Chapter 5

MARKOVIAN MULTISERVER VACATION
MODELS

In the three previous chapters, we focused on single server vacation
models of different types. In this and the next chapter, we will discuss
the multiserver vacation models.

5.1 Introduction to Multiserver Vacation Models

In many practical queueing systems, multiple servers attend to the
queue. Call centers, banks, and fast food restaurants are a few exam-
ples. A common feature of these systems is that the servers can perform
some secondary, nonqueueing tasks when they are not busy. For exam-
ple, call center agents may make outbound calls to potential customers
when no inbound calls are on hold. These outbound calls are secondary
or supplementary jobs that can be done by the idle agents. To model
this feature, we use the multiserver model with vacations that represent
the durations of secondary jobs. Compared with single server vacation
models, the multiserver vacation models are more complex to analyze.
Levy and Yechiali (1976) studied the M/M/c queue with exponential
vacations and obtained the distribution of the number of busy servers
and the expected number of customers in the system. Neuts (1981) de-
veloped the matrix analytical method, which provides a powerful tool in
studying complex stochastic systems. Vinod (1986) presented the analy-
sis of M/M/c queue with vacations by using the quasi-birth-and-death
(QBD) process. By finding the explicit expression of the rate matrix,
Tian and Zhang (2000) obtained the distributions of the queue length
and the waiting time in various M/M/c queueing systems with vacations
and established the conditional stochastic decomposition properties for
the queue length and the waiting time. Like the unconditional stochas-
tic decomposition properties for the single server vacation model, the
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conditional stochastic decomposition properties also indicate the rela-
tionship between the multiserver vacation system and the corresponding
the classical M/M/c system.

The multiserver vacation models have more complex and different
system dynamics than the single server vacation models. Below is an
overview of the vacation policies used in multiserver vacation models.

(1) Synchronous All-Server Vacation Policy. Under such a policy in
an M/M/c queue, all ¢ servers start a random vacation V simultane-
ously. As in the single server model, for the multiple vacation case, if
the system remains empty at a vacation completion instant, these servers
take another vacation together, and they repeat this process until they
find the waiting customer(s) in the system. Then the ¢ servers resume
serving the queue. This type of policy applies to the situation where
the servers are controlled by the same means or are required to perform
a teamwork-type job. For instance, in a mainframe computer system
with multiple user terminals, the user terminals are considered to be
the servers and the mainframe computer’s shutdowns due to power fail-
ures or maintenance activities can be treated as synchronous vacations.
In this and the next chapter, we denote the multiple and synchronous
vacation system by (SY, MV). Similarly, for the single vacation case,
when the system becomes empty at a service completion instant, all ¢
servers take only one vacation together. After completing the vacation,
these servers either start serving the customers, if any, or stay idle if
the system remains empty. The single and synchronous vacation system
is denoted by (SY, SV). The third case is that all servers are turned
off when the system becomes empty at a service completion instant and
are turned on with a setup or warmup period when the next customer
arrives. This type of system is called a synchronous setup model and
is denoted by (SY, SU). Note that these policies are exhaustive service
type.

(2) Asynchronous All-Server Vacation Policy. Under such a policy
in an M/M/c queue, any of ¢ servers starts a vacation independently
if this server finds no waiting customer in the system at his or her ser-
vice completion instant. At this instant, other servers may be serving
customers, or on vacation, or idle (for single vacation case). Since the
servers take individual vacations independently, we say that the servers
follow an asynchronous vacation policy. The condition for taking a va-
cation now is that there is no waiting customer. Thus there may be still
some customers in service in the system when a server starts a vacation.
Therefore, the policy is also said to be semiexhaustive. If the servers
take individual vacations consecutively as long as the queue length is
zero, the servers follow a multiple vacation policy. Therefore, the sys-
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tem is denoted by (AS, MV). On the other hand, if the server takes only
one vacation when no waiting customer is in line at a service comple-
tion instant and either resumes service or stays idle, the system then
is under a single vacation policy. This system is denoted by (AS,SV).
Similarly, if a server is turned off when there is no waiting customer at
the server’s service completion instant and is turned on with a setup (or
a warmup) period when the next customer arrives, the system is called
an asynchronous setup model and is denoted by (AS, SU).

(3) Some-Server Vacation Policy. In some situations, we want to limit
the number of servers who can take vacations in the system. Under
either an SY or an AS vacation policy in the M/M/c queue, all ¢ servers
are eligible for taking vacations. However, the maximum number of
servers on vacation at a time is no more than a prespecified number d
(0 < d < ¢). This limit also implies that the number of servers attending
to the queue (either serving or being idle) is at least ¢ — d. This class of
policies offer more flexibility in allocating the servers’ time to multiple
tasks or controlling the servers’ utilization level. Clearly, the special case
d = ¢ becomes the all-server vacation policy. The some-server vacation
policies can be either an SY or an AS type. For each type, the policies
can be further classified into multiple vacation, single vacation, or setup
time models according to the rules of resuming queue service.

(4) Threshold Vacation Policy. As a generalization of the some-server
vacation policy, we may introduce more control parameter(s) into the
policy. The basic threshold policy is similar to the threshold policy
in the single server model and is called the all-server N-policy with or
without vacations. Under such a policy in an M/M/c queue, all servers
start taking a vacation at a service completion instant when the system
becomes empty. If the servers keep taking synchronous vacations until
the number of customers in the system is at least NV at a vacation com-
pletion instant, and then resume serving the queue, we call the servers
follow an N-threshold vacation policy. If the servers are shut down at a
service completion instant when the system is empty, and start serving
the customers immediately when the number of customers in the sys-
tem reaches N, we say the servers follow an N -policy without vacations.
Another threshold-type policy is a generalization of the some-server va-
cation policy. Here is how it works. In an M/M/c queue, the servers are
allowed to take vacations only when the number of idle servers reaches
d at a service completion instant. When this condition is met, a subset
of e (< d) servers take a vacation together. These e servers keep taking
synchronous vacations until there are waiting customers at a vacation
completion instant. Then these e servers resume attending to the queue.
This policy is called an (e, d) policy. As a further extension of the (e, d)
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policy, we may introduce the threshold N for service resumption to have
a three number (e, d, N) policy. Under such a policy, a group of e servers
starts taking a vacation whenever d (< ¢) servers become idle at a ser-
vice completion instant and keep taking the vacations until the number
of customers in the system reaches N at a vacation completion instant;
then the e servers resume attending the queue. Note that in the (e, d, N)
policy, parameter d controls when the server vacation period starts, pa-
rameter e controls the number of servers on vacation, and parameter N
controls when the vacationing servers return to the queue service.

It is well known that the stochastic decomposition theorems play a
central role in the theory of single server vacation models. However, we
cannot establish the corresponding theorems in the multiserver vacation
models due to the complexity of the system dynamics. Our research
indicates that the relation between the multiserver vacation model and
the corresponding classical nonvacation model in terms of stationary
performance measures can be established under the condition when all
servers are busy. Therefore, we present a set of conditional stochastic
decomposition theorems in this and the next chapter. It can be proven
that for a steady-state system, given that all servers are busy, the con-
ditional queue length or waiting time in the multiserver vacation model
can be decomposed into the sum of two independent random variables.
One random variable is the conditional queue length or waiting time in
the corresponding nonvacation model, and the other random variable is
the additional queue length or the additional delay due to the vacation
effect. In fact, the conditional stochastic decomposition properties also
exist in the single vacation models (see Doshi,1989) and are the common
laws for both single server and multiserver vacation models.

5.2 Quasi-Birth-and-Death Process Approach
5.2.1 QBD Process

Most studies on the multiserver vacation systems focus on the M/M/c
systems. These Markovian queueing systems can be modeled as Quasi-
Birth-and-Death (QBD) processes and can be analyzed by using the
matrix analytical method (MAM). The MAM, mainly developed by
Neuts (1981) and other mathematicians, provides a powerful tool in
developing the stationary distributions for the QBD processes. A QBD
process is the generalization of a birth-and-death (BD) process from a
one-dimensional state space to a multidimensional state space. Like the
infinitesimal generator of a BD process with the tri-diagonal structure,
the infinitesimal generator of a QBD is a block-partitioned tri-diagonal
matrix. For the purpose of the model development in this and the next
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chapter, we present only some relevant materials concerning the QBD
processes. For details about the QBD processes and the MAM theory,
see Neuts (1981) and Lotouche and Ramaswami (1999).

Consider a two -dimensional Markov process {(X (t), J(t)),t > 0} with
state space

Q={(k,j): k>01<j<m}

The process {(X(t),J(t)),t > 0} is called a @BD process if the infini-
tesimal generator of the process is given by

[ Ay Co
B, A C
Q= B: Ay G : (5.2.1)

Bs A3z Cj3

where all submatrices are m X m matrices; Ag,k > 0, have negative
diagonal elements and nonnegative off-diagonal elements; and Cyg, k > 0,
and By, k > 1, are all nonnegative matrices satisfying

(Ao + Co)e = (Bk + Ay + Ck)e =0, k> 1.

State set {(0,1),...,(0,m)} is said to be the boundary level; state set
{(k,1),..., (k,m)} is said to be level k. In many applications, we have a
special case of (5.2.1) where the nonboundary submatrices of the infini-

tesimal generator are independent of level k. Thus Q is written as

Ay Cp |
B, A C
Q= B A C 5.2.2
B A C (522)

Assume that the QBD process is positive recurrent, and let (X, J) be
the limit of {(X (¢), J(t))} as t — oco. Denote the stationary probabilities
by

Ty = PAX = k,J = j} = lim P{X(t) =k, J(t) = j}, (k. j) € Q.
Tk = (Tk1, Th2, s Tkm), k> 0.

We present the following theorems without the proofs. For the proofs of
these results, see Neuts (1981).
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Theorem 5.2.1. The irreducible QBD process is positive recurrent
if and only if the matrix equation

R°B+RA +C=0 (5.2.3)

has the minimum nonnegative solution R, with spectral radius sp(R) <
1, and a set of linear homogeneous equations

m(Ap+RB1) =0

has the positive solution. Furthermore, the stationary distribution can
be expressed as the matrix geometric form

7, = moRY, k>0,

where 7 is the positive solution of the set of linear homogeneous equa-
tions and satisfies the normalization condition

mo(I-R) e =1.

In practical applications, we often encounter the variants of the stan-
dard or so-called canonical form QBD process presented above. In a
noncanonical QBD process, the infinitesimal generator, denoted by Q*,
still has the same structure as in (5.2.2), where Ay is an m x mj matrix
and Cy and By are m; X m and m X m1 matrices, respectively. In other
words, the number of states for the boundary level is different from the
number of states for the nonboundary levels. These noncanonical QBD
processes with Q*are called QBD processes with complex boundary be-
havior and follow the theorem below. B

Theorem 5.2.2. The irreducible QBD process with Q* is positive
recurrent if and only if the matrix equation (5.2.3) has the minimum
nonnegative solution R, with the spectral radius sp(R) < 1, and the
m1 + m linear homogeneous equations below have the positive solution

(mo, 1) B[R] = 0,
where B[R] is the (mi +m) x (m1 + m) matrix

Ap Co ]

mm:[B1A+RB

Furthermore, the stationary distribution can be expressed as the matrix
geometric form
m=mRN, k>1,

and (7, 71) satisfies the normalization condition as

me+m(I-—R)le=1.
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The stationary distribution mg, k > 0, is called the modified matriz
geometric solution. Note that Q* differs from the canonical form of
(5.2.1) only in the transition probabilities from the boundary states. The
probabilistic significance of the matrix R therefore remains the same, but
is applied to nonboundary states only. To analyze the M /M /c queue with
vacations, we encounter a more complex variant of the QBD process:
For a system with ¢ servers, not only the £ = 0 level but also £k =
1,2,...,c — 1 levels become boundary levels, and these boundary levels
contain different numbers of states. Thus we denote the number of states
at level £ by my, 0 < k < c¢— 1. The infinitesimal generator is given by

_A[) CO -
B, A1 C1

, (5.2.4)

&> Q

C
A

where Ay are the my x my matrices, 0 < k < ¢—1; By are the mg xmyg_1
matrices, 0 < k < ¢ —1; Cy are the my X mgq matrices, 0 < k < ¢ — 2;
C._1 and B, are the m._1 X m and m X m._1 matrices, respectively; and
A, B, and C are all m x m square matrices. We assume that the QBD
process is positive recurrent. The stationary distribution is denoted by

Wk:(ﬂ'kl,ﬂ'k%maﬂ'kmk), 0<k<c-—1,
Tk = (77_]4;]_,77']{;2, "'aﬂ_k‘m), k 2 C.

The matrix Q in (5.2.4) can be repartitioned into the block form that
is consistent with Q*as follows: Let

- Ay Co -
B, A C
AO = e e ’
Bc—2 Ac—2 Cc—2
L Bc—l Ac—l 1

0

B = (0,B,), COZ(C 1>»
c—

where Ag is the square matrix of order m* = mg + -+ + m._1, and By
and Cp are the m x m* and m* x m matrices, respectively. Thus (5.2.4)
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can be rewritten as

[ Ay Co
B, A C
Q= B A C ,
B A C

and this QBD process becomes a variant of the canonical form. Theorem
5.2.2 now is modified as follows:

Theorem 5.2.3. The irreducible QBD process is positive recurrent
if and only if the matrix equation

R°B+RA+C=0

has the minimum nonnegative solution, R, with the spectral radius
sp(R) < 1, and the linear homogeneous equations

(71'0, oty Te—1, 7TC)B[]-:{] =0 (525)
have a positive solution where
[ Ay Co

B, A C
B[R] = :

Bc—l Ac—l Cc—l
B. A+RB |

Furthermore, the stationary distribution can be expressed as the matrix
geometric form
= T RFTC, k>, (5.2.6)

where (mg, -+ ,mc—1,7) is the positive solution of (5.2.5) and satisfies
the normalization condition

c—1
Zﬂke +71(I-R) le=1.
k=0

5.2.2 Conditional Stochastic Decomposition

First, we prove an important property of the matrix geometric distri-
bution, which is the foundation of developing the conditional stochastic
decomposition results in this and the next chapter. Assume that the
two -dimensional nonnegative random vector (X, J) has the joint distri-
bution

ij:P{X:k,J:j}, kZ0,0SjSC,
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and let
ﬂ-k:(ﬂ-k[)?ﬂ-kl)”' 7’/ch)7 kZO

Furthermore, we assume that (X, J) follows a matrix geometric distrib-
ution and that there exists a nonnegative square matrix R of order c+1
with sp(R) < 1. Therefore we have

m=pRY, k>0, BI-R)'e=1,

where 8 = 79 = (Bo, f1,- -+, Bc). Now we only consider the case where
R is a triangular block-partitioned matrix,
_ | H
aefH 0] 52

where H is a ¢ X ¢ matrix, n is a ¢ X 1 column vector, and r is a real
number. It follows from sp(R) < 1 that sp(H) < 1 and 0 < r < 1.
Defining the conditional random variable

X© =X |J=¢}

we have the stochastic decomposition theorem.
Theorem 5.2.4. If R has the form given in (5.2.7), X(© can be
decomposed into the sum of two independent random variables,

X0 = Xy + X,

where X follows a geometric distribution with parameter r and Xy
follows a discrete PH distribution of order ¢, with the p.g.f.

1 -
Xa(z) = p {Be+ 2(Bo, B1, -+ Be-1) T — zH) "'}, (5.2.8)
where
0 = Fe+ (Bo, f1, -+, Ber) (T — H) .
Proof: Since R is a triangular block-partitioned matrix, we have

k—1 i s
Rk _ Hk Zi:(] 7,sz 1 17] ’ i Z L
0 rk

Substituting R” into the matrix geometric expression, we get

T =(Tho, Th1, -+ The) = BRY

k k—1 iyyk—1—i
:(ﬂoaﬁla“'aBC)[H Z OTII;I 1 77:|

1=

0 r

k-1

B <(50751’." ,Be—1)HE, Ber® + (Bo, B, -+ - ﬁa—l)Zrinlzﬁ) ;
=0

k> 0.
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From this expression, we obtain the joint probability

k—1

The = Ber® + (Bo, Br, -+ Bee1) D P HEI I k>0, (5.2.9)

1=0

Using (5.2.9), it is easy to compute the probability of the condition
event

P{J:C} :iﬂkc

k=0
00 o ko1
:Bchk—‘,— (607/31,"'  Be 1)2 Tinflfin
h=0 k=1 1:=0
%’f’ [IBC + (507/317 te 7/30—1)<I — H)_ln]
. (o
=T

Now the conditional probability is given by

1—r

P{X© =k} = Thes k> 0.

Taking the p.g.f., we have

o0

X€(z) =) FP{Xx© =k}

k=0

oo k—1
= Lor {/BCZ( )k+(507517"' 7B671)Z Tin_l_in}

k=0 k=1 i=0
— 1;7" {1% + 2(Bo, B, - - ”367”1 1 (I—zH)_ln}
- 11_ r o {Be+ 2(Bo, b1, -+ Be1) (T — zH) '}
= Xo(z )Xd( )

where Xo(2) = (1-r)(1—27) ! is the p.g.f. of the geometric distribution.
Expanding X;(z) gives

‘ L(Bo,Br,+ Bemr)HF 10 k> 1

Therefore, X, follows a matrix geometric distribution. Based on Lemma
4.1.1 in Sengupta (1991), X is a discrete PH distribution of order ¢. [J
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If R is a lower triangular block-partitioned matrix,

r 0
R = [ ¢ H ] , (5.2.10)
where H is the ¢ X ¢ square matrix, £ is the ¢ X 1 column vector, and r
is a real number in (0,1). Defining the conditional random variable

X0 =—{x|J=0}

and using the same approach, we can prove the following theorem.
Theorem 5.2.5. If R has the form given in (5.2.10), X(9) can be
decomposed into the sum of two independent random variables,

X© = Xo + Xy,

where X, follows a geometric distribution with parameter r and Xy
follows a discrete PH distribution of order ¢, with the p.g.f.

Xa(z) = % {Bo + 2(B1, B2, -+, Be) (I — zH) ¢}, (5.2.11)

where

o= B0+ (B1, B2, ,B:)I—H)

5.3 M/M/c Queue with Synchronous Vacations
5.3.1 Multiple Vacation Model

Consider an M/M/c system with arrival rate A, service rate p, and
FCFS service order. The detailed analysis of this classical queueing
system can be found in any book on queueing theory (see Kleinrock
(1975), Harris and Gross (1985), etc.). For the convenience of reference,
we present the main results of the M/M/c queue that are relevant to
the vacation models in this chapter. If p = A(cu)™! < 1, the system
is positive recurrent, and there exists the stationary distribution of the
queue length. In the steady-state, the number of waiting customers given
that all servers are busy, denoted by L(()C), follows a geometric distribution
with parameter p. That is

P{LY =k} = (1 p)p", k> 0. (5.3.1)

Given that a customer arrives at a state when all the servers are busy,
this customer’s conditional waiting time WOC) follows an exponential dis-
tribution with parameter cu(1 — p). Therefore, its distribution function
and LST are, respectively,

() = 1 — e=ctll=p)z o5 0. (g — _HL—p) 5
Wy (z) e x>0, Wi(s) sten(—p) (5.3.2)
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Allowing servers to take multiple synchronous vacations in an M/M/c
system, we have the multiserver vacation model denoted by M/M/c (SY,
MV). In such a system, all ¢ servers start taking a vacation together
when the system becomes empty at a service completion instant. At a
vacation termination instant, if the system remains empty, these servers
take another vacation together; if there are 1 < j < ¢ customers in
the system, then j servers start serving customers and ¢ — j servers
stay idle; if there are j > ¢ customers in the system, all ¢ servers start
serving the customers and j — ¢ customers wait in the line. We assume
that the vacations are i.i.d. random variables, denoted by V, following
a PH distribution of order m with the irreducible representation (¢, T)
and ae = 1. This means that there is no positive probability that the
vacation is zero and the LST of V is v(s) = a(sI — T)~!T?. It is also
assumed that the vacation times, the service times, and the interarrival
times are mutually independent.

Let L,(t) be the number of customers in the system at time ¢ and
define

J(t) = 0 the servers are not on vacation,
| j the servers are on vacation at phase j, j =1,2,...,m.

Since the vacations are synchronous, at least one server is busy during
the nonvacation period, and some servers may be idle. Note that the
servers’ being idle is different from their being on vacation. With the
(SY, MV) policy, {((Ly(t),J(t)),t > 0} is a QBD process with state
space

Q={0,7):1<j<m}U{(k,5):k>1,0<j<m}.

The infinitesimal generator can be rewritten in the block-partitioned
form

[ Ay Co
B, A C
- B A C . 5.3.3
Q B A C (5.3.3)

In (5.3.3), Ap is a square matrix of order m* = (¢ — 1)(m + 1) +
m, representing the transitions among the boundary states, where the
number of customers in the system is no more than ¢ — 1. B; and Cy
are the (m + 1) x m* and m* x (m + 1) matrices, respectively. These
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matrices can be written as

[ Ay Co
B: Ay C
By A, C

AO: c. c. c. )

0
BIZ(O,BC), C():<C>a

where Ag = —AI+T+T%x is the square matrix of order m, Cqg = (0, AI)
is the m x (m + 1) matrix, and C = AI is the square matrix of order
(m + 1). Moreover, we have

—(A+kp) 0
Ak; = |: ( 0 :| s 1 S k é C — 1,
T “ALHT |y )
B1:<“00‘) , Bk:[k(;‘ g} 2<k<c—1.
(m+1)xm (m+1)x(m+1)

A,B, and C in (5.3.3) are all the square matrices of order m + 1, as
follows:

—(A+c 0 cn O
A:[ <T0”) —>\I+T]’ B:[SL 0}’ C=AL

Theorem 5.3.1. If p = A(cu)™! < 1, the matrix equation R*B +
RA + C =0 has the minimum nonnegative solution

- { ppe )\(AIST)—l ] : (5.3.4)

Proof: Since A, B, and C are all the lower triangular block-partitioned
matrices, the solution to the matrix equation must have the same form.

Assume that
r 0
Re|f

where r is a real number, H is a square matrix of order m, and £ is a
m X 1 column vector. Substituting R into the matrix equation, we have

cur? — (A +cp)r +1=0
H(-M +T) + AL =0 (5.3.5)
cu(rI+H)E — (A +ep)é + HTY =0
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If p < 1, the first equation of (5.3.5) has the minimum nonnegative
solution 7 = p (the other solution is r = 1). The second equation of
(5.3.5) gives H = A(AI-T) !, which is nonnegative. Substituting p and
H into the third equation of (5.3.5) and using the fact that —Te = TY,
we have

¢ = ; (I- A -T)"} AT —T)"'T°

=p{(I-T) [1-AAI-T)']} 7 T
= p(=T)7'T° = pe.

O
Note that H = A(A\I-T)~! is a substochastic matrix with sp(H) < 1.
It follows from the structure of R that sp(R) = max{p, sp{H}}. Thus
the necessary and sufficient condition for sp(R) < 1is p < 1. It is easy
to verify that under the condition p < 1, the matrix
| Ao Co
BIR] = [ Bi RB+R }

is a finite, aperiodic, and irreducible infinitesimal generator, and the
linear homogeneous equation set (5.2.5) must have a positive solution.
For instance, if x is the stationary probability vector of B[R], then
any positive vector Kx is a positive solution of (5.2.5), where K is any
constant factor. It follows from Theorem 5.2.3 that the system is positive
recurrent if and only if p < 1.
Assume that p < 1 and let (L, J) be the stationary limit of { L, (t), J(¢)},

with the stationary probability distribution denoted by

o =P{Ly=k,J=0}, k=1,
ij:P{Lv:k,J:]}’ k2071§j§m,
Tk = (Th1s T2, Thin f» k>0.

Theorem 5.3.2. If p < 1, the distribution of (L,,J) in the M/M/c
(SY, MV) system is given by

m = KB -T) 1), i>0,

1 (Y <ji< 1
xj:Kﬁ(ﬁ) (o 1<3<e—1,

oy =g S PO e e
5.3.6
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where

- A T e —

5_(51,...,57%)—1_0()\)04()\1 T)™; Be =1,
Jj—1 '

=B il [pAI=T) e, 1<j<ec—1,
1=0

c—1

LY o ()

w02 () e e e

+ 8 [I = % (A — T)l)c_l] - )\Tl)e}l .

Proof: The stationary distribution is rewritten in the segment parti-
tioned vector form as

I1 = (7T0, (.2121,71'1),'-- ,(.%'n,’]Tn),'--).

Clearly, IIQ = 0,IIe = 1. Since every column containing (—AI+ T) has
only this nonzero submatrix, we have

T = To [)\()\I—T)_l]j, jZO,
7o(=AI + T + T%) + 21 = 0. (5.3.7)

Using \I - T — T’a = (AXI - T) [I- (AT —T)'T%], for j > 1, we
have

(L= 1))’ = ) (L= T) T 0, as j — oo.

It follows that T — (A\I — T)~!T% is invertible, and thus A\I — T — T«
is also invertible. From (5.3.7), we obtain

mo = z1pe (AL - T — Toa)_l
— zpa [T— A= T)'T%] (AT -T) !

=zipa{ I+ i AP PO = T) ' Tl p (AL —T)7!
j=1

Y S
D WY
= Kp,

a(\I - T)~!
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where K = A~ 'zy is a constant to be determined by the normalization
condition. Note that

1—v(A)=a[I+ A -T) 'T]e = a(\I-T) e,
and it is easy to verify that Se = 1. Using Theorem 5.2.3, we have
(g, ) = (Tee1, Mot )RETEHL, k>c—1.

Substituting R, given in (5.3.4), into the matrix geometric solution

above, we obtain the last equation of (5.3.6). Now we need to get x;,

j=1,...,c—1,and K. It follows from the equilibrium equation ITQ = 0

that

2uxy — Ax] = pxy — TP
{ (j+ VDpxjsr — Az = jpx; — Azj—q — m; T, j=2,...,c—1.

(5.3.8)

Substituting the relation pzq = Ampe into the first equation of (5.3.8),

we have

2uxe — Ax1 = Amge + Amo( Al — T) "1 Te = N2mg(A\I — T) le.

Taking the sum from j =2toj =k, 2 <k <c—1, we get

k
(k+ Dpxgrr — A\zg = 2uxe — A\xg — ZWJ'T
j=2
— A2my(A\I - T e+7roz (A —T)"') Te

= Ao [AAL=T)~ ]ke,

which can be written as a recursive relation as

A A k
= + AMA—T) %, 1<k<c-—1.
Th+1 (k—l—l)umk (k—l—l)um)[ ( ) ] e SRS
Using this relation repeatedly, we obtain
1 s (A)j‘i i 1 (A)j
T;=—=m it = M -T) N'e=K=(Z) ¢;, 1<j<c—1.
L 0; W) " t\p)

Finally, K is determined by the normalization condition.[]

From Theorem 5.3.2, we can get the stationary performance measures
of the M/M/c (SY, MV) system. The distribution of the queue length
is given by

P{L, =0} =K, P{L, =j} =uz; + mje, j=1,
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and the distribution of the number of waiting customers is given by

Le—1

P{Qu=0} =) ap=1-

k=1

— [—)\Tl + ﬁ XA =T) "1 (oI — ATl)} e
P{Qv = ]} :l'cflpj-i_1

+ o {()\()\I — )1y

J .
p[MAI-T) " IZpZ (M —-T ]He}, j>1.

=0

1—

For the waiting time, consider a customer arriving at state (k,h),
k=20,1,...,c—1,1 < h < m. This customer’s waiting time is the
residual life of a vacation. The probability that this waiting time is no
more than x is the Ath component of the vector

x
/ exp(Tt)dtT?, x> 0.
0

If a customer arrives at state (k,h), K > ¢,1 < h < m, his or her
waiting time is the sum of the residual life of a vacation and k£ — ¢
i.i.d. exponential random variables with rate cu. Using the conditional
argument, we obtain the the distribution function of the waiting time
Wy

Wy (z) —1— p xc Le—c(=p)z

{ Pk —-T)7 !
—p

(AT

AL-T) (A —ch—Trlexp{—cuu—p)x}e}

+ {55 (1= PDOT=T) 7 (A = ewT - T) )
x(I—AT)™ eXpT:ce} x> 0.

X

It can be proved that the number of waiting customers @), and the
waiting time W, follow the discrete and continuous PH distributions of
order m + 1, respectively (see Tian and Li (2000)).

Obviously, the expressions for the distributions of the queue length
and the waiting time are quite complex. Thus we cannot establish the
stochastic decomposition relations for the queue length and the waiting
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time as in single server vacation systems. However, we can prove some
conditional stochastic decomposition properties in the M/M/c (SY, MV)
system. Define the conditional random variable

L) = {L, —c|Ly, > ¢,J = 0}
as the number of waiting customers in the system, given that all servers
are busy. Furthermore, from the PH distribution («, T) of the vacation
time, we build a PH random variable U of order m with the representa-
tion (v, T), where

1()\)04 AOT- T)_lr. (5.3.9)

=apon-n ] -

The mean of U is given by
c—1
E(U) =8 {A (AL — T)—l} (-T Ye.

Theorem 5.3.3. If p < 1, L% in an M/M/c (SY, MV) system can be

decomposed into the sum of two independent random variables Ll(,c) =

L(()c) + Lg, where Léc) is the number of waiting customers in the system,
given that all servers are busy, in a classical M/M/c queue and follows
the geometric distribution with parameter p. Ly is the additional queue
length due to the vacation effect and follows a discrete PH distribution
of order m, with the irreducible representation (4, S). Here,

§=2py(-T7"),  S=x(I-T)7',

., S'=p1-1)'T°,

A
g
p 1 A c—1

St =2 ) g

“ a[<c—1>! (u) Per1 e

and

1 )\ c—1
=p|l— |- — AE(U
p[(c_l)! (M) Ye-1+ e+ AEU)
is a constant. +y is the m -dimensional row vector determined by (5.3.9).

Proof: Since R is a lower triangular block-partitioned matrix, we can
use a similar approach to that in Theorem 5.2.5. It follows from (5.3.6)
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that the probability that all servers are busy at an arbitrary time is

P{L, >¢,J =0}

o0
'=C

0o j—c

— . lzpf SEETNED S5 B LYE S Vil M
j=c =0
p -1
zl_pxc,qul_pwc 1[ — AN -T)" 1} e
1

Kp 1 AN\ (e

_ Kp 1 A\

1_p{(c_1)! (M) T,Z)c1+7e+>\E(U)}
Ko
=1,

Thus the distribution of Lq(f) can be rewritten as

1
P{L(C =j}=P{L,=c+j|Ly > ¢, J =0} = Kgpxﬁ-c’ j = 0.

Taking the p.g.f. and using Theorem 5.3.2, we obtain

1—p _
L) = L2 S e
j=c
1 o0
— - P Te1 Z Z]fcp]chrl
K 4
J=c

e 1ZZJ czp [ (M- T 1}j—c—ie

BELYRY SV INEA N
_1—zp0{(c—1)!(u> Pe-1

+oy [I A - T)*l] o e} . (5.3.10)

Note that, from (5.3.1), L(()C)(z) = (1-p)(1 — zp)~ ! is the p.g.f. of the
corresponding conditional random variable in the M/M/c queue. For
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the remaining factor of (5.3.10), we have

(et G) s volimon-on) o

—1
= b1 — Lretly [I A - T)—l} e
g g

Y S o {—I P A (-T) 4 I} (I-2:8)"le
g
= Oppa1+20(I — 28)718Y,

which is the p.g.f. of a PH distribution with (4, S).O]

For the conditional stochastic decomposition property, we have the
following probability interpretation.

Remark 5.3.1: d,,11 is the conditional probability that there is no
waiting customer in the system when all the servers are busy. The
additional queue length L, is the number of customers arriving during
a random interval U* that follows the PH distribution of order m with
the representation (v*, T). Here,

« _ P -1 -t
v =2shar-m7 (T,
and § in Theorem 5.3.3 can be written as
AE(U)

= B ()\I—T)_lr_l (—T1) = -

Therefore, Ly is equal to the number of arrivals during the residual
life of U with probability p* = AE(U)o~! and is zero with probability
1—p* = dn+1. The average number of waiting customers in the system,
given that all the servers are busy, is given by

Lop [N2E(U?) + 20E(U)]

= 5.3.11
1—-0p 20 ( )

We can also prove the conditional stochastic decomposition property
for the waiting time Wéc). Define

W) = {W,|L, > ¢,J =0}

as the conditional waiting time, given that this customer arrives at a
state where all the servers are busy.

Theorem 5.3.4. If p < 1, WP can be decomposed into the sum of
two independent random variables, W,EC) = Wéc) + W, where Wéc) is the
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corresponding conditional waiting time in a classical M/M /c queue, with
the LST as in (5.3.2). W, is the additional delay due to the vacation
effect and follows a PH distribution of order m with the irreducible
representation (6, L), where

L=cu(M-T)'T, L'=c¢u(O\I-T)'T° (5.3.12)

and § is given in Theorem 5.3.3.

Proof: If a customer arrives at state (j,0), 7 > ¢, then his or her
waiting time W,; follows an Erlang distribution with parameters j—c+1
and cu, with the LST

j—c+1
Wg‘;(s):(c”) L e

s+cu

Thus the LST of Wéc) can be written as

Wy ()

1—pZ

B 1 i1 cp j—c+1
= K Le— 1Zp] <S+C}L

—C

> Jj—ct+l 1 j—c—1
+pwc,IZsz <S+C#) M- e
J=c =0

oepl=p) 1] p AT
T stepl-p)o {<c—1> <M) vet

-1
CH —1
I-———AM-T :
+m{ 8+CM( ) ] e}

It follows from (5.3.2) that the first factor of the expression above is the
LST of the corresponding conditional random variable Wéc). For the
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second factor, we have

R <A>Cl¢ + [I— - A()\I—T)l}le
ol (c=1!'\u et s+ cp

= % { (Cfl)! (2)61 o1+ (s + cu)py |:SI —ep (M —T)7! T} - e}
1

1 _
= b1 — gve + (st ep)py(sT~ L)'

A

= i1+ —py (=T (ST - L) lep (AL - T) 7' T
g

= Oyt + 0 (sT— L)' LO.

O

We can interpret the conditional stochastic decomposition property
and the additional delay W, similarly to those of Theorem 5.3.3. The
expected conditional waiting time of a customer given that he or she
arrives at a state where all the servers are busy in the M/M/c (SY, MV)
system, is

E(W(c)) _ 1 + P [)‘2E(U2) + 2AE(U)] _ LE(L(C))
cpu(l = p) 20¢cp cu Y

5.3.2 Single Vacation and Setup Time Models

In a synchronous single vacation system, denoted by M/M/c (SY,
SV), all servers take a single vacation together at a service completion
instant when the system becomes empty. At the vacation termination
instant, the servers either stay idle or serve the customers if any are
present in the system. We again assume that the vacation time follows
a PH distribution of order m with the representation («,T), e = 1.
After each vacation, there are three possible cases: (i) If no customers
are in the system, the c servers stay idle; (i) if 1 < j < ¢ customers
are in the system, then the j servers start serving the customers and
the ¢ — j servers become idle; (iii) if j > ¢ customers are in the system,
then all the c servers start serving the customers and ¢ — j customers
are waiting in the line. As with the M/M/c (SY, MV) model developed
in the previous section, {(Ly(t), J(t)),t > 0} is a QBD process with the
state space

Q= {(k,j) : k>0,0 <j<m},

where state (0,0) represents case (i). The infinitesimal generator has the
same structure as (5.3.3), where Ay is the square matrix of order ¢(m+1),
and B; and Cp are the (m+1) x ¢(m+1) and ¢(m+1) x (m+1) matrices,
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respectively. The only difference from the M/M/c (SY, MV) system is
in the following matrices:

A 0 | 0 po _
M= @ ir] Bi=|o ] G-t

Other entry blocks of the infinitesimal matrix Q are the same as the
M/M/c (SY, MV) system.

Another variation of the M/M/c type vacation model is the system
with synchronous setup times, denoted by M/M/c (SY, SU). In such
a system, whenever the system becomes empty at a service completion
instant, all ¢ servers are shut down or turned off. When the next cus-
tomer arrives, the ¢ servers are turned on and experience a set-up time
before serving the customers. After the setup time, there are only two
possible cases concerning the number of customers in the system: (i)
j > cand (ii) 1 < j < c. In the first case, all the ¢ servers start serving
the customers, and in the second case, only the j servers start serving
the customers and the ¢ — j servers become idle. The setup time, also
denoted by V, follows the same PH distribution as in the (SY, SV) case.
Now the QBD process {(Ly(t), J(t)),t > 0} has the state space

Q={(0,00} U{(k,7):k>1,0<j<m},

where state (0,0) is the state where all servers are turned off. When a
customer arrives at state (0,0), a PH setup time starts at phase j with
probability a;,1 < j <m, a = (o, ..., &y). The infinitesimal generator
has the same structure as (5.3.3) where Ay is the square matrix of order
m* = (c—1)(m+ 1)+ 1, and By and Cp are the (m + 1) x m* and
m* x (m+1) matrices, respectively. Now we have the following matrices:

Ap= -\, B1:<“) , Co=(0 ) .-
0 (m+1)x1 ( )1X( )

Other entry blocks of the infinitesimal matrix Q are the same as in
the M/M/c (SY, MV) system. Since both the M/M/c (SY,SV) and
the M/M/c (SY, SU) have the same A,B, and C matrices as in the
M/M/c (SY, MV) treated in the previous section, they have the same
rate matrix R of (5.3.4). However, we need to compute the boundary-
state probabilities using (5.3.7) and (5.3.8). Similar to Theorem 5.3.2,
we have the following theorems.



216

Theorem 5.3.5. If p < 1, the distribution of (L,,J) in the M/M/c
(SY,SV) system is given by

m = KB [MA—T)1], j >0,
o = %K,@TO,
j .
%ZK%(ﬁ) ©; 1<j<ec-1,
j = ze1p? M 4 pre 1 XU 0 ML= T) T e, >,
(5.3.13)
where
B=(Brr \Bn) = (AL -T)7}; fe=1
- 1, yFm) T 1—U()\) ) -
j—1 ,
¢j:5{A1(AI—T)+Zi! [M(AI—T)I]Z}e, 1<j<e-—1,
=0
c—1
o ; A
K— BT° n - 1A\ p (u)
— )\ j:1 j' IU/ SD,] 1_p(c_1)!90671

-1

+3 [I + i, (A(AI — T)_l)c_l] (I- )\T_l)e}

Proof: We solve the following equations for the boundary-state prob-
abilities

—Axg + 7T()TO =0
mo(= AN +T) + pria=0
(j+1)uxj+1—/\:cj :ju.%'j—/\l‘j_l—ﬂjTo, 1<j<e—1.

Similarly to the proof of Theorem 5.3.2, if we use the matrix geometric
solution and recursively solve these equations, we have (5.3.13). O

Theorem 5.3.6. If p < 1, the distribution of (L,,J) in the M/M/c
(SY,SU) system is given by

7 = Ka AL -T)7)7, izl
C%:K%(ﬁ)jhj . A OSjSC—l,
Tj =1 p? T 4 pre1 Y5 pF [AAL = T) 77 e, j>ec.

(5.3.14)
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where
J .
hj:aZi![u(/\I—T)*l]le. 0<j<c-—1,
i=0
c—1 1 )\ 7
K= 1+)\E(V)+Zﬁ (u) h;
j=1

-1

(A) c—1

Proof: The equations for the boundary-state probabilities now be-
come

—)\CL‘O + U1 = 0

Ao — m(AI-=T) =0

—~( A+ )z + 2ur0 + mTO =0

(j+ VDpxjsr — Az = jpa; — Axj—q — m; T, 1<j<cec—1.

Using the same method of solving the equations as in the proof of The-
orem 5.3.2 yields (5.3.14). O

From (5.3.13) and (5.3.14), we can obtain the stationary distributions
for the queue length and the waiting time for both the M/M/c (SY, SV)
and the M/M/c (SY, SU) systems. We can also prove the corresponding
conditional stochastic decomposition properties. All these results are
similar to Theorems 5.3.3 and 5.3.4.

As special cases of the PH distributed vacations, we present the ex-
amples with exponential vacations.

Example 1: M/M/c (SY, MV) with exponential vacations.

Assume that the vacation time V follows the exponential distribution
with parameter § and V(z) = 1 — e % 2 > 0. Then we have v*(s) =
O(s+60)"1, T = -0, T° =0, a = 1. The vector 3 in Theorem 5.3.2 is
reduced to 1 and
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The distribution of (L,,J) is given by

K 7)\ ’ i >0
T =
! A+0) 7 7=
7
K5 () s () l<jgemt
;= . j—c N j—c—1 )
Te1p? +wmwmzzoﬁ< ) ) Jj=c
where

In the conditional stochastic decomposition expression, we have

U:p{(cll)! (2)j¢c‘1+ <Aie)CIAZG}'

The additional queue length Ly follows the modified geometric distrib-
ution

P{Ly=k} = g{ =" (ﬁ)ck_ilﬁc 1+ (He)Cl}, k=0,
)T—B) ) k> 1.

Note that L, is the mixture of two random variables:

SIS
—
>
+> o~
RS
~——

Q
—

>

Lg=(1-p")Xo+p"Xq,

where X has the probability density concentrated at the origin and Xy
follows the geometric distribution with parameter A(A + 6)~1. That is,

pix= = (1o 2V (Y >0
d=Jr= A+0)\N+6) J =5

o[ A \TA+0
P=s\\+o o

and
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From Theorem 5.3.4, it follows that the additional delay W, follows the
modified exponential distribution, with the distribution function

o (A AN e,
= _ —_ _— > .
Wa(w) =1 (7<9> <A+0) e, =20
(©)

Finally, given that all the servers are busy, the expected values of Ly

and quc) are given, respectively, by

1 A N\TPAN+0)
(0)y — P AAT0)
B =15+ <A+0> PR

1 o[ A \TEAA+06)
EWOy= - P (_~2 AL
(W) cu(l = p) ts <)\+ 6) cub?

Example 2: M/M/c (SY, SV) with exponential vacations.
For the exponential vacation time with parameter 6 in an M/M/c
(SY, SV) queue, we have

1 .
)\ 0 ] K3
+ +§:ﬂ< ), 1<j<ec—1.
=1

Thus the distribution of (L,, J) is given by

A J
g >0
i (A+0)’ J=5
0
~’K
i) A |
K4 (2) o 1<j<c—1

—c+1 A )Y :
Teap o X500 () ize

where
c—1
c—1 1 A
0 1Ay p (J
K=<- — [ = PR - o
/\+j:1 '!( ) SDJ—‘_l—p(c—l)!(p !
c—1 -1
+)\+9 1+ p A
0 A+0 '

Now, replacing ¥.—1 with ¢._1 in o, we can obtain the conditional sto-
chastic decomposition expression and the distributions of L; and Wy,
which have the same forms as in Example 1.
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Example 3: M/M/c (SY, SU) with exponential setup times.
Assume that the setup time follows the exponential distribution with
parameter 6. In this case, vector « is reduced to 1. From Theorem 5.2.6,

we have 4
J i
_Z. v .
hj_io“()“|"9>7 veseml

Therefore, the distribution of (L, J) is given by

A J
=K | —— i > 1
i </\+9> ’ J=4
J . i .
o () 2t (3t
J = ) C j—c—i .
verp e S () jze

Similarly to the examples above, replacing 1._1 with h._; gives all the
corresponding results as in Example 1.

54 M/M/c Queue with Asynchronous Vacations
5.4.1 Multiple Vacation Model

In an M/M/c system with arrival rate A and service rate u, any server
starts a vacation as long as there is no waiting customer in the system
at the service completion. At a server’s vacation termination instant, if
there is no waiting customer, the server takes another vacation; and if
there are waiting customers, the server resumes serving the customers.
Since the servers take vacations individually and independently, this
system is called the asynchronous multiple vacation model, denoted by
M/M/c (AS, MV). This type of vacation model was studied by Levy and
Yechiali (1976), Vinod (1986), and Tian and Li (1999). Assume that the
vacation time follows the exponential distribution with parameter 6 and
that the interarrival times, the service times, and the vacation times are
mutually independent. Let L,(t) be the number of customers in the
system at time ¢, and, and let J(¢) be the number of busy servers. Ac-
cording to the (AS, MV) policy, the server is either busy or on vacation.
Thus {(Ly(t), J(t)),t > 0} is a QBD process with the state space

Q={(k,j):0<k<c—1,0<j<k}U{(k,j):k>c,0<j<c}

Using the lexicographical sequence for the states, the infinitesimal
generator can be written in the block-partitioned form as in (5.3.3) where
Ap is the square matrix of order ¢* = %c(c + 1), and B; and Cy are the
(c+1) x ¢* and ¢* x (¢ + 1) matrices, respectively. These matrices can
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be written as
[ Ay Cp 1
B, Ay C
By A, C
AO = .. .. ’
Bc—2 Ac—2 Cc—2
L Bc—l Ac—l i
0
B =(0,B,), Co = < C._, ) , (5.4.1)

where Ag = —\, Co = (),0), and By = (0, ). For
we have

Ak,lgkgc—l,

—ho ch i
—h1 (C — 1)0
Ak - ’ . 3
—hi—1 (c—k+1)0
L —(A+kp) J (k+1)x (k+1)
1<k<c—1,
where hg,0 < k < ¢, is defined as
hk:hk(/\,e,,u):A+ku+(c—k)0, 0<k<e

By and Cy, are the (k+1) x k and (k+1) x (k4 2) matrices, respectively,

1 <k <c—1, and are written as

0
1
B, =
(k=1)p
00 kp (k+1)xk
[\ 0
A 0
Cr = )
A0

L (k+1)x (k+2)
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Finally, A, B, and C in the infinitesimal generator (5.3.3) are the square
matrices of order ¢+ 1 and are given by

B = dlag(ovua 20, - - ,Cﬂ)a C =l

[ —ho ch
—hl (C—1>9

—he1 0
—he

To find the minimum nonnegative solution to the matrix equation (5.2.3),
we need the following lemma.
Lemma 5.4.1. If p = \(cp) ™! < 1, the equation

kpz? — [N+ kp+ (c—k)0lz + X =0, 1<k<ec,
has two roots, namely, r, <7 and 0 <7, <1, r; > 1.

Proof: 1t is easy to verify that the equation has two real roots which
are

. At kp+ (c— k)£ /[N +Ekp+ (c— k)02 — 4 ku
'I"k,'l"k = .
2ku
Note that
N —kp+ (c—k)0)* < [N+ ku+ (c— k)0]* — 4 kp
<A+ ku+ (c— K012, if A > ku,
ki — A+ (c— k)0 < [\ +kp+ (c— k)0]* — 4 kp
<[ AN+Ekpu+(c— k)02, ifA<Ekp

Substituting these estimations into the expressions 7}, and 7, we obtain
0<r,<landr; >1, 1<k < c—1 Finally, if £ = ¢, we have
re=p<landr}=1 0

Theorem 5.4.1. If p < 1, the matrix equation (5.2.3) has the mini-
mum nonnegative solution

o Tor -+ Toc

/r' PR /r‘ c
R = ! . (5.4.2)

Te
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where 79 = A(A+cf)~!, and rp, 1 < k < ¢ — 1, are given in Lemma
5.4.1, and r, = p. The nondiagonal entries satisfy the recursive relation

J
G rkiri 4 (e — 4+ DOrk 1 — A+ jp+ (¢ — )bl =0,
ik
0<k<c—-1, k+1<j<cg, (5.4.3)

where rj; =7, 0 < j <¢, and sp(R) < 1.

Proof: Since A,B, and C are all upper triangular matrices, the
solution to (5.2.3) should also be an upper triangular matrix with the
same structure as in (5.4.2). Thus the entries of R? are given by

(R?)j; =17, 0<j<c
J
(RQ)kj:ZTkiTij; 0<k<c—1, k:<j§c.
i=k

Substituting R and R? into (5.2.3), we have

A — (A—FCQ)TO :07

kur,%f[/\-i-ku-l-(c—k)e]rk—i-)\:(), 1<k<e,

gy it + (e —j 4+ D)0rk 1 — [N+ jp+ (¢ — §)0)re; =0,
0<k<c—-1,k+1<j<ec

The first equation gives ro = A(A+cf#)~!. From Lemma 5.4.1, to obtain
the minimum nonnegative solution, we take rp, < 1 as the root of the
quadratic equation. The last equation gives the recursive relation (5.4.3).
Clearly, the spectral radius of R satisfies

A

_— sy Te—1, < 1.
N+ O 1 TClp}

sp(R) = max {

O
Lemma 5.4.2. Rate matrix R satisfies RT? = \e, where

TOZBGZ(OHLL,--- 7CM)T

is the m -dimensional column vector.
Proof: Note that Ae = —(Ae + TY),Be = T, and Ce = \e. Multi-
plying both sides of (5.2.3) by e, we obtain
R?T? — R(Ae + T°) + \e = 0,
(I-R)(Ae — RTY) = 0.
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Since I — R is invertible, we have RT? = \e. O

Using (5.4.3), we can recursively compute the nondiagnoal entries
from the entries on the diagonal. In (5.4.3), setting j = k + 1, we have

(k+ Dp(rerk 1 + Tepe1metr — A+ (B + Dp+ (e — k = 1)0]ry g4
= —(c—k)rg, 0<k<c—-1.

That is

A+ (E+Dp+(c—k—1)0 — (k+ Dpripr — (b + Dpr} re g
= (¢ — k)Ory.

Note that
A (b + gt (e — k= 1)0 — (b + Dprss = (k+ Dprisy.

Substituting this expression into the previous one, we obtain

c—k 0 Tk
= — - — 0<k<c¢c-1.
Tk (’f+1> <u> T

In (5.4.3), letting j = k+ 2,k + 3, ... and using similar recursive compu-
tation, we have

(c—k)e—k—1) <e> ATy

r = — 5 O S k S Cc— 27
RER T TR 1)k + 2) Do

"
(c—k)c—k—1)(c—k—2) (e> rirh (Tl — TEk)

TS T T R Dk +2)(k+3)  \n Drrs ’
0<k<c-3,
where
Dyp = H (ry —ri), n > k.

Since (5.4.3) is a nonlinear double-subscript recursive relation, it is
difficult to find a general expression for ry;. However, we can follow a
specific sequence to recursively compute these nondiagonal entries. This
sequence starting with the diagonal entries is illustrated in Figure 5.4.1
for a ¢ = 4 case.
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To— To1— To2— T03 — To4

T T T T

mn— T2— T13— T4

T 7 T
re — T23 — T24
7 T
s — T34
T
P

Figure 5.4.1 The sequence of computing
nondiagonal entries for the c=4 case.

If p < 1, let {Ly, J} be the stationary limit of the stochastic process
{Ly(t), J(t)} of an M/M/c (AS, MV) system as ¢ — oco. Denote the
stationary probability by

my = P{Ly = k,J = j} = lim P{L,(t) = k, J(t) = j}, (k.]) € Q.

To accommodate the block-partitioned structure of Q, we express the
distribution of {L,, J} as segment vectors as

o = oo, 1 = (T10,711), s Tk = (Tho, W15 > Thk)s 0 <k <,
and when k > ¢, all m’s are (¢ + 1) -dimensional row vectors
Tk = (Tho, Th1,* » Thie)-

Now the square matrix B[R] of order (c+1)(c+2) is constructed as

T4 G
B[R] B i Bi RB+A
~ A Co _

B, Ay G
- , (5.4.4)
Bc—l Ac—l Cc—l

B. RB+A |

which is an aperiodic and irreducible infinitesimal generator with finite
dimension. Hence, the linear equation system

(mo, 1, ,me)B[R] =0 (5.4.5)

must have positive solutions. For instance, the stationary probability
vector of the infinitesimal generator B[R| multiplied by any constant
K > 0 is a positive solution to (5.4.5).
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Theorem 5.4.2. If p < 1, the distribution of (L,, J) is given by

T = KBk, 0<k<cg,
= KB.RF ¢, k>c¢,

where [, 0 < k < ¢ is the positive solution to (5.4.5), and the constant
K is

c—1 -1
K= {Zﬁke—Fﬂc(I—R)le} .
k=0

Proof: Using Theorem 5.2.3 immediately gives the results.[]

For the stationary probability vectors, there exists the following rela-
tion.

Theorem 5.4.3. If p < 1, the stationary probability vectors satisfy

0
Ampe = w1 Ty
where

TO:(Oaﬂa"'ak/’L)Tv OSkSC_L
T = 0,1, ,ep)?, k> c.

Proof: Let Il = (m, w1, -+ ). The equilibrium equation IIQ = 0 gives

7'('1B1 + >\A(] == 0,
T—1Cl—1 + mAg + T4 1Br+1 =0, 1 <k<c—1
Te-1Ce1 + A + Tey1Bey1 = 0,
7Tk_10+7TkA+7Tk+1B:0, kZC-l-l.

Using
Cre=)Xe, Are=—(le+ Tg), Bre = T,(g.

and right-multiplying both sides of the equilibrium equations by e, we
obtain

0
Ampe — 1Ty = 0.

O

It is possible to solve (5.4.5) numerically. However, the computation
is quite complex. To compare the M/M/c (AS, MV) system with the
classical M/M/c system, we define the conditional random variables. Let
LY = {L, — ¢|J = ¢} be the number of waiting customers in the sys-
tem given that all the servers are busy in the M/M/c (AS,MV) system.
Rewrite the vector 5. and the rate matrix R, respectively, as
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/Bc = (5007 501; ceey 5cc) = (57 ﬁcc):

R_G){ Z) (5.4.6)

where 6 = (Bco, Be1, - Bee—1) is a ¢ -dimensional row vector. Compar-
ing with (5.4.2), we find that H is a ¢ X ¢ square matrix and 7 is an ¢ x 1
column vector as follows:

o Tor -~ T0,—1 T0oc
T1 o Tle—1 Tlc
H — . . y ’]7 =
Te—1 Te—1,c

Obviously, the spectral radius of H, sp(H) is less than 1.

The following theorems show the relationship between the vacation
model and the classical M/M/c model in terms of the conditional queue
length and the conditional waiting time.

Theorem 5.4.4. If p < 1, LI in an M/M/c (AS, SV) system can
be decomposed into the sum of two independent random variables,

L = L§) + La,

where L(()C) is the corresponding random variable in the classical M/M/c

system and has the geometric distribution of (5.3.1) and Ly is the ad-
ditional queue length due to the vacation effect and follows the PH
distribution of order ¢,

1
Eﬁcc; k=0,
P{Ls=k} = { Tty hot (5.4.7)

where

g = Bcc + 5(1 - H)_IT].

Proof: Based on the triangular structure of R in (5.4.6) and the matrix
geometric solution, we have

k—c—1
The = KBeep™ ¢+ K5 Y pHF 1y, k> ec.
j=0
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Using this expression, we get the probability of the conditional event:

P{J = ¢} :Zﬂ'kc

oo k—c—1

—Kﬁcczpk CLKS§ Z Z p]Hk c— 1—]

k=c+1 j=0

_ K
:fp {Bec +6(I-H) 'n} = -,

Thus the distribution of LS,C) is
P{LY =k} =P{L, =k +c|J = ¢}

1—p
:Taﬂk+c,c
1—p k = k—1—j
= Becp +5Zﬂ7H ne, k> 0.
§=0
Taking the p.g.f. of Lq(,c) , we have
o0
LY (2) = Y #PLLY = )
k=0
l—p bk N
= o IBCC zp +6ZZ ZP]H j77
_ 1 =0
1-—
— 1—zp {,Bcc—i—z:(S(I—zH) }

= LY (2)La(2),

where

L4(z) {Bcc—l-zé (I-zH)" 77}

Expanding L4(z) as a power series, we obtain (5.4.7). O

Note that H may not be a stochastic submatrix. Sengupta (1991)
proved that the probability distribution of (5.4.7) must be a discrete PH
distribution of order ¢ and provided a method of constructing the PH
expression for the d(is).tribution. From Theorem 5.4.4, we find that the
C .

is

expected value of Ly

B(L) = 1+ o= H) .
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Define the conditional waiting time Wi = {Wy|J = ¢}. We have the
following theorem for the conditional stochastic decomposition property
of the waiting time.

Theorem 5.4.5. If p < 1, W in an M/M/c (AS, MV) system can
be decomposed into the sum of two independent random variables,

Wigc) = Wéc) + Wd.

where WO(C) is the corresponding conditional waiting time in a classical
M/M/c system without vacations and follows an exponential distribution
with parameter cu(1—p). Wy is the additional delay due to the vacation
effect and follows a matrix exponential distribution

P{Wy <z} = 1—%5 exp {—cu(I—H)z} (I-H))"'n, z>0. (5.4.8)

Proof: Assume that a customer arrives at state (k, c) for k > c. If we
condition on this event, the customer’s waiting time, denoted by W,

has the LST
k—c+1
vk s+ cp ’

for k > c¢. The LST of Wéc) is given by

Wy O(s) = i P{LY) = k}W;i(s)

k=c
1—p { 00 . ci k—c+1
= Bee Z pre
o — s+ cu
00 i k—c+1 k—c—1
s fk—c—1-J
s X (Ha) o
k=c+1 7=0

)
=
—

|

X
N—
| =

= We ()W (s),
where 1
Wi(s) = = { B+ end (sT— ep(H - 1) "}

It follows from W (s) that the distribution function of Wy can be written
as (5.4.8). O
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From (5.4.8), the expected value of quc) is given by

1 1 1
EWL)) = I-H) %p=—E(LY).
(W) cuﬂc—p)+cw05( )"n ” (Ly”)

5.4.2 Single Vacation or Setup Time Model

We now consider a system with asynchronous single vacation policy,
denoted by M/M/c (AS, SV). In this system, any server who finds no
waiting customer at his or her service completion instant takes only one
vacation and then either serves a customer, if any, or stays idle. There-
fore the server can be in one of three possible states: serving a customer,
taking a vacation, or staying idle. Assume that the vacation time follows
an exponential distribution with parameter ¢ and is independent of the
service time and the interarrival time.

L,(t) is defined as before, and J(t) now represents the number of
servers who are not on vacations (busy or idle). Then {(L,(t), J(t)),t >
0} is a QBD process with the state space

Q={(k,j):E>0,0<j<c}

For example, state (0,0) represents the state in which there is no cus-
tomer in the system and all servers are on vacations, and state (0,7),1 <
7 < c—1, is the state in which no customers are in the system and ¢ — j
servers are on vacations and j servers are idle. The structure of the in-
finitesimal generator Q is the same as in (5.3.3), and the (¢+1) x (¢+1)
matrices A, B, and C are the same as in the M/M/c (AS, MV) sys-
tem. Ag, B, and Cp are the c(c+ 1) x ¢(c+1),(c+ 1) x ¢(c+ 1), and
c(c+ 1) x (¢ + 1) matrices, respectively, and have the same structures
as in (5.4.1). However, for 1 < k < ¢ — 1, Ay, By, and Cy, are now the
(c+1) x (c+ 1) matrices as follows:

My,
(c—k—2)0

_hk,cfl 0
—(A+kp)
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where
[ —hy b |
—h1 (6—1)9
Mk— ‘: ‘:. ’
—hi(c— k)0
—hgg+1  (c—k—1)0
i —hp k42
hi =X+ kp+ (c— k)0, 0<k<c-—-1,
hij =X+ kp+ (c—j)0, 0<k<c—-1, k<j<c-—1,
- 0 -
0 n
0 2u
B = 0 (k—1)p ’
ki 0
L ku 0]
Cp = C = AL

and finally B, = B.

Similarly, we can also discuss the M/M/c queue with asynchronous
setup times, which is denoted by M/M/c (AS, SU). In such a system, a
server is turned off when no customers are waiting at its service comple-
tion instant and is turned on again at the next arrival instant. The server
starts serving the customer after a setup (or warmup) time. Note that
an arrival may see not only busy or turned-off servers but also servers in
the process of setup. If an arrival sees k servers are busy or in the setup
process, 0 < k < ¢—1, then ¢— k servers are in the turned-off state, and
this arrival causes one of these ¢ — k servers to be turned on. Note that
if the arrival sees some servers in the setup process, then the first server
completing the setup time starts serving waiting customers according to
the FCF'S order. Due to the random setup times, the server that first fin-
ishes setup may not be the server that is first turned-on. When a server
is experiencing setup time, other servers may be still serving customers.
Therefore, at a server’s setup time completion instant, it is possible that
there are no waiting customers in the system and this server is turned
off again without serving any customers. We use the same symbol V as
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for vacation to denote the setup time that is exponentially distributed
with parameter 6. It is also assumed that the setup time, the interarrival
time, and the service time are mutually independent. Let J(¢) be the
number of busy servers at time ¢. Thus the number of servers in the
setup processes at time ¢t is

min{L,(t),c} — J(t).

In the M/M/c (AS, SU) system, {L,(t), J(t)} is a QBD process with
the state space

Q={(k,j):0<k<c—1,0<j<k}U{(k,j):k>c0<j<c}

State (k,j), for 0 < k < ¢ —1,0 < j <k, represents the state where j
servers are busy, k— j servers are in the set-up processes, c—k servers are
off, and k—j customers are waiting in the line. Similarly, state (k, j), for
k > ¢,0 < j < c, represents the state where ¢ — j servers are in the setup
process, j servers are busy, and there are no turned-off servers. The
infinitesimal generator of the QBD process, Q, is still given by (5.3.3),
where Ag, Bi, and Cy are the Sc(c+ 1) x Le(c+1), (c+1) x 2c(c+ 1),
and %c(c + 1) X (¢ + 1) matrices, respectively, and can be expressed in
the block-partitioned structure of (5.4.1). For 1 < k < ¢ —1, Ay, the
(k+1) x (k+ 1) matrix is written as

[ 10 kO
0 Iy (k—1)0
0 Lo (k—2)0

where

Br,1 <k<ec Cp,0<k<c—1, A, B, and C are the same as in the
M/M/c (AS, MV) system.

Based on the matrix structures of the QBD processes, we find that the
analysis of the M/M/c (AS, SV) system or the M/M/c (AS, SU) system
is similar to that of the M/M/c (AS, MV) system. The main difference
is in solving (5.4.5) for the boundary-state probabilities. In particular,
these systems have similar conditional stochastic decomposition proper-
ties to Theorems 5.4.4 and 5.4.5. The only distinguished component is
the vector 8. = (Beo, Bet, -+ Bec) = (9, Bee), which is obtainable from a



Markovian Multiserver Vacation Models 233

set of different equations. As an example, we give the results of these
models for the M/M/2 queue.

Example 1: The M/M/2 (AS, MV) system.

The infinitesimal generator for {(L,(t), J(t)),t > 0} becomes

Ag Cy
B: Ay C
B, A C
Q= B A C , (5.4.9)
B A C
where Ag = -\, Co = (A,0), By = (0, 2)T, and
0 O
—(\+20) 20
By = 0 u ) A = |: ( _ )
0 2 0 (A+p)
A 00
C1= [ 0 A0 ] '
A, B, and C are the 3 x 3 matrices, as follows:
—(A+26) 20 0 0
A= 0 —A+p+0) 0 , B= 1 ,
0 0 —(A+2u) 20

C =)L

Let r; < r] denote the two roots of the quadratic equation puz? — (A +
p+0)z+X=0, p=Azu)"! < 1. The rate matrix R is given by

A 20 rg 6 1 1
A+260 1 ri—ro pu 1-r1 ri—70
_ o n
R 1 2 I—r1 ’
)

where 79 = A(A 4 20) 7. Note that

Ay Cy
BR]=| B1 Ay C;
B, A+RB

becomes a 6 x 6 matrix. Let 7;; = (R);; be the (4, j) entry of R. It can be
verified by direct computation that RT? = \e, where T? = (0, 1, 2) 7.
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Solving (mp, 71, m2) B[R] = 0 gives

mo = K,

A A
W1:K51:K<)\+29,’u>7

o = K32 = K(B20, Bo1, f22),

3 2
B2o = ()\+20) ,

where

A 20 r?
Bor = =r1+ ——"2—,
2 nry—To
0 1 A T
Boo = — - *0 +7 ),
20l —ryp \ 17 — 710
A 2(0+0) R
K=<{—4+——-+ I-R .
{M+ N1 20 + Ba ) e}

From these results, we can easily obtain various performance measures
and the conditional stochastic decompositions for the queue length and
the waiting time.

Example 2: The M/M/2 (AS, SV) system.

The infinitesimal generator is still given by (5.4.9) where all elements
are the 3 x 3 matrices as follows:

[ —(\ +20) 20 0 0 00
A0: 0 —(>\+9) 0 ,B1: 1 0 0 s
I 0 0 - 0 u 0
[ —(X\+20) 20 0 0 0 0
A= 0 —()\+M+9) 0 , Bo = 0 pw O
I 0 0 —(A+ ) 0 2u 0

Matrices A,B,C, and R are the same as in Example 1. B[R] is the
9 x 9 matrix. Solving (mp, 71, m2) B[R] = 0 gives

20 0 0 (20 0
— _ AT (L S
mo = Ko K< /\+/\+u+9’A<A+A+u+9)>’

A A+20 6 (/20 A+0
Wl_Kﬁl—K<)\+207 [ 7>\< >>7

A * At+p+0
Ty = K B2 = K(B20, Bo1, B22),
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where
\ 2
52°_</\+29> ’
By = A A+ 20
21 = M+297“01 1,
A A+ 20 0 /20 M\ A+ 0
522—)\+29T02+ T12+2M<M+M+)\+M+9>’

and K can be determined by the normalization condition. Again, from
these results, we can obtain the major performance measures and the
conditional stochastic decomposition properties.

Example 3: The M/M/c (AS, SU) system.

The structure of the infinitesimal generator remains the same as in
(5.4.9), where the only different entry is

| —(A+0) 0
s [T |

All other entries of Q are the same as in Example 1. Thus the rate
matrix R is the same as in Example 1, and B[R] is the 6 x 6 matrix.
Solving (m, 71, m2) B[R] = 0 gives

7T0:K,
A A
=Kpfi=K|——, —
T B1 <)\+97 M>’
A2 A A A
=K@ =K - i
T B2 <()\+9)()\+20)’ /\+9T01+7’1,)\+9T02+MT12>,

where rg1,r12,and rgo are the entries of R. From these results, we can
develop the major performance measures and the conditional stochastic
decomposition properties.

5.5 M/M/c Queue with Synchronous Vacations
of Some Servers

5.5.1 (SY, MV, d)-Policy Model

In the vacation models discussed in the previous sections, we assume
that all servers may be on vacation. This means that a customer may see
that no servers are available at his or her arrival instant. In practical sit-
uations, we may wish to keep at least a certain number of servers always
on duty (in either busy or idle status). For a system with synchronous
vacation policy, this means that only a certain number of servers (not
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all) are allowed to take a vacation each time. For example, a border-
crossing station between the U.S. and Canada operates 24 hours a day
and requires at least one or two lanes to be open to traffic. Therefore,
we need to study the vacation model with vacations of some but not
all servers. Ikagi (1992) studied an M/M/2 system where at most one
server can take vacations. We now discuss an M/M/c system where only
a subset of servers is allowed to take vacations. Introducing a control
parameter d (1 < d < ¢), we design the following policy: at a service
completion instant, if the number of idle servers reaches d (or the num-
ber of customers in the system is reduced to ¢ — d), these d servers start
a vacation together and the remaining ¢ — d servers either serve cus-
tomers or stay idle; at a vacation completion instant, if the number of
customers does not exceed ¢ — d, these d servers take another vacation
together; otherwise, these d servers resume serving customers. Note that
when d servers start a vacation, there are still customers in the system.
Thus the policy is said to be semi-exhaustive. The system is denoted
by M/M/c (SY, MV, d). It is assumed that the vacation time follows
an exponential distribution with parameter ¢ and is independent of the
interarrival time and the service time. The service sequence is FCFS.
At a vacation completion instant with j > ¢ — d customers in the sys-
tem, there are two possible cases of resuming the queue service: (i) if
c—d < j < ¢, then j—c+d returning servers start serving customers and
¢ — j servers become idle; (ii) if j > ¢, then all returning servers start
serving customers and j — ¢ customers are waiting in the line. Now, there
is a distinguished feature of this type of vacation model compared with
the single server vacation model or the multiserver vacation model with
synchronous vacations for all servers. That is, in the M/M/c (SY, MV,
d) system, the number of customers in the system during the vacation
may either increase or decrease, since c— d servers still attend the queue,
while in the M/M/c (SY, MV) system or single server vacation system,
the number of customers never decreases during the vacation.

Let L,(t) be the number of customers in the system at time ¢, and let

J(t) = 0 d servers are on vacation at time ¢,
1 no servers are on vacation at time ¢.

{Ly(t), J(t)} is a QBD process with the state space
Q={(k0):0<k<c—dyU{(k,j):k>c—d,j=0,1}.

Note that a customer departure in state (c —d+ 1, 1) makes the process
transfer to state (¢ — d,0), and the d servers start a vacation. If we use
the lexicographical sequence for the states, the infinitesimal generator
can be written in the block-partitioned form as
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- Ay Co -
B, A C
By Ay (s
Q= B, A, C. ,  (5.5.1)
B A C
B A C
where
—(\+ kp), 0<k<c—d,
Ay = —A+(c—d)u+ 0] 0 B
( 0 (0 + k) , c—d<k<c,
A, 0<k<c—d,
Ck: ()‘50)7 k:C*d,
AL c—d<k<e.
ku 1<k<c—d,
(c—d)p _
B, — (c—d+1)u k=c—d+1,
(c—d)p 0 _
0 » c—d+1l<k<e
Furthermore,
B— (c—dyp 0 A —A+(c—d)u+ 0 0
B 0 cw )T 0 —(Atcep) )
C =\l

To obtain the rate matrix R, we need to know that the quadratic equa-
tion
(c—d)pz® — A+ 0+ (c—d)ulz+A=0 (5.5.2)

has the two real roots r < r* and 0 <r < 1, r* > 1.

.
r ,r—m{)\+9+(c—d)ui\/ﬁ},

where
H=[\—(c—d)u]*>+6%+20[\+ (c—d)u] > 0.

We are now ready to prove the following theorem.
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Theorem 5.5.1. If p = A(cu) ™! < 1, the matrix equation
R°B+RA +C=0 (5.5.3)

has the minimal nonnegative solution

r Or
R — ( a1 > , (5.5.4)
0 p

and sp(R) < 1.
Proof: The coefficient matrices of (5.5.3) are all upper-triangular. Let

_ (i1 T2
R = ( 0 29 ) )
Substituting this R into (5.5.3) gives the following set of equations:

(c—duriy = [A+0+ (c—dulrin + 1 =0
ey — (A +cp)raa + A =0
C;M‘lg(?“ll + 7‘22) + 0ri1 — ()\ + CM)Tlg =0.

To obtain the minimal nonnegative solution, let r1; = 7 in the first
equation and let 792 = p in the second equation (the other root for the
second equation is 192 = 1). Substituting r and p into the third equation,
we obtain rjg = CM(GIT_T) and sp(R) = max(r, p) < 1.0J

From Theorems 5.5.1 and 5.2.3, it can be easily proved that

{Ly(t), J(t)} is positive recurrent if and only if p < 1.

Lemma 5.5.1. R satisfies RBe = Ae and there exists the relation

A

+(c—dp=-. (5.5.5)

1—r r

A+0+ (c—dpu(l—r)=

Proof: Multiplying both sides of (5.5.3) from the right by e gives
R?Be — R(\e + Be) + \e = 0,
and rearranging the terms results in
(I-R)(Ae —RBe) =0.
Because the inverse of I — R exists, RBe = \e, which gives

1—r
r

0+ (c—du(l—r)= A

Adding A to both sides of the equation above yields (5.5.5).0
The infinitesimal generator Q can be repartitioned as follows:
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[ Hy Hop i
Hy, A C
B A C
Q: 5
B A
where
Ay Co 1
B, Ay C
Hy = ;
B, 2o Aco Ceo
L Bc—l Ac—l i
Hy = (0,B,), H —( 0 )
10 y ey 10 Cc_l .

Note that the repartitioned Q is not in the standard canonical form and
has a more complicated structure near the lower boundary. However, the
matrix analytical method can still be applied by using a modified matrix-
geometric invariant vector, as shown in section 1.5 of Neuts (1981).

Let {L,, J} be the stationary random variables for the queue length
and the status of servers. Denote the joint probability by

mej = P{Ly =k, J = j} = lim P{L,(t) =k, J(t) =3}, (k,5) € 2,

where 7, = (w0, k1), for K > ¢ —d + 1. We show below that {m;
(k,7) € Q} exist and can be obtained.
Define the (¢ —d+ 1) x (¢ — d + 1) matrix

[ Ay Co
By A (O
B[R] = o

and the 2(¢ — d + 1) -dimensional vector

Hetar1 = (T005 105 s Te—d,05 (Temd41,05 Temdt1,1) 5 -+ (Te0, Tet)).-

Lemma 5.5.2. II.; 411 B[R] = 0 has a positive solution:

'\ w
T :K(/BjO)le)u C_d<J S c,

J
mo=%(2), o0<i<e-q



240

where
1 N ea
o A (e~ —d4+1<j<
Bjo c—d) (M) & , c—d+1<j53<¢
1 /A or 1 i~(ezd)-1 AN
() - _ NN
fin J! <,u) A1 =) 1—'—(c—d)! ; (c d+Z)'()\> ’

c—d+1<j<ec

The empty summation Z?:1 is defined to be zero.
Proof: Using R in (5.5.4), we have

—{A+0+(c—d)pu(l —r %
P AR

which appears in the last row of B[R]|. Then the matrix equation
II.; 411 B[R] = 0 can be written as a set of equations:

(

—Amoo + pmip = 0 (Eq. 1)
Amji—10 — (A + ) mjo + (7 + Dpmjr10 =0, 1 <j <c—d, (Eq. 2)
AMe—d-1,0 — A+ (c = d)p)me—a0 + (¢ — d)ume—_qy10
+(c—d+1Dpme—gr1,1 =0 (Eq. 3)
Ome—ar1,0 — A+ (c—d+1)p)me—gr1
+(c—d+2)ume—qra1 =0 (Eq. 4)
Amj—10 = [A+ (e = d)p + Olmjo + (¢ — d)umjt1,0 =0,
c—d<j<c—-1 (Eq. 5)
Amj_11 —Omj0 — (A +jp)min 4+ (J + Dpmjr =0,
c—d+1<j<c—1 (Eq. 6)
Ae10— A+ 0+ (c—d)p(l —7))meo =0 (Eq. 7)
)\ﬂ'cfl,l + %7700 —cpume =0 (Eq 8)

From (5.5.5) and (Eq. 7), we obtain mg = rm.—10. In (Eq. 5), letting
j=c—1, we get

AMe20=A+0+ (c—d)p)me—1,0— (c — d)prme_1
=A+0+(c—d)pu(l —7r))me—10 = %71'07170

so that m._10 = r7m.—20. Repeating using (Eq. 5) recursively, gives
Teo=1mejo  0<j<d. (5.5.7)
Let moo = K. From (Eq. 1), we obtain 79 = A~ K. Successively

substituting equations in (Eq. 2), we have

K ()
W:,'() L 0<j<e-d (5.5.8)
'\
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In (5.5.8), letting j = ¢ — d and comparing it with (5.5.7), we get

KN\,
ﬂco—(c_d)! u .

Then substituting it back to (5.5.7) yields

K AN\
= (2 J—(e=d) — P <
o (c— <H> r , c—d<j<ec

Substituting m._q—1,0, Te—d,0 and m._q41,0 into (Eq. 3) gives
Te—d11 = (g1 <u> 1=K e=dy].

From (5.5.5), it is easy to verify that

7 Or
1-— (C—d)XT: =)

Using this relation, we have

K AN\ or
Wc_dﬂ’l_(chrl)!(u) oo 289

Substituting (5.5.9) and (5.5.8) into (Eq. 4), we get
K A\ 2 pr ur
S TP — — L 14 (c—d+1 7} .
Temdt2,1 = (7 o)1 <M> )\(1—7“)[ Fle—d+ 17
Successively substituting this expression and (5.5.9) into (Eq. 6), we
obtain

i—(e—d)-1

”jl:f!(i)JA(lgir) 1+(c—1d)! > earir() g

=1

c—d<j<ec

Finally, using direct substitution, we can verify (Eq. 8).0

Based on the modification method in section 1.5 of Neuts (1981) for
the infinitesimal generator Q with complex lower boundary, it is obvious
that if and only if sp(R) < 1 and linear equation system II., 411 B[R] = 0
has a positive solution, then the QBD process {L,(t), J(¢)} is positive
recurrent. Based on Theorem 5.5.1 and Lemma 5.5.2, these conditions
are satisfied if and only if p < 1.
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For the joint distribution queue length and the status of servers, we
have the following theorem.
Theorem 5.5.2. If p < 1, the distribution of {L,, J} is

J
Wj0:%<%>; 0<j<c—d
= K(Bjo, Bjn), c—d<j<ec
50 = K Beor? ™€, Jj>c

Fjl—K,Bclp] +Kﬁcocu1 T)Zjic 1 ’ij c—1— 17 ji>e,

where ;0 and (31 are given in Lemma 5.5.2 and the constant K is as
follows:

-1

c—d g c—1
K = Z l (A) + Z (Bjo + Bj1) + (Beo, Ber) I —R)~H

!
j=0 " \H Jj=c—d+1
Proof: Based on Theorem 5.2.3, we have

T = (mhos k1) = K (Beo, Ber)RF k>c,

and 7o, 10, - Te—d,0, (Tko, Tk1), c—d < k < ¢, are given by Lemma 5.5.2.
Substituting R in (5.5.4) into the expression above gives (7 g, ;1) for
7 > c. K can be determined by the normalization condition. [J

The distribution of the number of customers in the system at any time
is

) mjo, 0<j<c—d,
P{Lv_j}_{ﬂj0+ﬂj1, ji>c—d,

Note that, based on Theorem 5.5.2, the distribution of waiting time
can be obtained by conditioning on each state (k,j) € Q. However,
this distribution is very complex and is not convenient to use. It is
also hard to compare this multiserver vacation system with its classical
M/M/c system in terms of unconditional distributions. Therefore, we
again present the conditional stochastic decomposition properties.

Let LY = {L, — ¢|L, > ¢, J = 1} and W9 = {W,|L, > ¢, J = 1}
represent the queue length and the waiting time, respectively, given that
all servers are busy.

Theorem 5.5.3. If p < 1, Lq(,c) can be decomposed into the sum of
two independent random variables,

L(c) — ( ) + Ld:

v

where L(()C) is the conditional queue length of the classical M/M/c sys-

tem without vacation and L, is the additional queue length due to the
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vacation effect. The p.g.f. of Ly is given by

1 Or 1
La(z) = p {5c1 + (1= T)ﬂcoz(l o } ; (5.5.10)
where o
ﬁcl + ,LL( )2 ﬁcO

Proof: From Theorem 5.5.2, the probability that all servers are busy
is

P{L,>c,J =1}

:Zﬂjl
_C oo j—c—1
—KBde] + K ﬁcoz Z ph gi—e=1=k

j=c j=c+1 k=0
K K Or
-7 K
I—p

The conditional probability distribution of LS,C)

P{L{ = j}
— P{L,=j+dL,>c,J=1}

is obtained as

1 .
{501ﬂ7 + ( ﬁcoz ki 1= k}, j>0. (5.5.11)
Taking the p.g.f. of (5.5.11), we have

Li)(2) = ) P{LY) = j}

j=0
1-0p >
- - k j—1-k
- e Bclzpjzj+ 5COZZ]ZTPJ
Jj=0 j=1 =
1—-p 1 Or 1
1—=2 X0{601+cu(1—r)660z1—zr}
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O
Expanding L4(z) yields the distribution of Ly as
1 .
. ~Be1, J=0,
P{Lg=j}=19 1 i .
{La =} { %cu(firfpﬁco(l — )il J=1
(5.5.12)

Note that (5.5.12) indicates that with probability B.0~!, Ly = 0 and
with probability 1 — B0~ !, Ly follows a geometric distribution with
parameter r. The following theorem gives the conditional stochastic
decomposition property of the waiting time.

Theorem 5.5.4. If p < 1, Wéc) can be decomposed into the sum of
two independent random variables,

Wi = w§? +wy,

where Wéc) is the conditional waiting time in a classical M/M/c system
without vacations, and Wy is the additional delay due to the vacation

effect. WO(C) follows an exponential distribution with parameter cp(1—p),
and Wy has the LST

(5.5.13)

W;(S)Zi{ﬁdnLc or C“(l_r))}.

u(l—r)

Proof: Assume that a customer arrives at state (k, 1) for k > c. If we
condition on this state, this customer’s waiting time Wt has the LST

k—c+1
:k<s>—<’“’“) L ke

s+cu

The conditional waiting time when all servers are busy has the LST

Wy O(s) = i P{LY) =k — c}Wyi(s)

k=c
_l=p e
- {BClerw(l - )
Or 5 cp cph }
cn(1—=r)" s+ cu(l—p) s+ eu(1—r)
_oep(l—p) 1 Or eu(l—r)
S step(l—p)o {Bd R R El e sy }
= Wi ()W ()
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Note that (5.5.13) indicates that Wy has the probability density at
the origin with probability

. 1
q = 7ﬁcla
g

and follows an exponential distribution with parameter cu(1l — ) with
probability 1 — ¢*.

From the conditional stochastic decomposition properties, we can ob-
tain the means of Lg,c) and Wﬁc):

P 1 Or

(0 _ +
E(LU ) 1_p+0'CM(1_7")3660’
1 1 6r? 1
E(WL)) = - —.
(W%) ai=p) Tt

Remark 5.5.1. Using a similar analysis, we can study the single
vacation model, denoted by M/M/c (SY, SV, d), where the d servers
take only one vacation simultaneously when the number of customers
in the system is reduced to ¢ — d at a service completion instant and
return to serve the queue or stay idle after the vacation. We can also
analyze the M/M/c (SY, SU, d) model where the d servers are turned
off when the number of customers in the system becomes ¢ — d at a
service completion instant and are turned on with a setup time when
the number of customers in the system is increased to ¢ — d + 1. Note
that in both models, the number of servers on duty never falls below
¢ — d. If we assume that the vacation time or the setup time follows
the exponential distribution with parameter # and is independent of
the interarival time and the service time, the analysis of the M/M/c
(SY, SV.d) or the M/M/c (SY, SU,d) is the same as in sections 5.5.1
and 5.5.2. The infinitesimal generator is still given by (5.5.1) and the
matrices A, B, and C are the same as in the M/M/c (SY, MV,d) system.
The only difference from the M/M/c (SY, MV, d) model is the transition
rates among the boundary states, where the number of customers in the
system is no more than ¢. All three models have the same rate matrix R
of (5.5.4). The structures of the conditional stochastic decompositions
in these models remain the same as illustrated in Theorems 5.5.3 and
5.5.4 except for the expressions of 5.9 and (.1, which are determined by
different equations.

5.5.2 (SY, MV, e-d)-Policy Model
Now we consider an M/M/c system where only a batch of idle servers
(not all) are allowed to take synchronous multiple vacations. The servers
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in such a system follow a so-called (e,d) policy. The (e,d) policy pre-
scribes that when any d (< ¢) servers become idle or the number of
customers in the system is reduced to ¢ — d at a service completion in-
stant, then e (< d) idle servers start to take a vacation together. At a
vacation completion instant, if the number of customers in the system
is no more than ¢ — e (still no waiting customers), these e servers take
another vacation together until they find that there are more than ¢ —e
customers in the system at a vacation completion instant. Then these e
servers return to serve the queue. The vacation time is assumed to be
exponentially distributed with parameter 8. The service order is FCFS
and interarrival times, service times, and vacation times are mutually
independent.

At a vacation completion instant, if there are j customers in the sys-
tem where ¢ — e < j < ¢, then 5 — ¢ 4+ e returning servers will serve
the customers immediately and ¢ — j servers become idle; if j > ¢, all e
returning servers serve the customers immediately and j — ¢ customers
are waiting in the line.

Let L(t) be the number of customers in the system at time ¢, and let

T(t) = 0, e servers are on vacation at time ¢,
1, no servers are on vacation at time t.

Then {L(t), J(t)} is a QBD process with the state space
Q={(k0):0<k<c—dlJ{(k,j):k>c—d, =0,1}.

Using the lexicographical sequence for the states, the infinitesimal gen-
erator is given by (5.5.1) where the entries are modified as follows:

— (A + kp), Osk<emd
—(A+ kp) 0 - -
A = 0 —(A+kp) ) crdsksene
_(AJFHJE)(C_@M) —(/\+ku)>,c—€<k‘<0_1’
ke, lskse—d,
(c—d+1)u —c—
(C_d—i_l)'u , k=c d‘i‘l’
B = kp 0 7 c—d+1<k<c—e,
0 ku
(c—e)u 0 _ -
0 kp )€ e<k=<c-—1,
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A, 0<k<c—d,

a07 k: _da
Ci=q ! A)O )
(0 )\>’ c—d<k<c—1,

B:<(c—e)/£ 0 ),A:<_[>\+(C_e)”+9] 0 >7

0 —(\ + cp)
e (3 1)

Note that a customer departure in state (c—d+1, 1) makes a transition to
state (¢ —d,0), in which e servers are on vacation. Because the matrices
A, B, and C are the same as before, the expression of R is still given by
(5.5.4) and the expression of r in Theorem 5.5.1 is slightly changed to

1
T:m{)\+9+(6—6)#—\/ﬁ}’

where H = [\ — (c — e)u]? + 6% + 20[\ + (c — e)p]. Define
IT= (7T007 e )T(Cfd,[% Trcfd+l,7rcfd+27 e )7 (5514)

where 7, = (7o, Tg1), for k > ¢ —d+1. To obtain the distribution {my;
(k,7) € 2}, we define

= (3) o=@ 55 Sy

For the ease of computation, the recursive relation

b~ A iy = (k= I (5.5.15)

—r

can be used. Using the same approach of treating the M/M/c (SY,
MV, d) system, we can verify that IIB[R] = 0 has the positive vector
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solution as:

( 1 (A)F
c—d
TRy = K%Jfﬁd (%) , c—d<k<c—e,
—d
1 A ¢ k—c+e _
Kw%d(”) r , c—e<k<c,
k
1 A 1 vV— C+d
KW(;) r/\wc dzucd ( ) )
c—d+1<k<c—e,
k
= 1 (A 0 1 c—e—1 w\v—ctd
k1 K (p) Tor AT s {Eu —ea¥' (8)
—c+d
+ e VH(R)T T e
c—e<k<ec

(5.5.16)

where the constant K can be determined by the normalization condition.
Similarly to the proof of Theorem 5.5.2, we can easily obtain the

following theorem.
Theorem 5.5.5. The joint distribution of {L, J}, denoted by {m;,

(k,7) € Q} for 0 <k < ¢, is given by (5.5.16) and

c—d
o= K (2) utpheen, -
Ty = Te1pF ¢ + Wcoicu(eflr) S ety phmemtoy) k>c.
(5.5.17)

The constant K is
e—d 1 k A 1 c—e—1 -
L+ 0w (’) + (ﬁ) Ve_a (1Tr + 2 h—e—dt1 W)
a1 B+ 15 (B + By )

where 8y1 = K 'mp1,c —d+1 < k < ¢, and 7 can be determined by
—d
—1

C
(5.5.16) and B = (2) v
The distribution of the number of customers in the system at any time
is
_ _ TkO, 0<k<c— d7
P{Lv_k}_{ﬂko-l-ﬂkl, k>c—d+1.

The distribution of the number of busy servers, denoted by Mp, is
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50, 0<j<c—d

mjo + 741, c—d+1<j<c—e
P{MB :]} = Z;O:cfe w0 + Me—e,1 j=c—e

i1 c—e<j<c—1,

Zsozcﬂ-z/la Jj=c

Let W and W*(s) be the stationary waiting time and its LST, respec-
tively. To obtain the waiting time distribution, we establish the following

lemmas.

Assume that X ) follows an Erlang distribution with parameters a
and v, and V follows an exponential distribution with parameter 6. In
addition, X) and V are independent. Now we have

Lemma 5.5.3. Given X*) < V, v > 1, the conditional probabil-
ity distribution, {X®)|X®) < V}, follows an Erlang distribution with
parameters v and 6 + a.

Proof: Assume that X follows an Erlang distribution with para-

meters v and . The p.d.f. and LST are f,(z) = O‘((i‘f););l

% and

(&

~ v
fu(s) = (%W) for v > 1, respectively. Also assume that V follows an

exponential distribution with parameter 6 and is independent of X. It
is well known that

P{X(”)<V}:< a > : v>1.

0+ o
Given the event {X®*) < V}, the conditional distribution function of
X s
P{XW <2, X¥) <V}
P{X® <V}

([« +0\" /x a(at)yt JT—
(6% 0 (V — 1)'

Y RPN (Ll ey
—/0( +0) 1) teltdt.

FX(V) (:E|X(V) < V) =

O

Lemma 5.5.4. Given {X®) <V < X®**+D} » > 1, the conditional
probability distribution, {V|X®) < V < X®+D1 follows an Erlang
distribution with parameters v + 1 and 6 + a.

Proof: First, it is easy to compute the probability of the conditional
event as

p{X(z/) <V < X(u+l)} — 9—&0—04 (Oia) , v>1. (5.5.18)
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From the independence property, we have

P{V <z, X" <V < X))
:/ P{V <zt <V <t+az}f,(t)dt
0

—/ fl,(t)dt/ et ge=0u gy,
0 t
0 / (6_9t _ e—Oxe—a(a:—t)> fl,(t)dt.

:9+OZ 0

Using (5.5.18), given the event {X*) < V < X#*11  the conditional
distribution function of V' is

Fy(z| X < v < x0+D)

_ P{V<z,XW <V < xt}
- P{XW <V < XD}

_ (a ;— 0>V /Om (e_et _ e—eace—a(ac—t)) £, (t)dt.

Taking the derivative with respective to x, we obtain the p.d.f. as

Fr(z]X® < v < x+h)
_ <a + (9) / (a + H)e—exefa(wft)fv (t)dt
0

(0%

a+0\" _ioe [Falat)t
:(a+«9)< 5 ) e~ (at0) /0 (1(/—)1)! dt
((0“"9)5”)”6—(0&9)3:.

= (@+9) v!
([
In the following discussion, let & = (¢ — e)p and
o — 0 < (c—e)u ) 7 y>0.
O+ (c—e)p \O0+ (c—e)u

Let Ho(or Hy) be the probability that at an arrival instant, e servers are
off (or on) duty and the arriving customer has to wait. Obviously we
have

00 A c—d . 1
Hy = Z mo =K (= —d]

v=c—e M

> 1 Or
H: vl — 57— c /1 No'tc .
1= m 1—p<“+cu<1—r>2”°>

v=c



Markovian Multiserver Vacation Models 251

Theorem 5.5.6. The LST of W is

W*(S) = 1—H0—H1

0+ (c—e)u(l—r) ep(l—r)
e e o]

gl =p) [o— +(1- J)M] . (5.5.19)

s+ cu(l—p) s+cepu(l—r
where
5= 01 —7r¢) 4+ (c—e)u(l —r) oo Tel
0+(c—eu(l-r) Hy(1-p)
Proof: The probability of no waiting is
c—e—1 c—1
P{WZO}: ZWV0+ Z T =1— Hy— Hi.

v=0 v=c—d+1

If a customer (called a tagged customer) arrives at state (c —e+7,0),
0 < j < e, then the number of waiting customers before the tagged
customer is less than e. Therefore, as soon as the vacation is completed,
the tagged customer will get immediate service. Before the vacation
completion, ¢ — e servers are busy. Based on Lemma 5.5.4, given that
{(X) <V <« XDl 0 < v < j, the conditional waiting time of the
tagged customer follows the Erlang distribution with parameters v + 1,
and 0 + (¢ — e)p. If V> XU+ which means that the vacation is not
completed until the service of the tagged customer starts, then based
on Lemma 5.5.3, the conditional waiting time also follows the Erlang
distribution with parameters of j +1 and 6+ (¢ — e)u. Thus, the LST of
the waiting time for the tagged customer arriving at state (¢ — e + 7, 0),
0<j<e,is

J B J _
—etjols) = Zavfll-i-l(s) + (1 - Z%> fi+1(s).
v=0 v=0

Substituting a,, and f:,(s) into the equation above gives

_ 0 s < (c—e)p

j+1
* ) — < .
Cfe+],0(8) S+0+5+0 S+9+(C—€),LL> ,O_j<€
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Therefore, we obtain

ch e+, 00 e+30( s)

AN\ 0 1—r¢ s (c—e)u
=K|(Z 1
<,u> ¢C-d{s+c9 1—7‘+s+95+0+(c—e)u(1—7“)

x [1 - (HET(?“ 6)M>er€] } (5.5.20)

If a customer (tagged customer) arrives at state (¢ + j,0), j > 0,
then the number of waiting customers before this tagged customer is
j + e. If during the residual vacation, v services are completed, that is,
{X(”) <V < X(”H)}, 0 < v < 4, then, after the e returning servers
start serving customers, there are j — v customers before the tagged
customer. Note that at this vacation completion instant, all ¢ servers
are busy. If {X®) <V < Xt} 41 < v < j+e, then, at this
vacation completion instant, the tagged customer gets service immedi-
ately. If {V > X (j+e+1)}, the tagged customer gets the service before
the vacation is completed. Thus, based on Lemmas 5.5.3 and 5.5.4, the
LST of the conditional waiting time for this customer is

cp j—v+1 J+e _
c+30 Zavfu-i-l <5+c,u> + Z anV+1(S)

v=j+1
jte _
+ (1 - Z av) fitet1(s)

v=0

J — cp j—v+1
= Zavfl/—l-l(s) <S+C,u>

{M He(ﬁéi]?i‘em)e}-
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Therefore, from this expression, we obtain

> TerjoWeijols)
7=0
)\ c—d
e
1

cl 0
x (s—i—cu(l—r)s—i-H—i—(c—e),u(l—r)
(c— e
+{s+0+(c—e)u(1—r)

<[ero s (oretas) 1})- oo

Using (5.5.20) and (5.5.21) and simplifying the expression yields

> mioW;o(s)

j=c—e

=K<2>Cd¢;1d{ 0 [1—r6+1—r6 (c—e)u(l—r) ]

s+0|1—r 1—-rs+0+(c—e)u(l—r)
1 (c—eull—1)
l—rs+0+(c—e)u(l—r)
e 0 cp(l—r)
+1—r8+9+(c—e)u(1—r)s—i—c,u(l—r)}

0t (e—eu—)
_H0{3+9+(c—e),t1,(1—r)

B Ore s }
s+0+(c— ),u(l—’l“)s—i—c'u(l_r)
{9(1—T6)+(C—e)u(1—7“)
) 0+ (c—e)u(l—r)

Ore cu(l—r)

+9+(C—€)M(1—T)S+cu(1—r)}

—p, Pl o) _gy_d=r)
e P Dy} G

Finally, if a customer arrives at state (¢ + 7,1), 7 > 0, his or her waiting
time follows the Erlang distribution with parameters j+1 and cu. Hence,

we have -
J
. cp .
Weijals) = (S+Cu> , J20.




254

Using (5.5.16) and (5.5.17), we obtain

oo
D TerjaWiija(s)

=0

B cl - Or - cu(l —r)

T sven(i—p) < T =y COS+6/~L(1—T)>

0 cu(1 —p) { Tel Ormeo cu(l—r) }
s+cu(l—p) LHi(1-p) H1(1— pep(l =7)%s+cp(l —r)

_g wd=p) f o epl—T)

B Hls+cu(1—p) { +{ )s+c,u(1 —r)}' (5:5:23)

Combining (5.5.22) and (5.5.23), we have (5.5.19).00

Note that (5.5.19) has an interesting probability interpretation. The
stationary waiting time is zero with probability 1 — Hy — Hy, is the sum
of an exponential random variable of parameter 6 + (¢ — e)u(1 — r) and
a modified exponential random variable with probability Hg, and is the
sum of an exponential random variable of parameter cu(l — p) and a
modified exponential random variable with probability H;. Thus, the
distribution function and the mean of the waiting time are obtained from
(5.5.19) as

Fw<$) =1-— HO - H1
+ H, (1 _ e—[@-l—(c—e)u(l—r)]x) [5 T (1— )1 e—cu(l—r)x)}
4y (1= 09 [+ (1= o)1 = 0]

and

E(W):H‘)[eﬂc—elmu—r)*“‘5) : }

1 1
i [cu(l s IS —r)] |

The probability distribution of the waiting time is very useful in com-
puting the service level of queueing systems, such as the probability that
a customer waits less than a certain amount of time. Now we present the
conditional stochastic decomposition propertles in this vacation model.

Let L) = {L—¢|L>¢,J =1} and W = {W|L > ¢,J = 1} be the
conditional queue length and the conditional waiting time, respectively,
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given that all servers are busy, and let Lél) ={L—c¢|L > ¢} and Wél) =
{W|L > ¢} be the corresponding conditional random variables in the
classical M/M/c queue.

Theorem 5.5.7. The conditional waiting time and the conditional
queue length given that all servers are busy can be decomposed into the
sum of two independent random variables,

w® =w wh,

1= 1l

where chl) is the additional delay due to the vacation effect and has
the LST

cp(l—)

*(1)
— 1)~
W, (s) =0+ ( U)s—i—c,u(l—r)’

(5.5.24)

and Lg) is the additional queue length due to the vacation effect and
has the p.g.f.

z(1—r)
1—z2r

W) =0+ (1-0) (5.5.25)

Proof: Note that P{L > ¢,J = 1} = > 72 _m1 = Hj. Given the
condition {L > ¢, J = 1}, the probability that there are j customers in
the system is

P{LO =j} =P{L=c+j|lL>c,J =1} = Hy 'merjn, j > 0.

Hence, the LST of W) ig

(1) 1 i cp o
W* (S) = Hl_ Tet-4,1 < ) .
= s+ cp

Using (5.5.23) in the expression above, we get

. _cp(l—p) cp(l —r)
W6 = =) {”““’)sw(l—r)}'
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From P{LWY = j} = H; '7.y;1 and (5.5.17), we have

LW(z) = isz{L(l) = j}

=0
> ; Or >, ] ;
S o e 3 S
=0 =1 v=0
— g1 Tel + Opmeo izu+1,’,u i Zj*l/flpjfufl
! 1—zp cu(l—r) — Pt
0 z
_ -1 H
b 12 {ﬂ-d * cu(l —T)ﬂ-cgl —zr}
1—p Tel m z(1—r)
= 1 + 5 7c0
—zp | Hi(1—p)  Hi(1—p)ep(l—r1) 1—2zr
1—p z(1—r)
= 1)L
1—zp{0+( G)l—zr}

]

Note that (5.5.25) indicates that L((il) is zero with probability o and
is 1 plus a geometrically distributed random variable with parameter r
with probability 1 —o. Using (5.5.24) and (5.5.25), we have the expected
values of these conditional random variables as follows:

l1—-0
1—7r’
1-01
1—rcp
P l1-0
1—p 1-1’
1 1—-0
c(l—p)  cep(l—r)

Another condition is when e servers are on vacation and the other
¢ — e servers are busy. Let L) = {L —c+e|L > ¢—e,J = 0} and
WO = {W|L > ¢ —e,J = 0}. We also have the conditional stochastic
decomposition property for the conditional waiting time.

Theorem 5.5.8. L follows a geometric distribution with parameter
r. WO can be decomposed into the sum of two independent random

variables,

wO = w4+ w,
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where WO(U) follows an exponential distribution with parameter 6 + (¢ —

e)u(l —r), and cho) follows a modified exponential distribution with
the LST

W %) =6+ (1— 5)%. (5.5.26)

Proof: Note that P{L > c—e¢,J =0} = > >° w0 = Hp. Thus,
the probability distribution of L is

P{LO = j} = P{L = c—e+j|L > c—e,J = 0} = Hy 'Te—eyjo, > 0.

Taking the p.g.f. of this distribution gives

LOz) =Y 2 P{LO = j} = Hy' Y Zmeesjo
=0 =0

A\ 1 1—7r 1—7r
=H,'K (= ! = :
0 <M> l—r%*dl—zr 1—2r

Therefore, L(® follows a geometric distribution with parameter 7. Given
the condition of {L(®) = j}, the waiting time is no longer the sum
of 7 + 1 exponential random variables with parameter (¢ — e)u. As
indicated in the proof of Theorem 5.5.6, the waiting process also depends
on the vacation completion instant. Note that (5.5.22) gives the joint
distribution of W and event {L > ¢ — e, J = 0}, and hence, the LST of
the conditional waiting time W(® is

N _ O+ (c—epu(l—r) cp(l —r)
wO(s) = s+0+(c—e)u(l—r) {6+(1_5)s+c,u(1r)}'

This completes the proof. [J

5.6 M/M/c Queue with Asynchronous Vacations
of Some Servers

In this section, we consider an M/M/c queue where servers can take
vacations independently when they become idle. The service policy now
prescribes the following: at a service completion instant or at a vacation
completion instant, if the server finds no waiting customers and the
number of servers on vacations is less than d, this server will take a
vacation individually. With such a policy, the number of servers on duty
(busy or idle) is at least c—d at any time. Because servers take vacations
individually and continue taking vacations if the vacation condition is
satisfied, the vacation policy is called an asynchronous multiple vacation
policy. The vacation time is assumed to be exponentially distributed
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with parameter 6. The service order is FCFS and interarrival times,
service times, and vacation times are mutually independent. This system
is denoted by M/M/c (AS, MV, d).

With this vacation policy, if the number of customers k < ¢ —d, there
must be d servers on vacations and ¢ — d — k servers that stay idle; if
c—d < k < ¢, there are at least ¢ — k servers on vacations and no idle
servers.

Let L, (t) be the number of customers in the system at time ¢, and let
J(t) be the number of servers on vacations at time ¢. Then 0 < J(t) < d,
and {L,(t), J(t)} is a QBD with the state space

Q={(k,d):0<k<c—d}U{(k,j):c—d<k<c—1lc—k<j<d}
U{(k,j) 1 k>c,0<j<d}

For a given k, the state set {(k,j), (k,7) € Q}, called level k, contains
the states that are sequenced in descending j starting with 7 = d. Using
the lexicographical sequence for the states, the infinitesimal generator
for the QBD has the same block structure as in (5.3.3), where Ay, By,
and Cp can be written in the block-partitioned form as in (5.4.1). Letting
hi =X+ (¢ — k)pu+ k6, 0 < k < d, the submatrices of the infinitesimal
generator are given by

Ap=—O+kp), 0<k<c—d,

B, = ku, 1<k<c—d,
Cr = A, 0<k<c—d-1,
[ (c—d)u ]
(c—d+1)p
B, = , c—d<k<c—1;
(k= 1p
i 0 0 kp
A 0
A 0

C. = ) , c—d<k<c—1;



Markovian Multiserver Vacation Models 259

—hg de
a1 (d—1)8
Ay = ;
—hc,k,1 (C —k— 1)0
—(A+kp)

c—d<k<c—1.

Other submatrices A, B, and C are the (d 4+ 1) x (d + 1) matrices, as
follows:

—hg  df
—hgy (d—1)0

—hy 0
—(A+cp)

B = diag((c — d)p, (¢ — d + 1), ..., cp), and C = AL Therefore, Ag is
the square matrix with order d* = (¢ —d) + 3d(d+1). By and Cy are the
(d+1) x d* and d* x (d + 1) matrices, respectively.
To obtain the explicit expression for R, we need the following lemmas.
Lemma 5.6.1. For any 0 < k < d, the quadratic equation

(c—d+k)uz> — M+ (c—d+E)pu+d—kbz+rx=0  (56.1)

has two different real roots rp <7y and 0 <7, <1, 77 > 1.
Proof: Let j =c—d+k. Then c—d+1 < j < ¢, and hence, (5.6.1)
can be rewritten as

gt =t ju (= j)0lz+A=0, c-dtl<j<e

Then the result follows from the same approach used in the proof of
Lemma 5.4.1.01
If k =d, (5.6.1) becomes

cpzt — (A4 cp)z+ A =0,

and its two roots are rg = p = A(cp) "' and r} = 1.

Lemma 5.6.2. The rate matrix R satisfies RBe = \e.

Proof: Note that Ae = —(\e + Be). Multiplying both sides of (5.5.3)
from the right by e gives

R?Be — R(\e + Be) + \e = 0,
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and rearranging the terms results in
(I-R)(Ae —RBe) =0.

Because the inverse of I — R exists, so Ae = RBe. [J

Now we show the theorem for computing R.

Theorem 5.6.1. If p = A(cu)™! < 1, the matrix equation R?B +
RA + C = 0 has the minimal nonnegative solution

o Tor To2 - To,d-1 Tod
T Tiz2 -+ Tid-1 Tid
r cee Togo1 T
R = 2 At fad : (5.6.2)

Td—1 Td—1,d
p

where 1, 0 < k < d — 1, is the solution of (5.6.1) that is between 0 and
1 and the nondiagonal entries in R satisfy the equations

k
(c—d+k)pd rjrik — A+ (c—d+E)u+ (d— k)6
i=j
+(d—k+1)0rjr_1=0, (5.6.3)
0<j<d—1, j+1<k<d

In (5.6.3), if k = 7, let rpx = rg, 0 < k<d.

Proof: Since A,B, and C are all upper-triangular matrices, the so-
lution to the matrix equation, R, must be an upper-triangular matrix.
Let R be in form of (5.6.2). Then the entries of R? are

(R = 7, 0<k<d,

k
<R2)jk = erzﬂk, 0<j<d-1,j<k<d.
i=j
Substituting R?, R, A, B,and C into the matrix equation gives a set of
equations:

(c—d+k)yur2 —A+(c—d+k)u+(d—k)br, + A= 0,
0<k<d,
(c—d+Fk)u Ef:j ik + (d — k +1)0r; 1
=X+ (c—d+k)p+ (d— k)0,
0<j<d-1,j+1<k<d
(5.6.4)
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Based on Lemma 5.6.1, we can obtain the minimal nonnegative solution
by letting r; be the root of (5.6.1) in (0,1) where 0 < k < d — 1, and
letting 74 = p. The second equation of (5.6.4) is the recursive relation
(5.6.3).0

From (5.6.2), we find that the spectral radius

sp(R) = max(rg,- - ,74-1,p), so sp(R) < 1 if and only if p < 1.
Therefore, p < 1is the necessary and sufficient condition for {(L,(t), J(t)),
t > 0} to be positive recurrent.

Because (5.6.3) is a set of nonlinear recursions, it is not possible to get
the explicit expression for every rj; (j < k). However, as in section 5.4.1,
it is feasible to recursively compute every 7;;. In addition, RBe = )e in
Lemma 5.6.2 is a set of d linear equations that the nondiagonal entries
satisfy. Note that we cannot use these d + 1 equations to determine
every nondiagonal entry. However, we can use the recursive relations in
(5.6.3) and Lemma 5.6.2 jointly to determine the nondiagonal entries of
R. For example, letting £ = j + 1 in (5.6.3) and using the same method
of section 5.4.1, we obtain

d—j g Ty
c—d+j+lpri, —ry

Tji+1 = j:O,l,...d—l.

With this relation, we can compute these entries on the first off-diagonal
line parallel to the diagonal of R.

If p < 1,let {L,, J} be the queue length and the number of vacationing
servers for the steady state system. Denote its joint probability by

mj = P{Ly = k,J = j} = lim P{L,(t) =k, J(¢) = j}, (k,j) € &

To accommodate the block structure of Q, we express the distribution
of {L,, J} as three probability vectors

Thds 0<k<c—d,
T =13 (Thd, Thd—1,"" > The—k), c—d<k<c—-1,
(Thds Thd—1," " > Tk 1, k), Kk > ¢,

where 7, 0 < k < ¢ —d, is a real number; 7, c—d+1 <k <c-—1,
is a (k — ¢+ d + 1) -dimensional row vector; and 7, k > ¢, is a (d+ 1)
-dimensional row vector. The marginal probability

II. = (707 oty Te—dy Te—d+15 " " 77Tc)

is a row vector of (¢ —d) + 1(d + 1)(d + 2) dimensions.
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Note that the square matrix of order (c — d) + 1(d + 1)(d + 2),

| Ao Co
BIR| = [ B, RB+A }
C Ay Co -

Bl A1 Cl

Bc—l Ac—l Cc—l
B. RB+A |

is an aperiodic and irreducible infinitesimal generator with finite dimen-
sions. Hence,
II.BR] =0 (5.6.5)

must have positive solutions. Using Theorem 5.2.3, we obtain the fol-
lowing theorem.
Theorem 5.6.2. If p < 1, the joint distribution of (L, J) is

K/Bkv OSI{;SC_CL
=< KBk =K(Brd, Brd-1," " »Brk—c), c—d<k<c—1,
KB, = KB.RF™, k>,

(5.6.6)
where (8o, -, Be—d,Be—d+1- - , Bc) is the positive solution to (5.6.5) and
the constant K is

-1

c—d c—1
K=4> 8+ > Bie+pB(I-R) e
j=0

j=c—d+1

Furthermore, we can get the distribution of the number of customers in
the system:

Tk, OSkSC—d,
P{L, =k} = mye, c—d<k<ec—1,
m.RF %, k>c.

Note that, from Theorem 5.6.2, the distribution of the waiting time
can be obtained by conditioning on every state (k, j) € 2. However, this
approach is very complex and not convenient to use.

Let LY = {L, — ¢|L, > ¢,J = 0} and W9 = {W,|L, > ¢,J =
0} be the conditional queue length and the conditional waiting time,
respectively, given that all servers are busy. Rewrite 5. and R as

/602(67500)) R:<(I]_I Z)a
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where 0 = (Bed, Be,d—1, -+ 5 Be1) is a d-dimensional vector. Comparing
with (5.6.2), we find that H is a d X d matrix and 7 is a d X 1 column
vector as follows:

To Tor -+ To,d-1 Tod
o Tid-1 T1d
H = . . s ’[7 g
Td—1 Td—1,d

Obviously, sp(H) < 1.

Theorem 5.6.3. If p < 1, the conditional queue length Lq(,c) can be
decomposed into the sum of two independent random variables,

L = L + Ly,

v

where Léc) is the conditional queue length of the classical M/M/c system

without vacation and follows a geometric distribution with parameter p.
L, is the additional queue length due to the vacation effect and follows
a matrix geometric distribution of order d. Ly has the p.g.f.

La(2) = % {Buo + z6(1 — zH) '}, (5.6.7)

where
g = BCO + 5(1 — H)_ln.

Proof: Based on the structure of R, we have

k k=1 jyrk—1—j
Rk — H Zj:() p]H JT] , k 2 1.
0 ok

Substituting the kth power of R and . = (9, Bq0) into the matrix geo-
metric expression in Theorem 5.6.2 yields

k—c—1
me = K(0HN, Boph~c 46 Y pHF ), k> ec.
j=0

If k£ = ¢, the empty sum of the second term is 0, so the last element of
T 1S
k—c—1 ' )
Tho = K (Beop™ “+6 Z pHE 1), k> c.
j=0
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The probability that all servers are busy is

P{L,>c,J =0} =) my
k=c

oo  k—c—1
=K { By — +5Z > PHE

k=c+1 j=0

K =l K
—71_p{5c0+(5(1 H) 77}—71_,00.

The distribution of LSf) is
P{L©® =k} =P{L, = k+¢|L, >¢,J =0}

1—p

= ’]r
Ko Fted
1

-1
—p k jprk—1—j

=3, § H 1ipb k>0 (568
— { Peor” + JE:O/J] 7 > (5.6.8)

Taking the p.g.f. of (5.6.8), we have

o

[e'e) [e'e) k—1

1 — . 4

L) = —L B0 )t +8 S pH
k=0 k= j=

1-— - -
I 2 5c0 + Z‘SZ )y S (H)y
g Jj=0 k=j+1
1-—

-1, {Bco—i—zé(l—zH) n}

1-—
= L{? () La(2).
Expanding (5.6.7), we obtain

1 c0s /CZO,
P{Ld:k}:{ ({?I;’“n k> 1.

Hence, Ly follows a matrix geometric distribution. [

Note that (5.6.7) implies that Ly has a PH expression of order d. How-
ever, (0716, H) may not be a PH representation because H may not be
a stochastic submatrix. Sengupta (1991) proved that the distribution of
L, must be a discrete PH distribution of order d and provided a method
of constructing the PH representation for this type of distribution.
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From Theorem 5.6.3, we find that the expected conditional queue
length, given that all servers are busy, is

1 1 _

The following theorem gives the conditional stochastic decomposition

property of the waiting time.

Theorem 5.6.4. If p < 1, WQSC) can be decomposed into the sum of
two independent random variables

W = Wi + wy,

where WO(C) is the conditional waiting time in the classical M/M/c when
all servers are busy and follows an exponential distribution with para-
meter cu(l — p). Wy is the additional delay due to the vacation effect
and has the LST

Wi(s) = % {Beo + cpd(sI — cu(H — 1)) "'} (5.6.9)

Proof: Assume that a customer arrives at state (k,0) for k > ¢, if we
condition on this state, this customer’s waiting time, Wyg, has the LST

cu k—c+1
Wio(s) = <s+cu> , k> c.

The LST of the conditional waiting time when all servers are busy is

Wr9(s) =Y P{LY) = k}Wiy(s)
k=c

1—p 0 . cu k—c+1
_ —c
T 5 5(:0 kz_cp <S + cu)

__all=p) 1], +5(I_ cp H>_1
Cstcep(l—p)o 0 s+ cu K

_ oul—p) 1 -
= mg{ﬁco‘Fcﬂd(SI—Cﬂ(H—I)) 177}

= Wo(s)Wq(s)-
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O
Based on (5.6.9), the distribution function of W, can be written as

1
PWy<z}=1- ;5 exp{ —cp(I — H)z}(I - H) !n, x> 0.

This expression indicates that the additional delay W, follows a matrix
exponential distribution. From Theorem 5.6.4, we can get the mean of
the conditional waiting time:

1 1
E(W )y = SO —H)2n = —E(LY). 6.1
(Wy) C#(1—0)+C#U( ) n ” (Ly”) (5.6.10)
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