX)

Web Services Modeling Toolkit (WSMT)

Distributed Ontology Management Environment
(DOME)

WSMO Studio

URL
http://www.wsmx.org

http://www.wsmx.org

http://dome.sourcel'orge.net

http://www.wsmostudio.org

11. REFERENCES

Dean M. and Schreiber G. (eds.): OWL Web Ontology Language Reference. 2004. W3C
Recommendation 10 February 2004

Gruber T. R., "A translation approach to portable ontology specifications, Knowledge,"
Knowledge Acquisition, vol. 5, pp. 199-220,1993

Lara, R., Roman, D., PoUeres, A. and Fensel, D., "A Conceptual Comparison of WSMO and
OWL-S", Proceedings of The European Conference on Web Services, Erfurt, Germany,
Sept 27-30, 2004, pp 254-269.

Martin D. (editor): OWL-S: Semantic Markup for Web Services, version 1.1 available at
http://www.daml.Org/services/owl-s/l. 1/overview/

Milanovic N., Malek M., Current Solutions for Web Service Composition, IEEE Internet
Computing, vol. 08, no. 6, pp. 51-59, November/December, 2004.

Tidwell D., "Web Services: the Web's next revolution", http://www-
128.ibm.com/developerworks/edu/ws-dw-wsbasics-i.html

Web Service Semantics - WSDL-S," A joint UGA-IBM Technical Note, version 1.0, April
18, 2005. http://lsdis.cs.uga.edu/librarv/download/WSDL-S-Vl.pdf

Wiederhold G., Mediators in the architecture of future information systems, IEEE Computer,
25(3):38-49, March 1992

Chapter 4

KEYWORDS, PORT TYPES AND SEMANTICS: A
JOURNEY IN THE LAND OF WEB SERVICE
DISCOVERY

Karthik Gomadam, Kunal Verma, Amit Sheth and Ke Li.
Large Scale Distributed Information Systems (LSDIS) Lab, Department of Computer Science,
University of Georgia, GA, USA. - (karthik,verma,amit)@cs.uga.edu

1. INTRODUCTION

The evolution of Service Oriented Technology in the recent years has
made SOA and Web Services the candidate technologies to realize
application integration. Web Services are a set of protocols based on XML.
The basic protocols are
1. SOAP: The Simple Object Access Protocol is the messaging protocol for

request and response. SOAP is independent of platforms and network
transport protocols.

2. WSDL: Web Services Description Language describes in a
programmatic manner, the services capabilities and the end point to
invoke a service.

3. UDDI: Universal Discovery, Description, Integration is a cross industry
initiative to facilitate Web Service publication and discovery.

Figure 4-1 describes a basic architecture to realize Web Services using
the above mentioned simple protocols.

In addition to the above mentioned basic protocols additional protocols
have been specified to capture issues related to policies (WS-Policy and WS-
Agreement), security (WS-Security), message reliability (WS-Reliable
Messaging), transactions (WS-Transaction), etc.

90 Semantic Web Services, Processes and Applications

Figure 4-1. The basic Web Service Protocols in action

The growth in SOA has in turn also fueled a growth in the area of Web
Processes, with WS-BPEL emerging as a de-facto specification to specify
Web processes. Figure 4-2 is an illustration of the list of other protocols in
the WS stack. A more comprehensive list can be found at (Wilkes. L).

Business Domain Specific ,, .

Distributed f^anagem^nt W^DM, WS-fiflanagebitity

Provisioning WS-Provisiooing

Security WS-Security

Security Policy WS-S^curtty Poiicy

Transaction WS-Transaction, WS- Coordination

Orchesiratioii WS-BPEL

Routing^Addressing WS-AddressIng

Message Packaging SOAP

Publication and Disc&v&ry UDDi

Service descHptiori WSDL

Business
Domain

Management

Security

TratisacUons
and

business

M^sisagrng

Metadata

Figure 4-2. Partial view of current WS Stack

In this chapter we introduce the UDDI registry framework for Web
Service discovery and pubhcation. The UDDI data types and the different
sections of the UDDI are introduced first. This is followed by a section
introducing the UDDI4J API and using the API to discover and pubhsh Web

Keywords, Port Types and Semantics: A Journey in the Land of Web 91
Service Discovery

Services. In this context the UDDI best practices for Web Service
publication is also discussed.

The inadequacies of syntactic service publication and discovery are
presented in the next section and the reader is introduced to the ideas of
publishing and discovery of semantic Web Services. Web Service
publication and discovery in the METEOR-S and WSMO frameworks is
presented. Later in the chapter Registry federation is discussed in brief. This
followed by a short discussion on UDDI version, suggested reading and
questions for discussion.

2. UDDI

UDDI (UDDI) stands for Universal Discovery, Description, and
Integration. UDDI is a specification for creating a distributed Web based
registry for Web Services. UDDI can be compared to that of a local phone
book. In the same way a phone book has information about businesses and
what they offer and how to reach them, the UDDI registry stores information
about businesses, the services they offer and the technical information about
those services. The End Point Reference (EPR) of a service can be thought
of the phone number of a business in the phone book. UDDI provides three
basic operations.
1. Publish : How service providers publish in the registry
2. Find : How service requestors find the service they want
3. Bind: How service requestors can connect to the service they want.

The rest of the section describes the how different kinds of registry data
which UDDI supports, the data structures in UDDI, how WSDL maps onto
UDDI, followed by publication and discovery (find) in UDDI.

2.1 UDDI Organization: Wliite, Yellow and Green Pages

UDDI is organized into White, Yellow and Green pages.

a. White Pages:
White pages contain information about businesses by organizing
them by business names. The contain information on a business
including the name and the contact details. In addition to these
information, a publisher can also add other information like DUNS
Identifier to uniquely identify himself.

92 Semantic Web Services, Processes and Applications

In UDDI BusinessEntity is used to publish the white page
infoi-mation. BusinessEntity will be discussed with other UDDI data
models.

b. Yellow Pages:
Yellow pages contain categorized information about businesses. One
or more taxonomies are assigned to businesses and users can search
on the taxonomy categories to get all businesses that offer services in
those categories. BusinessEntity is also used to publish the yellow
pages information in UDDI.

c. Green Pages
The technical information about services is stored in Green pages.
All information that are needed to use a particular service can be
found in the Green pages. Green page information can be used via
the BusinessEntity and BindingTemplate data models of UDDI.

The next section introduces the different UDDI data models.

2.2 UDDI Data Models

Having looked at the different ways UDDI organizes its content, in this
section we will look at how the various data models in UDDI are used in
publication and discovery of Web services. UDDI has four different data
structures to specify entry in the registry. The UDDI data structures are
represented as XML documents. Figure 4-3 captures the relationships
between the five data structures.

Business Entity

Business Servte

—»

—•

Binding Template

Binding Template

I ^

[^

T-Mo(tel

T-Mo(tel

Figure 4-3. UDDI data structures

Keywords, Port Types and Semantics: A Journey in the Land of Web 93
Service Discovery

1. <businessEntity>
The BusinessEntity structure contains information about the business and
all the services that it offers. It has all relevant publisher information like
name, contact, relationships with other businesses and description of the
business.

2. <businessService>
A categorized set of services offered by a business is represented using
the businessService data structure. A businessService structure can be a
part of one or more businessElement structures and in the same way a
businessElement can have one or more businessService structures.

3. <bindingTemplate>
After a service is discovered, the binding information about the service is
required to invoke the service. This information is captured using the
bindingTemplate data structure. Each bindingTemplate belongs to one
businessService element.

4. <tModel>
A tModel describes the specification, behavior, concept or a design to
which the service complies. Specific information about interacting with a
service is captured here. Each tModel element has a key, name and a
URL from which more information can be found out about this service.

In addition to these four basic data structures, UDDI also has identifiers
and categories for categorization of the published information. The two xml
elements are specified in the UDDI, viz. <identifierBag> and
<categoryBag>. Identifiers are key value pairs, which can be used to tag an
entry in the registry with additional information like DUNS ID.

UDDI also has a <publisherAssertion> to capture relationship between
various businessEntities. publisherAssertion contains a key for each of the
two businesses whose relationship is being captured, a keyed reference
which points to the asserted relationship in terms of a name-value pair within
a tModel.

2.3 How Does WSDL Map to UDDI?

This section briefly outlines how WSDL maps onto UDDI. As shown in
Figure 4-4, the WSDL types, messages, portType and binding information
are bound to the tModel in UDDI. The EPR's in WSDL are published in

94 Semantic Web Services, Processes and Applications

bindingTemplate. The Service element in WSDL is published in Business
Service.

Service IrnptemantBition

«:|mport>

>F
<pwt |~-

Service Interface

<typeB>
<tTi«s9agB>
<por(Typ9>
-^binding*

UDDI

BusirwssEnlRy

-# j BuainassSefwce

»•>] BInJIngTamptate

^'^.•iBInriingTafnptata

• ^ (Ntoctel | o —

Figure 4-4. Mapping WSDL elements onto UDDI

2.4 Publishing in UDDI

In this section we will look at publishing services in UDDI.

2.4.1 Registry and API infrastructure:

For publication, it is best recommended to set up an UDDI registry. One
can download an open source registry like jUDDI for this purpose. Once you
have your registry up and running, it advised to make sure the permissions
for publication. The relevance of it will become clear as we go on the road to
publication in UDDI. Services can be published in the UDDI using the
UDDI4J API. UDDI4J is an open source API for publishing and discovering
services using an UDDI registry. UDDI4J can be downloaded from
(UDDI4J).

2.4.2 Publisliing using UDDI4J:

Figure 4-5 outlines publishing a service using UDDI4J. The steps give a
brief oudine of publishing a service in UDDI. However to get the exact
methods of various data structures, the reader is advised to consult UDDI4J
documentation before publishing.

Keywords, Port Types and Semantics: A Journey in the Land of Web
Service Discovery

95

Create UDDI Proxy

Obtain the UUID of the
BusinessEntity

Create
BuainessServlce and
assign UUIOofths

BusinsssEntity

Publish the service

Set AuthToken

f>opulaie
BusinessEntity and

publish

Assign properties to
BuslnessService

Add the
BindrngTemplate to the

Create BusinessEntity

Locate tModei /
Category

Create
BindingTemplate

Bind the service to a
tModei

Figure 4-5. Publishing using UDDI4J

3. UDDI BEST PRACTICES

In this section we will describe in brief the UDDI Best Practices
(Curbera. F et al 2002). Although UDDI is not intended to be used only with
WSDL, given the popularity of WSDL amongst service developers and
publishers, OASIS has published a best practices docuement for usage of
WSDL with UDDI. tModels and businessService data structures discussed in
Section 2,2 are most relevant in the UDDI from the perspective of WSDL.

Every WSDL captures the service interface and service implementation.
The key to realize useful synthesis between UDDI and WSDL is to separate
the interface and the implementation. WSDL elements such as message
formats, types, portTypes and bindings form the interface, whilst the service
element that includes the EPR, is the implementation. Such a separation
allows for publishing the various interfaces as tModels in UDDI. These
tModels are referred to as "wsdlSpec tModels". The actual WSDL is referred
to using the overviewDoc field in the tModei.

The main advantage is this practice allows standardization of interfaces.
Service developers can search for suitable interfaces and create the
implementations. Such implementations can then be deployed in the UDDI.

The impact of such a practice can best seen during discovery. Service
Discovery can be done using:
1. Keywords based on Operation names. In operation name based discovery

services are discovered based on operation names. The search is keyword
drive.

96 Semantic Web Services, Processes and Applications

2. Port Types based on published interfaces. In port type or interface driven
discovery, services are discovered based on the wsdlSpec tModels that
they implement.

The best practice document allows for services to be searched based on
port types which are described using service interfaces. This makes
searching for services more efficient than just searching using operation
names. Operation names can in often cases mean nothing about what the
operation does. For example a service might contain an operation named
RequestPurchaseOrder, while that operation in reality might be adding two
integers. However, if a service implements the wsdlSpec tModel for
RequestPurchaseOrder, then there is more guarantee of discovering a service
that meets the user requirements. In the next section we will discuss, why
even portType or interface driven discovery is not sufficient enough.

4. NEED FOR SEMANTICS IN WS-DISCOVERY

Although portType based discovery offers to standardize service
interfaces to facilitate better discovery of services, it is insufficient because
1. It is very difficult to standardize all service interfaces
2. Standardization alone cannot guarantee interoperability at all times. Eg.

A service might implement the RequestPurchaseOrder interface, but
might still have different units for representing weight, money etc.

3. It is hard for machines to understand what an interface or an operation
does, unless the semantics is sufficiently captured. This would make run
time binding of services to processes almost impossible.

4. In the event of a data type mismatch, it would be very difficult to mediate
between services to realize service execution.

Taking these limitations into consideration, we define four types of
semantics for Web Services (A. Sheth, 2003). The semantics are defined
based on the life cycle of Web Processes. Figure 4-6 illustrates the usage the
different types of semantics during the various stages of Web process life
cycle.

We now present the four types of semantics in detail with examples. The
examples are created using WSDL-S. The reader is recommended to look
into OWL-S and WSMO frameworks to understand in depth how they
capture the semantics for Web services. WSDL I.l syntax is throughout to
maintain consistency.

Keywords, Port Types and Semantics: A Journey in the Land of Web
Service Discovery

97

Exception handling
Verification

M
\

- i

Execution

Non-F

Optimization

Constraint rtnaiysia

unctional

_ . i
%

\

k
w—

Data

Interoperability
Discovery

i

i

1
Functional

r .,_l

i Discovery
Composition

Figure 4-6. Semantics during the various stages of Web process life cycle

4.1 Data Semantics

Data semantics is the formal definition of data in input and output
messages of a Web service. Data semantics is created to realize service
discovery and interoperability. Data semantics can be added by annotating
input/output data of Web services using ontologies. In WSDL-S Data
Semantics can be added by using modelReference extensibility element on
messages and types. Figure 4-7 illustrates Data Semantics in WSDL-S.

•««vall: massage nama^ 'Purc*tas6>0rd6rRi9t|ua6iM6SB£>ge">
<w&dl:part name=i"POR«]iiesf type="tnB:PORequBst"
wssem:modelReference«"POOntologyfffNjrchaseOnderRj8quest"/>

<Awdl: message"

Figure 4-7. Capturing Data semantics using WSDL-S

In the above figure, we capture the Data semantics by adding the
ontology type PurchaseOrderRequest to the WSDL message
PurchaseOrderRequestMessage. In the same way we add the ontology type
PurchaseOrderConfirmation to the WSDL message PurchaseOrderResponse.
The ontology used in the examples can be found at (RosettaOntolgy).

98 Semantic Web Services, Processes and Applications

4.2 Functional Semantics

Functional semantics is used to formally capturing the capabilities of
Web service. This is used in discovery and composition of Web Services.
Functional semantics can be realized by annotating operations of Web
Services as well as provide preconditions and effects. In WSDL-S,
functional semantics can be captured by adding ModelReference, Category,
Pre-Conditions and Effects. Figure 4-8 illustrates an example of capturing
functional semantics using WSDL-S.

^"yjperalion nama="Q9tOneQuote"
•wssem: modelReferenca^tJntology 1 #FinarscialTranisacstion>
•̂Aifflisemicfllegory categof5iiName="S!Eiok (luotatian services"
ta)oonomyURN"http:/AviVw,cirisus.giw/^»d/nalcs02r
'taxonomyCQde«"52399r^^

«:input rr»essage="sO:GelOneQiK5teSoapln"/>
<^vssBim;prea)nditton narr»e="»tockSymW'
:wssftm:n»d«IRefer«!iice="Ontolo0yO*st«kSy(T*)Qr,'>

^outpulmessage '̂sOiGetOneQiioteSoapOut'V^
•sivssBtn:effect narrve='pflc»*
wss8m:rr»d#Ref«irftiic0="OnEology1)*prics"/>

</opBration>

Figure 4-8. Capturing Functional Semantics for WSDL-S

The above example illustrates capturing the functional semantics of a
Web service using modelReference to the Ontology type Financial
Transaction. The Category is captured using NAICS classification. The
Preconditions and effects are captured using modelReference to ontology
types stockSymbol and price. The ontology used in the examples can be
found at (SUMO).

4.3 Non-Functional Semantics

Non-Functional semantics capture the QoS requirements/ constraints
(such as delivery time) and also policy requirements/ constraints (such as
reliable messaging). The QoS requirements could be both quantitative
constraints and non-quantitative constraints.

Keywords, Port Types and Semantics: A Journey in the Land of Web
Service Discovery

99

Feature

Cost (Quantltntlve)

Supply time
(Quantltatlvo)

Cost (Quantflattvi))

Preferred Logtcal
Supplier (Logical)

Compatible Suppliers
(PI and P2)

Scope

Process

Process

Process

Partrver

Process

Goal

Optimize

Satisfy

Satisfy

Satisfy

Satisfy

Value

<7

<46000

True

True

Unit

Dollars

Days

Dollars

Aggretiatlon

Summation

Maximum

Summation

Figure 4-9. Capturing Non-Functional semantics

In Figure 4-9 we present an example of capturing QoS constraints using
ILP and SWRL. The above example illustrates the constraints for a
workflow that is being used to purchase various products. Quantitative
constraints such as total cost must be less that USD 50,000 is represented as
ILP constraints. Non-Quantitative constraints such as the partners must be
preferred suppliers is captured using SWRL. QoS based process modeling is
discussed in detail in (Cardoso. J 2002).

4.4 Execution Semantics

Execution semantics formally capture the execution or flow of services in
a process or operations within a service. Execution semantics play a role in
verification and exception handling. In the next section we will discuss using
data and functional semantics in Web service publication and discovery.

5. PUBLISHING AND DISCOVERING SEMANTIC
WEB SERVICES

Unlike publication using UDDI, publishing Semantic Web Services is
still an area of active research. Various research groups like OWL-S,
WSMO and METEOR-S have created frameworks for publishing and
discovering semantic Web Services. We will present the METEOR-S Web
Service Discovery and Publication framework (MWSDP).

MWSDP is based on WSDL-S (Akkiraju. R et al 2005). The data and
functional semantics captured in WSDL-S services are used to publish the
service in the UDDI registry. Semantic templates (discussed later in the
section), created using WSDL-S, allow for template based discovery in
MWSDP. The data and functional semantics of a Web service can be seen

100 Semantic Web Services, Processes and Applications

mapping to a tModel in UDDI. We will now in discuss the MWSDP
interface for publishing and discovering WSDL-S services.

5.1 METEOR-S Framework

We will now discuss publishing WSDL-S services using METEOR-S
publication framework. We will follow this with a discussion on template
based service discovery.

5.1.1 Publishing WSDL-S Services

In order to create WSDL-S services, use the METEOR-S Radiant plugin
(Gomadam. K et al 2005-A) or the WSDLS4J API. WSDLS4J API allows
programmatic addition semantic annotations to WSDL. METEOR-S Radiant
is an eclipse plug-in to annotate WSDL. METEOR-S Radiant plug-in also
has discovery extensions that will publish WSDL-S files into registry.
Alternatively, the METEOR-S Discovery and Publication Interface allows
for publishing from within applications. The publication interface has
wrappers which given the WSDL-S files, and registry category semantically
publish the service into the registry.

5.1.2 Template based Discovery

In this section we describe a semantic template and propose a discovery
mechanism based on semantic templates. Figure 4-10 conceptually
illustrates a semantic template.

Stinanlic 'rvnipliito
IndiislryCalegoi'y = NAICS:lileclronics
Prodi.ic(Ciilcgoiy = DUNSlRAM
Locaciori = Alliens, GA
Operation) = RoseltaSrequestl'iircliasoOrder

Input = RosellaffPurchasBOrdoi'Deiails
Output = RosetiaSI'urehaseCotilH'maiioii
Non-l''unc<ionnl Rcqtiiremenis

lincryplion = RSA
ResponseTime < 5 sec

Operation » l'.nsettai<0«ieryOt'dei'S(iitiis

Input" Rosetta* PiircliaseOrderStatiisQuet '̂

Output = Roscttti* PurcliasoOrd«rStatiisRe5p<)nse

Figure 4-10. Semantic Template illustration

Keywords, Port Types and Semantics: A Journey in the Land of Web
Service Discovery

101

A semantic template captures the requirements of service requestor using
data, functional and non-functional semantics. In the example illustrated
above in Fig 4-10, the data requirements are captured using Ontology types:
Rosetta#PurchaseOrderDetails and Rosetta#PurchaseConfirmation. The
functional requirement is captured using ontology type:
Rosetta#requestPurchaseOrder. The non-functional quantitative
requirement is captured as ResponseTime < 5 sec. The non-functional non-
quantitative requirement is captured using Encryption = RSA.

6. REGISTRY FEDERATION

The increasing popularity of Web Services means that sooner or later
more and more services are going to be published into registries. Thus the
performance of the UDDI is essential to efficient service publication and
discovery. An brief study of UDDI performance is presented in (Georgina
Saez Et.Al 2004). Further, with the growth in semantic Web Services, there
is also a need for some categorization at registry level. In this section we will
take a brief look at registry federation using METEOR-S Web Service
Discovery Infrastructure (MWSDI) (Verma. K, K. Sivashanmugam et al
2005).

MWSDI is a peer to peer registry framework. MWSDI addresses two
fundamental issues related to service discovery: 1. locating the correct
registry and 2. finding the correct service within the registry. The peer to
peer framework of registries allows for creating a scalable distribution of
registries and adding semantics at the registry level enables registries to be
categorized based on various domains. This approach helps in discovering
the most appropriate registry for a specific discovery request.

Q

tn
c:
0

Is

, I

Operator Services Layer

CommunloaUons Layer

Data Layer

Registry Operator Services

P2P Environment

Rflglstries

Orilologtes

Fisure 4-11. Layered Architecture of MWSDI (MWSDI)

The above Figure illustrates the layered architecture of the MWSDI
framework. The data layer is composed of the registries. The P2P messaging

102 Semantic Web Services, Processes and Applications

is handled at the communications layer and the semantic discovery and
publishing are handled at the Operation services layer.

["^C3WP"""''|1

Clterit Pear

(p«t.-) (pm,i>)

R@Btstiy 1

(PmrN-y

f^egistr>' S Registry K igistry H

GWP CUitcway Peer controls access to the peer-to-peer network for
new registiy operators

Peer 1 * - Peer N* Operator Peere run Operator Services and act as provkleis of
AV,vrw/7c,v OntoU'^y

Peer X", Peer Y* Auxiliary Peers only act as providers of (he Ri!f;isrries
Oimiltjgy

Rccistrv I - Rcitistry N Web service rccistrics

Figure 4-12. Peer and Registry architecture in MWSDI (MWSDI)

The semantic specifications such as registry ontologies and registry-
registry relationships are given by the semantic specifications component
across the three layers. The main advantage is that the architecture allows for
registries to process non-semantic service discoveries as well as act in a
standalone manner away from the P2P networli.

The P2P framework of the peers in the registry collection is illustrated in
Figure 4-12. The Gateway peer is not associated with any registry and is the
entry point for new registries joining the registry collection. It is also
responsible for propagating changes such as changes to the registries
ontology to all peers. Operator peers controls a reigistry, provides the
operator services to that registry and also acts as a provider of the registries
ontology.

The auxiliary peers are simply providers of the registry ontology. The
framework proposes two protocols:
1. Operator peer initiation protocol: This defines the process involved in

adding new registries to the framework.

Keywords, Port Types and Semantics: A Journey in the Land of Web 103
Service Discovery

2. Client Peer interaction protocol: This defines the protocol for client
communications in accessing the operator services.

In this section we have provided a brief overview of research towards
scalability and performance of registries. In the recommended reading
section we suggest research papers that will allow readers to get a more
comprehensive picture about this area of research.

7. CONCLUSIONS

Registries play a very important role in the Web Services stack. This
chapter discusses the basics of UDDI which is the widely used and
recommended registry architecture. We have covered the various data
models of UDDI, their usage as well as using the UDDI4J API. The
discussion also covered the role of semantics in service discovery, the
different types of semantics for entire Web process lifecycle and using
semantic Web Services in UDDI.

Keywords, portTypes and template based discovery approaches have
been discussed and compared. We also provide a brief insight into some of
the state-of-the-art research in the area of Web Services publication and
discovery.

We would like readers to look at the recommended reading section to
find more material for comprehensive understanding of Web Service
discovery and publication.

Further readers are recommended to try and use the UDDI4J API along
with open source implementations of UDDI (like jUDDI), to better
understand the usage.

8. QUESTIONS FOR DISCUSSION

Beginner:
1. What role does semantics play in enhancing service discovery and

publication?
2. What are the main data structures of UDDI and how do they map to

WSDL?

104 Semantic Web Services, Processes and Applications

Intermediate:
1. "UDDI can be used for publishing any service. Not just Web Services". Is

the validity of the above statement true?
2. From the perspective of database design discuss the efficiency of the

UDDI schema.

Advanced:
1. "Relationships are the heart of Semantic Web". Discuss the importance of

exploiting interesting relationships in a P2P registry environment.
2. How does having little semantics at registries help realize SOA go a long

way?

Practical Questions:
1. Discover and publish registries using UDDI4J and an open source UDDI

implementation (like jUDDI).
2. Create wrappers over UDDI4J to publish and discover any service.

SUGGESTED ADDITIONAL READING

Abhijit Patil, Swapna Oundhakar, Amit Sheth, Kunal Verma, METEOR-
S Web service Annotation Framework, The Proceedings of the
Thirteenth International World Wide Web Conference, May, 2004
(WWW2004), pp. 553-562

Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant
Kalagnanam, Quan Z. Sheng: Quality driven web services composition.
Proceedings of WWW 2003, PP 411 -421
Rohit Aggarwal, Kunal Verma, John A. Miller and William Milnor,
"Constraint Driven Web Service Composition in METEOR-S,"
Proceedings of the 2004 IEEE International Conference on Services
Computing (SCC 2004), Shanghai, China, September 2004 , pp. 23-30

UDDI V3 from http://uddi.org/pubs/uddi_v3.htm
WSMX, http://www.wsmx.org/

10. REFERENCES

Sheth.A et al (2003), Semantic Web Process Lifecycle: Role of Semantics in Annotation,
Discovery, Composition and Orchestration , invited talk at WWW 2003 Workshop on E-
Services and the Semantic Web . Budapest, Hungary, May 20, 2003

Cardoso. J (2002). Quality of Service and Semantic Composition of Workflows . Ph.D.
Dissertation. Department of Computer Science, University of Georgia, Athens, GA.

Keywords, Port Types and Semantics: A Journey in the Land of Web 105
Service Discovery

Curbera. F et al (2002), Using WSDL in a UDDI Registry, Version 1.07, UDDI Best Practice,
http://www.uddi.org/pubs/wsdlbestpractices-Vl.07-Open-20020521.pdf

Gomadam. K, K. Verma et al (2005-A), Radiant: A tool for semantic annotation of Web
Services, International Semantic Web Conference (ISWC) 2005, Galway.

Gomadam. K, K. Verma et al (2005-B), Demonstrating Dynamic Configuration and
Execution of Web Processes, International Conference on Service Computing (ICSOC),
2005, pp: 502 - 507

Verma. K, K. Sivashanmugam et al (2005), METEOR-S WSDI: A Scalable Infrastructure of
Registries for Semantic Publication and Discovery of Web Services, Journal of
Information Technology and Management, Special Issue on Universal Global Integration,
Vol. 6, No. 1 (2005) pp. 17-39. Kluwer Academic Publishers.

Verma. K, K Gomadam et al (2005)"The METEOR-S Approach for Configuring and
Executing Dynamic Web Processes", LSDIS Lab Technical Report

Wilkes. L, http://roadmap.cbdiforum.com/reports/protocols/
Akkiraju. R, J. Farreil, et al, (2005) "Web Service Semantics - WSDL-S,Position Paper for

the W3C Workshop on Frameworks for Semantics in Web Services, Innsbruck, Austria,
June 2005.

RossettaNet, http://www.rosettanet.org/RosettaNet/
RosettaOntolgy,http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/ontologies/rosetta.owl
Saez. G, A.L. Sliva Et.Al (2004), Web Services-Based Data Management: Evaluating the

Performance of UDDI Registries, Proceedings of the International Conference on Web
Services (ICWS), 2004, pp 830-831.

SUMO, http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/ontologies/SUMO-Finance.owl
UDDI4J, http://uddi4j.sourceforge.net/
UDDI: http://uddi.org

Chapter 5

TEMPORAL REASONING OF REACTIVE WEB
SERVICES

Monika Solanki, Antonio Cau and Hussein Zedan.
Software Technology Research Laboratory, De Montfort University, Leicester, LE4 OGL, UK-
monika@dmu.ac.uk, acau@dmu.ac.uk, zedan@dmu.ac.uk

1. WEB SERVICES AS REACTIVE SYSTEMS

Computing systems can be conceptually partitioned into two primitive
categories: Transformational and Reactive. Transformational systems, as
shown in Figure 5-1 are generally modelled by abstracting away the
computations and specifying the system as an input-output function. The
non-termination of a transformational system is usually considered a failure.
Compilers, assemblers and routines in a library of mathematical functions
are examples of transformational systems. The objective of Reactive
systems' (D. Harel and A. Pnueli 1985) on the other hand is not necessarily
terminating after producing some result, but maintaining an ongoing
interaction with their environment and responding with appropriate actions
to the external stimuli. When designing, describing and reasoning (Kim
Sunesen 1998) about reactive systems, the focus is not just on what is
computed but equally on how and when it is computed, in terms of
interaction capabilities over time. Conventional examples of reactive
systems include flight control systems, nuclear reactors, web applications,
electronic games and touch screens. Reactive systems as illustrated in Figure
5-2 cannot be specified by a relation between initial and final states.

' The term was coined by Harel and Pnueli (D. Harel and A. Pnueli 1985). A
brief but useful discussion can be found in (Harel and M. Politi 1998).

108 Semantic Web Services, Processes and Applications

^

1

niiiu

\

Transtbnnational

' A
nput .

•
.vluli;

System

T " "

i
- -''
Output

• - » 7

Behavioui
Final state
•• • •

Time

Figure 5-1 A simple transformational system

Although traditionally, Web services have been thought of as being
information intensive, transformational programs, most useful Web services
are in fact reactive systems. Examples include, web services deployed and
composed as e-commerce applications, where an order once placed, can be
cancelled, changed or put on hold because of unexpected conditions,
anytime before its fulfillment. In certain cases a refund may also be
requested later, if the service/product does not meet its specifications. In
corporate e-business, it may not be a simple database query that generates a
document, but an entire business process involving multiple partners. The
final generation of the document may span several days. Web services
deployed on wireless devices may take more than expected time to provide
the requested service due to poor connection facilities.

Reactive
System

I : i . i lEnvironiTioril

.J..-T • • T : , •

Time

Figure 5-2. A Reactive system

Consider a typical example of a flight reservation service. The service
provides results for a flight search and reserves tickets for the selected flight,
thus changing the status of a seat from unbooked to booked i.e. transforming
information by execution of a database query. However, the final selection
of flight by a travel agent can span over an unlimited period of time, going

Temporal Reasoning of Reactive Web Services 109

through several rounds of selection. A typical interaction is shown in Figure
5-3. The service may also exert control over the environment by terminating
the user session after pre-specified time limits of inactive sessions. In case of
flight search the database server itself is reactive as it allows the
environment i.e. service requesters to ask queries. Further, once a flight has
been booked, the agent also has the option of cancelling the booking within a
stipulated time period.

Right Booking Sei"vice

i i i

I : ! I ' I l i ii Ŝ
^ f i ; iK fA Hi S] «j

Travel Agent

Time

Figure J-J. A Typical Flight Reservation Scenario

Further, service composition represent long running interactions between
service requesters and providers that extend beyond single step execution of
services. In order to correctly specify their behaviour, properties of services
need to be expressed in a form that enables reasoning about their behaviour
during such extended execution. Current XML-based and ontological
specification standards for the description of service behaviour, do not have
the capability to specify compositional properties. Languages like WSDL
(Roberto Chinnic et al. 2005) and WSBPEL (Tony Andrews et al. 2003)
provide an operational approach to service specification. They do not have
the provision for specifying the conditions that restrict the execution of
services to a limited set of valid behaviours. In other frameworks like OWL-
S (The OWL-S Coalition 2004) and WSMO, specification of pre/post
conditions and effects contribute to some extent towards their behavioural
specification. However they are limited to static behaviour descriptions in
the sense that they are predicates required to hold only at the initial and final
states.

The need for more expressive service specification also becomes evident,
while reasoning about the composition of services and validation of the com
position at runtime. Model checking (E.M. Clarke et al 1999) and theorem

110 Semantic Web Services, Processes and Applications

proving are commonly used techniques for formal verification. In the
context of analysing services and their composition at runtime, these
techniques are not feasible due to the possible exponential growth in the
number of reachable global states. In contrast to formal verification,
practical validation techniques provide a mechanism to verify only
properties which are of interest to the service requester or provider. Our
notion of validation is different from the classical technique of "testing",
generally associated with it. We believe, validation is a process of checking
for inconsistent, redundant, incomplete or incorrect properties for a service.
Properties are checked not for all possible behaviours (Shikun Zhou 2003) as
in verification, but for a particular trace or execution of a service. As shown
in our earlier work on service composition (M. Solanki et al, 2004), the
objective of runtime validation is not to prove individual service
implementation correct. It is to ensure that no undesirable behaviour
emerges, when the service is composed with other services.

In this chapter, we propose a methodology to compositionally augment
the semantic description of a reactive service, with temporal properties that
provide the required support for reasoning about "ongoing" behaviour. The
properties are specified in Interval Temporal Logic (ITL) (B. Moszkowski,
1986, 1994, 1996), our underlying formalism for reasoning about service
behaviour over periods of time. These properties are specified only over
observable behaviour, and do not depend on any additional knowledge about
the underlying execution mechanism of the services. We present "TeSCO-
S", a framework for enriching Web service interface specifications,
described as OWL (Mike Dean and Guus Schreiber 2004) ontologies with
temporal assertions. TeSCO-S provides an OWL ontology for specifying
properties in ITL, a pre-processor, "OntoITL" for transforming ontology
instances into ITL formulae and an interpreter, "AnaTempura" that executes
and validates temporal properties in "Tempura", an executable subset of
ITL.

2. A MOTIVATING EXAMPLE: AN ONLINE
BOOKSTORE

An Online Bookstore as shown in Figure 5-5 is a sequential composition
of four services: Book search. Book buy. Payment validation and Book
delivery. Each of these services is a reactive service, as they continuously
interact with the customer as illustrated in Figure 5-4. The e-Bookshop
requires the customer to be registered with the service, in order to search or
buy a book. The customer sends the ISBN number of the book to the Book
search service, which returns a message with the search results. The

Temporal Reasoning of Reactive Web Services 111

customer can continue searching for more books, always supplying the
ISBN number or proceed to buy the book. The Book buying service, takes as
input the list of books selected by the customer, the delivery address and the
credit card details. The Card details and address are passed to the Payment
validation service. If the card is validated, then depending on the amount
paid and mode of delivery selected (standard or express), the book is
arranged to be delivered to the customer. We informally define properties of
the composition, some of which we formalise in the subsequent sections. We
perceive Web services as black boxes and hence the properties strictly
characterise the observable behaviour of services in the composition.

Buy BOOK ;tomer

sclld(u.serl>)

suiKl(U)g,inliitb)

soiiddSBN)

M.'iii.Iiinv,ilidlSBN)

', SCIKHISBN)

.sciKl(iiivalidlSHN)
sciidUSBN)

\ .scnd(.scarchRi;sulls,

: send(lSBN)

Search Book

1^

»-

•- ;

•^ send(I.SBN)

^
1 1

1
1"'

sendiWcc)

sonddnvoice)

Figure 5-4.Interactions in an Online Bookstore

At all times during the execution of the composed service, the customer
is required to be a registered member of the e-Bookshop. This is a useful
property to vaHdate, when an inactive customer session is activated after
a considerable period of time. Most services store customer registration
details as session data, which is reset after a predefined period of
inactivity.

Once a customer starts searching for a book, the price of the book has to
be constant till the search is over or if the customer buys the book, the
price has to be constant till the book has been delivered to the customer.

During the search, at any time if the customer sends an ISBN number, he
gets back the search results, for the same ISBN number.

112 Semantic Web Services, Processes and Applications

• Once a book or a list of books have been selected and ordered, the
parameters of the book (title, language etc) should not change, till the
book has been delivered to the customer.

Bi^tk i(2^.f '̂h ' Bc'oV. &u\ ' t, , 's !^K k Dc-U\(.TV Rijturn took

•Vfcssagc
exchange

i i kk kkk kkk. I i i"

..I _ f f . f ,f f _xl - _U __L.l.

I inie

Figure 5-5. A Typical Book Buying Scenario

• In order to buy a book, the customer needs to have a valid credit card.
• Once the credit card has been validated, the e-Bookshop makes a

commitment to deliver the book as per the delivery terms and conditions
agreed with the customer.

We use the Online Bookstore as a running example throughout the
chapter to explain various concepts

3. INTERVAL TEMPORAL LOGIC

ITL is an important class of temporal logic which was initially devised
by Ben Moszkowski in the 1980's in order to model digital circuits (B
Moszkowski, 1983). Later it was designed particularly as a formalism for the
specification and design of software systems (B Moszkowski, 1995, 1994,
1996). ITL is an extension of classical first order logic especially designed
for representing time dependent behaviour. It has proved to be an efficient
formalism for specifying and reasoning about concurrently executing, real
time critical systems.

3.1 Model

ITL is a linear-time temporal logic with a discrete model of time for both
finite and infinite intervals. The model of behaviour used in ITL is quite
natural. The idea is to describe the system of interest by taking a number of

Temporal Reasoning of Reactive Web Services 113

"snapshots" at various points in time?,., for / < n and linking these snapshots
together (to . . . tj. This link is the key notion in ITL and is called an
"interval". Snap- shots define various relevant "states" for modelling the
system and an interval is considered as an (in)finite, nonempty sequence of
states (TQCT, • • •

(T:(To(T,cr2"-
Each state represents a mapping from the set of variables Var and their

values Val.
State: Var —> Val

The length CT of a finite interval C is equal to the number of states in the
interval minus one. An empty interval has exactly one state and its length is
equal to 0. The notation (T^.j denotes the subinterval of lengthy-/ with states

3.2 Syntax

The syntax of ITL is defined in Figure 5-6, where jU is an integer value,
a is a static variable (does not change within an interval), A is a state variable
(can change within an interval), v a static or state variable, ^ is a function
symbol, and pis a predicate symbol.

ExpiTMkins
e ::= n\a\A\ giexpj^,.,,, expj

Fornudae
/ ::= p(ei , . . . , e„) | -./ | / i A /a | Vv • / | skip | ft ; h I ,f

1. Operators:
Figure 5-5. Syntax of ITL

ITL contains conventional propositional connectives such as A,—i and
first order ones such as V, 3 and =. Extending the logic to temporal reasoning
are operators like "; (chop)", "* (chopstar)" and "skip". Additional temporal
operators defined in ITL include O (next) and D (always).

2. Expressions:

Expressions are built inductively from variables, constants and functions
as follows:
• Constant: jU

A constant is denoted by a function without parameter. These are fixed

114 Semantic Web Services, Processes and Applications

values
Examples: true, false, 2, 3, 5, [2, 3, 4, 5].

• Variables: A, B, C,. . . , a, b, c
The value of a state variable can change within the interval, while the
value of a static variable remains constant throughout the reference
interval. Conventionally capital letters denote state variables, while small
letters denote static variables. The letter v is used as a meta-variable in
definitions to range over all variables.

• Function: g(exp,, • • •, exp„), where n > 0
The function symbols include arithmetic operators such as +,-, mod and *
(multiplication). Constants such as 0 and 1 are treated as zero place
functions.
Examples: A + B, a-b, A-\- a, v mod C

• ia: f : An expression of the form ia : / is called a temporal expression.
It returns a value a for which the formula/holds in the reference interval.
If there is no such an a then ia : / takes an arbitrary value from a's range.

Some examples of syntactically legal expressions are given below:
• I+(oj) + 2

This expression adds the value of / in the current state, the value of J in
the next state and the constant "2".

. I+(o j) -oo(I)
This expression adds the value of I in the current state to the value of J in
the next state and subtracts the value of I in the next to next state from the
result.

3. Formulae:

Formulae are built inductively from predicates and logical connectives as
follows:
• Atomic formulae are constructed using relation symbols such as =

and<.
Examples: CQ < e,

• Logical connectives: - / , /j A / J where / , / i , / j are formulae.

• Universal Quantifier: Vv./
• Temporal Operators: skip,";", "(chop) and "*" (chopstar) Examples:

j \ i 111 J

Some examples of syntactically legal formulae are given below:

Temporal Reasoning of Reactive Web Services 115

• (J=2)0(K=4)
This formula states that the value of J is "2" in the current state and the
value of K is "4" in the next state.

• 0(n[I=2]AOn[J=2])
The formula states that from the next state, the value of / would always

be equal to "2" and the value of / in the next to next state will be equal to
"2"'.

Many more examples can be found in (B. Moszkowski 1986).

3.3 Informal Semantics

Expressions and Formulae in ITL are evaluated relative to the beginning
of an interval. Formulae with no temporal operators are called "state"
formulae. With respect to an interval, a state formula is required to hold only
at the initial state of that interval.

skip

;f2

f*

•

"\

(T._

Ji.

s~
•

< / • ,

•
'^1

'^t

•

f

• • •

h
•

f

• <

Figure 5-7. Pictorial illustration of ITL Semantics

The informal semantics of the most interesting temporal constructs are
defined as follows:

• skip; unit interval (length 1).
The formula skip has no operands and is true on an interval iff the
interval has length 1 (i.e. exactly two states).

• / ,; /2 : A formula / j ; f^ is true on an interval a with states

(JQ • • • Oj I iff the interval can be "chopped" into two sequential parts

(i.e. a prefix and a suffix interval) sharing a single state (y^. for some

k < \(J\ and in which the subformula /, is true on the left part

CTQ • • • cr̂ and the subformula f^^ is true on the right part (T̂ • • • 0^,.

116 Semantic Web Services, Processes and Applications

• / *: A formula / * is true over an interval iff the interval can be
chopped into zero or more sequential parts and the subformula/is
true on each.

Figure 5-7 pictorially represents the semantics of skip, chop and
chopstar. Some ITL formulae together with intervals which satisfy them are
shown in Figure 5-8

1=1

I=l;skip

I: 1 1 1

I: 1 2

£kip;I=l • • • •
(OI=l) I: 2 1 4 5

fmite;I^l • 9 V • •
(01=1) I: 1 1 4 1 1

I O T I # • • • •

(n l = l) I: I 1 1 1 1

Figure 5-8. Some sample ITL formulae and satisfying intervals

inie

false

/ l V / 2

/ i D .h

h = h
if 5 then
3v • /

h else h

= 0 = 0

= -^mte

= - ' (- ' / i A -1 /2)

== - i / l V / 2

= (/ l -J h) A (/2 3 / 0
= (f l A / i 3 V (- i (7 A / 2)

= -iVi." • - 1 /

true value

false value

or
implies

equivalent

if-then-else

exists

Figure 5-9. Non-temporal constructs

3.4 Derived Constructs

The following constructs can be derived from primitives of the logic.
Non-temporal constructs are presented in Figure 5-9. Frequently used
temporal modalities are represented in Figure 5-10. The formula "f' is used
as a reference formula for defining the constructs.

Temporal Reasoning of Reactive Web Services 117

0 /

more

empty

inf

Jinite

0/
• /
4>/
m/
0/
B /

ball f

Ji»f
Jill exj)

keep f

Oexp

expi«— exp'i

expi gets ea!j^

Stable ea'p

len(ex:p)

= skip; /

= Omie

£ -more

= rriie \ false

= -^inf

=jinm; /

= -0- /
= / ; true

= -{«»-/)
=fimie ; / ; ime

= -'(^-/)
= n(empty = /)
s n(empty D /)
= %a: fiii(e.xp = a)

= I3(skip D /)

£: 80; 0(exp = 0)

=Jiniie A {fin eaipi) = ex'pt

= tep (e»pi «- expi)

= eirp îjrts' ea^

n&xl

non-empty inteival

empty intci'val

infinite interval

finite interval

sometimes

always

some initial suliimervjil

all initial suliintervals

some stibinteival

ail siibinlervnls

terminate inteival when

linal state

cml valtie

all unit sul>inteivols

next value

temporal assignment

gets

stability

= 3 / . (/ = 0) A (/ gets / + 1) A / «- exp) intervsil letiglli

Figure 5-10. Frequently used temporal abbreviations

3.5 Types in ITL

There are two basic inbuilt types in ITL. These are integers A'̂ and
Boolean (true and false). In addition the executable subset of ITL (tempura)
has basic types: integer, character, boolean, list and arrays. Further types can
be built from these by means of X and the power set operator P (in a
similar fashion as adopted in the specification language Z (M Imperato,
1991). For example the following introduces a variable x of type T.

def

(3x: T).f = 3x.type(x, T) A /
Here type(x, T) denotes a formula that describes x to be of type T.

Although this might seem to be a rather inexpressive type system, richer
types can be added following that of (Spivey, 1996).

3.6 Formal Semantics

In this section we present the formal semantics of expressions (terms)
and formulae in ITL. We define the data domain to be a set of integers
denoted by Z . We assume "tt, ff' to represent the set of truth values. A state

118 Semantic Web Services, Processes and Applications

(<T) is then a function mapping from variables Var to values in Z . We let
Z denote the set of all such functions,

C7ieZ = Var -> Z
Each n-ary function symbol g is associated with a total function

geZ" ^Z
Interpretations of n-ary relational symbols {p) are similar but map to

truth values.
p&Z"-^tt,jf

Function symbols, e.g. + and - , and relation symbols, e.g. > and -,
are assumed to have their standard meanings. We define 1^ and E'" to
denote sets of finite and infinite intervals respectively. The relation

is defined to be true iff the interval (J and o', ((T, (j'e Z'̂ uE*") have
the same length and agree on the behaviour of all variables except possibly
the variable V .

3.6.1 Semantics of Expressions

The construct ''''r-^Pl denotes the function that defines the value in % of
the expression exp on the interval O.

• Safa] = <Jo(o) and

for all i s.t. 0 < •« < |c7|, (T,-(«) = ao(a).

m 6VI/1] = CTo(A),

• Salgiexpi,..., expn)j = 9{Salexpij,... ,£„\expn\).

m F ha- n - l '̂f"̂ '''"'̂ *̂
• ^ a | » a . i J - j .^^y^^i^^^ olheroise

where n = {a'{a) \ a ~a a' A Sa'lfl — ''}

3.6.2. Semantics of Formulae

The construct '•'<' denotes the function that defines the value in (tt, ff}

of the formula / on the interval (J.

Temporal Reasoning of Reactive Web Services 119

f ; . | / l e (S + U S -) - - { « , / / } ,

£^lp{expi,..., e:t:p„)j = tl iffp(i-:,;rIea'Pil, • • •, î ,T[earj>„]).

^ ^ K I = ltilTi:^[/l = ff.

S4fi A /3I = tt iff ^<,I/il = ft and £,4/2! = tt.

i:^f/v . / I = tt iff for all <T' s.t. a ~„ a', £a>lfl - tt-

-̂<T|skip] = ttiff |<7| = 1.

£alfrj2J = ttm
(exists a k, s.t. ĉro,.,,,̂ | / i l = It and

((a is infinite and •̂(.T(,,.,„[/2I = M) o''
(cT is finite and k < \a\ and £aii...a-,^, I/2I = tt)))

or (a is infinite and i^I/i]).

if tT is infinite then
(exist: lo, ,, lu s.t. lo = 0 and ^'crj„,,,[/] = tt and

for all 0 < i < n, /, < k+i and '?aĵ ...crĵ _̂ ,j I /] = tt.)
or
(exist an infinite number of i:i s.t. lo = 0 and

for all 0 < i., /i < k+i imde,^,^,.,a>^^Jfj = tt.)
else

(exist I.Q,..., In s.t, 0̂ = 0 and „̂ = |tT| and

4. Compositional Reasoning for Web Services

Web services cannot exist in isolation. Most Web services interact with
other services, users, devices or sensors to achieve a goal. The fundamental
problem of composing specification of services, is to prove that a composite
service satisfies its specification if all of the component services satisfy their
specifications. For a compositional and modular specification of services,
the description of interfaces between services and their environment is of
utmost importance. The interface of a service provides the static/dynamic
(logical) connection between the service and its environment. An interface
description is a specification of those properties of a service that influences
the overall behaviour of the composed system as well as those of the

120 Semantic Web Services, Processes and Applications

individual services. Interface specification of reactive services cannot simply
be described in terms of functions or relation on states, a more expressive
representation format is needed.

4.1 Compositionality

Compositionality refers to the technical property that enables reasoning
about a composed system on the basis of its constituent parts without any
additional need for information about the implementation of those parts. The
notion of compositionality (W.P. de Roever, 1985, 2001, J. Zwiers, 1989) is
very important in computer science as it facilitates modular design and
maintenance of complex systems following the verify-while-develop
paradigm. Compositional proof techniques have the advantage that they
allow the systematic top-down development of systems from their
specifications. Compositionality is also a desired criterion for verification
methodologies particularly for the development and analysis of large scale
systems. The idea was first suggested by E. W. Dijkstra (E. W. Dijkstra
1965) in where he discusses hierarchical decomposition and verification of a
given program on the basis of its subprograms, and formalised by (Floyd,
1967) where properties of a sequential program are derived from the
properties of its atomic actions. For reasoning satisfactorily about composed
system, systems and their components are specified using assertional
specifications i.e. state predicates, only over their observable behaviour.

4.2 Applying the Assumption-Commitment Paradigm to
Web Services

For the development of a compositional framework that allows the
specification and validation of services and their composition, we choose the
Assumption-Commitment paradigm. The objective of an Assumption-
Commitment style of specification is to specify a process within a network.
In its most general form Assumption-Commitment (P. K. Pandya 1990,
Qiwen Xu and Mohalik Swarup, 1998) reasoning, allows the verification of
a service under the assumption that the environment behaves in a certain
way. The Assumption-Commitment style of specification has been applied
extensively as a proof technique to networks of processes executing
concurrently via synchronous message passing in a seminal work by (J.
Misra and K.M. Chandy 1981).

In our earlier work on service composition, we have shown the power of
assumption-commitment style of specification for compositional reasoning
of ongoing service behaviour. We have proposed a methodology (Solanki et

Temporal Reasoning of Reactive Web Services 121

al. 2004) to augment the specification of a service, with properties that are
temporal and compositional, called assumption and commitment.
Assumption-Commitment properties are specified only over observable
behaviour, and do not depend on any additional knowledge about the
underlying execution mechanism of the services. Interestingly, Interval
Temporal Logic, our underlying formal framework can be used both for
establishing the validity of the behaviour of a service and for proving the
soundness of the compositional rules.

The assumption-commitment specification can be thought of as a pair of
predicates {As, Co) where the assumption As specifies the environment in
which the specified service is supposed to run, and the commitment Co
states the requirement which any correct implementation of the service must
fulfill whenever it is executed in an environment that satisfies the
assumption. Since we are interested in the observable, ongoing behaviour of
services, we model assumption-commitment as temporal properties defined
over their interface specification.

4.3 An ITL Formalisation of Assumption-Commitment

A service, S , in ITL is expressed as a quadruple

{As,Co):{o)}S{co']

where.

uj : slate formula about initial state
.43 : a tem]5oral formula six-iclfying properties about the environment
Co : a temporal formula s|>etifyiiig properties al̂ out the ajivice
a; : stale formula about linal state

Figure 5-10. Frequently used temporal abbreviations

Figure 5-11. ITL representation of Assumption-Commitment

Formally in ITL, the validity of the Assumption-Commitment
representation as illustrated in Figure 5-11 has the following form:

{As,Co) : {<AJ)S{J) ' M W A S D ([II(emptyV((/isAC'o);Skip) Z) CoAjin J))

122 Semantic Web Services, Processes and Applications

We have also proposed compositional proof rules based on assumption-
commitment properties that allow validation of ongoing behaviour of
services. Keeping in perspective the e-Bookshop service which is
sequentially composed, we present the rules here for sequential composition.

We consider the sequential composition (ref. Figure 5-12) of two
services, S^ and 52. For a detailed explanation of the rules and its proof
obligations, the interested reader is referred to (Solanki et al. 2004).

Sj l%2

Figure 5-12 Sequential Composition

h

h

t-
h
h

h

[As, CQ)

(As, Co)

O-'i

As
Co

{Aa, Co)

:
-;,

=
EE

{(4Ji}5'i

{ti-'2}i>'2

W2

S.4s
C o '

{wi},Si

{i^i}

{•̂ "'2 }

;S2{w2l

(1)
(2)
(3)
(4)

(5)
(6)

5. Formalisation of the Online Bookstore

We now formalise some of the interesting properties of the e-Bookshop
service from section 2.
• At all states (crQ...(T;) during the execution of the composed service, the

customer is required to be a registered member of the e-Bookshop.
n(isRegistered (userlD))

• Once a customer starts searching for a book, the price of any book
returned as a result has to be constant till the search is over or if the
customer buys the book, the price has to be constant till the book has
been delivered to the customer i.e. the price of the book has to be
constant at all states (cyQ-.-CT,).

D(isNotChanged (bookPrice))

Temporal Reasoning of Reactive Web Services \Ti

• During the search ((TQ.. . (7^) , at any state if the customer sends an ISBN

number, he gets back the search results, for the same ISBN number in the
next state.

Q(isearchBook(ISBN)) => (searchResults(ISBN)))

• Once a book or a list of books have been selected and ordered, the
parameters of the book (title, language etc) should not change, till the

book has been delivered to the customer (cr^.. .C7,).

D(isBook{selectedBook))

• In order to buy a book, the customer needs to have a valid credit card, that
stays valid atleast till the book has been delivered to the customer

D(validCard{userID,cardN umber))

• Once the credit card has been validated, the e-Bookshop makes a
commitment to deliver the book as per the delivery terms and conditions
agreed with the customer ((J^.. .<7,) .
{finvalidCard{UserID,CardNumher)){DeliveryPeriod = CalculatedDays)

For sequential composition of services, the proof obligations require that
we choose Assumption-Commitment properties of the form:

h As = •.4s
\-Co = C(f

We now define the assumption and commitment properties required to
hold for the composition defined between states {O'Q...(7^). Keeping in
perspective the nature of properties, we informally define the assumption as,

At all states during the execution of the composed service, the customer
is required to be a registered member of the e-Bookshop.
We define the corresponding commitment as

At all states during the execution, the e-Bookshop allows registered users
to search and buy a book.

It is worth noting that these properties are specified as part of the
behavourial specification of the e-Bookshop as well as the Customer. They
are however required to be validated by the e-Bookshop. Formalising the
above properties,

\I\{isRe.gistefte.d{n.serlD))

(valickJiistorner (userlD)) *

For the composition between states (T, and (Jj, we define an additional
commitment while keeping the assumption same,

124 Semantic Web Services, Processes and Applications

Once a customer is returned the results of search, the price of book(s)
selected should remain constant till the user finishes all transaction.

Formalising the above,
(unchangedPrice(userID, ISBN))'

6. SEMANTIC ANNOTATION OF TEMPORAL
SPECIFICATION: TESCO-S

Web services are discovered and composed based on the declarative
specification of their interfaces as exposed by service providers in service
registries or repositories. Temporal properties for services, need to be made
a part of this declarative specification. In the context of temporal properties
and Web services, the notion of "Temporal" can be interpreted in terms of
the following two intuitive contexts:
• Time-related properties of Web services: expressing facts about dates

(calendar) of events ("Order placed on 4th July"), duration of activities
("Shipping the product takes 24 hrs once an order is received") and
absolute time i.e. clock ("Confirmation of a Shipped good will be sent
out at 9.00 a.m. 1ST"). The vocabulary to describe these concepts
include time as a first class citizen as part of their syntactic and semantic
representation.

• Behaviour-related properties of Web services: expressing facts about
ordering of services ("Check the credentials of the supplier, before
placing an order "), constraints during service execution ("Do not
modify a submitted order while the transaction is in progress", "As long
as the supplier continues proves the authenticity of his goods, we shall
continue to place orders with him.").

When describing temporal properties of services at a declarative level,
we focus on the second notion i.e. reasoning about behaviour of services
relative to time. The objective of declarative representation of temporal
properties and constraints is to enable their automated reasoning and further
their runtime validation for automated discovery, composition and execution
of services. In the case of services that are semantically described, an
important part of this effort is the development of representative ontologies
of the most commonly used domains.

TeSCO-S (Temporal Semantics for OWL enabled Services) is a
framework for semantically annotating and validating Web service
specifications with temporal properties, defined using ITL and its executable
subset "Tempura". The objective is:

Temporal Reasoning of Reactive Web Services 125

• to provide an ontology for service providers to declaratively specify
temporal properties in ITL.

• to provide a pre-processor for service requesters/composing
middleware/software agents to process the declarative markup of
properties and transform them into concrete ITL/Tempura formulae.

• to provide an execution engine for the generated tempura formulae,
which can be used to validate properties about the service as well as
perform runtime validation of assumption - commitment properties for
service composition.

The semantics of the formulae and expressions modeled using TeSCO-S
are the semantics as defined in ITL and implemented in its executable subset
Tempura. TeSCO-S uses OWL as the ontology representation language. The
choice of OWL as a representation format over XML is motivated by two
objectives: (a) Our ultimate goal is to be able to automate reasoning about
ITL formulae and expressions, (b) we want to be able to seamlessly use the
ontology within standrads like OWL-S for services. Tools for reasoning
about ITL-Tempura ontology, can be integrated with automated reasoning
tools for services specified in OWL. For realising the objectives highlighted
above, TeSCO-S includes the following components:

• An OWL ontology for first order formulae, expressions and temporal
constructs as defined in ITL and Tempura.

• A pre-processor that transforms ontological representations of ITL and
Tempura constructs defined in the ontology above to concrete formulae
and expressions.

• An interpreter,"AnaTempura" that provides execution support for
Tempura.

The following sections present a detailed discussion of each of these
components.

6.1 The ITL-Tempura Ontology

The objective of the ITL-Tempura ontology is to express the syntactical
framework of ITL and Tempura, as concepts and properties in OWL. ITL is
very expressive and provides a number of primitive and derived constructs
for the specification of a wide variety of temporal assertions. We have
restricted the ontology to only a specific set, which we believe will be most
useful and sufficient to express the kind of properties that most service
providers would want to expose. On the other hand, the ontology itself is
very modularly structured to enable future extensions. As discussed in

126 Semantic Web Services, Processes and Applications

section (3), the syntax of ITL is defined primarily by Expressions and
Formulae. Expressions can be of various types for e.g. static and state
variables, functions, and constants. Similarly formulae can be subclassed as
being atomic: e.g. " ".composite: e.g. " / i / j " and predicates: e.g.
" isRegistered(userID) " amongst others. Expressions and Formulae in the
ontology are built incrementally. The root class of all Formulae is
"Formula", while that of Expressions is "Expression". Formula has several
subclasses such as "Atomic", "Composite" and "Prefixed" amongst others.
"TempuraFormula", defines formulae specified in Tempura and which can
be executed by AnaTempura. "Operator" denotes the kind of operators that
can be used with formulae and expressions. Classes have properties and
restrictions associated that define the kind of parameters that are required to
build the expression or formula. Properties provide the link between
expressions/formulae and operators. We follow an incremental approach to
building ontology instances using the ITL-Tempura ontology as shown in
the e-Bookshop example presented in secton 6.5. The modular approach to
building ITL and Tempura formulae allows reusability of formulae and
expression instances between ontologies. We use the Protege OWL plugin
for modelling the ontology.

Figure 5-13 shows how formulae and expressions are structured. A
complete description of the ontology is beyond the scope of the paper. A
graphical and hierarchical representation of the classes in the ontology can
be found at (Solanki 2005). The complete ontology itself can be found at
(Solanki 2005).

ITL-Tempura Ontology::= Formula | Expressions | Tom]HiraConsluct
Connective | Operator | Quaniifler

Fcirniiila::= Atomic | TempuroAtomic | Equality |
Composite | CotripositeWitliExpressions | Leii |
Negated | i'refixed | PrefixedWilliExpressions
Ptedicato | Quantified | Suffixed |

Expression::= StaloVarittbIc | StaticVariable | Constant |
Function | CompositeExprcsions | MatliFunc |
NextExpression | PicfixExpression

0|Krator::= EqualityO|5e,rator | TemporalO|ierutor
Tempora!0]Krator::= InfjxOpeartor | PrefixOperator | SuffixOperator

Figure 5-13 Primitives for tlie ITL-Tempura Ontology

Temporal Reasoning of Reactive Web Services 111

6.2 OntoITL: A Pre-processor for Temporal Ontologies

So far, we have seen how ITL formulae and expressions can be modelled
using the ITL-Tempura ontology. This enables service providers to specify
temporal constraints as part of their service specification. In order to
interpret this semantic markup of temporal properties, a utility is needed to
generate concrete formulae and expressions from the OWL representation.
The idea behind providing such a tool is to automate the process of
generating, interpreting and analysing temporal properties of services.
Service requestors and composers can use the tool to extract temporal
properties that they would like to validate, while interacting with the service.
At runtime, the properties are monitored against the behaviour of the
interacting services.

OntoITL is a pre-processor that generates concrete ITL and executable
Tempura formulae from instance ontologies built using the ITL-Tempura
Ontology. The instances are defined using the core ontology as described in
Section 6.1 or from ontologies that import these instances. It provides as
output, complete information about instances of State and Static variables.
Expressions, Formulae and Temporal Formulae modeled in the ontology. An
output of the pre-processor for properties of the e-Bookshop, modeled using
the ITL-Tempura Ontology and as explained in section 6.5 is shown in the
Figure 5-16

OntoITL takes as input, the instance ontology in OWL for a formula or a
set of formulae. It then generates ITL/Tempura formulae keeping the
syntactical structure of the formula intact. OntoITL offers several options to
store the generated ITL and Tempura formulae. It also provides the facility
to directly pass the tempura formula to the AnaTempura interpreter, that
executes the formulae and validates temporal properties. Alternatively,
OntoITL stores the generated outputs in files that can be executed via the
Tcl/Tk interface of AnaTempura as discussed in section 6.3.

6.3 AnaTempura: Validation of Tempura Specification

AnaTempura (available from (A. Cau, 2005)), which is built upon C-
Tempura, is an integrated workbench for the runtime verification of systems
using ITL and its executable subset Tempura. AnaTempura provides
• specification support
• verification and validation support in the form of simulation and runtime

testing in conjunction with formal specification.

An overview of the run-time analysis process in AnaTempura is depicted
in Figure 5-14.

128 Semantic Web Services, Processes and Applications

Destel
Proj>erties

f renpuia Oode)
Validate

Service
Ini»tenBntation

Figure 5-14 The Analysis Process

There are two ways of validating properties via AnaTempura:

• Concrete Tempura formulae generated by the OntoITL pre-processor are

directly passed to AnaTempura. The results of the validation and
execution are returned to OntoITL for display.

• Concrete Tempura formulae generated by the OntoITL pre-processor are
stored in files for validation at a later stage. The results of the validation
and execution can be displayed via the Tcl/Tk interface of AnaTempura.

Rasulls

Figure 5-15 General Architecture for Web services
AnaTempura generates a state-by-state analysis of the system behaviour

as the computation progresses. At various states of execution, values for
variables of interest are passed from the system to AnaTempura. The
Tempura properties are validated against the values received. If the

Temporal Reasoning of Reactive Web Services 129

properties are not satisfied AnaTempura indicates tlie errors by displaying
what is expected and what the current system actually provides. The
approach goes beyond a "keep tracking" approach, i.e. giving the running
results of certain properties of the system, by not only capturing the
execution results but also comparing them with formal properties. The
general architecture that employs AnaTempura for validation of service
properties is shown in Figure 5-15.

The validation results of the instance-ontology-formulae, generated from
the TeSCO-S framework, can be returned to the composing agents, the
middleware or to the service requestor depending on the design of the
service composition.

6.4 Validating the Customer: e-Boolishop Composition

We have validated the assumption-commitment properties of the e-
Bookshop as formalised in section 5.1.

We adopt the second approach to validating properties as mentioned in
section 6.3. The property is extracted as a tempura formula, from its
ontological representation using the OntoITL pre-processor and stored in a
file. At the initial state, the customer registers using his login details^. The
login details are set for the customer session and passed to AnaTempura. As
illustrated in the Figure 5-16 for each phase of the composition (search, buy
etc.) and for every interaction between the e-Bookshop and the customer, at
all states, the property is validated.

Tempura interpreter validates the property against the values set in the
session for that state. We have developed a minimalistic GUI for dislaying
the results of the property validation. The blue circle indicates that a
property holds for that state, while a red circle indicates that a property has
been violated. In the example shown, a " 1 " indicates the first service in the
composition i.e. the "Book Search", while a "2" indicates the second service
i.e. the "Book Buy". If the values in the session are found to be reset and do
not match the ones passed to the interpreter in the initial state, a warning
message is sent to the e-Bookshop as indicated by the red circle. It is worth
noting that the interpreter only validates the properties of interest. It does not
define the behaviour of the service in case the properties are not satisfied.

^For practical purposes, we do not model the registration process over an
interval, although this may well be the case if the user enters incorrect login
details, and takes several attempts to correct login.

130 Semantic Web Services, Processes and Applications

This is a design decision that has to be taken before the composition is
realised.

isRegistered(userlD)
A.

r isRegi5tered(».5eiID)

AnaTempura

Book Search Book Buy

JtUlb /SUi. StBi. ddllX.
flow BSffl flnu WsSS

V::!;d;ili;io bS!".î

o

Figure 5-16 Validating the customer -e-bookshop composition

6.5 Specifying Properties in the ITL-Tempura Ontology

In this section, we model some interesting properties of the e-Bookshop
service 5 using the ITL-Tempura ontology. For the sake of brevity in
representation we model them as A-Box representations.
Recalling the definition of a composite formula,
Composite 6 Formula 6 (V hasPrefixedSubFormula.Formula)
6 (V hasSuffixedSubFormula.Formula) 6 (=1 hasInfixOperator.Operator)
6 (=1 hasPrefixedSubFormula.Formula) 6 (=1
hasSuffixedSubFormula.Formula)
We choose the following properties from the e-Bookshop example
Property (1): During the search, at any state if the user sends an ISBN

Temporal Reasoning of Reactive Web Services 131

number, he gets back the search results, for the same ISBN number in the
next state.
{{searchBookilSBN)) Z) {searchResults{ISBN)))
We define the properties as assertional axioms (ABox) in Description Logic.
We build the formula incrementally as shown below:
ABox representation of Property (1):
ISBN:StateVariable, PI :Predicate, P2:Predicate
(PI, searchNook):hasName, (PI, ISBN):hasExpressionList
(P2, searchResults):hasName, (P2, ISBN):hasExpressionList
PRl:Prefixed, (PRl, Next):hasPrefixOperator, (PR2, P2):hasSubFormu]a
Cl:Composite, (CI, Imp):hasInfixOperator
(Cl,Pl):hasPrefixedSubFormula, (CI, PRl):hasSuffixedSubFormula
PR2:Prefixed, (PR2, Always): hasPrefixOperator, (PR2, Cl):hasSubFormula
Property (2): Once the credit card has been validated, the e-Bookshop
makes a commitment to deliver the book as per the delivery terms and
conditions agreed with the user.

(finvalidCard(UserID, CardNumber)){DeliveryPeriod = CalculatedDays)

ABox representation of Property (2):

UserID:StateVariable, CardNumber:StateVariable
DeliveryPeriod:StateVariable, CalculatedDays:StateVariable
Pl:Predicate, (PI, validCard):hasName, (PI,
UserID,CardNumber)):hasExpressionList
PRl:Prefixed, (PRl, fin):hasPrefixOperator, (PR2, Pl):hasSubFormula
EQl:Equality, (EQl, Equals):hasEqualityOperator, (EQl,
DeliveryPeriod):hasPrefixExpression
(EQl, CalculatedDays):hasSuffixExpression
Cl:Composite, (CI, Chop):hasInfixOperator
(Cl,Pl):hasPrefixedSubFormula, (CI, EQl):hasSuffixedSubFormula

7. CONCLUSIONS

From a historical perspective, research on Web services was initiated
with a focus on automating business process composition within different
enterprises. Such coordinations are long-lived processes and may last from a
few minutes to a few months. An extensive review of state-of-the-art
research in the domain of Web service composition reveals that current
interface specification approaches do not provide capabilities to expose the

132 Semantic Web Services, Processes and Applications

reactive aspect of Web service behaviour. Based on service interfaces
definitions (Roberto Cliinnic et al 2005) and message exchange protocols
(Martin Gudgin et al.2003), standards have been proposed for specifying
composite services, by defining declaratively, their data and control flows.
BPEL4WS (Tony Andrews et al. 2003) provides distinct constructs for
specifying abstract and executable processes. BPEL, however does not
prevent complex computation from being included in an abstract process,
thus revealing implementation details.

Within the context of semantic Web services frameworks like OWL-S
and WSMO, specification of pre/post-conditions and effects contribute to
some extent towards their behavioural description. However they are limited
to describing transformational behaviour. There is no support available for
describing and reasoning about changes over time. This is due to the lack of
explicit modelling of "states" in these languages. Rule languages for the web
include RuleML and within the context of semantic web, initiatives such as
SWRL (Ian Horrocks et al. 2003) and DRS (Drew McDermott and Dejing
Dou 2002). These approaches are limited to describing only certain kinds of
properties. The expressivity of the languages is restricted to specifying static
rules and constraints. There are no constructs available for specifying
ongoing behavioural semantics or temporal properties of services. Other
related work in this area is mostly concerned with representation of time as a
first-class citizen, (Feng Pan and Jerry R. Hobbs 2004, F. Bry and S.
Spranger 2003) i.e. reasoning about time points, complex time intervals,
calendars and durations.

For dynamic composition of services, compositional properties need to
be abstracted at a level where service requesters, providers, composing
engines and matchmakers can discover these properties of services.
Assumption-Commitment properties can be suitably specified in any service
description language, rich enough to capture the underlying expressiveness
of these properties. In this chapter, we provide a modular approach, TeSCO-
S, to building and executing temporal properties of services, with interfaces
described as OWL ontologies. TeSCO-S is based on Interval Temporal
Logic (ITL) and Tempura, its executable subset. Our pre-processor
"OntoITL" enables transformation of the bulky XML representation of
temporal properties into concrete ITL and Tempura formulae, that can be
handled readily by AnaTempura. The ontology within the TeSCO-S
framework can be used by service providers to describe temporal capabilities
of services. Service requestors and composing agents can use "OntoITL"
and AnaTempura for on-the-fly transformation and validation of these
temporal properties. The ontology provides constructs not only for
specifying temporal expressions and formulae, but general first order
predicates and formulae as well. It can therefore, also be used to specify pre-

Temporal Reasoning of Reactive Web Services 133

conditions/post-conditions and effects in frameworks like OWL-S and
WSMO. Ongoing work in TeSCO-S is providing reasoning support over
temporal ontologies and tools for exploiting ITL formulae to build temporal
ontologies. It is planned to have a protege plugin for defining temporal
ontologies, that could be used along with the OWL-S editor for modelling
OWL-S services.

8. QUESTIONS FOR DISCUSSIONS

Beginner:
1. What are the main categories under which computing systems can be

partitioned?
2. What are the characteristics of reactive systems?
3. How does temporal logic help in formalising system behaviour?

Intermediate:
1. Discuss why Web services should be modelled as reactive systems.
2. What properties of a dynamically composed service can be formalised

using temporal logic?
3. Discuss why the notion of Compositionality is important while defining

composition of services.
4. Why should temporal properties of services be modelled as ontologies?
5. How does a service composition benefit from runtime validation of

desired properties?

Advanced:
1. Discuss how properties of a holiday booking service can be formalised

using Interval Temporal Logic.
2. How can properties of the holiday booking service be expressed using the

ITL-Tempura ontology?
3. Identify assumption-commitment properties for the holiday booking

services.

SUGGESTED ADDITIONAL READING

Monika Solanki and Antonio Cau and Hussein Zedan. Introducing
Compositionality in Web Service Descriptions. In Proceedings of the
10th International Workshop on Future Trends in Distributed Computing
Systems - FTDCS 2004, Suzhou, China, May 26-28 2004. IEEE
Computer Society Press.

134 Semantic Web Services, Processes and Applications

• Antonio Cau. ITL and (Ana)Tempura Home page on the web.
http://www.cse.dmu.ac.ukrcau/itlhomepage/itlhomepage.htnil.

• Z. Manna and A. Pnueli.The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer-Verlag, New York, 1991.

• B. Moszkowski. Executing temporal Logic Programs. Cambridge
University Press, Cambridge, England, 1986.

10. REFERENCES

F. Bry and S. Spranger (2003). Temporal constructs for a web language.
A. Cau, (2005). ITL and (Ana)Tempura Home page on the web.

http://www.cse.dmu.ac.uk/~cau/itlhomepage/itlhomepage.html.
Antonio Cau and Hussein Zedan (1997). Refining interval temporal logic specifications. In

ARTS, pages 79-94,1997.
Roberto Chinnic, Hugo Haas, Amy Lewis, Jeans Jacque Moreau, David Orchard, and Sanjiva

Weerawarana (2005). Web services description language (WSDL) version 2.0 part 1: Core
language w3c working draft 3rd August, 2005. http://www.w3.org/TR/2005/WDwsdi20-
20050803/.

W.P. de Roever (1985). The quest for compositionality a survey of assertion based proof
systems for concurrent programs. In Neuhold EJ, editor, Proc of the IFIP conference: the
role of abstract models in computer science,, Vienna. North Holland, Amsterdam.

W. P. de Roever et al (2001). Concurrency Verification: Introduction to Compositional and
Noncompositional Methods. Cambridge University Press, Cambridge, England, 2001.

E. W. Dijkstra (1965). Solution of a problem in concurrent programming control. Commun.
ACM, 8(9):569.

E. W. Dijkstra (1976). A Discipline of Programming. PrenticeHall.
Jurgen Dinge (2000), Systematic parallel programming. PhD thesis, Carnegie Mellon

University.
Frank Leymann, IBM Software Group. Web Services Flow Language (WSFL) Version 1.0,

2001.
Drew McDermott and Dejing Dou (2002). Representing Disjunction and Quantifiers in RDF

Embedding Logic in DAML/RDF. In ISWC2002. 1st International Semantic Web Con
ference, 2002.

E.M. Clarke and O. Grumberg, and D. A. Peled (1999). Model Checking. The MIT Press,
Cambridge, Massachusetts.

R. W. Floyd. Assigning meaning to programs (1967). In Symposium in Applied Mathematics,
volume 19, pages 19-31. American Mathematical Society, 1967.

Martin Gudgin, Marc Hadley, Noah Mendelsohn, JeanJacques Moreau, and Henrik Frystyk
Nielsen (2003). SOAP Version 1.2 Part 1: Messaging Framework W3C Recommendation
24 June. http://www.w3.org/TR/soapl2partl/.

D. Harel and A. Pnueli. (1985) On the development of reactive systems, pages 477-498.
SpringerVerlag New York, Inc., New York, NY, USA .

D. Harel and M. Politi.(1998). Modeling Reactive Systems with Statecharts: The
STATEMATE Approach. McGrawHill.

The Rule Markup Initiative, http://www.dfki,unikl.de/ruleml/.
C,A,R Hoare, An axiomatic basis for computer programming, Comm, ACM, 12 (1969) 576-

580, 583, 1969.

Temporal Reasoning of Reactive Web Services 135

Ian Horrocks, Peter F. PatelSchneider, Harold Boley, Said Tabet, Benjamin Grosof, Mike
Dean (2003). SWRL: A Semantic Web Rule Language Combining OWL and RuleML .
Technical report, University of Manchester, Version 0.5 of 19 November.

M Imperato (1991). An introduction to Z. ChartwelIBratt, 1991.
Z. Manna and A. Pnueli (1991). The Temporal Logic of Reactive and Concurrent Systems:

Specification. SpringerVerlag, New York.
Zohar Manna and Amir Pnueli .(1993) Models for reactivity. Acta Inf., 30(7):609-678.
Mike Dean and Guus Schreiber (eds.) 2004. OWL Web Ontology Language Reference, 10

February 2004. http://www.w3.org/TR/owlref/.
J. Misra and K.M. Chandy (1981). Proofs of networks of processes. In IEEE Transactions on

Software Engineering, volume 7(7):417426.
Monika Solanki and Antonio Cau and Hussein Zedan (2003). Introducing compositionality in

Webservice Descriptions. In Proceedings of the 3rd International Anwire Workshop on
Adaptable Service Provision, Paris, France, 2003. SpringerVerlag.

Monika Solanki and Antonio Cau and Hussein Zedan (2004). Introducing Compositionality in
Web Service Descriptions. In Proceedings of the 10th International Workshop on Future
Trends in Distributed Computing Systems FTDCS 2004, Suzhou, China, May, 2004. IEEE
Computer Society Press.

B Moszkowski (1983). Reasoning about Digital Circuits. PhD thesis. Department of
Computer Science, Stanford University

B. Moszkowski (1986). Executing temporal Logic Programs. Cambridge University Press,
Cambridge, England.

B. Moszkowski (1994). Programming Concepts, Methods and Calculi, IFIP Transactions, A-
56., Some Very Compositional Temporal Properties, pages 307-326. Elsevier Science, B.
v., NorthHolland, 1994.

B. Moszkowski (1995). Compositional reasoning about projected and infinite time. In Pro
ceedings of the First IEEE Int'l Conf. on Engineering of Complex Computer Systems
(ICECCS'95). In , pages 238245. IEEE Computer Society Press.

B. Moszkowski (1995). A temporal logic for multilevel reasoning about hardware. IEEE
Computer, pages 10-19.

B. Moszkowski (1996). Compositionahty: The Significant Difference, volume 1536 of LNCS,
chapter Compositional reasoning using Interval Temporal Logic and Tempura, pages 439-
464. Springer Verlag, Berlin, 1996.

B. Moszkowski (1996). Using temporal flxpoints to compositionally reason about liveness. In
He Jifeng, John Cooke, and Peter Wallis, editors, BCSFACS 7th Refinement Workshop,
electronic Workshops in Computing. "SpringerVerlag and British Computer Society",
London.

Nickolas Kavantzas, David Burdett, Gregory Ritzinger, Tony Fletcher, Yves Lafon (2004).
Web Services Choreography Description Language Version 1.0: W3C Working Draft 17
December.

Feng Pan and Jerry R. Hobbs (2004). Time in OWLS. In Proceedings of AAAI Spring
Symposium Series on Semantic Web Services, 2004.

P. K. Pandya (1990). Some comments on the assumptioncommitment framework for
compositional verification of distributed programs. In REX workshop: Proceedings on
Stepwise refinement of distributed systems: models, formalisms, correctness, pages 622-
640, New York, NY, USA. SpringerVerlag New York, Inc.

Satish Thatte. XLANG: Web Services for Business Process Design, 2002.
Amazon Web Service, www.amazon.com.
Monika Solanki. (2005) A Graphical representation of Class Hierarchies in the ITLTempura

Ontology. http://www.cse.dmu.ac.uk/~monika/TeSCOS/OntoITL.jpg.

136 Semantic Web Services, Processes and Applications

Monika Solanki. (2005) An Ontology for ITL and Tempura.
http://www.cse.dmu.ac.uk/~monika/TeSCOS/OntoITL.owl.

Monika Solanki, Antonio Cau, and Hussein Zedan (2004), Augmenting semantic web service
descriptions with compositional specification. In Proceedings of the 13th international
conference on World Wide Web, pages 544-552. ACM Press.

I Michael Spivey (1996). Richer types for Z. Formal Asp. Comput., 8(5):565-584,1996.
The protege ontology editor and knowledge acquisition system.

http://protege.stanford.edu/index.html.
Ketil Stolen (1990). Development of parallel programs on shared datastructures. Technical

report, Department of Computer Science, University of Manchester.
Kim Sunesen (1998). Reasoning about Reactive Systems. PhD thesis, BRICS, Department of

Computer Science University of Aarhus.
The OWL-S Coalition, (2004). OWLS 1.1 Release. http://www.daml.0rg/services/owls/l.O/.
Tony Andrews et al. (2003) Business Process Execution Language for Web Services, Version

1.1, 2003. http://wwwl06.ibm.conVdeveloperworks/library/wsbpel/.
Web Service Modelling Ontology, (2004). http://www.wsmo.org.
R. J. Wieringa (2003). Design Methods for Reactive Systems. MorganKaufmann: Elsevier

Science, San Francisco.
Qiwen Xu and Mohalik Swarup, (1998). Compositional reasoning using the assumption-

commitment paradigm. Lecture Notes in Computer Science, 1536:565-583.
Cau A. Xu Q. W. and CoUette P (1994). On unifying assumptioncommitment style proof

rules for concurrency. In B. Jonsson and Eds. J. Parrow, editors. In CONCUR'94, LNCS
836.

Shikun Zhou (2003). Compositional Framework for the Guided Evolution of TimeCritical
Systems. PhD thesis. Software Technology Research Laboratory, De Montfort University
UK.

J. Zwiers (1989). Corapositionality, concurrency and partial correctness. SpringerVerlag New
York, Inc., New York, NY, USA.

PART II: SEMANTIC WEB PROCESSES

Chapter 6

BASIC CONCEPTS IN CHOREOGRAPHY

Sinuhe Arroyo
Digital Enterprise Research Institute (DERI), Innsbruck, Austria - sinuhe.arroyo@deri.at

1. INTRODUCTION

Services constitute an emerging paradigm for the design of distributed
software systems. Nonetheless, interoperability is a factor determining the
adoption of innovation in business environments (DIP) so that
interoperability must be carefully addressed as a critical element in SOA
(Service Oriented Architecture) technology. Services need to interoperate
with each other in order to realize the purposes of the software system they
define by exchanging messages, which allow them to make or to respond to
requests. Upon the reception of a message, services react by executing some
internal invisible processes, and possibly, responding with other messages.
Due to the heterogeneous technological and syntactic nature of services
realizing semantic web processes, communication requirements become
more complex, clearly defining a balance among interoperation and
decoupling.

The concepts and ideas that underlie the so-called Semantic Web
(Bemers-Lee, Hendler et al. 2001) appear as a candidate solution for such
complex compatibility problems (Brogi, Canal et al. 2004). Notably, formal
ontology based on description logics (Baader, Calvanese et al. 2003)
provides an appropriate formalism to deal with compatibility problems.

In the context of providing support for choreography (i.e. the modeling
of external, visible behavior of service interactions), a semantic layer could
be supposed to provide the required convertibility between divergent
specifications by the specification in machine-processable form of the
message exchanging patterns (MEP). Scalable and reliable service
communication and integration beyond simple interchanges requires

140 Semantic Web Services, Processes and Applications

interoperable choreography as an essential service for business collaboration
(Jung, Hur et al. 2004). This makes semantic compatibility between
interchanges an important research objective, which has recently been stated
in formal terms (Brogi, Canal et al. 2004).

The idea of overcoming the heterogeneity among messages using such
semantic service-based mediation layer as choreography service(s) is
thought to have a lot of potential (Watkins, Arroyo et al. 2005; Zaremba,
Moran 2004). On the one hand, as the number of accessible services
increases, so does the number of structural and behavioural styles, thus
requiring the use of some intermediate layer to overcome heterogeneity. On
the other hand, the development of new applications and integration of
existing ones can be greatly decreased, as off-the-shelf services can be
readily used to build bigger and more complex software systems minimizing
integration efforts. In a nutshell, the design of modern applications requires a
compromise among interoperation and decoupling that is sometimes hard to
realize due to the heterogeneous nature of services. If services communicate
by exchanging message, a choreography engine is a good mediation layer
that could speed up the interoperation and development of new and existing
software functionality.

A number of approaches exist, such as BPEL4WS (Andrews, Curbera et
al. 2003), WS-CDL (Kavantzas, Burdett et al. 2004), WSCI (Zaremba,
Moran 2004) or WSMO - Choreography (Roman, Scicluna, et al. 2005),
which can be used to model the external visible behavior of services.
However none of these approaches represents a complete solution to the
problem due to:
• a lack of technological independence (BPEL4WS, WS-CDL)
• the lack of a clear model that separates structural, behavioral and

operational aspects (BPEL4WS, WS-CDL, WSCI or WSMO-
Choreography)

• the lack of proper support for semantics (BPEL4WS, WSCI, WS-CDL^)
• an ad-hoc approach to solve heterogeneity among message exchanges

(BPEL4WS, WS-CDL, WSCI or WSMO-Choreography)
• a central vs. decouple approach to model choreographies (BPEL4WS,

WS-CDL, WSCI or WSMO-Choreography)

Thus, new initiatives are needed that overcome these limitations and
provide interoperation mechanisms among services, which increase the
degree of de-coupling and eliminate static dependencies.

' It supports the recording of semantics, but it does not use them at all.

Basic Concepts in Choreography 141

In the following, the main ideas and concepts behind choreography are
depicted. Section 2 carefully depicts related approaches and initiatives
dealing with choreographies categorizing them and reviewing their main
contributions and lacks. Section 3 details the main driving principles
required to model and allow interoperation among heterogeneous message
exchanges. Section 4, present the new challenges in choreography. Section 5
provides a detailed description of SOPHIE an initiative that aims to
overcome the limitations of existing approaches. Section 6, exemplifies the
concepts and ideas sketched so far by means of a use case centered in the
telecommunications field. Finally, Section 7 draws the conclusion of the
chapter.

2. LITERATURE REVIEW

In the following different technologies that are related to the definition of
a conceptual framework for choreography are concisely reviewed. In doing
so, their core characteristics are presented and main drawbacks identified.

Table 6-1 presents a preliminary classification based on a three
dimension exam. The first dimension depicts the relation with the underlying
communication framework, differentiating among tight and loose. The
second one addresses the semantic support provided. Finally, the third one
discriminates them depending on whether or not they follow a layered
model. Based on these depiction four main categories of languages are
distinguished:
• Technologies with a tight relation to the underlying communication

framework, lacking of a layered model and no support for semantics,
such as BPEL4WS

• Technologies with a tight relation to the underlying communication
framework, that follow a layered model and no support for semantics,
such as WS-CDL

• Technologies with a loose relation to the underlying communication
framework, lacking of a layered model and no support for semantics,
such as WSCI

• Technologies with a loose relation to the underlying communication
framework, with support for semantics but lacking of a layered model,
such as WSMO-Choreography

142 Semantic Web Services, Processes and Applications

Table 6-1. A first cut in classifying related languages

relation with
communication
framework

tight

loose

layered model

no
Business
Process
Languages

Choreography
Languages

no

Choreography
Languages

Semantic-driven
choreography
initiatives

yes

SOPHIE

yes

semantic support

2.1 Business Process Languages

Business Process Languages provide the means to specify business
processes and interaction protocols, representing the first attempt to model
the visible behavior of services. BPEL4WS is the main initiative classified in
this group. It focuses on describing collaboration among processes through
Web Service interfaces -orchestration-, rather than the sequence and
cardinality of the messages exchanged -choreography-. Nevertheless, many
of the concepts and ideas sketched in BPEL4WS have been adopted and
improved in other choreography languages. BPEL4WS is characterized by a
tight relation with the underlying communication framework, which
seriously hampers its flexibility, a lack of support for semantics, which
prevents the agile interoperation among Services and, a missing layered
approach, which results in a confusing specification.

BPEL4WS. The Business Process Execution Language for Web Services
(BPEL4WS) (Andrews, Curbera et al. 2003) is a model and a grammar for
describing business work flow logic. In doing so, it represents interactions
between processes and its partners through Web Service interfaces.
BPEL4WS allows the creation of abstract processes that describe business
protocols -public visible behavior-, as well as executable processes
-private behavior-, that can be compiled into runtime scripts (Barros,
Dumas et al. 2005).

The specification makes use of the following concepts. Business partners
define groups of partner links that allow them to establish a number of
conversational relations. A partner link models the services with which a
business process interacts. Partner links are characterized by partner link
types. A partner link type represents the conversational relationship between

Basic Concepts in Choreography 143

two services by defining the roles of each one of them and the port types that
will be receiving each others messages. Correlation among messages within
a conversation is provided by means of correlation sets. Correlation sets
provide a declarative mechanism to define correlated groups of operations.
Additionally, variables facilitate the means to hold messages that have been
received or will be sent to partners, which constitute the state of a business
process. The values of compatible variables can be copied among them by
means of assignments.

BPEL4WS differentiates among two types of activities. Basic activities
represent the invocation of an operation on a service as a synchronous or
asynchronous request or response. Basic activities can be associated with
other basic activities that act as its compensation action. Structured activities
prescribe the order in which a collection of activities takes place, permitting
to describe business processes by composing basic activities. The context
where activities behave is called scope. A scope allows defining correlation
sets and a number of event handlers for compensation, alarms and fault,
among others. Event handlers define a set of actions that are invoked
concurrently if a particular event occurs. A process definition is then made
of one activity, a series of partners, some specific correlation sets, and the
definition a number of handlers.

In practice, BPEL4WS focuses on the description of collaborative
processes -orchestration-, rather than in the detailed description of the
external visible behavior -choreography-, Also, it presents a tight relation
with the underlying communication framework, which prevents the use of
any technology other than WSDL and SOAP. Furthermore, even though
roles might not hold through out the interaction, partners are tight to roles in
conversations. Additionally, it lacks of a layered model and support for
semantics. Finally, the use of variables and scopes has more to do with the
private behavior of the process than with the external visible one, presenting,
when assimilated to choreographies, a non-desirable centralized approach
that goes against the decoupled nature of services.

2.2 Choreography Languages

Choreography languages deal with modeling the external visible
behavior of Services as a number of message exchanges. The initiatives
detailed in this group are WS-CDL and WSCI.

WS-CDL is the latest attempt of the W3C (WWW) to define an XML
language for the description of the common and complementary behavior of
services from a global point of view. Like in the case of BPEL4WS, WS-
CDL has a tight relation to the underlying communication framework, and

144 Semantic Web Services, Processes and Applications

lacks of layered model. Additionally, it allows the recording of semantic
description, even though the purpose of such feature is not clear.

WSCI is also an XML-based language aiming at describing the message
interfaces of services. WSCI is not longer under development, as the W3C
replaced with WS-CDL. WSCI does not count with any support for
semantics, nor follows a layered model, establishing a loose relation with the
underlying communication framework.

WS-CDL. The Web Service Choreography Description Language (WS-
CDL) (Kavantzas, Burdett et al. 2004) is an XML-based language for the
description of the observable behavior of Web Services defined under the
auspices of the W3C. WS-CDL permits defining, from a global and common
point of view, multiparty contracts, which describe the visible behavior of
Web Services as a number of ordered message exchanges.

The specification makes use of the following concepts. Participants
represent the consumers and producers of information. They identify a set of
related roles. Roles enumerate the observable behavior of a participant with
respect to another one. The association of two roles to fulfill a concrete
purpose is called relationship. A relationship represents the possible ways in
which two roles can interact. Channels specify where and how to exchange
information, they define the links between WS-CDL choreographies and the
operations described in the interfaces of services. Variables contain
information about the objects partaking in the choreography that describe the
information exchanged during an interaction.

Choreographies are described in WS-CDL documents. WS-CDL
documents, describe, from a global point of view the rules agreed among
participants that govern the message exchange. They are encapsulated in
packages. Packages enclose information that is common to all the
choreographies it contains. Additionally, packages enclose activities.
Activities can be conducted by participants. The specification details three
types of activities namely. Ordering Structure, WorkUnit and Basic
activities. Ordering Structure activities are block-structure activities that
enclose a number of sub-activities. WorkUnit activities describe the
conditional and possibly repeated execution of an activity. Work activities
are actual work performers.

To conclude, a WS-CDL choreography can specify one exception block
and one finalizer block, which are respectively activated when an exception
occurs or when the choreography has completed successfully.

In practice, the explicit association of roles to participants as modeled in
relationships is a too constraining way of representing the interaction among
services. Such relation should be transparent to the language and dependent
only on the particular part of the message exchange conducted. Also, the use

Basic Concepts in Choreography 145

of channels further hampers flexibihty, as it adds a new restriction to the
interaction, which should be overcome by the addressing mechanism of the
message exchange. In this direction, the specification is too tight to a
particular technology. Furthermore, the use of variables to describe the
context of the interaction and activities to model the functionality of parties
helps to present a centralized approach which goes against the natural
decoupling that services should follow. The state of each party should be
private and transparent to other parties. Additionally, the interaction follows
an asymmetric nature biased towards the receiver rather than the sender,
refereeing to the operation performed when information is received, but not
the action(s) (or operations) leading to the sending of information (Barros,
Dumas et al. 2005). Moreover, the relation among the specification and the
use of MEPs, understood as a key element that allows solving the
heterogeneity among message exchanges is not explicitly addressed. As
well, even though it allows the recording of semantic descriptions, their
purpose is not clear. Besides, it lacks of any support to correlate messages
and solve heterogeneities. Finally, the lack of a layered model differentiating
among structural, behavioral and operational aspects helps portraying a
confusing view of the language. It tries at the same time to define a model
and a XML syntax, which does not discriminates among aspects.

WSCI. The Web Services Choreography Interface (WSCI) (Arkin, Askary
et al. 2002) is an XML-based interface description language co-developed
by a number of industrial partners. WSCI describes the flow of messages
exchanged by Web Services in terms of dependencies among them, featuring
sequencing rules, correlation, exception handling and transactions.

Interfaces describe how services are perceived to behave from a temporal
and logical point of view within a message exchange. A service might have
multiple interfaces for a given message exchange. A set of message
exchange define a conversation. Conversations make use of message
correlation in order to describe its structure and which properties must be
exchanged to maintain the semantic consistency of a conversation.
Properties are equivalent to variables and allow referencing a value or
representing an abstraction for a message received. Such abstractions are
conceptualized as processes. Processes are labeled with a name and
represent a portion of behavior, such as receiving a message or calling a
process. Activities represent the basic unit of behavior of a service. They are
classified into atomic and complex. Atomic activities constitute a basic unit
of behavior such as sending or receiving a message o waiting for an amount
of time. Complex activities are recursively composed of other activities
which defines a specific type of choreography for the activities it encloses.
Ultimately complex activities are composed of actions. Activities are

146 Semantic Web Services, Processes and Applications

executed within the environment provided by a context. Context might be
associated with transactions to describe from the interface perspective the
transactional properties of a number of activities. In addition exceptions
allow to model models exceptional behavior of a service in a conversation

WSCI does not take under consideration MEPs as a means to describe
the behavior of parties and cornerstone to solve heterogeneities. Also, it
lacks of any support for semantics. Furthermore, it leaves aside issues such
as QoS and security. Additionally, it presents a global and centralized view
of the choreography, which contradicts the decoupled nature of services.
Moreover, the concept of transaction as presented seems to be more related
to internal aspects than to internal ones. Finally, even though it sketches the
concept of state to model behavior, the idea is not fully integrated,
contributing to a confusing specification that lacks of a clear separation of
models.

2.3 Semantic-driven Choreography Initiatives

Currently, only one initiative exists that tackles the choreography
problem from a semantic perspective. The main advantages of this approach
revolve around the dynamic generation of mappings among parties that
allows them to interoperate in a more efficient and agile way.

WSMO Choreography represents the first attempt to model
choreographies from a semantic perspective. It does not make any
assumption about the underlying communication platform. The main draw
back of WSMO Choreography is the lack of separation of models.

WSMO Choreography. The WSMO Choreography (Roman, Scicluna, et
al. 2005) is an ontology-based approach that allows describing the behavior
of services from the user point of view. WSMO-choreography is based on
Abstract State Machines (ASMs), from which it inherits the core principles,
namely, state-based, state by and algebra and guarded transition rules. The
main building blocks of WSMO choreography are thus states and guarded
transitions. States are described by a link to an instance of a WSMO
ontology. Guarded transitions define transition rules that express changes of
states by changing the set of instances of the ontology.

WSMO-chorography focuses only on the behavioral aspects of the
choreography, leaving aside structural and operational considerations. Also,
the behavioral model is based on the formalism presented by ASM from
which it borrows an insufficient subset of concepts that can hardly model a
complete choreography. Furthermore, it does not rely on the use of
conversational patterns to define the order and cardinality of messages, thus
complicating the mapping task among heterogeneous interaction styles.

Basic Concepts in Choreography 147

Additionally, it does not specify how the message exchange mismatches
should be identified, mapped and solved. Finally, the specification is too
closed over WSMO and ASMs, leaving no room to accommodate other
formalisms, such as Petri nets for the behavioral model, or OWL as
underlying semantic language.

3. DRIVING PRINCIPLES

When designing choreographies a number of driving principles need to
be taken under consideration. In the following, such principles are
enumerated and briefly discussed.

Conceptual framework
The first step in analyzing choreographies is to identify the different

entities that partake in the interaction. A choreography service defines terms
and roles for these entities.

Separation of models
The definition of a choreography service requires that the models that

build it are clearly differentiated. As a result, a modular framework should
be designed, where different formalism can be readily added, extended or
replaced, in order to allocate the most suitable one, depending on the target
application and application domain.

Semantic-driven and mediation
Due to the natural heterogeneity of the open environment where services

reside, the interoperation of heterogeneous message exchanges requires the
production of intermediate structures - mediators - that allow overcoming
mismatches. By semantically describing the different entities that
characterize the choreography service, such structures can be produced as a
result of a mediation task. In doing so, mediation allows any party to speak
with every other (Fensel, Bussler 2002), facilitating an intermediate layer
that provides a generalized solution to resolve communication mismatches.

Technological independence
The design of a fully extensible choreography service should not make

any assumptions about underlying technologies. In particular, the details
regarding transport and communication frameworks should be left aside. In
doing so, a choreography service should rely on such underlying
technologies, defining a clear border, which allows separating the particular
communication details from the conceptual model used. In addition, as new

148 Semantic Web Services, Processes and Applications

ontological languages based on different logical formalisms are developed,
independence from existing and emerging specifications should be obliged.
In consequence the conceptual model is driven by the semantic description
of its constituent entities, not making any constraint or assumption on the
ontological language used to model such descriptions.

Separation of internal and external behavior
Choreographies deal with the externally visible behavior of parties. The

internal details should be clearly separated from the external ones, allowing
its independent definition. Deeply in this direction, the description of
collaborative process is out of the scope of this work, same as orchestration
in general.

Global view vs. decentralized approach
Many traditional models call for centralized approaches where the

interaction among parties is controlled by a unique point. In contrast, the
nature of ubiquitous systems is decentralized. While a decentralized
approach is preferred due to its flexibility to adapt to different application
domains, eventually, a global point of view is chosen to control the message
exchange. A choreography service should take both approaches under
consideration, allowing parties to choose the most suitable one at any time.

Pattern-driven
Particular types of interactions among services, such as, negotiation or

interactive information gathering, follow well established and researched
Message Exchange Patterns (MEPs). The choreography service should allow
the usage of such conversational protocols as main building block that can
be used to overcome heterogeneities among services.

SOA-based
A realization of all this basic principles, especially regarding semantic-

driveness and technological independence, the choreography service should
be realized as a SOA architecture with support for semantics.

4. GOALS: SEPARATION OF MODELS AND
MEDIATION

Services communicate with each other by exchanging messages, which
allow them to make or to respond to requests. Upon the reception of a
message, services react by executing some internal invisible processes, and
possibly, responding with other messages. Choreography deals with

Basic Concepts in Choreography 149

describing such external visible behavior of services as message exchanges.
In order to allow interoperation among services exposing different visible
behaviors, the means to map heterogeneous messages exchanges is required.
The problem is not trivial. On the one hand existing initiatives that tackle the
choreography problem defined much interleaved conceptualizations, lacking
of a clear separation of models that mix structural, behavioral and
operational aspects. Furthermore, they portray choreographies from a global
point of view, while services are characterized by their decentralized nature.
On the other hand, such the approaches to solve heterogeneities are very
much ad-hoc ones. Initiatives to overcome mismatches based on semantic
descriptions should be envisioned as a core building block that provides the
means to readily overcome heterogeneity by means of mediators. Still, the
current state of the technology do not suffice for the degree of automation
require, imposing human supported mediation techniques, which hamper the
dynamism of the task.

The separation of models and support for semantic mediation are at the
hearth of the challenges discussed above. Both characteristics are
complementary and required in the design of a choreographies framework.

4.1 Separation of Models

The separation of models enables the definition of a flexible conceptual
framework where the different abstract pieces are well decoupled from each
other.

These are the most important requirements considered by the layered
model:
• Syntactic vs. Semantic: Syntax and semantics should be clearly

distinguished as in (Tsalgatidou, Pilioura 2002). While syntactic aspects
identify core entities and interfaces, semantics cares for adding the
machine understandable descriptions that allow the dynamic
interoperation among the entities described in the syntax.

• Separation of aspects: Structural, behavioral and operational aspects
should be clearly separated within the syntactic model.
• Structural aspects deal with the provision of a reusable collection of

entities following different levels of abstraction that provide the basis
for the description of a conceptual model

• Behavioral aspects care for the description of the dynamic interaction
among the entities defined in the structural model

• Operational aspects facilitate the means to allow interoperation among
different operational models

150 Semantic Web Services, Processes and Applications

A clear separation of aspects facilitates the addition, replacement and
modification of the underlying paradigms without imposing the need to
redesign the overall conceptual model and affecting the remaining aspects.

4.2 Mediation

Mediation refers to the ability to solve heterogeneities among
heterogeneous entities. It allows parties to exchange messages, documents
and the data they contain, disregard of the vocabulary and behavioral model
used. Mediation by means of mediators, facilitates a generalized solution to
resolve communication mismatches among heterogeneous parties.

Mediation is applied at two different levels:
• Data and domain knowledge. The interoperation of parties will require

the mediation of data types and domain knowledge during the message
exchange. Depending on the domain to which parties belong to different
data types and domain knowledge might be used to encapsulate data and
its meaning.

• Message Exchange Patterns. Parties follow well-defined heterogeneous
message exchanges that model their external behavior. Patterns represent
units of reference that allow formalizing such behavior.
By semantically describing data, domain knowledge and message

exchange patterns, mappings that overcome the differences among
heterogeneous behaviors and structures can be readily produced.

Elaborating on the previous statements, it can be easily derived that
separation of models and mediation pose different degrees of complexity.
The engineering of software systems is already driven by a differentiation of
models, as a means to provide scalable and flexible systems. Likewise, the
Semantic Web is trying to put in place the formalisms required to agilely
solve heterogeneity at the ontological level. Additionally, there should not be
any doubt about the close relation among separation of models and
mediation, where later requires of the former. In fact the successful
mediation necessitates a clear depiction and semantic description of the
syntactical aspects.

5. SOPHIE: SEMANTIC WEB SERVICES
CHOREOGRAPHI ENGINE

SOPHIE (Arroyo 2006; Arroyo, Lopez et al. 2005; Arroyo, Duke 2005;
Arroyo, Sicilia et al. 2005; Arroyo, Kummenacher 2006; Arroyo, Sicilia
2005) is a conceptual framework and architecture for a choreography engine

Basic Concepts in Choreography 151

or service realized as a Semantic Service Oriented Architecture (SSOA).
SOPHIE is especially suitable for supporting the fine grained interaction
among services following different structural or behavioral models following
precisely the principles detailed in Section 3. It elaborates on existing
initiatives (Arkin, Askary et al. 2002; Andrews, Curbera et al. 2003;
Kavantzas, Burdett et al. 2004; Roman, Scicluna, et al. 2005) trying to
overcome their limitations with the addition of a layered syntactical model,
support for semantics, technological independence as it does not make any
assumptions about the underlying communication framework (WSDL,
SOAP), ontological language (WSML, OWL, RDF, etc) or behavioral
paradigm (Abstract State Machines (ASMs), Petri nets, temporal logic, etc).
Furthermore, it relies on the use of MEPs as the core building block to
semantically describe the skeleton of message exchanges.

5.1 Overall Architecture

Services that use SOPHIE fall into two categories, namely, initiating
parties and answering services. Both parties produce and consume
messages. Additionally, initiating parties indicate the choreography engine
by means of any of its constituents correlating services that the
infrastructure for the interoperation of heterogeneous message exchanges
should be established.

Initiating Party

Answering Service
\ /

\ /

X ! X

G
f.\ • ' . .•i\-O.Vi •(•..• . '/ i 'i-i!: \ lijt I'l •,•

i'!\' •^Ol'i-''-il!<'iU::'.'-'J^!

C.'.rti.iviii.^rii; !>:;.'•—

or Con-cicuiiiii "^^ K-:iriii,;cMt:':^.i,\c
i)\:rvin- ^"••-~

9

Figure 6-1. Choreography engine

Figure 6-1 shows a high level architecture of the conceptual framework
realized as a single correlating serviced Informally, initiating parties indicate

Notice that the choreography service itself is readily assimilated to one or more correlating
service, in case a decentralized approach is prefened.

152 Semantic Web Services, Processes and Applications

that want to communicate with an answering service by means of
"generateOperationalModel" (1). Once an operational model that allows the
interoperation among the heterogeneous message exchanges has been
created, parties can start submitting messages by means of the
"correlateMessage" (2) primitive. Messages will go through the designated
operational model, forwarding the framework the message(s) to the
receiving party according to its choreography.

Finally, when the conversation is finished, either party indicates that the
operational model for a given conversation can be put off line, by means of
the primitive "removeOperationalModel".

5.2 Models

SOPHIE makes a clear distinction between semantic and syntactic
models. The semantic model details the support for semantics, while the
latter details the syntax of the framework. The syntactic model depicts three
different complementary models: structural, behavioral and operational. The
structural model provides the grounding pillars of the framework. The
behavioral model permits to model the conduct of the structural model and,
the operational model facilitates the means to allow the interoperation of
different behavioral models. This layered approach enables a straight
mechanism to extend the different models. The work presented here defines
the behavioral model as Abstract State Machines (ASMs). Petri nets,
temporal logic or transaction logic can however also be used instead of
ASMs and easily plugged in. The semantic model is currently based on
WSML. Nonetheless, the design allows to easily extending the grammar and
ontology of SOPHIE to accommodate any other ontology language.

Structural model
A conversation represents the logical entity that permits a set of related

message exchanges among parties to be grouped together. Conversations are
composed of a set of building blocks. Elements represent units of data that
build up documents. Documents are complete, self-contained groups of
elements that are transmitted over the wire within messages. Messages
characterize the primitive piece of data that can be exchanged among parties.
As messages are exchanged, a variety of recurrent scenarios can be played
out. Message Exchange Patterns (MEP), identify placeholders for messages,
that allow sequence and cardinality to be modeled, defining the order in
which parties send and receive messages. A set of messages sent and
received among parties optionally following a MEP that account for a well
defined part of a conversation, are referred to as a message exchange. A
conversation can be thus defined as a set of message exchanges among

Basic Concepts in Choreography 153

parties with the aim of fulfilHng some goal. Every conversation is carried out
over a communication facility, referred to as a communication network by
parties. The specification differentiates among two type of parties, initiating
parties and answering services. Both parties produce and consume
messages, and additionally initiating parties take care of starting the message
exchange.

Behavioural model
A choreography describes the behavior of the answering service from the

initiating party's point of view (Roman, Scicluna, et al. 2005). It governs the
message exchanges among parties in a conversation. Normally ASMs or
Petri Nets are used to model the sequences of states the choreography goes
through during its lifetime, together with its responses to events.

Operational model
The atomic building blocks that permit a number of mismatches among

interacting parties to be resolved are logic boxes. A logic box facilitates the
reorganization of the content of documents, its mapping to messages, and the
order and cardinality of messages, thus enabling the interoperation among
parties following different message exchange patterns. Additionally, and
depending on the type of box, the differences in the vocabulary used to
describe the application domain can be overcome. Currently the
specification defines five different types of logic boxes, namely: refiner box,
merge box, split box, select box, add box.

Semantic Model
Ontologies define the semantics of the engine. They provide a vocabulary

that can be mediated for the understanding of interacting parties. Domain
ontologies facilitate the general vocabulary to describe the application
domain of the answering service and the initiating party. The choreography
ontology model provides the conceptual framework and vocabulary required
to describe choreographies. In doing so, it defines and allows reusing
concepts for the definition of the structural and behavioral models of each
party's choreography. Finally, ontology mappings put in place the
mechanisms to link similar ontological concepts and instances and readily
produce the operational model as a result of a reasoning task.

5.3 Interface Functions

SOPHIE exports the functions listed in Table 6-1.

154 Semantic Web Services, Processes and Applications

Table 6-1. Interface functions of SOPHIE

generateOperationalModel (URI choreographyOntologyi,
URI domainOntologyi,
URI choreographyOntologya,
URI domainOntologyi):

operationalModel
removeOperationalModel (URI operationalModel,

URI message,
URI choreography Ontology): void

correlateMessage (URI operationalModel,
URI message): operationalModel

Intuitively, generateOperationalModel {choreographyOntologyi,
domainOntologyi, choreographyOntologya, domainOntologyi permits an
initiating party following the choreography "choreography" to indicate the
choreography service that wishes to establish a conversation with an
answering service following the choreography "choreographya". As a
consequence, the operational model that will allow them to send and receive
messages according to the different message exchange patterns they are
using needs to be built. Additionally, the domain ontologies
"domainOntologyi", and "domainOntologya" that describe the domain of
each one of the parties are also supplied. They allow the mediation of the
models used by the interacting parties. As a result, the choreography service
will generate and return the identifier of the operational model that will
govern the conversation.

removeOperationalModel (operationalModel, message,
choreography Ontology) declares that the operational model
"operationalModer is not any longer required by the parties taking part in
the conversation, and thus can be put off line.

The function correlateMessage (operationalModel, message) states that
the initiating party or the answering service desire their counterpart to
receive the message "message", which should go through the opertinal
model "operationalModel" in order to be adapted to the requirements of the
receiving choreography.

Initiating parties and answering services are not specified as part of the
parameters of the interface functions. It is important to do so because we
might want to allow parties to send messages to the framework on behalf of
others. In any case, the parameter message, specifies the sender and final

Basic Concepts in Choreography 155

receiver of a concrete message. Also, for simplicity the concept of
correlating party has been omitted in this section.

6. CASE STUDY

SOPHIE is currently being trialed as part of the DIP (DIP) project B2B in
Telecommunications case study, hosted by BT. SOPHIE has been applied to
BT Wholesale's B2B Gateway which allows BT's ISP partners to integrate
their Operation Support Systems with those of BT and, for example, carry
out tests on BT's network as part of their broadband assurance activities. The
B2B Gateway currently uses the Business Process Specifications of ebXML
to represent the required choreography.

Service Provider

MRequest

MCompleted

BT Wholesale

testRequest

failure

success

Figure 6-2. Request-Response and In-Multi-Out MEPs

The example applies the operational model of SOPHIE to the broadband
test interface in order to illustrate how a partner's differing choreography
could be integrated. Figure 6-2 shows the choreography of interacting parties
following different MEPs as a realization of the same semantic web process.
The Service Provider uses the message exchange tPontTestRequest
following the MEP request-response while BT Wholesale makes use of the
message exchange eCoTestRequest following the In-Multi-Out one. More
concretely, the Service provider starts the message exchange with the
MRequest message, while BT Wholesale expects the message testRequest.
Additionally, BT provides two different response message (failure and
success) indicating whether the test was accepted or rejected, and if
accepted, the result of the test, while the Service Provider awaits the
reception of a single message named MCompleted accounting for both of
them.

156 Semantic Web Services, Processes and Applications

Since both message exchanges are compatible, there exists a logic
diagram which allows mapping the content, sequence and cardinality of both
message exchanges.

Taking as input ontological mapping *Fx. that links the concepts that are
similar in both choreography models the operational model that overcomes
the heterogeneity ob both MEPs can be overcome a result of a reasoning
task. Figure 6-3 details such model.

MRequest testRequest

MCompleted
SeB

failure

success

Figure 6-3. Resulting logic diagram

A refiner box is used to map the elements and documents within the
message "MRequest" to the message "testRequest" as expected.
Additionally, a select box was put in place to map the elements and
documents used in the messages "failure" and "success" to the message
"MComplete" containing the document "DCompleted". Figure 6-3 shows the
resulting logic diagram.

7. CONCLUSIONS

This chapter has presented the main ideas and principles behind service
choreography. In so doing it has carefully reviewed the main initiatives in
the field with the aim of pointing out their drawbacks. Taking as starting
point this analysis, the main driving principles and desire features, when it
comes to modeling choreographies, were identified. Later, the most relevant
challenges in the field, separation of models and support for semantic
mediation were discussed. Based on this theoretical work, the core principles
and architecture of a choreography engine that relies on the semantic
description of MEPs to allow interoperation among heterogeneous services
was presented. Finally, the concepts depicted on the framework as applied in
the Assurance Integration Use case part of the DIP project (DIP) have been
presented.

Basic Concepts in Choreography 157

8. QUESTIONS FOR DISCUSSION

Beginner:
1. Usage and benefits of a centralized point of control vs. a decentralized

one.
2. Benefits and extension of a layered model for choreography.

Intermediate:
1. Try to find real use cases where the support for transaction support within

choreographies is required.
2. Discuss the benefits/drawbacks subsumed by a model that does not make

any assumptions with respect to the underlying technology and one that is
rigidly tight to a particular one.

3. Value added of using MEP to describe semantic business processes and
their relation to choreography.

Advanced:
1. Discuss the main pros and cons of the different choreography-related

initiatives paying special attention to their variable usage.

9. SUGGESTED READINGS

• Andrews, T., Curbera, F., Dholakia, H., Goiand, Y., Klein, J., Leymann,
F., Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana,
S. Business Process Execution Language for Web Services,
ftp://www6.software.ibm.com/software/deveIoper/library/ws-bpel.pdf,
2003. Practitioners should find this specification to be quite valuable
companion.

• Arkin, A., Askary, S., Fordin, S., Jekeli, W., Kawaguchi, K., Orchard,
D., Pogliani, S., Riemer, K., Susan Struble S., Takacsi-Nagy, P.,
Trickovic, I. and Zimek, S. Web Service Choreography Interface (WSCI)
1.0, http://www.w3.org/TR/wsci/, 2002. This work provides a very
consistent choreography specification.

• Arroyo, S. SOPHIE - Semantic services chOreograPHi englnE, PhD
Thesis, To appear. The work provides a good insight to choreography
from a semantic point of view.

• Kavantzas, N., Burdett, D., Ritzinger, G. Web Services Choreography
Description Language Version 1.0, http://www.w3.org/TR/2004AVD-ws-
cdl-10-20040427/, April 2004. This paper presents the WS-CDL
specification.

158 Semantic Web Services, Processes and Applications

• Barros, A., Dumas, M. and Oaks, P. A Critical Overview of the Web
Services Choreography Description Language (WS-CDL), BPTrends,
March 2005. This paper presents a nice critical overview of WS-CDL.

• Roman, D., Scicluna, J., Feier, C , (eds.) Stollberg, M and Fensel, D.
DMvO.l. Ontology-based Choreography and Orchstration of WSMO
Services, http://www.wsmo.Org/TR/dl4/vO.l/, March, 2005. This
deliverable is a good introduction to WSMO choreography.

10. REFERENCES

Arkin, A., Askary, S., et al. (2002). Web Service Choreography Interface (WSCI) Version
1.0, http://www.w3.org/TR/wsei/.

Arroyo, S. SOPHIE - Semantic services chOreograPHi englnE, PhD Thesis, To appear.
Arroyo, S., L6pez Cobo, J.M. et al. (2005). Structural models of patterns of message

interchange in decoupled hypermedia systems. International Workshop on Peer to Peer
and Service Oriented Hypermedia: Techniques and Systems in conjunction with sixteenth
ACM Conference on Hyertext and Hypermedia, (HT'05). Salzburg, Austria.

Arroyo, S. and Duke, A. (2005). SOPHIE - A Conceptual model for a Semantic
Choreography Framework. Workshop on Semantic and Dynamic Web Process (SDWP'05)
in conjunction with the International Conference on Web Services ICWS'05, Orlando,
Florida, EEUU.

Arroyo, S., Sicilia, M. A. and L6pez-Cobo, J. M. "Choreography Frameworks for Business
Integration: Addressing Heterogeneous Semantics." Computers in Industry. Submitted.

Arroyo, S. and Kunimenacher, R. A Choreographed Approach for Ubiquitous and Pervasive
Learning. Ubiquitous and Pervasive Knowledge and Learning Management: Semantics,
Social Networking and New Media to their full potential. Miltiadis D. Lytras and Ambjorn
Naeve Editors. IDEA Group Inc. [to appear late 2006]

Arroyo, S. and Sicilia, M. A. (2005). SOPHIE - Architecture and Overall Algorithm of a
Choreography Service. First Online Metadata and Semantics Research Conference.

Andrews, T., Curbera, F. et al. (2003). Business Process Execution Language for Web
Services Version 1.1,

ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
Baader, F., Calvanese, D. et al. (2003). The Description Logic Handbook. Theory,

Implementation and Applications. Cambridge, UK.
Barros, A., Dumas, M. et al. (2005). A Critical Overview of the Web Services Choreography

Description Language (WS-CDL).BPTrends.
Bemers-Lee, T., J. Hendler, et al. (2001). The Semantic Web. Scientific American. May

2001.
Booch, G., Rumbaugh, J. et al. (1999). The Unified Modelling Language User Guide.

Addison-Wesley.
Brogi, A., Canal, C, et al. (2004). "Formalizing Web Services Choreographies." Electronic

Notes in Theoretical Computer Science 105, 73-94.
DIP-Data, Information, and Process with Semantic Web Services,

http ://dip. semantic web .org/.

Basic Concepts in Choreography 159

Chen, M. (2003). "Factors affecting the adoption and diffusion of XML and Web services
standards for E-business systems." International Journal of Human-Computer Studies
58(3), 259-279.

Erl, T. (2004). Service-Oriented Architecture - A Field Guide to Integrating XML and Web
Services. Prentice Hall.

Fensel, D. and Bussler, C. (2002). "The Web Service Modeling Framew ôrk (WSMF)."
Electronic Commerce: Research and Applications 1:113-137.

Jung, J., Hur, W. et al. (2004). "Business process choreography for B2B collaboration." IEEE
Internet Computing 8(1), 37 - 45.

Kavantzas, N., Burdett et al. (2004). Web Services Choreography Description Language
Version 1.0,
http://www.w3.org/TR/2004AVD-ws-cdl-10-20040427/

Roman, D., Scicluna, J., Feier, C. et al. (2005). D14v0.1. Ontology-based Choreography and
Orchstration of WSMO Services.
http://www.wsrao.org/TR/dl4/v0.1/

Tsalgatidou, A. and Pilioura, T. (2002). "An Overview of Standards and Related
Technology." Web Services Distributed and Parallel Databases 12:135-162.

World Wide Web Consortium,
http://www.w3 .org/

Watkins, S., Arroyo, et al. (2005). D8.3: Prototype Platform Design" Case Study B2B in
Telecommunications. DIP (Data, Information and Processes). June 2005.

XML Schema Part 2: Datatypes Second Edition, (2004)
http://www.w3 .org/TR/xralschema-2/.

Zaremba, M. and Moran M. (2004). D13.4v0.1 WSMX Architecture.
http://www.wsmo.Org/2004/dl3/dl3.4/y0.l/20040622/.

Chapter 7

DESIGNING SEMANTIC WEB PROCESSES: THE
WSDL-S APPROACH

Ke Li, Kunal Verma, Ranjit Mulye, Reiman Rabbani, John A. Miller, and
Amit P. Sheth.
Large Scale Distributed Information Systems (LSDIS) Lab, Department of Computer Science,
University of Georgia, GA, USA. - (ke,reiman,verma,jam,amit}@ cs.uga.edu

1. INTRODUCTION

Many businesses are adopting Web Service technology to expose their
business applications, enabling them to have business collaboration, both
within their organization and with business partners outside. The adoption of
the Service Oriented Architecture (SOA) helps businesses contract-out their
non-critical functions. Web Services, based on the SOA, are inherently
designed for interaction in a loosely coupled environment, and hence an
ideal choice for companies seeking inter- or intra-business interactions that
span heterogeneous platforms and systems. Growing wide acceptance of
Web Services is largely due to the fact that they are built on XML based
standards like SOAP, WSDL and UDDI. Simple Object Access Protocol
(SOAP) is a lightweight protocol for exchange of information among Web
Services. Web Service Description Language (WSDL) describes a Web
service similar as an interface. The Universal Description, Discovery and
Integration (UDDI) protocol creates a service lookup platform that enables a
service provider to register Web Services, and enables a service consumer to
quickly, easily, and dynamically find and locate Web Services over the
Internet. The need arisen to interconnect the various services offered by
different businesses to create a complex business process or workflow that
spans wider boundaries than ever before. The Web Service Business Process

162 Semantic Web Services, Processes and Applications

Execution Language (WS-BPEL) provides an XML-based language for the
formal specification of business processes and business interaction protocols
(OASIS).

The idea of building complex business processes has brought importance
for tools that can model a business process. Though languages like WS-
BPEL offer solutions for integrating Web Services into a business process,
they are difficult to learn, involve understanding detailed language syntax
and are only part of the solution for designing fully-functional Web
processes. Tools that aid developers in easily building Web processes are
becoming available; however, they do not alleviate several inherent
limitations of current Web service technologies that make developing a
process overly complicated or error-prone. Currently there are no Web
Service composition tools that include discovery in a seamless fashion. The
developer usually needs go to public, semi-public or local registries to look
for partner services. Most UDDI registries supply Business Entity, Business
Service and TModel as the searching format and adopt the syntactic
searching mechanism. Users without enough knowledge about the partner
services may spend much time searching for the suitable services, and they
are likely to miss some highly suitable services. To solve this problem, we
employ Semantic technology not only for the Web process designing task,
but also for the whole Web Service lifecycle. A lightweight extension to the
WSDL specification - WSDL-S (WSDL-S) is being jointly proposed by the
LSDIS lab and IBM research. The WSDL-S specification allows annotating
services and operations by mapping certain key elements to ontological
concepts. These enhanced semantic services are pubHshed to a UDDI
registry and can be dynamically discovered using some ontological concepts.
This work enables users to find highly suitable and appropriate partner
services in much less time than by manual discovery using a non-semantic,
syntactic based UDDI searching mechanism. It also features the ability of
partner services to be bound at design-time, deployment-time or execution-
time (run-time) to further optimize the process and add greater dynamism, as
opposed to the static-binding of partners.

In this work, we present a practical approach for designing Semantic
Web Process using WSDL-S as a foundation. There are three tools used to
accomplish this:

Radiant: Enables the service provider to annotate a WSDL file using
ontological concepts and publish it to a UDDI registry.

Lumina: Allows the service requester to discover services with the
required ontological concepts.

Saros: Helps the process developer to design a Semantic Web Service
Process.

Designing Semantic Web Processes: The WSDL-S Approach 163

2. BACKGROUND

Different approaches have been proposed for modehng a WS-BPEL
process. These approaches aid in designing the process model and later
converting it to a WS-BPEL format.

UML Activity Diagrams are candidates, but they are unable to model all
patterns supported by WS-BPEL (Arkin, Askary, et al. 2005; Wohed, Aalst
et al. 2002). To maximize compatibility with the standards, Saros uses its
own abstraction model that resembles the WS-BPEL specification.

There are two ways to design a Web process using today's available
tools; the first way is to use a text-editor and type in the BPEL syntax and
expressions, and the second is to use a process designer tool.

Several tools are emerging as the need for a streamlined and efficient
process development is growing. Some prominent tools in current usage are:
IBM WSADIE Designer, Oracle BPEL Designer, CapeScience Orchestrator
and Active Webflow. While most of the aforementioned tools have similar
features to Saros, e.g., GUI, graphical design, auto-generate BPEL etc., we
focused on Saros as it supports semantics in process design via the use of
WSDL-S-based Semantic Template.

3. DESIGN SEMANTIC WEB PROCESS USING
WSDL-S

Before designing a Semantic Web Process, the Web services have to be
annotated with ontological concepts using the extensibility elements and
attributes provided with WSDL-S. The annotated files must then be
published to an enhanced UDDI registry. This preparatory work supplies the
possibility to carry out the partner services discovery at process design time /
deployment time/execution time. The following three sections present the
WSDL-S tool suite with an emphasis on how they can be used together to
conveniently create Semantic Web Processes.

3.1 Service Annotation and Publish using Radiant

WSDL-S supplies an effective approach for describing Web Services by
annotating WSDL elements with ontological concepts. Radiant was
developed by the METEOR-S group to facilitate this annotation. This tool
provides an easy-to-use GUI for a Web Service developer to do the
following: 1. Add WSDL-S namespace and other namespaces for all the
ontologies used; 2. Drag and drop ontological concepts to the suitable

164 Semantic Web Services, Processes and Applications

WSDL elements (element, operation, input, output); 3. Add
precondition/effect as a child element of operation. Furthermore, it also
provides the ability to annotate a Java file with semantic concepts using
source code annotations. Figure 7-1 is a screen shot of the METEOR-S
Radiant Tool for Semantic Annotation which used to annotate WSDL
elements with ontological concepts.

Figure 7-1. Screen Shot of METEOR-S Radiant Tool

As mentioned in Chapter 2, UDDI currently does not support publication
or discovery of Semantic Web Services. To enhance UDDI to support
semantics, we define an infrastructure to map WSDL-S to UDDI, shown in
Figure 7-2, and the mapping details are given in Table 7-1. This is loosely
based on UDDI Best Practice (Colgrave and Anuszewski, 2003), which
defines a mapping from WSDL to UDDI. As shown in the figure, a WSDL-
S service is captured using Business Service entity in UDDI, while portType
and each operation within the WSDL-S service is captured using Technical
Model.

After annotating a WSDL file to produce a WSDL-S file, the Radiant
tool supplies the functionality to publish the service to a UDDI registry.
Moreover, during publication using Radiant, users can publish service
provider information as a Business Entity and publish services based on
WSDL files, see Figure 7-3.

Designing Semantic Web Processes: The WSDL-S Approach 165

Table 7-1. WSDL-S to UDDI Mapping Detail

WSDL-S UDDI
Service

Local name
Service description

Namespace, wsdl location
portType

Local name
Wsdl location
Namespace
Operation
Local name

Wsdl location
Namespace,domain,inputs,

outputs .ontological concepts for
operation, inputsand outputs,
service name,business name

Business Service
Name

Description
CategoryBag

TModel
Name

OverviewDoc
CategoryBag

TModel
Name

OverviewDoc

CategoryBag

SaJvice lmp lame)n tak) r i

Kji:K{:r-;it u i i

{ r4vni» i i l i :d i :u . W S D L

j •^ ' . • , . • • '1 . L -f-.a'.,-..-!

I • r iU>l l4 l7 i : ' l l . l)

' C : t i i r a : - ' ; ' i >

i . o : - . i :N . i i " f .

\V\-j[Jl. 1 .• , i l i i> ' i

{N,i.'i!L-j:).>i:L'. D L - I I I . I ! ! .

! : • ; .11, Ci'.p j t , l iu i i i f i . ' i t c

»o r r .> j - * . s , a i<::-icsb U.»:iiG

• i r - v c i . N . i i i ' i i ;

B u K l r i a s s E r i t l l y

i turns
i r\ttai-ii|ilid'i
i r; i(0[ji;'k-fj.iri

C. f.-i.-u'wU-.f

Figure 7-2. Mapping WSDL-S to UDDI

166 Semantic Web Services, Processes and Applications

xmltis :OiitologyO="http: /y i;-di5 .Co .M^a-'^cu 'f c o j r c t o ';.i?- COL I ".-cll- /,/'~'n~o-ogier/I..:LU^_
xmlns :w&seffl="http;; / ' w v . ar.tn .ccjn •>;ifLU.S''Wf-.j.,yr-r7 3 re3 'U.j.lea snr icv ">

<wsdl naessage name="bc-t>,'uor'--a ;.,ip In" >
<w5dl:pact na!ne=";-:t:'CkF>«itoi ' t ype=" : : , - i r inq ' ' wssem;iiioctc;lRefei:ence="Onto:ooy3^^tcck-.-j

</wscll:mes3age>
<wsdl: message naK(e="u<=.t'>U', ixis :.c.[j ju t ">

<w3dl:pac1: nain'=-="stc.cksviril.s. 1" type-"= ; i 'Ti^cj" v;saamnnodelRefeteiice-"'~nro: :.gvu^st./';k.::-
<w3dl:paL-t nai(te=''LwiS!t i'r..n.i'C-Ji>tî a!ui'' cype="i :r!c . u a a l " i.'sseiii:modelRefei:ence="'^itcli^jytJ*r't:
<w3dl:pact iiaKe.="La^tTL.idcLjT,c'i'ime" type=";; .'iux.-_-Tim^'' />
-'wsdlrpaL't iiame-"tilc-cicC!faiigc" t y p e - " i : :1uciitiai" W5seiii:ffiodeiR^fecence="C'i.Lology04bLoci-: -•
<vsdl ;pa t : t iiaicie-"vperjAKicu:,l:" type~"= idcclnidl" ^JSSerfi:wodelRefei:eiice="OutoiogyOfrgtock.o
<w3dl:pact iiaine^"DayHigii" typ&-"-< idKCimai" w3sem:itiodelRefeL-ence=^"OntclooyOf'L'aiiyiJhang'
<w3dl:pai:t name-"DayLow" typ>3="s rdecxnal" wssein:modelRefet:ence="OntologyOjfDaiIychang«
<wsdl :pac t name="3tocIcVciu:fie" t ype - "5 • xut;" />
<wsdl:pai:t name="MktCap" type=' '? : ^ t r i n g " />
<'v3dl:pai:t naifte="E'EevrX'-;" type="s dt-'-imal" />

Figure 7-3. Publish Web Services using Radiant

3.2 Semantic Discovery using Lumina

Based upon the WSDL-S to UDDI mapping structure, the Lumina GUI
tool was developed to facilitate Semantic Web Service discovery during
process design time or deployment time. The requirements of the user are
captured using a semantic template, which captures the abstract functionality
of a Web service. The information captured includes a list of abstract
operations whose functionality, inputs and outputs are defined using
ontological concepts. The discovery engine returns services that are
annotated with ontological concepts that are the same or semantically related
to concepts in the template.

When discovering a service based on the WSDL-S description, the user
can add one or more ontology URLs in the discovery panel and input the
ontological concepts to represent input, outputs and operations. After
discovery, the result will be shown in the result panel. The result gives not
only the operation's detail information, but also the related service and the
service provider's information. See Figure 7-4 which shows the annotation
of the operation and the result of the discovered services.

Many services have multiple operations within them. With the
consideration of economic and connection convenience, the process
developers usually would likely to invoke as many operations as possible
from one partner service. To deal with this problem, Lumina enables the user
to find services that hold more than one required operations. Figure 7-5
shows this by listing two operations in one service.

Designing Semantic Web Processes: The WSDL-S Approach 167

hKp-;.f!:.-t'-:5i<j.-s^!i>W«^f^;tevs

.v.-*6:-<l-quiKr3!y',«

r fii;3Bv:.

S^JlS

•« - i t f e ' / i ' ^ i c

.c. F ia ' . i i^ -<*d.>.

i ~
i^^J^^ tc;-;*.A*-J;!:!:f«v:t:

. ? ! - . i * , (i i ^

J'Jr'x^-
.?Jf--.^K
.P ! (i3S„ lK

(•J« ' *Ka; t
?-'rn.y-i~i
f ' i . f t . m . - i

„ • -)« •??

y<-E!;4-l.'4

< • ' " • - - . . .

-K-M-Ai

i^;^*x*i

f/gMre 7-4. WSDL-S Discovery

Moreover, to complement today's non-semantic discovery and give more
flexibility for the users to search in different UDDI registries, Lumina
provides general UDDI discovery. Using the same mapping structure as
WSDL-S to UDDI, Radiant can publish a WSDL file to a UDDI registry
directly. This enables Lumina to discover the services described in WSDL
based on the keyword searching mechanism. Figure 7-6 shows the general
UDDI Discovery format, which has a familiar style to the current UDDI
users.

CSpgrattsrs [onWogies |
irpot Operation; -- -

-• o (^ ra t ta i l

V ssnisnac oijtpyt
:• category
•' precC'iTd.t!on
•v c-fcci

- o Qper3t3on2
-̂ s^msnac rput

-• ^emintK oaqxit
-.• caKgory
V prccoiid'tiai
•-> efrect

Figure 7-5. Searching Service with Multiple Operations

168 Semantic Web Services, Processes and Applications

Figure 7-6. General UDDI Discovery Panel

Figure 7-7 shows the WSDL Discovery panel. To support the users who
wish to use different UDDI registries, Lumina allows the user to add new
UDDI registries to the environment and use a uniform searching style to do
the discovery.

0*ce ! Dcrie

Figure 7-7. WSDL Discovery Panel

Designing Semantic Web Processes: The WSDL-S Approach 169

Figure 7-8 shows the registry control panel, which holds the different
registries' information and allows users to add or edit a registry

''IliiiilMiiiiiiiijiliiBlliil

Figure 7-8. Registry Control Panel

3.3 Process Design using Saros

3.3.1 Methodology

To support capabilities for dynamic partner selections, the Saros tool
makes use of Semantic Template technology. A semantic template can be
used to insert a virtual partner into the Web Process. The selection process
can be thought of as being constituted of two phases, which are elaborated
below.

In the first phase, the process developer generates a semantic template by
using the Semantic Template Viewer, which can graphically capture the
ontological concepts of the desired virtual partner Web Services, allowing
constraints, policies and operational conditions to be added. The developer
can add operations to the template and specify the input and output messages
for each operation. Each of these entities is annotated by the ontological
concepts. The developer can either create a new template or s/he has a
choice to load an existing template.

Phase two utilizes the core searching mechanism for dynamic partner
discovery.

170 Semantic Web Services, Processes and Applications

BPEt
Proems

Semantic
Template

Pioeess
Designer

S<arch

Results

Semantic
Publieatioa

tndDiscoveiy

Figure 7-9. Phase II - Dynamic Partner Discovery

In the second, once the semantic template has been generated, Lumina
then processes it for partner discovery. Lumina extracts the semantic
information from the template using the METEOR-S WSDLS4J Java
implementation and passes it to the discovery module. The discovery
module performs semantic search and returns a set of matching ranked
results. To further find better matched Web Services, the returned set may be
passed through a constraint analyzer module that was developed by the
METOER-S lab (Verma, Gomadam, et.al. 2005). An example of some
constraints could be TumAroundTime <= 7 days or Cost<=$5000 or Virtual
Partner A, B and C must be compatible with each other. Therefore the
process developer can use the semantic template for dynamic partner
discovery while s/he is designing the process, so the exact Web Service
instance is known beforehand. This phase is explained in Figure 7-9.
Alternatively, the semantic template can be used to create a Virtual Partner
in the Web Process and the discovery can be deferred until run
time/execution. Both options are available using the Saros and Lumina tools.

There are three types of service binding in a Web Process supported by
the WSDL-S tool suite as outlined below:
1. Design-time; The set of partners are permanently bound to the Web

Process during the design phase.
2. Deployment-time; Uses a virtual partner at design-time, but during

deployment the partners are bound to the discovered Web Services. This
happens before execution of the process.

Designing Semantic Web Processes: The WSDL-S Approach 171

3. Run-time: After process instances have started executing, the partners are
(re-) discovered and bound.

3.3.2 Architecture of Saros

This section presents an overview of the METEOR-S Process Design
Tool - SAROS. The UI of the Process design and development tool consists
mainly of three components: Element Palette, Process Canvas, and Element
Property Sheet, as illustrated in Figure 7-10. The process designer uses the
Model View Controller (MVC) (Reenskaug, 2003) pattern as the underlying
architecture. To realize this architecture it uses the Graphical Editing
Framework (GEE) toolkit, which is part of the Eclipse tool integration
platform. This tool is integrated with Eclipse as an Eclipse plug-in or can be
run as an Eclipse application. Figure 7-11 shows a diagram of the tool
architecture using the MVC pattern.

xt>.

.•an •*«••<

M S B ' " " ' "

SK!IIB««;'"<

i O M i S I fcff»s(»CK Vanables Partnc-is Correlation Sets

Process

Elemer iPalefc

ElfemeM
Property
Sheet

Figure 7-10. METEOR-S Process Design and Development Tool

172 Semantic Web Services, Processes and Applications

1. MODEL VIEW CONTROLLER (MCV) ARCHITECTURE
The MVC architecture is a commonly used and effective architecture to

build GUI-based systems because it separates the code from the model and
view. The "Model" defines the behavior of the application logic,
representing the in-memory model of the entire process. The "View" handles
the graphical rendering of the model to the UI. The "Controller" is the code
that forms the link between the model and the view; it is responsible for
handling the editing of BPEL element properties.

1 WW
tniiayer

IL

1 Iifodel

1

1
1

1

i r

Controller I^«r

,
1

,
'

Lo{pu: La^cr

,

f DauAtCM '

k

1

1
1
i
1

1

I

1

'
Physical La}«i

1

1

1 BPEL

Figure 7-11. METEOR-S Semantic Process Design and Development Tool Architecture

2. GRAPHICAL EDITING FRAMEWORK (GEF)
GEF enables developers to create a rich graphical editor for an existing

application model (Graphical Editing Framework). The process designer
uses the GEF framework to build its graphical user interface because both
use the MVC pattern. GEF is fully written in Java and works on all operating
systems officially supported by the Eclipse platform (Open platform for tool
integration), thereby eliminating any porting issues. GEF depends on
Draw2d which is a lightweight toolkit built'with the Standard Widget
Toolkit (SWT) and offers optimized layout and painting along with
providing a native look and feel for the GUI.

USABILITY FEATURES
Saros offers an easy to use GUI for process developers to rapidly build

Web processes. Process developers are offered support for dragging and
dropping of process elements on a process "canvas". This, combined with

Designing Semantic Web Processes: The WSDL-S Approach 173

ease of element selection and deletion, offers a simple to use GUI. Selecting
a particular element opens up a property sheet that allows the user to modify
element properties. This approach helps in hiding the unnecessary syntactic
details from the developer. Other usability features are outlined below.
• Color coded process activities

The activities have been categorized by functionality so that the
developer can quickly understand the canvas visually and intuitively.
• Definition lookup

Many of the basic activities of the business process have properties that
refer to definition elements (Variables, Partnerlinks or XML namespaces).
To avoid typographical errors, the Process designer tool offers a drop-down
box of available choices for the entries. Figure 7-12 provides a sample
illustration of this feature.

Property

- Mist
Cre3:e Instance
Name
Operation
Partner Urk

Supress Joifi Failure
Variable

- Port Type
Port Type Local Part
PortTypa Ii3flr!e5pace P., =

No
Receive!

No

processftep;y
ssrviceP.eply
servlceRequest

Figure 7-12. Definition Loolcup

• Avoiding ambiguous process designs
Before allowing addition of a new element to a container type element,

Saros validates the insertion. This prevents the process from being in an
ambiguous state. For example, the only valid addition to an activity of
"Switch" is a case activity, others are not allowed.
• Designing complex processes

Container elements such as sequence, flow, etc. can be nested to any
depth. This helps in generating a process with arbitrary complexity but
intuitive visualization.
• Intuitive help messages

The tool provides descriptive messages for many of the editable
properties of process elements in the status bar. Figure 7-13 shows an
illustration of such a help message.

174 Semantic Web Services, Processes and Applications

"fvalue

B*»—-—J
. i P.sstner Role saviceProvlder
I - Partner Link Type
i Namespace Local Pat! StockQuote
I Namespace PreHx hl(:pi//tMfipuri.or9/

Figure 7-13. Status bar Helper Message

4. SAMPLE USE CASE

In this section, we present a use case in the finance field. Consider this
scenario, an investment company provides a service that helps their
customers analyze the feasibility of buying some stocks. This service gives
the evaluation result based on the following stock ticker information: current
price, volume, bid quantity, the highest price in the past one year, earnings
per share, and how much money the customer wants to invest. The customer
tells the service which stocks s/he is interested in and how much money s/he
may invest. The remaining information should depend on other partner
services. Following our the WSDL-S approach, we give an outline of 8 steps
to present how to use the BPEL Designer tool - Saros - to design such a
composite service. These steps also make use of the Lumina discovery tool.

1. Analyze the business requirement and build a UML diagram. In this
use case, the investment company will use an evaluation service. This
service can either belong to the company or belong to the other
investment companies. Such an evaluation service needs the stock quote
information and the corresponding company financial profile of the past
one year. We need two partner services to fill in the above requirements,
respectively. Moreover, the two partner services can run simultaneously
because they do not depend on each other. The UML diagram is shown
in Figure 7-14 according to this use case.

Designing Semantic Web Processes: The WSDL-S Approach 175

1
(Receive)

(Check Slock Quote

Figure 7-14. UML Activity Diagram for the User Case

2. Fill in the process skeleton: Map the process sequence in the activity
diagram to the sequence element of WS-BPEL, shown in Figure 7-15.

176 Semantic Web Services, Processes and Applications

Pirtnas limtspicis gmfi i i Viriilles

KM I t t l

(lsi«j i i j i f

T
• • « • * _'''

"""-̂ .

•]

(^Sf%) ^

ASSt

Figure 7-15. Process Skeleton

3. Fill in the nested constructs/structured activities: such as Flow, Switch,
While, etc. We insert two "Invoke" in the "Flow" for invoking the
corresponding two simultaneous partner services, shown in Figure 7-16.

S^Bw-

;::Ĉ
- J '•

a i

Figure 7-16. Fill in Nested Constructs

Designing Semantic Web Processes: The WSDL-S Approach 177

4. Identify Partners by using either one of the following methods:
• Binding the real partners: Based on the business requirements, Lumina

can help the developer find highly suitable partner services. It provides
two GUIs to accomplish the partner services discovery: UDDI Editor and
Semantic Template View. Although their discovery functionalities are
the same, they focus on different design aspects. The UDDI Editor
provides the flexibility for the developer to do the discovery using both
the WSDL-S approach and the general UDDI discovery approach by
using Business Entity, Business Service and TModel. The Semantic
Template View focuses on building a discovery template based on the
business requirements, and its "easy to drag" property enables it to be
used with Saros. Because we focus on the WSDL-S approach, here we
use the Semantic Template View in our example.

In this use case, the investment company needs an investment
evaluation service. The developer can use the company's own service or
search for a more suitable one. The only knowledge about this service is
that it can perform investment evaluation. We use the SUMO Finance
ontology as the domain knowledge base. Here we choose
ontologyNS#investing to annotate the service's operation. Two services
are found and the discovered service provides the detailed information at
both the service level and the operation level, shown in Figure 7-17.

fclllliliiliijwjiiiita^
S--«f:!1 f^OjK! WtijI.-BXiiT-flir nU-Jl Pt.-;}C<Sy lCCi>.cn-n

ajc rf.w^ (•K '̂"nfei*-.< •s,*"T.3:-i.;:-v.-i--j-- .t'.i.mj*^

!v-.-i-.¥i-'aa'^!c^>-i>i.

aif :B »-::->,r-,<^ .»-f'.f-icc-1

Figure 7-17, Discovery the Basic Service Using Operation's Domain Concept

178 Semantic Web Services, Processes and Applications

In the next step, we can use the operation information of the discovered
service to search for the other two services: the "stock quote" service and
the "company profile" service. There are six attributes in the discovered
operation's input message. The current_price, bid_quantity and volume
belong to "stock quote" service; the eps (earning per share) and
year_high belong to "company profile" service; the investAmount is
provided by the customer. We build the other two semantic templates and
add the corresponding output concepts to them respectively.

• Binding the virtual partners; Shown in Figure 7-18, there are eight Web
services discovered for the "stock quote" service. The developer can pick
the most suitable one and insert it to the process if s/he wants to build an
executable BPEL process. Alternatively, s/he can make the chosen
decision later and build an abstract BPEL process by adding a virtual
partner based on the semantic template. The advantages of using the
semantic template technology to build an abstract BPEL process fall in
two aspects: i) After partner selection has been finalized in the BPEL
process, it is possible that more optimal services become available (in
regards to various pre-defined quality properties, e.g., cost, time,
reliability, accuracy, etc.). ii) The partner functionalities or the user terms
change, or a partner becomes unavailable unbeknownst to the process.
These problems would render the Web process prone to errors. The
Semantic Template View in Lumina enables the developer to design the
semantic template graphically with the help of Radiant. Moreover, it can
generate the semantic template files or load the semantic template files
built previously. Saros can link these semantic template files as the
virtual partners. Appendix A shows one semantic template file and
Figure 7-19 shows in the box how Saros adds a virtual partner using the
file.

Designing Semantic Web Processes: The WSDL-S Approach

•iiliIlrMli:i8illl»;:4iiIlll*,fllIl.
Sm ^ * t j , i * •Sf*e! mm' fesj^er i.tt ' i^ysn sm •

179

hVp-.i/i^tt ei-t •!- *«^tf B^l^fliMB

la uA!,-rf-B^iS.^«lr-J'-(!*S-.^.ta-ctj^.4

- 6 Sjn.bgjD^

Figure 7-18. Discovery Partner Services Using Input and Output Attributes' Domain
Concepts

5. Add Namespaces, Variables and Correlation Sets constructs (for
executable BPEL process); Add the namespace for each partner service.
Create all the variables for the message exchange between the services.
All the information in this design phase can be found in the discovered
services shown by Lumina.

6. Link Partners to Invoke, Receive and Reply constructs (for
executable BPEL process): Link the partner to the corresponding activity
element by clicking on the element objects property view from a drop
down list.

7. Add the supplementary elements and fill in details: Add "assign",
"copy", "link" etc to accomplish the process.

8. Generate BPEL process: The BPEL process file and the corresponding
process WSDL file are generated by clicking on the save button. The
complete BPEL and WSDL files for our scenario are in Appendix B and
Appendix C. The completed process view is at Figure 7-20 and Figure 7-
21.

180 Semantic Web Services, Processes and Applications

liMIIBfiiiil
. ; /r!i>;iiiS>xiiiVf>- dfivxii-C- D%i*jvi*ii'jrti F i n wrrj'^w i-fe-fc..

?-̂ : g lS lSS iS l i r .

' .)fait:i:r,> El... •*

jM|r||M|crv#tti«,« LrJ-

• i / i-^r. j i :.: »:,<3

.:\:...̂ :Jisi • •••'<*

i. - Ex!«r,j..ji Ek'iii...

-~ Wic

C:e:ite .1 Vi*l>.i..i Pc^'b •:!
My S t%

>^^ U r.-r K.j!-.-
•• ^".Wlfl'ft I Sit Tv),--*

M-jit!f:=:..B_..'F-f'jli:..

Partners Namespaces Variables

liî vs^ îiiA^cmliJr^uSMî

Figure 7-19. Add a Virtual Partner

p ; ' - : - V •'••'. •••: r']:. -.z:^:^:"'^.:"' ;

''•••: :• .•\'i

. : • • : • . , / • :

i ^

Figure 7-20. The Complete Process I

Designing Semantic Web Processes: The WSDL-S Approach 181

I a i l

_ _ , ^.„L,.:;^.J.:^ia«i!<iiiit.:,c •

Figure 7-21. The Complete Process II

5. RELATED WORK

The methodologies of automatic Web Services composition are mainly
separated into two categories: workflow composition and AI planning. To
achieve automatic Web Service composition, there are two tasks that should
be done. One is to generate an abstract process model by analyzing the
process requirements; the other is to dynamically discover and bind the
concrete services for the abstract process. The methods to solve the first task
are usually related to AI planning and deductive theorem proving.

The workflow composition approach can be further divided into two
levels: static workflow composition and dynamic workflow composition. In
static workflow composition, the abstract process model is designed by the
process developer and the concrete services are discovered, located and
combined automatically. EFlow (Casati, Ilnicki, et al. 2000) adopts a graph
oriented approach to implement a static workflow composition. There are
three types of nodes in the graph: service, decision and event. Arcs represent
the dependency relationships between two nodes. The service node gives the
service's requirements which are used to discover and bind a concrete
service to the process model either at process instantiation time, or at process
execution time. Composite Service Definition Language (CSDL) (Casati,
Sayal, et al, 2001) is another approach for static workflow composition. It
pays attention not only to service level, but also to the operation level.

182 Semantic Web Services, Processes and Applications

Polymorphic Process Model (PPM) (Schuster, Georgakopoulos, et al. 2000)
adopts a state machine to implement service based dynamic composition,
while the sub services still follow the static workflow composition approach.

The AI planning problem in Web Service composition can be described
using five attributes: the initial state, the final goal, all the available services,
the state change functions and all the possible states. Golog is a logic
programming language built on top of the situation calculus (a logical
language for reasoning about the state change according to actions). Several
papers (Mcllraith, Son, et al. 2001; Narayanan and Mcllraith, 2002; Mclraith
and Son, 2002) have extended Golog for automatic Web Service
composition. The Planning Domain Definition Language (PDDL) (Schuster,
Georgakopoulos, et al., 2000) is a language designed specifically to support
AI planning. McDermott (McDermott, 2002) presented Web Service
composition based on PDDL. The author introduced a new value - value of
an action - to deal with the closed world assumption in the AI planning. In
the closed world assumption, the literal's value is false if it does not exist in
the current world. However, this assumption may fail in the automatic Web
Service composition procedure, because a new Web Service can be
dynamically created, changing the state of the knowledgebase. SWORD
(Ponnekanti and Fox, 2002) is another toolkit for Web Service composition
based on rule-based plan generation. It adopts the Entity Relationship Model
(ER) to describe the set of preconditions and postconditions of a service.
SH0P2 (Wu, Sirin, et al. 2003) is a Hierarchical Task Network (HTN) based
planner and adopts OWL-S as its description language. A detailed survey of
different approaches for workflow composition and AI planning that can be
found in (Rao and Su, 2004).

6. CONCLUSION

In this work, we presented the current research and development in the
area of Semantic Web Processes. We discussed the importance of Web
Services discovery for designing a Web Process, and pointed out that the
current non-semantic Web Service technologies do not support automatic
Web Service discovery well. WSDL-S jointly proposed by the LSDIS lab
and IBM research, is a Semantic Web Service standard candidate which
intends to solve the problems of non-semantic Web Service technologies. To
indicate the functionalities of WSDL-S in Semantic Web Process design, we
applied our WSDL-S based tools - Radiant, Lumina, Saros - to the whole
Web Service lifecycle. Following our WSDL-S based approach, the Web
Process developer can find the partner services efficiently and effectively.
Moreover, by cooperating with the Semantic Template technique in Lumina,

Designing Semantic Web Processes: The WSDL-S Approach 183

Saros enables the developer to design an abstract Web Process by inserting
virtual partners. This property facilitates partner search at design time or
deployment time, and is helpful to adapt to the Web Service environments
which change dynamically. Furthermore, this work highlights some key
usability features of the WSDL-S based tool suite that assist process
developers in easily designing complex business processes.

The potential of the WSDL-S approach is much more than what we
showed in the current tool suite. For example, we do not take
"preconditions" and "effects" into consideration. As demonstrated in
pervious chapters, the search result can be more accurate by using non
functional constrains, such as cost, reliability, quality, etc. The project of
adding WS-Policy to Web Service discovery is on going in the METEOR-S
group.

In this work, we used the WSDL-based tool suite to design a Web
Process semi-automatically. In some cases, the discovered partner services
can not be inserted automatically, because we have yet to complete the data
mapping part of this work.

7. QUESTIONS FOR DISCUSSION

Beginner:
1. What are the major entities in UDDI?
2. What is the usage of UDDI for the Web Service Composition?

Intermediate:
1. How is the Semantic Template helpful to build an abstract Web Process?
2. What are the advantages of allowing the developer to put multiple

operations within one Semantic Template?
3. Give the mapping structure between WSDL-S and UDDI.

Advanced:
1. What is the usage of a Virtual Partner?

Practical Exercises:
1. Download the three tools - Radiant, Lumina and Saros - from LSDIS web

site from http://lsdis.cs.uga.edu/projects/meteor-s/downloads/. Use the
Sumo-Finance ontology (same URL as above) to annotate several WSDL
files and publish them to an enhanced UDDI registry.

2. Discover the services by using the ontology concepts.
3. Design a Web Process.

184 Semantic Web Services, Processes and Applications

8. SUGGESTED ADDITIONAL READING

• Narayanan S., and Mcllraith S., "Simulation, Verification and Automated
Composition of Web Services" Proceedings of the eleventh international
conference on World Wide Web, May 2002, pp. 77 - 88.

• Verma K., Akkiraju R., Goodwin R., Doshi P., and Lee J., "On
Accommodating Inter Service Dependencies in Web Process Flow
Composition", 2004 AAAI Spring Symposium Series, March 2004, pp.
37-43.

• Rajasekaran P., Miller J., Verma K., Sheth A., "Enhancing Web Services
Description and Discovery to Facilitate Composition", Proceedings of the
1 st International Workshop on Semantic Web Services and Web Process
Composition, July 2004, pp. 55-68.

• Ranjit Mulye, John A. Miller, Kunal Verma, Karthik Gomadam and
Amit P. Sheth, "A Semantic Template Based Designer for Semantic Web
Processes," Proceedings of the 3rd International Conference on Web
Services (ICWS'05), Orlando, Florida (July 2005).

• Rama Akkiraju, Joel Farell, John A. Miller, Meena Nagarajan, Amit
Sheth and Kunal Verma, "Web Service Semantics - WSDL-S,"
Proceedings of the W3C Workshop on Frameworks for Semantics in
Web Service {W3CW'05), Innsbruck, Austria (June 2005)

• Rohit Aggarwal, Kunal Verma, John A. Miller and William Milnor,
"Constraint Driven Web Service Composition in METEOR-S,"
Proceedings of the 2004 IEEE International Conference on Services
Computing (SCC'04), Shanghai, China (September 2004) pp. 23-32

• Sivashanmugam K., Verma K., Sheth A., and Miller J., "Adding
Semantics to Web Services Standards", 1st International Conference on
Web Services, June 2003, pp. 395-401

• Kunal Verma, Kaarthik Sivashanmugam, Amit P. Sheth, Abhijit Patil,
Swapna Oundhakar and John A. Miller, "METEOR-S WSDI: A Scalable
P2P Infrastructure of Registries for Semantic Publication and Discovery
of Web Services," Journal of Information Technology and Management
(ITM), Special Issue on Universal Global Integration, Vol. 6, No. 1
(2005) pp. 17-39. Kluwer Academic Publishers.

9. REFERENCES

Universal Description, Discovery and Integration (UDDI), http://www.uddi.org/
Web Services Business Process Execution Language (WS-BPEL), http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=WS-BPEL

Designing Semantic Web Processes: The WSDL-S Approach 185

METEOR-S: Semantic Web Services and Processes,
http://lsdis.cs.uga.edu/projects/METEOR-S/

Narayanan S,, and Mcllraith S., "Simulation, Verification and Automated Composition of
Web Services" Proceedings of the eleventh international conference on World Wide Web,
May 2002, Pages: 77 - 88

Traverso P., and Pistore M., "Automated Composition of Semantic Web Services into
Executable Processes", Proceedings of the 3"* International Semantic Web Conference
(ISWC2004), pp. 380-394

W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Language.
QUT Technical report, FIT-TR-2002-06, Queensland University of Technology, Brisbane,
2002

Rajasekaran P., Miller J., Verma K., Sheth A., "Enhancing Web Services Description and
Discovery to Facilitate Composition", Proceedings of the 1st International Workshop on
Semantic Web Services and Web Process Composition, July 2004, pp. 55-68

J. Miller, D. Palaniswami, A. Sheth, K. Kochut, H, Singh, "WebWork: METEOR'S Web-
based Workflow Management System", Journal of Intelligence Information Management
Systems, 1997, pp. 185-215

Nau D., Cao Y.,Lotem A.,and Muiioz-Avila H, "SHOP: Simple Hierarchical Ordered
Planner", Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, 1999, Pages 968 - 975

GEF: Graphical Editing Framework, http://www.eclipse.org/gef/
Verma K., Akkiraju R., Goodwin R., Doshi P., and Lee J., "On Accommodating Inter Service

Dependencies in Web Process Flow Composition", 2004 AAAI Spring Symposium Series,
March 2004, pp 37-43

Bemers-Lee, T., Hendler, J., Lassila, O., "The Semantic Web", Scientific American, May
2001, pp. 34-43

WSDL: Web Service Description Language, http://www.w3.org/rR/wsdl
Zarras A., Vassiliadis P., and Issarny V., "Model-Driven Dependability Analysis of Web

Services", International Symposium on Distributed Objects and Applications, October
2004, pp. 69-79

Ponnekanti S., and Fox A., "SWORD: A Developer Toolkit for Web Service Composition",
In Eleventh World Wide Web Conference (WWW2002, Web Engineering Track),
Honolulu, Hawaii, May 2002.

Dogac A., "Exploiting Semantic of Web Services through ebXML Registries", Keynote Talk,
14th International Workshop on Research Issues on Data Engineering, Boston, 2004,
ttp://www.srdc.metu.edu.tr/~asuman/Dogac_RIDE_04_KeynoteAddress.ppt

Dong X., Halevy A., Madhavan J., Nemes E., and Zhang J., "Similarity Search for Web
Services", 30th VLDB Conference, August - September 2004, pp. 372-383

UML: Unified Modeling Language, Object Management Group, http://www.uml.org/
Paolucci M., Sycara K., and Kawamura T., "Delivering Semantic Web Services" In

Proceedings WWW2003, May 2003, pp. 829
Sivashanmugam K., Verma K., Sheth A., and Miller J., "Adding Semantics to Web Services

Standards", 1st International Conference on Web Services, June 2003, pp. 395-401.
Web Service Semantics - WSDL-S, W3C member submission. Version 1.0, 7 November

2005
Aggarwal R., Verma K., Miller J., and Milnor W., "Constraint Driven Web Service

Composition in METEOR-S" Proceedings of the 2004 IEEE International Conference on
Services Computing (SCC 2004), Shanghai, China (September 2004) pp. 23-32.

Verma K., Sivashanmugam K., Sheth A., Patil A., Oundhakar S., and Miller J., "METEOR-S
WSDI: A Scalable Infrastructure of Registries for Semantic Publication and Discovery of

186 Semantic Web Services, Processes and Applications

Web Services", Journal of Information Technology and Management, Special Issue on
Universal Global Integration, Vol. 6, No. 1 (2005) pp. 17-39. Kluwer Academic Publishers

Aggarwal R., Verma K., Miller J., and Milnor W., "Dynamic Web Service Composition in
METEOR-S", Technical Report, LSDIS Lab, Computer Science Dept., UGA, May 2004.

Sirin E., Parsia B., and Hendler J., "Composition-driven filtering and selection of semantic
Web services", AAAI Spring Symposium on Semantic Web Services, 2004, pp. 129-138

Sivashanmugam K., Miller J., Sheth A., and Verma K., "Framework for Semantic Web
Process Composition", International Journal of Electronic Commerce (IJEC), Special Issue
on Semantic Web Services and Their Role in Enterprise Application Integration and E-
Commerce, Vol. 9, No. 2 (Winter 2004-5) pp. 71-106. M.E. Sharpe, Inc.

Reenskaug T., "The Model-View-Controller (MVC) Its Past and Present",
http://heim.ifi.uio.no/~trygver/2003/javazone-jaoo/MVC_pattern.pdf

OWL-S: Semantic Markup for Web Services, http://www.daml.0rg/servk:es/0wl-s/l.0/owl-
s.html

Eclipse: Open platform for tool integration, http://www.eclipse.org/
Oracle BPEL Process Manager,

http://www.oracle.com/technology/products/ias/bpel/index.htral
IBM WebSphere: http://www-306.ibm.com/software/websphere/
A. Sheth, "Semantic Web Process Lifecycle: Role of Semantics in Annotation, Discovery,

Composition and Orchestration", Invited Talk WWW 2(X)3 Workshop on E-Services and
the Semantic Web, Budapest, Hungary, May 2003,
http://www.ics.forth.gr/isl/essw2003/talks/seth_essw_semanticwebprocess.htm

K. Sivashanmugam, A. Sheth, J. Miller, K.Verma, R. Aggarwal, P. Rajasekaran, "Metadata
and Semantics for Web Services and Processes", 2003, Book Chapter, Datenbanken und
Informationssysteme: Festschrift zum 60- Geburtstag von Gunter Schlageter, Benn et al
Eds, Praktische Informatik I, Hagen, pp. 245-272.

A. Patil, S. Oundhakar, A. Sheth and K. Verma, "METEOR-S Web service Annotation
Framework", World Wide Conference, In the Proceedings of the 13th W3C Confernece,
New York, USA, 2004, pp. 553-563.

K. Sivashanmugam, K. Verma and A. Sheth, "Discovery of Web Services in a Federated
Registry Environment", 2004, Proceedings of IEEE Second International Conference on
Web Services, San Diego, California, USA, pp. 270-278.

Dumas M., and ter Hofstede A. H. M, "UML Activity Diagrams as a Workow Speci_cation
Language", Lecture Notes in Computer Science, vol. 2185, pp. 76-90, 2001

WS-Policy: Web Services Policy Framework,
http://www-128.ibm.com/developerworks/library/specification/ws-polfram/
SWT: The Standard Widget Toolkit, http://www.eclipse.org/swt/
BPWS4J: The IBM Business Process Execution Language for Web Services Java '̂̂ Run

Time, http://www.alphaworks.ibm.com/tech/bpws4j
ActiveBPEL, Open Source BPEL Server, http://www.activebpel.org/
Kochut K., Sheth A., and Miller J., "ORBWork: A COBRA-Based Fully Distributed Scalable

and Dynamic Workflow Enactment Service for METEOR", Technical Report #UGA-CS-
TR-98-006, Department of Computer Science, University of Georgia, 1998

METEOR: Managing End-To-End OpeRations,
http://lsdis.cs.uga.edu/Projects/past/METEOR/
Simple Object Access Protocol (SOAP) 1.1, http://www.w3.org/TR/soap/
Peltz C, "Web Services Orchestration and Choreography", Web Services Journal, Volume 03

Issue 07, July 2003, pages 30-35

Designing Semantic Web Processes: The WSDL-S Approach 187

Doshi p., Goodwin R., Akkiraju R., and Verma K., "Dynamic Workflow Composition using
Markov Decision Processes", International Journal of Web Services Research, 2005, pp.
1-17

RosettaNet: http://www. rosettanet. org
Azami M., RosettaNet Ontology, http://lsdis.cs.uga.edu/~azami/pips.html
Kitamura Y., and Mizoguchi R.,"Functional Ontology for Functional Understanding",

Twelfth International Workshop on Qualitative Reasoning (QR-98), Cape Cod, USA,
AAAI Press, 1998, pp.77-87

Gardner D., Knuth K.H., Abato M., Erde S.M., White T., DeBellis R., and Gardner, Common
data model for neuroscience data and data model interchange. J. Am. Med. Informatics
Assoc. 8(1): 17-33, 2001

Kunal Verma, Karthik Gomadam, Amit P. Sheth, John A. Miller, Zixin Wu, "The METEOR-
S Approach for Configuring and Executing Dynamic Web Processes", LSDIS METEOR-S
project Technical Report. Date; 6-24-05

Ranjit Mulye, John A. Miller, Kunal Verma, Karthik Gomadam and Amit P. Sheth, "A
Semantic Template Based Designer for Semantic Web Processes." Proceedings of the 3rd
International Conference on Web Services (ICWS'05), Orlando, Florida (July 2005)

Rama Akkiraju, Joel Farell, John A. Miller, Meena Nagarajan, Amit Sheth and Kunal Verma,
"Web Service Semantics - WSDL-S," Proceedings of the W3C Workshop on Frameworks
for Semantics in Web Service (W3CW'05J, Innsbruck, Austria (June 2005)

Kunal Verma, Kaarthik Sivashanmugam, Amit P. Sheth, Abhijit Patil, Swapna Oundhakar
and John A. Miller, "METEOR-S WSDI: A Scalable P2P Infrastructure of Registries for
Semantic Publication and Discovery of Web Services." Journal of Information Technology
and Management (ITM), Special Issue on Universal Global Integration, Vol. 6, No. 1
(2005) pp. 17-39. Kluwer Academic Publishers

X. Su and J. Rao. A Survey of Automated Web Service Composition Methods. In
Proceedings of First International Workshop on Semantic Web Services and Web
Process Composition, July 2004

D. McDermott. Estimated-regression planning for interactions with Web services. In
Proceedings of the 6th International Conference on AI Planning and Scheduling,
Toulouse, France, 2002. AAAI Press

S. Mcllraith and T. C. Son. Adapting Golog for composition of Semantic Web services.
In Proceedings of the 8th International Conference on Knowledge Representation and
Reasoning(KR2002), Toulouse, France, April 2002.

S. Mcllraith, T. C. Son, and H. Zeng. Semantic Web services. IEEE Intelligent Systems,
16(2):46-53, March/April 2001

B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing Web services on the
Semantic Web. The VLDB Journal, 12(4), November 2003

S. Narayanan and S, Mcllraith, Simulation, verification and automated composition of
Web service. In Proceedings of the 11th International World Wide Web Conference,
Honolulu, Hawaii, USA, May 2002. ACM. presentation available at
http://www2002.org/presentations/narayanan.pdf

D. Wu, E. Sirin, J. Hendler, D. Nau, and B. Parsia. Automatic Web services composition
using SH0P2. In Workshop on Planning for Web Services, Trento,

Italy, June 2003.
Technical Note Using WSDL in a UDDI Registry, Version 2.0.2
John Colgrave and Karsten Januszewski, Technical Note Using WSDL in a UDDI

Registry, Version 2.0.2, 2003
Assaf Arkin, Sid Askary, Ben Bloch, Francisco Curbera, Yaron Goland, Neelakantan

Kartha, Canyang Kevin Liu, Satish Thatte, Prasad Yendluri, Alex Yiu, Web Service

188 Semantic Web Services, Processes and Applications

Business Execution Process Language Version 2.0 (WS-BPEL), littp://www.oasis-
open.org/committees/download.php/14616/wsbpel-specification-draft.htm

Petia Wohedl, Wil M.P. van der Aalst Marlon Dumas, Arthur H.M. ter Hofstede,
"Pattern Based Analysis of BPEL4WS",
http://is.tm.tue.nl/staff/wvdaalst/publications/pl75.pdf, QUT Technical report, FIT-
TR-2002-04, Queensland University of Technology, Brisbane, 2002

F. Casati, S. Sayal, M. Shan. Developing e-services for composing e-services. 2001.
Submitted for publication andavailable on request

10. APPENDIX

10.1 Appendix A: Semantic Template for the "Stock
Quote" Service

<?xml version="l,0" encoding="UTF-8"?>
<wsdl:definitions

xmlns:targetNamespace="semantic template2"
xmlns:wssem="http://www.ibm.coni/xmlns/

WebServices AVSSemantics"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:ontologyO="http://lsdis.cs.uga.edu/projects/meteor-

s/wsdl-s/ontologies/LSDIS_Finance.owl"
xmlns:locationO="http://localhost:8080/jsp-

examples/Finance.owl">
<wsdl;message name=" input 1">
</wsdl:message>
<wsdl:message name="outputl ">

<wsdl:part name="partO"
wssem:modelReference=

"ontologyO#StockQuote.price7>
<wsdl;part name="partl"

wssem:modelReference=
"ontologyO#StockQuote.volume7>

</wsdl:message>
<wsdl:portType name="portType">

<wsdl:operation wssem:modelReference=
"ontologyO#StockQuote">

<wsdl:input message="inputl"/>
<wsdl:output message="outputl "/>

</wsdl:operation>
</wsdl:portType>

Designing Semantic Web Processes: The WSDL-S Approach 189

<wsdl:service>
</wsdl:service>

</wsdl:definitions>

10.2 Appendix B: The BPEL File for tlie User Case

<process xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-
process/"

name="simpleStockStratege"
targetNamespace="um:simpleStockStratege"
xmlns:tns="um:simpleStockStratege">

<partnerLinks>
<partnerLink name="customer" partnerLinkType=

"tns:checkStockTrasactionFeasibilityPLT"myRole="caller"/>
<partnerLink name="stockQuoteChecker"

xmlns:nsl="http://www.strikeiron.com"
partnerLinkType="ns 1 :stockQuoteCheckPTL"
myRole="stockQuoteChecker" />

<partnerLinkname="companyProfileChecker"
partnerLinkType="tns;companyProfileCheckerPTL"
partnerRole="companyProfileChecker"/>

<partnerLinkname="investEstimator"
xmlns :ns2="um :in vestment"
partnerLinkType="ns2:investEstimationPTL"
partnerRole="investEstimator"/>

</partnerLinks>
<variables>

<variable name="request" messageType="tns:input"/>
<variable name="response" messageType="tns:output"/>
<variablename="stockQuoteRequest"

xmlns:ns3="http://www.strikeiron.com"
messageType="ns3:GetOneQuoteSoapIn"/>

<variablename="stockQuoteResponse"
xmlns:ns4="http://www,strikeiron.com"
messageType="ns4:GetOneQuoteSoapOut"/>

<variablename="companyProfileRequest"
xmlns;ns5="http://www.strikeiron.com"
messageType="ns5:GetCompanyProfileSoapIn"/>

<variable name="companyProfileResponse"
xmlns:ns6="http://www.strikeiron.com"
messageType="ns6:GetCompanyProfileSoapOut"/>

<variable name="strategeRequest" xmlns:ns7="urn:investment"

190 Semantic Web Services, Processes and Applications

messageType="ns7:txDecisionRequest"/>
<variable name="strategeResponse"

xmlns :ns8="um: investment"
messageType="ns8:txDecisionResponse"/>

</variables>

<sequence>
<receive name="receive"

partnerLink="customer"
portType="tns;CheckStockTransactionFeasibility"

operation="checkFeasibility"
variable="request" createlnstance="yes">

</receive>
<assign >

<copy>
<from variable="request" part="symbol"/>
<to variable="stockQuoteRequest" part="TickerSymbor7>

</copy>
<copy>

<from variable="request" part="symbor7>
<to variable="companyProfileRequest" part="ticker"/>

</copy>
</assign>
<flow>

<invoke name="invokeStockQuote"
partnerLink="stockQuoteChecker"
xmlns;ns9="http://www.strikeiron,com"
portType="ns9:BasicRealTimeQuotesSoap"
operation=" getOneQuote_s imple"
inputVariable="stockQuoteRequest"
outputVariable="stockQuoteResponse">

</invoke>

<invokename="invokeCompanyProfileCheck"
partnerLink="companyProfileChecker"
xmlns;nslO="http;//www.strikeiron.com"
portType="ns 10:ZacksCompanySoap"
operation="GetCompanyProfile_simple"
inputVariable="companyProfileRequest"
outputVariable="companyProfileResponse">

</invoke>

Designing Semantic Web Processes: The WSDL-S Approach 191

</flow>
<assign >

<copy>
<from variable="stockQuoteResponse" part="Last"/>
<to variable="strategeRequest" part="current_price7>

</copy>
<copy>

<from variable="stockQuoteResponse" part="BidQuantity"/>
<to variable="strategeRequest" part="bid_quantity"/>

</copy>
<copy>

<from variable="stockQuoteResponse" part="Volume"/>
<to variable="strategeRequest" part="volume"/>

</copy>
<copy>

<from variable="companyProfileResponse"
part="Est_EPS_F17>

<to variable="strategeRequest" part="eps"/>
</copy>
<copy>

<from variable="companyProfileResponse"
part="W52_High_Price7>

<to variable="strategeRequest" part="year_high7>
</copy>
<copy>

<from variable="request" part=:"investAmount"/>
<to variable="strategeRequest" part="investAmount"/>

</copy>
</assign>

<invoke name="invokeStratege"
partnerLink="investEstimator"
xmlns:nsl l="um:investment"
portType=:"nsl 1 :StockBuyingStratege"
operation="txDecision"
inputVariable="strategeRequest"
outputVariable="strategeResponse">

</invoke>

<assign >
<copy>

192 Semantic Web Services, Processes and Applications

<from variable="strategeResponse"
part="txDecisionRetum"/>

<to variable="response" part="result"/>
</copy>

</assign>
<reply name="reply"

partnerLink="customer"
portType="tns;CheckStockTransactionFeasibility"
operation="checkFeasibility"

variable="response">
</reply>

</sequence>
</process>

10.3 Appendix C: The Process WSDL File for the User
Case

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="um:simpleStockStratege"

xmlns:tns="urn:simpleStockStratege"
xmlns:plnk=

"http://schemas,xmlsoap.org/ws/2003/05/partner-link/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl=:"http://schemas.xmlsoap.org/wsdl/">

<wsdl:message name="output">
<wsdl:part name="result" type="xsd:boolean"/>

</wsdl;message>
<wsdl:message name="input">

<wsdl:part name="symbor' type="xsd:string"/>
<wsdl:part name="investAmount" type="xsd:double"/>

</wsdl:message>
<wsdl:portTypename="CheckStockTransactionFeasibility">

<wsdl:operation name="checkFeasibility">
<wsdl: input message=" tns: input"/>
<wsdl:output message="tns:output"/>

</wsdl:operation>
</wsdl: portType>

<wsdl:servicename="simpleStockStrategeBP">

Designing Semantic Web Processes: The WSDL-S Approach 193

</wsdl:service>
<plnk:partnerLinkType

name=="checkStockTrasactionFeasibilityPLT">
<plnk:role name="caller">

<plnk:portTypename="CheckStockTransactionFeasibility"/>
</plnk:role>

</plnk:partnerLinkType>

<plnk:partnerLinkType name=" stockQuoteCheckPTL">
<plnk:rolename="stockQuoteChecker">

<plnk:portType xmlns:nl="http://www.strikeiron.com"
name="nl:BasicRealTimeQuotesSoap"/>

</plnk:role>
</plnk: partnerLinkType>

<plnk:partnerLinkTypename="companyProfileCheckerPTL">
<plnk:role>

<plnk:portType xmlns:n2="http://www.strikeiron.com"
name="n2:ZacksCompanySoap"/>

</plnk:role>
</plnk:partnerLinkType>

<plnk:partnerLinkType name=" investEstimationPTL">
<plnk:role>

<plnk:portType xmlns:n3="urn:investment"
naine="n3:StockBuyingStratege"/>

</plnk:role>
</plnk:partnerLinkType>

</wsdl :definitions>

Chapter 8

WEB SERVICES COMPOSITION

Daniela Barreiro Claro''^ and Patrick Albers' and Jin-Kao Hao^
'ESEO, 4 me Merlet de la Boulaye, BP 30926 49009 Angers cedex 01 France.
daniela.claro@eseo.fr, patrick.albers@eseo.fr

^LERIA, University of Angers, 2 Boulevard Lavoisier, 49045, Angers cedex 01 France,
jin-kao. hao@un iv-angers.fr

1. INTRODUCTION

Nowadays many enterprises publish their applications functionalities on
the Internet. This new generation of applications allows greater efficiency
and availability for business. In fact, more and more applications make
functionalities available using a web service format.

However there are many services around the web, each one, taken alone,
has a limited functionality. In many cases, a single service is not sufficient to
respond to the user's request and often services should be combined through
services composition to achieve a specific goal. For example, if a user wants
to travel, it is not sufficient to book a flight, but she should also take care of
reserving a hotel, renting a car, getting entertained, and so on. Such
composition is carried out manually today, it means that the user needs to
execute all these services one by one and these tasks can be time and effort
consuming.

For that reason, the notion of composite services is starting to be used as
a collection of services combined to achieve a user's request. In other words,
from a user perspective, this composition will continue to be considered as a
simple service, even though it is composed of several web services.

Nevertheless, prior to composing web services, candidate services should
first be discovered and then selected. One difficulty is that many functionally

196 Semantic Web Services, Processes and Applications

similar services are available and thus, the number of discovered services by
search mechanisms increases as a consequence. The discovery process
returns a set of candidate services from which the subset of those belonging
to the composition should be extracted according to non-functional criteria
(i.e. cost, availability, reputation). In fact, discovery is a prerequisite for
selection, but selection is the main problem (Sreenath and Singh 2004). The
non-functional criteria are here characterized by the QoS model presented in
each web service. The QoS model has more than one criterion to be
evaluated. Thus, services composition can be considered as a multiobjective
optimization problem.

Planning Discovery Selection &
Optimization

Execution

RE-CHOOSI\G

Figure 8-1. SPOC Architecture

As depicted in Figure 8-1, we propose SPOC (Semantic based Planning
for Optimal web services Composition), an architecture to compose web
services. In our point of view, the problem of composing web services can
be reduced into four fundamental phases: the first one is planning, which
determines the execution order of the tasks, we consider here a task as being
a service functionality or a service activity. The second one is discovery that
aims at finding candidate services for each task in the plan. The third phase
aims at optimizing services composition and is the point treated in this
chapter, and, finally, the fourth concerns execution. This fourth phase is
characterized as a problem because, even during the execution process, the
services may not be found and another tradeoff composition needs to be used
or other plan needs to be envisioned.

The composition of web services starts by creating the initial plan based
on tasks definition. All the definitions of existing tasks should be located in a
repository that the planner can consult for obtaining tasks interfaces. This
repository can be represented as an ontology and for us, it can be an
improvement over UDDI registries. Hence, we propose a UDDI (Universal
Description, Discovery and Integration) that is actually an ontology which
describes the services and their providers in an unambiguous way. The name

Selecting Web Services for Optimal Compositions 197

we give to this new UDDI is UDDI-O, standing for ontology. Thus, prior to
knowing task interfaces, it is necessary to find a plan that satisfies the users'
request. After creating the initial plan, the discovery process will take place.
The discovery process aims at matching service descriptions with task
definitions that belong to the plan. The present work will not cover the
matchmaking problem concerning web services discovery. The optimization
phase is the main topic of this chapter and will be explained in detail in the
next sections. As a result of this phase we obtain a set of Pareto optimal
solutions to execute services composition. In the execution phase, if some
service is not available such as an invalid URL or changed location, the
environment proposes another Pareto optimal solution to be executed (this
corresponds to "re-choosing" in figure 8-1. If after some predefined time the
problem continues, the environment will propose to construct another plan,
for example, by reordering the tasks (this corresponds to re-plan in Figure 8-
1.

This work proposes an analysis of quality criteria in order to select from
a set of services those that will belong to the composition. It is organized as
follows: the next section describes the selection process and the QoS model.
Here, we reinforced the concepts of reputation, because the original concept
(Zeng et al. 2003) did not measure the pertinence of the rank given to a
service by a user. Thus, in our model, rankings from users with good
knowledge of the service domain are considered more accurate. For this
purpose, we use fuzzy numbers to measure this criterion. The third section
describes web services composition emphasizing its structure and the models
that exist to compose web services. The fourth section explains the problem
model with its objectives and constraints. In the fifth section we explain the
multiobjective approach emphasizing the Pareto and Non-Pareto approach.
The sixth section presents existing works related to ours and the seventh
highlights our experimentations. We conclude in the last section.

2. WEB SERVICES SELECTION

The current web service architecture and semantic web efforts address
the problem of web service discovery but not of web services selection.
Discovery deals with finding a set of services that corresponds to a
predetermined user request while selection deals with choosing a service
between those that are discovered. Moreover, selection seems to be the main
problem. In fact, if the discovery process is exhaustive, a very large number
of services may be found. Due to the number of services, and consequently
the number of candidate services, the selection process will be harder
(Sreenath and Singh 2004).

198 Semantic Web Services, Processes and Applications

Discovering services mean matching a user request with service
functionalities. Works have been undergone concerning service architecture
(Sreenath and Singh 2004) in order to better describe web services. Even
though more functionalities are incorporated into service descriptions, it still
remains difficult for selection to find the subset of services that will be part
of the composition (Sreenath and Singh 2004).

Despite the fact that functional attributes have been incorporated by web
services architecture, selection should consider more than functional criteria
to make a distinction between discovered services. As a result, a quality of
service (QoS) model composed of time, cost, availability and reputation is
proposed as non-functional criteria. Since non-functional criteria have been
incorporated by each service, selection can use these QoS variables in order
to choose the optimal subset from all the discovered services.

2.1 QoS (Non-functional) Model

The aim of the selection process is to choose among services discovered
according to their functionalities, those that will belong to the composition.
The set of discovered services can be subdivided into the subsets of services
that are all candidates for a given task. Therefore, in the discovered set, there
are subsets of services that execute a determined task and other subsets that
execute another kind of tasks. As mentioned earlier, we consider here a task
as being a service functionality or a service activity. Thus, in the selection
process we should determine a set of candidate services si, i 6[l..n] that can
execute a set of tasks tj,j €[l..m]. Our main goal, considering that there is a
set of candidate services for each task, is to determine which service fulfills
each task, thus finding services composition.

The QoS model that we propose is composed of four criteria as
parameters for the quality model: cost, time, availability and reputation.
Each of the candidate services will receive a value for representing these
quality criteria. Each of these criteria is presented below.

Cost. (Zeng et al. 2003) (Cardoso et al. 2004)(Liu et al. 2004) The cost
quality Cy is the amount that a service requester needs to pay to execute
service / using task7:

Cij,ie[l..nlje[l..m]

We consider that cy is undetermined when service i cannot execute task t.
Time. (Zeng et al. 2003) (Cardoso et al. 2004) (Liu et al. 2004) The time

quality fy measures the execution time between the moment the request is
sent and the moment the results are received:

t.,ie[l..n\je[l..m]

Selecting Web Services for Optimal Compositions 199

Availability. (Zeng et al. 2003) The availability quality ay is the
probability that the service can be accessed and used. It is a function of the
number of times the service responds to a request and of the number of total
requests made to the service. We can express by:

;; = -.tot:: ^OJe [l.nlje [l..m] a,-i =

tot. u

where reqij is the number of successful requests to service ; using task 7,
and totij is the total number of invocations.

Reputation. The reputation quality ry is the measure of its
trustworthiness. It depends on the user's experience using the service.
Different end users can have different opinions about the same service.

For many authors (Zeng et al. 2003) (Liu et al. 2004), reputation can be
defined as the average ranking given to the service by end users. The
reputation of a given service is usually defined as;

where k], is the b^ ranking given to the service and A'' is the number of
times the service has been ranked.

However, there is no consensus concerning measuring reputation. Here,
we propose a new way of measuring reputation. We tried to translate a real
world judgment into our example. Thus, in real world, when something is
judged for example, a paper in a conference, the reviewers have to give their
knowledge domain, prior to giving their judgment. In the case where a
reviewer receives a paper that she classifies as belonging only 60% to her
area (knowledge domain), the grade that is given must be moderated based
on 60% of knowledge. If the same grade is given by a reviewer with 90% of
know-how on the domain, for sure her grade will be more accurate.
Translating this real scenario into our reputation quality, we must have
another way to measure reputation, including the knowledge domain of end
users. After service execution, the user ranks the service, and gives a
percentage about her knowledge on the service's domain. It will be, for
instance, a simple question as "how much do I know about this area".

In order to measure this criterion, we used fuzzy logic to represent an
imprecise quantity, as "nearly 8" or "practically 15" (Moura 2001). We used
the notion of fuzzy number which is represented as

a =\a,a,a\

200 Semantic Web Services, Processes and Applications

where a is the fuzzy number with minimal limit, modal value and maximal
limit respectively. The linguistic variables that represent our reputation
values are: bad, average and good, as shown in Figure 8-2.

Figure 8-2. Fuzzy set representation

Figure 8-2 shows that until 4, all grades are considered bad, from 5 to 7,
grades are average, and after 8, all grades are good. The measure between 4
and 5, for example, depends on membership values. The membership or
degree of pertinence means how much a value is inside a set, for example
the bad set or inside the average set. Thus, if a service has a rank of 4.8 we
need to analyze its membership n{dl). If its membership has the value 0.33,
it means that it belongs to the bad set. On the other hand, if it has 0.66 as
membership value, it belongs to the average set. Each service will be ranked
several times and thus we will have a set of fuzzy numbers. However, at the
end, what we need is a crisp number that characterizes the reputation value,
and for that we need to convert fuzzy sets to a crisp number. Defuzzification
is the final phase that does this conversion. There are several defuzzification
methods, but we use the CENTROID method that calculates the hypothetical
center of gravity for the output fuzzy set (Lostedt et al. 2000) (Fuzzy 2005).
Thus, our reputation criterion is characterized as:

Selecting Web Services for Optimal Compositions 201

r , v = ^ ^ ; d,i e [0,10l//(rf„.)6 [0,llie [l .4yG [l..«

where d^ represents the domain value (ranking) of service Si for task tj
and ij(dbi) is the membership value for that domain point. Using this model,
reputation ranking is more precise and trustworthy.

We showed above that non-functional quality criteria such as cost, time,
availability and reputation, could be defined to better describe services. In
the next sections, we will present web services composition and how these
criteria can help in obtaining optimal compositions.

3. WEB SERVICES COMPOSITION

Web service composition originated from the necessity to achieve a
predetermined goal that cannot be realized by a standalone service.
Internally, in a composition, services can interact with each other to
exchange parameters, for example a service's result could be another
service's input parameter.

3.1 Problem Description

As an illustrative example, we will consider in this work a Travel
problem. This scenario is a typical web services composition problem
(Narayanam and Mcllraith 2002) (OWL-S 2005). As far as creating the
Travel service, we can use three atomic services (which are not composed)
that will internally execute the travel; each one independently executes a
task. A task can be described as an activity that applies to a specific domain.
In this work, we treat activities and tasks identically. In our problem we will
consider 3 tasks (BookFlight, BookHotel and RentCar) executed by 3
services (Airplane service. Hotel service and CarRental service). As
explained in section 1 the planner will determine the execution order of these
tasks. All the services resulting from the discovery process for a given task
are candidate to execute this task. The aim of composition is to determine,
out of all these candidate services, which one will belong to the composition.

Xii

•^21

i^-^ml

Xn

^ 2 2 '

^mZ '

X\n

' ^In

^mnj

202 Semantic Web Services, Processes and Applications

3.2 Structure of Web Services Composition

The problem of composing web services can be characterized as a
combinatory problem. As explained earlier, in the composition we have a set
of services si, i€[l..n] that can execute a set of tasks tjj€[l..m]. However, it
is necessary to consider that one service can be dependent of other services.
The main goal is to find the trade-off services composition, considering that
there is a set of candidate services for each task.

In a composition, each service s\ is allocated to one task tj. This
association can be represented by a matrix (xy) where si represents the
services and tj represents the tasks. The matrix/ thus represents the services
allocated to a composition.

Z =

In our scenario the number of tasks and of services, m and n, are both
limited to 3.

Actually, we can consider that a composition is a set of atomic web
services or a set of composed web services. For instance, in the case of
atomic services, if service S\ is allocated to task ti, it cannot be allocated to
another task, because its domain is restricted to execution of task ti- If we
consider our Travel problem, a Hotel service cannot execute the bookFlight
task, since it only deals with hotel reservations. On the other hand,
considering that the composition may also have composed (non atomic)
services, it means that one service can execute several tasks in the same
composition. In our experimentations, we only consider atomic web
services; this means that the sum of lines and that of columns in matrix /
should be 1.

V(e[l..4y/e[l..m]
f 1, if service i is allocated to task ;

^ [0, otherwise

The equation above determines whether a service belongs to a
composition or not. It actually gives the result of our composition, since it
defines, in the previous matrix whether service / is allocated to tasky.

For instance, matrix 2' below represents one of the possible
combinations in which service 3̂ will execute task fi, service si will execute

Selecting Web Services for Optimal Compositions 203

task f2 and task ?3 will be executed by service S2. As a result, this composition
will be formed by services S3, s^ and S2 respectively.

'0 0 r

Z'= I 0 0

[0 1 oj
An undetermined number of tasks, m, can be used to compose a service

and an unlimited number of services, n, for each task tj can be found. In fact,
these possible combinations are considered for a predefined plan, which
determines exactly in which order the tasks should be composed. However,
concerning our architecture, the plan can also be changed, and so other
possible combinations might be overseen. Moreover, if it is considered that/?
plans using m tasks can be created, the problem becomes even harder.

3.3 Models to Compose Web Services

The Web Service community is dealing with composition,
interoperability between services, automated discovery and composition.
Efforts have already been made by industrials and researches in order to
achieve this goal. There are two main languages created in order to compose
web services: BPEL4WS and OWL-S. Both languages are created focusing
on activity-based models. In this way, BPEL4WS provides the basis for
manually specifying composite web services. On the other hand, OWL-S is
more ambitious and it provides a machine-readable description of web
services which will enable automated discovery and composition (Hull and
Su 2004). Indeed, there are other models to compose services such as:
workflows, graphs, Petri nets and also currently programming languages as
Java and C. Depending on each choice, composing web services can be
harder and time consuming. Here we will focus on the two specific
languages mentioned above: BPEL4WS and OWL-S. We will then illustrate
some works using different models to compose web services.

3.3.1 Composing using BPEL4WS

Web services composition using BPEL4WS allows the manipulation of
services as activities and processes. Actually, BPEL4WS language is a
merge between Microsoft's XLang and IBM's WSFL, but all of them are
considered as a web service flow language (van der Aalst 2003). As an
executable process implementation language, the role of BPEL4WS is to
define a new web service by composing a set of existing ones. The interface
of the composite service is described as a collection of WSDL PortTypes.

204 Semantic Web Services, Processes and Applications

A BPEL4WS process defines the roles involved in a composition as
abstract processes. A buyer and a seller are examples of two roles. They are
expressed using partner link definitions. We can have a role for each web
service that is composed and does some activity. In order to integrate
services, they are treated as partners that fill roles (Mandel and Mcllraith
2003). BPEL4WS depends directly on the WSDL of the service. A business
process defines how to coordinate the interactions between a process
instance and its partners. Thus, a BPEL4WS process provides one or more
WSDL services. The BPEL4WS process is defined only in an abstract
manner, allowing only references to service portTypes in the partnerLink
(Andrews et al. 2003). Each partner is characterized by a partner link and a
role name. In summary, the main idea of business process is to create an
organizer that point to each service endpoint that will be actually executed.

Characteristics. The distinction between roles and partners in a business
process is an important characteristic of BPEL4WS. This allows more
simple and intuitive integration between enterprises. Another important
characteristic of BPEL4WS is the fault handlers. Faults handlers have the
ability to catch errors in BPEL4WS. Another characteristic from BPEL4WS
is message correlation that allows processes to participate in stateful
conversations. It can be used to match returning or known customers to
long-running business process. Furthermore, correlation mechanisms allow
interaction between a service instance and a partner. BPEL4WS addresses
correlations scenarios by providing a declarative mechanism to specify
correlated groups of operations within a service instance (Andrews et al.
2002).

In a BPEL4WS process we define the interactions between these
activities that compose the service. Thus, there are some types of interaction
like sequence, flow, switch, pick, moreover, each one can be combined.

Implementation. We developed a prototype using BPEL4WS. We
created our composition based on our simple Travel. Our composition has
three services: Airplane, Hotel and CarRental. In BPEL4WS we define a
composed service, such as Travel by describing which others services it
contains. Figure 8-3, adapted from (Khalaf 2004), shows the relation
between the Travel service and the others that compose it.

Selecting Web Services for Optimal Compositions 205

Client

Figure 8-3. Internal view of Travel Service (BPEL4WS)

We put these three services in sequence, using the sequence structure.
The receive structure indicates the location of the input variables in the
sequence. The invoke structure is actually the service invocation. The reply
is the response given by the sequence that here is the total cost of the travel.
Between each structure, we can add an assign structure that is responsible
for passing values between invoked services. See below our example using
BPEL4WS:

<secjuence name="TravelSeguence">
<receive partnerLink="client"

portTYpe="tns:travelPT"
operation="trip"
variable="request"
createlnstance="yes"/>

<invoke name="invokeAirplane"
partnerLink="airplane"
portTYpe="sairplane:Airplane"
operation="bookAirplane"
inputVariable="request"
outputVariable="airplaneReturn">

</invoke>
<invoke name="invokeHotel"

partnerLink="hotel"
portTYpe="shot:Hotel"

206 Semantic Web Services, Processes and Applications

operation="bookHotel"
inputVariable="request"
outputVariable="hotelReturn">

</invoke>
<invoke naine="invokeCar"

partnerLink="car"
portType="scar:Car"
operation="rentcar"
inputVariable="request"
outputVariable="totalReturn">

</invoke>
<reply partnerLink="client"

portType="tns:travelPT"
operation="trip"
variable="carReturn"/>

</sequence>

After constructing the composition, we need to deploy our composite
Travel service, making it available for execution. At this moment, the
deployment engine will require the WSDL files that were related to partner's
links. As we have an interaction with each service developed, we must have
a WSDL for each one. We have to mention in each WSDL the grounding tag
in order to actually find the service. Additionally, we invoke the composition
using an API created by IBM called BPWS4J1.1 (BPWS4J 2004). Using this
API to execute our composite service, we call a broker and we use the
endpoint given by the Travel deployment to do the connection between the
client and services' providers. Using the endpoint, the broker can find the
service, and then it can pass the first parameters that are sent by the client.

3.3.2 Composing using OWL-S

The process of composing services using a semantic web language like
OWL-S increases the automatic discovery and composition. In fact, OWL-S
is based on ontology and OWL. This means that OWL-S is also based and
constructed using resources and hierarchical concepts. With such a language,
software agents can find services based on their computer-interpretable
description.

The main motivating task for OWL-S was the ability to automatically
discover web services. Other motivating tasks are automatic invocation of a
service, with which a software agent can interpret markup to understand
what input is necessary for the service call, what information will be
returned and how to execute the service.

Selecting Web Services for Optimal Compositions 207

Additionally, the composed web service is actually an abstract service. In
fact, the composition file has only the service calls. In OWL-S each service
that is part of composition has the same structure as the composed one.

Characteristics. OWL-S is composed of three other structures called:
service Profile, service Model and service Grounding, used to describe
different aspects of the service (OWL-S 2005). The service Profile is
responsible for presenting the service to other services or agents that want to
use it. It describes the service in order to facilitate the search process,
specifying what organization provides the service and what functions the
service provides. See below a Profile example:

<profile:Profile rdf:ID="TravelProfile">
<service:isPresentedBy

rdf:resource="#TravelService"/>
<profile:serviceName xml:lang="en"> Travel
</prof ile: serviceNaine>

<profile:textDescription xml:lang="en">
Return travel: book flight, hotel, car rental.

</prof i l e : t e x t D e s c r i p t i o n > ...

The service Model describes the service with regards to its inputs,
outputs, effects and preconditions parameters. Furthermore, the process
model is the core of OWL-S architecture; it defines how the process will be
executed. Services can be composed using a combination of atomic or
composite services. This implies that a composition can have services that
are themselves composed. Additionally, in the service model we can say
how the services will be executed: sequentially {sequence) or in parallel
(split/split+join) or some other way (OWL-S 2005).

The service grounding is responsible for giving the endpoint of a service.
A service grounding can be thought of as a mapping between an abstract and
a concrete specification (OWL-S 2005). It is also in the grounding that we
put the reference to each WSDL document.

208 Semantic Web Services, Processes and Applications

• ^ • •! I i i . .

Client

: l ' : I lJ!rM I

\ l : i i ! r . : " i ;.k .

l l . l < () i) l } > i M

Figure 8-4. Internal view of Travel service (OWL-S)

Implementation. In our implementation using OWL-S composition, we
defined the Travel service as being composed of three atomic services called
Airplane, Hotel and CarRental services. We must define the OWL file for
each atomic service. Furthermore, in these files we must put the grounding
reference positioning exactly where the service is running. The Travel.owl
file is only an abstract service where we define the input/output parameters
and which service will be called. Figure 8-4 shows the internal view of
Travel service.

After creating the OWL-S file containing the three services above, we
can invoke the Travel service, sending it the parameters: date_arrival,
date_departure and destination_city. As a result we will obtain the total
amount for traveling. We also used a sequence structure in order to compose
our services. In OWL-S we can pass values between services using
process:sameValues structure.

<process:ProcessModel rdf:ID="TravelProcessModel">
<service:describes

rdf:resource="#TravelService"/>
<process:hasProcess

rdf:resource="#TravelProcess"/>
</process:ProcessModel>
<process:CompositeProcess rdf:ID="TravelProcess">
<process:haslnput rdf:resource="#dt_arrival"/>
<process:haslnput rdf:resource="#dt_departure"/>

Selecting Web Services for Optimal Compositions 209

<process:haslnput
rdf:resource="#destination_city"/>

<process:hasOutput rdf:resource="#total"/>
<process:composedof>
<process:Seguence>
<process:components

rdf:parseTYpe="Collection">
<process :AtoinicProcess
rdf:abQut="Airplane.owl#AirplaneProcess"/>
<process:AtomicProcess

rdf:about="Hotel.owl#HotelProcess"/>
<process;AtomicProcess
rdf:about="CarRental.owl#CarRentalProcess"/>
</process:components>

</process:Sequence>
</process:composedOf>

</process:CompositeProcess>

In order to execute the travel service, we have used OWL-S API
(Mindswap 2004). For a cHent side, we defined an endpoint called Travel as
the name of our service. Continue the execution, we invoke the Travel
service and the OWL-S works on executing the others services that belongs
to this composition.

It is important to highlight that these two examples were done in a
statically way. In other words, we knew in advance which services would be
part of the composition.

3.3.3 Other Web Service Composition Models

Many works opted for neither using BPEL4WS nor OWL-S. They
modeled web services composition using other types of procedures.

In (Grigori and Bouzeghoub 2005) they propose modeling web services
composition as graphs. In their work, even though they were worried about
services match, the user requirements and the published service are graph
based. The service retrieval approach is based on process graphs. Thus, a
process is represented as a directed graph, whose nodes are activities. Edges
have associated transition conditions expressing the control flow
dependencies between activities.

In (Cardoso et al. 2004), they model web services composition using a
workflow. In this work, a web service is considered as being a part of the
workflow and it is argued that tasks and web services are treated with no
difference. Between workflow and web services, both require tasks to have a

210 Semantic Web Services, Processes and Applications

structure which includes information such as tasli name, formal parameters,
etc. Concerning web processes and workflows, in the authors' opinion, web
processes can be viewed as workflows that manage web services instead of
tasks. Thus, a workflow is composed of tasks and these tasks are actually
web services.

In the work presented in (Narayanam and McIIraith 2002), web services
compositions are modeled as Petri nets. In fact, all approaches mentioned
above use graph representations. For instance, a Petri net is a bipartite graph
containing places (drawn as circles) and transitions (drawn as rectangles).

Summarizing, several different manners exist for modeling web services
composition; using various types of graphs, specific languages, etc.

4. PROBLEM MODEL

Many authors have studied the problem of web services composition, but
only a few have worried about how complex this composition could be.
Concerning our Travel problem, consider that we can now have more than
ten tasks to be executed and over a hundred candidate services; with the
daily growth of the Internet, these figures may soon be realistic. Thus,
combining each task, respecting their restrictions and respectively finding
the service to execute the tasks can be considered as a combinatory problem.
Since we treat our services composition as a combinatory problem it requires
optimization, so our Travel problem can be treated as an optimization
problem.

Optimization problems require basically two elements: a search space
composed of potential solutions and an objective function to be optimized.
The search space may be restricted by a set of constraints. In our example,
prior to execute the services, it is necessary to find optimal composition. In
order to achieve optimal compositions we defined four main objectives that
should be optimized: cost, time, reputation and availability. In addition to
these objectives, we restricted the search space using constraints stating, for
example, that one service can only be allocated to one task. Actually these
objectives are our QoS model explained earlier. Since each QoS variable
will be described inside a service, our optimization problem will retrieve
these values in order to make possible combinations. The QoS (non
functional criteria) model was used as the objectives to be optimized because
we need to differentiate candidate services with identical functionalities. In
the next subsections we explain our objectives and the constraints we used in
detail.

Selecting Web Services for Optimal Compositions 211

4.1 Objectives

Our problem consists of four objectives. The first one is cost
minimization:

n m

In this problem, cy represents the cost criterion in the quality model. It
defines the cost of using service si for executing task tj. pij indicates the
service's ability to execute a given task. Since we can have atomic or
composed services belonging to the composition, not all of the discovered
services will be able to execute all the tasks. Thus, py is a binary variable
informing whether service si is able to execute a task tj or not. The binary
variable xg is responsible for expressing if a service belongs or not to the
composition. This is represented in matrix x-

Another objective concerns time. As explained in the QoS model, time is
the elapsed time between the request and the response. The time objective
also needs to be minimized:

n in

Min^Y^'ljPyXy
i=i y=i

In our model, tij concerns the time taken by service si to execute task ty
The other variables py and xy are those explained above.

The availability objective shows the probability that a service can be
accessed and used. In our case, it should be maximized, because it is
preferable that this probability is as high as possible.

n m

Variable ay should belong to [0,1].
The last objective is related to the reputation a service has in a

determined field.

n m

(=1 M

rij stands for the reputation service s^ has when executing task t,. This
objective needs to be maximized because the higher the reputation the better
the service is judged.

Using our objectives, we can now reconsider our Travel problem. Cost
represents the price of a service execution and Time is the execution time of
a service. Moreover, Availability is the probability a service is "alive" and

212 Semantic Web Services, Processes and Applications

Reputation is the trustworthiness of the service in a determined field. We can
easily understand that some clients do not give any preference to cost and
prefer spending more money on travel, provided it is on a reliable airline
company. In fact, we want to consider the four objectives simultaneously for
travel.

In fact, even if the four objectives are contradictory with each other, we
do not give any preference to any one of them. This means that we do not
need to give them a weight. For instance, we do not want to give any
preference to cost over time. Thus, the service with the smallest cost will not
necessarily be part of our composition, since its other measures of quality
must be considered. We will explain how one can treat this kind of problem
in section 5.

4.2 Constraints

In our model the solutions of our problem must also satisfy two
constraints. The first one states that only one service in a composition is
allocated to each task. It can be represented by:

n

where xy specifies whether or not a service belongs to a composition.
Variable pg represents the capacity of service si to execute task tj. Thus, this
first constraint specifies that each task in the composition must be executed
by exactly one service.

The second constraint concerns the user's budget.
n m

This constraint states that the cost of using the resulting composition
should not exceed a given value W.

5. MULTIOBJECTIVE OPTIMIZATION

As explained in section 4 we have four objectives that we want to
minimize and maximize. However, neither a preference nor a weight should
be given to any one of them. We want to treat all of them together and
simultaneously. Although single-objective optimization problems may have
a unique optimal solution, Multiobjective Optimization Problems (MOP)
present a possibly uncountable set of solutions, which when evaluated.

Selecting Web Services for Optimal Compositions 213

produce vectors whose components represent tradeoffs in objective space. A
decision malcer tiien implicitly chooses an acceptable solution by selecting
one or more of these vectors (Coello et al. 2002;Tan et al. 2005;Deb
2001;Collette and Siarry 2003).

Multiobjective optimization allows the co-existence between two or more
objectives that are normally contradictory. Two objectives are contradictory
if the decrease of one of them implies the increase of the other. Another
important feature is that in a multiobjective problem we do not have only
one optimal solution but a set of solutions. These solutions are called Pareto
solutions (Tan et al. 2005).

Thus, MOP can be defined as finding (Osyczka 1985): "a vector of
decision variables which satisfies constraints and optimizes a vector of
function whose elements represent the objective functions." This is formally
defined in (Coello et al. 2002) as:

Find the vector x = [xi,x2,—,x„Y which satisfies the minequality
constraint s:
g;(3c)>0, (= 1,2 m

and optimize the vector function

f(x)=[Mx),f2(x),...,Mx)Y

The constraints define the feasible region and any point in x defines a
feasible solution. T stands for vector transposition. Thus, the points inside
the feasible region satisfy all defined constraints.

A large number of approaches exist to resolve multiobjective
optimization problems. Some of them use the knowledge they have about the
problem to give preferences to some objectives, thus bypassing the
multiobjective aspect. Others give all objectives the same level of
importance, etc. Among these approaches, we should distinguish between
two categories: non-Pareto and Pareto approaches. Non-Pareto approaches
do not actually treat the problem as a multiobjective problem. They try to
convert it into a mono-objective problem. On the other hand, Pareto
approaches do not transform the problem's objectives, but try to optimize
them simultaneously.

5.1 Non-Pareto Approach

There are many non-Pareto approaches; however, we focus here on two
of them used in multiobjective problems.

214 Semantic Web Services, Processes and Applications

5.1.1 Objective aggregation method

This method is the most commonly used in multiobjective optimization
problems. The goal is to transform the multiobjective problem into a mono-
objective problem. Hence, they use a weight mechanism to aggregate all
objectives into a unique objective. This approach has the advantage of being
able to reuse all classic algorithms used for solving mono-objective
optimization problems. However, the weights must be given with attention
because it impacts directly into the solutions.

5.1.2 E-Constraint

This is another manner of transforming a multiobjective problem into a
mono-objective one. When confronted with a problem consisting of m
objectives, we convert m-1 of them into constraints. Thus, the idea is to
optimize the preferred objective, considering all the others as constraints.
This method is also known as the trade-off method.

5.2 Pareto Approach

Having several objective functions, the notion of "optimum" changes,
because in MOP, the aim is to find good compromises ("tradeoffs") rather
than a single solution. We can say that x is Pareto optimal if there exists no
feasible vector y which decreases some criterion without causing a
simultaneous increase in at least one other criterion (Coello et al. 2002).

5.2.1 The Relation of Dominance

Despite the fact that we have obtained many solutions resolving our
multiobjective problem, only a restricted number of them will actually be
relevant. Thus, in multiobjective problems, in order to consider an
interesting solution, we need to have a means of determining the most
relevant solutions. In order to determine these solutions, a relation of
dominance is defined as follows:

Definition: The relation of dominance in a minimization problem is
defined in (Coello et al. 2002) as:

Vector V dominates vector f (v :< ?) if, and only if:

V is partially less than f

i.e. Vie {l,..., k\vi < r,- A 3(6 {l,..., k}:Vj < r,-

Selecting Web Services for Optimal Compositions 215

Solutions that dominate other solutions but which do not dominate each
other are called optimal solutions in the sense of Pareto (or nondominated
solution).

5.2.2 MultiObjective Evolutionary Algorithms

The use of Evolutionary Algorithms (EA) to solve Multiobjective
problems has been motivated mainly because of the population-based nature
of EAs which allows the generation of several elements of the Pareto
optimal set in a single run. The Multiobjective Evolutionary Algorithms
(MOEA) are among the most powerful resolution methods for
multiobjective optimization (Coello et al. 2002). MOEA take into account
contradictory objectives and allow finding a set of nondominated solutions.
An evolutionary algorithm is composed of three fundamental elements:

• Population; it is composed of individuals that represent potential
solutions

• Evaluation: it is a mechanism that allows individual evaluations in order
to measure the individual adaptation into an environment.

• Evolution: it is the mechanism that allows the population evolution.
Evolution is ensured by selection, crossover and mutation.

The selection mechanism determines the individuals that can reproduce
its characteristics in future generations. The crossover is the mechanism
responsible to create new individuals based on parents' characteristics. The
mutation mechanism introduces limited changes in the individuals.

Genetic Algorithm to MOP (NSGA-II). The NSGA-II (Nondominated
Sorting Genetic Algorithm) (Deb el al. 2002) used in this work is one
variation of Goldberg's Pareto ranking (Goldberg 1989), though any other
MOEA such as SPEA(Zitizler and Thiele 1998), PAES (Knowles and Corne
1999) and PICPA (Barichard and Hao 2003) could have been used.

In NSGA-II, the tournament selection, crossover and mutation operators
are used to create a child population that will be added to a result population
given by the later generation. The new population is sorted based on non-
domination. In this step, elitism is ensured because the best nondominated
sets will be chosen for the next population. Using constraints, the relation of
domination between two individuals can be characterized as a feasible or
unfeasible solution. Thus, the ranking will be done based also on feasible
solutions.

216 Semantic Web Services, Processes and Applications

Applying NSGA-II to our Travel problem, a chromosome corresponds to
a services composition which is defined by a 0/1 string. Each binary variable
that represents a gene indicates whether the service belongs to the optimal
composition or not. The example below shows a chromosome representing a
solution of a services composition problem using 15 services and 3 tasks
(each of them having 5 candidate services):

0 0 0 1 0

genes: 1-5

1 0 0 0 0

genes: 6-10

0 0 1 0 0

genes: 11-15

Each service is represented in the above chromosome by a binary
variable (a gene) and the binary variables (genes) are grouped according to
the task they are candidate for (genes 1-5: task 1, genes 6-10: task 2, genes
11-15: task 3). For each group of 5 binary variables, only one service will
belong to our composition. This chromosome corresponds exactly to our
matrix % and means that service 4̂ is allocated to task ti. Task ti will be
executed by service 6̂ and task tj, by service S13.

6. RELATED WORK

Many authors have proposed quality of service models for selecting web
services. Some authors applied their QoS model to agents based
architectures, others to centralized registries or to individual services.

In (Ran 2003) the main idea is to include a QoS model into UDDI
registries so that QoS parameters can be included as search criteria. In fact,
they propose to use a QoS model as non-functional requirements to enable a
service search based on functional and non-functional (QoS) parameters.
They also explain that the current UDDI model limits the service discovery
to functional requirements. Due to this limitation, they propose to
incorporate a QoS model into UDDI registries. The proposed model will
coexist with the current UDDI. If no services are found with these qualities,
feed-back is returned to clients and so they can reduce their quality values.

In (Sreenath and Singh 2004) the authors propose a mutual evaluation
process between agents to select a web service. It selects the best service
based on rates given to providers by agents. A provider is ranked by an agent
and the agent's evaluations are, themselves, evaluated by other agents. Thus,
selecting a service provider involves getting a list of rated service providers
and choosing the best based on a weighted average calculation. The result of
the execution of the chosen service is then feedback into the service provider
rating mechanism.

Selecting Web Services for Optimal Compositions 217

The main idea in (Cardoso et al. 2004) is an adaptation of Workflow
Quality of Services and its transposition to web service technologies. First of
all, they propose to characterize workflows based on their QoS in order to
better fulfill customers' expectations. The QoS model is composed of: time,
cost, fidelity and reliability. Fidelity means how well workflows, instances
and tasks are meeting user specifications. Concerning reliability, it is the
measure of the likelihood that the component performs a task demanded by a
user. These QoS constraints are implemented into METEOR workflow
management systems for Genomic Projects.

Ideas in (Zeng et al. 2003) are very close to our proposition regarding the
QoS model and also to the resolution method. This work treats the services
selection during the execution process and so it takes into account multiple
criteria. Thus, the idea is that services are selected by the composite service
execution engine based on a set of criteria. This paper presents a quality
model that is characterized by non-functional properties: price, duration,
reputation and availability. Service selection is then formulated as an
optimization problem and a linear programming method is used to compute
optimal services execution plans to compose services. This work is an
example of objective aggregation approach. In other words, they weight the
objectives and then sum them all in order to create a single aggregate
objective. The transformed problem is solved using linear programming.
Notice that this approach cannot lead to alternative solutions and is not able
to handle automatically non-linear constraints. The most important
difference between our work and Zeng et al's work (Zeng et al. 2003) is that,
as opposed to their work, we do not give any weight to any objective. We
treat all objectives with the same importance using a multiobjective
optimization approach. Even though our objectives are contradictory, they
are taken into account simultaneously by our resolution algorithm.

In (Liu et al. 2004), in order to improve the work of (Zeng et al. 2003),
the authors propose specific domain criteria for each service that will be
selected. Thus, QoS information is collected from the properties of services
as they are pubhshed by providers. The main idea is that some users want to
select services based on time while others only want to consider cost. Thus
this paper proposes a QoS model based on user preferences.

In (Canfora et al. 2005), the authors propose a QoS-aware composition
based on run-time values. They argue that QoS values based on estimation
may differ from those at runtime. Thus they prefer to use runtime QoS value
when composing services in order not to go against SLA accords. An
example is that, at runtime, some services may not be available when,
according to estimations, they should be. Thus, this framework needs to
reconsider services composition in order to change the bindings between
abstract and concrete services.

218 Semantic Web Services, Processes and Applications

Ideas in (Jaeger et al. 2005) discuss how the selection can consider
different QoS categories to determine the most suitable candidates for the
composition. If more than one category is used for optimization, a multi
dimensional optimization problem arises. On the other hand, if exactly one
category is relevant, an algorithm chooses the candidate that offers the
optimal value. For each task the candidate that offers the best QoS constraint
category is assigned. Thus, if a combination which respects the constraints
exists, it is found.

In (Bonatti and Festa 2005) the authors consider optimal services
selection based on a given set of service requests (i.e. activities occurring in
a workflow), a set of available services (offered services), result of the
matchmaking process (association of the request and the offer) and a
numeric preference measure. Their selection is based on cost and two
different QoS-like criteria. These criteria are ordered and static.

7. CASE STUDY

One of the main contributions of this work concerns the multiobjective
optimization approach. As explained earlier, we consider that objectives and
solutions should be searched considering these four criteria simultaneously.
To achieve this, we use the multiobjective evolutionary algorithm NSGA-II.
The next sections describe our experimentation using the NSGA-II for
composing web services.

7.1 Experimentation

Applying this algorithm to our problem, several experiments using our
composition model were done in order to find optimal compositions.

7.1.1 Tests set

The main objective of our tests was to find a set of Pareto optimal
compositions from which a user can select her preferred solution. The first
test that we did was to analyze the same number of services and tasks,
changing the number of generations and populations. The number of
services was set to 30 and the number of tasks to 3. We chose to allocate the
same number of candidate services to each task. The aim of this
experimentation was to analyze how the algorithm treats services
composition.

The next test that we did was aimed at studying the scalability of the
services composition algorithm with respects to the number of candidate

Selecting Web Services for Optimal Compositions 219

services and to the number of tasks. Population and generation were kept
constant in all experiments, but the number of services and tasks was
changed. In fact, we increased candidate services for each tasks. The
population was fixed to 200 individuals and the generations were fixed to
500. These values were taken considering other experiments using the
NSGA-II algorithm.

As for the previous experiment, we also consider that the numbers of
candidate services for each task are equal. The number of services is thus
equal to the number of variables, because each service is represented as a
variable in our model.

7.1.2 Algorithm Parameters

In the first experiment we used population ranges from 10 to 200 and
generation ranges from 10 to 500. The crossover probability was 0.9 and the
mutation was 1// where / is the number of binary variables. In our case, we
used 30 binary variables because we have 30 services. These 30 binary
variables represent 3 tasks and each task can be executed by 10 candidate
services. The crossover used was single-point. We used 4 objective functions
and 2 constraints as previously defined in our model. The first constraint
determines the candidate services and the other one represents the maximal
budget given by the user. This value was fixed for all compositions. The
QoS values were given randomly to each service.

In the second test, the population size was set to 200 and generation to
500. We did these experiments using 30 and 60 services with 3 and 5 tasks.
It means that, for example, using 60 services and 3 tasks, we have 20
candidate services equally distributed for each task. The crossover mutation
and probability was maintained (of course they changed according to the
number of variables). In both experiments, all constraints must be satisfied
in all generations and thus only feasible solutions were selected for the next
generation.

7.1.3 Results

The results of our experiments consist of a set of chromosomes; each one
representing a services composition. Since we defined a population size of
200, the maximum number of solutions found was also 200. However, out of
these solutions we only highlighted the distinct Pareto optimal solutions.

In Figure 8-5, we show the evolution of our model based on the number
of distinct Pareto optimal solutions found for 30 services and 3 tasks. We
can see that 70 distinct solutions are found for a population size of 200 and a
generation size of 500. The tradeoff solutions do not violate any constraints.

220 Semantic Web Services, Processes and Applications

Using 30 services for 3 tasks, the algorithm gives 70 distinct nondominated
solutions in approximately 18 seconds.

3 tasks. 30 services: distinct solut ions

50-

I
o

M

A / , ' ' ^ « *—— — _ _ ^

-Li-JL:i:rJLl::i3:-ri^^

- • - popOOii
- • - pop 010
-*- popoa
- • • popaM
•* pnfi 1C0

50 ICO '150 ZOO im 300 3M 100 4S0 600

GuneratiOR

Figure 8-5. Distinct Pareto solutions

Selecting Web Services for Optimal Compositions 221

3 tntilts, 30 i!oiv)o4is; otupsfK) timE)

?00 2S0 300 a w 400 4» 403

Figure 8-6. Elapsed Time

We notice, in Figure 8-6, that it is not necessary to use large Distinct
Pareto solutions populations since for a population size of 100, the 47
distinct solutions are obtained in 7 seconds.

The next experiment consisted in changing the number of services and
the number of tasks. In Figure 8-6 we observe that as the number of services
increases, more solutions are found. In addition, as the number of candidate
services increases, the elapsed time to find the solutions also increases.

For example, using 60 services for 3 tasks means that there are 20
candidate services. However using 60 services for 5 tasks, there are only 12
candidate services. The difficulty in finding tradeoff solutions increases with
the number of candidate services. Augmenting the number of tasks also
means increasing the number of constraints and so facilitating the
achievement of Pareto optimal compositions, as shown in Figure 8-7.

222 Semantic Web Services, Processes and Applications

.;eneralioiis

Figure 8-7. Services and Tasks

8. CONCLUSIONS

In this paper we have explained how services could be selected in order
to make optimized compositions. We proposed some improvement on
quality models, highlighting the reputation criterion. We based the
calculation of reputation on fuzzy numbers. Using non-functional features
(QoS) for the optimization of composite services may lead to contradictory
objectives. However, we do not wish to give any preference (weight) to any
of these objectives. Thus we chose to treat services composition as a
multiobjective problem. We used the multiobjective evolutionary algorithm
called NSGA-II and obtained a set of optimized compositions representing
different tradeoffs. The experimentations carried out validate our approach
and show its feasibility in solving the Travel problem.

QUESTIONS FOR DISCUSSION

Beginner:
1. Why do we need to compose web services?

Selecting Web Services for Optimal Compositions 223

2. What is the difference between static composition and automatic
composition?

3. List different techniques used for composing automatically web services.

Intermediate:
1. Should QoS values be assigned to web services or should they be

associated to service providers?
2. List other possible approaches to solve the multiobjective model for the

optimization of web services composition?
3. Could the availability criterion be a continuous measure? Why?
4. Why is it necessary to optimize the composition?

Advanced:
L In our problem, what happens if the number of services and tasks is

increased?
2. What are the benefits of using multiobjective approaches?

Practical Exercises:
1. Choose an example to compose statically using three services. Develop it

using OWL-S or BPEL4WS.
2. Take a composition example, enumerate all possible compositions,

choose a quality criterion and try to optimize using a linear programming
approach.

10. SUGGESTED ADDITIONAL READING

• Coello Carlos A., van Veldhuizen D.A., Lamont G.B.; Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer
Academic/Plenum Publishers, New York, 2002: This book is a
reference in the domain of Evolutionary Multiobjective
Optimization.

11. ACKNOWLEDGMENT

Daniela Barreiro Claro is supported by a research scholarship given by
the Region du Pays de La Loire (2003-2006).

224 Semantic Web Services, Processes and Applications

12. REFERENCES

Andrews T., Curbera F., Dholakia H., Goland Y., Klein J., Leymann F., Liu K., Roller D.,
Smith D., Thatte S., Trickovic I. and Weerawarana S. Specification: BPEL4WS - Business
Process Execution Language for Web Services - Version 1.1. Retrieved May 30, 2005,
from ftp://www6.software.ibm.com/software/ developer/library/ws-bpel.pdf, May (2003).

Barichard H., Hao J-K. A population and Interval Constraint Propagation Algorithm. In
Second International Conference Evolutionary Multi-Criterion Optimization (EMO),
Lecture Notes in Computer Science 2632:88-101(2003).

Bonatti P., Festa P. On Optimal Service Selection. In International World Wide Web
Conference (WWW'2005), May 10-14, Chiba, Japan (2005).

BPWS4J API. Retrieved November 26, 2004, from http://www.alphaworks.ibm.coni/
tech/bpws4j.

Canfora G., di Penta M., Esposito R., Villani M.L. QoS-Aware Replanning of Composite
Web Services. In International Conference of Web Services (ICWS'2005), July 11-17,
Orlando (2005).

Cardoso J., Sheth A., Miller J., Arnold J., Kochut K. Quality of Service for Workflows and
Web Service Processes. In Web Semantics: Sciences, Services and Agents on the World
Wide Web 281-308, 1 (2004).

Collette Y., Siarry P. Multiobjective Optimization: Principles and Case Studies, Springer,
NY, Berlin (2003).

Coello C.C.A., Van Veldhuizen D.A, Lament G.B. Evolutionary Algorithms for Solving
Multi-objective Problems. Kluwer Academic Publishers, New York (2002).

Deb K. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley \& Sons,
ISBN 0-471-87339-X, Chichester, UK (2001).

Deb K., Pratap A., Agarwal S., Meyarivan T. A Fast and Elitist Multi-Objective Genetic
Algorithm: NSGA-II. IEEE Trans Evol Computat, Volume 6, pp. 182-197, April, (2002).

Fuzzy Logic Fundamentals, Chapter 3, pg 61-103. Retrieved February 8, 2005. Available on
http://www.informit.coni/content/images/0135705991/ samplechapter/0135705991.pdf
(2005).

Goldberg D.E, Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley Publishing Company, Reading, Massachusetts (1989).

Grigori D., Bouzeghoub M. Service retrieval based on behavioral specification. In
International Conference of Web Services (ICWS'05), July 11-17, Orlando (2005).

Hull R., Su J. Tools for Design of Composite Web Services. In SIGMOD 2004, June 13-18,
Paris (2004).

Jaeger M.C., Miihl G., Golze S. QoS-aware Composition of Web Services: A Look at
Selection Algorithms. In International Conference of Web Services (ICWS'2005), July 11-
17, Orlando (2005).

Khalaf R. Business Process with BPEL4WS, Part 2. Retrieved October 27, 2004. Available
on http://www-I28.ibm.com/developerworks/webservices/library/ws-bpelcol2/

Knowles J., Come D. The Pareto archived evolution strategy: A new baseline algorithm for
multiobjective optimization. In Congress of Evolutionary Computation, Piscataway, New
Jersey: IEEE Service Center, 98-105 (1999)

Liu Y., Ngu A.H.H., Zeng L. QoS Computation and Policing in Dynamic Web Service. In
Thirteenth International Conference of WWW 2004, May 17-22, New York, New York
(2004).

Lostedt J., Svensson M. Baltazar - A Fuzzy Expert for Driving Situation Detection. Master
Diss., Department of Sciences, Lund University (2000).

Selecting Web Services for Optimal Compositions 225

Mandel D.J., Mcllraith S.A. Adapting BPEL4WS for the Semantic Web Bottom-up Approach
to Web Services Interoperation. In Second International Semantic Web Conference
(ISWC), Sanibel Island, Florida (2003).

Mindswap G. Maryland Information and Network dynamics lab semantic web agents
projects. Retrieved October 28, 2004. Available on http://www.mindswap.org/ 2004/owl-
s/api/index.shtml (2004).

Moura L. A Genetic algorithm to fuzzy multiobjective optimization. Master diss. Department
of Electric Engineer, Campinas University (2001).

Narayanan S., Mcllraith S.A. Simulation, Verification and Automated Composition of Web
Services. In Eleventh International World Wide Web Conference (WWW 2002),
Honolulu, May 7-10 (2002).

Osyczka A. Multicriteria optimization for engineering design. In Gero, J.S., editor Design
Optimization, pg.193-227. Academic Press (1985).

OWL-S Coalition. OWL-S: Semantic Markup for Web Services. Retrieved April 12, 2005.
Available on http://www.daml.0rg/services/0wl-s/l.l/ (2005).

Ran S. A Model for Web Services Discovery with QoS. In ACM SIGecom Exchanges,
Volume 4, Issue 1, Spring, pp. 1-10, ACM Press, New York, NY (2003)

Sreenath R.M., Singh M.P. Agent-based service selection. In Web Semantics: Science,
Service and Agents on the World Wide Web, 261-279 (2004).

Tan K.C., Khor E.F., Lee T.H. Multiobjective Evolutionary Algorithms and Applications.
Springer-Verlag, ISBN 1-85233-836-9, London (2005).

van der Aalst W.M.P. Don't Go with the Flow: Web Services Composition Standards
Exposed. IEEE Inteligent Systems, 18(l):72-76 (2003).

Zeng L., Benatallah B., Dumas M., Kalagnanam J., Sheng Q.Z. Quality Driven Web Services
Composition. In Twelfth International Conference of WWW, May 20-24, Budapest
(2003).

Zitizler E., Thiele L. Multiobjective Optimization using Evolutionary Algorithms - A
Comparative Case Study. Parallel Problem Solving from Nature V, A.E.Eiben, T.Back,
M.Schoenauer and H-P. Schwefel Eds. Berlin, Germany: Springer, 292-301 (1998).

Chapter 9

MATCHING AND MAPPING FOR SEMANTIC
WEB PROCESSES

Tanveer Syeda-Mahmood , Richard Goodwin , Rama Alciciraju , Anca-
Andreea Ivan^
'iBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120 -.
stf@almaden.ibm.com

^IBM Watson Research Center, 19 Skyline Drive, Hawthorne, NY-
rgoodwin, akkiraju, ivananca @ us. ibm. com

1. INTRODUCTION

A semantic revolution is iiappening in tlie world of enterprise
information integration. This is a new and emerging field that blurs the
boundaries between the traditional fields of business process integration,
data warehousing and enterprise application integration. By information
integration, we mean the process by which related items from disparate
sources are integrated to achieve a stated purpose. For example, in data
warehousing, data from two separate databases may need to be merged into
a single database. This is particularly needed during mergers and
acquisitions, where the respective company information from two separate
databases may need to be merged into a single database. The terminology
used to describe the same information in two disparate sources is hardly
identical, subject to the vagaries of human use. Figure 9-1 illustrates two
schemas from two databases that need to be reconciled during a data
warehousing task. The two tables are called PurchaseOrder and POrder,
respectively. They consist of 4 columns with names as shown. To properly
merge such schemas, we need to reconcile the two terminologies and find
their semantic relationships. Ordinarily, this is the job of a data warehousing
specialist, who manually identifies the relationships using an application's
user interface. Recent research is trying to make this process semi-automated
by performing candidate matching between the names automatically, and
having people verify the mappings.

228 Semantic Web Services, Processes and Applications

POrder

Sale
Price

ItemID Item Number UnitOfMesaure

Purchase Order

BrandID Price Qty UoM

Figure 9-1. Illustration of schema matching in a data warehousing scenario.

Consider another scenario, now in the context of business process
integration. Here a typical task may be a business flow that routes the data
between suppliers and their associated applications. Typically, such flows
are composed by business analysts who have limited programming skills,
and work with user-interfaces that aid in the creation of business flows. They
work with an abstraction of data being routed through schemas called
business objects. Examples include generic business objects and application
specific business objects made popular by CrossWorld (CrossWorld (2002))
a company that was later absorbed by IBM. These business objects are often
encoded in XML syntax but are really structured data as illustrated in Figure
9-2. Here two business objects are depicted that come from two separate
business applications, say, SAP (SAP (2005)) and Oracle e-Business Suite
(Oracle (2002)) that both describe the concept 'Inventory'. The interface
descriptions are shown here in the form of a tree for purpose of illustration
here. In order to transform the output of one application into the next in a
business flow, mapping of attributes from source to target schema is again
needed. One such mapping is shown in Figure 9-2. The closely related terms
shown by the arrows include some obvious cases such as terms
(OrganizationID, OrgID) as well as non-obvious ones such as
(InventoryType, StockType).

Our final example comes from the domain of web services. Service-
oriented architecture is the latest trend in distributed computing where the
need-to-know abstraction of object-oriented programming is again deployed.
In service-oriented architecture, the capability of a code component
anywhere on a network is described through an interface language called
Web Service Definition Language (WSDL) (Chinnici, R., M. Gudgin, et al.
(2003)). A WSDL describes a service as a collection of operational
interfaces and their type specification, together with deployment

Matching and Mapping for Semantic Web Processes 229

information. Let's look at an extract of a WSDL description of an inventory
checking service of an electronics company XYZ as depicted in Figure 9-3 a.

InventoryDescription'

Organizationlnfj

OrganizationID CustomWiD

InventorylD lnventory)£ocation
InventoryType

OrgID
o o

StockType VendorlD
o

nventorylD

o

InvLocationID

Figure 9-2. Illustration of semantic schema matching in a business process modeling
scenario.

We can observe that the WSDL document follows the XML syntax. A set
of operations supported by a service are encapsulated in a description using
the PortType tag. The PortType in turn lists the operations supported by the
service. Each operation lists the inputs and outputs the service takes in the
form of messages. In this example, the actual inputs and outputs are
expanded in QueryAvailabilityServiceRequest and
QueryAvailabilityServiceResponse message tags. Inside each message
declaration are the name and type declarations of the inputs and outputs.
Here the message shows that it takes the requested item's part number,
delivery date and the requested quantity as inputs, and returns the quantity
available to be delivered on the requested date as output.

Despite the advancement in service abstraction, the WSDL specification
does not prescribe the use of consistent terminology to express the
capabilities and requirements of services. Thus two services that accomplish
the same task may use different terms to describe similar operations. In some
cases, the similarlity between the terms could be spotted through lexical
similarity of names, while in other cases, such similarity can only be
discovered through the use of domain-specific information. To illustrate this,
let's consider a service related to the one depicted in Figure 9-3a. This web
service is offered by ABC Inc. and also checks inventory. Its description is

230 Semantic Web Services, Processes and Applications

shown in Figure 9-3b. We notice first that ABC calls it
ChecklnventoryService and its inputs and outputs are different from the ones
offered by XYZ company's QueryAvailabilityService. ABC's service
requires a Universal Product Code instead of a manufacture's part number.
The term dueDate is used rather than DeliveryDate and NumberOfltems is
used rather than Quantity, Also, ABC's service just returns an
ItemAvailabilityConfirmation, which is true if the requested quantity is
available and false otherwise. On the other hand, XYZ's service indicates
when a request can be partially filled, by returning the number of available
items.

As can be seen, there are differences in the interfaces of the services.
However, if the objective is to find a service that gives information about the
availability of a given part, both services could be semantically similar. In
order to chain a sequences of services such as the one above, or to select a
similar service from a pool based on a desired interface such as the one
shown in Figure 9-3a, we need to find the semantic match between the input
or output descriptions present in these WSDL schemas.

This last example also illustrates that finding semantic relationship may
require the use of both domain-independent and domain-specific
information. A domain independent source of clues gives us a breadth of
coverage for common terms, while a domain specific ontology can give a
depth of coverage by providing clues based on industry and application
specific terms and relationships.

Matching and Mapping for Semantic Web Processes 231

--• message iv;ime= "';>jeryAydilibi.litySer'.'ic;eRec)uest":=-
-̂ p art T! d m e= "p j r tNi j m b af_ in" t y pe = "nsd; stfin g" / >

<fi^rt ri-3rrie-"de!iyaryDiiCs_iri" Lype =^"nsdi s t r ing" / >
•< Part r iame= "qu jn t i t ' ^Reqj i=;stisd_in" type= '>;.di <3:rir!g".i''>

•<^:/majoage>
<mss i sq4 riame="C.^Jery"wail abi iilvSsrvJceF-lespdnse">

-< pa rt n i i n t - " qu i ntttyAija ii j b I e_ o ut" Cyp e= "K sd; stri ri g" />
</rriessaga>

•<p0rtTvpe nam4= "QuaryAuii!;)biiitySatyica">•
•-": cper-ation r iane="query™ai iabi l i tyS6r ' . ' ic i i ' >

< input message= "f i is; queryftJailabiiitybai'UicekeqLiest"
n a ma = "q ue ry A'.'s i la b il ityS ecj ics Re q ue st",'>

< output r!"iess-sga= "tna qijaryA%ailabiliti34ivii:cRescii)rise"
r iarf ia="queryAuailabii i tySai"j iceResponst"/ ' ' -

•</opar-jtio-!>
•<,i''poitType:=-

(a)

<messaga riame= "CheLl-lriyentury3af'.' ice ' '>
•̂ p -SIT n a m e= "UPC_i n" ryp s =" [<sd; jt^• in g "/•=-

<par t riari-ie = ''dMiT!date_!ri" t ypa= ";-:sd: st-'inq"/:--
•<part riariie= "njrrberC+T;tem:E_iri" type="Hs:d; s:»ir!g'/>

' ; /ma<' i igG>
••: rn e s-saq e n am a =" Ch e c!<iri va ntory Se rvi ra Re sp on se ">

-:• p art n a rr: e= "i ta rrT A1.1 a il ab i lit?,; O: nt'irn"! atio n_o LTC" f ^ p e= "H ad: Jtrin g"/' >•
--:/rnaisags>
<p0rtTy pa n a rn e= ''Check Jr '.• ento ?ySeri;ice">

< opsfation narr;£= 'crifidilNvtirit'i.hySarvii:*;" >•
•=: input mes>aqe= "tns; <:heckin'.'antijrySarviceRecuest"

n a rna = "ch eck IP •.' anti) ryGe I'A ceR eqij a st"/ >
•=; OLj'put rna?saqa= ' t n s crieckln'.-irntcirySaf'.'icaRasponje"

n a rna = "ch eck Ih v ento ry Sa ryi ceR asp 0 nse "/>
•-:/ri|-ief.=(tiiVin:=-

</portTypa>

(b)

Figure 9-3. Illustration of the schema matching in a web service scenario.

232 Semantic Web Services, Processes and Applications

Semantic Matchir:
Engine

Figure 9-4. Generalized schema matching by normalizing schemas of different origin.

SEMANTIC MATCHING AND MAPPING

As we saw from the above scenarios, matching and mapping of schemas
is a problem that is applicable in different contexts and would need to be
independent of the nature of schemas used in the semantic web process.
Further, we saw that there is a need for bridging the semantic gap between
the descriptions in order to make true information integration feasible. The
field of semantic matching and mapping has now emerged as a new and
exciting field to address these problems of semantic mismatch of
descriptions using automated relationship discovery techniques.

We can now define the semantic schema matching problem as follows.
Given a source and a target schema defined it terms of its attributes and
relationships, find a way to semantically match the schema attributes in a
way that is independent of the schema origin. Since different schema origins
have different nuances, the schema matching techniques would have to be
agnostic to the details of the schema format, but at the same time, capture the
underlying name, type and structure relationships described therein. One
way to achieve this is to develop a generic schema representation that
captures the essential information across different schema formats, and then
use this general schema representation as the basis for matching. This
approach is illustrated in Figure 9-4. Here schemas arising from different

Matching and Mapping for Semantic Web Processes 233

application domains are reduced to a normalized format called the
generalized schema. The semantic schema matching is then performed
between a pair of source and target generalized schemas.

2.1 Generalized Schema

Schemas of different origin such as code APIs, Web services, XSD
(XMLSchema (2004) can be reduced to a normalized format called the
Generalized Schema using the following simple grammar.

Gs->NaCtTyRsUdOjGs* (1)

Where Na stands for the name of the schema, Ct stands for its category
(eg. Its origin as WSDL, XSD, etc.), Ty stands for its type (eg. A
complexType or simpleType), Rs stands for any restrictions on its values
(eg. Range of values supported), Ud stands for a simple user-friendly name
for the schema (as exposed through user interfaces), and Oj stands for the
original schema object from which the normalized schema is derived. The
Generalized schema can be recursively expanded to describe the structure in
its full detail. The type expansions of each of the symbols in the above
grammar are given below:

Na->a String
Ct-> a String
Ty->primitive type|language-defined type
Rs->language-defined restrictions
Ud->User-friendly name
Oj->Language-defined object instance
Primitive type -> int|char|String|double|Boolean|Byte|Char|Short|Integer|Long|Float|Double

The above normalized format for schemas has been used earlier for
representing code objects (D. Caragea et al. (2004)) and for web services
(Syeda-Mahmood et al. (2005)). It can be shown that many abstract data
types supported in schemas can be modeled by the above generalized
schema. In fact, automatic conversion programs can be written to transform
incoming schemas from any of the formats described in Figure 9-4 into
Generalized Schema.

3. A FRAMEWORK FOR SCHEMA MATCHING

Let us now consider the problem of semantic schema matching using the
generalized schema representation. As defined in Section 2, this is the

234 Semantic Web Services, Processes and Applications

problem of matching the attributes of the source and target schemas. Ideally,
we would like the matching to be 'best' in some objective sense. In other
words, we seek a 'best' correspondence of source and target schema
attributes. A general way to model such correspondence is to treat the source
and target schema attributes as two sets of nodes of a bipartite graph as
shown in Figure 9-5. An edge can then be drawn between a source and target
node, if the corresponding attributes are semantically similar. Finding the
best set of matching attributes then reduces to the problem of finding the
maximum matching in the bipartite graph, i.e. with the largest pair of nodes
matching. A matching in a bipartite graph is formally defined as a subset of
edges of the bipartite graph such that there is a unique assignment for the
selected source and target attributes.

Thus the problem of determining an optimal correspondence between the
source and target schemas can be expressed as the problem of finding a
maximum matching in the bipartite graph. Figure 9-5 illustrates such a
maximum matching. On the left is the original bipartite graph formed from
the attributes in the pair of source and target schemas. Here we see that
multiple edges emanate from source and target attributes indicating there is
more than one possible match for an attribute. In the maximum matching,
selected attributes are paired with unique matches. The size of the matching
is 5 indicating that at most 5 attributes find a match in this arrangement.

In practice, the semantic similarity between attributes is actually reflected
through a similarity score which can be treated as a weighted edge. The
optimal matching desired in that case is then a matching of maximum
cardinality and maximum weight as well. Well-known algorithms are
available in literature to obtain such a matching using variants of the
maximum flow algorithm (A. Goldberg and Kennedy (1993), I.E. Hopcroft,
R.M. Karp (1973)). In these algorithms, the matching is computed by setting
up a flow network, with weights such that the maximum flow corresponds to
a maximum matching.

Matching and Mapping for Semantic Web Processes 235

Source
metadata
attributes

Target
metadata
attributes

. —. i

Source
metadata
attributes

& 1

Target
metadata
attr ibute;

Ivlaximum matching = 5

Figure 9-5. Bipartite graph matching framework for schema matching.

Algorithms for finding the maximum matching involve compute-
intensive operations as they solve the network flow optimization problem.
Often, a good lower bound on the size of the matching can be quickly
obtained using a greedy matching algorithm in which the edges are sorted in
cost and picked in descending order starting with the highest scoring edge
and deleting all edges emanating from the selected pair of attributes.

Notice we have not yet described how the similarity between attributes
can be determined. But assuming that such a similarity score can be
developed, we now have a general way of picking the best possible subset of
edges, and hence a best matching of the attributes of the respective schemas
using the above framework for bipartite graph matching.

4. FINDING SEMANTIC SIMILARITIES BETWEEN
ATTRIBUTES

Several cues can be exploited to define the cost of edges in the above
framework. In particular, we can exploit the similarity in name, type, or
structure to define a semantic similarity score. In this section, we describe
some of the popular approaches to capturing semantic similarity between
attributes.

236 Semantic Web Services, Processes and Applications

4.1 Lexical Comparison of Terms

The simplest one is to do a lexical comparison of their names using a
variant of string matching algorithms. A popular approach is to take the
longest common subsequence of the two names of attributes being
considered (Gormen et al, (1994)). For example, the longest common
subsequence between pair 'customer' and 'custmr' is 'custmr' of length 6. A
popular formula for finding the similarity between terms on a lexical basis
is:

Lex(A,B)= |LCS(A,B)|/|A|+|B| (2)

Where LCS(A,B) is the longest common subsequence between strings A
and B and the | | stands for the length of the strings. The LCS measure is
good for capturing obvious similarities in name of the type above, and also
when terms differ by numeric values, or are abbreviations. Examples
include, (Addressl, Address2), (Num, Number), etc. However, a score value
has to be sufficiently high to be a meaningful similarity to avoid false
positives. It is very easy for a sequence of symbols to be common without
any basis of semantic similarity. Examples include (Address, Adroit),
(summary, summon), etc.

4.2 Semantic Similarity of Terms

Next, we address cases where the terms are not syntactically similar but
semantically related. A thesaurus is usually employed for this purpose.
Among the popular ones are WordNet, a free thesaurus (G.A. Miller (1995)),
and SureWord (SureWord (2005)), a commercial thesaurus software for
English language.

To determine the semantic similarity of terms we have to first tokenize
the multi-word term. Part-of-speech tagging and stop-word filtering has to
be performed. Abbreviation expansion may have to be done for the retained
words. A thesaurus can then be used to find the similarity of the tokens
based on synonyms. The resulting synonyms are assembled back to
determine matches to candidate multi-term word attributes, after taking into
account the tags associated with the attributes. The details of these
operations are described below.

Matching and Mapping for Semantic Web Processes Til

4.2.1 Work Tokenization

To tokenize words, common naming conventions used by programmer
analysts, DBAs and business analysts may have to be exploited. In
particular, word boundaries in a multi-term word attribute can be found
using changes in font, presence of delimiters, such as underscore, spaces,
and numeric to alphanumeric transitions. Thus words such as
CustomerPurchase can be separated into Customer and Purchase. Address_l,
Address_2 would be separated into Address, 1 and Address, 2 respectively.

4.2.2 Part-of-speech tagging and filtering

Simple grammar rules can be used to detect noun phrases and adjectives.
Stop-word filtering when performed using a pre-supplied list can help
further pruning. Common stop words in the English language similar to
those used in search engines include words such as and, or, the, etc.

4.2.3 Abbreviation expansion

The abbreviation expansion operation can exploit domain-independent as
well as domain-specific vocabularies. It is possible to have multiple
expansions for a candidate words. All such words and their synonyms can be
retained for later processing. Thus, a word such as CustPurch can be
expanded into CustomerPurchase, CustomaryPurchase, etc.

4.2.4 Synonym search

A language thesaurus such as Sure Word or WordNet can be used to find
matching synonyms to words. Using SureWord, it is possible to assign to
each synonym, a similarity score based on the sense index, and the order of
the synonym in the matches returned.

4.2.5 Semantic similarity scores

Given a pair of candidate matching multi-term attributes (A, B) from the
source and destination schemas, we can generate a similarity score between
the attributes by combining the match scores returned by a thesaurus for
their word tokens as follows.

Let A and B have m and n valid tokens respectively, and let S^ and
SyhQ their expanded synonym lists based on semantic processing. We
consider each token i in source attribute A to match a token j in destination

238 Semantic Web Services, Processes and Applications

attribute B where i z Sx and j e Sy. The semantic similarity between attributes
A and B is then given by

Sem(A, B) = 2*Match(A,B)/(ra + n) (3)

where Match(A, B) are the matching tokens based on the definition
above.

Using the similarity scoring such as above, we can determine
semantically similar attributes such as (state, province) for the single token
case, to (Customerldentification, ClientlD), (CustomerClass,
ClientCategory), for the multi-term attributes.

4.3 Ontological Similarity of Terms

In addition to domain-independent thesaurus, schema matching can be
aided by domain-specific terminology. In fact, each organization usually has
a glossary of terms compiled that are specific to their domains, such as a
banking glossary, electronics parts glossary, etc. With the newly developed
standards, it is now possible to represent complete ontologies in formats
such as OWL (OWL, (2004)).

Uhique M

Figure 9-6. Illustration of a simple domain ontology.

To discover similarities between attributes by consulting ontologies, they
would first have to be loaded into an ontology management system. An
example of such a system is SNOBASE (Lee et al. (2003)), that can reason
with concepts and supply similar concepts by derivation from the defined
concepts in the ontology. A simple domain-specific ontology that models the

Matching and Mapping for Semantic Web Processes 239

relationships between electronic parts is indicated in Figure 9-6. As can be
seen, four different types of relationships between two concepts A and B are
modeled, namely, subClassOf, superClassOf, instanceOf, and
equivalenceClass. Larger ontologies may model many more relationships.

4.3.1 Finding related terms in an ontology

Given a domain-specific ontology and a term from the source schema,
how can we find a matching term in the destination schema? Using rule-
based inference in the ontology, we can recover all potential similar terms
that are in one of the specified relationships, such as subclass, superclass,
etc. The matches returned are a set of related concepts along with distance
scores representing distance between them. A simple scoring scheme to
compute distance between related concepts in the ontology could be as
shown in Table 9-1. The discretization of the score into three values (0, 0.5,
1.0) gives a coarse idea of semantic separation between ontological
concepts. For example, in the electronics domain ontology shown in Figure
9-6, concepts DueDate and DeliveryDate have a distance of 0 while
EANCode and UPC have a distance of 0.5. More refined scoring schemes
are possible, but a simple choice such as the one in Table 9-1 works well in
practice, without causing a deep semantic bias. Thus given a source attribute
DueDate, we can retrieve ontologically matching concepts as the terms
DeliveryDate, while a source term "UPC" will return as related concepts
(EAC code. Part Number, EAN8, EAN13,UPCversion A, and UPC version
E using inference in the ontology of Figure 9-6. In practice, we can choose a
suitable threshold T so that all related concepts with distance scores above T
can be ignored.

Once the related concepts are found, we can search for these terms in the
destination schema and record them as matching attributes to the given
attributes from the source schema. Instead of finding ontologically similar
terms directly from the attributes of the source schema, it often makes sense
to invoke such similarity on annotations associated with the source and
destination schemas. Such annotations are usually manually attached by
domain experts and are likely to be well-defined terms rather than the cryptic
abbreviated multi-term phrases that technical personnel used to name
attributes of database and other schemas. As for the inference itself, several
rule-based engines are available for reasoning with ontologies including the
ABLE (Bigus et al. (2001)) system that uses Boolean and fuzzy logic,
forward chaining, backward chaining etc. Rule sets created using the ABLE
Rule Language can be used by any of the provided inference engines, which
range from simple if-then scripting to light-weight inference to heavy-weight
AI algorithms using pattern matching and unification.

240 Semantic Web Services, Processes and Applications

Table 9-1. Illustration of a Ont(A,B) for different relationships in the ontology.

Concept
Pair

(A,B)
(A,B)
(B,A)
(A,B)
(A,B)

Relationship

EquivalentClass
RDFType
SubClassOf
SubClassOf
Other

Distance
Score

Ont(A,B)
0
0
0.5
0.5
1

4.4 Type and Structural Similarity of Attributes

So far, we have considered each attribute on an individual basis.
However, there are inter-relationships between attributes that need to be
respected such as their associated types and positions in schema structure.
We now discuss how type and structural information can be taken into
account during similarity computations.

4.4.1 Type similarity

For schemas that correspond to code APIs the type of attributes is a
strong cue in matching. Specifically, unless the type can be properly cast, the
destination component cannot be launched even if the schema matching says
otherwise. One way to capture the type similarity is to take the help of the
reference type hierarchy defined for the language specification such as XSD,
Java, etc. If the conversion is possible but will cause a loss of data {eg. float
to int conversion), then we attach a lower weight. Lossless type conversion
(eg. int to float) and other equivalent subclass type inheritance and
polymorphism can be given higher weights. If the similarity cannot be
inferred using the reference type hierarchy, explicit user-defined data type
conversion functions may exist. For example, a 2D to ID data type
conversion, such as an array to vector conversion is not allowed in the
reference type hierarchy but can be achieved through an explicitly written
conversion function.

A simple reference type similarity measure can be given by

TvDefA B") = [' •'̂ ̂ °^ lossless type conversion or if type conversion function exists ^A-^
< 0.5 for lossy type conversion
0.0 otherwise

Matching and Mapping for Semantic Web Processes 241

4.4.2 Structural similarity

The structural similarity of schemas can be captured in many ways. A
simple way is to consider each level in the schema as representing a
grouping of related concepts. For example, all related aspects of a data
structure are grouped under an abstract data type by programmers. These in
turn may be composed of substructures which are suitable abstract data types
formed from lower level type structures. The leaf level attributes in such
cases are usually attributes with type primitives such as int, float, etc. Thus
structural similarity in the attributes can be measured by the difference in the
tree depth at which the attribute occurs. If we record the depth of the
attribute from the root node of the schema, the structural similarity between
two attributes A and B from source and destination schemas respectively can
be given by

i\D(A)-D(B)\)
Struct(A,B) = 1 ^̂ ^=—^ ' (5)

max{D(G,),D{G,)}

where D(A) and D(B) are the depths of the attributes in their respective
schema trees GA and GB .

4.5 Combining Similarity of Attributes

As we saw in the above sections, there are many cues that can be used to
compute the similarity of attributes. To use these measures in the graph
matching framework of Section 3, we need to combine them into an overall
similarity measure. Here again, several choices are possible, including linear
combination, probabilistic fusion (Kahler et al., (2004)), etc. Here we
describe a simple weighted linear combination, where the relative
contributions of each cue can be tuned based on the origin of the schemas.
For example, the type cue may be more important for API schemas, while
the name may be more important for business objects. The overall similarity
of a pair of attributes A, B from source and destination schemas respectively
can then be given by.

Sim{A, B) = a, Lex{A, B) + a^Sem{A, B) + afint(A, B) + a^TypeiA, B) + a^StmctiA, B) ,^-.

The above similarity score can be used as the edge score in the graph
matching framework and a maximum matching can be derived used network
flow optimization methods as described in Section 3.

242 Semantic Web Services, Processes and Applications

5. SUMMARY

In this chapter the matching and mapping problem for web processes has
been introduced. We have seen that the matching of schemas is a general
problem for schemas derived from a variety of application domains. A graph
matching framework has been described for addressing the mapping and
matching of semantic web process. Multiple cues for determining the
similarity of attributes has been defined based on name semantics, type and
structural information. The emergence of a general paradigm for
accommodating the matching and mapping problem from several different
domains ranging from business process modeling to schema integration, is a
significant advancement in the development of semantic web processes.

6. RELATED WORK

The schema matching problem has been addressed by a number of
researchers from both database and web service communities. Recently,
clustering and classification techniques from machine learning are being
applied to the problem of web service matching and classification at either
the whole web service level (Hess et al. (2003)) or at the operation level
(Dong, (2004)). In (Hess et al. (2003)) for example, all terms from
portTypes, operations and messages in a WSDL document are treated as a
bag of words and multi-dimensional vectors created from these bag of words
are used for web service classification. The paper by Dong et al. addresses
this aspect by focusing on matching of operations in web services.
Specifically, it clusters parameters present in input and outputs of operations
(i.e. messages) based on their co-occurrence into parameter concept clusters.
This information is exploited at the parameter, the inputs and output, and
operation levels to determine similarity of operations in web services. The
notion of elemental and structural level schema matching has been present in
the METEOR-S project (Patil et al. (2004)), where the engine can perform
both element and structure level schema matching for Web services. The
element level matching is based on a combination of Porter-Stemmer (Porter
, (1980)) for root word selection, WordNet dictionary for synonyms (Miller
(1995)), abbreviation dictionary to handle acronyms and NGram algorithm
for linguistic similarity of the names of the two concepts. The schema
matching examines the structural similarity between two concepts. Both
element match score and schema match score are then used to determine the
final match score.

The problem of automatically finding semantic relationships between
schemas has also been addressed by a number of database researchers lately

Matching and Mapping for Semantic Web Processes 243

(Madhavan et al., (2003)), (Rahm and Bernstein, (2001)), (Madhavan et al.
(2001)). Thus algorithms are available for XML schema matching such as
Clio (Miller et al. 2001), Cupid (Madhavan et al. (2001)), and similarity
flooding (Melnik et al. (2002)). In the case of database schema matching
both schema content (i.e. data) and names of attributes are exploited for
schema matching.

The use of ontology match making engines for semantic matching has
also been explored by a number of researchers. One of the earliest ontology-
based semantic matchmaking engines is Sycara et al MatchMaker (Sycara,
(1999)) that is available on the Web as a service. In addition to utilizing a
capability-based semantic match, the engine also uses various other IR-
based filters. Another related effort is Racer (Li and Horrocks, (2003)), that
focuses solely on a service capability-based semantic match for application
in e-commerce systems. In a recent work, both ontological and semantic
similarity cues were combined to address the larger problem of semantic
search which embeds semantic schema matching (Syeda-Mahmood et al,
(2005)).

7. QUESTIONS FOR DISCUSSION

Beginner:
1. Name some real-world problems that have been solved by maximum

matching in bipartite graphs.
2. What is the difference between schema matching and schema mapping?

Intermediate:
1. If both domain-specific and domain-independent ontologies had to be

used, how would you prioritize the matches to attributes?
2. Suggest other combination schemes for cues besides the linear

combination described in text.
3. Think of other cues that can be used for capturing similarity of attributes.

Describe how they can be measured.

Advanced:
1. Can the service composition problem by addressed by the bipartite graph

matching framework? If not, suggest modifications to the framework to
model composition.

2. In practice, a combination of source attributes may map to a single target
attribute (eg. A database join) and vice versa. Can such mappings be
handled in the graph matching framework? If not, show how the
framework can be adapted to handle such combination mappings.

244 Semantic Web Services, Processes and Applications

Practical Exercises;
1. Go to xmlmethods.com. Hand-simulate the schema matching on a pair of

web services and postulate what the mappings would be.
2. Now write a program to generate the candidate mappings for an arbitrary

pair of web services selected from xmlmethods.com.

SUGGESTED ADDITIONAL READING

R. Fagin and P. Kolaitis and L. Popa and W. Tan (2004), "Composing
schema mappings: Second-order dependencies to the rescue", in Proc. of
PODS, 2004.
P, Bernstein et al. (2004): "Industrial-strength schema matching," in
SIGMOD Record, Vol. 33, No. 4, pp.38-43, December 2004.

9. REFERENCES

CrossWorlds (2002), http://www306.ibm.com/software/info 1/websphere/cwOl 1402.isp.
SAP (2005), http://www.sap.com.
Oracle (2005), http://www.oracle.com.
Chinnici, R., M. Gudgin, et al. (2003). Web Services Description Language (WSDL) Version

1.2, W3C Working Draft 24, http ://www. w3.org/TR/2003/WD-wsdl 12-20030124/.
XMLSchema (2004). XML Schema Part 2: Datatypes Second Edition, W3C

Recommendation 28 October 2004.
D. Caragea and T. Syeda-Mahmood (2004), "Semantic API matching for web service

composition" in Proc. ACM WWW 2004 conference. New York, NY.,pp., 436-439, June
'04.

T. Syeda-Mahmood et al. (2005): Semantic search of schema repositories. IEEE Int.
Conference on World-Wide Web (WWW), 1126-112.

A. Goldberg and Kennedy (1993) : An efficient cost-scaling algorithm for the assignment
problem. SIAM Journal on Discrete Mathematics, 6(3):443-459, 1993.

J.E. Hopcroft, R.M. Karp (1973): An n 5=2 algorithm for maximum matching in bipartite
graphs, SIAM Journal on Computing 2, 225-231, 1973.

T.H. Cormen, C.E. Lieserson, and R.L. Rivest (1990): Introduction to Algorithms. New York:
McGraw Hill, Cambridge: MIT Press, 1990.

G.A. Miller (1995): Wordnet: A lexical database for English. Communications of the ACM,
38(11):39-41, 1995.

SureWord (2005): http://www.patternsoft.com/sureword.htm.
OWL (2004). OWL Web Ontology Language Reference, W3C Recommendation, World

Wide Web Consortium, http://www.w3.org/TR/owl-ref/. 2004.
Lee J., Goodwin R. T., Akkiraju R., Doshi P., Ye Y.(2003): SNoBASE: A Semantic

Network-based Ontology Ontology Management.
http://alphaWorks.ibm.com/tech/snobase.

Matching and Mapping for Semantic Web Processes 245

Bigus J., and Schlosnagle D. 2001. Agent Building and Learning Environment Project:
ABLE, http://www.research.ibm.com/able/

Olaf Kahler, Joachim Denzler, and Jochen Triesch (2004) : Hierarchical Sensor Data Fusion
by Probabilistic Cue Integration for Object Tracking, Image Analysis and Interpretation,
2004. 6th IEEE Southwest Symposium on Object Traclcing, pages 216-220.

UDDI Technical Committee. "Universal Description, Discovery and Integration (UDDI)".
http://www.oasis-open.org/committees/uddi-spec/

X. Dong et al (2004): "Similarity search for web services," in Proc, VLDB, pp.372-283,
Toronto, CA, 2004.

A.Hess and N. Kushmerick (2003): "Learning to attach metadata to web services," in Proc.
Intl. Semantic web conference, 2003.

E. Rahm and P. Bernstein (2001): A survey of approaches to automatic schema matching, in
VLDB Journal 10:334-350, 2001.

J. Madhavan et al (2001), "Generic schema matching with cupid," in Proc. VLDB 2001.
S. Melnik et al, "Similarity flooding: A versatile graph matching algorithm and its application

to schema matching," in Proc, ICDE, 2002.
A.Patil et al. (2004): "Meteor-s web service annotation framework", in Proc. WWW

conference, pp. 553-562, 2004.
Porter, M. F. (1980): "An Algorithm for Suffix Stripping." Program 14, 1980, 130-137.
S. Melnik et al. (2002): Similarity flooding; A versatile graph matching algorithm and its

application to schema matching. In Proc. ICDE, 2002.

Renee J. Miller et al. (2001): The Clio project: managing heterogeneity. SIGMOD Record
(ACM Special Interest Group on Management of Data), 30(l):78-83, 2001.

K. Sycara et al. (1999): "Dynamic service match making among agents in open information
environments," in Jl. ACM SIGMOD Record, 1999.

L. Li and I. Horrocks, (2003): " A software framework for matchmaking based on semantic
web terminology," in Proc. WWW Conference, 2003.

T. Syeda-Mahmood et al. (2005): "Searching schema repositories by combining semantic and
ontological matching," in Proc. IEEE Intl. Conf. on Web Services, (ICWS), pp. 13-20,
2005.

J. Madhavan et al. (2003). Corpus-based Schema Matching. In Workshop on Information
Integration on the Web at IJCAI, 2003.

PART III: REAL-WORLD APPLICATIONS

Chapter 10

DEVELOPING AN OWL ONTOLOGY FOR E-
TOURISM

Jorge Cardoso
Department of Mathematics and Engineering, University of Madeira, 9000-390, Funchal,
Portugal -jcardoso@uma.pt

1. INTRODUCTION

Currently, the World Wide Web is mainly composed of documents
written in Hyper Text Markup Language (HTML). HTML is a language that
is useful for visual presentation and for direct human processing (reading,
searching, browsing, querying, filling in forms, etc). HTML documents are
often handwritten or machine generated and often active HTML pages. Most
of the information on the Web is designed only for human consumption.
Humans can read HTML documents and understand them, but their inherent
meaning is not shown to allow their interpretation by computers.

To surpass this limitation, the W3C (World Wide Web Consortium,
www.w3.org) has been working on approaches to define the information on
the Web in a way that it can be used by computers not only for display
purposes, but also for automation, interoperability, and integration between
systems and applications. One way to enable machine-to-machine
understanding, exchange, and automated processing is to make Web
resources more readily accessible by adding meta-data annotations that
describe their content in such a way that computers can understand it. This is
precisely the objective of the semantic Web - to make the information on the
Web understandable and useful to computer applications in addition to
humans. "The semantic Web is not a separate Web but an extension of the
current one, in which information is given well-defined meaning, better
enabling computers and people to work in cooperation." (Berners-Lee,
Hendler et al. 2001).

250 Semantic Web Services, Processes and Applications

The W3C has proposed a language designed for publishing and sharing
data, and automating data understanding by computers using ontologies on
the Web. The language, called OWL (Web Ontology Language), will
transform the current Web to the concept of Semantic Web. OWL is being
planned and designed to provide a language that can be used for applications
that need to understand the meaning of information instead of just parsing
data for display purposes.

2. OWL AND THE SEMANTIC WEB STACK

The semantic Web identifies a set of technologies, tools, and standards
which form the basic building blocks of an infrastructure to support the
vision of the Web associated with meaning. The semantic Web architecture
is composed of a series of standards organized into a structure that is an
expression of their interrelationships. This architecture is often represented
using a diagram first proposed by Tim Bemers-Lee (Bemers-Lee, Hendler et
al. 2001). Figure 10-1 illustrates the different parts of the semantic Web
architecture. It starts with the foundation of URIs and Unicode. On top of
that we can find the syntactic interoperability layer in the form of XML,
which in turn underlies RDF and RDF Schema (RDFS). Web ontology
languages are built on top of RDF and RDFS. The last three layers are logic,
proof, and trust, which have not been significandy explored. Some of the
layers rely on the digital signature component to ensure security.

O W L I 6 !/r-:i:'-:!:-i:jy vocai-iijiiMY i; 5 .9 .

Figure 10-1. Semantic Web layered architecture (Bemers-Lee, Hendler et al. 2001)

In the following sections we briefly describe these layers. While the
notions presented have been simplified, they give a reasonable
conceptualization of the various components of the semantic Web.

Developing an OWL Ontology for e-Tourism 251

2.1 URI and Unicode

A Universal Resource Identifier (URI) is a formatted string that serves as
a way for identifying abstract or physical resource. Uniform Resource
Locator (URL) refers to the subset of URI that identify resources via a
representation of their primary access mechanism. A Uniform Resource
Name (URN) refers to the subset of URI that are required to remain globally
unique and persistent even when the resource ceases to exist or becomes
unavailable. For example,

• The URL http://dme.uma.pt/jcardoso/index.htm identifies the
location where a Web page can be retrieved from

• The URN um:isbn:3-540-24328-3 identifies a book using its ISBN
Unicode provides a unique number for every character, independently of

the underlying platform, program, or language. Before the creation of
Unicode, there were various different encoding systems that made the
manipulation of data too complex. Any given computer needed to support
many different encodings. There was always the risk of encoding conflict,
since two encodings could use the same number for two different characters,
or use different numbers for the same character.

2.2 XML

XML is accepted as a standard for data interchange on the Web allowing
the structuring of data but without communicating its meaning. It is a
language for semi-structured data and has been proposed as a solution to
solve integration problems, because it allows a flexible coding and display of
data.

While XML has gained much of the world's attention it is important to
recognize that XML is simply a way to standardize data formats. But, from
the point of view of semantic interoperability, XML has limitations. One
significant aspect is that there is no way to recognize the semantics from a
particular domain because XML aims at document structure and imposes no
common interpretation of the data (Decker, Melnik et al. 2000). Another
problem is that XML has a weak data model incapable of capturing
relationships or constraints. While it is possible to extend XML to
incorporate rich metadata, XML does not allow supporting automated
interoperability of systems without human involvement. Even though XML
is simply a data-format standard, it is part of the set of technologies that
constitute the foundations of the semantic Web.

252

2.3

Semantic Web Services, Processes and Applications

RDF

On the top of XML, the W3C has developed the Resource Description
Framework (RDF) (RDF 2002) language to standardize the definition and
use of metadata. Therefore, XML and RDF each have their merits as a
foundation for the semantic Web, but RDF provides more suitable
mechanisms for developing ontology representation languages like OIL
(Horrocks, Harmelen et al. 2001) or OWL (OWL 2004).

RDF uses XML and it is at the base of the semantic Web, so that all the
other languages corresponding to the upper layers are built on top of it. RDF
is a formal data model for machine understandable metadata used to provide
standard descriptions of Web resources. By providing a standard way of
referring to metadata elements, specific metadata element names, and actual
metadata content, RDF builds standards for applications so that they can
interoperate and intercommunicate more easily, facilitating data and system
integration and interoperability. In a first approach it may seen that RDF is
very similar to XML, but a closer analysis reveals that they are conceptually
different. If we model the information present in a RDF model using XML,
human readers would probably be able to infer the underlying semantic
structure, but applications would not.

<subjec1, predicate, object>

subject: a ti ng identified by its URL object; the value of this type of metadata

predicate: the type of metadata, also identified by a URL

x •" " x

- " " • ^ ^ . ^ _ • ' ' '

Creator +
Jorge Cardoso

Resource Property type Property value

Figure 10-2. An RDF statement

RDF is a simple general purpose metadata language for representing
information in the Web and provides a model for describing and creating
relationships between resources. A resource can be a thing, such as a person,
a song, or a Web page. With RDF it is possible to add pre-defined modeling
primitives for expressing semantics of data to a document without making
any assumptions about the structure of the document. RDF defines a
resource as any object that is uniquely identifiable by a URI (Universal

Developing an OWL Ontology for e-Tourism 253

Resource Identifier). Resources have properties associated to them.
Properties are identified by property-types, and property-types have
corresponding values. Property-types express the relationships of values
associated with resources. The basic structure of RDF is very simple and
basically uses RDF triples of the form <subject, predicate, object> as
illustrated in Figure 10-2.

2.4 RDF Schema

The RDF Schema (RDFS 2004) provides a type system for RDF. The
RDFS is technologically advanced compared to RDF since it provides a way
to build an object model from which the actual data is referenced and which
tells what things really mean.

Briefly, the RDF Schema (RDFS) allows users to define resources with
classes, properties, and values. The concept of RDF class is similar to the
concept of class in object-oriented programming languages such as Java and
C+-t-. A class is a structure of similar things and inheritance is allowed. This
allows resources to be defined as instances of classes and subclasses of
classes allowing classes to be organized in a hierarchical fashion. For
example, the class First_Line_Manager might be defined as a subclass of
Manager which is a subclass of Staff, meaning that any resource which is in
class Staff is also implicitly in class First_Line_Manager as well.

An RDFS property can be viewed as an attribute of a class. RDFS
properties may inherit from other properties, and domain and range
constraints can be applied to focus their use. For example, a domain
constraint is used to limit what class or classes a specific property may have
and a range constraint is used to limit its possible values. With these
extensions, RDFS comes closer to existing ontology languages. As with
RDF, the XML namespace mechanism serves to identify RDFS.

2.5 Ontologies

An ontology is an agreed vocabulary that provides a set of well-founded
constructs to build meaningful higher level knowledge for specifying the
semantics of terminology systems in a well defined and unambiguous
manner. For a particular domain, an ontology represents a richer language
for providing complex constraints on the types of resources and their
properties. Compared to a taxonomy, ontologies enhances the semantics by
providing richer relationships between the terms of a vocabulary. Ontologies
are usually expressed in a logic-based language, so that detailed and
meaningful distinctions can be made among the classes, properties, and
relations.

254 Semantic Web Services, Processes and Applications

Ontologies can be used to increase communication both between humans
and computers. The three major uses of ontologies (Jasper and Uschold
1999) are:
• To assist in communication between humans.
• To achieve interoperability and communication among software systems.
• To improve the design and the quality of software systems.

Currently, the most prominent ontology language is OWL (OWL 2004),
the language we will cover in this chapter. OWL is a vocabulary extension
of RDF and is derived from the DAML+OIL language (DAML 2001), with
the objective of facilitating a better machine interpretability of Web content
than the one supported by XML and RDF. This evolution of semantic Web
languages is illustrated in Figure 10-3.

OWL
(Web Ontology Language)

DAML+OIL

DAML
(Darpa Agent Markup Language)

OIL
(Ontology Inference Layer)

RDF
(Resource Descnption Framework)

Figure 10-3. Evolution of Semantic Web Languages

DAML+OIL resulted from the integration of the DAML and OIL
languages. DAML (DARPA Agent Markup Language) was created as part
of a research program (www.daml.org) started in August 2000 by DARPA, a
US governmental research organization. OIL (Ontology Inference Layer) is
an initiative funded by the European Union programme for Information
Society Technologies. OIL was intended to support e-commerce and enable
knowledge management. OIL and DAML were merged originating
DAML+OIL, which later evolved into OWL.

3. LIMITATIONS OFRDFS

RDF Schema is a semantic extension of RDF and it is used for describing
vocabularies in RDF. It provides mechanisms for describing groups of
related resources and the relationships between resources. These resources

Developing an OWL Ontology for e-Tourism 255

are used to determine characteristics of other resources, such as the domains
and ranges of properties.

However, RDFS is a very primitive language and a more expressive
solution is advantageous to describe resources in more detail. In order to
fully understand the potentialities of OWL, it is important to identify the
limitations that RDFS suffers from. It is the recognition of the limitations of
RDFS that led to the development of OWL.

Let's analyze some of the limitations of RDFS to identify the extensions
that are needed:

1. RDFS cannot express equivalence between concepts. This is important to
be able to express the equivalence of ontological concepts developed by
separate working groups.

2. RDFS does not have the capability of expressing the uniqueness and the
cardinality of properties. In some cases, it may be necessary to express
that a particular property value may have only one value in a particular
class instance. For example, a sedan car has exactly four wheels and a
book is written by at least one author.

3. RDFS can express the values of a particular property but cannot express
that this is a closed set by enumeration. . For example, the gender of a
person should have only two values: male and female.

4. RDFS cannot express disjointedness. For example, the gender of a person
can be male and female. While it is possible in RDFS to express that
John is a male and Julie a female, there is no way of saying that John is
not a female and Julie is not a male.

5. RDFS cannot build new classes by combining other classes using union,
intersection, and complement. For example, the class "staff might be the
union of the classes "CEO", "manager" and "clerk". The class "staff
may also be described as the intersection of the classes "person" and
"organization employee". Another example is the ability to express that a
person is the disjoint union of the classes male and female.

6. RDFS cannot declare range restrictions that apply to some classes only.
The element rdfs:range defines the range of a property for all classes. For
example, for the property "eats", it is not possible to express that cows
eat only plants, while other animals may eat meat, too.

7. RDFS cannot express special characteristics of properties such as
transitive property (e.g. "more complex than"), unique property (e.g. "is
mother o f) , and that a property is the inverse of another property (e.g.
"writes" and "is written by")

256 Semantic Web Services, Processes and Applications

4. THREE TYPES OF OWL

Ontology is a term borrowed from philosophy that refers to the science of
describing the kinds of entities in the world and how they are related. In
OWL, an ontology is a set of definitions of classes and properties, and
constraints on the way those classes and properties can be employed.

In the previous sections, we have established that RDFS was one of the
base models for the semantic Web, but that it suffered from several
limitations. At the top of the RDFS layer it is possible to define more
powerful languages to describe semantics. The most prominent markup
language for publishing and sharing data using ontologies on the Internet is
the Web Ontology Language (OWL). OWL adds a layer of expressive power
to RDFS, providing powerful mechanisms for defining complex conceptual
structures, and formally describes the semantics of classes and properties
using a logical formalism.

OWL has been designed to meet the need for a Web ontology language.
As already mentioned, XML gives a syntax for semi-structured documents
but does not associate an XML tag with semantics. Therefore, XML tags do
not carry out any meaning, at least for computers. XML Schema gives a
schema to XML documents and extends XML with a broad set of data types.
RDF is a simple data model represented using the XML syntax for resources
and the relations between them. The RDF Schema provides a type system
for RDF which allows users to define resources with classes, properties, and
values. It provides a vocabulary for describing properties and classes of RDF
resources. The RDFS is technologically advanced compared to RDF since it
provides a way to build an object model from which the actual data is
referenced and which tells what things really mean. OWL goes a step further
and allows for describing properties and classes, such as property type
restrictions, equality, property characteristics, class intersection, and
restricted cardinality.

OWL is the proposed standard for Web ontologies. It builds upon RDF
and RDF Schema. XML-based RDF syntax is used, instances are defined
using RDF descriptions, and most RDFS modeling primitives are also used.
The W3C's Web Ontology Working Group defined OWL as three different
sublanguages:

• OWL Lite
• OWL DL
• OWL Full
Each sublanguage fulfils different requirements. OWL Lite supports

those users primarily needing a classification hierarchy and simple constraint
features. The advantage of OWL Lite is that it is a language that is easier for
users to understand and it is also easier for developers to implement tools

Developing an OWL Ontology for e-Tourism 257

and applications tlian the more complicated and wide-ranging DL and Full
versions. The main disadvantage is that it has a restricted expressivity. For
example, it does not support the concept of disjunction, excludes enumerated
classes, and cardinality is restricted to only 0 or 1.

OWL DL supports those users who want maximum expressiveness.
OWL DL is more expressive but still ensures completeness and decidability,
i.e. all the calculations will compute and terminate. OWL DL (DL for
description logics) corresponds to a field of research concerning a particular
fragment of decidable first order logic.

OWL Full has maximum expressivity and the syntactic freedom of RDF
but does not guarantee computation. It uses all the OWL language primitives
and the combination of these primitives in arbitrary ways with RDF and
RDF Schema. One major problem is that OWL Full is so expressive that it is
undecidable.

Figure 10-4. OWL sublanguages

According to Figure 10-4, every OWL Lite ontology or conclusion is a
legal OWL DL ontology or conclusion, but not the inverse, and so on for
OWL DL and OWL Full.

5. OWL ONTOLOGY DEVELOPMENT

Tourism is a data rich domain. Data is stored in many hundreds of data
sources and many of these sources need to be used in concert during the
development of tourism information systems. Our e-tourism ontology
provides a way of viewing the world of tourism. It organizes tourism related
information and concepts. The e-tourism ontology provides a way to achieve
integration and interoperability through the use of a shared vocabulary and
meanings for terms with respect to other terms.

258 Semantic Web Services, Processes and Applications

:7i
When

What Wher

Figure 10-5. What, Where, and When

The e-tourism ontology was built to answer three main questions (Figure
10-5) that can be asked when developing tourism applications: What, Where,
and When.

• What. What can a tourist see, visit and what can he do while staying at a
tourism destination?

• Where. Where are the interesting places to see and visit located? Where
can a tourist carry out a specific activity, such as playing golfer tennis.

• When. When can the tourist visit a particular place? This includes not
only the day of the week and the hours of the day, but also the
atmospheric conditions of the weather. Some activities cannot be
undertaken if it is raining for example.

Constructing an ontology is a time-consuming task since it is necessary
to find out information about real tourism activities and infrastructures and
feed them into the knowledge base.

In the next section, we will be construction an OWL ontology for e-
tourism. Since RDFS and OWL are compatible, the ontology developed will
contain RDFS elements within the OWL syntax. For those who dislike
writing ontologies by hand, a few ontology editors are available. We
recommend using one of the most well-know ontology editors. Protege,
which is illustrated in Figure 10-6, to develop the ontology presented in the
next section.

Developing an OWL Ontology for e-Tourism 259

• • • • • i s fc^B^^^^^^Si iMi^BBB^ i lW^^ I^BBHB:
1 PJc 1<B P;i*)rt C</*i lM:::mts ijxy Writiaw iUu

1 f : C2 E '•% '-Q '"•J. f!/ 't? i> P. *̂ if' =*?' >> Ei S <1 r- -''-'^protige

1 c;j. Oi^X'asses * T j l j Pn^trttss ™ temi ' I-:, rrfvkw^ \ %^{)iMsM& \

1 . ,_.,^. , ,,, . 1- tc tf-" ''/^ g .^ j Skim * 'SmmA^ ' mimiwmmi I '. .,.,..,,..,,,. *." -"H-'^* *: •

1-.*:*.-•..vi-'t-.f i - I 1 R -̂u;a.,rt-, ^ 1 i Pio].«ii \';*Mi L*iii .

Iiii i" : !! >:i.-:--!.-, :. j ! 1 ;
| : ' f .e,^.fi.-»v • 1 ,.,!„.«...: " * i * ^
1: c:f.|./«t'; <! ""' ; |
1 w- .^.Bd&taihjii i i j ; ! :
| : c:«fc!iii-«i j l : • 1 !

1 > c :a , |« i^-n. i I I - ' '• '^- ^ •
I : "*' ^••^'"'^ i j Ass^it^j : ^tjM!«i: j

j : ,C:ikMr.Hh:«i.j 1 i j '•••-•-> '- • -.":•.••.*••! !

1 * '^."'"^•,""'* 1 M •••F'™^i-^y C s , J i 1

1 ^ ••"'*'s 1 1 i • i 1

H:•.,:,^:2:;Q-#_•^ «;^J

«
j . C:Uixi: , _ . T J U :•-• l"'h-
1 *• . }-_ i .-j !,/ » li^avtew .". fts^MiesView

Figure 10-6. Creating the e-tourism ontology using Protege editor

5.1 Header

An OWL ontology starts with a set of XML namespace declarations
enclosed in an opening rdf:RDF tag. XML namespaces allow a means to
unambiguously interpret identifiers and make the rest of the ontology
presentation much more readable. A namespace is declared using three
elements: the reserved XML attribute xmlns, a short prefix to identify the
namespace, and the value which must be a URI (Uniform Resource
Identifier) reference. An example of a namespace for our e-tourism ontology
is:

<rdf:RDF

xmlns;weather="http://dme.uma.pt/owl/weather#"

Our initial set of XML namespace declarations which is enclosed in an
opening rdf:RDF tag is the following:

<rdf :RDF
xmlns:owl ="http://www.w3.org/2002/07/owl#"

260 Semantic Web Services, Processes and Applications

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-SYntax-
ns#"
xmlns:rdfs="http://www.w3.org/2 000/01/rdf-schema#"
xmlns:xsd ="http://www.w3.org/2001/XMLSchema#">
xmlns =" http://dme .uitia .pt/jcardoso/owl/e-tourism#"
xml:base="http://dme.uma.pt/jCardoso/owl/e-

tourisin#">
xmlns:weather="http://dme.uma.pt/owl/weather#"

The first four namespace declarations are conventional declarations.
They are used to introduce the OWL (xmlns:owl), RDF (xmlnsirdf), and
RDFS (xmlns:rdfs) vocabularies, and XML Schema (xmlns:xsd) datatypes.

The following three declarations identify the namespace associated with
our ontology. The first makes it the default namespace, stating that
unprefixed qualified names refer to the current ontology. The second
identifies the base URI for our ontology. The third declaration identifies the
namespace of the supporting weather ontology with the prefix weather. The
URI for an identifier is the concatenation of the xmhbase value (or the
document URL if there is no xmhbase) with "#" and the identifier. Thus, the
complete URI for an OWL class named ABC is http;//dme.uma.pt/owl/e-
tourism#ABC.

Once the namespaces are specified, an OWL ontology specifies a set of
assertions grouped under the owhOntology element. The assertions include
the version information which assumes that different versions of the
ontology may possibly be developed. The main assertions that can be made
about the versioning are:

• owliversionlnfo - a statement which generally contains a string giving
information about the version of the ontology.

• owlipriorVersion - a statement that makes reference to another ontology
indicating earlier versions of the current ontology. This statement can be
used by ontology management tools and applications.

• owhbackwardCompatibleWith - contains a reference to another ontology
and indicates that all identifiers from the previous version have the same
intended interpretations in the new version.

• owhincompatibleWith - a statement contains a reference to another
ontology indicating that the ontology is a newest version of the
referenced ontology but is not backward compatible with it.

• owlnmports - provides support for integrating definitions specified in
another OWL ontology published on the Web and identified by a URI.
The meaning of the imported ontology is considered to be part of the
meaning of the importing ontology.

Developing an OWL Ontology for e-Tourism 261

For example:

<rd f :RDF

<owl:Ontology rdf:about="">
<rdf s : comment>E-Tourisin OWL Ontology
</rdfs:comment>
<owl:versionInfo> v.l 2005-10-25
</owl:versionInfo>
<owl:priorVersion>
<owl:Ontology rdf:about=

"http://dme.uma.pt/jcardoso/owl/tourism.owl"/>
</owl:priorVersion>
<owlrbackwardCompatibleWith

rdf:resource="http://dme.uma.pt/owl/tourism"/>
<owl:imports

rdf:resource="http://math.uma.pt/owl/places"/>
<rdfs:label>E-Tourism Ontology</rdfs:label>

</owl:Ontology>

</rdf;RDF>

Between the header and the closing rdf:RDF tag is the definition of the
ontology itself.

5.2 Classes

The main components of the tourism ontology are concepts, relations,
instances, and axioms. A concept represents a set or class of entities within
the tourism domain.

Each class defined by an ontology describes common characteristics of
individuals. OWL classes permit much greater expressiveness than RDF
Schema classes. Consequently, OWL has created their own classes,
owhClass. owhThing is a predefined OWL class. All instances are members
of owhThing. The owhNothing is also a predefined class and represents the
empty class. Each defined class is of type owl:Class. What, Where, and
When are examples of classes used in our e-tourism ontology. These
concepts are represented in OWL in the following way:

<owl:Class rdf:ID="What"/>

262 Semantic Web Services, Processes and Applications

<owl:Class rdf:ID="Where"/>
<owl:Class rdf:ID="When"/>
<owl:Class rdf:ID="Tourist">
<rdf s : coitiment> Describes a tourist </rdfs : comment>

</owl:Class>

The class What refers to activities that tourists can carry out, such as golf,
sightseeing, shopping, or visiting a theatre. The class Where refers to the
places where a tourist can stay (such as a Hotel) and places where he can
carry out an activity. Examples of infrastructures that provide the means for
exerting an activity include restaurants, cinemas, or museums. The class
When refers to the time when a tourist can carry out an activity at a certain
place.

The ontology also includes relations which describe the interactions
between classes or properties. A class hierarchy may be defined by stating
that a class is a subclass (owhsubClassOf) of another class. For example, in
the tourism domain, the class Squash, Paintball, and Golf are subclasses of
the class What. These three classes and their relationship are defined using
the OWL vocabulary:

<owl:Class rdf:ID="Squash">
<rdfs:comment> Squash is an activity a tourist

can carry out
</rdfs:comment>
<rdfs:subClassOf>
<owl:Class rdf:about="#What"/>

</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="Paintball">
<rdfs:subClassOf rdf;resource="#What"/>

</owl;Class>

<owl:Class rdf:ID="Golf">
<rdfs:subClassOf rdf:resource="#What"/>

</owl:Class>

The first statement states that in order to be an instance of the class
Squash, an individual must also be an instance of the class What. However,

Developing an OWL Ontology for e-Tourism 263

there may be instances of the class What that are not instances of Squash.
Thus being a What is a necessary condition for Squash, but is not sufficient.

In our example, we have defined the three subclasses using two different
notations. The semantics of the two notations are the same. Nevertheless, we
prefer the second one, since it is easier to read.

Two classes can be made equivalent using the assertion
owl:equivalentClass. This property, when applied to two classes, A and B, is
to be interpreted as "classes A and B contain exactly the same set of
individuals." This property is especially useful to be able to indicate that a
particular class in an ontology is equivalent to a class defined in a second
ontology. For example, the class What can be defined equivalent to the class
Activity:

<owl:Class rdf:ID="Activity"/>
<owl:Class rdf:ID="What">
<rdfs:coniment> Describes an activity a tourist

can carry out
< /rdf s : coinment>
<owl:eguivalentClass rdf:resource^"#Activity"/>

</owl:Class>

It is also possible to state that two classes are disjoint using the
owlidisjointWith statement. This statement guarantees that an individual that
is a member of one class cannot simultaneously be an instance of another
class. For example, we can express that the activity Golf is disjoint with the
activities Squash and Paintball.

<owl:Class rdf:ID="Golf">
<rdf s : cominent> Golf is an activity a tourist

can carry out
</rdfs:comment>
<rdfs:subClassOf rdf:resource="#What"/>
<owl:disjointWith rdf;resource="#Sguash"/>
<owl:disjointWith rdf:resource="#Paintball"/>

</owl:Class>

This example expresses that instances belonging to one subclass, e.g.
Golf, cannot belong to another subclass, e.g. Squash or Paintball. A
reasoning engine could identify an inconsistency when an individual of the
class Golf is stated to be an instance of the class Squash. The reasoning
engine could also deduce that if G is an instance of Golf, then G is not an
instance of Squash or Paintball.

264 Semantic Web Services, Processes and Applications

5.3 Complex Classes

The OWL language provides a set of statements for building complex
class descriptions from simpler ones by allowing the specification of the
Boolean combination of classes. Boolean connectives (owhcomplementOf,
owhintersectionOf, and owliunionOf) combine class descriptions using
logical connectives. For example, two classes, A and B, can be intersected
yielding a new class C. Additional set operators include the union and the
complement. With OWL Lite only the intersection of classes is allowed.

The owlicomplementOf element is applied to a single class and describes
the set of all individuals which are known not to be instances of the class.
For example, we can state that tourists from the European Union are not
tourists from the non-European Union countries.

<owl:Class rdf:ID="EUTourist">
<rdfs:subClassOf rdf:resource="#Tourist"/>

</owl:Class>

<owl;Class rdf:ID="NonEUTourist">
<rdfs:subClassOf rdf:resource="#Tourist"/>
<owl:complementOf rdf:resource="#EUTourist" />

</owl:Class>

In this example, the class NonEUTourist refers to a very large set of
individuals. The class has as its members all individuals that do not belong
to the EUTourist class. This means that an individual of any class, such as
Locals, Countries, and SiteSeeingPackage, other than the class EUTourist,
belongs to the class NonEUTourist.

As the name suggests, the owhintersectionOf, can be used to intersect
two classes, A and B. The new class includes the individuals that were both
in class A and in class B.

This element is often used with the owhRestriction element. For
example, taking the intersection of the class of tourist with the anonymous
class of people that are senior citizens describes the class of senior tourists.

<owl:Class rdf:ID="seniorTourists">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Tourist"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#category"/>
<owl:hasValue rdf:resource="#Senior"/>

</owl:Restriction>

Developing an OWL Ontology for e-Tourism 265

</owl:intersectionOf>
</owl:Class>

The individuals who are members of the seniorTourists class are
precisely those individuals who are members of both the class #Tourist and
the anonymous class created by the restriction on the property #category.
While not shown in this example, the category of a tourist is divided into
Junior, Young, and Senior. Restrictions will be discussed later.

The element owhunionOf when applied to two classes, A and B, works
in a similar way to the owhintersectionOf element, but creates a new class
which has as its members all individuals that are in class A or in class B. The
new class is equal to the union of the two initial classes. For example, the
individuals of the class OutdoorSport are the union of all the individuals that
belong to the class Golf or to the class Paintball.

<owl:Class rdf:ID="OutdoorSport">
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Golf"/>
<owl:Class rdf:about="#Paintball"/>

</owl:unionOf>
</owl:Class>

In other words, the individuals who are members of the class
OutdoorSport are those individuals who are either members of the class Golf
or the class Paintball.

5.4 Enumeration

An OWL class can be described by enumeration of the individuals that
belong to the class. The members of the class are exactly the set of
enumerated individuals. This is achieve using the element owhoneOf and
enables a class to be described by exhaustively enumerating its individuals.
This element is not allowed with OWL Lite. For example, the class of
HotelRoomView can be described by enumerating it individuals: Sea,
Mountain, and City.

<owl;Class rdf:ID="HotelRoomView"/>
<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:ID="#Sea"/>
<owl:Thing rdf:ID="#Mountain"/>
<owl:Thing rdf:ID="#City"/>

</owl:oneOf>

266 Semantic Web Services, Processes and Applications

</owl:Class>

5.5 Properties

5.5.1 Simple Properties

OWL can define the properties of classes. The OWL property is not very
different from a RDFS property. They both use the rdfsidomain and
rdfs:range elements. Simple properties can be defined using:
owl:ObjectProperty and owhDatatypeProperty.

Object properties link individuals to individuals. They relate an instance
of a class to an instance of another class. The other class can actually be the
same class.

For example, the object property hasActivity related the class Where with
the class What. This means that a place (i.e., an individual of the class
Where) may supply a kind of activity (i.e., an individual of the class What)
to its customer, such as Golf and Paintball. The first related class is called
the domain, while the second is called the range:

<owl:ObjectProperty rdf:ID="hasActivity">
<rdfs:domain rdf:resource="#Where"/>
<rdfs:range rdf:resource="#What"/>

</owl:ObjectProperty>

Datatype properties link individuals to data values and can be used to
restrict an individual member of a class to RDF literals and XML Schema
datatypes. Since OWL does not include any data types, it allows the XML
Schema data types to be used. All OWL reasoners are required to support the
xsd:integer and xsd:string datatypes. In the following example, the year a
tourist was bom is specified using the &xsd;positiveInteger data type from
the XML Schema.

<owl:DatatypeProperty rdf:ID="ageYear">
<rdfs;comment> The year a tourist was born
</rdf s :coinment>
<rdfs:range rdf:resource= "&xsd;positiveInteger"/>
<rdfs:domain rdf:resource="#Tourist"/>

</owl:DatatypeProperty>

Developing an OWL Ontology for e-Tourism 267

5.5.2 Property Characteristics

Property characteristics allow data to be made more expressive in such a
way that reasoning engines can carry out powerful inference. They enhance
reasoning by extending the meaning behind relationships. In OWL, it is
possible to define relations from one property to other properties. Two
examples are the elements owhequivalentProperty and owlnnverseOf.

The equivalence of properties is defined using the
owhequivalentProperty element. Property equivalence is not the same as
property equality. Equivalent properties have the same property extension,
but may have different meanings. The following example expresses that
stating that "a Person plays a sport" is equivalent to stating that "a Person
engages in a sport".

<owl:ObjectProperty rdf:ID="plays">
<rdfs:domain rdf:resource="#Person"/>

<owl:eguivalentProperty rdf:resource="#engages"/>
</owl:ObjectProperty>

The owhinverseOf construct can be used to define inverse relation
between properties. If the property P' is stated to be the inverse of the
property P'', then if X'' is related to Y'' by the P'' property, then Y'' is
related to X" by the P' property. For example, "a tourist plays an activity"
and "an activity isPlayedBy a tourist" are cases of an inverse relation
between properties. In such a scenario, if the tourist John plays the activity
Golf, then a reasoner may infer that Golf isPlayedBy John. This can be
expressed formally in OWL as:

<owl:Obj ectProperty rdf:ID="isPlayedBy">
<owl:inverseOf rdf:resource="#plays"/>

</owl:ObjectProperty>

Functional properties (owhFunctionalProperty) express the fact that a
property may have no more than one value for each instance. Functional
properties have a unique value or no values, i.e. the property's minimum
cardinality is zero and its maximum cardinality is 1. If an individual instance
of Tourist has the PassportID property, then that individual may not have
more than one ID. However, this does not state that every Tourist must have
at least one passport ID. This is illustrated in the following example with the
hasPassportID property, which ensures that a Tourist has only one passport
ID:

268 Semantic Web Services, Processes and Applications

<owl:ObjectProperty rdf:ID="hasPassportID">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Tourist"/>
<rdfs:range rdf:resource="#PassportID"/>

</owl:ObjectProperty>

The same semantic can be expressed as:

<owl:ObjectProperty rdf:ID="hasPassportID">
<rdfs:domain rdf:resource="#Tourist"/>
<rdfs:range rdf:resource="#PassportID"/>

</owl:ObjectProperty>
<owl:FunctionalProperty rdf:about="#hasPassportID"/>

Common examples of functional properties include age, height, date of
birth, sex, marital status, etc.

Properties may be stated to be inverse functional with the element
owl:InverseFunctionalProperty. If a property is inverse functional then the
inverse of the property is functional and the inverse functional property
defines a property for which two different objects cannot have the same
value. The inverse of the property has at most one value. The following
example states that the property isThePassportlDof is to be inverse
functional:

<owl:InverseFunctionalProperty
rdf:ID="isThePassportlDof">

<rdfs:domain rdf:resource="#PassportID"/>
<rdfs:range rdf:resource="#Tourist"/>

</owl:InverseFunctionalProperty>

Therefore, there can only be one passport ID for a tourist. The inverse
property of isThePassportlDof, i.e. the functional property hasPassportID
has at most one value.

A reasoning engine can infer that no two tourists can have the same
passport ID and that if two tourists have the same passport number, then they
refer to the same individual.

FunctionalProperty and InverseFunctionalProperty can be used to relate
resources to resources, or resources to an RDF Schema Literal or an XML
Schema datatype.

Developing an OWL Ontology for e-Tourism 269

Properties may be also stated to be symmetric. The symmetric property
(owl:SymmetricProperty) is interpreted as follows: if the pair (x, y) is an
instance of A, then the pair (y, x) is also an instance of A.

For example, the property b2bLink of the class Hotel of our e-tourism
ontology may be stated to be a symmetric property:

<owl:ObjectProperty rdf:ID="b2bLink">
<rdf:type rdf:resource="&owl;SymmetricProperty"/>
<rdfs:domain rdf:resource="#Hotel"/>
<rdfs:range rdf:resource="#LeisureOrganization"/>

</owl:ObjectProperty>

This expresses the fact that a Hotel can establish B2B (Business-to-
Business) links with several leisure organizations from the tourism industry.
For example, a Hotel can establish a B2B link with a Golf course and a SPA.
When a reasoner is given the fact that a Hotel A has established a B2B link
with a Golf course B, the reasoner can infer that the Golf course B has also a
B2B link with the Hotel A.

When a property is stated to be transitive with the element
owhTransitiveProperty, then if the pair (x, y) is an instance of the transitive
property P, and the pair (y, z) is an instance of P, we can infer the pair (x, z)
is also an instance of P

For example, if busTour is stated to be transitive, and if there is a bus
tour from Funchal to Porto Moniz and there is a bus tour from Porto Moniz
to Sao Vicente, then a reasoner can infer that there is a bus tour from
Funchal to Sao Vicente. Funchal, Porto Moniz, and Sao Vicente are
individuals of the class Where. This is expressed in OWL in the following
way:

<owl:TransitiveProperty rdf:ID="busTour">
<rdfs;domain rdf:resource="#Where"/>
<rdfs:range rdf:resource="#Where"/>

</owl:TransitiveProperty>

Or equivalently;

<owl:ObjectProperty rdf:ID="busTour">
<rdf:type rdf:resource="&owl;TransitiveProperty"/>
<rdfs:domain rdf:resource="#Where"/>
<rdfs:range rdf:resource="#Where"/>

</owl:ObjectProperty>

270 Semantic Web Services, Processes and Applications

Both the owliSymmetricProperty and owl:TransitiveProperty properties
are used to relate resources to resources.

5.6 Property Restrictions

Restrictions differ from characteristics since restrictions apply to
properties with specific values. Property restrictions allow specifying a class
for which its instances satisfy a condition. A restriction is achieved through
the owhRestriction element which contains an owhonProperty element and
one or more restriction declarations. Examples of restrictions include
owl:allValuesFrom (specifies universal quantification), owhhasValue
(specifies a specific value), and owlisomeValuesFrom (specifies existential
quantification).

The owhallValuesFrom element is stated on a property with respect to a
class. A class may have a property P restricted to have all the values from
the class C, i.e. the constraint demands that all values of P should be of type
C (if no such values exist, the constraint is trivially true). Let us see an
example to better understand this concept:

<owl:Class rdf:ID="TouristOutdoorSportPlayer">
<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#plays"/>
<owl:allValuesFrom

rdf:resource="#OutdoorSport"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

The individuals that are members of the class TouristOutdoorSportPlayer
are those such that if there is an object that is related to them via the #plays
property, then it must be #OutdoorSport. No assertion about the existence of
the relationship #plays is made, but if the relationship holds then the related
object must be of the class #OutdoorSport.

Using the owlihasValue element, a property can be required to have a
specific value. For example, individuals of the class FunchalSiteSeeing can
be characterized as those places that have 9000 as a value of their zip code.
This is expressed with the following statements:

<owl:Class rdf:ID="FunchalSiteSeeing">

Developing an OWL Ontology for e-Tourism 271

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="ihasZipCode"/>

<owl:hasValue rdf:datatype="&xsd;string">

9000

</owl:hasValue>

</owl:Restriction>

</rdfs:subClassOf>

</owl;Class>

In terms of logic, the owlisomeValuesFrom element allows expression of
existential quantification. This element describes those individuals that have
a relationship with other individuals of a particular class. Unlike
owhallValuesFrom, owhsomeValuesFrom does not restrict all the values of
the property to be individuals of the same class. When owlisomeValuesFrom
is stated on a property P with respect to a class C, it specifies that at least one
value for that property is of a certain type.

For example, the class TouristGolfPlayer may have a
owl:someValuesFrom restriction on the #plays property that states that some
value for the plays property should be an instance of the class Golf. This
expresses the fact that any tourist can play multiple sports (e.g. Golf,
PaintBall, Tennis, etc.) as long as one or more is an instance of the class
Golf.

<owl:Class rdf:ID="TouristGolfPlayer">

<owl:intersectionOf rdf:parseType="Collection">

<owl;Class rdf:about="#Tourist"/>

<owl;Restriction>

<owl:onProperty rdf;resource="#plays"/>

<owl:soraeValuesFrom rdf:resource="#Golf"/>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

The individuals that are members of the class TouristGolfPlayer are those
that are related via the #plays property to at least one instance of the Golf
class. The owhsomeValuesFrom element makes no restriction about other
relationships that may be present. Therefore, an individual of the class
TouristGolfPlayer may play other sports.

272 Semantic Web Services, Processes and Applications

5.7 Cardinality Restrictions

Cardinality restrictions are also property restrictions. In OWL, three
different cardinality restrictions exist:
• owl:maxCardinality - specifies the maximum number of individuals,
• owliminCardinality - specifies the minimum number of individuals, and
• owl:cardinality - specifies the exact number of individuals.

The element owlimaxCardinality: is stated on a property P with respect to
a particular class C. If a owl:maxCardinality with the value n is stated on a
property with respect to a class, then any instance of that class will be related
to at most n individuals by property P. The variable n should be a non-
negative integer.

For example, the property #visitLocal of the class SiteSeeingPackage
may have a maximum cardinality of 10 since it is considered that a site
seeing package should not include more than 10 places to visit.

<owl :Class rdf : ID="SiteSeeingPack;age">

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#visitLocal"/>
<owl :inaxCardinality rdf : datatype=

"&xsd;norLNegativeInteger"> 10
</owl:maxCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

The element owliminCardinality is very similar to the element
owlimaxCardinality. As the name suggests, the only difference lies in the
fact that it specified a lower boundary for the cardinality of a property P of a
class C. The following example shows that the property visitLocal of the
class SiteSeeingPackage has a minimum cardinality of 2. It expressed that a
site seeing package should include the visit to at least 2 site seeing locals.

<owl:Class rdf:ID="SiteSeeingPackage">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#visitLocal"/>

<owltminCardinality

Developing an OWL Ontology for e-Tourism 273

rdf ;da ta tYpe="&xsd;nor iNegat iveIn teger"> 2
</owl : in inCardina l i ty>
< / o w l : R e s t r i c t i o n >

< / rd fs : subClassOf>
</owl :Class>

The owlicardinality, the last cardinaHty restriction statement, is a useful
element when it is necessary to expresse that a property has a minimum
cardinality which is equal to the maximum cardinality. This is a convenience
element.

It should be noticed that when using OWL Lite the cardinality elements,
owhmaxCardinality, owliminCardinality, and owlxardinality, can only
specify the values 0 and \. On the other hand, OWL Full allows cardinality
statements for arbitrary non-negative integers. Furthermore, when using
OWL DL, no cardinality restrictions may be placed on transitive properties

6. PUTTING ALL TOGETHER: THE E-TOURISM
ONTOLOGY

The following example describes the e-tourism ontology. This ontology
can be use to integrate tourist information systems or simply serve as a
schema to carry out inferencing.

<!DOCTYPE rdf:RDF [
<!ENTITY xsd "http://www.w3.Org/2001/XMLSchema#">
<!ENTITY owl "http://www.w3.Org/2002/07/owl#">

]>

<rdf:RDF
xmlns:owl="http://www.w3.org/2002/07/owl# "
xinlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-

ns#"
xmlns:rdfs="http://www.w3.org/2 000/Ol/rdf-schemat"
xmlns:xsd="http://www.w3.org/2 001/XMLSchema#"
xmlns ="http://dme.uma.pt/jcardoso/owl/e-tourism#"
xml:base="http://dme.uma.pt/jcardoso/owl/e~

tourism#">

<owl:Ontology rdf:about="">
<rdfs:comment>E-Tourism OWL Ontology
</rdfs:comment>

274 Semantic Web Services, Processes and Applications

<owl:versionInfo> v.l 2005-10-25
</owl:versioninfo>
<owl;priorVersion>
<owl:Ontology rdf:about=
"http://dme.uma,pt/jcardoso/owl/tourism.owl"/>
</owl:priorVersion>
<owl:backwardCompatibleWith rdf:resource=

"http://dme.uma.pt/jcardoso/owl/tourism.owl"/>
<rdfs:label>E-Tourism Ontology</rdfs:label>

</owl:Ontology>

<owl:Class rdf:ID="When">
<rdfs:comment> Describes when a tourist can carry

out a particular activity
</rdfs:comment>

</owl •.Class>

<owl:Class rdf:ID="Place"/>
<owl;Class rdf:ID="Where">
<rdfs:comment> Describes where a tourist can carry

out a particular activity or stay
overnight

</rdfs:comment>
<owl: ecjuivalentClass rdf :resource="#Place" />

</owl:Class>

<owl:Class rdf:ID="Activity"/>
<owl:Class rdf:ID="What">
<rdfs:comment> Describes an activity a tourist

can carry out
</rdfs:comment>
<owl:eguivalentClass rdf:resource="#Activity"/>

</owl;Class>

<owl:Class rdf:ID="Tourist">
<rdfs:comment> Describes a tourist. Every tourist

is a person
</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Person"/>

</owl:Class>

<owl:Class rdf:ID="EUTourist">

Developing an OWL Ontology for e-Tourism 275

<rdfs:subClassOf rdf:resource="#Tourist"/>
</owl:Class>

<owl:Class rdf:ID="NonEUTourist">

<rdfs:subClassOf rdf;resource="#Tourist"/>

<owl:complementOf rdf:resource="#EUTourist" />

</owl:Class>

<owl:Class rdf:ID="PassportID">

<rdfs:comment> Tourists have passports with an ID

</rdf s : coniment>

</owl;Class>

<owl:Class rdf:ID="Hotel">

<rdfs :coinment> Hotel is a place where a tourist

can stay overnight

</rdf s :coinment>

<rdfs:subClassOf rdf:resource="#Where"/>

</owl:Class>

<owl:Class rdf:ID="HotelRoomView">

<rdf s : coniment> Enumerates the views a hotel room

can have

</rdfs:comment>

<owl:oneOf rdf:parseType="CQllection">

<owl:Thing rdf:about="#Sea"/>

<owl:Thing rdf:about="#MQuntain"/>

<owl:Thing rdf:about="#City"/>

</owl:oneOf>

</owl:Class>

<owl:Class rdf:ID="LeisureOrganization">

<rdfs:comment> A leisure organization provides

activities that tourists can carry out

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Where"/>

</owl:Class>

<owl:Class rdf:ID="Squash">

<rdfs:comment> Squash is an activity a tourist

can carry out

</rdfs:comment>

276 Semantic Web Services, Processes and Applications

<rdfs:subClassOf rdf:resource="#What"/>
</owl :Class>

<owl:Class rdf:ID="Paintball">
<rdf s: coininent> Paintbal l i s also an a c t i v i t y

a t o u r i s t can carry out
</rdf s : coiranent>
<rdfs:subClassOf rdf:resQurce="#What"/>

</owl:Class>

<owl;Class rdf:ID="Golf">
<rdf s: coinment> Golf is an activity a tourist

can carry out
</rdf s : coininent>
<rdfs:subClassOf rdf:resource="#What"/>
<owl:disjointWith rdf:resource="#Sguash"/>
<owl:disjointWith rdf;resource="ttPaintball"/>

</owl:Class>

<owl:DatatypeProperty rdf:ID="ageYear">
<rdf s ;coinment> The year a tourist was born
</rdf s : cominent>
<rdfs:range rdf:resource= "&xsd;positiveInteger"/>
<rdfs:domain rdf:resource="#Tourist"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="category">
<rdfs:coinment> The category of a tourist (e.g.

Junior, Young, Senior)
</rdf s :coinment>
<rdfs:domain rdf:resource="#Tourist"/>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="hasActivity">
<rdfs:comment> Describes an activity that can be

carried out a certain place
</rdfs:comment>
<rdfs:domain rdf:resource="#Where"/>
<rdfs:range rdf:resource="#What"/>

</owl;ObjectProperty>

<owl:DatatypeProperty rdf:ID="hasZipCode">

Developing an OWL Ontology for e-Tourism 277

<rdfs:comment> Each place has a zip code
</rdfs:comment>
<rdfs:domain rdf:resource="#Where"/>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="plays">
<rdf s: coinment> The activity that a person

carries out
</rdf s : coiranent>
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="tSguash"/>
<owl:Class rdf:about="#Golf"/>
<owl:Class rdf:about="#Paintball"/>
</owl:unionOf>

</owl:Class>
</rdfs:range>

<owl:ecjuivalentProperty rdf:resource="#engages"/>
</owl:ObjectProperty>

<owl:Obj ectProperty rdf:ID="isPlayedBy">
<owl:inverseOf rdf:resource="#plays"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasPassportID">
<rdfs:comment> Carrying out an activity or engaging

in an activity are two equivalent
properties

</rdfs:comment>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Tourist"/>
<rdfs;range rdf;resource="#PassportID"/>

</owl;ObjectProperty>

<owl:InverseFunctionalProperty
rdf:ID="isthePassportlDof">

<rdfs:domain rdf:resource="#PassportID"/>
<rdfs:range rdf:resource="#Tourist"/>

</owl:InverseFunctionalProperty>

278 Semantic Web Services, Processes and Applications

<owl: ObjectProperty rdf : ID="b2bIjink">
<rdfs:comment> Hotels establish B2B links with

leisure organizations
</rdf s : coinment>
<rdf:type rdf:resource="&owl;SyiranetricProperty"/>
<rdfs:domain rdf:resource="#Hotel"/>
<rdfs:range rdf:resource="#LeisureOrganization"/>

</owl:ObjectProperty>

<owl:TransitiveProperty rdf:ID="busTour">
<rdfs:coinment> Bus tours are offered from place A

to place B
</rdfs:comment>
<rdfs:domain rdf:resource="#Where"/>
<rdfs:range rdf:resource="iWhere"/>

</owl:TransitiveProperty>

<owl:Class rdf:ID="GoodWeather"/>
<owl:Class rdf;ID="BadWeather"/>
<owl:Class rdf:ID="AverageWeather"/>

<owl:ObjectProperty rdf:ID="hasWeather">
<rdfs:CQmment> Describes the weather at a

particular place
</rdf s : cornment>
<rdfs:domain rdf:resource="#Where"/>

</owl:ObjectProperty>

<owl;Class rdf:ID="PlacesWithGoodWeather">
<rdfs:coinment> Describes the tourist places with a

good weather
</rdfs:comment>
<rdfs:subClassOf>
<owl:Restriction>
<owltonProperty rdf:resource="#hasWeather"/>
<owl:allValuesFrom rdf:resource="#GoodWeather"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="FunchalSiteSeeing">

Developing an OWL Ontology for e-Tourism 279

<rdf s: coitiment> Describes the places that tourist can

see in Funchal. These places have the zip code 9000,

i.e. the city of Funchal.

</rdfs:comment>

<rdfs:subClassOf>

<owl:Restriction>

<owlronProperty rdf:resource="#hasZipCode"/>

<owl:hasValue rdf:datatype="&xsd;string"> 9000

</owl;hasValue>

</owl:RestrictiQn>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="SiteSeeingPackage">

<rdfs:comment> A site seeing package should include

at least 2 places to visit, but no more than 10.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Where"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasZipCode"/>

<owl:minCardinality

rdf:datatype="&xsd;nohNegativeInteger"> 2

</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasZipCode"/>

<owl:maxCardinality

rdf:datatype="&xsd;norLNegativeInteger"> 10

</owl:maxCardinality>

</owl;Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl;Class rdf:ID="TouristGolfPlayer">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Tourist"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#engages"/>

<owl:someValuesFrom rdf:resource="#Golf"/>

280 Semantic Web Services, Processes and Applications

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

<owl:Class rdf:ID="TouristOutdoorSportPlayer">
<rdfs:coiranent> Describes the tourist places with a

good weather
</rdf s : coinment>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#engages"/>
<owl:allValuesFrom

rdf:resource="#OutdoorSport"/>
</owl:Restriction>

</rdfs;subClassOf>
</owl;Class>

<owl:Class rdf:ID="OutdQorSport">
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Golf"/>
<owl;Class rdf:about="#Paintball"/>

</owl:unionOf>
</owl:Class>

</rdf:RDF>

7. QUESTIONS FOR DISCUSSION

Beginner:
1. RDF, RDFS, and OWL are languages that correspond to layers of the

semantic Web stack and are built on top of XML. Why is XML not itself
a semantic language?

2. What are the limitations of RDFS that make it not sufficiently expressive
to describe the semantics of Web resources?

Intermediate:
I. Two instance with a different rdf:ID can actually represent the same

individual. With OWL, how can you make it explicit that the two
instances are different?

Developing an OWL Ontology for e-Tourism 281

2. Use the XMLSchema to define a complex data type to model a student
record (e.g. name, degree, ID, etc.) and reference this data type within an
OWL ontology.

Advanced:
1. OWL is based on the open world assumption. Identify the characteristics

that do not make OWL follow the closed world assumption.
2. Describe a scenario that illustrates how reasoning engines can use the

owl:unionOf and owhintersectionOf elements to carry out inference.

Practical Exercises:
1. Select a Web site, such as www.amazon.com, and develop an OWL

ontology to model the information present on its main page.
2. Validate the OWL ontology developed with an OWL validator (e.g.

http://owl.bbn.com/validator/)
3. Use a reasoning engine, such as JESS (herzberg.ca.sandia.gov/jess/) to

infer knowledge from the developed ontology.

SUGGESTED ADDITIONAL READING

Antoniou, G. and van Harmelen, F. A semantic Web primer. Cambridge,
MA: MIT Press, 2004. pp. 238: This book is a good introduction to
Semantic Web languages.
Shelley Powers, Practical RDF, O'Reilly, 2003, pp. 331: This book
covers RDF, RDFS, and OWL. It provides a good source of information
for those interested in programming with RDF with Perl, PHP, Java, and
Python.
Seffen Staab, Ontology Handbook, Springer, 2003, pp. 499: This book
covers provides a good introduction to Description Logics and OWL.
OWL Overview - http://www.w3.org/TR/owl-features/
OWL Reference - http://www.w3.org/TR/owl-ref/
OWL Guide - http://www.w3.org/TR/owl-guide/

9. REFERENCES

Berners-Lee, T., J. Hendler, et al. (2001). The Semantic Web. Scientific American. IMay
2001.

Berners-Lee, T., J. Hendler, et al. (2001). The Semantic Web: A new form of Web content
that is meaningful to computers will unleash a revolution of new possibilities. Scientific
American.

282 Semantic Web Services, Processes and Applications

DAML (2001). DAML+OIL, http://www.daml.org/language/.
Decker, S., S. Melnik, et al. (2000). "The Semantic Web: The Roles of XML and RDF."

Internet Computing 4(5): 63-74.
Horrocks, I., F. v. Harmelen, et al. (2001). DAML+OIL, DAML.
Jasper, R. and M. Uschold (1999). A framework for understanding and classifying ontology

applications. IJCAI99 Workshop on Ontologies and Problem-Solving Methods.Vol: pp.
OWL (2004). OWL Web Ontology Language Reference, W3C Recommendation, World

Wide Web Consortium, http://www.w3.org/TR/owl-ref/. 2004.
RDF (2002). Resource Description Framework (RDF), http://www.w3.org/RDF/.
RDFS (2004). RDF Vocabulary Description Language 1.0: RDF Schema, W3C,

http://www.w3 .org/TR/rdf-schema/.

Chapter 11

SEMANTIC TECHNOLOGY FOR E-
GOVERNMENT

Ralph Hodgson and Dean Allemang
TopQuadmnt, Inc. -rhodgson@topquadrant.com, dallemang@topquadrant.com

1. INTRODUCTION

In the last five years a number of significant developments have occurred
that motivate the use of Semantic Technology in e-Govemment. In 2001, the
US President announced 24 e-Government initiatives (US President's E-
Govemment Initiatives, 2001).

In 2004 the Federal Enterprise Architecture (FEA) was first published
(Federal Enterprise Architecture, 2004). It is well-known that Semantic
technology is an enabler for federation, mediation, aggregation and
inferencing over information from diverse sources. Why then, not advocate
its use for helping solve interoperability, integration, capability reuse,
accountability and policy governance in agencies, across agencies and even
across governments?

With this vision, TopQuadrant set out in 2002 to bring Semantic
Technology to the attention of the emerging technology work-groups of the
US Government at their "Open Collaboration" Workshop meetings in
Washington DC (Collaborative Expedition Workshops). What followed is a
success story of growing awareness and advocacy of semantic technology in
e-Govemment.

In this paper we gave an account of one of the pilot projects that
happened within the, now-called, Semantic Interoperability Community of
Practice (SICoP, 2005). This group, under the leadership of Brand Niemann,
was established for the purpose of achieving "semantic interoperability" and
"semantic data integration" in the government sector, seeking, through
pilots, to demonstrate the power of semantic technology (Niemann, B.,

284 Semantic Web Services, Processes and Applications

2005). The SICoP group is also producing in a series of White Papers'
(SICoP Module 1, 2005, SICoP Module 2, 2006).

We will describe the "eGOV FEA-Based Capabilities and Partnering
Advisor", referred to in-short as the "FEA Capabilities Advisor", some
reference will be made to the Federal Enterprise Architecture Reference
Model Ontology (FEA-RMO). First, as necessary background, the FEA
Reference Model (FEA-RM) is briefly described.

2. THE FEDERAL ENTERPRISE ARCHITECTURE
REFERENCE MODEL (FEA-RM)

In response to the US President's identification of e-govemment as a key
component of his management agenda, the US Federal Enterprise
Architecture Program Management Office has proposed five reference
models for the architecture of e-government. These reference models were
conceived by researching and assembling current practices of the various
government agencies. The goals of the reference models include:
• Elimination of investments in redundant IT capabilities, business

processes, or other capital assets
• Saving time and money by leveraging reusable business processes, data,

and IT-components across agencies
• Providing a simpler way for agencies to determine whether IT

investments they are considering are not duplicative with other agencies'
efforts

• Identification of common business functions across agencies
• Providing means to agencies to evolve FEA business reference model in

response to their changing situation and needs

The FEA models are illustrated in Figure 11-1, from the FEA Program
Management Office Web-Site (Federal Enterprise Architecture, 2004). The
FEA was established by US Government's Office of Management Budget
(0MB), with support from the Federal CIO Council.

' As an indication of worldwide interest, we note that one module of the
series has been translated into Japanese (SICoP Module 1, Japanese, 2005).

Semantic Technology for E-Government 285

PI
&!

! =: !

Federal Enterprise Architecture (FEA)

Performance Fieference Model (PRM)
• ^MCwartrFTit-nidePaftTmiirreMe^siirai ft (.LitcrriBS

—+• Business Reference Model fBRMl
• L rias cf !3JS:;"SS5
• ."gerc'EE, CLEteirsrs, PartriEi;

" • Service Component Reference Model (SRM)
• LdpabiJicss and -j:ictcji';i!it\'

Dara Reference Model (DRM)

• Cia;s-.4!;j9rcy !rfc.Tm.3'j';r- EjcJn^rtjes

• ITSo-vits
• F,t;iri-iirn-,

i i

Figure 11-1. The 5 Federal Enterprise Architecture (FEA) Models

The FEA has five models;

1. Performance Reference Model (PRM),

2. Business Reference Model (BRM),
3. Service Component Reference Model (SRM),
4. Technology Reference Model (TRM) and
5. Data Reference Model (DRM).

Each of these is, at its core, a taxonomic structure of Enterprise
Architecture constructs as indicated in the figure above. Like other reference
models, this is not enterprise architecture itself, but a model to guide
enterprise architects in government agencies as they create their own,
agency-specific, enterprise architectures. Like other reference models, it
provides design guidance, and allows for latitude for specific agencies to
tailor and/or map to their specific Enterprise Architectures.

The first full version of the FEA Reference Model (FEA RM) was
released in 2004. The work reported in this paper made use of the first four
models. At the time of our work, the DRM was under revision.

286 Semantic Web Services, Processes and Applications

3. THE FEDERAL ENTERPRISE ARCHITECTURE
REFERENCE MODEL ONTOLOGY (FEA-RMO)

Reference models are typically written in natural language, and are
presented as some form of human-readable document. The reference models
of the FEA are no exception. This form of presentation has the advantage
that the reference models can be read by anyone who can read PDF files; but
it has the disadvantage that the process of reusing the reference model
("alignment") can only be verified by an interpretation process whereby an
enterprise architect (or whoever has the job of making the alignment)
determines what the reference architecture means, and argues for the
particular alignment of their architecture to the model. This is a highly
ambiguous and subjective task, and is prone to errors and even misuse.

A formal representation of a reference model addresses this problem by
providing an unambiguous (or at least, less ambiguous) representation of the
reference model, and allows for the definition of objective criteria for
whether an architecture is actually conformant.

By representing the reference models in a semantic-rich language like
RDF/S and OWL, much of the interpretation and enforcement of the
reference model can be automated. Consider, for example, a "Service
Architecture Advisor", which would check proposed service
implementations for compliance to the reference architecture. Such an
advisor could make recommendations about how the architecture could
achieve greater compliance with the reference architecture or with other
services that are already available. As a second example, in fact the subject
of this paper, consider a "Capabilities Advisor" that uses the reference model
to advise on capabilities that are available or are being built to support
particular services and lines-of-business. By having an ontology of the FEA,
a system can "make connections" between requirements and capabilities and
give advise based on inferences.

Figure 11-2 illustrates how ontological relationships can answer
questions about aspects of an Enterprise. An executive, manager or
employee can discover how the activities of the business support business
goals, how capabilities support those activities, and what systems enable the
capabilities.

Semantic Technology for E-Government 287

What do I depend on
to be effective?

What outcomes does
this activity support?

What capabilities does
tliis aolivity depend
on?

Who is using what
systems to do what?

StolehoWers

Goals

Activities

Capabilities

li-

Systenis

b

9,

"A

-'O

fp
k
n •

-.- '^--

•
•

•

•

- «

' '9::

•

•

•

—tp

- 'O

Figure 11-2. Some questions that can be answered by a Semantic Model of an Enterprise

An ontology-based system can answer questions such as:

• Who is using what business systems to do what?

• Who is using what technologies and products to do what?
• What systems and business processes will be affected if we upgrade a

software package?
• What technologies are supporting a given business process?
• Where components are being re-used or could be re-used?
• How is our agency architecture aligned with the FEA?

An example of inferencing over properties is shown in Figure 11-3.
Using RDF/OWL transitive and sub-properties enables new information to
be inferred.

These, and other motivations, led to the development of the FEA
Reference Model Ontologies, FEA-RMO, in 2004. FEA-RMO is open
source and available at the General Services Administration (GSA)'s
OSERA web-site (FEA-RMO, 2005).

FEA-RMO is a number of ontologies built using the W3C standard Web
Ontology Language OWL. The FEA Reference Model Ontology architecture
mirrors that of the FEA RM itself, that is, the Performance Reference Model
(PRM) organizes the overall architecture, making reference to the other
models as needed. The Business Reference Model (BRM) draws upon the
Service Reference Model (SRM), the Data Reference Model (DRM) and the
Technical Reference Model (TRM). In representing these models a recurring

288 Semantic Web Services, Processes and Applications

design pattern which we named the "Class-instance Mirror Pattern" was
found to be essential for representing the reference models.

ApiJlicalioii provides Capability
Cai>»bi|itv enables Capability
C«p«?l?iUty supports Activity

Artiwity realizes Intent
J»(«Ot ifS.oalOJ Mission

^ :=

enables is a Transitive Property
provides isSiibPfpp.ertyOi enables
supports isSMbPwpertkOf enables

"> $ivQn a capabil ity and iioMi i t enables
othigrs, we can in fer what act ivi t ies i t
supports, hov^ i t reolizes in tent and the
gods o f the mission

TMliPolicyfikectQC provides Authentlcotion
Au.thgoticqtiiiji enables S6.c.uc6Aj:i;.?.ss

Ssc.yrf-Acces!? supports /Aissi.o.nOpsr.atJsas

Figure 11-3. An example of Inferencing in an Enterprise Architecture

The table below indicates some of the concepts used in the FEA-RMO.
Note that, because of changes that were underway, the DRM was not
modeled at the time of this work.

Table 11-1. FEA-RMO Ontologies

Model

Performance
Reference
Model

Business
Reference
Model
Service
Component
Reference
Model
Technology
Reference

Ontology

PRM

BRM

SRM

TRM

Example
Concepts

Measurement Area
Measurement
Category Generic
Indicator
Business Area
Line of Business
Sub-function
Service Domains
Service Type
Component

Service Area
Service Category

Semantic Technology for E-Government 289

Model Service Standard
Service
Specification

Data DRM Out of Scope
Reference
Model

FEA-RMO also includes a model, the FEA Core Ontology that is not
explicitly called out in the FEA RM, where concepts and properties common
to all the reference models are defined. This provides modularity to the
ontology design that allows for simplified maintenance and integration of the
models.

More information on FEA-RMO can be found on the web (Allemang et
al., 2005a), and also in a technical paper published in the International
Semantic Web Conference (ISWC) 2005 Proceedings (Allemang et al.,
2005b).

4. THE E-GOV ONTOLOGY

A candidate application of the FEA-RMO is a system that can advise
agencies on who has or intends to have what capabilities in support of
services within lines of business. Such a system needs the FEA-RMO but
also an ontology about agencies, initiatives, programs and capabilities. This
was the motivation for the E-Gov Ontology, referred to in short as EGOV.

The starting point for EGOV was a model of US Agencies and their
bureaus and offices. Finding a current list of all the US Agencies and their
bureaus and offices was not easy. At the time of the project the best source
turned out to be a site at Louisiana State University (LSU Libraries, 2003).

A small RDF graph, with about 3 concepts and 4 properties placed at
each agency, would have solved this problem. The remark "A little RDF
goes a long way", attributed to Professor Jim Hendler, is very apt and in fact
was a motivation to see this as an ideal application of RDF. Placed on a
server at each agency, the small RFD graph could be populated with instance
triples. Aggregating these triples using an RDF crawler would then produce
the bigger picture of all offices of all agencies of government.

Getting all the agencies to adopt RDF is of course no easy matter.
Nonetheless, this graph is at the heart of the eGOV ontology and is ready to
be deployed to realize this vision.

The ontology model goes beyond this simple graph and Figure 11-4
shows an overview of some of the main concepts that drive the FEA
Capabilities Advisor. Some relationships have been simplified to simple

290 Semantic Web Services, Processes and Applications

"has" links. In the real model, relationship naming and relationship
qualification (in particular, inverse, transitive and sub-property qualifiers) is
very important to support inferencing.

Business
Area

has

Line of
Business

has

Service

cons iders

Program

^ , „ .

Ftoject

needs

Capability
Case

\.„_^^ delivers

Capability
realized as

N " \

Web
Service

Component

Figure 11-4. Some Classes in the Capabilities Advisor Ontology Model

It is rarely a good idea to have one large ontology. A number of OWL
ontologies are involved in the FEA Capability Advisor system. Some
dependencies of the Ontology Architecture are depicted in Figure 11-5.

Semantic Technology for E-Government 291

eGOV Capability
Advisor Ontology

Capability

Cases (CARCASE
Ontology

FEA-RMO
Ontologies

TopQuadrant
Core Ontology

Figure J1-5. Ontology Architecture of the FEA Capabihties Advisor

Dependencies to other ontologies are also listed in Table 11-2. The
eGOV Capability Advisor Ontology, EGCA, is an application-level ontology
whose main purpose is to import the EGOV Ontology and the Capability
Cases Ontology.

Table 11-2. FEA Capabilities Advisor Ontologies

example Concepts
(properties)

Domai
n

e-GOV
Ontology
Capabilit
y Case
Ontology

Enterpris
e
Capabilit
y Model
Enterpris
e
Structure

Ont
olo
gie

EG
OV
CA
PC
AS
E
EC
M

ES
M

Agency, Bureau, Partnership

Capability Case, Solution Story

Capability, Challenge, Force, Goal,
Initiative, Measure, Mission,
Objective, Strategy

Association, BusinessArea,
Company, Consortium, Department,
Division, GovernmentBody,

292 Semantic Web Services, Processes and Applications

Domai
n

Model
TopQuad
rant Core
Dublin
Core

Ont
olo
gie
s

TQ
C
DC

Example Concepts
(properties)

Institution.
Artifact, Activity, Organization,
Resource
contributor, coverage, creator, date.
description, format, identifier,
language, publisher, relation, rights,
source, subject, title, type

A common pattern in the modeling has been to make use of OWL
restrictions to enable the OWL Reasoner to do efficient classification. In
many cases, the reasoning required is graph traversal. An example of graph
traversal is shown in Figure 11-6, where the so-called "Line-Of-Sight"
between entities of the Enterprise can be inferred from the ontology models.

eSOV;
Mission eSOV; intentOf

' ^ """^^"-^-^ srm;
eSOV:

h Agency

Cntent V .^•-^\.~

srm; Component

de ve lops__^__^^|^

srm:acccssed'ni rough

/ srm: runsOn

cGOV: , >- V ^
haslntent V .^\>~-~. / c S O V ; Ini t iat ive

' ' ' ' • • . „_^^^ brm; al l ignedWitj i-
eSOVioperates "ii.-.̂ -n-;;----- "

cGOV: Customer fp-'t
eSOV: Process 1

irm; ollignedWith

• I t rm: Technology

— — - / prm:
brm; SubFunction / OpMeasurementlndicator

^ m „....--"
'' fea; Value

...•^rjp^ jJrovi des VQ I ue

/• prm: recii^esValue y .r*
, ,, , n / ^-^ -^ prm:measuredBy
tea: Va uePordt-—— —' '

i: re5iv<

prm: Performance

rdfs: subclass Of

rd f s: SubPropertyOf

Other relationships

prm: hasPerformance

Figure lJ-6. How "Line-Of-Sight" is enabled by the FEA and eGOV Ontologies

5. EGOV FEA-BASED CAPABILITIES AND
PARTNERING ADVISOR

The FEA Capabilities Advisor uses a semantic engine driven by
Ontologies to advise different stake-holders on the capabilities that are

Semantic Technology for E-Government 293

available or are being developed to support the Federal Enterprise
Architecture and the President's e-Govemment initiatives.

The system was envisioned as a set of capabilities accessible through
WEB Services that would allow agencies, other governments, businesses,
and citizens to make queries about the PEA model, to find capabilities that
support agency services, to be advised of relevant partnerships, and to assess
compliance of their agency business models and architectures with PEA
models.

5.1 Motivating User Scenario

One proposed use of the FEA Capability Advisor is a "Business Case
Constructor". This idea is well aligned to government imperatives to have
more effective business cases from agencies and better system support for
business case decision support. Through such a system, redundancy,
compliance, overlaps and opportunities for synergies across business cases
could then be assessed.

In FY04, agencies' capital asset plans and business cases required a
demonstrated capacity for collaboration across agencies. In support of this
requirement the Capabilities Advisor focused on improving quality of
agencies' business cases (Exhibit 300).

For the Office of Management Budget (0MB) the Capabilities Advisor
provides business management insights. For example, the system could
provide insights into how the 0MB process was being followed, the reasons
and patterns of conformance issues and how different projects may relate to
each other. In this way, the system focuses on improving the quality of
agencies' business cases^ by providing them with:
• Project-specific guidance for completing forms (Exhibit 300 and Exhibit

53)
• Information on how their project must comply with the FEA
• Knowledge of what related initiatives exist, and candidate federal, state

and local partners for their project
For the Office of Management Budget (0MB), the system provides

business management insights such as how 0MB process is being followed,
the reasons and patterns of conformance issues and how different projects
may relate to each other.

For business case authors, the system helps with questions such as:
• Who can be candidate federal, state and local partners for my project?

In the US, an agency's business case for budget allocation is submitted on an "Exhibit 300"
form.

294 Semantic Web Services, Processes and Applications

• How do agencies integrate their business cases witii FEA?
• How do agencies develop the credible commitments, rislc mitigation, and

foresight in contracting needed to develop successful business cases?
• What are the new roles and relationships that central agencies, such as

GSA, must explore to leverage government wide progress?

5.2 Design of the FEA Capabilities Advisor

The system uses Capability Cases as a way to communicate the value of
potential IT Capabilities (Polikoff et al., 2005). A Capability Case is a way
to express aspects of a solution through stories of real (or envisioned) use
within a business context. Capability Cases are a way to do requirements
that allows business people, technical people and other stakeholders to
identify with the emerging solution. Upstream from Use Cases they support
the conversation about "what the system should be" as opposed to "how the
system will work".

Figure 11-7 shows the US President's eGOV initiatives as depicted in the
Capabilities Advisor. The system is ontology-driven and uses a Datalog
engine, RDF Gateway from Intellidimension\ to drive the web screens and
to reason over user actions. On the left is a browser that shows those
concepts in the ontology that have been tagged as "browsable". The figures
in parenthesis are the number of instances of each class in the system.

Clicking on a class displays a list of instances. Clicking on an instance
provides a detailed view as illustrated in Figure 11-8. The Business Gateway
Initiative is described along with links to enabling capabilities and to the IT
program that is realizing the initiative.

^ RDF Gateway is a platform for the Semantic Web from Intellidimension, on the web at
www.intellidimension.com.

Semantic Technology for E-Government 295

BuiiiuO*.-)
Biamssiiwa (3i
H-j-:iiu>ssC5si>jtLj
.•;si,a.iiiiv<rji

Cn^ve; CiiBW

MSlSlsMxiSmisMim d)

Inlti i i iCiiS)
ImhsiiwiaMW
ililWhsJiuStiiBiEaW
tittaaai&iiiny'gl
UMilBifJ:m«2 (14)
Oilicegii
EMLfllsJMll Ĉ)

Fl0(1-»I1(I71

HE l iBM lO l)

Llasa: liirtiati-/i

fcEEaiaiMsaMaESjil

•ISLMEi*
njfr:: ic.rlius:ne-gs

fiMSiaSOL&JltSMS

fiitegfiitud •U-MUrjll-'i>ii Eii^.-uij.-ii'ji

m^umc •ITi3ci(.F.a;jiisSir«ir.,l:r.Hi.i

iiiii?Ir.«:,ai?r'

<„-. HamBpMWtoplluailrjnl ^poiusri i i iSyRDF Oaleway

Figure 11-7. The 24 President Initiatives in the Capability Advisor

Initiative {G2B): Business Gateway
- - Policy Engine, Permil Manager, Eligibiliti'Advisor

•; The Business Oatevay f BO"), business.go¥, wlil provide t le Nalion's
busirir issis Willi a s ngle, inlernel-basecl access point lo yoveriiment
services and I'lformalloi' lo help businesses with their opeiatlons-

• Small Business Adrrilr;istra!ion
.. Office 01 Managemeul and Butijjel
. Business Gateway Proorairi

GiweiTirne'it lo Business

i hliji jVA^wwhil^hiMiisij s;i.nr/nfnl:'/ei.riwA:-3-!v|ji| nimi

Figure 11-8. The Business Gateway Initiative

296 Semantic Web Services, Processes and Applications

By following the link to the "Eligibility Advisor" Capability, the details
of that capability appear, along with links to where else the capability is
applicable, see Figure 11-9. These are links inferred through the "inverseOf
property.

Capability Case: Eligibility Advisor

Granls.gov, E-Loans, Business Gateway. Disaster Management
Provide a way for a user to assess eligibility for a grant, loan or other
governmenl-provldea service.

Add ttiis Capability Case to my Requirennents

Figure 11-9. The Capability Case "Eligibility Advisor"

The "Add" buttons acts in the metaphor of a shopping cart and allows the
system to suggest potential partnerships. As each capability is added, the list
of possible partnerships is updated, as illustrated below in Figure 11-10.

Selected Capability Cases
• Eligibilllv Advisor Iremovel
• Alert Me [remoye]
• Policy Engine [remoyel
• Loan Locator [remove!
• Interactive Map [remoyel

Suggested Partners
• Federal Asset Sales Partnershiri (for Policy Engine)
• Recreation One Stop (for Interactive Map)
• Ttie OovBeneflts.gov (for Alert Mel

Partnership: Recreation One Stop

wimmm
Partnership includes supportlnj partners and data shartnfl partners
Department otthe Interior
InvltinB Partners
Smithsonian Institution, General Sereices Administration, Bureau of
Land ManagemenI, Tennessee Valley Authority, Bureau of Reclamation,
Unlled Stales Geoloflical Suryey. Federal Highway Administration,
National Oceanic and Atmospheric Administration, Unitsd States Fish
and Wildlife Sendee, National Paris Service
Recreation One-Stop Program

Figure 11-10. Selected Capability Cases and Suggested Partners

Semantic Technology for E-Government 297

The system finds partnerships by following relationships in the model.
Given a Capability Case, the system can find Capabilities that it enab les .
Each Capability is implemented by some IT Program. Each Program in
turn is performed by a Partnership. Many of these links are the inverse
of properties found in the model.

We can express a rule of this sort in a straightforward way using a query
language for RDF, in which patterns of nodes and links can be expressed in
an abstract form. The query engine finds matches in the graph for the
abstract triples.

We give an example of such a rule using the RDFQL query language of
RDF Gateway (a working draft for a standard query language SPARQL
(Prud'hommeaux et al, 2005) has recently become available).

In RDFQL, a pattern for a triple is expressed as three elements set off in
{braces}; the first element corresponds to the predicate of a triple; the
second to the subject, and the third to the object, so each pattern is of the
form {predicate subject object}. Entities in the triples can either be literals
corresponding to nodes in the graph, or variables, which can match any
node. Variables are indicated with a question-mark (?) as the first character
of the name.

The rule for discovering partnerships shown above appears in Figure 11-
11.

select ?a ?b ?c ?d
using #ds, fea_full
where {[rdfitype] ?a [CapabilityCase]}
and {[enables] ?a ?b)

and {[rdf:type] ?b [Capability]}
and {[isImplementedBy] ?b ?c}

and {[rdf:type] ?c [Program]}
and {[isPerformedBy] ?c ?d}

and {[rdf:type] ?d [Partnership]} ;

Figure ll-U. Example of an RDF Gateway rule, 'getSuggestedPartnersO'

Figure 11-11 can be transcribed into English in a straight-forward
manner; "Find ?a of type CapabilityCase (i.e., ?a in a triple subject=?a,
predicate=rdf:type, object=CapabilityCase), and a Capability ?b that ?a
enables. From that ?b, find a Program ?c that is implemented by ?b. Finally,
find a Partnership ?d that ?c is performed by." This query describes a graph
structure that is matched against the model; every matching set of Capability
Case, Capability, Program and Partnership is found. With a more involved
query, further filtering can be done, e.g., to ensure that only the selected

298 Semantic Web Services, Processes and Applications

Capability Case is considered, and tliat more information (e.g., tlie print
name) is retrieved for each entity.

Class: WEB Service

• Find a Capability
• Find a Service
• Find an Agency
• Get Status of a Business Case
t Get Status of a Grant Application
• Get Status of a Loan Application
• Register for a Loan
• Submit a Business Case
• Subscribe to a Capability
• Unsubscribe to a Capability
• Verity Policy

Figure 11-12. Web Services listing in the eGOV Capability Advisor

Capability Cases are eitlier realized as components or as Web Services.
Some envisioned Web Services are listed in Figure 11-12.

By associating Web Services with the eGOV and FEA-RMO ontologies
a much richer directory service can be implemented.

The FEA-RMO Ontologies have been used to build a prototype of an
ontology-driven FEA Registry (TopQuadrant FEA Registry, 2005). A
working prototype of the Capability Advisor can be accessed on the Web
(TopQuadrant eGOV Capability Advisor, 2006).

6. CONCLUSIONS

The entire development process for the ontologies of FEA-RMO and the
FEA Capability Advisor took just about three months, from project inception
to delivery, confirming that it is possible to deliver semantic technology
solutions in short time frames. A key to this speedy development was a good
starting point; the published FEA RM. Although it was developed and
delivered as a natural language publication, FEA RM was highly structured
and quite consistent. Along with the use of ontology design patterns, this
allowed the modeling process to proceed smoothly and with minimal
ambiguity.

RDF as a foundation technology provided a great deal of the
functionality needed to support distribution of the models in a coherent and
semantically consistent way. The role of OWL was more subtle. While the
reasoning capabilities of OWL were essential in allowing the models to

Semantic Technology for E-Government 299

express the appropriate constraints between the elements, the actual
reasoning capabilities required were considerably less than those specified in
the OWL standard (Patel-Schneider, Hayes, Horrocks (ed), 2004).

Reasoning could be achieved with a simple reasoner for RDFS reasoning,
combined with A-box reasoning on inverses, transitive properties, and
owL'hasValue restrictions. This reasoning can be handled quite easily by
technologies such as Rete (Forgy, C, 1982), Catalog (Ceri, S., Gottlob, G.,
Tanca, L., 1989), Prolog (K. L. Clark and F. G. McCabe, 1982), and need
not make use of tableaux algorithms. This suggests that perhaps other
reasoning strategies could have considerable applicability in the semantic
web.

The FEA-RMO project suggests a whole area of applicability of semantic
web technologies. Enterprise Architecture is by its very nature a distributed
knowledge capturing problem and needs technologies that can support the
aggregation of knowledge held in different locations. The features of the
FEA Reference Model that made RDF/OWL so appropriate (distribution of
modifications, the need for modifications to be able to specify just what part
of the model is being modified) applies to reference models in general, not
just the FEA RM.

The FEA Capabilities Advisor has demonstrated the power of inferencing
in supporting portfolio management across agencies. In any reuse initiative
that attempts to save money through collaboration, having timely and
accurate information, is crucial for efficiency and effectiveness. The appeal
of this pilot project is how the federation of simple OWL models can enable
an up-to-date representation of the structure, services and IT capabilities of
government agencies. Using semantic technology enables a federated
approach to IT Portfolio Management.

7. QUESTIONS FOR DISCUSSION

Beginner:
1. What is an Enterprise Architecture?
2. How might an Enterprise Architecture help an organization be more

efficient, effective and innovative?
3. Mention was made in the paper about the power of traversing graphs to

make connections across concepts in the model. Consider what
connections within and across enterprises would be interesting to make
and discuss how they may be supported by EA ontologies.

4. What aspects of an Enterprise might you want to model? Which aspects
of an Enterprise should be left out of a model and why?

300 Semantic Web Services, Processes and Applications

Intermediate:
1. In a project involving multiple ontologies, what factors influence how

you determine which concepts reside in which ontologies?
2. When ontologies need to be re-factored, how might concepts and

properties from one ontology be migrated to another? In addition to the
concepts, what other modeling constructs would need to be moved?

3. What are the alternative ways to model an Enterprise Architecture? How
do they compare with the ontology approach?

4. How could a Federal Enterprise Architecture improve government
services at the state (or provincial, or county, or regional) level? What
role could the Semantic Web play?

Advanced:
1. Referring to Figure 11-6. Suppose that a component named Atlas is

alignedWith technology "J2EE". What else can you say about Atlas and
J2EE, based on the semantics of RDFS and OWL?

2. The Federal Enterprise Architecture has four subfunctions under the line
of business "education", "Cultural and Historic Exhibition", "Cultural
and Historic Preservation", "Elementary, Secondary and Vocational
Education", and "Higher Education". The EPA has a charter to provide
information to the population about environmental factors that affect their
health and well-being. What extra sub-functions might the EPA want to
add, under the line of business "Education"? What other agencies might
also provide services that operate under that same sub-function?

3. Information modularity and reuse are good engineering practices. Why
did the eGov initiative require a Presidential Order? What forces might
have prevented the agencies from cooperating in the absence of the order?
Which of these forces are particular to government, and which ones could
be a factor in other semantic application areas?

4. What aspects of an Enterprise would need to have rules in addition to
OWL?

Practical Exercises:
1. Explore the FEA-RMO Ontologies using an ontology editor (e.g..

Protege, or SWOOP).
2. Browse the FEA Capabilities Advisor prototype at

http://www.solutionenvisioning.com/tq/prototvpe/eGOVAdvisor. Use the
"Capability Cases" to look for partnerships.

3. Run the FEA Ontology-Based Registry demonstrator, FEA-RMO, at
http://www.solutionenvisioning.com/tq/prototvpe/FEARMO.

4. Visit the US government official list of executive agencies at
http://www.loc.gov/rr/news/fedgov.html. What capabilities can you think

Semantic Technology for E-Government 301

of that could be shared between different agencies? Try the same thing
with governments of other countries. Could capabilities be shared from
one government to another?

8. SUGGESTED ADDITIONAL READING

• Antoniou, G, and van Harmelen, F. A semantic Web primer. Cambridge,
MA: MIT Press, 2004: An excellent introduction to Semantic Web
languages.

• The FEA-RMO papers provide more insight into how the ontologies
were modelled (Allemang et al., 2005a, 2005b).

• The FEA-RMO Ontologies themselves may make interesting reading.
These are on the Web at the following URLs:

FEA - http://www.osera.gov/owl/2()04/l 1/fea/FEA.owl
BRM2PRM - http://www.osera.gov/owl/2()04/ll/fea/BRM2PRM.owl
PRM - http://www.osera.gOv/owl/2004/l l/fea/prm.owl
BRM - http://www.osera.gOv/owl/2004/l 1/fea/brm.owl
SRM - http://www.osera.eov/owl/2004/ll/fea/srm.owl
TRM - http://www.osera.gOv/owl/2004/l 1/fea/trm.owl
Merged Ontology - http://www.osera.gov/owl/2004/ll/fea/feac.owl

Munindar P. Singh, Michael N, Huhns, "Service-Oriented Computing:
Semantics, Processes, Agents", John Wiley & Sons, 2005: Provides good
coverage of Semantic Web Services standards and how semantics will
influence Service-Oriented Architectures.
Polikoff I. and Coyne R.F., "Towards Executable Enterprise Models:
Ontology and Semantic Web Meet Enterprise Architecture", Journal of
Enterprise Architecture, Fawcette Publications, August 2005: gives a
more detailed coverage of enterprise architecture models.
Pollock, J. and Hodgson, R. Adaptive Information: Improving Business
Through Semantic Interoperability, Grid Computing, and Enterprise
Integration, Wiley-Interscience, September 2004.

9. REFERENCES

Allemang et al (2005a), Federal Reference Model Ontologies (FEA-RMO), White Paper,
htlp://www.topquadrant.com

Allemang et al. (2005b), "Enterprise Architecture Reference Modeling in OWL/RDF" in
"The Semantic Web - ISWC 2005, 4th International Semantic Web Conference, ISWC
2005", Galway, Ireland, November 6-10, 2005, Proceedings, ISBN: 3-540-29754-5

302 Semantic Web Services, Processes and Applications

Brickley, Guha (ed). RDF Vocabulary Description Language 1.0: RDF Schema
http://www.w3.org/TR/rdf-schema/

Ceri, S., Gottlob, G., Tanca, L (1989), "What you always wanted to know about Datalog (and
never dared to ask)", IEEE Transactions on Knowledge and Data Engineering 1(1) pps.
146-166

Collaborative Expedition Workshops, httD://colab.cim3.net/cgi-
bin/wiki.pl?BxpeditionWorkshop

FEA-RMO (2004), Federal Enterprise Architecture Reference Model Ontology,
http://www.osera.gov/

Federal Enterprise Architecture (2004), http://www.feapmo.gov/
Forgy, C (1982) "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match

Problem", pp 17-37, Vol 19, Artificial Intelligence
Jackson, Joab (2005), "GSA gets semantic with architecture reference models". Government

Computer News, 2/07/05, Vol. 24, No. 3, http://www.gcn.com/24 3/enterprise-
architecture/3 5004-1 .html

K. L. Clark and F. G. McCabe, (1982), "PROLOG: A Language for Implementing Expert
Systems", in J. E. Hayes, D. Michie, and Y.-H. Pao, editors, Machine Intelligence, volume
10, pages 455-470. Ellis Horwood, Chichester.

LSU Libraries (2003), Lousiana State University Libraries: Federal Agencies Directory,
http://www.lib.lsu.edu/gov/fedgov.html

Niemann, B. (2(X)5), Web-Services.gov, http://www.web-services.gov
Patel-Schneider, Hayes, Horrocks (ed), (2004), "OWL Web Ontology Language Semantics

and Abstract Syntax", http://www.w3.org/TR/owl-semantics/
Polikoff, I, Coyne, R.F. and Hodgson, R., (2005), Capability Cases - A Solution Envisioning

Approach, Addison-Wesley.
Polikoff I. and Coyne R.F (2005), "Towards Executable Enterprise Models: Ontology and

Semantic Web Meet Enterprise Architecture", Journal of Enterprise Architecture,
Fawcette Publications, August 2005

Pollock, J. and Hodgson, R. (2004) Adaptive Information: Improving Business Through
Semantic Interoperability, Grid Computing, and Enterprise Integration, Wiley-Interscience

Prud'hommeaux, Eric and Seaborne, Andy, eds. (2005), "SPARQL Query Language for
RDF", http://www.w3.org/TR/rdf-sparql-querv/

Rector (2005), A. Representing Specified Values in OWL: "value partitions" and "value sets"
(ed) http://www.w3.org/TR/swbp-specified-values/

SICoP (2005), Semantic Interoperability Community of Practice, http://web-services.gov/ and
http://colab.cim3.net/cgi-bin/wiki.pl7SrCoP

SICoP Module 1 (2005), "Introducing Semantic Technologies & the Semantic Web",
http://colab.cim3.net/file/work/SICoP/WhitePaper/SICoP.WhitePaper.Modulel.v5.4.kf02
1605.doc

The SICoP Module 2 (2006), "The Business Case for Semantic Technologies", http://web-
services.gov/SICOPsemwave2006vl .O.pdf and
http://colab.cim3.nel/file/work/STCoP/2005-09-14/BizValue050914.pdf

SICoP Module 1, Japanese (2005), "Introducing Semantic Technologies & the Semantic
Web", http://www.semanticweb.ip/SICoP/SICoP%94%92%8F%91.pdf

TopQuadrant eGOV Capability Advisor (2006),
http://www.solutionenvisioning.com/tq/prototvpe/eGOVAdvisor

TopQuadrant FEA Registry (2005),
http://www.solutionenvisioning.com/tq/prototvpe/FEARMO

TopQuadrant, Enterprise Architecture, http://www.topquadrant.coTn/tq ea solutions.htm

Semantic Technology for E-Government 303

u s President's E-Government Initiatives (2001), Office of Management Budget,
http://www.whitehouse.gov/omb/egov/c-presidential.html

Chapter 12

BIOINFORMATICS APPLICATIONS OF WEB
SERVICES, WEB PROCESSES AND ROLE OF
SEMANTICS

Satya Sanket Sahoo and Amit Sheth
Large Scale Distributed Information Systems (LSDIS) Lab, Department of Computer Science,
University of Georgia, GA, USA. - (sahoo,amit}@cs.uga.edu

1. INTRODUCTION

The Human Genome Project (HGP) started in 1990 and ended in 2003,
with the aim of discovering the 20,000-25,000 human genes (Barbara R.
Jasny et. al. 2003), was the progenitor of the discipline of bioinformatics
(David S. Roos 2001). The use of computational tools to store the large
amount of data generated by the HGP, to retrieve data and critically to share
the data for further study led to development of web based tools and a
nascent data management framework.

A biological experimental process consists of multiple stages from
'culture' (involving the growing or collection of sample that contains
material of interest) to analysis of the output of a software application. As
we see in Figure 12-1, data is generated at all the stages of the experimental
lifecycle, in various formats, with different context of use and in extremely
large volume. This experimental lifecycle (with various modifications in
terms of implementation) with rapid increase in automation at each step is
increasingly characterizing biology, from Genomics to Proteomics to
Glycomics. This approach is also called 'High-Throughput Experiment' and

306 Semantic Web Services, Processes and Applications

is being aggressively adopted by the biological community to deal with the
inherent complexity of biology.

Figure 12-1. A generic biological experimental lifecycle

One of the early data management policy decisions in the HOP was
making available the generated data to the community-wide research teams
for further study. The World Wide Web played an important role in sharing
of this data and making tools, using this data, available for use to biologists.
Currently, a large number of applications like BLAST - for homology based
search, GenScan - for ab intio gene prediction, CUBIC - for binding site
prediction, microarray data analysis or ProDom - for protein domain
partition are web based tools that use web accessible databases like PDB,
KEGG, nr or SwissProt to provide a wide range of computational tools to
biologists.

Web Service, with its attributes of platform - independence, web-based
access is an ideal framework for ensuring the worldwide use of these
bio informatics resources. Hence, Web Services have been rapidly adopted
by the community to enhance the accessibility and usability of their tools.
Many bioinformatics tasks involve complex, multi-step processes. If the
intermediate steps are implemented as Web Services, their integration to
form a Web Process is a logical next step.

2. SEMANTIC WEB SERVICES IN LIFE SCIENCE

The chapter focuses on a wide spectrum of disciplines in biological
sciences and the application of Semantic Web Services, but there are

Bioinformatics Applications of Web Services, Web Processes and
Role of Semantics

307

multitudes of other fields in bioinformatics that are not covered. Hence, the
readers are encouraged to use this chapter as a learning ground to understand
the uses of Semantic Web Services and apply it in the context of other areas
of biological sciences and related bioinformatics.

There are now more a thousand Web Services (Stevens's et. al. 2006)
offering access to biological resources including, public sequence databases,
sequence alignment tools and, format converters. Most of these resources are
standalone computational tools with minimal interoperability amongst
themselves. Often, the output of one Web Service has to be manually ported
from one service to another by the user. For example, a BLAST (Altschul SF
et. al. 1997) Web Service may require the input data to be in a standard
format (like FASTA), and the users have their data in a local format. But,
there is another Web Service that takes in data, in any comma separated
format, and converts it into FASTA format. Thus the user has to physically
move the output of the converter service to the BLAST Web Service as
input.

OUTPUT/ INPUT.

INPUT FORMAT
CONVERTER

W E B SERVICE

•i ipt *

BLAST W E B OUTPUT
SERVICE

t
Figure 12-2. Current Web Services often require manual intervention

This form of manual intervention is not feasible in high throughput
experimental framework that involves largely automated generation of
extremely large amount of data. Hence, composition of Web Services into
Web Processes is increasingly becoming a prerequisite in bioinformatics.

Search and discovery of relevant Web Services by researchers can be
optimized by use of Semantic Web technology. Using semantic annotation
of Web Services, using frameworks like WSDL-S (R. Akkiraju et. al. 2005),
will enable semi-automated or automated discovery of Web Services.
Moreover, semi-automated or automated composition of candidate Web
Services into Web Processes, involving complex processes, mandates the

308 Semantic Web Services, Processes and Applications

use of Semantic Web technology to match input, output and data formats of
constituent Web Services and their seamless integration.

3. BIOINFORMATICS WEB SERVICES AND
PROCESSES

In the following sections, we describe various fields of biological
research and the application of Web Services and Web Processes in these
areas. In the section, 'Case Study' we discuss in-depth the role of semantics
in the search, discovery and integration of Web Services into Web
Processes, with specific example in glycoproteomics. The three broad areas
of life sciences research, we describe, are Computational Genomics,
Computational Proteomics and Structural Bioinformatics.

3.1 Computational Genomics

The use of computational tools to analyze and interpret genomic data is a
broad definition of computational genomics. We cover two specific sections
of this vast and rapidly developing field namely, 'genomic sequence
comparison' and 'finding potential genes' in a sequences organism.

Genome of an
organism

(DNA)

Xrsrksoriotiorv Units i tiriGXiOMSi proQLicis
(RNA) (s-a-: Proteins)

Figure 12-3. The central dogma of biology'

' # RNA image source: <http://www.fhi-berlin.mpg,de>
* Protein image source: <http://glycam.ccrc.uga.edu/glycam_research.htral>

Bioinformatics Applications ofWeb Services, Web Processes and 309
Role of Semantics

The genome of an organism (constituted of the Deoxyribose Nucleic
Acid i.e. DNA) contains the genetic information that is needed by an
organism to manufacture needed biological substances to survive. Parts of
this genome is transcribed into a biological substance called Ribose Nucleic
Acid i.e. RNA. This RNA is, in turn, translated by other cellular units
(ribosomes) that manufacture the corresponding protein or other needed
substances. This is also called as the 'central dogma' in biology.

Using computational tools, in addition to traditional experimental
approaches, the computational genomics field involves gene finding and
sequence comparison among other steps. The use of Semantic Web
Processes that integrate heterogeneous computational resources,
implemented as semantic Web Services, will increasingly play a critical role
in aiding genomic researchers.

3.1.1 Bio-sequence comparison

Background
The DNA and RNA biological entities in an organism are made up of

linear sequences of biochemical substance called nucleotides. These
nucleotides are represented by four 'bases' namely Adenine (A), Guanine
(G), Cytosine (C) and Thymine (T) (which is replaced by Uracil (U) in
RNA).

I I
ATG G C CTTT A A.\.4 A kX A G GG CC CCT n"l'A AA A

Figure 12-4. An example of sequence of nucleotides

In case of proteins, the sequences are made of amino acids. There are 20
known amino acids and their combination (along with other biological
entities like sugars) decides their biological functions. Each of the 20 amino
acids is represented using a specific character, similar to the nucleotide
sequences).

V ,i V WK OA GI.SYI K V.SOl V.SK ^\ V. DA LUTivi'K.AH

Figure 12-5. An example of sequence of amino acids

310 Semantic Web Services, Processes and Applications

In this section, we focus on the comparison of two or more nucleotide
(DNA) or amino acid (protein) sequences. The main aim of aligning
sequences is to understand or discover functional, structural and
evolutionary similarities. The comparison is done; for example, between a
newly sequenced genome of an organism against existing genomes to
discover their functionality or identify gene sequences (contain the code for
a given protein or other biological entity). The degree of similarity between
sequences is a pointer to the gene functionality or identification of the
unknown sequence. To compare these linear sequences, they are aligned
using algorithmic approaches (that may also use various heuristics to reduce
the search space). There are various types of alignments:
a) Global vs. local alignment: In case of global alignment, the sequences
are compared in their entirety and gaps in the sequences are inserted, where
needed, to make the compared sequences of same length. But, in case of
local alignment, a particular portion of the sequence is compared against a
portion of another sequence. The aim of local alignment is to look for the
optimal alignment between the sub-regions.
b) Gapped vs. ungapped alignment: The alignment algorithm introduces
gaps in the sequences to optimize the match, in case of gapped alignment. In
case of ungapped alignment, gaps are not introduced in the sequences.
c) Pairwise vs. multiple alignments: Alignment involving two sequences
is called pairwise alignment and that involving multiple sequences is called
multiple alignment.

There may any permutation of the above types of alignment, for example,
local pairwise ungapped alignment or global multiple ungapped alignment.

Role of Semantic Web Services
There are many web-based algorithms for alignment of sequences, with

the Basic Linear Alignment Search Tool (BLAST) as the most popular tool.
There are two variants of BLAST tool:
a) NCBI BLAST: http://ncbi.nlm.nih.gov/BLAST
b) WUBLAST: http://blast.wustl.edu

BLAST utility is available in form of Web Services. The Web Services
have been developed by many research groups namely, European
Bioinformatics Institute (EBI,
www.ebi.ac.uk/Tools/webservices/WSWUBlast.html), IBM alphaWorks
(http://www.alphaworks.ibm.com/tech/ws4LS) and are also available as
parallel or distributed implementations. For example, the WSWUBlast, at
EBI, is used to compare a novel sequence with those in a protein or
nucleotide database (http://www.ebi.ac.uk/Toois/webservices/services.html).

Bioinformatics Applications of Web Services, Web Processes and
Role of Semantics

311

Step 1\ The input to the Web
Pro:e33 la a protein ID.

Protein ID
Numtjei

Step 2. A Web Service gets the
cnrresnonrtinQ seqience

GetSequenceWeb
Ser/icc

step 3: This proteli sequence is :he
input to trie BLAST seNce,

Protein Sequence

step 4: The tBI^STn Wela Service
cormpares the sequence against a
nucleotice sequence database.

tDLASTn Web
Service

step 5. rinaiiy, tre user gets tne
BIJ^ST report.

BLAST Repor

Figure 12-6. A bio-sequence comparator Web Process involving multiple Web Services in
sequence

There has been a lot of progress on integrating these Web Services into
Web Processes. Many of these initiatives use semantics in the composition
of Web Processes using a combination of generic Web Service description
and domain ontologies. The generic Web Service description ontologies
such as WSDL-S, OWL-S (David Martinet, al. 2004) specify common Web
Service concepts. The domain ontology specifies concepts that relate the
Web Service to a domain, such as type of service. Workflow engines,
namely Tavema (Tom Oinn et. al. 2004) and Pegasys (Sohrab P Shah et. al.
2004), are initialized with available BLAST related Web Services that can
be configured and enacted as a workflow.

312 Semantic Web Services, Processes and Applications

3.1.2 Computational gene finding

A gene in an organism's genome codes for a protein or other biological
substances. Computational gene finding involves the identification of
sections in the genome of an organism that encodes for relevant bioentity.

cgtagaqtQC-'agtcraqtcQlaqcgccoiaqtcqatcqtqt
gggtagtagctgatatgaaacligatgagcggatgctgagt
gcagtggcatgcgalgteGLa|gaLigcggtaQgtagacttc
gcgcataaagctgsgcgagatgattgcaaagragttagat
gagctgatgctagaggtcagtgactgatgatcgatgcatgc
atggatgatgcagcraatcgatgtagatgca

GENOME

NucleolldB sequences thai constitute poteniisl genes

Figure 12-7. Genes in a genome

There are two approaches for gene finding:
a) Homology-based methods: A newly sequenced genome, with unknown
genes locations, is compared to homologs in sequence databases. By finding
similar sequences, with known genes, to the newly sequenced genome,
genes in the newly sequenced genome are predicted.
b) Ab initio methods: This method involves the prediction of genes in a
genome using common distinguishing characteristics of known genes.

Some of the common distinguishing characteristics of genes are coding
regions and boundaries of coding region.

Role of Semantic Web Services:
There are many computational gene prediction tools (using ab initio

method) that use different algorithmic approaches using multiple modeling
techniques. The main drawbacks of homology based technique are the
required availability of homologous genomes to the newly sequenced
genome (else, homology based prediction is not possible) and the, often,
inaccurate prediction of gene boundaries. The following are some of the
popular available tools using ab initio techniques:
a) GRAIL: (http://compbio.oml.gov/Grail-1.3/) This is a gene finding
program for eukaryotic genome, including human and mouse

Bioinformatics Applications of Web Services, Web Processes and
Role of Semantics

313

b) GeneScan: (http://genes.mit.edu/GENSCAN.html) This tool is based on
generalized hidden markov model (GHMM) which models both strands of
the DNA. It is mainly used for eukaryotic genomes.
c) Glimmer: ("http://cbcb.umd.edu/software/glimmer/) This tools is
generally used for gene prediction in prokaryotic genomes.

Only GeneScan, out of the above listed tools, is also available as a Web
Service. A scenario for the use of a Web Process would be for the
comparison of results from similar tools (implemented as Web Services) to
arrive at a common predicted gene list. This combined approach to ab initio
gene prediction, using different algorithm and representational model, may
be of interest to bioinformaticians.

GeneMark
W«b

^ Service

Predicted
Prokaryot ic

genes

GeneScan
Web

Service

predicced
Prokar^'otic

genes

/
Comparator

Wsb
\ SEDCiCfi

Glimmer
WBb

Service

Common p r e d i c t e d

P t e d l c t e d
E r o k a r y o t i c

gftn'ss

Figure 12-8. This Web Process involves parallel and sequential execution of multiple Web
Services to predict genes in given genome.

3.2 Computational Proteomics

Proteomics is the study of complete set of proteins produced by a species.
The main goal of proteomics is to identify and quantitate the proteins that
are present in an organism, cell type, tissue or other cellular parts. We cover
one sub area in the proteomics i.e. the prediction of the function of a protein.
Other areas of computational proteomics involve the use of similar suite of
computational tools, used independently or in combination, to study and
analyze proteins.

314 Semantic Web Services, Processes and Applications

Lc^i^ps

Figure 12-9. Secondary structure of Triose Phosphate Isomerase protein (IChain)*

3.2.1 Functional prediction of proteins

Proteins may be classified according to their structure or their functions.
These classification parameters are not mutually exclusive, but are
interdependent. Proteins function is determined by many factors including its
constituent sequence, its structure as well as other attached biological
entities like sugars. The structure of a protein is also determined by its
function, evolved over a period of time.

Protein function may be predicted at multiple levels of specificity:
a) Generic function: For example, a given protein is an enzyme
b) Specific function: The given protein is an enzyme involved in digesting
other proteins.

Role of Semantic Web Services:
There are many different approaches to predict the function of a protein,

including:
a) Sequence comparison: The new sequence is aligned to known genes in
a sequence database and function of the new gene is derived from the known
genes. One of the BLAST tools, PSI-BLAST, is used for sequence
comparison.
b) Phylogenetic profile analysis: The phylogenetic profile of a protein is a
string that encodes the presence or absence of protein in a sequenced

'protein image source: RCSB PDB (http://pdbbeta.rcsb.org/pdb) using PyMOL
(http://pvmol.sourceforge.net/) application

Bioinformatics Applications of Web Services, Web Processes and
Role of Semantics

315

genome. The phylogenetic profile of proteins that participate in common
functions are often 'similar'. An online tool that does phylogenetic profile
analysis is Protein Link Explorer (PLEX) at
http://bioinformatics.icmb.utexas.edu/plex/plex-new.html.
c) Protein - protein interaction: The interaction between two proteins is
a useful way to predict the function of new protein. There are many public,
web-based protein interaction databases like Protein Interaction Database
(DIP) at http://dip.doe-mbi.ucla.edu/.

Similar to gene prediction method, these multiple approaches to function
prediction in protein may be combined to arrive at a consensual result. This
would involve the implementation of the above listed resources as Web
Services. These Web Services may be composed, with a number of
permutations, into a Web Process.

Consensual
P r o t e i n

f uma^ion

Figure 12-10. A Web Process combining multiple Web Services to output a consensual
protein function

3.3 Structural Bioinformatics

The determination of structure of biological entities including proteins,
RNA, and simulation of interactions between proteins are computationally
intensive areas of research in bioinformatics. The structure of a biomolecule
plays a critical role in determining its characteristics and functionality.

316 Semantic Web Services, Processes and Applications

3.3.1 Molecular Dynamic simulation of proteins and interactions

The constituents of biological entities i.e. molecules are perpetually in
motion, except at absolute zero temperature. As relevant biological activity
do not take place at absolute zero temperature, the motion of the constituent
molecules in biological substances determine their conformation. In flexible
molecules, such as RNA, proteins or sugars, a single structure cannot
describe their structure. Hence, the structure of such biological entities is a
suite of individual conformations.

Confornnttlon I Conformation I Conrormatlon III

Structure of thia entity la a combination of
Indiyjdual confannatmna

Figure 12-11. The suite of conformations, varying over a particular parameter (E.g. time)

Role of Semantic Web Services
The simulation of these individual conformations is calculated using the

multitude of forces that act on an entity. There are many algorithmic
approaches that take into consideration the various factors acting on an
entity to determine the different conformations that fit.

The implementations of these algorithms are extremely expensive in
terms of computational resources. There are multiple approaches to optimize
the performance of these applications, including dedicated clusters and grid
computing.

Grid based Web Services are an exciting area of current bioinformatics
research. The notion behind this approach is to distribute the computation of
a Web Service across a grid, perhaps transparently to the user, to enhance
the time based performance parameters. "^Grid (Carole Goble 2005) is a
project involved in the use of grid based services (mostly Web Services) for
data and application resource integration.

Bioinformatics Applications of Web Services, Web Processes and 317
Role of Semantics

Web processes, composed of 'grid-aware' Web Services would be ideal
to carry out molecular dynamics simulation computations. A potential Web
Process may be a process involving the multiple services that simulate the
conformation of a biomolecule under multiple conditions, namely
temperature, pressure or time.

4. CASE STUDY

The common thread in all the above discussed fields of bioinformatics is
the implementation of available resources as Web Services and their
integration into Web Processes to carry out complex, multi-step biologically
relevant function. The discovery of candidate Web Services and their
integration into Web Processes is possible only within a semantic
framework. In this section, using a case study, we will expand on the
application of semantics in the implementation of Web Services and
composition of Web Processes in glycoproteomics.

Background
Proteins, the biological workhorse in an organism, have many

modifications after their translation (refer to figure on 'The central dogma in
biology') called post-translational modifications. These post-translational
modifications play an important role in deciding the function of a protein.
One of the post-translational modifications involves the attachment of
glycans (modifications of sugars), this process is called glycosylation.
Glycoproteomics involves the study of interactions between proteins and
glycans. One of the main objectives of glycoproteomics is to identify
glycoproteins and quantify their presence.

As part of the Integrated Technology Resource for biomedical glycomics,
established by National Center for Research Resources, a team of biologists,
biochemists at the Complex Carbohydrate Research Center (CCRC) and
computer scientists at the Large Scale Distributed Information Systems
(LSDIS) lab at the University of Georgia are working towards the
standardization of experimental protocols for high-throughput
glycoproteomics research. The different phases of a workflow involved in
the glycoproteomics experiment are detailed in Figure 12-12.

The workflow involves both wet-lab experiments (involving experiments
conducted by biologists) that cannot be completely automated using
computational applications. But, there are many steps that can be automated
and exposed as Web Services.

318 Semantic Web Services, Processes and Applications

Figure 12-12. The result of a post-translational modification (glycosylation) in proteins
(Glycoprotein image source: http://www.functionalglycomics.org/static/consortium/)

A'A Hree Salt: Sim-Xi-f.i-. intoriown S^steci

'cfNWKM.cn,*a;:iQ.i'.i-;iFir4TK»-io=i^ic3.yrxs>iAiia->j ' ' ;

w
i*H..\,l

L _M.^B.t_
.1 r.i.r~

lOi«pt5Mi«fta*ffl.

...,..:.:...:.£'-...,.--...-r,
[a-«P!i* iaFaioi i . j

F«»*PB:»y. J^-!

.t
—r̂ 31S

•
1 msiBa ^
J 1—!»!?«»»»» Kn ^ ^

! mieMs : [rm--s|»«isj

"n. r̂ »•

Figure 12-13. The workflow being developed as part of the biomedical glycomics project at
the Complex Carbohydrate Research Center (CCRC) and the Large Scale Distributed

Information Systems (LSDIS) Lab

Bioinformatics Applications of Web Services, Web Processes and 319
Role of Semantics

<'?Kifil v e r s i o n = " 1 . 0 " t n c o d i n g = "OTF-8"•?>
<TO5dl : def i n i t i i o n s •i5ai:gret:M'awiespace="ui:n:iv3p"

TOS5ero="ht;tsp://T<rww. ibiin.coKv'jsjftlns/'roebServices/TOSeTC
a n t i c s "

jtinl n s ;
Pi:oiPi:eO="hfei3p;//Xsdis.cs.-uga.edi3^'ori,t;olof i e s / P r o P r
eO.owl" >

<w5dl:fc7pe5>
< 5 chema t aigetName sp ac e = " u r n ; n g p "

xml ns = "hutjp; / / www. *w3.01 gr/2 0 01/XHX S chema" >

</coinpleKType>
</scheiria>

</TO5dl:type5>

^5ci^:mdelRe£exenc«="ProPieQ|ptpt.ide_5t<iuence">|
— _ ^^ | j j j^ .^ j_ .p^^ j ; . | _ , j . j . j j j | j , j j ^^

•t;ype="soapenc: s t r i n g " / >
<W5 d l : p ar-fc name=" i n i "

•type = "5oapenc; s t r i n g " / >
•Cwsdl ; par t ; nan'ie="in£"

•fc'j'pe="soapenc: s t r i n g " / >
</'M5dl: wie55age>

Figure 12-14, An example WSDL-S of a Web Service used in the glycomics workflow

Semantic annotation of these Web Services with concepts from domain
ontology enables their search, discovery and integration using semantic
techniques. The domain ontology, ProPreO (S. S. Sahoo et. al. 2005), is used
in the semantic annotation of Web Services used in the glycomics workflow.
ProPreO is an ontology to model the complete glycoproteomics experiment.

The semantic annotation of these Web Services is at two levels:
a) Service level: This annotation describes the Web Service as a
monolithic entity. Hence, a user searching for a Web Service that can parse a
protein FASTA file and output a list of protein sequences may search using
keywords that describe the task implemented by the Web Service.
b) Operation level: The specific operations in a Web Service may also be
annotated using relevant concepts from ProPreO. The annotation includes
the description of the input and output of an operation.

320 Semantic Web Services, Processes and Applications

Service level semantic annotation help in the search and discovery of
individual Web Services, whereas, operation level semantic annotation
enable the use of multiple Web Services (or their operations) to be integrated
into a Web Process.

5. CONCLUSION

The use of Web Services is increasing at a rapid rate in bioinformatics.
Web Services offer the ability of providing web-based access, platform-
independent development and deployment. Web Processes, constituted of
Web Services, enable automation of complex multi-step processes. The use
of Web Services technology enables biologists to process and analyze data at
equal pace with high-throughput experimental data generation. But, with
increasing number of available Web Services, it is almost impossible to
search for a suitable Web Service with specific input and output, by a
researcher. Further, the composing of a Web Process using these candidate
Web Services is a daunting task for any user.

Hence, use of semantics namely, ontology-based keywords to annotate
Web Services enable application to search, discover and integrate Web
Services seamlessly. We describe the use of WSDL-S as a method to
semantically annotate Web Services. As the field of bioinformatics grows,
with an attendant increase in number of available Web Services, the use of
semantics is assuming a critical role in enabling their usage by biologists as
part of their standard suite of research tools.

6. ACKNOWLEDGMENT

This work is part of the Integrated Technology Resource for Biomedical
Glycomics (5 P41 RR18502-02), funded by the National Institutes of Health
National Center for Research Resources.

The background content in section 3 is based on the contents of course
BCMB 8210, offered by the Institute of Bioinformatics, University of
Georgia. All involved teaching faculty (Dr. Ying Xu, Dr. Jessica Kissinger,
Dr. PhuongAn Dam and Dr. Rob Woods) are acknowledged.

Bioinformatics Applications of Web Services, Web Processes and lilX
Role of Semantics

7. QUESTIONS FOR DISCUSSION

Beginner:
1. Which project is widely believed to be the progenitor of the field of

bioinformatics?
2. Why Web Services form an ideal framework for the development and

deployment of bioinformatics computing resources?

Intermediate:
1. What are the two types of annotation of Web Services used in the

biomedical glycomics project?
2. Name the different types of BLAST search listed at the NCBI BLAST

website.

Advanced:
\. Make a list of bioinformatics Web Services registries. Also, list the

approach implemented to search and discover Web Services in the Web
Services registry.

2. Identify a Web Services, from the three areas of bioinformatics research
areas (except structural bioinformatics), which may be implemented
over a grid to optimize performance.

3. What are the two different types of ontologies used in the annotation of
Web Services?

4. What are the advantages of using ontology based keywords in
annotation of Web Services against the use of words from a simple
controlled vocabulary?

5. A number of biological domain ontologies are listed at Open Biological
Ontologies (OBO) at http://obo.sourceforge.net/. List all relevant Web
Services for annotating a Web Service that compares gene sequences.

8. SUGGESTED ADDITIONAL READING

• "Current topics in computational molecular biology", T Jiang, Y Xu and
MQ Zhang, MIT Press, 2002

9. REFERENCES

Barbara R. Jasny and Leslie Roberts, Building on the DNA Revolution, Science Apr 11 2003:
277

322 Semantic Web Services, Processes and Applications

David S. Roos, Bioinformatics-Trying to swim in a sea of data, Science Feb 16 2001: 1260-
1261

Roberts Stevens, Olivier Bodenreider, and Yves A. Lussier, Semantic Webs for Life Science,
PSB 2006, January 3-7, 2006, Grand Wailea, Wailea, Maui

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Gapped
BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic
Acids Res. 1997 Sep l;25(17):3389-402.

R. Akkiraju, J. Farrell, J.Miller, M. Nagarajan, M. Schmidt, A. Sheth, K. Verma, "Web
Service Semantics - WSDL-S (Position Paper for the W3C Workshop on Frameworks for
Semantics in Web Services)

David Martin, Massimo Paolucci, Sheila Mcllraith, Mark Burstein, Drew McDermott,
Deborah McGuinness, Bijan Parsia, Terry Payne, Marta Sabou, Monika Solanki, Naveen
Srinivasan, Katia Sycara, "Bringing Semantics to Web Services: The OWL-S Approach",
Proceedings of the First International Workshop on Semantic Web Services and Web
Process Composition (SWSWPC 2004), July 6-9, 2004, San Diego, California, USA

Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger, Mark Greenwood,
Tim Carver, Kevin Glover, Matthew R. Pocock, Anil Wipat and Peter Li. Taverna: A tool
for the composition and enactment of bioinformatics workflows Bioinformatics Journal
20(17) pp 3045-3054, 2004, doi:10.1093/bioinformatics/bth361

Sohrab P Shah, David YM He, Jessica N Sawkins, Jeffrey C Druce, Gerald Quon, Drew Lett,
Grace XY Zheng, Tao Xu, BF Francis Ouellette. Pegasys: software for executing and
integrating analyses of biological sequences. BMC Bioinformatics 2004, 5:40

Scott Doubet and Peter Albersheim, CarbBank. Glycobiology, 2, 1992, 505
Sahoo, S. S.; Sheth, A. P.; York, W. S.; Miller, J. A. "Semantic Web Services for N-

Glycosylation Process", International Symposium on Web Services for Computational
Biology and Bioinformatics, VBI, Blacksburg, VA, May 26-27, 2005.

Jun Zhao, Carole Goble and Robert Stevens Semantic Web Applications to E-Science in
siiico Experiments In Thirteenth International World Wide Web Conference (WWW2004)
pp. 284-285, New York, May 2004

Carole Goble Putting Semantics into e-Science and Grids in Proc E-Science 2005, 1st IEEE
Intl Conf on e-Science and Grid Technologies, Melbourne, Australia, 5-8 December 2005

Chapter 13

BUILDING SEMANTIC BUSINESS SERVICES

Sanjay Chaudhary, Zakir Laliwala and Vikram Sorathia.
Dhirubhai Ambani Institute of Information and Communication Technology.Post Bag No. 4,
Near Indroda Circle, Gandhinagar 382 007, Gujarat, India.-
sanjay_chaudhary@da-iict.org, zakir_laliwala@da-iict.org, vikram_sorathia@da-iict.org.

1. INTRODUCTION

This chapter aims to provide comprehensive exposure to various issues
involved in the development of Semantic Web services based Business
Process Orchestration. Marketing of Agricultural Produce is selected as the
problem domain. The present discussion covers various topics from
understanding the problem up to the identification and resolution of the
implementation issues. At each stage, an attempt is made to provide a brief
background, current research trends, available techniques, selection of tools
and details about implementation steps. As an outcome, the reader shall gain
the required skills and sufficient level of familiarity of current standards and
research in each area.

In section 1, the reader is introduced to the evolution of Agricultural
Marketing in India, and the reforms that are planned for implementation.
Section 2 discusses a trading use case in the future market followed by a
section dedicated to explain the implementation challenges. A discussion on
development lifecycle describes the implementation steps for the proposed
system. In the subsequent sections, detailed and step-by-step development
procedures are provided with comments on relevant standardization,
research approaches and tool-sets.

Agricultural Marketing Marketing of agricultural produce is a complex
task involving various stack holders, products and business scenarios. In a
developing country like India, this activity is influenced by local, socio
economic and cultural characteristics. Evaluating the business processes at

324 Semantic Web Services, Processes and Applications

regional or national scale reveals diversity in products, terminology and
processes involved to perform complete business activities. While other
complex but well-defined business processes are experiencing benefits of
services driven e-business; the 'marketing of agricultural produce' has
remained untouched by this revolution. Government of India is now
planning to introduce agricultural marketing reforms to streamline trading
processes involved in all markets throughout the nation. The legal
framework is being duly formulated, yet unavailability of proper underlying
IT infrastructure will continue to inhibit the implementation and penetration
of such technological advancement amongst the users. In absence of such
capabilities, the conventional trading transactions will continue to provide
meager benefits to a farmer who looses a better price in other potential
market, or a wholesaler - who might have got the desired quality product at a
lower cost directly from the farm. There is a need to develop affordable and
reliable solution that links all the actors involved in the system and provide
an environment for a competitive business.

Evolution of the Agricultural Marketing Process in India Beginning
with the era of barter system, where goods were exchanged for goods, or
goods were exchanged for services, through the weekly Bazaar, to more
organized Mandi and market yards of the present and the trends towards
realizing the reforms in the future markets. This way, the process has
evolved to a very matured and complex level (Sreenivasulu V, et al 2001).
An informal gathering of the people at a designated place and time has
remained a valid model for quite a long time. Today, wholesale spot markets
and derivative markets are emerging as hubs for agricultural marketing
business (Thomas S, 2003). The trade in this market is heavily influenced by
local, socio-economic and cultural characteristics. This is the reason why
same product may have different prices at different market yards. Yet the
producers have no choice to search for the best available price and forced to
sell their products in the local market. Inhibitive transport and storage costs
also play a vital role, apart from the urgency to sell the perishable products.
Buyers and wholesalers on the other hand face difficulties to purchase
desired quality of products at competitive prices. The Model Act (Ministry
of Agriculture, Govt, of India, 2003) is formulated to bring reforms in the
Agricultural Marketing Process. Additional responsibilities are assigned to
the existing Agricultural Produce Market Committee (APMC) to realize the
reforms having following objectives:

• To promote setting up of privately-owned markets
• To promote direct sale and contract farming
• To provide transparency in trading transactions
• To provide market-led extension

Building Semantic Business Services 325

• To ensure payment on the same day
• To enable value addition in agricultural produce by promoting processing

2. TRADING USE CASES IN FUTURE MARKET

As indicated earlier, the Act, a typical trade can span across the markets
located at various places. Privately owned markets will be allowed and food
processing and other related industries will be encouraged to trade directly
with the farmers. Contract farming will also be formalized according to the
provisions of the Act. Hence the trading in such a competitive market will be
more complex than that of in the existing scenario.

i|tart Tradgh

ReceivB
Trade offer

ulate J Calculate
Price

6e1 Current
Market Price

Offer Price

No

alidate^
"Yes

Yes
No

Withdraw

Pay Price

IK
Issue bill

(End Trade)*

No Due

Calculate
Vehicle Fee

Calculate
Penalty

Figure J3-1. Workflow in the Trading Use Case

Execution of a Trade This section provides a brief account of a use case
to sell an agricultural produce. A seller can come to the market place or in
case of a direct marketing; a farmer can express his intention to start a trade
of agricultural produce. An authorized market functionary carries out
measurement and grading of the produce and collect fees in case a vehicle is
used to transport the produce. Price of the produce can be set by tender bid,
auction or any other transparent system. In case of direct sale, a seller is

326 Semantic Web Services, Processes and Applications

exempted to pay any market fee or commission; otherwise the market fee is
imposed on the seller. Only license holders are allowed to carry out any
trade in the market area. If they fail to pay any fees to the APMC or fail to
pay the agreed-upon price of the purchased good, the APMC may cancel the
Hcense of the trader. If the trade is carried out by license holders in a manner
explained above, the bill will be issued and the transaction will be recorded
in the APMC database. Figure 13-1 represents a simplified workflow
capturing few aspects of a typical trade. The trade starts with the intention of
the trader to sell a particular agricultural produce. The price is set by the
auction or any other transparent system as defined in the Act. Once the
agreed upon price is received, it is published for the traders.

3. IMPLEMENTATION CHALLENGES

After the implementation of the Act, it is being envisaged that the trading
will span across the nationwide markets. To develop and deploy the services
to support this vision comes with the challenge of its inherent heterogeneity.
In the nation of diverse cultural values, the terminology used in trading
varies from place to place. The software and hardware infrastructure at this
scale also cannot be expected to be homogeneous throughout. The
consequence of this scenario introduces many difficult challenges.

3.1 Understanding the Process

The reforms suggested by the Act consist of details regarding the trade in
legal terms. The Act introduces many new concepts with comprehensive
definitions and originates a new vocabulary in the domain. From the
software development aspect, the developer must be familiar with the
vocabulary to design and execute specific tasks in a prescribed manner. The
challenge is to convert the statements of the Act to appropriate formal
representation that can be utilized as a benchmark for the further software
development effort. For this reason, the domain knowledge representation is
a prerequisite with consideration from the following three aspects:

Terms Used in the Act To understand the problem, consider Definition
1, defining an Agriculturist in the context of the Model Act.
Definition 1 (Agriculturist) means a person who is a resident of the

notified area of the market and who is engaged in production of agricultural
produce by himself or by hired labor or otherwise, but does not include any
market functionary.

This definition is made up of some concepts like: "Notified Area",
"Agricultural Produce", "Market Functionary". These words are also

Building Semantic Business Services 327

properly defined in the act along with other provisions. Yet, the meaning of
these terms may not be intuitively clear to the person responsible for the
development. Hence, a proper methodology is required to represent all the
concepts and relations among terms.

Terms Used by the Traders The act expresses various agricultural
produces at a level of abstraction. In the real world, one specific agricultural
produce is referred with various terms in various regions. The general terms
for the produce are further attributed specific terms on the basis of the
quality, type, processing and other parameters. While trade is underway, the
persons involved in the process usually dwell upon such attributes that are
not expressed in the act. One can also predict the change in the terms to
attribute the specific crop changing from place to place. Hence a
representation is required that covers all the de facto terms and concepts
prevailing in the domain.

Terms Used by the Developers The developers responsible for
generating services use specific terms for expressing the functionality of the
methods and variables used in the discrete functionality. When, the trade is
expected to span across many geographical locations, it is likely that
different developers have followed different naming conventions for
developing specific service blocks. Hence at the time of composing the
services the same terms denoted with different symbols needs to be resolved.

3.2 Definition of Business Model

The Act represents only the regulatory aspect of the trading. The
implementation details will vary based on the quality of the software
development process being followed by the individual developers. Defining
a commonly agreeable business model is a difficult problem in case of
agricultural domain. For instance, the regulated and privately owned markets
may differ in implementation details from Quality of Services point of view
(Cardoso, J. and Sheth A 2004). The existing business models may prove
insufficient or conflicting. Hence to arrive to a clear definition of a business
model is a difficult challenge.

3.3 Making Business Web Enabled

It is relatively easy to expose business functionalities over the web with
the help of Web services. Yet providing complete business functionality that
utilizes several Web services is still a considerable challenge for a large-
scale integration. Consistent availability of dependable ICT infrastructure
across markets can be an issue especially in under-developed and remote
regions of the country.

328 Semantic Web Services, Processes and Applications

3.4 Access to Information for the Functionaries

Most of the Functionaries of this e-trading system are dependent on
timely and relevant information to carry out informed decisions (Chaudhary
S, et al 2004). Current mechanisms for communicating the information
include telephone calls, radio, black board and public address systems. Yet it
is evident that the scope of all the above-mentioned information
communication technology is limited to the local market and is insufficient
to meet the information need of traders in future context.

3.5 Access to Instruments for End-Users

Under a futuristic assumption, the end-users may range from a farmer
possessing a PDA with a limited computing capability up to an export
enterprise that might have implemented enterprise level information system.
But in a proposed development cycle they all are clients to the business
orchestration services. Hence it is a difficult challenge to cater the need of
clients with varying computing capability.

3.6 Negotiation Support

The biggest challenge is the terms used by the farmers and traders, which
can be inhibitive in automating the negotiation process. With the advent of
distributed e-business systems, interested parties can engage in real-time or
near-real time negotiation process. Negotiation Support Systems are in place
for more than twenty years, yet enabling the support for negotiation in e-
trading will continue to be a difficult challenge.

4. DEVELOPMENT

With the identification of the implementation challenges, this section
proposes a development lifecycle for realization of the system. It has been
observed that many business services require certain common functionalities
that might be implemented and hosted by a separate organization. If Service
Orientation is followed for the development; it is likely that such business
services are implemented as Web services. There is a possibility that other
organizations can be enabled to utilize these loosely coupled services to
meet their requirements. Hence, it is quite possible in today's scenario that
for a complete business process, an enterprise can make the use of several of
such open, reliable and interoperable services (Lu L, Zhu G, Chen J, 2004).

Building Semantic Business Services 329

From the service provider's point of view, as these services can be joined
together to constitute a complete business process, it has become essential to
make provisions for efficient integration with heterogeneous client
environments. See (Piccinelli G, Stammers E, 2002) for an impressive
historical overview of merger of Business Services with IT services. As the
pool of available service grow large, the selection of appropriate services
becomes difficult due to heterogeneity at various levels. Semantic Web
Process Lifecycle (Cardoso, J. and Sheth A 2004) is proposed to address
these integration issues. The development approach being proposed here is
based on similar philosophy but with more emphasis on implementation
aspects of the Semantic Web services based Business Process. Figure 13-2
represents the lifecycle with eight steps described in the discussion.

4.1 Model Act

The legal acceptance of the proposed Act by the Government is the
starting point of the lifecycle of this development. The provisions in the Act
clearly define various entities involved in the trade. It specifies the role of
each entity with specific attributes also including the flow of the trading
process. Hence, the Act plays a crucial role in identifying the requirements
and to derive business logic of the desired system.

4.2 Development of Business Objects

Based on the provisions in the Act, respective markets are expected to
engage in the development of business objects to implement various
business functionalities.

4.3 Exposing Discrete Functionality

While traders are expected to engage in trade over electronic media, there
emerges an important requirement to access a small part of business process
hosted by a node. To enable standards based uniform access of such small
component; the developed business objects are exposed as Web services.
With the help of this, trade will be enabled across the nation by giving
access to services developed by individual markets.

4.4 Trading in Market

Once all the business functionalities in various markets are accessible,
the trading in the market will take place. The Act has dealt with abstract

330 Semantic Web Services, Processes and Applications

terms like Functionaries, Agricultural Products and related terms but at the
time of trading, the individual transactions will involve very specific terms
used by the traders. Management of instance data will be required to be
addressed. Here the methodology for the consideration of terms used in
trading will be required to be defined formally.

Figure 13-2. Development Lifecycle of Semantic Business Services

4.5 Post Compliance Development

After achieving successful compliance of Act in practice, next steps from
5 to 8 as indicated in the Figure 13-2 can be taken as follows;
• Knowledge Engineering The knowledge Engineer develops the formal

representation of the terms and their relationship as used by traders and
developers along with the provisions defined in the Act.

• Semantic Web service The formal representation will make it possible
to annotate various Web services deployed at different markets. Hence,
the concentration will be on semantically enriching the developed Web
services to enable appropriate integration.

Building Semantic Business Services 331

• Business Process Modeler The annotated Web services are utilized by
the Business Modeler to design complete business process according to
the provisions of the act.

• Business Process Orchestration Service The Business Process
Orchestration server will accept the requests directly from the traders to
initiate and execute the trade (Sorathia V, et al 2005).

5. DEVELOPING AGRICULTURAL MARKETING
ONTOLOGY

To enable e-trading, one of the important challenges is the utilization of
uniform terms across the market. In this section, the development of an
ontology that covers all the terms, relations among them and the logical
expression of the legal provision are discussed. First the discussion starts
with the theoretical aspects covering a methodology to create ontology. This
is followed by the current standardization to create the ontology. Next
section provides a brief introduction to the W3C standard that has been
followed in developing the ontology. An approach is provided for the
purpose followed by a step-by-step development of the ontology with the
help of selected tool,

5.1 Approach

According to the definition of the Agriculturist in the act, any person
resident of the notified area, engaged in the production of Agricultural
Produce is considered Agriculturist, only if he is not a Market Functionary.
This definition uses few terms that also need to be defined clearly. The
logical equivalent of the definition can be written as:

Agriculturist(X) <-
is_resident_of(X, notified_area) and
is_producing(X, agricultural_produce) and
{not(market_functionary(X))}

In the similar manner, the details related to the regulation of marketing of
notified agricultural produce can be converted into logical representation.
The following list contains few entries for evaluation of a trading instance.

selling!seller,X)
buying(buyer,X)

332 Semantic Web Services, Processes and Applications

quant i ty (X,Q)
is_transported_by(X,head load)
is_less_than(Q,4)
price(X,p)
i s _ s e t t l e d _ b y (P, t r anspa ren t_sys t e in)
is_a{seller, pretty_trader)
i s _ k i n d _ o f (s e l l e r , esse_corrm_dist_agency)
is_a(seller, auth_fair_price_shop_dealer)
is_a(seller,licensee)
is kind_of(X,notified_agri_produce)
is_covered_under(X,contract_farming)
is_brought_by(X, licensee)
is_a(current_trade, direct_sale)
is_a(current_trade, ordinary_sale)

Once the logical representation is completed, it is converted into standard
based representation so that it can be uniformly accessed across the system.
There are many standards proposed over a period of time. One of the recent
significant standards is OWL and the same is selected for the present
experiment.

5.2 Step-by-Step Development

There are many tools available to build ontology according to the OWL
Standard. Some tools are equipped with the facility of validating the
ontology and the reasoning capability to infer new facts from the represented
concepts. Some of the leading tools for developing Ontology include
Protege, OilEd, KAON, OntoEdit and OntoStudio. We have selected Protege
as the Ontology builder tool for this experiment. Now we will see the step-
by-step instruction to build ontology using Protege. To design ontology
using Protege the only required prerequisite is the recent version of Protege
with Protege OWL Plug-in. The recent version of Protege can be
downloaded from the Protege Web Page'. The setup installation program is
packaged with the OWL Plug-in, and user can select the installation of this
plug-in during the setup. For recent version of the OWL-Plug-in, user can
check for the updates at CO-ODE Web Page .̂
L Adding Class Each class or concept in OWL is considered as a set of

individuals. An ontology starts with defining set under the set

' Prot6g6 Download Page http://protege.stanford.edu/download/download.html
^ OWL Plug-in for Protege Download Page: http://www.co-ode.org/downloads/

Building Semantic Business Services 333

owl: Thing. The present chapter deals with agricultural marketing
therefore the concepts in this domain can be appropriately added as
subclass of the owl: Thing, In introducing terms as new concepts, the
Protege allows to select different types of classes for appropriate
representation. A primitive class is the simplest expression of the domain
concept. If not specified, every class being added is added as a primitive
class. According to the definition of an Agriculturist, along with other
requirements; one specific restriction is that the person should not be a
market functionary. This kind of restriction can be covered in OWL
representation as follows:

<owl;Class rdf:ID="Agriculturist">
<owl;disj ointWith>
<owl:Class rdf:about="#market_functionary" />
</owl;disjointWith>
<rdfs:subClassOf

rdf : resources "#Agriculture_Mark;et" />
</owl:Class>

2. Adding Property Each concept generally exhibits a specific
functionality. Concepts also possess relationships with other concepts.
This feature can be expressed by defining the Property in the ontology.
Depending on the context such property can exhibit functional, inverse,
transitive or symmetrical relationship.

3. Adding Restrictions Many terms in the act are defined using additional
terms of the domain. Sometimes definition includes certain constraints to
be met to classify the given term. To realize such concepts defined with
specific restrictions the OWL has mechanism to define restrictions. The
restrictions can be defined with concepts like Universal Existential
Quantifiers, cardinality restrictions on the value etc.

4. Adding Instances Once classes and the relationships among them are
defined with appropriate restrictions, the instance of the class can be
added. By opening the Individuals tab, the specific class can be selected.
The Individual Editor will display all the relevant slots that can be filled
to complete the task of adding the individual instance.

For detailed account on step-by-step development of OWL Ontologies,
reader is recommended the Practical Guide (Horridge M. et al (2004).

334 Semantic Web Services, Processes and Applications

• f t o r o M a i f a t Pn i tdg^UJI (J te \C :V»o* t tM i f t f ! | iS

nie EJit Pioie-.'t 01/vL c.A<, vyni low TCKJIS Help

J\ L̂ - U ^t IM ^) y s [ŝ l̂ •=3 N-

. 1

"̂̂ t * ^ _3 ,-̂ 1^ N-itite ; fci5m^«M,:^,pi7t«H«'''''^rti'?ri

!> da Biiyci

y .;. (l<tMPiM_FiiiKlKinanes

. , aiHainiiiSl

y . CJT Pi w|LI.,r-|

¥ * 1 . cla a.|ii!i.iitui.il_^froaiii e

<r-' r :

['bSrlkf^

•aprot^S^

'^cmci^sies j ^ P r ^ o i ^ s | -S r w S ; # feiElvl*al3 \ # Metadata . 0 . ^ i z ,.* ."T'OVMUVIZ J

>*.»^'% f

fj? rf • ? • ' • •

f t!g!l.-il.in.|jjirofeI/ ij

. \a s-illii i'i_ogi uJI I U'J tJci A()r ii ultui cil_Pi •j'kK-'l

^ l > - l l i n . j _ *) r o j j r y ' i |

, J ' i U l U c l M "1 J^T'I .

s.", ^ ^ • L09i.Vl«W . " Pl^fliHltirBVlHW

Figure 13-3. Building Ontology

6. BUILDING WEB SERVICES

In this section, discussion is focused on creation of Web services that will
enable semantic query on the ontology developed in previous section. The
following definition of Web services given by (Stencil Group 2001) clarifies
the important qualities of Web services that makes it appropriate approach
for the given problem.

Definition 2 (Web Service) Loosely coupled, reusable, software
component that semantically encapsulate discrete functionality and are
distributed and pro grammatically accessible over standard Internet
protocols.

6.1 Step-by-Step Development of Web Services

Following section will guide the reader to build Web services to access
the ontology stored in a repository.

Prerequisites This exercise requires the reader to be familiar with
working knowledge of Java and XML programming. Eclipse is used as a
primary IDE for the development in this experiment. User is expected to get
basic familiarity with the Eclipse development philosophy.

Building Semantic Business Services 335

Hosting Ontology Repository The Ontology developed in the previous
section will be used for annotation of Web service descriptions. Apart from
service annotation, it will also help in resolving any ambiguity or in
identifying relationship with other terms used by the traders. Ontology
Repository is deployed to host the developed ontology that can later be
accessible programmatically by various services over standard Internet
protocols. Considerable amount of tool is freely and commercially available
for hosting the ontology repository. A good repository supports standard
ontology formats, standard query languages and capability of persistent
storage in popular database products. Sesame is selected to host ontology
repository for this experiment. Recent version of Sesame can be obtained
from the OpenRDF download page^. Configuration of the repository is
relatively easy and readers are advised to refer to the product documentation
for their system specific configuration steps.

Building Java Client As indicated in the discussion of development
lifecycle, generation of Business Object is an important step and can safely
be considered to be intuitive to most developers. Yet this section provides an
example implementation of a client developed in Eclipse to clarify its role in
overall development lifecycle. The program discussed here acts as a client to
the Ontology Repository. A Java program is displayed in Figure 13-4; that
takes the input string from the user, creates a valid SeRQL query expression;
connects to the server with required credentials and retrieves the response
from the repository.

IJTji'P^iiigiwww'ai'ii''-. ., V/cj :irrviu'5 Tf >t tlbent

3ini>ort org . Di>eni:df .model. *;
imt>oi t org. openrdf .sesame. *;
liiiiioi t org. operirdf . sesaiiie. c o n s t a n t s . QueryLanguage;
indmrt org. openrcif . seseu^e.query. *;
i]tn)ot t o rg . openrd£.3esair ie . reposi tory. ^;

ji«J)Jic c l a s s SesarfieConnection i
Ijuiilic SesaaiieConnectionO (

sujjer () ;
)
IHib-Iic StringE] quetySesanie (S t r ing sesameURL, S t r i ng ontology, S t r i n g userTerfii} throw:

Java. ne t . URL sesajtieSecverURL « new j e v a . n e t .URL (sesaiiieURL) ;
SesaineService s e r v i c e = Sesairie. yetSeri'ice(sesarfieServerURLj ;
s e r v i c e . l og in£ ' ' t e3 tuse r " , '^ispeni^ess^ie") ;
SesasieRepository rciyRepository " s e r v i c e . getReposi tory ("rdfoifis-rcif-dte'*) ;
S t r i n g ontologyP = "<"+ontology;
S t r i n g query = " s e l e c t SUB £rom JSIIB} rd£g:aut3Cls3sOf ("+ontoiogyP+userTerKi+">}";
' iueryResultsTable resul tsTatole = loyRepositoty. perf orniTaJ^leOuery (O^eryLanguage. ri'Kor., <
int rowCounc * resu l t sTable .ae tPowCount () ; _*j

Jj . , _ _ _ _ _ , _ _ J J . ^

Figure 13-4. Java Client for Connecting Sesame Repository

' Sesame Download Page: http://www.openrdf.org/download.jsp

336 Semantic Web Services, Processes and Applications

Figure 13-5 displays successful realization of two of the required
functionalities of the development lifecycle. One is the utilization of the
ontology and another requirement of exposing the business object as a Web
service. As evident in the Figure 13-5, the Eclipse Package Explorer
contains list of Java files, each encapsulating discrete business functionality.
In the middle pane, the methods of the deployed Web service are visible.
The querySesame method is based on the Java file as displayed in the code
snippet above. As evident, both the Java program and the Web service accept
a user input. The code displays the generation of query to retrieve all the
concepts that has rdf s : subClassOf relationship with the term provided by
the user. As displayed in Figure 13-5, the list of sub class of Mango is listed
as a result of query prepared based on the term entered by the user, i.e.
"Mango".

Building Web Service For quite a long time, building Web services has
been a difficult task as it involves many technologies, tools and the know-
how. Eclipse WTP* project is devoted towards making this process relatively
easy and therefore selected for the current experiment. Stable Build 1.0 M8
used for the development can be downloaded from the M8 Page \ The page
also enumerates the requirements for the installation of this version that
should be strictly followed.

Once installation is done properly, the following steps to build the
required Web service can be followed. Open newly installed Eclipse and
select the J2EE prospective. Create new project by following File
-^New-^Project-^Dynamic Web Project. Along with other trivial
requirements, the new project creation wizard requires to select the Target
Runtime. Click on new button and provide the local Tomcat installation
details. The present experimentation was done using Apache Tomcat vS.O
and j2sdkl.4.2J)3. If done properly, the wizard will result in creation of
project directory structure that can be explored in the Project Explorer.
Locate Java Source folder to define the source files that will be used for
developing the Web services. Reader can create the Java programs in the
same workspace or import it from the existing project that was discussed in
previous section. The program containing the guerySesame method created
to access the ontology repository can be imported into existing workspace.

To build the Web service, select the Java file and press right-click to open
New-^ther-^Web services-^Web service. In the newly opened wizard,
select Bottom up Java bean Web service and check Generate Proxy, Test
the Web service, Monitor the Web service and Overwrite files without

"* Eclipse Web Tools Platform (WTP) project: http://www.ecllpse.org/webtools/
^ http://download.eclipse.org/webtools/downloads/drops/S-1.0M8-200509230840/

Building Semantic Business Services 337

warning options and press Next. The next object selection page will prompt
for the Bean to be selected. In next Service Deployment Configuration page,
appropriate Web service Runtime, server and J2EE versions can be
selected. The next page will display Web services Java Bean Identity with
the details of Web service URI, WSDL Folder, WSDL File. The available
methods, style and usage can also be chosen on the page. Clicking on finish
will execute the required tasks and if done successfully, user will prompted
to start the Server. The Web service Client Test page will display options
for testing the generated proxy. In the next page of the wizard the reader can
select options for publishing the Web service to Public UDDI Registry.
Clicking on finish will result in execution of the Web service. Web service
Test client will be opened where user can select from available methods.
Clicking on the querySesame method will result in test client same as
indicated in Figure 13-5. User will be prompted for Sesame repository URL,
Ontology hosted on it and the user term. Clicking Invoke button will display
the outcome of the method in the Result section.

Methods J
Si

^etliii'JpvmtijavaJatig, Sti'ingl
•'ctCf̂ AtneC t ni'iectionO

'J " - ^ «v' tiing,java,!arkg,Stnng,java.!fl;iig.£;tij

Inputs

lesmxXmL: |3,100,64.37

ontology: [athia.org/agtomarket.owW

userTenii JManrjo

Imoke J Clear]

KisulT"

, 'Ijfi / v̂-'AHA' Syiathd f.Igi'agrornarkct owl#B:i:i.b?,y
J ,'•••' 11'p 'ivww "i-Jicitlua '.rg/agiomarket ovdl̂ l̂ llJ.̂ ::•a,

Problems Tasks PrCwerii.;o S-.

,. ,(..ir.'ol-q;vlT.-KTr.-;-i

,5 ,r l in;obgvh'j ;e'- l /^ei

,^ ^TtoloC/tTOjecJ.-.ti

, j . ,rO[i:ulcgyPro)ei;t'Sfci

Requesc; locil.'wsl:;65*i5

Siiei 483 (7S3) bytes

Header; POST/Oncolog'/Pf0]<M;I-/S

- - - n - „ 4J^

rv^rs Snippett Prcyres? • Console "i? "fCPjIPMonftOf i^

•a-.l^iscw:'-.'.:,',- ection
.Lf,>,'';fijt.V'Cj'ii'i.-''f,0:i

.i;i;;,';£-s;imeCon.-ci:t'on

.ces/iesaffiuCanr ect.on

- , _ • •_!;•(Response: loca'ho5t:6iJ3&

! • " "• —J Srae; 0(3253) bytes

C''/>C';;,rSesjn-.<cnr,L=.::icir H n f ' / l . u Header: HTTp/1.1 20001 ;

^,0

* l Ti:i.etjf request: 2:(

Rt-ipLfi ie T in t : S-iC

j T y j e ; M U P

zJ

Figure 13-5. Java Client for Connecting Sesame Repository

338 Semantic Web Services, Processes and Applications

7. SEMANTIC WEB SERVICES

The discussion just dealt with the steps to expose business objects as
Web services. By publishing in public registry these components can be
discovered and accessed over the Internet. It is evident from the scale at
which Web services based business process integration is being addressed
here, that discovery of appropriate services is a critical challenge for a
conventional search. Augmentation of Web services with enhanced service
description is therefore a prerequisite to any efforts towards automation in
discovery, invocation, binding or composition of the developed Web
services. It is claimed (Cabral, L., Domingue, J, et al 2004) that there are
three different approaches prevailing in the research community to achieve
the goal of Semantic Web services. By making sure that services meet the
functional requirements, by providing components that fulfills the desired
activities or by aggregating vocabulary in service description.

7.1 Relevant Standards

Among important standards OWL-S is derived from DAML-S. It is
based on Description Logic. It provides Profile, Process Model and
Grounding Ontologies to facilitate Description and Reasoning of the service
description files. Web service Modeling Framework (WSMF) is based on a
model describing Web service from different aspects. To support scalable
communication among the services, this approach recommend emphasizing
mediation at syntactic, business logic, message exchange and dynamic
invocation levels. As a part of WSMF, the Semantic Web enabled Web
services (SWWS) Project is planned to provide framework to support
description, discovery and mediation. Another project under WSMF is Web
service Modeling Ontology (WSMO), which provides formal service
ontology and language. Based on UPML (Unified Problem Solving Method
Development) the Internet Reasoning Server (IRS II) is another important
framework for Semantic Web services. It consists of Task Models, Problem
Solving Methods (PSM), Domain Models and Bridges. While these
approaches introduce specific solutions for respective philosophy, the
METEOR-S (Patil, Oundhakar et al. 2004) is offered to resolve the issues by
leveraging advantage of semantics with the existing standards. It provides
complete lifecycle of Semantic Web Processes including development,
annotation, discovery, composition and orchestration.

Building Semantic Business Services 339

7.2 Approach

These research approaches have their own unique merits but to expect a
large-scale penetration of any one approach in real life implementation
(Cardoso, J., Miller, J., et al. 2004) is too early to predict. Adding semantics
to the service description may seem to be an easy alternative. Here, the
requirement for the developer is to be able to use the "Concepts" of the
domain for which the services are being developed. This is typically realized
by selecting and using the relevant ontology. Easy access to the ontology
therefore should be integrated with the annotation process. Penetration of
concepts of ontology and decent tool support has resulted in development of
large ontologies in various domains. Manual annotation using these large
ontologies may turn out to be tedious job. Need was felt for a mechanism
that enables the user to use and manage specific ontologies for describing the
Web services that are being developed. To reduce the manual effort the
mechanism can be designed to support automatic or semi-automatic
matching process with little user intervention. One such approach (Patil,
Oundhakar et al. 2004) was proposed to enable semi-automated annotation
of the existing service descriptions with ontology by employing machine
learning techniques. In the case of Agricultural Marketing, the ontology
covering all the concepts and relations can be utilized uniformly across all
the markets to avoid any ambiguity related to the expressed terms. We have
adopted the METEOR-S Web service Annotation Framework to annotate
WSDL files with known vocabulary. In this approach semi automatic
annotation of services is made possible by adopting the schema-matching
technique.

7.3 Step-by-Step Development

This section explains how a process of Semantic Web service Annotation
is carried out. For semantically annotating the existing Web services, the
method is explained in detail with the tool named METEOR-S Web service
Annotation Framework (MWSAF). MWSAF is Eclipse based tool and can
be downloaded from LSDIS tool downloads page*.

Before starting with the MWSAF, the ontology and all the involved Web
services should be assessable to the developer. In this experimentation
Agricultural Marketing Ontology will be used for annotation. In current
discussion, the business objects developed based on the defined use case and
were exposed as Web services. After making provisions of the prerequisites.

' MWSAF Download Page: http://lsdis.cs.uga.edu/projects/meteor-s/rawsaf/

340 Semantic Web Services, Processes and Applications

extract the downloaded package to a convenient place. Open the Iiclipse IDE
and click on File -^Import-^Existing Project into Workspace. When
prompted for selection of the root directory, click on browse to locate the
place where the archive was extracted. If the project is successfully imported
in the workspace, the Package Explorer will display project files under the
root folder named MWSAF. In the directory tree, locate the
mwsaf. r e s o u r c e folder to explore the content. Open mwsaf . p r o p e r t i e s
file to edit the entries to suit the installation. Appropriate changes in
MWSAF HOME, N e g a t i v e D i c t i o n a r y and other properties should be
made. To run the program, locate MWSAF . j ava file in mwsaf package from
the package explorer, right click and select Run as - Java Application. In a
user-friendly graphical interface, user is provided many options in File and
Tools menu. To begin with the annotation exercise, click on File
-X)pen -H)pen WSDL From. Here one can choose to select either File or
URL option. In this experiment, the ReceiveTradeOff-er .wsdl is
selected. As we want to use the Agricultural ontology to annotate the WSDL
file, we will now select File-^pen Ontology From File and locate
AgroMarket. owl as developed earlier. In the left side of the GUI, the
WSDL can be explored. Similarly in the right pane, the ontology file can be
traversed. Next step is to select Tools -^ Match Web Service. MWSAF
matches the terms used in the WSDL with the concepts given in the
ontology. The middle pane displays the concept mappings and other
statistics as displayed in Figure 13-6. Developer can select the acceptable
matches out of the offered ones by clicking on the radio button of each
offered mapping. These selected mappings can be accepted by clicking on
the Accept Mapping button. Once the mapping is over, the WSDL file is
ready to be annotated. This can be done by clicking on File -^ Write WSDL.
The result of this option annotated WSDL file ReceiveTradeOff-
e rAnnota ted .wsd l will be stored in AnnotatedWSDL sub-directory of the
root. For detailed account on step-by-step development, the reader is
recommended to read the User Guide (LSDIS Lab 2004) available on the
tool Web Page.

Building Semantic Business Services 341

§_m TiiBb

W^h ^rwi*i>

l.:R.nH'i*;r'jUM_-:!.i
f C: .^-i----n >

f -e--'-----'̂ "-'"
t'.'-fn,
'eM.m-£-a
-fl,4.-f.:i
& iyu^ -» .

_ f .|T,.,_,:H.-.T:,-I

• -£M.K0i-6!

;? • : . 3 H \ i s i v i - r h i > j v

•OHr.

...IS

3.1 !r-:!
!:r(0!.>.-,;.

,i:i-! 1 '.1 i
.:.f^!>"^i-i
s-M''.'~-6tt

H--

1

> <(,
t i t

f «!.

f * .

ii
Ffgwre 13-6. Annotating WSDL File

Mji-..!

<i>(-iM:.._:.,i.:Ki .,».•._»..
•.aW.-|lK.-l <!»-.

ig! Ill u.niia1i, f 1.1 si.^, ;>il..:
•i-€ji:<..il.fc

^i | ! iC(„.>.„M

i~ igl -Ml.
•Dif^.j....:, 1

8. BUILDING BUSINESS PROCESS MODEL

To employ Web services as Business Services, there are many issues
needed to be resolved. Apart from general issues identified earlier in the
chapter, specific problems in management of communication, handling of
data, handling exceptions and support for transaction among collaborating
Web services are very critical.

8.1 Relevant Standards

One straight solution for addressing these critical issues is to achieve
consensus based standardization in the process. XLANG, BPML, WSFL,
BPSS, WSCL, WSCI, BPEL4WS and WS-Choreography enlist the result of
a standardization process that prevailed in last five years (XML Cover Pages
2004). These disjoint and parallel standardization efforts have resulted in the
problem of heterogeneous and sometimes conflicting specifications
(Parastatidis S, Webber J, (2004). Subsequently, the very objective of Web
service, i.e. interoperability, is clearly defeated. Composition of Web service
is also affected by this problem. Initially, to achieve the composition
amongst the Web services, Microsoft introduced a structural construct based
XLANG and in parallel IBM brought graph-oriented processes based WSFL.
BPEL4WS has emerged as a business process definition standard as a result
of consensus among the organizations that initially promoted different
standards for the same. In its next version, the popularly known BPEL4WS
1.1 will be renamed as WS-BPEL 2.0. BPEL4WS allows proper
management of messages being exchanged betweens involved in carrying

342 Semantic Web Services, Processes and Applications

out a complete business process (Andrews T, et al 2003). BPEL relies on
WSDL for its known capability of describing incoming and outgoing
message for a given Web service. This helps in designing and
implementation of Web services based business process management
functionality. Business processes deployed on BPEL engine are Web service
Interfaces that can be accessed platform in-dependently. By correlating the
messages, BPEL4WS provides mechanism to preserve Web service state.
This also helps in long running transactions, which may have several
situations where certain completed tasks should be undone due to some
erratic condition. To achieve this task BPEL4WS supports structured
programming constructs like conditional branching, loop, sequence and
flow. BPEL4WS also supports fault handling and compensation mechanism.
BPEL4WS employs various constructs like Variables, Partners, Partner
links. Flow, Sequences etc, some of them will be elaborated the coming
section.

8.2 Approach

For developing model for business process the trading use case described
in section 2.1 is utilized. The approach here is to derive a business workflow
based on the flow chart depicted in Figure 13-1. The next important step is
to select appropriate tool to realize the design and execute the business
process. Readers can choose from a vast amount of tools supporting the
workflow. Oracle BPEL Process Manager, Biztalk Server, IBM WebSphere
Business Integration Server Foundation and Cape Clear Orchestrator provide
support with their commercial application packages. Among a few
noteworthy open source tools: ActiveBPEL, JBoss jBPM, MidOffice BPEL
Editor (MOBE), Bexee BPEL Execution Engine and IBM BPWS4J
available as Alphaworks software can be considered.

8.3 Step-by-Step Development

Development and deployment of a business process requires two separate
tasks. The first is to create the model of the process from available business
logic and the collaborating Web services. The second step is to host the
process on a BPEL execution engine. Many commercial and open source
tools allow both of these facilities in a single package. Here separate
discussion is provided for each step.

Business Process Modeler. IBM BPWS4J Editor is used for designing
the business process. BPWS4J is successfully tested on JDK version 1.4.1

Building Semantic Business Services 343

and Tomcat version 4.1.24'. The system used for designing business service
therefore must be configured with these prerequisites. The selected editor
can be downloaded as bpws4j-editor-2.1.zip file from the tool web page^
Next step is to extract the downloaded zip file from download directory to
Eclipse root directory. This will result in creation of a sub-directory
com. ibm. cs .bpws . t o o l s .bpwsbui lder under the Plug-ins directory of
Eclipse installation. The installation can be verified by starting the Eclipse
instance. Open Window^Open Prospective'^ Others. In Select Prospective
window, select BPWS and press OK. A new file can be created by opening
File-^New-^Other. In New window, from the given list of Wizards, click on
the BPWS folder to select BPWS File and follow the steps.

Now the actual business process modeling begins. The Figure 13-7
displays the building of a new process in the BPWS prospective. To make
the decision about what is to be added, now the focus of attention will switch
between the BPEL modeler and the problem workflow. In a typical scenario
of a business process, a process can span across various existing systems
hosting many Web services. Mapping this to our application, a trade process
requires interactions of various Web services hosted by APMC and partner
organizations. WSDL of respective Web services explains the service
invocation and other details.

' Tomcat: http;//archive.apache.org/dist/jakarta/tomcat-4/archive/v4.1.24/
* BPWS4J Editor: http://www.alphaworlcs.ibm.com/tech/bpws4j/download

344 Semantic Web Services, Processes and Applications

g Calcul-MaVFee

j CjkjijKPmiib-

PtKBSS Soyros •

• Ma:

Sequcfiee' '>Jder„SccjJ-.-'v;e

-pi ;?aceiv(:: C-sicu'-^-efV.c^

C* ,• 5**SchKUck: h :DrK l

f.wr-.: ; i rMm« .

: Oescrlittui

TODOro charge Choi,
ICCiOTochaivj...!!*!,

Etfa...
Eci-a ..

: •

Figure 75-7. BPWS Editor

The discovery of appropriate services liere can be enlianced with
semantic annotation as described in the previous section. Here, according to
the BPEL4WS specification, the message conversation amongst the partners
is defined in Partner Link Types. It also defines the role played by individual
Web services in the whole transaction. The portType role dictates the
allocation of messages to appropriate receivers. For a quick overview on
step-by-step development of BPEL4WS document using BPWS4J Editor,
reader is recommended the Reference Guide (Mukhi N. 2002) and for detail
reference see (Stemkovski V et al 2003). The code snippet contains a part of
Marketing.bpel that indicates the Partner links, role and portTypes in our
experiment.

<pai-tnerLiiiks>
<pEtrtnerLink name="CalculatePi-ice"
xralns:nsl="http://10.100.64.38:8080/FirstWS/services/CaloiilatePrice"
pai-tiierLinkType="iisl:CalculatePricePLT" myRole="Calculat9PriceService"/>

<partiierLink name="IsDirect"
:<mlns:ns2="http://10.100,64.38;8080/FirBtWS/3ervices/I.>3Direct"
partnerLinkType="iis2:l3DirectPLT"/>

Stateful interactions among the Web services in a given business process
is achieved by message exchange. Content of these messages include data
vital to the application. Variables are the artifacts that hold the data in the

Building Semantic Business Services 345

messages. The code snippet contains variables defined in the marketing
appHcation.

<variabl6a>
<variable name="agroPi'oduGt"
xmln?3:nslB="littp://10.100.64.38:8080/Fii-i3ti/IS/service3/ReceiveTradeOffer"
mes3ageType="nsl5;agi-oProducl;"/>
<vai-iable nane="price"
xmlns:nsl6="http://10,100.64.3S;8080/Fii-stWS/3ei-vices/CalculatePrice"
messageTyp<5="nsl6:price"/>
<variable nanie=

It can be noted that the declaration of a variable consists of a unique
name and message type, which is a XML Schema simpleType. While
variables are used to store intermediate state data in messages between
partners, it also warrants the need to exchange the data between variables.
BPEL4WS specification introduces the notion of assign activity to copy data
amongst variables. It also supports construction and insertion of new data
using expressions. In agricultural trade scenario, calculating price requires
this activity to extract market prices and add market fees. The code snippet
displays an activity that copies end point references between partner links.

<flovi name="AgroHarket"> <Bequence name="AgroProces3_Sequenoe">
<recsive naiue="CalculatePrlce" partnerLink="C£ilculatePrice"

xmln,-3:ii,'320="http://10.100.64.38: 8080/FiratWS/sei-vices/CalculatePrice"
portType="iis20;CalculatePrice" opera t ion="ca lcu la tePr ic9" >

</receive>
<reply nami=i="CalculatePrice" partnerLink="CalcuIatsPrice"

xmlns;ns21="http: / /10.100.64.38:8080/FirstWS/services/C'aloulat«iPrice"
portType="ns21;CalculatePrice" opera t io i i="calcula tePr ice"
var iable="price">

</reply>

Code snippet given above depicts one of the most vital elements in BPEL
specification instrumental to achieve concurrency and synchronization
amongst the partners. The Flow construct enables the grouping of activities.
Depending upon the conditions defined, it is possible to execute all or
selected activities within the scope of the Flow. This is critical to achieve
concurrency in real-life business scenarios. Invoking partner service is one
of the most common activities for any business process. Depending upon the
business logic, these invocations can be synchronous or asynchronous.
Synchronous invocation can possibly result in error condition that returns as
WSDL fault. It is necessary therefore to make provisions for efficient fault
handling while using the invoke operation.

346 Semantic Web Services, Processes and Applications

W^mmMm^^WM^^&M^mi^m. W'^^Mm^^^^wm ^s^^iMw^^w^iM^^.wmmimm^mmiM'i:
IfM. 'mc^^i i'^-rMts X®sls tl«2lp

i:;:iG«

l u M Business rrocess Ji ieci i t ion Language for Web
Services »Iava Ruiif iiiie

C o n f i g l i r t , F:.)<:..-.;>-UP (QyiUiic): {l»lt|i;//10.k00.64.38;8080;Kr«WSi'sw-%-ic«;»/A|sni_Pri>ress]

Procesies CaJcuiareiMceScmce
Ei::tm& WSVL I clifk hf-'ri,'I
ra:m£rLLd; n';app]iigs'

V N w i «

S O A ? Aciisn U K

MdVi Hi Hai;i:S)i,i..£ VH.«
. http^noao0.64J8:a030fl%s(WS;sBn'it,es/AgroJ'r.JrBss*CaklJlalB^lMl.Sema
m lrtip:.T10J-0O.64J8:SOS0/rij'scWS?:;Bn4L-es/AgrD_P!-firuss»Ca]c'jJiitepjK^'Semi:i

{htllK'/lO 100.64.3S:80»0fl-'!rsrtV»s<!mrej<
{lHlp;/,'10.1BOJ4J8:80SO,Ttrs<WSiv«wi;;i>«/Cali:«Ian.-Pi-i«}
C;ilrt5liiiteFi*sre#C;iJs«li*l"eftif:e

. l.ni):.»l0.100.64.j8:3030/Fij-s(WS,'sBiTii-e!,-,'Auru Pruci.ss»Ca]c-ii jMi.ri-keX<-rvici

Figure 13-8. Business Process Hosted on BPEL Engine

BPEL Engine BPWS4J Engine Version 2.1 is selected as the BPEL
Engine for this experiment. The tool can be downloaded from BPWS4J
page' on IBM AlphaWorks Site. To install the Engine simply copy the
bpws4j.war file into Tomcat's webapps directory. The installation can be
verified by accessing http://localhost:port/bpws4j using any standard web
browser. The hostname and port can be replaced according to the case, for
example h t t p : / / l O . 100 . 64 . -38 : 8080/bpws4j . As depicted in the
Figure 13-8, the BPWS4J Engine can be managed by accessing the
administrator interface available at
h t t p : / / l o c a l h o s t : p o r t / b p w s 4 j / a d m i n / i n d e x . h t m l . Three basic
operations are allowed namely List, Deploy and Un-deploy the services, can
be accessed by clicking on any of respective button in the left pane. To
deploy the services, the Deploy option can be accessed by clicking on the
deploy button. Two inputs are required to deploy the process. The BPEL file
generated by the modeler and WSDL file that describes the process are to be
deployed. After providing all the required inputs, the process can be
deployed by clicking Start Serving the Process button. The deployed service
can be accessed by pointing the web browser to
h t t p : / / l o c a l h o s t : 8080/bpws4j. The page represents the services

' BPWS4J Engine http://www.alphaworks.ibm.com/tech/bpws4j/download

Building Semantic Business Services 347

hosted on the BPEL Engine. Figure 13-8 represents the services hosted on
the BPEL Engine.

9. CONCLUSION

This chapter has demonstrated the complete development cycle of
semantic Web services based Business Process Orchestration for
Agricultural Marketing. In this chapter, challenging real-life business
problem, which is considered for implementation at a large scale is
explained. Basic complexities involved in the problem are revealed from
diverse aspects. The business process integration in such a challenging
environment was addressed by the adding semantics into the service
description. Various aspects and phases involved to develop semantic
business services are discussed with many example implementations of
related concepts, tools and techniques to achieve over all goal to demonstrate
a full lifecycle of the development process for e-trading of agricultural
produce.

10. QUESTIONS FOR DISCUSSION

Beginner:
1. Why simple Web services are not sufficient for all complex real-life

applications? Evaluate Semantic approach as one of the solutions of this
problem.

2. Are existing UDDI registry systems capable to support publishing and
discovery of Semantic Web services?

Intermediate;
1. Explain the ways in which properties can be characterized in OWL.

Explain each property type by taking proper examples.
2. What is the purpose of developing Standard Upper Ontology? What role it

is expected to play in interoperability?

Advanced:
1. Explore how rule based knowledge representation can be developed on

the top of the developed ontology. Find out the major recommendations in
this direction including standards, models and architectures

348 Semantic Web Services, Processes and Applications

Practical Exercises:
1. Explore protege SWRL plug-in to build rules for the developed ontology.
2. Build the rules according to RuleML and provide a comparative note on

the capabilities of SWRL and RuleML.

11. SUGGESTED ADDITIONAL READING

• Stuckenschmidt, Heiner & Harmelen, Frank Van: Information Sharing
On The Semantic Web. New York. Springer Verlag, 2005. 3-540-20594-
2.: This book tries to provide insight in applying semantics to enable
information sharing by providing sound insight of theory, standards,
tools and techniques for developing Ontologies to realize the goal of
semantic web.

• Gomez-Perez, Asuncion, Fernandez-Lopez, Mariano & Corcho, Oscar:
Ontological Engineering: With Examples From The Areas Of Knowledge
Management, E-Commerce And The Semantic Web. London. Springer,
2004. 1-85233-551-3: This book provides excellent account of practical
aspects to develop Ontologies along with discussion on application in
different domains.

• Fensel, Dieter: Ontologies: A Silver Bullet for Knowledge Management
and Electronic Commerce, 2nd ed.. (2nd ed.) Berlin. Springer-Verlag,
2004. 3-540-00302-9: Provides effective overview of current state-of-
the-art in Ontology related topics.

• Singh Munindar P. & Huhns, Michael N.: Service-Oriented Computing:
Semantics, Processes, Agents. England. John Wiley and Sons, 2005. 0-
470-09148-7: Apart from introduction to Web services and Semantic
Web related standards, this book covers a wider prospective including
topics on Enterprise Architectures, Service Oriented Computing (SOA),
Execution Models, Transactions and Coordination Frameworks. It also
includes discussion on advance research topics like multi-agent systems,
service selection, security and related issues.

• Zimmermann, Olaf, Tomlinson, Mark & Peuser, Stefan: Perspectives on
Web services: Applying SOAP, WSDL and UDDI to Real-World Projects.
New York. Springer, 2003. 3-540-00914-0: This is an excellent reference
book for professionals as well as students planning to concentrate on the
emerging areas of Web services and SOA. Case studies given in the book
provide professional approach to develop Web services.

Building Semantic Business Services 349

12. REFERENCES

Patil, A., S. Oundhakar, et al. (2004) MWSAF - METEOR-S Web Service Annotation
Framework. 13th Conference on World Wide Web, New York City, USA.

Andrews T, et al, (2003), Business Process Execution Language for Web Services, Version
1.1.

Cabral, L., Domingue, J., et al (2004) Approaches to Semantic Web Services: An Overview
and Comparisons. In: First European Semantic Web Symposium (ESWS2004), Heraklion,
Crete, Greece (2004)

Cardoso, J. and Sheth A (2004) "Introduction to Semantic Web Services and Web Process
Composition", First International Workshop on Semantic Web Services and Web
Processes Composition (SWSWPC 2004), "Semantic Web Process: powering next
generation of processes with Semantics and Web services". Revised Selected Papers,
LNCS, Springer-Verlag Heidelberg, Vol. 3387, pp.1-13, 2005. ISBN: 3-540-24328-3.

Cardoso, J., Miller, J., et al. (2004) "Academic and Industrial Research: Do their Approaches
Differ in Adding Semantics to Web Services", First International Workshop on Semantic
Web Services and Web Processes Composition (SWSWPC 2004), "Semantic Web
Process: powering next generation of processes with Semantics and Web services".
Revised Selected Papers, LNCS, Springer-Verlag Heidelberg, Vol. 3387, pp.14-21. 2005.
ISBN: 3-540-24328-3.

Chaudhary S, Sorathia V, Laliwala Z, (2004) Architecture of Sensor Based Agricultural
Information System for Effective Planning of Farm Activities. IEEE International
Conference on Services Computing, 2004 (SCC'04), Conference Proceedings, pp. 93-100

Horridge M. et al (2004) A Practical Guide To Building OWL Ontologies With The Protege-
OWL Plug-in Edition 1.0. http:/www.co-ode.org/resources/tutorials/-Proteg6-OWL-
Tutorial.pdf

LSDIS Lab (2004) MWSAF User Guide, http://lsdis.cs.uga.edu/projects/meteors/-
mwsaf/downloads/mwsaf-users-guide.pdf

Lu L, Zhu G, Chen J, (2004) "An Infrastructure for E- Government Based on Semantic Web
Services" SCC'04, Conference Proceedings, pp . 483-486

Mukhi N.(2002) :Reference guide for creating BPEL4WS documents Quick reference for the
BPWS4J editor. http://www-128.ibm.com/developerworks/web-services/library/ws-
bpws4jed/

Parastatidis S, Webber J, (2004) Assessing the Risk and Value of Adopting Emerging and
Unstable Web Services Specifications, SCC'04, Conference Proceedings, pp. 65-72.

Piccinelli G, Stammers E, (2002) "From E-Processes to E- Networks: an E-Service oriented
Approach", International Conference on Internet Computing,

Sorathia V, Laliwala Z and Chaudhary S, (2005) Towards Agricultural Marketing Reforms;
Web Services Orchestration Approach, '2005 IEEE International Conference on Services
Computing (SCC 2005).

Sreenivasulu V, Nandwana H, (2001) Networking of Agricultural Information Systems And
Services in India, INSPEL 35(2001) 4, pp 226-235

Stemkovski V, Tihankov A,Razumovsky K, (2003) Implementation of the BPEL4WS demo:
http://www-128.ibm.coni/developerworks/edu/ws-dw-ws-bpelws-i.html

The Stencil Group (2001) Defining Web Services, http://www.perfectxml.com/X-
analysis/TSG/WebServices.asp

Ministry of Agriculture, Government of India (2003). The draft model legislation: The State
Agricultural Produce Marketing (Development and Regulation) Act.

350 Semantic Web Services, Processes and Applications

Thomas S, (2003): Agricultural Commodity Markets in India: Policy Issues for Growth,
Technical report, IGIDR, Bombay, India.

XML Cover Pages (2004) Standards for Business Process Modeling, Collaboration, and
Choreography http://xml.coverpages.Qrg/bpm.html

Chapter 14

PROGRAMMING THE SEMANTIC WEB

Jorge Cardoso
Department of Mathematics and Engineering, University of Madeira, 9000-390, Funchal,
Portugal -jcardoso@uma.pt

1. INTRODUCTION

Many researchers believe that a new Web will emerge in the next few
years based on the large-scale ongoing research and developments in the
semantic Web. Nevertheless, the industry and its main players are adopting a
"wait-and-see" approach to see how real-world applications can benefit from
semantic Web technologies (Cardoso, Miller et al. 2005). The success of the
semantic Web vision (Bemers-Lee, Hendler et al. 2001) is dependant on the
development of practical and useful semantic Web-based applications.

While the semantic Web has reached considerable stability from the
technological point of view with the development of languages to represent
knowledge (such as OWL (OWL 2004)), to query knowledge bases (RQL
(Karvounarakis, Alexaki et al. 2002) and RDQL (RDQL 2005)), and to
describe business rules (such as SWRL (Ian Horrocks, Peter F. Patel-
Schneider et al. 2003)), the industry is still skeptical about its potential. For
the semantic Web to gain considerable acceptance from the industry it is
indispensable to develop real-world semantic Web-based applications to
validate and explore the full potential of the semantic Web (Lassila and
McGuinness 2001). The success of the semantic Web depends on its
capability of supporting applications in commercial settings (Cardoso, Miller
et al. 2005).

In several fields, the technologies associated with the semantic Web have
been implemented with considerable success. Examples include semantic
Web services (OWL-S 2004), tourism information systems (Cardoso 2004),
semantic digital libraries, (Shum, Motta et al. 2000), semantic Grid (Roure,

352 Semantic Web Services, Processes and Applications

Jennings et al. 2001), semantic Web search (Swoogle 2005), and
bioinformatics (Kumar and Smith 2004).

To increase the development of semantic Web systems and solutions, in
this chapter we will show how semantic Web applications can be developed
using the Jena framework.

2. THE SEMANTIC WEB STACK

The semantic Web identifies a set of technologies, tools, and standards
which form the basic building blocks of an infrastructure to support the
vision of the Web associated with meaning. The semantic Web architecture
is composed of a series of standards organized into a certain structure that is
an expression of their interrelationships. This architecture is often
represented using a diagram first proposed by Tim Berners-Lee (Bemers-
Lee, Hendler et al. 2001). Figure 14-1 illustrates the different parts of the
semantic Web architecture. It starts with the foundation of URIs and
Unicode. On top of that we can find the syntactic interoperability layer in the
form of XML, which in turn underlies RDF and RDF Schema (RDFS). Web
ontology languages are built on top of RDF(S). The three last layers are the
logic, proof, and trust, which have not been significantly explored. Some of
the layers rely on the digital signature component to ensure security.

Our focus in
this chapter

Trust

- -vll
On'iology vocabulary > Q .g

RDF + rdfschema

Figure 14-1. Semantic Web stack (Berners-Lee, Hendler et al. 2001)

In the following sections we will briefly describe these layers. While the
notions presented have been simplified, they provide a reasonable
conceptualization of the various components of the semantic Web.

URI and Unicode. A Universal Resource Identifier (URI) is a formatted
string that serves as a means of identifying abstract or physical resource. A

Programming the Semantic Web 353

URI can be further classified as a Uniform Resource Locator (URL) or a
Uniform Resource Name (URN). A URL identifies resources via a
representation of their primary access mechanism. A URN remains globally
unique and persistent even when the resource ceases to exist or becomes
unavailable.

Unicode provides a unique number for every character, independently of
the underlying platform or program. Before the creation of Unicode, there
were various different encoding systems making the manipulation of data
complex and required computers to support many different encodings.

XML. XML is accepted as a standard for data interchange on the Web
allowing the structuring of data but without communicating the meaning of
the data. It is a language for semi-structured data and has been proposed as a
solution for data integration problems, because it allows a flexible coding
and display of data, by using metadata to describe the structure of data.
While XML has gained much of the world's attention it is important to
recognize that XML is simply a way of standardizing data formats. But from
the point of view of semantic interoperability, XML has limitations. One
significant aspect is that there is no way to recognize the semantics of a
particular domain because XML aims at document structure and imposes no
common interpretation of the data (Decker, Melnik et al. 2000). Even though
XML is simply a data-format standard, it is part of the set of technologies
that constitute the foundations of the semantic Web.

RDF. At the top of XML, the World Wide Web Consortium (W3C) has
developed the Resource Description Framework (RDF) (RDF 2002)
language to standardize the definition and use of metadata. RDF uses XML
and it is at the base of the semantic Web, so that all the other languages
corresponding to the upper layers are built on top of it. RDF is a simple
general-purpose metadata language for representing information in the Web
and provides a model for describing and creating relationships between
resources. RDF defines a resource as any object that is uniquely identifiable
by a URI. Resources have properties associated with them. Properties are
identified by property-types, and property-types have corresponding values.
Property-types express the relationships of values associated with resources.
The basic structure of RDF is very simple and basically uses RDF triples in
the form of (subject, predicate, object). RDF has a very limited set of
syntactic constructs and no other constructs except for triples is allowed.

RDF Schema. The RDF Schema (RDFS 2004) provides a type system
for RDF. Briefly, the RDF Schema (RDFS) allows users to define resources
(rdfs:Resource) with classes, properties, and values. The concept of RDFS

354 Semantic Web Services, Processes and Applications

class (rdfs:Class) is similar to the concept of class in object-oriented
programming languages such as Java and C++. A class is a structure of
similar things and inheritance is allowed. This allows resources to be defined
as instances of classes. An RDFS property (rdfiProperty) can be viewed as
an attribute of a class. RDFS properties may inherit from other properties
(rdfsisubPropertyOf), and domain (rdfsidomain) and range (rdfs:range)
constraints can be applied to focus their use. For example, a domain
constraint is used to limit what class or classes a specific property may have
and a range constraint is used to limit its possible values. With these
extensions, RDFS comes closer to existing ontology languages.

Ontologies. An ontology is an agreed vocabulary that provides a set of
well-founded constructs to build meaningful higher level knowledge for
specifying the semantics of terminology systems in a well defined and
unambiguous manner. Ontologies can be used to assist in communication
between humans, to achieve interoperability and communication among
software systems, and to improve the design and the quality of software
systems (Jasper and Uschold 1999).

In the previous sections, we have established that RDF and RDFS were
the base models and syntax for the semantic Web. On the top of the RDF/S
layer it is possible to define more powerful languages to describe semantics.
The most prominent markup language for publishing and sharing data using
ontologies on the Internet is the Web Ontology Language (OWL 2004).
OWL adds a layer of expressive power to RDF/S, providing powerful
mechanisms for defining complex conceptual structures, and formally
describes the semantics of classes and properties used in Web resources
using, most commonly, a logical formalism known as Description Logic (DL
2005).

Logic, Proof, and Trust. The purpose of this layer is to provide similar
features to the ones that can be found in First Order Logic (FOL). The idea is
to state any logical principle and allow the computer to reason by inference
using these principles. For example, a university may decide that if a student
has a GPA higher than 3.8, then he will receive a merit scholarship. A logic
program can use this rule to make a simple deduction: "David has a GPA of
3.9, therefore he will be a recipient of a merit scholarship."

The use of inference engines in the semantic Web allows applications to
inquire why a particular conclusion has been reached (inference engines,
also called reasoners, are software applications that derive new facts or
associations from existing information.). Semantic applications can give
proof of their conclusions. Proof traces or explains the steps involved in
logical reasoning.

Programming the Semantic Web 355

Trust is the top layer of the Semantic Web architecture. This layer
provides authentication of identity and evidence of the trustworthiness of
data and services. While the other layers of the semantic Web stack have
received a fair amount of attention, no significant research has been carried
out in the context of this layer.

3. SEMANTIC WEB DEVELOPMENT
ENVIRONMENTS

Several frameworks supporting OWL ontologies are available. We will
briefly discuss the ones that are used the most by the developer community,
namely the Jena framework, Protege-OWL API and the WonderWeb OWL
APL which are all available for Java language. These three APIs are open-
source and thus interested people can carry out an in-depth study of their
architecture. This is very important for the current stage of semantic Web
development since it is difficult to know what the application's scope of the
semantic Web will be in the near future. Therefore, open frameworks will
allow for an easier integration of semantic Web components into new
projects.

Jena (Jena 2002; Jena 2005) is a Java framework for building semantic
Web applications developed by the HP Labs Semantic Web Programme. It
provides a programmatic environment for RDF, RDFS and OWL, including
a rule-based inference engine and a query language for RDF called RDQL
(RDQL 2005). Since we are mostly interested in ontology support, in
subsequent sections we will discuss the Jena 2 Ontology API included in the
Jena toolkit. This API supports several ontology description languages such
as DAML, DAML+OIL and OWL. However building ontologies in OWL
W3C's language is strongly recommended because DAML and DAML+OIL
support may be removed in future releases of Jena. Because Jena 2 Ontology
API is language-neutral, it should be easy to update existing projects using
Jena and other ontology languages to support OWL. Jena OWL API
supports all three OWL sublanguages, namely OWL Lite, OWL DL and
OWL Full. Specifying an URI to an OWL ontology, Jena parses the
ontology and creates a model for it. With this model it is possible to
manipulate the ontology, create new OWL classes, properties or individuals
(instances). The parsing of OWL documents can be highly resource
consuming, especially for documents describing large ontologies. To address
this particularity, Jena provides a persistence mechanism to store and
retrieve ontology models from databases efficiently. As stated before, Jena
includes an inference engine which gives reasoning capabilities. Jena
provides three different reasoners that can be attached to an ontology model,

356 Semantic Web Services, Processes and Applications

each of them providing a different degree of reasoning capabiHty. More
capable reasoners require substantially more time to answer queries.
Therefore, developers should be very careful when choosing a reasoner. Of
course, it is possible to create a model with no reasoner defined. An
interesting aspect of Jena is that its inference engine is written in a very
generic way so that it allows developers to write their own inference rules to
better address their needs. This generic implementation also allows for
attaching any reasoner that is compliant with the DIG interface, which is a
standard providing access to reasoners, such as Racer, FaCT, and Pellet.
Another important aspect is that it is very easy to find documentation and
practical programming examples for Jena.

Protege (Protege 2005) is a free, open-source platform that provides a
growing user community with a suite of tools to construct domain models
and knowledge-based applications with ontologies. It was developed by the
Stanford Medical Informatics Labs of the Stanford School of Medicine. The
Protege-OWL API is an open-source Java library for OWL and RDF(S). The
API provides classes and methods to load and store OWL files, to query and
manipulate OWL data models, and to perform reasoning (Protege-API
2006). This API, which is part of the Proteg6-OWL plug-in, extends the
Protege Core System based on frames so that it can support OWL ontologies
and allows users to develop OWL plug-ins for Protege or even to create
standalone applications. Protege-OWL API uses Jena framework for the
parsing and reasoning over OWL ontologies and provides additional support
for programming graphical user interfaces based on Java Swing library. The
Protege-OWL API architecture follows the model-view pattern, enabling
users to write GUIs (the "view") to manipulate the internal representation of
ontologies (the "model"). This architecture, together with the event
mechanism also provided, allows programmers to build interactive user
interfaces in an efficient and clean way. A community even stronger than
Jena's one has grown around Protege, making it very easy to find good
documentation, examples and support for this API.

WonderWeb OWL API (OWLAPI 2006) is another API providing
programmatic services to manipulate OWL ontologies. It can also infer new
knowledge once a reasoner is attached to the ontology model. Pellet is one of
the reasoners that is currently supported. One should note that the current
release of this API is still in working progress. Consequently, there are some
issues that need to be corrected. Nevertheless, WonderWeb OWL API was
successfully used in several projects such as Swoop (SWOOP 2006) and
Smore (SMORE 2006), respectively, an ontology editor and a semantic
annotation tool, from the MIND LAB at the University of Maryland Institute
for Advanced Computer Studies. This demonstrates that this API is mature
enough to be considered when developing semantic Web applications. One

Programming the Semantic Web 357

major drawback of the WonderWeb OWL API is lack of documentation.
Currently, Javadoc documentation and some open-source applications that
use this API, is what can be found about it. It is very difficult to find
practical examples. This fact may lead developers to choose to discard this
API.

4. OUR RUNNING ONTOLOGY

Our recent work has involved the development of a Semantic Course
Management System (S-CMS). Course management systems (CMS) are
becoming increasingly popular. Well-known CMSs include Blackboard.com
and WebCT.com whose focus has centered on distance education
opportunities. Typically, a CMS include a variety of functionalities, such as
class project management, registration tool for students, examinations,
enrolment management, test administration, assessment tools, and online
discussion boards (Meinel, Sack et al. 2002).

The S-CMS system that we have developed is part of the Strawberry
project' and explores the use of semantic Web technologies to develop an
innovative CMS. The S-CMS provides a complete information and
management solution for students and faculty members. Our focus and main
objective was to automate the different procedures involved when students
enroll or register for class projects. Managing a large course and its class
projects is a complex undertaking. Many factors may contribute to this
complexity, such as a large number of students, the variety of rules that
allow students to register for a particular project, students' background, and
student's grades.

The development of a semantic Web application typically starts with the
creation of one or more ontology schema. For simplicity reasons, in this
chapter we will only present one ontology, the University ontology. This
ontology will be used in all the programming examples that we will show.
As with any ontology, our ontology contains the definition of the various
classes, attributes, and relationships that encapsulate the business objects
that model a university domain. The class hierarchy of our simple ontology
is shown in Figure 14-1 using the OWL Viz Protege plug-in (OWLViz
2006).

' http://dme.uma.pt/jcardoso/Research/Projects/Strawberry/

358 Semantic Web Services, Processes and Applications

UX^mM^m^^SX^^^K^^^ttM^^^mSmlmt^Sm

fc v̂ / V f <=• !»l It' --. K ¥. K^pmtigi

I Grade i

i :^^; ' -
:_ 0¥/l:Thlnj >3- ' *»* (_ Person l_^

' " • ^ ^ ^

(Teach&r J

(Coyrse 5

Figure 14-2. Class hierarchy

Some of the properties of our ontology are shown in Figure 14-2 using
Protege (Protege 2005).

Class hierarcr

Properties

Figure 14-3. Classes and properties

Programming the Semantic Web 359

5. USING JENA

Jena is a framework for building Semantic Web applications. It provides
a programmatic environment for RDF, RDFS and OWL. It also includes a
rule-based inference engine. Jena is open source and is a development effort
of the HP Labs Semantic Web Research program. HP Labs have made
considerable investments in Semantic Web research since 2000 which lead
to the development of standards (such as RDF and OWL) and semantic
applications (such as Jena).

The Jena toolbox includes a Java programming API that gives a
framework to program semantic Web applications. The API is divided into
five sets of functions that deal with the processing of ontologies, namely:

• Processing and manipulation of RDF data models
• Processing and manipulation of ontologies
• SPARQL query support
• Inference on OWL and RDFS data models
• Persistence of ontologies to databases

In this chapter we will focus primarily on the API responsible for the
processing and manipulation of OWL ontologies.

5.1 Installing Jena

To install Jena the first step is to download Jena API from
http;//jena.sourceforge.net. The version used for the examples shown in this
chapter was Jena 2.3. Once you have downloaded Jena (in our case the
package was named Jena 2 . 3 . zip), you need to extract the zip file.

You will find in the /lib directory all the libraries needed to use the Jena
API. To develop semantic applications with Java you will need to update
your CLASSPATH to include the following libraries:

antlr-2.7.5.jar
arg.jar
commons-logging.jar
concurrent.j ar
icu4j_3_4.jar
jak;arta-oro-2 . 0 . 8 . jar
j ena.j ar
jenatest.jar
junit.jar
log4j-1.2.12.jar

360 Semantic Web Services, Processes and Applications

• stax-1.1.1-dev.jar
• stax-api-1.0.jar
• xerceslmpl.jar
• xml-apis.jar

5.2 Creating an Ontology Model

The main Java class that represents an ontology in memory is the
OntModel.

OntModel model;

In Jena, ontology models are created using the ModelFactory class. A
model can be dynamically created by calling the
createOntologyModel () method.

OntModel in = ModelFactory.createOntologyModel {) ;

When creating an ontology it is possible to describe its characteristics,
such as the ontology language used to model the ontology, the storage
scheme and the reasoner.

To describe specific characteristics of an ontology, the method
createOntologyModel (OntModelSpec o) needs to be called and
accepts a parameter of the type OntModelSpec. For example,
OntModelSpec .0WL_DL_MEM determines that the ontology to be created
will have an OWL DL model and will be stored in memory with no support
for reasoning. Various other values are available. Table 14-1 illustrates some
of the possibilities.

Table 14-1. Types of ontology models with Jena
Field Description
DAML_MEM A simple DAML model stored in memory with

no support for reasoning
DAML_MEM_RDFS_INF A DAML model stored in memory with support

for RDFS inference
OWL_LITE_MEM A simple OWL Lite model stored in memory

with no support for reasoning
OWL_MEM_RUIJE_INF A O W L Lite model stored in memory with

support for OWL rules inference
RDFS_MEM A simple OWL Lite model stored in memory

with no support for reasoning

Programming the Semantic Web 361

More than 20 different ontology models can be created. The following
segment of code illustrates how to create an OWL ontology model, stored in
memory, with no support for reasoning.

import coin.hp.hpl. jena. ontology. OntModel;

import com.hp.hpl.jena.ontology.OntModelSpec;

import com.hp.hpl.jena.rdf.model.ModelFactory;

public class CreateModel{

public static void main{String [] args) {

OntModel model = ModelFactory.createOntologyModel{

OntModelSpec.OWL_MEM);

)
)

5.3 Reading an Ontology Model

Once we have an ontology model, we can load an ontology. Ontologies
can be loaded using the read method which can read an ontology from an
URL or directly from an input stream.

read(string url)

readdnputStream reader, String base)

In the following example, we show a segment of code that creates an
OWL ontology model in memory and loads the University ontology from
the U R L h t t p : //dme .uma . p t / j c a r d o s o / o w l / U n i v e r s i t y . owl.

OntModel model = ModelFactory.createOntologyModel{

OntModelSpec.OWL_MEM);

m o d e l . r e a d { " h t t p : / / d m e . u m a . p t / j c a r d o s o / o w l / U n i v e r s i t y . o w l ") ;

For performance reasons, it is possible to cache ontology models locally.
To cache a model, it is necessary to use a helper class that manages
documents (OntDocumentManager), allowing subsequent accesses to an
ontology to be made locally. The following example illustrates how to add
an entry for an alternative copy of an OWL file with the given OWL URL
An alternative copy can be added by calling the method addAl tEnt ry .

import com.hp.hpl.jena.ontology.OntDocumentManager;

import com.hp.hpl.jena.ontology.OntModel;

import com.hp.hpl.jena.ontology.OntModelSpec;

362 Semantic Web Services, Processes and Applications

import com.hp.hpl.jena.rdf.model.ModelFactory;

public class CacheOntology {

public static void main(String[] args) {

OntModel m = ModelFactory.createOntologyModel(

OntModelSpec.OWL_MEM);

OntDocumentManager dm = m.getDocumentManager();

dm.addAltEntry(

"http://dme.uma.pt/jcardoso/owl/Universi ty.owl",

"file:///c:/University.OWL");

m.read("http://dme.uma.pt/jcardoso/owl/University.owl");

Since we specify that a local copy of our University ontology exists in
f i l e : / / / c : / U n i v e r s i t y . OWL, Jena can load the ontology from the local
copy instead of loading it from the URL.

5.4 Manipulating Classes

OWL ontology classes are described using the On tc l a s s Java class. To
retrieve a particular class from an ontology we can simply use the method
g e t o n t c i a s s (URi) from the OntModel or, alternatively, it is possible to
use the l i s t c l a s s e s () method to obtain a Ust of all the classes of an
ontology. The class On tc l a s s allows us to retrieve all the subclasses of a
class using the method l i s t S u b C l a s s e s () . For example, the following
segment of code allows listing of all the subclasses of the class #Person of
our University ontology.

string baseURI=

"http://dme.uma.pt/j cardoso/owl/Univers i ty.owl#";

OntModel model = ModelFactory.createOntologyModel(

OntModelSpec.OWL_MEM);

model.read("http://dme.uma.pt/jcardoso/owl/University.owl");

Ontclass p = model.getOntClass(baseURI+"Person");

for(Extendedlterator i=p.listSubClasses(); i.hasNext();)

{

Ontclass Class=(Ontclass)i.next();

System.out.println(Class.getURI()) ;

)

Programming the Semantic Web 363

In our scenario the output of this example is:

http://dme.uma.pt/jcardoso/owl/University.owl#Student

ht tp://dme.uma.pt/j cardoso/owl/Univers i ty.owl#Teacher

The c r e a t e C l a s s method can be used to create a new class. For
example we can create the new class #Researcher and set as superclass the
class #Person from the previous example,

OntClass p = model.getOntClass(baseURI+"Person");

Ontclass r = model.createClass{baseURI+"Researcher");

r.addSuperClass(p)

The class O n t c l a s s has several methods available to check the
characteristics of a class. All these methods return a Boolean parameter.
Some of these methods are illustrated in table 14-2.

Table 14-2. Methods to check the characteristics of an OntClass object
isIntersectionClass () isComplementClass ()

isRestriction() hasSuperClass ()

5.5 Manipulating Properties

With Jena, properties are represented using the class OntProper ty . Two
types of OWL properties exist:

• Datatype Properties are attributes of a class. These types of properties
link individuals to data values and can be used to restrict an individual
member of a class to RDF literals and XML Schema datatypes.

• Object Properties are relationships between classes. They link individuals
to individuals. They relate an instance of one class to an instance of
another class.

It is possible to dynamically create new properties. The OntModel class
includes the method c r e a t e x x x () to create properties (and classes as we
have already seen previously). As an example, the following code creates a
new class named #Pro j ec t and an o b j e c t P r o p e r t y named
#ProjectOwner. Using the setRange and setDomain methods of the
class Ob jec tP rope r ty we set the domain of the new property to
#P ro j ec t and its range to #Person.

364 Semantic Web Services, Processes and Applications

OntClass p=model.createClass(BaseUri +"#Project");

ObjectProperty po=

model.createObjectProperty(BaseUri+"#ProjectOwner");

po.setRange(model.getResource(BaseUri+"#Person"));

po.setDomain(p);

A DatatypeProperty can be created in the same way, but using the
createDatatypeProperty method, i.e.

DatatypeProperty p=

model.createDatatypeProperty(BaseUri+"#ProjectDate");

The class OntProperty has several methods available to check the
characteristics of a Property. All these methods return a Boolean parameter.
For example,

Table 14-3. Methods to check the characteristics of an OntProperty object
isTransitiveProperty () isSymmetricProperty()

isDatatypeProperty () isObjectProperty ()

The following segment of code can be used to list the properties of a
class. Basically the l i s tDeclaredProper t ies () from the class
OntClass needs to be called.

import com.hp.hpl.jena.ontology.OntClass;

import com.hp.hpl.jena.ontology.OntModel;

import com.hp.hpl.jena.ontology.OntModelSpec;

import com.hp.hpl.jena.rdf.model.ModelFactory;

import com.hp.hpl.jena.util.iterator.Extendedlterator;

public class ListProperties {

public static void main(String[] args) {

String baseURI=

"http://dme.uma.pt/jcardoso/owl/University.owl#";

OntModel model = ModelFactory.createOntologyModel(

OntModelSpec.OWL_MEM);

model.read(

"http://dme.uma.pt/jcardoso/owl/University.owl");

Programming the Semantic Web 365

OntClass els = model.getOntClass(baseURI+"Person");

System.out.println("Class:");

System.out.println(" "+cls.getURI());

System.out.println("Properties:");

for(Extendedlterator j=cls.listDeclaredProperties();

.hasNextO ;)

{

System.out.println(" "+(OntProperty)j.next());

)

The output of executing this example is:

class:

http://dme.uma.pt/jcardoso/owl/University.owl#Person

Properties:

http://dme.uma.pt/jCardoso/owl/University.owl#Age

http://dme.uma.pt/jcardoso/owl/University.owl#Address

http://dme.uma.pt/jcardoso/owl/University.owl#Email

http://dme.uma.pt/jcardoso/owl/University.owl#Name

#Age, #Address, #Email, and #Name are properties of the class
tPerson .

5.6 Manipulating Instances

Instances, also known as individuals of classes, are represented through
the class I n s t a n c e . Having a class OntClass it is possible to list all its
instances using the method l i s t i n s t a n c e s () . A similar method exists in
the class OntModel but is named l i s t l n d i v i d u a l s () . For example, the
following segment of code lists all the individuals of the University
ontology,

import com.hp.hpl.jena.ontology.Individual;

import com.hp.hpl.jena.ontology.OntModel;

import com.hp.hpl.jena.ontology.OntModelSpec;

import com.hp.hpl.jena.rdf.model.ModelFactory;

import com.hp.hpl.jena.util.iterator.Extendedlterator;

public class Listinstances {

366 Semantic Web Services, Processes and Applications

public static void main(String[] args) {

OntModel model = ModelFactory.createOntologyModel(

OntModelSpec.OWL_MEM);

model.read(

"http;//dme.uma.pt/jcardoso/owl/University.owl");

for(Extendedlterator i= model.listlndividuals0;

.hasNext{);)

{

System.out.printIn(((Individual)i.next()).toString());

)

The output of executing this example is:

ht tp://dme.uma.pt/j cardoso/owl/Univers i ty.owl#Adelia

http://dme.uma.pt/jcardoso/owl/University.owl#Fatima

http://dme.uma.pt/jcardoso/owl/University.owl#Carolina

http://dme.uma.pt/j cardoso/owl/University.owl#ASP

http://dme.uma.pt/jcardoso/owl/University.owl#SD

http://dme.uma.pt/jcardoso/owl/University.owl#CF

http://dme.uma.pt/j cardoso/owl/University.owl#Grade_l

http://dme.uma.pt/jcardoso/owl/University.owl#Grade_3

http://dme.uma.pt/jcardoso/owl/University.owl#Grade_2

http://dme.uma.pt/jcardoso/owl/University.owl#IC

http://dme.uma.pt/jcardoso/owl/University.owl#JC

http;//dme.uma.pt/jcardoso/owl/University.owl#RF

To list all the individuals of the class #Student, we can add the
following lines of code to the previous example:

OntClass Student = model.getOntClass(

"http;//dme.uma.pt/jcardoso/owl/University.owlttStudent");

for(Extendedlterator i= Student.listlnstances();i.hasNext0;)

{

System.out.println(((Individual)i.next()).toString());

)

Now we can create instances dynamically. The following example
creates an instance # Jorge of type #Teacher and set the name and e-mail

Programming the Semantic Web 367

of the instance #Jorge to "Jorge Cardoso" and jcardoso@uma.pt,
respectively.

Resource tClass=model.getResource(baseURI + "#Teacher") ;

Individual teacher=

model.createlndividual(baseURI + "#Jorge", tClass) ;

DatatypeProperty name =

model.getDatatypeProperty(baseURI+"#Name");

teacher.addProperty(naine, "Jorge Cardoso") ;

DatatypeProperty email =

model.getDatatypeProperty(baseURI+"#Email");

teacher.addProperty(email,"jcardoso@uma.pt") ;

5.7 Queries with Jena
One task tiiat is particularly useful once an ontology is available, is to

query its data. An OWL knowledge base can be queried using API function
calls or using RDQL (RDF Data Query Language). Jena's built-in query
language is RDQL, a query language for RDF. While not yet a formally
established standard, (it was submitted in January 2004), RDQL is
commonly used by many RDF applications. RDQL has been designed to
execute queries in RDF models, but it can be used to query OWL models
since their underlying representation is RDF. It is a very effective way of
retrieving data from an RDF model.

5.7.1 RDQL Syntax

RDQL's syntax is very similar to SQL's syntax. Some of their concepts
are comparable and will be well-known to people that have previously
worked with relational database queries. A simple example of a RDQL
query structure is,

SELECT variables

WHERE conditions

Variables are represented with a question mark followed by the variable
name (for example: ?a, ?b). Conditions are written as triples (Subject
Property Value) and delimited with "<" and ">". RDQL allows us to search
within a RDF graph to find subgraphs that match some patterns of RDF node
triples.

Using our University ontology, we can inquire about the direct subclasses
of the class #Person. This can be achieved with the following RDQL query:

368 Semantic Web Services, Processes and Applications

SELECT ?x WHERE (?x <rdfs:subClassOf> <univ:Person>)

USING rdfs FOR <http://www.w3.Org/2000/01/rdf-schema#>

univ FOR

http;//dme.uma.pt/jcardoso/owl/University.owl#>

The ?x in this query is a variable representing something that we want of
the query. The query engine will try to substitute a URI value for ?x when it
finds a subclass of #Person. The "rdfs" and "univ" prefixes make the URIs
in the query shorter and more understandable. Executing the above query to
the University ontology illustrated in Figure 14-1 we expected to retrieve
two URIs. One corresponding to the ttstudent concept and the other to the
concept #Teacher, i.e.

<http://dme.uma.pt/jcardoso/owl/University.owl#Student>

<http://dme.uma.pt/j cardoso/owl/University.owl#Teacher>

RDQL allows complex queries to be expressed succinctly, with a query
engine performing the hard work of accessing the data model. Sometimes,
not every part of the ontology structure is known. For example, if we wish to
inquire about the list of courses that a student has enrolled for. Since we do
not know all the URIs, we have to use variables to represent the unknown
items in the query. For instance, "Show me all Y where Y is a "Course", X
is a "Student", X is named "Adelia Gouveia", and X studies Y." The
response will list all the possible values for Y that would match the desired
properties. The query for this question would be,

SELECT ?y

WHERE (?x <univ:Name> "Adelia Gouveia""^xsd:string),

(?x <univ.Studies> ?y)

USING univ FOR

<http;//dme.uma.pt/jcardoso/owl/University.owl#>

We can also ask for all the students that have passed courses with a grade
higher than 12,

SELECT ?x, ?c

WHERE (?x <univ:HasGrade> ?y) ,

(?x <univ:Studies> ?c),

(?y <univ:Value> ?z) AND ?z>12

USING univ FOR

<http://dme.uma.pt/jcardoso/owl/University.owl#>

Programming the Semantic Web 369

5.7.2 RDQL and Jena

Jena's com. hp . h p l . j ena . r d g l package contains all of the classes and
interfaces needed to use RDQL in a Java application.

import com.hp.hpl.jena.rdql;

Jena's RDQL is implemented as an object called Query. To create a
query it is sufficient to put the RDQL query in a s t r i n g object, and pass it
to the constructor of Query,

string queryString ="...";

Query query = new Query(queryString);

The method s e t s o u r c e of the object Query must be called to explicitly
set the ontology model to be used as the source for the query (the model can
alternatively be specified with a FROM clause in the RDQL query.)

query.setsource(model);

Once a Query is prepared, a QueryEngine must be created and the
query can be executed using the exec () method. The Query needs to be
passed to the QueryEngine object, i.e.

QueryEngine qe = new QueryEngine(query);

The results of a query are stored in a QueryResult object.

QueryResults r e su l t s = qe.execO;

Once we have the results of a RDQL query, a practical object that can be
used to display the results in a convenient way is to use the
QueryResu l t sFormat te r object.

QueryResultsFormatter formatter =

new QueryResultsFormatter ((QueryResults) results) ;

formatter.printAll(new PrintWriter(System.out));

An alternative to using the QueryResu l t sFormat te r object is to
iterate through the data retrieved using an iterator. For example,

QueryResults result = new QueryEngine(query).exec();

370 Semantic Web Services, Processes and Applications

for (Iterator i = result; i.hasNext();) {

System.out.println(i.next());

)

With RDQL it is possible to inquire about the values that satisfy a triple
with a specific subject and property. To run this query in Jena, the
University ontology is loaded into memory. The query is executed using the
static exec method of Jena's Query class and the results are processed. For
example, the following segment of code retrieves all the RDF triples of an
ontology.

import Java.util.Iterator;

import com.hp.hpl.jena.ontology.OntModel;

import com.hp.hpl.jena.ontology.OntModelSpec;

import com.hp.hpl.jena.rdf.model.ModelFactory;

import com.hp.hpl.jena.rdql.Query;

import com.hp.hpl.jena.rdql.QueryEngine;

import com.hp.hpl.jena.rdql.QueryResults;

public class RDQL {

public static void main(String[] args) {

OntModel model = ModelFactory.createOntologyModel(

OntModelSpec.OWL_MEM);

model.read(

"http://dme.uma.pt/jcardoso/owl/University.owl");

String sql= "SELECT ?x,?y,?z WHERE (?x ?y ?z)";

Query query=new Query(sql);

query.setSource(model);

QueryResults result = new QueryEngine(query).exec();

for (Iterator i = result; i.hasNext();) {

System.out.println(i.next());

5.8 Inference and Reasoning
Inference engines, also called reasoners, are software applications that

derive new facts or associations from existing information. Inference and
inference rules allow for deriving new data from data that is already known.
Thus, new pieces of knowledge can be added based on previous ones. By

Programming the Semantic Web 371

creating a model of the information and relationships, we enable reasoners to
draw logical conclusions based on the model. For example, with OWL it is
possible to make inferences based on the associations represented in the
models, which primarily means inferring transitive relationships. Nowadays,
many inference engines are available.

• Jena reasoner - Jena includes a generic rule based inference engine
together with configured rule sets for RDFS and for OWL.

• Jess - Using Jess (Gandon and Sadeh 2003) it is possible to build
Java software that has the capacity to "reason" using knowledge
supplied in the form of declarative rules. Jess has a small footprint
and it is one of the fastest rule engines available. It was developed at
Carnegie Melon University.

• SWI-Prolog Semantic Web Library - Prolog is a natural language for
working with RDF and OWL. The developers of SWI-Prolog have
created a toolkit for creating and editing RDF and OWL applications,
as well as a reasoning package (Wielemaker 2005).

• FaCT++ - This system is a Description Logic reasoner, which is a re-
implementation of the FaCT reasoner. It allows reasoning with the
OWL language (FaCT 2005).

In the following sections we will concentrate our attention on using the
Jena rule based inference engine programmatically.

5.8.1 Jena Reasoners
The Jena architecture is designed to allow several inference engines to be

used with Jena. The current version of Jena includes five predefined
reasoners that can be invoked, namely:

• Transitive reasoner: A very simple reasoner which implements only
the transitive and symmetric properties of r d f s : s u b P r o p e r t y O f and
r d f s : s u b C l a s s O f .

• DAML micro reasoner: A DAML reasoner which provides an engine to
legacy applications that use the DAML language.

• RDFS rule reasoner: A RDFS reasoner that supports most of the RDFS
language.

• Generic rule reasoner: A generic reasoner that is the basis for the RDFS
and OWL reasoners.

• OWL reasoners: OWL rule reasoners are an extension of the RDFS
reasoner. They exploit a rule-based engine for reasoning. OWL reasoners
supports OWL Lite plus some of the constructs of OWL Full.

372 Semantic Web Services, Processes and Applications

In this section we will study how to develop Java applications using the
OWL reasoning engines since OWL is becoming the most popular language
on the semantic Web compared to DAML and RDFS.

5.8.2 Jena OWL Reasoners

Jena provides three internal reasoners of different complexity: OWL,
OWL Mini, and OWL Micro reasoners. They range from the simple Micro
reasoner with only domain-range and subclass inference, to a complete
OWL Lite reasoner.

The current version of Jena (version 2.3) does not fully support OWL
yet. It can understand all the syntax of OWL, but cannot reason in OWL
Full. Jena supports OWL Lite plus some constructs of OWL DL and OWL
Full, such as owl: hasValue. Some of the important constructs that are not
supported in Jena include owl: complementOf and owl: oneOf. Table 14-4
illustrates the OWL constructs supported by the reasoning engines available.

Table 14-4. Jena reasoning support
OWL Construct Reasoner
rdfsisubClassOf, rdfsisubPropertyOf, rdf:type all
rdfs:domain, rdfs:range all
owlantersectionOf all
owhunionOf all
owliequivalentClass all
owl:disjointWith full, mini
owlisameAs, owl:differentFrom, owlidistinctMembers full, mini
owliThing all
owl:equivalentProperty, owl:inverseOf all
owhFunctionalProperty, owliInverseFunctionalProperty all
owliSymmeticProperty, owliTransitiveProperty all

owl:someValuesFrom full, (mini)
owhallValuesFrom full, mini
owlrrainCardinality, owhmaxCardinality, owlxardinality full, (mini)
owl:hasValue ^1'
owlxomplementOf "one
owlioneOf "^^

For a complete OWL DL reasoning it is necessary to use an external DL
reasoner. The Jena DIG interface makes it easy to connect to any reasoner
that supports the DIG standard. By communicating with other ontology
processing systems, such as RACER or FAcT, Jena can enhance its ability
for reasoning in large and complex ontologies.

Programming the Semantic Web 373

5.8.3 Programming Jena reasoners
Given an ontology model, Jena's reasoning engine can derive additional

statements that the model does not express explicitly. Inference and
inference rules allow for deriving new data from data that is already known.
Thus, new pieces of knowledge can be added based on previous ones. By
creating a model of the information and relationships, we enable reasoners to
draw logical conclusions based on the model.

As we have already done previously, the first step to develop a semantic
Web application with support for reasoning is to create an ontology model,

string baseURI=

"http://dme.uma.pt/jcardoso/owl/University.owl#" ;

OntModel model = ModelFactory.createOntologyModel(

OntModelSpec.OWL_MEM);

model.read("http;//dme.uma.pt/jcardoso/owl/University.owl");

The main class to carry our reasoning is the class Reasoner. This class
allows us to extract knowledge from an ontology. Jena provides several
reasoners to work with different types of ontology. Since in our example we
want to use our OWL University ontology, we need to obtain an OWL
reasoner. This reasoner can be accessed using t h e
Reasone rReg i s t e ry . getOWLReasoner () method call, i.e.,

Reasoner reasoner = ReasonerRegistry.getOWLReasoner();

Other reasoners can be instantiated with a call to the methods
getOWLMicroReasoner(), getOWLMiniReasoner(),
getRDFSReasoner(), and g e t T r a n s i t i v e R e a s o n e r () .

Once we have a reasoner, we need to bind it to the ontology model we
have created. This is achieved with a call to the method bindSchema, i.e.,

reasoner = reasoner.bindSchema(model);

This invocation returns a reasoner which can infer new knowledge from
the ontology's rules. The next step is to use the bound reasoner to create an
inf Model from the University model,

InfModel infmodel=ModelFactory.createInfModel(reasoner,model);

374 Semantic Web Services, Processes and Applications

Since several Java packages are needed to execute and run the examples
that we have given, the following segment shows all the Java code needed to
instantiate a reasoner.

import com.hp.hpl.jena.ontology.OntModel;

import com.hp.hpl.jena.ontology.OntModelSpec;

import com.hp.hpl.jena.rdf.model.InfModel;

import com.hp.hpl.jena.rdf.model.ModelFactory;

import com.hp.hpl.jena.reasoner.Reasoner;

import com.hp.hpl.jena.reasoner.ReasonerRegistry;

public class InstanciateReasoner {

public static void main(String[] args) {

OntModel model = ModelFactory.createOntologyModel(

OntModelSpec.OWL_MEM);

String BaseUri=

"ht tp://dme.uma.pt/j Cardoso/owl/Univers i ty.owl";

model.read(BaseUri);

Reasoner reasoner = ReasonerRegistry.getOWLReasoner() ;

reasoner=reasoner.bindSchema(model);

InfModel infmodel

= ModelFactory.createlnfModel(reasoner,model);

)
)

Once a reasoner is instantiated, one of the first tasks that we can execute
is to check for inconsistencies within the ontology data by using the
v a l i d a t e () method, i.e.,

ValidityReport vr = infmodel.validate();

if (vr.isValidO) {

System.out.println("Valid OWL");

)
else {

System.out.println("Not a valid OWL!");

for (Iterator i = vr.getReports(); i.hasNext();){

System.out.println(i.next());

)
)

Programming the Semantic Web 375

This example prints a report if the ontology data is found to be
inconsistent. The following output shows the example of a report generated
when trying to validate an inconsistent ontology,

Not a valid OWL

- Error ("range check"): "Incorrectly typed literal due to range

(prop, value)"

Culprit=

ht tp;//dme.uma.pt/j cardoso/owl/Univers i ty.owl#Carolina

Implicated node:

ht tp://dme.uma.pt/j cardoso/owl/Univers i ty.owl#Emai1

Implicated node: 'carolina@uma.pt'

The report indicates that the email address (#Email) of the individual
#Carolina has an incorrect type.

One other interesting operation that we can carry out is to obtain
information from the ontology. For example, we can retrieve all the pairs
(property, resource) associated with the resource describing the course
CS8050, which is defined with ID #CS8050.

string BaseUri=

"http://dme.uma.pt/jcardoso/owl/University.owl";

Resource res = infmodel.getResource(BaseUri+"#CS");

System.out.println{"CS8050 * : ") ;

for (Stmtlterator i =

infmodel.listStateraents(res,(Property)null,(Resource)null);

i.hasNext();)

(
Statement stmt = i.nextStatement ();

System.out.printIn(PrintUtil.print(stmt));

)

The output of running the previous example is shown below. To make
the output more readable we have replaced the URI
http:/ /dme.uma.pt/ jcardoso/owl/Universi ty.owl with the
symbol @ and the URI h t t p : //www.w3 .org/2 001/XMLSchema with the
symbol §.

CS8050 *:

(@#CS8050 rdf:type @#Course)

376 Semantic Web Services, Processes and Applications

(©#CS8050 @#IsStudiedBy @#Adelia)

(@#CS8050 ©#CourseName 'Semantic Web""^§#string)

(@#CS8050 §#IsStudiedBy @#Carolina)

(@#CS8050 @#IsTeachedBy @#IsabelCardoso)

(@#CS8050 rdf:type owl;Thing)

(@#CS8050 rdfrtype rdfs:Resource)

(@#CS8050 owl:sameAs @#CS8050)

Instance recognition is another important operation in inference. Instance
recognition tests if a particular individual belongs to a class. For example, in
our University ontology, #Adelia is known to be an individual of the class
#Student and the class #student is a subclass of the class #Person. One
question that can be asked is if #Adelia is recognized to be an instance or
individual of the class #Person, in other words is Adelia a person? This can
be asked of the inference model using the contains method, i.e..

Resource rl = infmodel.getResource(BaseUri + "#Adelia") ;

Resource r2 = infmodel.getResource(BaseUri+"#Person");

if (infmodel.contains(rl, RDF.type, r2)) {

System.out.println("Adelia is a Person");

) else {

System.out.println("Adelia is not a Person");

)

Other interesting examples of inference include the use of the transitivity,
union, functional, and intersection properties.

5.9 Persistence
As we have seen above, Jena provides a set of methods to load ontologies

from files containing information models and instances. Jena can also store
and load ontologies from relational databases. Depending on the database
management system used, it is possible to distribute stored metadata. While
Jena itself is not distributed, by using a distributed database back end, an
application may be distributed. Currently, Jena only supports MySQL,
Oracle and PostgreSQL. To create a persistent model in a database we can
use the ModelFactory object and invoke the createModelRDBMaker
method. This method accepts a DBConnection connection object to the
database. An object ModelMaker will be created and can subsequently be
used to create the model in the database.

Programming the Semantic Web 311

For example, to store an existing ontology model in a database we can
execute the following segment of code,

Class.forNarae{"com.mysql.jdbc.Driver");

String BaseURI=

"http://dme.uma.pt/jcardoso/owl/University.owl" ;

DBConnection conn = new DBConnection(

"jdbc:mysql://localhost/UnivDB",

"mylogin",

"mypassword",

"MySQL");

ModelMaker inaker=ModelFactory.createModelRDBMaker(conn) ;

Model db=maker.createModel(BaseURI,false);

db.begin{);

db.read{BaseURI) ;

db.commit() ;

And to read a model from a database we can use the following program,

Class.forName("com.mysql.jdbc.Driver") ;

String BaseURI=

"http://dme.uma.pt/jcardoso/owl/University, owl" ;

DBConnection conn = new DBConnection{

"jdbc:mysql://localhost/UnivDB",

"mylogin", "mypassword", "MySQL");

ModelMaker maker=ModelFactory.createModelRDBMaker(conn);

Model base=maker.createModel(BaseURI, false);

model=ModelFactory.createOntologyModel(

OntModelSpec.OWL_MEM, base);

6. QUESTIONS FOR DISCUSSION

Beginner:
1. Identify the main differences between XML and RDF.
2. Install Jena in your computer and create programmatically an OWL

ontology describing painters and their paintings. The ontology should be
able to represent the following statements: "Painter X has painted the
painting Y", "Painter X was born in W", and "Painting Y was painted in
year Z".

3. Create several individuals for the Painters ontology. For example: Paul
Cezanne, bom 1839, Aix-en-Provence, France, painted "Le paysan" and

378 Semantic Web Services, Processes and Applications

"Le Vase Bleu"; Leonardo da Vinci, bom 1452, Vinci, Florence, painted
"Mona Lisa" and "The Last Supper"; Michelangelo Buonaroti, bom
1475, Florence, painted "Sybille de Cummes" and "Delphes Sylphide".

Intermediate:
1. Identify the main differences between RDFS and OWL.
2. Write down an RDQL query which retrieves the names of all the painters

born in Florence using the ontology created in the previous exercise.
3. Use Jena to execute the previous RDQL query and write down the results

of executing the query on the ontology.
4. Make your ontology persistent in a database.

Advanced:
3. Write down and execute an RDQL query which retrieves the paintings

Michelangelo Buonaroti painted in 1512 (note: The "Sybille de
Cummes" was painted 1512).

4. Validate your model using Jena's inference engine.
5. Why is inference a time consuming operation?

7. SUGGESTED ADDITIONAL READINGS

• Jena Documentation, http://iena.sourceforge.net^documentation.html.
This is a fundamental source of information to start programming with
the Jena Framework.

• Antoniou, G. and van Harmelen, F. A semantic Web primer. Cambridge,
MA: MIT Press, 2004. 238 pp.: This book is a good introduction to
Semantic Web languages.

• H. Peter Alesso and Craig F. Smith, Developing Semantic Web Services,
AK Peters, Ltd, October, 2004, 445 pp.: The book presents a good
overview of Semantic Tools in chapter thirteen.

8. REFERENCES

Bemers-Lee, T., J. Hendler, et al. (2001). The Semantic Web. Scientific American. May
2001.

Bemers-Lee, T., J. Hendler, et al. (2001). The Semantic Web: A new form of Web content
that is meaningful to computers will unleash a revolution of new possibilities.
Scientific American.

Cardoso, J. (2004). Issues of Dynamic Travel Packaging using Web Process Technology.
International Conference e-Commerce 2004, Lisbon, Portugal.

Programming the Semantic Web 379

Cardoso, J., J. Miller, et al. (2005). Academic and Industrial Research: Do their Approaches
Differ in Adding Semantics to Web Services. Semantic Web Process: powering
next generation of processes with Semantics and Web services. J. Cardoso and S. A.
Heidelberg, Germany, Springer-Verlag. 3387: 14-21.

Decker, S., S. Melnik, et al. (2000). "The Semantic Web: The Roles of XML and RDF."
Internet Computing 4(5): 63-74.

DL (2005). Description Logics, http://www.dl.kr.org/.
FaCT (2005). FaCT++, http://owl.man.ac.uk/factplusplus/.
Gandon, F. L. and N. M. Sadeh (2003). OWL inference engine using XSLT and JESS,

htlp://www-2.cs.cmu.edu/~sadeh/MyCampusMirror/OWLBngine.html.
Ian Horrocks, Peter F. Patel-Schneider, et al. (2003). SWRL: A Semantic Web Rule

Language Combining OWL and RuleML, http://www.daml.org/2003/11/swrl/.
Jasper, R. and M. Uschold (1999). A framework for understanding and classifying ontology

applications. IJCAI99 Workshop on Ontologies and Problem-Solving Methods.
Jena (2002). The jena semantic web toolkit, http://www.hpl.hp.com/semweb/iena-top.html,

Hewlett-Packard Company.
Jena (2005). Jena - A Semantic Web Framework for Java, http://iena.sourceforge.net/,.
Karvounarakis, G., S. Alexaki, etal. (2002). ROL: a declarative query language for RDF.

Eleventh International World Wide Web Conference, Honolulu, Hawaii, USA.
Kumar, A. and B. Smith (2004). On Controlled Vocabularies in Bioinformatics: A Case Study

in Gene Ontology. Drug Discovery Today: BIOSILICO. 2: 246-252.
Lassila, O. and D. McGuinness (2001). "The Role of Frame-Based Representation on the

Semantic Web." Linkoping Electronic Articles in Computer and Information
Science 6(5).

Meinel, C, H. Sack, et al. (2002). Course management in the twinkle of an eve - LCMS: a
professional course management system. Proceedings of the 30th annual ACM
SIGUCCS conference on User services. Providence, Rhode Island, USA, ACM
Press.

OWL (2004). OWL Web Ontology Language Reference, W3C Recommendation, World
Wide Web Consortium, http://www.w3.org/TR/owl-ref/. 2004.

OWLAPI (2006). "The WonderWeb OLW API, http://sourceforge.nel/proiects/owlapi."
OWL-S (2004). OWL-based Web Service Ontology. 2004.
OWLViz (2(X)6). OWL Viz. [Online] Available at http://www.co-ode.org/downloads/owlviz/.
Protege (2005). Protege, Stanford Medical Informatics. 2005.
Protege-API (2006). The Prot6ge-OWL API - Programmer's Guide,

http://protege.stanford.edu/plugins/owl/api/guide.html.
RDF (2002). Resource Description Framework (RDF), http://www.w3.org/RDF/.
RDFS (2004). RDF Vocabulary Description Language 1.0: RDF Schema, W3C,

http://www.w3.org/TR/rdf-schema/.
RDQL (2005). Jena RDQL, http://iena.sourceforge.net/RDOL/.
Roure, D., N. Jennings, et al. (2001). Research Agenda for the Future Semantic Grid: A

Future e-Scienee Infrastructure http://www.semanticgrid.0rg/vl.9/semgrid.pdf.
Shum, S. B., E. Motta, et al. (2000). "ScholOnto: an ontology-based digital library server for

research documents and discourse." International Journal on Digital Libraries 3(3):
237-248.

380 Semantic Web Services, Processes and Applications

SMORE (2006). "SMORE - Create OWL Markup for HTML Web Pages,
http://www.mindswap.org/2005/SMORE/."

Swoogle (2005). Search and Metadata for the Semantic Web - http://swoogle.umbc.edu/.
SWOOP (2006). "SWOOP - A Hypermedia-based Featherweight OWL Ontology Editor,

www.mindswap.orgy2004/SWOOP/."
Wielemaker, J. (2005). SWI-Prolog Semantic Web Library, http://www.swi-

prolog.org/packages/semweb.html.

Index

'grid-aware' Web Services 317

answering services 151
automatic annotation 339

Basic Linear Alignment Search Tool 310
behavioral model 152
Bioinformatics Ontologies 26
biological experimental process 305
BPEL4WS 203
Business Process Languages 142
business process modeling 343
Business Process Orchestration 323, 331,

347

Capability Cases 294
choreography 139
Choreography 78
Choreography Languages 142
computational gene prediction 312
Computational Genomics 308
Computational Proteomics 308
correlating services 151

Data Mediation 76
Discovery 75

Eclipse WTP project 336

efforts in the semantic markup of Web
services 51

E-Gov Ontology 289
e-Government 283
entity disambiguation 36
entity identification 36
Evolutionary Algorithms 215

FEA 285
FEA Capabilities Advisor 292
FEA-RMO 286
Federal Enterprise Architecture 283
fuzzy logic 199

glycoproteomics 317
Goals 68
Green Pages 92

heterogeneity 140
High-Throughput Experiment 305
HTML 3, 249

Inference engines 370
Information Integration 23
initiating parties 151

Jena 355, 359
Jena Reasoners 371

mapping 48

382 Contents

mapping of scheraas 232
mappings 227
matching 227, 232, 239
matching algorithms 236
Mediation 150
Mediators 71
MEP 139
message exchanging patterns 139
Metadata 9
Molecular Dynamic simulation 316
MOP 212
Multiobjective Optimization Problem 212
MWSDP 99

Non-Pareto Approach 213
NSGA-II215
nucleotides 309

ontologies 15
Ontologies 67
ontology 253, 354
Ontology 256
Ontology Architecture 290
Ontology Repository 335
operational model 152
Optimization problem 210
OWL 4, 250, 254, 256, 259
OWL-S 52, 82, 203

Pareto Approach 214
portType 93
pragmatics 6
Process Design 169
ProPreO 319
Protege 356
Proteomics 313
publication 94

QoS 198
QoS (Non-functional) Model 198
quality of service 198

RDF 4, 250, 252, 353
RDF Gateway 297
RDF Schema 250, 253, 254, 353
RDFQL 297
RDFS 250, 253, 255
RDQL 367
representation of the mappings 50

schema and data conflicts 49
schema matching 46, 238
semantic annotation 36
semantic annotation platforms 40
Semantic based Planning for Optimal

web services Composition 196
Semantic digital libraries 21
Semantic Grid 22
Semantic heterogeneity 8
Semantic Integration 19
Semantic metadata 11
semantic model 152
semantic query 334
semantic schema matching 233
Semantic Web 3, 139
Semantic Web Development

Environments 355
Semantic Web Process Lifecycle 329
Semantic Web Search 24
Semantic Web service 330, 338
Semantic Web Service discovery 166
semantic Web services 16, 347
Semantic Web services 329
Semantic Web Services 338
Semantic-driven choreography initiatives

142
semantics 6, 15
Semantics 14
Semiotics 5
service description 335, 338, 339, 347
Service level semantic annotation 320
Service Oriented Architecture 139
SICoP 284
SO A 139
SOAP 89
SPOC 196
structural and syntactic metadata 35
Structural Bioinformatics 308
Structural heterogeneity 8
Structural metadata 11
structural model 152
Syntactic heterogeneity 8
syntactic metadata 10
syntactic model 152
syntax 6
System heterogeneity 8

The Semantic Web Stack 352

Contents

tModel 93
types of semantics for Web Services 96

UDDI89, 161
UDDI Best Practices 95
UDDI4J 94
Unicode 353
Universal Discovery, Description,

Integration 89
URI251,352
URL 251
URN 251

Web Service 69
Web service composition 201
web services 228
Web Services 66
Web Services Execution Environment 66

383

Web Services Modeling Execution
Environment 64

Web Services Modeling Ontology 64
Web Services Modelling Language 66
Web Services Modelling Ontology 66
White Pages 91
WonderWeb OWL API 356
WSDL 89, 229
WSDL-S16, 53, 83,96,162
WSDL-S annotation tool 56
WSML 66
WSMO 53, 64, 66
WSMX 64, 66

XML 4, 251,353

Yellow Pages 92

