
Chapter 14

GRID MULTICRITERIA JOB SCHEDULING WITH
RESOURCE RESERVATION AND
PREDICTION MECHANISMS

Krzysztof Kurowski, Jarek Nabrzyski, Ariel Oleksiak, Jan Weglarz
Poznan Supercomputing and Networking Center, Poland

naber@man.poznan.pl

Abstract
Grids link together computers, data, sensors, large scale scientific instruments,

visualization systems, networks and people. They can provide very large pools
of computer resources, enable distributed collaborations and deliver increased
efficiency and on-demand computing capabilities. The complexity of Grids on
one hand and the requirements towards performance and capability on the other
hand call for efficient resource management and scheduling mechanisms. Such
mechanisms must take into account not only the hardware and software resources,
user jobs and applications, but also policies of the resource owners. Policies usu­
ally describe cost models for the resource usage, security mechanisms, quality
of service of resource provisioning etc. The problem of scheduling jobs in real
Grid environments is very difficult. Due to lack of time characteristics of jobs,
and difficulties in characterizing the overall system, traditional OR techniques
usually fail or achieve very weak results. Usually, best effort scheduling is the
best option. There are, however, some ways to deal with the problems described
above.

The main goal of this paper it to present some practical issues of scheduling
Grid jobs. Methods and techniques described in the paper are used in a Grid
scheduling system, called GRMS (Grid Resource Management System) develo­
ped at Poznan Supercomputing and Networking Center. GRMS is widely used
in many Grid infrastructures worldwide.

Keywords: Grid computing, Grid resource management and scheduling, multicriteria deci­
sion support.

346 PERSPECTIVES IN MODERN PROJECT SCHEDULING

14.1 Introduction

Grid computing can be defined as coordinated resource sharing and prob­
lem solving in dynamic, multi-institutional collaborations. More simply, Grid
computing typically involves using many resources (compute, data, I/O, instru­
ments, etc.) to solve a single, large problem that could not be performed on any
one resource. Often Grid computing requires the use of specialized middle­
ware to mitigate the complexity of integrating of distributed resources within
an Enterprise or as a public collaboration.

Generally, Grid resource management and scheduling is defined as the pro­
cess of identifying requirements, matching resources to applications, allocating
those resources, and scheduling and monitoring Grid resources over time in or­
der to run Grid applications as efficiently as possible. Grid applications compete
for resources that are very different in nature, including processors, data, scien­
tific instruments, networks, and other services. Complicating this situation is
the general lack of data available about the current system and the competing
needs of users, resource owners, and administrators of the system.

Grids are becoming almost commonplace today, with many projects using
them for production runs. The initial challenges of Grid computing-how to
run a job, how to transfer large files, how to manage multiple user accounts on
different systems-have been resolved to first order, so users and researchers can
now address the issues that will allow more efficient use of the resources.

While Grids have become almost commonplace, the use of good Grid re­
source management tools is far from ubiquitous because of the many open issues
of the field. Some of the issues include:

• Multiple layers of schedulers. Grid resource management involves
many players and possibly several different layers of schedulers. At the
highest level are Grid-level schedulers that may have a more general
view of the resources but are very "far away" from the resources where
the application will eventually run. At the lowest level is a local resource
management system that manages a specific resource or set of resources.
Other layers may be in between these, for example one to handle a set
of resources specific to a project. At every level additional people and
software must be considered.

Lack of control over resources. Grid schedulers aren't local resource
management systems; a Grid-level scheduler may not (usually does not)
have ownership or control over the resources. Most of the time, jobs will
be submitted from a higher-level Grid scheduler to a local set of resources
with no more permissions than the user would have. This lack of control
is one of the challenges that must be addressed.

Grid Multicriteria Job Scheduling with Reservations and Predictions 347

• Shared resources and variance. Related to the lack of control is the
lack of dedicated access to the resources. Most resources in a Grid
environment are shared among many users and projects. Such sharing
results in a high degree of variance and unpredictability in the capacity of
the resources available for use. The heterogeneous nature of the resources
involved also plays a role in varied capacity.

• Conflicting performance goals. Grid resources are used to improve
the performance of an application. Often, however, resource owners and
users have different performance goals: from optimizing the performance
of a single application for a specified cost goal to getting the best system
throughput or minimizing response time. In addition, most resources
have local policies that must be taken into account. Indeed, the policy
issue has gained increasing attention: How much of the scheduling pro­
cess should be done by the system and how much by the user? What are
the rules for each?

• Missing time characteristics of jobs and tasks to be scheduled. In
Grids it is not possible to know most of time characteristics of jobs a
priori. Time characteristics depend strongly on the performance and
workload of a resource that is finally assigned to a job. The exact times
are known only after the job is finished. Sometimes the users are able to
give an estimate for their jobs. However, these estimates are very often
far from the actual execution times. Time prediction methods might be
also used to minimize the impact of this issue on a schedule quality.
Another issue is a job ready time parameter. The job ready time depends
on performance of the network and size of the job in terms of data that
has to be moved from a local resource to a destination resource. The size
of the data is also very often not know a priori. Very often, especially
when we deal with jobs with precedence constraints, that size of the data
to be moved from e.g. job n to job n+1 is known after the job n is finished
and all the files this job generates are written to a disk.

• Lack of resource reservation mechanisms. Another issue is lack of
resource reservation mechanisms for most of the resources in Grids. Al­
though there is a lot of work being done in this area there are still huge
limitations and technical constraints when it comes to resource reserva­
tion mechanisms. We must say that most of the local resource manage­
ment systems, those that are responsible for scheduling on destination
resource, i.e. a resource which actually runs the job do not support re­
source reservation for remote Grid schedulers. Usually the only way to
make a resource reservation is to make a phone call to a resource admin.

348 PERSPECTIVES IN MODERN PROJECT SCHED ULING

In this paper we will focus on the last two issues: missing time characteristics
of jobs to be scheduled and lack of reservation mechanism in Grid systems.
Generally, there are a few main motivations behind an adoption of resource
reservation and prediction mechanisms in Grid resource management. First,
additional knowledge about job start and completion times helps to improve an
efficiency of scheduling in Grid since a Grid resource broker can make more
appropriate decisions. These mechanisms are also essential for providing a
Quality of Service (QoS) for end-users. This is important especially for certain
classes of applications and scenarios, e.g. interactive applications or scheduling
with deadlines, and if resource usage is charged because end-users want to know
what they are charged for. In addition, use of knowledge about job start and
completion times enables a Grid resource broker to schedule the whole set of
jobs at the same time that should lead to a better overall allocation of resources.

Having the above as a main motivations behind this paper we will go further
and will present the whole problem as a multicriteria choice problem, in which a
scheduler, or resource broker, choses one of many schedules generated upfront,
while scheduling some sets of jobs waiting in the system global queue.

The issues of Grid resource management and scheduling have been addressed
only in part by the relevant literature in the field of Grid computing. The first
book on Grid computing. The Grid: Blueprint for a New Computing Infras­
tructure by Foster and Kesselman, and its updated second edition, available in
2004, are a good starting point for any researcher new to the field. In addi­
tion, the book by Berman, Fox, and Hey entitled Grid Computing: Making the
Global Infrastructure a Reality, presents a collection of leading papers in the
area, including the "Anatomy of the Grid" and the "Physiology of the Grid", two
papers that provide an overview of the shape, structure, and underlying func­
tionality of Grid computing. The most complete set of approaches to resource
management in Grids was presented in the book by J. Nabrzyski, J. Schopf and
J. Weglarz entitled Grid Resource Management: State of the Art and Future
Trends, Kluwer Academic Publishers, November 2003 (Nabrzyski et al (2003)).
Research results on the topic of resource management in Grid environments are
presented regularly in selected sessions of several conferences, including Su-
percomputing (SC), the IEEE Symposium on High-Performance Distributed
Computing (HPDC), and the Job Scheduling Strategies for Parallel Processing
workshop, as well as in the Global Grid Forum, a standards body for the field.
The chapter is structured as follows: Section 2 gives an overview of resource
reservation in Grid systems. Section 3 shows how prediction mechanisms can
help with scheduling jobs in Grid environment. Next, in Section 4 we present
a scenario of Grid job scheduling with predictions and resource reservations.
We introduce a general model of multicriteria choice problem, which is one of
the scheduling strategies in the GRMS (Grid Resource Management System)
scheduling framework. GRMS itself is described in Section 5 and its practical

Grid Multicriteria Job Scheduling with Reservations and Predictions 349

usage example in Section 6. We conclude with the summary section in which
we also sketch out our future research.

14.2 Resource Reservation in Grid Systems

Why is resource reservation in Grids so important? Let us give an example
showing the main issues of resource reservation in Grids. A possible Grid
scheduling scenario is presented in the Figure 1 below. The picture is not
very much different from classical scheduling of machines. Of course none of
time characteristics given in the picture are known a priori in Grids, as already
explained above.

"iii^j

c «ni»;ieiscy

Figure 14.1. Most common Grid scenario: resource reservation is not supported by resources.

In the example a resource is allocated to a job for an unspecified amount
of time, starting at the time the job-to-resource assignment is decided. As far
as the information available at scheduler is concerned, the resource remains
allocated to a job until the scheduler is informed about the job completion. The
scheduler has to wait for a release message from the resource before it can
allocate the resource to a new job. When a release message is received at the
scheduler, an allocation message is sent to the application informing the user-
side of where the available data for the execution of the job should be sent. The
data are then transferred, which takes some additional communication time.
During the transmission of the allocation message and during the transmission
of the data to the resource, the resource remains (unnecessarily) inactive. When
all the data are submitted the job begins execution on the resource. After
the job is completed, the resource remains again (unnecessarily) inactive until
the scheduler receives the release message so that it can then allocate it to
another job. The figure shows actually the scheduling scenario when no resource
reservation is applied.

350 PERSPECTIVES IN MODERN PROJECT SCHEDULING

We denote by 2tp the average time that elapses between the time the resource
sends the release message to the scheduler to inform it about the completion
of a job until the time all the data required to execute the next job arrive at
the resource. We also denote by x the average execution time of a job. It is
then clear that Grid scheduling without resource reservation is performed the
efficiency with which a resource is used is at most

e =

Note that the efficiency factor e may be considerably smaller than 1, and it also
gets smaller as X decreases or as 2tp increases (2tp is at least as large as the
roundtrip propagation communication delay). In order for the Grid to be useful
for a number of different applications, we would like to be able to use fine grain
computation (where x is small) and also be able to use remote resources (where
2tp is large), both of which correspond to small values for the efficiency factor
e.

This scenario shows also that some additional overhead must be taken into
account when scheduling on the Grid. This overhead is caused by additional
communication that must take place between the scheduler and the jobs that
are to be run on potentially remote machines.

Let us now see how the efficiency factor e would look like with resource
reservation supported by the remote resource. In the example we assume that
a remote resource can be reserved in advance. It means we know when the
resource will be fully available for our job so we can send all the data to be
placed on the resource when the time to run a job comes.

The main idea behind advance/timed resource reservation is that the resources
are reserved only for the time during which they are actually used for a job.
In order to do so, the scheduler needs to reserve some execution time in the
resources in advance. Of course we still do not know exactly how long will it
take to run a particular job, but resource reservation maximizes the efficiency
of the resources and the efficiency factor e can get very close to 1.

14.3 Scheduling Grid Jobs Using Prediction Information
Most of existing available resource management tools use general approa­

ches such as load balancing (Shirazi et al (1995)), matchmaking (e.g. Condor
Condor (www)), computational economy models (Abramson et al (2002)), or
multi- criteria resource selection (Kurowski et al (2000b)). In practice, the eval­
uation and selection of resources is based on their characteristics such as load,
CPU speed, number of jobs in the queue etc. However, these parameters can
be related to the actual performance of applications, which may be not known
a priori by end users. Users usually do not know what is the exact influence of
these parameters on job start (e.g. local queue waiting) and execution times at

Grid Multicriteria Job Scheduling with Reservations and Predictions 351

Task 2

Efficiency can be close to 1 Time I

Figure 14.2. Resource reservations when advance and timed reservations are used.

different machines. Therefore, available estimations of job start and run times
may significantly increase a quality of scheduling and, consequently, the overall
performance. Nevertheless, due to incomplete and imprecise information, re­
sults of performance prediction methods may be accompanied by considerable
errors (see Gibbons (1997), Smith et al (1999)). The more distributed, het­
erogeneous, and complex environment the bigger prediction errors may occur.
Thus, these errors should be estimated and taken into consideration by a Grid
scheduler while evaluating available resources or schedules. Our approach
to estimating job start and run times has been presented in (Kurowski et al
(2005)). This method takes into account estimated prediction errors to improve
decisions of the Grid scheduler and to limit their negative influence on overall
performance. In the method, the predicted job start- and run-times are gener­
ated by the Grid Prediction System (GPRES), developed in our collaboration
with Wroclaw Supercomputing Center. Prediction techniques can be applied
in a wide area of issues related to Grid computing: from the prediction of the
resource performance in a near future to the prediction of the queue wait time
(Smith et al (1999)). Most of these predictions are applied to resource selection
and job scheduling. Prediction techniques can be classified into statistical, Al,
and analytical. Statistical approached are based on applications that have been
previously executed. These can be time series analysis (Dinda (2001), Wolski et
al (1999)), categorization (Smith et al (1999), Downey (1997), Gibbons (1997),
Kurowski et al (2000a)), and in particular correlation and regression have been
used to find dependencies between job parameters. Analytical techniques con-

352 PERSPECTIVES IN MODERN PROJECT SCHEDULING

struct models by hand (Schopf and Berman (1998)) or using automatic code
instrumentation (Taylor et al (2001)), AI techniques use historical data and
try to learn and classify the information in order to predict the future perfor­
mance of resources or applications. AI techniques that can be used here are,
for instance, classification (decision trees (Quinlan (1986)), neural networks
(Rumelhart et al (1986))), clustering (k-means algorithm (Darken and Moody
(1990))). Predicted times are used to predict resource information to guide
scheduling decisions. Such scheduling process can be oriented to load bal­
ancing when executing in heterogeneous resources (Dail (2001), Figuiera and
Bermann (2001)), or resource selection (Kurowski et al (2000b)) or used when
multiple requests are provided (see Czajkowski et al (1997)). For instance, in
Liu et al (2002) the 10-second ahead predicted CPU information is provided
by NWS (Wolski (1997), Wolski et al (1999)). Many local scheduling policies,
such as Least Work First or Backfilling, also use user provided or predicted exe­
cution time to make scheduling decisions (Lifka (1995), Feitelson and Mu'alem
Weil (1998), Feitelson (www)).

In the approach presented in Kurowski et al (2005) we use the GPRES Expert
System, which uses very simple template approach for predictions (Smith et al
(1999)). The template is the set of job attributes, which are used to evaluate jobs
similarity. Attributes for templates are generated from historical information
after tests. Prediction process consists of several steps:

1 Initialize empty job category set Cz

2 For every template Ti eT

• generate job category Ci

• add Ci to Cz

3 Initialize empty decision category set Cd

4 For every category Q to Cz

• select categories from Knowledge Base corresponding to category
Ci

• add categories to Cd

5 select best category from Cd

Where: d - decision attribute, T - template set, C - category set.
The method of selecting the best rule (category) can be set as a parameter

to prediction module. Actually there are avaliable two methods in GPRES.
The first one is based on number of condition attributes in rules. The most
specific rule is chosen, i.e. the rule which has attributes of the job matched to
the condition in the best way. The second strategy prefers a rule generated from

Grid Multicriteria Job Scheduling with Reservations and Predictions 353

the largest amount of history jobs. GPRES allows to mix these two methods in
the way that if the first one gives still several rules the second is used. If both
methods don?t give the final selection, the rules are combined and arythmetic
mean of decision attribute is returned. Experiments presented in Kurowski et
al (2005) proved that use of knowledge about estimated job completion times
may significantly improve resource selection decisions made by Grid scheduler
and, in this way, the performance of applications and the whole Grid system.
Nevertheless, estimated job completion times may be insufficient for effective
resource management decisions. Results of these decisions may be further
improved by taking the advantage of information about possible uncertainty and
inaccuracy of prediction. In the next section we will present the multicriteria
Grid job scheduling model in which both, resource reservation and prediction
mechanisms are used to improve scheduling performance.

14.4 Grid Job Scheduling with Predictions and Resource
Reservations

Figure 3 presents a general Grid resource management scenario with resource
reservation and time prediction mechanisms.

n User CUser 1

Grid Resource
Broker ^"'

Performance
Prediction

System

/
Resource
Provider

Ri.-.soiifcc*

^ i
Kosourcc
Provider

Figure 14.3. Grid resource management using resource reservation and performance prediction
mechanisms

Resource broker after receiving resource requests from users (step 1) asks
resource providers about their offers. Offers are returned in a form of lists of

354 PERSPECTIVES IN MODERN PROJECT SCHEDULING

amounts of available resource units in various time slots (step 2). Providing an
offer a resource provider agrees to initially reserve resources for a certain period.
If a reservation is not confirmed before the end of this period the reservation
is canceled. This approach guarantees that resources will not be reserved by
other consumers. In the next step a performance prediction system provides
knowledge about estimated job start and completion times (3). The prediction
system calculate estimations based on historical information containing traces
of previous job submissions. Following this a resource broker filters offers
according to constraints defined by end-user, choses the best schedule (4) and
returns this information to users or software acting on behalf of them (5). For
users that have accepted a schedule given by the broker the reservations are
confirmed with appropriate providers (6).

14 A.1 Model of the Scenario

In this section we define more formally a model adopted for the described
scenario. End-users from a finite set U = ^1,^2, ••, u\u\ ^^^^ to run their jobs
J = ji)j2) "",j\j\ on resources belonging to resource providers from the set
RP — rpi^rp2^ "")'^P\RP\' For ^^ch job resource requirements are defined.
They are modeled as a set of hard constraints that must be met as explained in
the previous sections. They consist of amounts of resource units RU^^^ that
must be reserved for a given job (e.g. 3 CPUs, 1GB of disc space, etc.) and
required resource attributes Q^^^ (e.g. CPU speed at least ITFlops).

In this model we assume that a scheduler has knowledge about job start
times. Thus, each resource provider must provide information about its offers
in a form of lists containing available resource units in certain time slots in a
given time period (to.tf): RTi{to,tf) = rtii,rti2, . . . ,rtj/,, k = \RTi\, i ^
1 , . . . , \RP\,Ttii, = (^f^^S tf''^, RUik, Qik), where RUik = {ruikuruik2^ • • •,
^^ik\RUik\)^ and ruiki is an amount of the available resource unit / for resource
provider i and time slot k (e.g. 100MB of free memory) that can be reserved
for an end-user. Qj^ is a set of resource attributes as described in the previous
sections (e.g. CPU speed, operating system, etc.).

In addition to knowledge of deterministic (guaranteed) job start times, in­
formation about estimated job execution and completion times is assumed to
be available as explained above. Therefore, the Grid scheduler can take the
advantage of the list of estimated job execution times, which can be calculated
by the prediction system on the basis of resource attributes provided by each
resource provider for a certain reservation: et^^^^ where i = 1,..., | J|, j =
1,..., \RP\j k — 1,..., \RTi\. Estimations are calculated on the basis of Qik
- a specification of parameters describing a resource belonging to a given re­
source provider. Since job execution times are available and we assume that
reserved jobs can start earlier if there is such a possibility, real job start times

Grid Multicriteria Job Scheduling with Reservations and Predictions 355

can also be estimated. These times, denoted as et^Jj^^ where z = l , . . . , | J | , j =
1,..., \RP\, k — 1,..., \RTi\, may be significantly shorter than the guaranteed
ones. They can be provided either by a prediction system if this information
cannot be taken from resource providers or by resource providers themselves
(in the latter a broker or prediction system should estimate possible errors of
predictions delivered by resource providers).

14,4.2 Multicriteria Choice Problem
The problem to be solved is to find the best time slot (resource providers'

offer) for each job according to end-user's requirements. Each assignment of
a job to a time slot (j —^ rt) is a candidate solution (also called action using
a decision support terminology) and denoted as a e A, where A is a set of all
candidate solutions. Requirements consist of constraints that must be satisfied
(hard constraints) and preferences concerning a choice of the best solution (soft
constraints).

In the first step offers of resource providers must be filtered according to hard
constraints defined by an end-user. This step can be performed by resource
providers themselves since they retrieve information about job requirements
from a resource broker in order to decide according to their local policies if
there are any offers for a job. To this end two issues are cross-checked. For
each job k and offer rtij^i = 1,..., \RP\^j — 1,..., \RTi\ a resource broker
(or provider) checks if requirements Q^^ ,̂ k — 1,..., | J | concerning resource
attributes Qij are met, i.e. whether yq^^ieQij {Qiji oc q^i^)- oc denotes a relation
between resource attribute {qiji) and a job requirement concerning this attribute
{q^i^). This relation occurs if and only xiqiji matches q^^j^, e.g. is less, equal or
greater than required values depending on particular attributes. In the second
step it is checked if a sufficient amount of resource units can be reserved, i.e.
whether yruijmeRUij{ruijm > rUff^)- It can be done again by a resource
provider or a resource broker.

In addition to hard constraints (C) that must be satisfied, a Grid resource
broker needs criteria (soft constraints) that define how the best resources should
be selected. End-user can specify more than one soft constraint, e.g. time and
cost. To handle such requests modeling and exploitation of multi-criteria users'
preferences is needed.

Various models of preference modeling can be adopted in Grid resource
management (Greco et al (1998)). In general we can distinguish two ways of
preferences acquisition: (i) preferences are given explicitly by an end-user, e.g.
in the form of criteria weights or criteria ranking, and (ii) end-users' prefer­
ences are discovered on the basis of their decisions (comparison of potential
solutions). Which method should be used depends on two major aspects: first,
whether users are familiar with basic concepts of decision support theory and

356 PERSPECTIVES IN MODERN PROJECT SCHEDULING

Table 14.1, Criteria

No Symbol Description

On gt'

Cr2

Crz

cost

mean et̂ "̂ "̂"

Cr4 stdev et^

Cr5

Ore
Cry

Crs

Org

Crio

max er"̂ "̂"

err et^^^^

mean ê "*"̂ *

stdev ê *̂̂ *̂

max et̂ *"^*

err et̂ *^^*

Guaranteed job start time (according to an

agreement concerning advance resource reservation)

Total cost of reservation

Estimated mean job execution time (based on job

description and parameters of selected resource)

Estimated standard deviation of job execution

time

Estimated maximal value of job execution time

Estimated prediction error of job execution time

Estimated mean job start time (based on

estimated execution times of previously scheduled jobs)

Estimated standard deviation of job start time

Estimated maximal value of job start time

Estimated prediction error of job start time

aware how to express preferences and, second, whether their preferences are
relatively stable. If preferences change for each job submission, e.g. due to dif­
ferent application requirements or certain unpredictable aspects, an automated
learning of users' preferences is very difficult. Then methods based on utility
theory or lexicographic order of criteria can be applied.

In the presented model criteria considered in the decision support process are
time and cost related. Nevertheless, in addition to the main criteria: guaranteed
(reserved) job start time and cost, criteria that define estimated job execution
time and start time are also taken into consideration. For both of these met­
rics the imprecision measures such as standard deviation, maximal value, and
estimated prediction error are defined (as another criteria). The estimated ex­
ecution time let differentiate the quality of available resources. The estimated
start time can be significantly less then the guaranteed one since we assumed in
the model that resource providers can shift jobs if previous ones have finished
earlier. These values can be returned by a prediction system but also provided
by a resource provider itself. The complete list of criteria used in the model is
presented in Table 1. Of course, additional criteria can be easily added without
reducing the generality of the model.

Although the set of criteria is quite big, in most cases only a subset of them
is used. For instance, probably only one of prediction imprecision measures
is relevant at the same time for an end-user. As mentioned above, different
methods of preference modeling can be applied, however, here we present a

Grid Multicriteria Job Scheduling with Reservations and Predictions 357

procedure of resource selection using a utility function. For each pair: a job
and time slot a utility function is calculated according to the formula:

\CR\

Fijk^rtij) = Y^ Wkifi{rtij), (14.1)
/=o

[maxki - miUki)

where z = 1,..., |J?P|, j = 1,..., |i?Ti|,/c = 1,...,|J|, w^i is a normalized
weight of /̂ ^ criterion concerning job k, and |Ci?| is a number of criteria (in
this case \CR\ = 10)

The maxk and miuk values are essential for appropriate scaling of criteria
values. The function (1) is the simplest utility function consisting of one linear
section. The advantage of this preference model is that this can be relatively
easily and quickly defined by an end-user and calculation of utility function is
immediate. Using this function a resource broker evaluates resources for one
job only.

Based on the definitions, notations, and considerations described above the
problem can be generally defined in the form of a multi-criteria decision support
problem as follows:

mm{/i(a),/2(a),...,/|C7?|(tt)}, (14.3)

s.t.

where QijieQij, ql^'^eQl^'^, I = 1,..., |Q|

^ruijmeRUij{rUm > rUm"^),

where m — 1,..., \RU\

a = j -^ rtij.i ^ l , . . . , | i?P| , j = \,.,,,\RTi\

14.4.3 Scheduling of Job Sets
Knowledge about job completion times gives to a Grid resource broker a

possibility to schedule more that one job at the same time. Doing this a Grid
resource broker can try to optimize a whole schedule like in classical scheduling
approaches. Otherwise, using online scheduling, an order of jobs in a queue
may strongly influence a quality of a schedule. Additionally, if a broker sche­
dules multiple jobs at once resource providers are asked to make preliminary
reservations of their resources only once for all jobs. Note that in the presented
model the main goal is to maximize a total satisfaction of end-users instead of
fixed global criteria.

358 PERSPECTIVES IN MODERN PROJECT SCHEDULING

When multiple jobs are being scheduled a resource broker must get resource
providers' offers not only for a single job. Therefore, resource provider should
specify jobs that can be run in given time slots. Thus, for each time slot the
following list must be provided: JT{rtij) = {jij2j •••̂ j | j | } - Note that one
time slot can be reserved for multiple jobs if there are enough resource units
available in this slot.

A consequence of scheduling sets of jobs, which have come in a certain time
interval, is a need for solutions that satisfy in the best possible way objectives of
multiple end-users. Therefore, a total users' satisfaction must be evaluated. To
this end, preferences of all end-users have to be aggregated into a measure that
allows a resource broker to select the best schedule. A method of aggregation
depends on an approach used for modeling user's preferences. If a utility
function is used for criteria aggregation, an evaluation of the whole schedule is
performed according to the following formula:

1 '^'
FT{J,RT) - —y^FiJk^rtij), (14.4)

where i = 1,..., \RP\^j = 1,..., |i?T^|, /c = 1,..., \J\ and rtij is a time slot
chosen for job k.

In order to make this aggregation fair and reasonable mirikl and maxkl
values in formula (2) must be specified carefully. They should define very bad
and very good values of a criterion respectively from an end-user's perspective.
Otherwise, if for example minimal and maximal values from a set of candidate
solutions are taken as mirikl and maxkU utility functions of different users
are totally incomparable. In spite of the same values of these functions for two
solutions evaluated by two different users, the real assessment of these solutions
may significantly differ. Therefore, if mm/./ and maxkl cannot be accurately
defined other methods of aggregation should be used instead. For instance,
if dependencies between solutions are given in a form of partial preorder of
solutions the aggregation procedure based on Net Flow Score (Greco et al
(1998)) can be applied.

The formulation of this problem differs from that defined for single-job
scheduling described above. In this case a candidate solution is an assign­
ment of jobs to time slots offered by resource providers. Generally multiple
jobs can be assigned to one time slot. Additionally resource providers should
return information which jobs can be assigned to a given time slot.

min{/i(a),/2(a),...,/ |CH|(a)}, (14.5)

s.t.

Grid Multicriteria Job Scheduling with Reservations and Predictions 359

where QijieQij, q]^{^eQ"^"^, I ^ 1,..., \Q\

where ruijm^RUij.ru^^^RUl^'^, m = 1,..., \RU\

'^{jk-rUj)eaJkeJT{rtij)

a = {ji -^ rtij,J2 -> rtij,..., j | j | ~> rUj], ie{l,..., |i?P|},
je{l , . . , | i?r , |} , fc6{l , , . , | J |}

The set a is a candidate solution (decision action). It consists of an ordered
list of time slots assigned to every single job that belongs to the set J. The
first constraint ensures that all time slots meet requirements of assigned jobs
concerning resource attributes. The goal of the second constraint is to guarantee
that sums of resource units that have to be allocated to assigned jobs do not
exceed those offered by resource providers. As explained earlier Qij and RUij
mean attributes of resources and amounts of resource units offered by resource
providers respectively. Q'^^^ and RU^^^ are corresponding job requirements
concerning these values.

14,5 GRMS - An Example Grid Scheduling Framework

GRMS, (Kurowski et al (2001), Kurowski et al (2003), Kurowski et al
(2004)), is an open source meta-scheduling system for large scale distributed
computing infrastructures (Allen et al (2003)), developed at Poznan Super-
computing and Networking Center. Based on the dynamic resource selection,
mapping and advanced Grid scheduling methodologies, it has been tailored to
deal with job and resource management challenges in Grid environments, i.e.
load-balancing among clusters, setting up execution environments before and
after job execution, remote job submission and control, file staging, and more.
GRMS was developed entirely in Java and thus can be installed on various
kinds of operating systems and resources. GRMS is infrastructure indepen­
dent and can be easily integrated with various Grid infrastructures, including
all versions of Globus (Globus (www)), as well as enterprise Grids based on
DRMAA-based infrastructures, including Condor, Sun NIGE (drmaa (www))
GRMS is able to take advantage of other middleware services, e.g. the Grid
Authorization Service (GAS) or Replica Management Services, as well as to
interoperate with infrastructure monitoring tools such as the GridLab's Mercury
Monitoring System. One of the main assumptions for GRMS is to perform re­
mote job control and management in the way that satisfies users' (job owners)
requirements (Kurowski et al (2003)).

The main GRMS functionality includes: queuing submitted job, finding the
best resources according to users' preferences, staging in/out files, submitting

360 PERSPECTIVES IN MODERN PROJECT SCHED ULING

GAT Command line n*h^^ ms^i^*^
Application client Other Clients User Access

Workflow Module

Broker
Module

Scheduling Plug-in's

-•.'iJ!!Wfl.!!!W!ffii

. '

Job
Registry V. J

i

Job
Manager

1 '*^

• • •

1 Resource 1
Discovery

1 Module J

f=f

Data
Management

Prediction
system

Grid Authorization
Service

Gr/of Middleware

GridFTP GRAM GRIS/GIIS
Grid

l\/lonitoring System

-1-^-4-4 J-
Grid Core Services

and Protocols

Grid Resources
Figure 14.4. Detailed view of GRMS

job to, potentially remote computational resources, job migration, job canceling,
logging, supporting workflow jobs.

Fig. 14.4 shows a more detailed view of GridLab GRMS with all its main
modules and the Grid specific services, like Replica Management, File Move­
ment and Adaptive Components.

As it is shown on fig. 14.4, GRMS consists of a set of various modules,
including:

• Broker Module. The aim of the Broker Module is to control the whole
process of resource and job management within the GRMS. This module
steers a flow of requests to the GRMS and is also responsible for appro­
priate cooperation with other modules. Broker contains basic scheduling
and policy strategies: matchmaking and multi-criteria matchmaking. The
first strategy is a relatively simple but in fact very efficient approach for
managing resources on which advanced reservation is not possible. The
second strategy allows more flexible and accurate resource selections ac­
cording to both users and administrator?s requirements and preferences.
These two strategies can be easily modified and new scheduling and pol­
icy modules can be integrated as well.

Resource Discovery Module. The Resource Discovery module monitors
the status of distributed resources and therefore uses a flexible hierarchical

Grid Multicriteria Job Scheduling with Reservations and Predictions 361

access to both central and local information services. This module uses
various techniques to discover and get an efficient access to up-to-date and
accurate (both static and dynamic) information about jobs and resources.
The goal of Resource Discovery it to deliver all information in a form and
on time required by the Broker and its scheduling and policy strategies.

• Job Manager Module. The Job Manager module is responsible for mon­
itoring of job status changes within the GRMS and then storing informa­
tion in a database together with many additional parameters including
resource requirements of jobs, user names, job IDs, submission times,
pending times, execution times, jobmanagers to which jobs were sub­
mitted, history of migration if jobs have been migrated, etc. Due to the
importance of historic information, especially in multi-site or large scale
resource management systems, the GRMS provides also the interface for
users and administrator to receive information about past GRMS actives.
The tracking of historic resource utilization for all users results in the abil­
ity to modify job priorities, ensuring a balanced access, and optimizing
administrator criteria (e.g. job throughput or turnaround time).

• Job Queue All the user requests come into the Job Queue and wait
processing. Jobs in the queue can be scheduled one by one, in a simplest
case (first in first out), or in collections, i.e. a number of jobs, or all the
jobs, are scheduled in parallel. The Job Queue can be distributed across
various Grid domains to allow multi-domain scheduling. In such case
each domain has its own Broker instance. All the Brokers can transfer
jobs between all the domains. The overall system state is controlled by
inter-broker communication mechanisms.

• Job Registry is responsible for maintaining the database of all jobs sub­
mitted to GRMS and all information concerning those jobs.

External to GRMS is a prediction system. The idea here was to be able to
communicate with external prediction services, or systems and so far GRMS has
been integrated with GPRES Prediction Expert System mentioned in previous
section.

14.5,1 Resource Reservation in GRMS

All information related to time requirements of interactive jobs is passed
to the system during the job submission process as a part of job description.
Every job to be submitted can have an optional section that defines in a formal
way the time requirements for the job to be computed. This gives a user the
possibility to build descriptions of advanced execution schedule in a simple
and flexible way. The "execution time" section consists of three subsections

362 PERSPECTIVES IN MODERN PROJECT SCHEDULING

<grmsjob appid = "interactive_exaitiple">
<siinplejob>

<executatole type="single" count="l">
<file naiiie= "exec-file" type="in">

<url>file:///${HOME}/interactive_test/interactive_exec</url>
</file>

</executaJDle>
<execut ionTirtie>

<timeSlot>

<slotStart>10:30:00</3lotStart>
<slotEnci>13 :15 : 00</slotEnd>

</tiineSlot>
<execDuration>POyOHODT2H20HOS</execDuration>
<timePeriod>

<periodStart>2005-05-0ITOO:00:00-00:00</periodStart>
<periodDuration>P0Y0M10DT0H0H0S</periodDuration>

<excluding>
<weekDay>Saturday</weekDay>
<weekDay>Sunday</ xjeekDay>

</excluding>
</timePeriod>

</executionTirae>
</siiwplejob>

</grmsjob>

Figure 14.5. Example job description with time reservations

defining following requirements: optional slot within the day when a job must
be executed, mandatory execution time and optional time period when a job
must be executed. The slot within the day is specified by start time of the
slot and optionally end time of it or time duration. Specifying this time slot a
user can require that the job must be started after some time and not later then
some other time of a day. Mandatory information concerning duration of the job
execution determines length of the period when a resource reservation is needed
for a job. It is the only time characteristic that can be changed by the user after
the job was submitted. If it doesn't violate the schedule it is possible to extend
the execution time of the previously submitted and running job. Planing the
job execution a user can specify time period when a job must be executed. The
presented job description (see fig. 14.6) illustrates usage of this functionality
specifying liberal requirements that the job should be executed within the first
ten days of May except Saturdays and Sundays.

Based on dynamic resource selection and discovery, mapping and advanced
scheduling methodology, combined with a feedback control architecture and
support from other Grid middleware services, it deals with dynamic Grid envi­
ronments and resource management challenges, such as load-balancing among
clusters and various work-load systems, remote job control, file staging, ad­
vance reservation, scheduling jobs with precedence relations etc.

One of the main requirements for GRMS development was to perform re­
mote job control and management in the way that would satisfy job and resource
owners in terms of their preferences. Therefore, GRMS implements multicrite-

Grid Multicriteria Job Scheduling with Reservations and Predictions 363

ria procedures and optimization techniques to define and build various flexible
resource management strategies.

14.5.2 Multicriteria Approach in GRMS
One of the most important modules of the broker is the multicriteria sche­

dule evaluator (MCEvaluator). MCEvaluator implements various multicrite­
ria models and tools that are applied to real Grid resource management and
scheduling problems, including those with resource reservations and predic­
tions. MCEvaluator is a framework that anyone can plugin into with new
abstraction models. Main entities in GRMS include:

• Criteria (objectives, soft constraints)

• Hard constraints

• Solutions (e.g. resources, schedules etc. along with description parame­
ters)

• Evaluator (decision point)

The framework contains also some multicriteria methods that GRMS uses for
selection of best schedule. MCEvaluator provides support for a Grid scheduler
to:

• Identify and select the best resource that a particular job will be computed
on. In a workflow applications this process is repeated for every job being
part of the workflow.

• Assign every available resource to predefined alternatives (classifying
or sorting problem) or to order the alternative resource, as in ranking
problem.

• Provide a performance tableau. In Grids, when the AI techniques are
used it is often necessary to identify major distinguishing features of the
resource or the whole schedule.

In order to solve the above mentioned tasks MCEvaluator can use many
different methods, starting from outranking ELECTRE methods, through the
utility functions aggregating the partial preferences on multiple criteria (MAUT,
UTA, AHP) etc and finishing on the rules based methods. The features described
above can be used for:

• Selecting the best resource to run a job on. This feature allows to choose
best machine for a job, taking into account user preferences and host
parameters, such as CPU load, total and free memory available for a job,
number of CPUs, CPU speed, operating system etc.

364 PERSPECTIVES IN MODERN PROJECT SCHEDULING

• Select best queue at the remote resource to submit a job to. Potentially
every resource is managed locally by the local resource management
system (LRMS). LRMSs are usually based on queues that have different
lengths and represent different policies of the resource owners. Selection
of the best queue by MCEvaluator is based on the estimated job runtime
and queue waiting time.

• Selection of the best job to be migrated. GRMS allows to use various
dynamic strategies to manage jobs and resources, including job check­
pointing and migration. By migrating a number of small jobs a Grid
scheduler may allow to run bigger jobs on particular resource, which
otherwise would have to wait longer in a queue. Cost of migration and
resource characteristics are taken into account before decision is made.

Along with the MCEvaluator GRMS comes with a specialized multicriteria
meta-language for expressing job descriptions and user preferences.

14.6 GRMS in Action
Knowledge acquired by the prediction techniques described in section 3 can

be utilized in Grids, especially by resource brokers. Information concerning
job run-times as well as a short-time future behavior of resources may be a sig­
nificant factor in improving the scheduling decisions. A proposal of the multi-
criteria scheduling broker that takes the advantage of history-based prediction
information is presented in this section. For our experimental considerations
we have chosen the Minimum Completion Time algorithm, which is one of the
simplest algorithms that require estimated job completion times. It assigns each
job from a Job queue to resources that provide the earliest completion time for
a particular job.

Nevertheless, apart from predicted times, the knowledge about potential pre­
diction errors is needed. The knowledge coming from a prediction system
shouldn't be limited only to the mean times of previously executed jobs which
fit to a template. Therefore, we also consider minimum and maximum values,
standard deviation, and estimated error. These parameters should be taken into
account during a selection of the most suitable resources. Mean time stays
as the most important criterion, however, relative importance of all parame­
ters depends on user preferences and/or characteristics of applications. For
instance, certain applications (or user needs) may be very sensitive to delays
that can be caused by incorrectly estimated start and/or run times. In such case
a standard deviation, minimum and maximum values become considerably im­
portant. Therefore, a multicriteria resource selection is needed to accurately
handle these dependencies. In our case we used the functional model for ag­
gregation of preferences. That means that we used a utility function and all

Grid Multicriteria Job Scheduling with Reservations and Predictions 365

For each job Ji from a head of the queue

For each resource Rj, at which this job can be
executed

Retrieve from the GPRES prediction system the

estimated completion time of job CJ^^R.

Assign job Ji to resource Rbest so that

Figure 14.6. Algorithm MCT (Abramson et al (2002))

1 ""
Fj.^Rj = — ^Wk^Ck (14.6)

resources were ranked based on values of utility function. In detail, criteria are
aggregated for job Ji and resource Rj by the weighted sum given according to
formula (6).

where the set of criteria C (n=4) consists of the following metrics:
Ci - mean completion time
C2 - standard deviation of completion time
C3 - difference between maximum and minimum values of completion time
C4 - estimated error of previous predictions
and weights Wk that define the importance of the corresponding criteria. This
method can be considered as a modification of the MCT algorithm to a multi-
criteria version. In this way possible errors and inaccuracy of estimations are
taken into consideration in MCT. Instead of selection of a resource, at which
a job completes earliest, the algorithm chooses resources characterized by the
best values of the utility function FJ^^R.. AS described above the function
is calculated taking as an input values of four criteria: timej^^R., errj^^R.,
stdevj.^R., maxj.^R^, -minj.^R..

These two algorithms have been implemented in GRMS using its multi-
criteria selection framework of MCEvaluator.

366 PERSPECTIVES IN MODERN PROJECT SCHEDULING

For each job Ji from a head of the queue

For each resource Rj, at which this job can be
executed

~ Retrieve from the GPRES prediction system the
estimated completion time of job CJ^^R. and
errj.^R., stdevj.^R., maxj.^R^, rninj^^R..

- Calculate the utility function FJ^^R.

Assign job Ji to resource Rbest so that

F^JuRlest ^ m a x (^ . / ^ , / ? ,)

Figure 14.7. Multicriteria MCT algorithm

14.6.1 Experiment
The system where the workload trace file was obtained from was a IBM

SP2 System from Barcelona Supercomputing Center. The system, named
Kadesh.cepba.upc.edu, was used with two different configurations: the IBM
RS-6000 SP with 8*16 Nighthawk Power3 @375Mhz with 64 Gb RAM, and
the IBM P630 9*4 p630 Power4 @ 1 Ghz with 18 Gb RAM. A total of 336Gflops
and 1.8TB of Hard Disk are available. All nodes are connected through an SP
Switch2 operating at 500MB/sec. The operating system that they are running
is an AIX 5,1 with the queue system Load Leveler. The workload was ob­
tained from Load Leveler history files that contained around three years of job
executions (178.183 jobs). Through the Load Leveler API, we converted the
workload history files that were originally in a binary format. Analyzing the
trace file we can see that total time for parallel jobs is approximately and order
of magnitude bigger than the total time for sequential jobs, what means that in
median they are consuming around 10 times more of CPU time. For both kind
of jobs the dispersion of all the variables is considerable big, however in parallel
jobs is also around an order of magnitude bigger. Parallel jobs are using around
72 times more memory than the sequential applications. In general these vari­
ables have significant amount of variability what may result in difficulties with
predictions. In general users are not working with a big set of applications.
In median, users submitted 9 different applications, and, also in median, they
executed each application around 8 times. However, from the 98 users 22 of
them had submitted in mean same applications more than 30 times. Taking into

Grid Multicriteria Job Scheduling with Reservations and Predictions 367

account only these users, the presented median increases until 56.11 observa­
tions for user and application. Similar conclusions can be applied with user
groups. Although same groups in general are submitting in median 22 different
applications, they are still submitting few than 7 times the same application.
However, there are some groups that are submitting in median more times same
applications, from 22 groups, there are 6 groups that are submitting in median
more than 42.2 times same applications.

We performed two major experiments. First, we compared results obtained
by the MCT algorithm with a common approach based on the matchmaking
technique (job was submitted to the first resource that met user?s requirements).
In the second experiment, we studied improvement of results of the prediction-
based resource evaluation after application of knowledge about possible predic­
tion errors. For both experiments the following metrics were compared: mean,
worst, and best job completion time. The worst and best job completion values
were calculated in the following way. First, for each application the worst/best
job completion times have been found. An average of these values was taken
as the worst and best value for comparison. 5000 jobs from the workload
were used to acquire knowledge by GPRES. Then 100 jobs from the work­
load were scheduled to Job queue ofr GRMS. The results of the comparison
are presented in figure below. In general, it shows noticeable improvement of
mean job completion times when the performance prediction method was used.
The least enhancement was obtained for the best job completion times. The
multi-criteria MCT algorithm turned out to be the most useful for improvement
the worst completion times.

14,7 Conclusions

In this paper we elaborated on Grid job scheduling using Grid schedulers
with resource reservation and prediction mechanisms. We also proposed the
multi-criteria resource evaluation methods based on knowledge of job start-
and run-times obtained from the prediction system. As a prediction system
the GPRES tool was used. We exploited the method of multi-criteria evalu­
ation of resources from GRMS. Resource reservation mechanisms were also
used to make sure that resources are available at the moment of job staging.
We presented how diverse end-users' requirements and preferences concerning
time and cost can be modeled using multi-criteria decision support techniques.
Thanks to this approach end-users can express both hard constraints that must
be satisfied and soft constraints that help a resource broker to find the best
offers of resource providers. Furthermore, we showed how preferences of mul­
tiple end-users can be aggregated in order to find a compromise schedule. The
hypotheses assumed in the paper have been verified. Exploitation of the knowl­
edge about performance prediction allowed a resource broker to make more

368 PERSPECTIVES IN MODERN PROJECT SCHED ULING

60

50

g 40
E

1 30
JS

E
2 20

51

10 -

= matchmaking

: i iMCT

• mulli-criteria MCT

35

worst best

Figure 14.8. Comparison of job completion times for matchmaking, MCT, and multi-criteria
MCT algorithms

efficient decisions. This was visible especially for mean values of job comple­
tion times. Exploitation of knowledge about possible prediction errors brought
another improvement of results. As we had supposed it improved mainly the
worst job completion times. Thus, taking the advantage of knowledge about
prediction errors we can limit number of job completion times that are sig­
nificantly worse than estimated values. Moreover, we can tune the system by
setting appropriate criteria weights depending on how reliable results we need
and how sensitive to delays the application are. For instance, certain users may
accept 'risky' resources (i.e. only the mean job completion time is important
for them) while others may expect certain reliability (i.e. low ratio of strongly
delayed jobs). The preliminary results show that using prediction information
and resource reservation can bring significant results, while scheduling jobs in
Grid environments. Of course there are many limitations to apply the approach
in open Grid systems, but, for many users and jobs, which run frequently in par­
ticular infrastructure the results may be impressive. In general, use of resource
reservation and performance prediction mechanisms in Grids may help to im­
prove performance by means of better Grid resource broker decisions (based on
more accurate knowledge) and possibility of scheduling multiple jobs at once.
Moreover, in certain scenarios in which QoS must be provided this approach is
indispensable.

Grid Multicriteria Job Scheduling with Reservations and Predictions 369

Nevertheless, there are some drawbacks and problems that must be taken
into account when these mechanisms are used. First of all, an extensive use of
resource reservation can deteriorate the overall job throughput. This unfavor­
able influence can be limited by use of accurate job execution time predictions
(along with estimated imprecision) and resource providers policies that allow
starting jobs earlier than their reserved start time. Convenient ratio of num­
bers of jobs with and without reservations is also a major factor that influences
performance. The exact dependencies between these issues are a subject of
further research. Another important issue is a need of additional steps to obtain
offers of resource providers and estimations from a prediction system. These
steps can also increase response time. Additionally, since we cannot assume a
control of resource broker (and in consequence a prediction system) over local
resources the prediction is more difficult due to limited information about re­
sources. To solve this problem very advanced Grid monitoring systems need
to be introduced.

Acknowledgments
The authors of this paper would like to thank Agnieszka Kwiecien, Maciej

Dyczkowski and Marcin Wojtkiewicz from Wroclaw Networking and Super-
computing Center for integrating their GPRES systems with GRMS and making
it available for the tests. We also wanted to thank Jesus Labarta from Barcelona
Supercomputing Center for giving access to historical workloads of their ma­
chines.

References
Abramson, D., Buyya, R. and Giddy, J. (2002). A computational economy for

Grid computing and its implementation in the Nimrod-G resource broker.
Future Generation Computer Systems, 18(8):1061-1074.

Agrawal, R. and Srikant, R. (1994). Fast Algorithms for Mining Association
Rules, in: Proceedings of the Twentieth Intl. Conference on Very Large
Databases, Morgan Kaufmann, pp. 487-499.

Allen, G., Davis, K., Dolkas, K.N., Doulamis, N.D., Goodale, T, Kielmann,
T., Merzky, A., Nabrzyski, J., Pukacki, J., Radke, T., Russell, M., Seidel,
E., Shalf, J. and Taylor, I. (2003). Enabling Applications on the Grid - A
GridLab Overview, International Journal of High Performance Computing
Applications, 17(4):449-466.

Bode, B., Kendall, D.M. and Lei, Z. (2000). The Portable Batch Scheduler and
the Maui scheduler on Linux clusters, in: Proceedings of 4th Annual Linux
Showcase and Conference, October 2000.

370 PERSPECTIVES IN MODERN PROJECT SCHEDULING

Cemy, V. (1985). Thermodynamical Approach to the Traveling Salesman Prob­
lem: An Efficient Simulation Algorithm, Journal of Optimization Theory and
Applications, 45:41-51.

Cheung, L.S. (2001). A Fuzzy Approach to Load Balancing in a Distributed
Object Computing Network, in: Proceedings of the First IEEE International
Symposium of Cluster Computing and the Grid (CCGrid'OI), pp. 694-699.

Condor Group, Condor project, http://www.cs.wisc.edu/condor.
Czajkowski, K., Foster, I., Kesselman, C, Martin, S., Smith, W. and Tuecke,

S. (1997). A resource management architecture for metacomputing systems,
JSSPP Whorskshop, Lecture Notes on Computer Science, 1459:62-68.

Dail, H. (2001). A Modular Framework for Adaptive Scheduling in Grid Ap­
plication Development Environments, Technical report CS2002-0698, Com­
puter Science Department, University of California, San Diego.

Darken, C. and Moody, J. (1990). Fast Adaptive k-means clustering: Some
empirical results, in: Proceedings of the International Joint Conference on
Neural Networks, vol. II, IEEE Neural Networks Council, pp. 233-238.

Dinda, P. (2001). Online prediction of the running time of tasks, in: Proceedings
of 10th IEEE Symp. on High Performance Distributed Computing, pp. 336-
337.

Downey, A. (1997). Predicting Queue Times on Space-Sharing Parallel Com­
puters, in: 11th International Parallel Processing Symposium, pp. 209-218.

Global Grid Forum DRMAA WG, DRMAA Web Site, http://www.drmaa.org.
European DataGrid Project, http://www.eu-datagrid.org.
El-Ghazawi, T., Gaj, K., Alexandridis, N., Vroman, K, Nguyen, N., Radzikowski,

J.R., Samipagdi, P. and Suboh, S.A. (2004). A performance study of job man­
agement systems. Concurrency and Computation: Practice and Experience,
16(13): 1229-1246.

Feitelson, D.G. and Mu'alem Weil, A. (1998). Utilization and predictability in
sche-duling the IBM SP2 with backfilling, Proceedings of 12th International
Parallel Processing Symp., Orlando, pp. 542-546.

Feitelson, D.G., Parallel Workload Archive,
http://www.cs.huji.ac.il/labs/parallel/work-load.

Figuiera, S.M. and Bermann, F. (2001). Mapping Parallel Applications to Dis­
tributed Heterogeneous Systems, Technical report CS2002-0698, Computer
Science Department, University of California, San Diego.

Foster, I. and Kesselman, C. (1998). The Globus Project: A Status Report, in:
Proceedings of the Seventh Heterogeneous Computing Workshop, pp. 4-18,

Foster, I. and Kesselman, C. (editors) (1999). The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kauffmann, San Francisco, California.

Foster, I. and Kesselman, C. (1999). Computational Grids, in: The Grid: Blueprint
for a New Computing Infrastructure, I. Foster and C. Kesselman, eds, Morgan
Kaufmann, San Francisco, California, pp. 15-52.

Grid Multicriteria Job Scheduling with Reservations and Predictions 371

Gibbons, R, (1997). A Historical Application Profiler for Use by Parallel Sched­
ulers, Lecture Notes on Computer Science, 1297:58-75.

Globus Team, Globus Project, http://www.globus.org.
Glover, F. (1989). Tabu Search - part 1, ORSA Journal of Computing, 1(3): 190-

206.
Glover, F. (1990). Tabu Search - part 2, ORSA Journal of Computing, 2:4-32.
Glover, F. (1986). Future Path for Integer Programming and Links to Artificial

Intelligence, Computers & Operations Research, 13:533-549.
Goldberg, D.E., (1989). Genetic Algorithms in Search, Optimization, and Ma­

chine Learning, Addison-Wesley, Reading.
Greco, S., Matarazzo, B,, Slowinski, R. and Tsoukias, A. (1998). Exploitation

of a rough approximation of the outranking relation in multicriteria choice
and ranking, in: Trends in Multi-Criteria Decision Making, T.J Stewart and
R.C van der Honert, eds. Springer Verlag, Berlin, pp. 45-60.

Greco, S., Matarazzo, S. and Slowinski, R. (2001). Rough sets theory for
multicriteria decision analysis, European Journal of Operational Research,
129(1): 1-47.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems, University
of Michigan Press.

Ishibushi, H. and Murata, T (1998). A Multi-Objective Genetic Local Search
Algorithm and Its Application to Flowshop Scheduling, JEEE Transactions
on Systems, Man and Cybernetics, 28(3):392-403.

Jackson, D.B., Maui Admin Guide,
http://supercluster.org/maui/docs/mauiadmin.html.

Jaszkiewicz, A. (1998). Genetic local search for multiple objective combina­
torial optimisation. Technical Report RA014 /98, Institute of Computing
Science, Poznan University of Technology.

Kirkpatrick, S., Gelatt, CD., Jr and Vecchi, M.R (1983)., Optimization by
Simulated Annealing, Science, 230:671-680.

Knowles, J.D. and Come, D. W. (2000). A Comparison of Diverse Approaches to
Memetic Multiobjective Combinatorial Optimization, in: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2000), Work­
shop On Memetic Algorithms, pp. 103-108.

Knowles, J.D. and Come, D.W. (2000). M-PAES: A Memetic Algorithm for
Multiobjective Optimization, in: Proceedings of the 2000 Congress on Evo­
lutionary Computation, pp. 325-332.

Kurowski, K., Nabrzyski, J. andPukacki, J. (2000). Multicriteria Resource Man­
agement Architecture for Grid, in: Proceedings of the 4th Globus Retreat,
Pittsburgh, PA, July 2000.

Kurowski, K., Nabrzyski, J. and Pukacki, J. (2000). Predicting Job Execution
Times in the Grid, in: Proceedings of the 1st SGI 2000 International User
Conference, Krakow, pp. 272-282.

372 PERSPECTIVES IN MODERN PROJECT SCHEDULING

Kurowski, K., Nabrzyski, J. and Pukacki, J. (2001). User preference driven
multiobjective resource management in Grid environments, in: Proceedings
of the First IEEE International Symposium on Cluster Computing and the
Grid(CCGridVI),pp. 114-121.

Kurowski, K., Nabrzyski, J., Oleksiak, A. and W^glarz, J. (2003). Multicriteria
Aspects of Grid Resource Management, in: Grid Resource Management, J.
Nabrzyski, J. Schopf, and J. W^glarz, eds, Kluwer Academic Publishers,
Boston/Dordrecht/London, pp. 271-294,

Kurowski, K., Ludwiczak, B., Nabrzyski, J., Oleksiak, A. and Pukacki, J.
(2004). Improving Grid Level Throughput Using Job Migration and Reschedul­
ing Techniques in GRMS, Scientific Programming, 12:(4)263-273.

Kurowski, K., Oleksiak, A., Nabrzyski, J., Guim, F., Corbalan, J., Labarta, J.,
Kwiecien, A., Wojtkiewicz, M. and Dyczkowski, M. (2005). Multicriteria
Grid Resource Management using Performance Prediction Techniques, in:
Proceedings of the 2nd CoreGrid Workshop, Springer Verlag (to appear).

Langley, P., Iba, W. and Thompson, K. (1992). in: An Analysis of Bayesian
Classifiers, Proceedings ofAAAI'92, pp. 223-228.

Lifka, D. (1995). The ANL/IBM SP scheduling system, in: Job Scheduling
Strategies for Parallel Processing, D.G. Feitelson and L. Rudolph, eds.
Springer-Verlag, Lecture Notes of Computer Science, 949:295-303.

Liu, C., Yang, L., Foster, I. and Angulo, D. (2002). Design and evaluation of
a resource selection framework for Grid applications, in: Proceedings if the
Eleventh IEEE International Symposium on High-Performance Distributed
Computing (HPDC-II), pp. 63-72.

Nabrzyski, J., Schopf, J. and W^glarz, J., editors, (2003). Grid Resource Man­
agement - State of the Art and Future Trends, Kluwer Academic Publishers.

Nabrzyski, J. (2000). User Preference Driven Expert System for Solving Multi-
objective Project Scheduling Problems, Ph.D. Thesis, Poznan University of
Technology.

Pawlak, Z. (1982). Rough Sets, International Journal of Information & Com­
puter Sciences, ll(5):341-356.

Platform Computing Technical Docs, http://www.platform.com/services/support
/docs/LSFDoc51 .asp.

Quinlan, J.R. (1986), Induction of Decision Trees, Machine Learning, 1:81-
106.

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986). Learning Represen­
tations by Back Propagating Errors, Nature, 323:533-536.

Sandholm, T.W. (1999). Distributed Rational Decision Making, in: Multiagent
Systems: A Modern Approach to Distributed Artificial Intelligence, G. Weiss,
ed, MIT Press, pp. 201-258.

Schopf, J. and Berman, F. (1998). Performance prediction in production envi­
ronments, in: Proceedings oflPPS/SPDP, pp. 647-653.

Grid Multicriteria Job Scheduling with Reservations and Predictions 373

Shirazi, B.A., Husson, A.R. and Kavi, K.M. (1995). Scheduling and Load Bal­
ancing in Parallel and Distributed Systems, IEEE Computer Society Press.

Smith, W., Taylor, V. and Foster, I. (1999), Using Run-Time Predictions to Es­
timate Queue Wait Times and Improve Scheduler Performance, Proceedings
of the IPPS/SPDP '99 Workshop on Job Scheduling Strategies for Parallel
Processing, pp. 202-219.

Taylor v., Wu, X., Geisler, J., Li, X., Lan, Z., Hereld, M., Judson, R. and Stevens,
R. (2001). Prophesy: Automating the modeling process, in: Proceedings Of
the Third International Workshop on Active Middleware Services.

Veridian Inc. PBS: The Portable Batch System, http://www.openpbs.org/
Vazhkudai, S. and Schopf, J. (2003). Using Regression Techniques to Predict

Large Data Transfers, Journal of High Performance Computing Applications
- Special Issue on Grid Computing: Infrastructure and Application, 17: 249-
268.

W^glarz, J., editor (1999). Project Scheduling - Recent Models, Algorithms and
Applications, Kluwer Academic Publishers.

Wolski, R., Spring, N. and Hayes, J. (1999). The Network Weather Service:
a distributed resource performance forecasting service for metacomputing.
Future Generation Computer Systems, 15(5-6):757-768.

Wolski, R. (1997). Dynamically Forecasting Network Performance to Support
Dynamic Scheduling Using the Network Weather Service, Cluster Comput­
ing, 1(1):119-132.

Zadeh, L.A. (1965), Fuzzy Sets, Information and Control, 8(3):338-353.

