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Preface

In the early twentieth century, A. K. Erlang’s works on probability prob-
lems in telephone systems laid the groundwork for the development of queueing
theory. During the past 100 years, queueing theory has always been one of the
most important and active research areas in operations research and applied
probability. Classical queueing theory has been well developed and applied as a
fundamental performance evaluation tool in many fields such as computer and
telecommunication, manufacturing and service, and transportation systems.

Since the mid-20th century, due to the rapid advance of computer technology,
flexible manufacturing systems, telecommunication networks, and supply chain
systems have been becoming more and more popular in many organizations. To
evaluate and eventually improve the performance and efficiency, queueing mod-
els were developed to analyze the operations of these hi-tech systems. However,
due to the increasing complexity of these stochastic systems, classical queueing
theory, which was once quite successful in modeling telephone systems, became
inadequate. Vacation queueing theory was developed in the 1970’s as an ex-
tension of the classical queueing theory. In a queueing system with vacations,
other than serving randomly arriving customers, the server is allowed to take
vacations. The vacations may represent server’s working on some supplemen-
tary jobs, performing server maintenance inspection and repairs, or server’s
failures that interrupt the customer service. Furthermore, allowing servers to
take vacations makes queucing models more flexible in finding optimal service
policies. Therefore, queues with vacations or simply called vacation models at-
tracted great attentions of queueing researchers and became an active research
area. Many studies on vacation models were published from the 1970’s to the
mid 1980’s, and were summarized in two survey papers by Doshi and Teghem,
respectively, in 1986. Stochastic decomposition theorems were established as
the core of vacation queueing theory. In the early 1990’s, Takagi published a set
of three volume books entitled Queueing Analysis. One of Takagi’s books was
devoted to vacation models of both continuous and discrete time types and focus
mainly on M/G/1 type and Geo/G/1 type queues with vacations. Takagi’s book
certainly advanced further research and wide applications of vacation models.
In another book entitled Frontiers in Queueing edited by Dshalalow in 1997,
various M/G/1 type vacation models were discussed as a category of queueing
systems with state-dependent parameters.

The aim of this book is to provide an updated and comprehensive treatment
of various vacation queueing systems including not only single-server vacation
models of both M/G/1 and GI/M/1 types but also a variety of multiserver
vacation models. There are several features of this book. Firstly, unconditional
and conditional stochastic decomposition properties of stationary performance
measures for all types of vacation models are established as the core of vacation
queueing theory. Secondly, both performance evaluation and optimal control
issues are addressed. In particular, the static and dynamic optimizations in
vacation models are discussed. Finally, several practical systems are presented
as a sample of wide applications of vacation models. The authors hope that



this book will facilitate further research and applications of vacation queueing
models.

The book consists of eight chapters. Chapter 1 gives an introduction to vaca-
tion queueing models. The major components of a vacation model, the vacation
policies, and the stochastic decomposition structures are described in this chap-
ter. In Chapter 2, M/G/1 type vacation systems with exhaustive service are
treated. This type of vacation model has been studied by many researchers using
different methods. The system with multiple adaptive vacations is presented in
details as a general model of this category. Some well-studied vacation models
such as multiple vacation, single vacation, and setup time models are special
cases of this general model. Batch arrival and batch service vacation models are
discussed in this chapter. Other vacation models with finite buffer, threshold
policy, and Markov arrival process (MAP) are also considered. Chapter 3 focuses
on M/G/1 type vacation systems with non-exhaustive service including gated
service, limited service, decremental service, and Bernoulli service. This chapter
is mainly based on the materials from Takagi’s book Queueing Analysis, Volume
1. Chapter 4 is devoted to GI/M/1 type vacation models. Compared to M/G/1
type vacation models which are analyzed by mainly using embedded Markov
chain and supplementary variable methods, GI/M/1 type vacation models are
treated by using the matrix analytical method developed by Neuts (see Neuts
1981). Some recent results about finite buffer or batch service GI/M/1 type
vacation systems are also reported. In Chapter 5, Markovian multiserver va-
cation models are discussed. Multiserver vacation systems with various service
policies are modelled as quasi-birth-and-death (QBD) processes and analyzed
by using the matrix geometric solution method. Similar to unconditional sto-
chastic decomposition properties in single-server vacation models, conditional
stochastic decomposition properties when all servers are busy are established for
multiserver models. Chapter 6 studies multiserver vacation models with general
arrival process or of GI/M/c type. The stationary performance measures and
the conditional stochastic decomposition properties are presented. In Chapter
7, the optimal control issue in vacation systems is addressed. For single-server
vacation systems, both static optimization and dynamic control models under
certain cost and revenue structures are developed. Searching method and proof
of convexity for average cost function are presented in this chapter. Markov
decision process is used to solve the dynamic control problems in single-server
systems. For multiserver vacation systems with given cost and revenue struc-
tures, the optimal threshold policies are obtained by using the searching method.
Finally, Chapter 8 provides a few examples that illustrate the applications of
vacation models. A bibliographic notes is given at the end of each chapter.

Although the book contains a variety of vacation models that have been
studied over the past thirty years, there are still some excellent past works,
many successful applications, and open problems that are not included in this
book. The topics that need further research include (but are not limited to)
the diffusion approximation models, the queueing networks with vacations, the
simulation-based models, and the multiserver vacation models with Markov ar-
rival process.
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Chapter 1

INTRODUCTION

1.1 Queueing Systems with Server Vacations

In a classical queueing model, servers are always available. However,
in many practical queueing systems, servers may become unavailable for
a period of time due to a variety of reasons. This period of server absence
may represent the server’s working on some supplementary jobs, being
checked for maintenance, or simply taking a break. To analyze these sys-
tems, we introduce the server vacation in queueing models to represent
the period of temporary server absence. Allowing servers to take vaca-
tions makes queueing models more realistic and flexible in the study of
real-world waiting-line systems. Below are some practical systems that
can be modeled as queues with vacations.

Example 1.1 (call centers with multitask employees). The customer
service hotline of a long distance calling card company may not be very
busy all the time. The customer service representative’s (CSR) main
task is to answer customer calls for assistance. During the idle time,
the CSR can make phone calls to potential customers to promote the
company’s service and products. In this situation, the inbound calls are
queueing customers and the outbound calls are supplementary jobs that
can be modeled as server vacations. A call center with multitask CSRs
can be represented by a multiserver vacation model with “inbound calls”
as customers and “outbound calls” as vacations.

Example 1.2 (Border-crossing stations). In a U.S.and Canada border-
crossing station, the number of open lanes is determined by the level of
congestion or the length of the waiting line of cars. When the queue
length becomes zero, some of the open lanes are closed and the inspec-
tors leave for other jobs. When the waiting line builds up to a certain
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limit, these closed lanes are reopened to reduce the congestion level. In
this situation, time spent on working on other jobs is considered to be
a server vacation.

Example 1.3 (mixture of make-to-order and make-to-stock opera-
tions). A flexible manufacturing facility is mainly used for producing
customer-specified products. When there are no customer backorders,
the facility switches over to produce a variety of items in stock. Due to
the considerable switchover cost between “make-to-order” and “make-
to-stock” the facility is not switched back to process customer orders
until the number of orders is more than a critical level. Once the facility
switches back to serving customer orders, the service is exhaustive. In
this system, the “make-to-order” operation is a queue service process
and the “make-to-stock” operation can be modeled as a server vacation.

Example 1.4 (data transfer in computer/telecommunication net-
works). In an SVC (switched virtual connection)-based IP-over-ATM
(asynchronous transfer mode) network, the SVC manager or IP con-
troller can be considered to be as a server of a queueing model. The
setup time corresponds to the time period needed to set up a new SVC
by means of signaling protocols, and the shutdown time corresponds to
an inactive time period during which the SVC resources (e.g., routing
information and bandwidth) are reserved in anticipation of more cus-
tomers (packets) from the same IP flow. The vacation time may be
considered to be the time period required to release the SVC or the time
during which the server sets up other SVCs.

Example 1.5 (maintenance activities as server vacations). Another
example is the “repairman” problem in which the repairman’s main duty
is to repair broken machines. When no broken or malfunctioning ma-
chine exists, the repairman can do some maintenance or inspection jobs.
In this situation, the broken machines are the customers forming a queue
and the maintenance and inspection jobs are considered to be server va-
cations.

Many real-world systems can be modeled as queues with different va-
cation policies. Since the mid-twentieth century, due to the fast develop-
ment of computer and communication networks and flexible manufactur-
ing systems, the issue of performance evaluation and optimal control for
these systems has become more and more important to users. Queue-
ing models with vacations have been developed as useful performance
analysis tools for these high-tech systems. Classical queueing models
without vacations are not adequate for systems where servers may not
be always available. Although, in the classical literature, queueing re-
searchers have addressed some complex systems with polling service and
priority service, most vacation queueing models have been studied and
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reported only since the 1970s. Incorporating server vacations into queue-
ing models reflects the fact that server(s) may become unavailable while
working on secondary jobs in many practical queueing systems.

1.2 Vacation Policies

A classical queueing model consists of three parts: the arrival process,
the service process, and queue discipline (see Gross and Harris (1985)).
A vacation queueing model has an additional part: a vacation process
governed by a vacation policy. A vacation policy can be characterized
by three aspects:

(1) Vacation startup rule. This rule determines when the server starts
a vacation. There are two major types, namely, exhaustive and nonex-
haustive services. With an exhaustive service, the server cannot take a
vacation until the system becomes empty. On the other hand, the server
in a nonexhaustive service system can take a vacation even when the
system is not empty. In a multiserver system, a semiexhaustive service
rule may be used if some of the servers take vacations. Another vacation
start-up rule is the service interruption during the progress of customer
service. The service interruption may represent a machine failure during
the operation.

(2) Vacation termination rule. This rule determines when the server
resumes serving the queue. Two popular rules are the multiple vacation
policy and the single vacation policy. A multiple vacation policy requires
the server to keep taking vacations until it finds at least one customer
waiting in the system at a vacation completion instant. In contrast, un-
der a single vacation policy, the server takes only one vacation at the end
of each busy period. After this single vacation, the server either serves
the waiting customers, if any, or stays idle. More general rules, such
as the threshold policy (also called N-policy) and the adaptive multiple
vacation policy, will also be discussed in this book. In nonexhaustive
service systems, more vacation termination rules are possible.

In multiserver systems, in addition to start-up and termination rules,
there are other characteristics of a vacation policy. For example, all
servers may take vacations together (synchronous vacations), or servers
may take vacations individually and independently (asynchronous vaca-
tions). Another possible feature of a vacation policy is to allow some
(but not all) servers to take vacations to ensure that at least a minimum
number of servers are always available.

(3) Vacation duration distribution. Server vacations are often as-
sumed to be independent and identically distributed (i.i.d.) random
variables with a general distribution function, denoted by V(z). How-
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ever, some vacation models require different types of vacations and follow
different distributions.

The many variations on the vacation policy will be discussed in this
book.

1.3 Stochastic Decomposition in Vacation Models

The fundamental result of vacation models is the stochastic decompo-
sition theorem. In most queueing systems with vacations, the stationary
queue length or the stationary waiting time can be decomposed into the
sum of two independent random variables. One of these is the queue
length or waiting time of the corresponding classical queueing system
without vacations, and the other is the additional queue length or delay
due to vacations. These variables show clearly the effects of vacations on
system performance. For a classical single-server queueing system that
has reached the steady state, denote the number of customers in the sys-
tem, the queue length, and the waiting time by L, @, W, respectively,
and denote the same performance measures by L,, Q,, W,, respectively,
for the corresponding steady-state vacation system. Let X (z) and X*(s)
be the z-transform, or probability generating function (p.g.f.), and the
Laplace-Stieltjes transform (LST), respectively, of the stationary ran-
dom variable X. With these notations, the stochastic decomposition
properties can be written as

L, =L+ Lg, L,(z) = L(2)La(2),

L(
Qv = Q + Qda Qv( ) Q( )Qd( )
Wo=W4+Wa,  Wi(s) =W"(s)Wq(s),

where Ly, QQ4, and Wy are the additional number of customers in the sys-
tem, the additional queue length, and the additional delay, respectively,
due to vacations. For M/G/1 type vacation systems, the stochastic
decomposition properties have been proved by many researchers using
different methods. Doshi (1985) presented the stochastic decomposition
theorem for GI/G/1 type queues with vacations. Two excellent survey
papers by Doshi (1986) and Teghem (1986) primarily focused on the sto-
chastic decomposition properties in single server vacation models. Tian
et al. (1989, 1990, 1993) studied GI/M/1 type queues with vacations
and established the stochastic decomposition theorems. These stochas-
tic decomposition theorems laid the foundation of analyzing single server
vacation systems.

To expand the applications of vacation models, multiserver queues
with vacations were also studied after numerous achievements in single
server vacation models. However, it seems extremely difficult to estab-
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lish the unconditional stochastic decomposition properties in multiserver
models. When all servers in a multiserver system are busy, the condi-
tional stochastic decomposition properties can be obtained. Consider a
classical multiserver queue with ¢ servers, and let J be the number of
busy servers in a steady state. Define

QY ={Ly —clJ =c}, W = {Wo|Ly 2 ¢, J =c}.

QS,C) is the number of customers waiting in line given that all servers
are busy, and Q(© is the same random variable for the corresponding
queueing system without vacations. W1§C) is the customer waiting time,
given that all server are busy, and W) is the same random variable for
the corresponding queueing system without vacations. The conditional

stochastic decomposition properties are as follows:

QY =Q9W+Qu  QY(2)=Q(:2)Qul2),
WD =W 4wy, WO(s) = W)W (s),

where (g and W are the additional queue length and additional delay
due to server vacations, respectively.

These stochastic decomposition properties indicate the effects of va-
cations on system performance and play an important role in vacation
model theory. In this book, we discuss various stochastic decomposition
theorems as the fundamental theory of vacation models.

1.4 Bibliographic Notes

Since the early work by Erlang (1918) on modeling telephone traf-
fic systems, queueing theory has been developed over almost 100 years.
Due to its wide practical applications in many areas, queueing theory
has been one of the most active research topics in operations research
and management science over the past several decades. Some excellent
books on classical queueing theory have been published, including these
by Takacs (1962), Kleinrock (1975), Cooper (1981), Cohen (1982), Gross
and Harris (1985), Saaty (1983), Wolff (1989), Prabhu (1997), and oth-
ers. Some of the early work on queueing systems is relevant to queues
with vacations. White and Christie (1958) studied queueing system with
priority services and server breakdowns. Welch (1964) examined the
system with exceptional service to the first customer starting a busy pe-
riod. Jaiswal (1968) and Avi-Itzhak and Naor (1963) considered queues
with server interruptions and different service-resumption priority rules.
Cooper (1970) presented a study on queues served in a cyclic order, in
which the time period of serving other queues can be considered a ser-
vice interruption of the queue under consideration. However, significant
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research results on vacation systems were published in the late twen-
tieth century. Levy and Yechiali (1975) studied the issue of efficiently
utilizing server idle time and introduced the concept of a server’s tak-
ing vacations that represent the durations of the server’s work on some
supplementary project. Stochastic decomposition properties were dis-
covered by Levy and Yechiali (1975). Afterwards, many research results
on vacation models were published, including these by Courtois (1980),
Fuhrmann (1984), Fuhrmann and Cooper (1985), Doshi (1985), Levy
and Kleinrock (1986), Teghem (1985), Doshi (1990), Dshalalow (1997),
etc. In these works, detailed analysis and stochastic decomposition theo-
rems for M/G/1 type systems have been presented. Two excellent survey
papers (Taghem (1986) and Doshi (1986)) summarized the major devel-
opments in this area. There are also a few books that contain chapters or
sections on vacation models. Medhi (1991) discussed the M/G/1 queue
with vacations. Takagi (1991,1993) published a set of books that provide
a complete analysis of M/G/1 type and Geo/G/1 type vacation systems.

Stochastic decomposition properties were first observed in some early
queueing studies, such as those by Gaver (1962), Miller (1964), Cooper
(1970), and Levy and Yechiali (1975). After Levy and Yechiali’s work,
the stochastic decomposition theorems became the focus of most research
papers including those of Shanthikumar (1980), Scholl and Kleinrock
(1983), Ali and Neuts (1984), Neuts and Ramalhoto (1984), and Feder-
grune and Green (1986). Doshi (1985) extended the stochastic decom-
position property for stationary waiting time into a GI/G/1 queue with
vacations. Shanthikumar (1988, 1989) provided a proof for the stochastic
decomposition theorem in an M/G/1 queue with a class of more general
vacation policies. Takine and Hasegawa (1992) presented a stochastic
decomposition property for the joint distribution of number of customers
and elapsed service time. Rosberg and Gail (1991) studied the relation-
ship between stochastic decomposition properties and PASTA. Keilson
and Servi (1990) discussed the relationship between Little’s law and sto-
chastic decomposition in vacation models. Miyazawa (1994) used the
work-conservation law to provide a unified treatment of various M/G/1
vacation models and established the stochastic decomposition theorems.

Tian et al. (1989) studied the GI/M/1 queue with exponentially dis-
tributed vacations and established the stochastic decomposition proper-
ties for stationary queue length and waiting time. Recently, Tian and
Zhang (2003b) extended these properties to a GI/M/1 queue with PH-
type setup times or vacations.

For multiserver vacation models, it has been proved by Tian et al.
(1999), Zhang and Tian (2003a), and Tian and Zhang (2003a, 2003b)
that there exists a set of conditional stochastic decomposition properties
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for stationary queue length and waiting time, given that all servers are
busy in a variety of M/M/c and GI/M/c type systems with different
vacation policies.



Chapter 2

M/G/1 TYPE VACATION MODELS:
EXHAUSTIVE SERVICE

This chapter focuses on single server vacation systems where the server
follows an exhaustive-service policy: in other words, the server does not
take any vacations until the system becomes empty. The systems con-
sidered are the M/G/1 type, where interarrival times are exponentially
distributed i.i.d. random variables and service times are generally dis-
tributed i.i.d.random variables. The rules for resuming queue service at
a vacation completion instant are numerous. However, they can be gen-
erally classified into two categories. The rules in the first category are
mainly based on the number of vacations taken before the first customer
arrives at the empty system. These rules usually require the server to
serve the queue at a vacation completion instant if waiting customers
exist. The rules in the second category are based on the number of wait-
ing customers at a vacation completion instant. If the server returns
to serve the queue only when the number of waiting customers reaches
a critical value, the rule is called a threshold policy. In section 2.1, we
consider the multiple adaptive vacation (MAV) policy, a general rule
of the first category. In section 2.2, we demonstrate that several com-
mon vacation models are special cases of the MAV policy model. The
threshold policy models are presented in section 2.3. Other variations
of the M/G/1 type exhaustive-service models are also discussed in this
chapter. Specifically, the discrete-time vacation models are presented in
section 2.4. Vacation models with Markov arrival process (MAP) are
considered in section 2.5. Vacation models with batch arrivals or batch
services are discussed in section 2.6. Finally, the finite-buffer vacation
models are given in section 2.7.
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2.1 M/G/1 Queue with Multiple Adaptive
Vacations

2.1.1  Classical M/G/1 Queue

We first present briefly some well-known results for a classical M/G/1
queue without vacations. The details of developing these results can
be found in any queueing theory books (for example, see Gross and
Harris (1985)). In such a system, customers arrive according to a Poisson
process with rate A and service times are i.i.d random variables with a
general distribution function, denoted by B(t). Let

1 o0 o0 o
- = / tdB(t), b? = / t2dB(t), B*(s) = / e ' dB(t).
H 0 0 0
Assume that the service order is first-come-first-served (FCFS) and that
interarrival times and service times are independent.

Denote by L, the number of customers in the system at the nth
customer departure instant, {L,, n > 1} is an embedded Markov chain
of the queueing process, satisfying

19 _ Ln_1+An+1a anla
mHe Apti, Ly =0,

where A, ;1 is the number of arrivals during the (n + 1) service time.
Obviously these numbers are i.i.d. random variables and can be denoted
by A, with respective probability distribution and mean

aj=PA=j)= /000 ();!)] e MdB(t), j >0, E(A) = e p-

p is called the traffic intensity of the system and is the ratio of arrival
rate to service rate. The probability generating function (p.g.f.) of A
is A(z) = B*(A(1 — 2)), and the transition probability matrix of the
embedded Markov chain is

ap aip a2 as
ap ai az ag

P= ap ay az - | (2.1.1)
a/O a]_ e

It can be proved that {L,,, n > 1} is positive recurrent and the system
reaches the steady state if and only if p < 1. Therefore, when p < 1, the
p.g.f.s of the stationary number of customers in the system, L, and the
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stationary number of customers waiting in line, (), and the LST of the
stationary waiting time, W, are as follows:

(1 —p)(1 = 2)B*(A(1 - 2))

o) =—pna-o-2
Qz) = Bil(;(lp)_(lz)_)z_)z, (21.2)
W*(S) — (1 B p)S

s—A1—B*(s))

The means of these stationary random variables are, respectively,

A2p(2)
E(L)=p+ m»
27(2)
E(Q) = 2?11)_ P (2.1.3)
A2 1
“ap) @

These formulas are called Pollaczek-Khinthin formulas. Note that (2.1.2)
gives the p.g.f. of the queue length distribution at a customer depar-
ture instant, called the departure distribution. It can be shown that the
departure distribution is the same as the distribution seen by an arriv-
ing customer, called the arrival distribution. Furthermore, due to the
well-known Poisson Arrivals See Time Averages (PASTA) property (see
Wolff (1982)), the arrival distribution is the same as the distribution of
the queue length at any time ¢. Therefore, the departure distribution
obtained in (2.1.2) is the same as the distribution at any time. This im-
portant property holds in all M/G/1 vacation models discussed in this
chapter.

A busy period, denoted by D, is defined as the period from the arrival
instant of the first customer at an empty system to the departure instant
of a customer that leaves an empty system. It is well known that the
LST of D satisfies the functional relation

D*(s) = B*(s + A(1 — D*(s))).

Based on this relation, the mean of the busy period is obtained as

E(D) = u(ll—p) _ Aiﬂ. (2.1.4)




12

2.1.2 Multiple Adaptive Vacation Model

In an M/G/1 queue, the server follows the following vacation policy.
When the server finishes serving all customers in the system, it starts to
take a vacation. The server will take vacations consecutively until either
a customer has arrived at a vacation completion instant or a maximum
number, denoted by H, of vacations have been taken. In the case of ar-
rivals occurred during a vacation, the server resumes serving the queue
immediately at that vacation completion instant. In the case of no ar-
rivals occuring after the server has completed H vacations, the server
stays idle and waits to serve the next arrival. H, called the stages of
vacations, is assumed to be a discrete random variable, with respective
distribution and p.g.f.

P{H=j}=hj, j>1; H(z)=>» h.
j=1

The consecutive vacations, denoted by Vi, k =1,2,..., H, are i.i.d. ran-
dom variables with the distribution function of V(x), the LST of v*(s),
and the finite first and second moments. The queueing system of this
policy is called a vacation model with exhaustive service, multiple adap-
tive vacations (MAV'), or simply an E-MAV model, denoted by M/G/1
(E, MAV). The E-MAV policy reflects the flexibility of allowing the
server to work on both the primary randoml-arrival jobs (the queue)
and a random number of secondary jobs (the vacations) during the idle
time. Assume that the interarrival times, the service times, the vacation
times, and the stages of vacations are mutually independent and the
service order is FCFS.
Define two events

A1 = {a busy period starts with the ending of an idle period},

A, = {a busy period starts with the ending of a vacation},

we have

P{Ar} ZiP{H=j}P{T> Vit +V5}

j=1
—y 00

=> b / e MdV ) ()
j=1 70

o0

= i (W = Hu*(V)],
j=1
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where VU)(t) is the jth convolution of V'(t). Obviously,
P{A,} =1— H[W*(\)].

Letting L,, be the number of customers left behind by the nth cus-
tomer, we have

I | Lp—1+4+A, forL,>1,
T Qy—1+A, for L, =0,

where @y is the number of customers in the system when a busy pe-
riod starts. Note that the case of @, = 1 is for M/G/1 queue without
vacations.

Lemma 2.1.1. The p.g.f. and the mean of (), are, respectively,

Qi) = HE () + LS = 2) = o)
B(Qw) = Hlo 0] + e s, (2.15)

Proof: The event {Qp = 1} occurs if either of two mutually exclusive
cases happens: (1) the busy period starts with a customer arriving at an
idle server; or (2) the busy period starts with the ending of a vacation
during which only one customer arrives. Hence, we have

1 — Hfp*(M)]
P =1} = H[v"(A _—

(@ =1} = H ]+ = 5o

(At)!
g
during a vacation time. For j > 2, {Qp = j} represents the case in
which the busy period starts with the ending of a vacation during which

J customers have arrived. Thus,
L 1= H[v (V)]
P = = "=
(@ =7} ===

Taking the p.g.f. of the distribution of @} yields Qp(z) and computing
Q4(1) gives B(Qp). T

Under the E-MAV policy, the transition probability matrix of the
embedded chain of {L,,n > 1} becomes

e~MdV (t) is the probability that j customers arrive

o
where v; = fO

vi, j =2

bo b1 b2 b3
ap a1 az2 ag
P= ap ap az - | (2.1.6)

ag ai
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where

bj =P{Qy— 1+ A=}

e(yy] 9L
= H[v*(\)]a; + 11__}1757’(;;‘)] > wiajii-i,  §=0. (2.1.7)
=1

Similar to the classical M/G/1 queue, from (2.1.6) it can be proved
that the embedded chain {L,,n > 1} is positive recurrent if and only
if p = Au~! < 1. When p < 1, let L, be the limiting (or stationary)
random variable of L,, as n — oo, with the stationary distribution

H:(ﬂ-Oaﬂ-la"' 77rna"'))

where m; = P{L, = j} = lim, oo P{L, = j}, for j > 0. We now give
the stochastic decomposition property for the stationary queue length.

Theorem 2.1.1. For p < 1, L, can be decomposed into the sum of
two independent random variables,

L,=L+ Ly,

where L is the queue length of a classical M/G/1 queue without vacations
with its p.g.f. given in (2.1.2). Ly is the additional queue length due to
the vacation effect, with the p.g.f.

La(z) = El — ulz)

@)1 -2 (2.18)

where Qp(2) is given in Lemma 2.1.1.
Proof: Based on the equilibrium equation of ITP = II and (2.1.6), we
have

k+1

T = Toby + Zﬂjak+1_j, k>0. (2.1.9)
j=1

From (2.1.7), we obtain the p.g.f of {by, k > 0}:

S 2k = %B*(A(l — )02,

k=0
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Multiplying both sides of (2.1.9) by z* and summing over k gives

oo
Ly(z) = Z 2y,
k=0

) k+1

=m0 B 1~ 2)Q(z) + DA D mi
k=0 j=1

]' * 1 *
= TF();B (A1 —2)Qu(2) + ;B (M1 = 2))[Ly(2) — m0].
Solving the equation above for L,(z), we get
moB*(A(1 — 2))[1 — Qu(2)]
B*(A1—2))—=z )
Using the normalization condition and the L’Hopital rule, we have
L—p
T = ,
" E@Q)
and substituting it into (2.1.10) gives
_(A=p)A-2)B"(A1=2)) 1-Qu)
Ly(z) =
BO(-2)-2  E@)01-2)
= L(z)Ly(2).
This completes the proof. [J

Note that Lg(z) in (2.1.8) is a p.g.f of a probability distribution. De-
fine a distribution as

Ly(2) = (2.1.10)

1 .
g = B n;ﬂ P{Qy=n}, j=0,1,..

Then the p.g.f. of {g;, 7 > 0} is

Qp(2) = ZQJZ]
=0
1 oo ; oo B
1 S n
1 —Qy(2)
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Based on Theorem 2.1.1, the following expected value formulas are
obtained:

2
BE(L,) =p+ X B(Q) (2.1.11)

2(1-p) " 2E@Q)
Using Qp(z) in (2.1.5), we have

1 — H[v*(V)]

o ) NE(WV?.

BE(Q}) =

For the stationary waiting time, there exists a similar stochastic de-
composition property.

Theorem 2.1.2. For p < 1, the stationary waiting time, denoted by
Wy, can be decomposed into the sum of the two independent random
variables,

Wy =W + Wy,

where W is the waiting time of a classical M/G/1 queue without vaca-
tions, with its LST given in (2.1.2). Wy is the additional delay due to
the vacation effect, with the LST

Hv*(A\)]  AE(V)1—H[p*(N)]1—v*(s)
E(Q)  B@Q) 1-v(\) E(V)s’
where E(Qp) is given in Lemma 2.1.1.
Proof: Based on the independent increment property of Poisson ar-
rivals and the fact that the number of customers left behind by a depart-

ing customer is the same as the number of arrivals during this customer’s
time (waiting and service) in the system, we have

Z / / “y AW, (2)dB(y)

/ / Nt (1=2)dW, (z)d B(y)

A1 = 2))B*(A\(1 - 2)).

Wi(s) =

(2.1.12)

Substituting L,(z) into the formula above gives

1-p)(A =2 1-@2)
B*(A(1 = 2)) =2 B(@Qp)(1 = 2)’

WAL — 2)) = (2.1.13)
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Letting A(1 — z) = s, we have

o (1—p)s Al = Qp(1 = %)
Wi(s) = s—A(1 = B*(s)) E(Qu)s
= W*(s)Wi(s).

Using (2.1.2), we find that the additional delay Wy has an LST of
AL — @1 —3)]
E(@Qy)s

Substituting Qy(z) from (2.1.5) into (2.1.14) and simplifying yields (2.1.12).
U

Wi(s) = (2.1.14)

Formula (2.1.12) indicates that the additional delay Wy is zero with
probability of p = H[v*(\)][E(Qy)]~! and is equal to the residual vaca-
tion time with probability of 1 — p. It is easy to verify that the number
of arrivals during Wy is the additional queue length due to the vacation
effect, Ly. The means of the additional delay and the waiting time can
be obtained as

* 2
B = 0 I QA
2(1— v (V) E(Qy)
2 * 2
E(W,) = N {1 H (WIAE(V?) (2.1.15)
2(1-p) 2(1 = v*(N)E(Qs)

Let us now provide the busy-period analysis of the M/G/1 (E,MAV)
model. Denote by D, the busy period of the vacation system and by
D the busy period of the classical M/G/1 system. Note that the only
difference between D, and D is the number of customers present in the
system when the busy period starts. Due to the memoryless property
of the exponential interarrival times, the busy period starting with k
customers in the system is equal to the sum of k independent M/G/1
queue busy periods D. It follows immediately that

Dj(s) = Qu[D*(s)],
where D*(s) is the LST of D. Thus

b
u(1 = p)

Let J be the number of consecutive vacations taken by the server.
Based on the MAV policy, we have

E(Dv) = E(Qb)

J=min{H, k:VFED <17 <yFEY
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It is easy to verify that
P{J >1} =1,

P{J>j}=P{H>j}P{VvU=D >T} = N 1th, j>2.

Therefore, we have

N A f))
B ZOO Z 1-— H[v*()\)z]
- j=1 Zj J 1 K O —v*(N)z

From this relation, we obtain

Ie) = 1= o {1 = W ()21
B() =T

Denote the total length of J consecutive vacations by Vg. Then

1 — H[v*(N)]

E(V). (2.1.16)

The idle period, denoted by I,, occurs only when event A; happens.
Hence,

(2.1.17)

Define the busy cycle B, as the time period between two consecutive
busy-period ending instants. Then we have

E(B;) = E(D,)+ E(Vg) + E(I,)

gy O
1

= 51— F@) (2.1.18)

*

1
y
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Let pp,py, and p; be the probabilities of the server’s being busy, on
vacation, and idle, respectively. We then have

_E(Dy) _
by = E(BC) =0
n= B~ TG PRV, @
Pi= 5((12)) - E(;b)(l T

2.2  Some Classical M/G/1 Vacation Models

In this section, we show that several classical vacation models are the
special cases of the E-MAV model presented in the previous section.

2.2.1 Multiple Vacation Model

Consider an M/G/1 queue where the server follows an exhaustive-
service and multiple vacation (E, MV) policy. This policy requires the
server to keep serving customers until the system is empty and then to
take vacations for as long as the system is empty. The server returns to
serve the queue when there are some customers waiting in the system at
a vacation completion instant. This type of system, denoted by M/G/1
(E, MV), has been extensively studied. The multiple vacation policy
allows the server to maximize the use of idle time for supplementary
work. However, the server does not have any idle time in such a system
(where idle time means either serving the queue or being on vacation),
if taking a vacation represents doing productive work. Obviously, this
situation is the H = oo case for the E-MAV model.

If H = o0, H(z) = 0. From (2.1.5), the busy period starts with Q,
customers in the system. The p.g.f. and the mean of @), are, respectively,

vt(A(L = 2)) = v* (M)

@lz) = 1o (n)
E(Qy) = % (2.2.1)

As a special case, it follows directly from Theorem 2.1.1 that the sto-
chastic decomposition properties exist in the M/G/1 (E,MV).

Theorem 2.2.1. For p < 1, in an M/G/1 (E, MV) system, the queue
length L, can be decomposed into the sum of two independent random
variables,

Lv:L+Lda
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where L is the queue length of a classical M/G/1 queue without vaca-
tions, with its p.g.f. given in (2.1.2). L4 is the additional queue length
due to the vacation effect, with the p.g.f.

R ON O )
L) = Sgana =2

(2.2.2)

Proof: Substituting Qp(z) and E(Qp) of (2.2.1) into (2.1.8) gives
(2.2.2). O

The means of L, and L, are, respectively,

2
B(Lo) = 5
E(Ly) =p+ X AB() (2.2.3)

21—p) " 2E(WV)

Theorem 2.2.2. For p < 1, in an M/G/1 (E, MV) system, the
stationary waiting time W, can be decomposed into the sum of two
independent random variables,

Wy, =W 4+ Wy,

where W is the waiting time of a classical M/G/1 queue without vaca-
tions, with its LST given in (2.1.2). Wy is the additional delay due to
the vacation effect, with the LST
1 —v*(s)
Wi(s) = ———>. 2.24
Proof: In (2.1.12), letting H(z) = 0 and substituting F(Q}) into
(2.2.1) gives (2.2.4). O

The means of W, and W, are, respectively,

2
E(Wq) = f}é‘(fvg,
B, = 0P () (2.2.5)

21— p) | 2B(V)’

Remark 2.2.1. It can be proved that there exist several closure
properties of phase-type (PH) distributions for the vacation effect: (1)
Note that the additional delay W, is just the residual life of a vacation V.
If the vacation is a PH distributed random variable with a representation
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of (a, T), where T is an m x m matrix and am,+1 = 0, then Wy follows a
PH distribution with a representation of (7, T), where 7 is the stationary
probability vector of the infinitesimal generator T* = T + T%. (2) The
additional queue length L is the number of arrivals during Wy. For the
PH vacations, L, follows a discrete PH distribution with an irreducible
representation (v, U), where

y=At(AI-T)"!, U= XAMI-T)7,
Ymi1 = 7ML =T)7 10 U0 = I -T) 11"

For details about PH distribution, see Chapter 2 of Neuts (1981).

Substituting Qp(z) and E(Qp) of (2.2.1) into the results of the busy-
period analysis in the E-MAV model, we obtain the corresponding for-
mulas for the M/G/1 (E, MV) system:

_ pE(V)
B = 00— vy
BW)
BB = a0 - vy
_ . Ee)
P = EWe) + E(Dy) P
E(D.)

P = EVe) + EDy)

2.2.2 Single Vacation Model

Another important vacation model is the M/G/1 queue with exhaus-
tive service and single vacation (E, SV). In this system, the server takes
exactly one vacation immediately at the end of each busy period. If
it finds no customer in the system upon returning from the vacation,
it becomes idle until the next arrival. A customer arriving at an idle
server does not wait, while a customer arriving during a server’s vaca-
tion must wait until the end of the vacation. Note that the server now
can be in one of three possible states, namely, serving the queue, taking
a vacation, and staying idle. In practice, the single vacation after each
busy period can be considered as a maintenance activity if the server
represents a machine. Obviously, this situation is the H = 1 case for the
M/G/1 (E, MAV) model.
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If H=1, then H(z) = z. From (2.1.5), we have

Qu(2) = v*(A(1 = 2)) =" (A)(1 — 2),
E(Qy) = v*(\) + AE(V). (2.2.6)

With (2.2.6), Theorem 2.1.1 becomes the following:
Theorem 2.2.3. For p < 1, in an M/G/1 (E, SV) system, the queue
length L, can be decomposed into the sum of two independent random

variables,
Lv =L+ Lda

where L is the queue length of a classical M/G/1 queue without vacations
with its p.g.f. given in (2.1.2). L, is the additional queue length due to
the vacation effect, with the p.g.f.

(=2t (A) =oAL — z))

Laz) = =y B - 2 (22.7)
Note that (2.2.7) can be rewritten as
v*(A) AE(V) 1—v*(\(1-2))

L = .
12 = ST A T e 1B MBI =)

This expression indicates that Ly is zero with probability of p = v*(\) x

[v*(A)+AE(V)]~! and is the number of arrivals to the system during the

residual life of the vacation with probability of 1 — p. Now, the means

of Ly and L, are, respectively,

 XE(V?)
B(La) = 2[v*(\) + AE(V)]
E(L,) =p+ A NEW?) (2.2.8)

+ .
2(1=p)  2[*(A) + AE(V)]
Similarly, from Theorem 2.1.2 for the M/G/1 (E, MAV), we get the

following theorem.

Theorem 2.2.4. For p < 1, in an M/G/1 (E, SV) system, the
stationary waiting time W, can be decomposed into the sum of two
independent random variables,

Wy =W+ Wy,

where W is the waiting time of a classical M/G/1 queue without vaca-

tions, with its LST given in (2.1.2). Wy is the additional delay due to

the vacation effect, with the LST

sv*(A) + A(1 —v*(s))
[v*(A\) + AE(V)]s

Wi(s) = (2.2.9)
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Now, (2.2.9) can be rewritten as

v*(s) AE(V) 1 —v*(s)
V*(A) +AE(V)  v*(A)+AE(V) E(V)s

Wi(s) = (2.2.10)

From (2.2.10), we see that Wy is zero with probability p = v*(A\)[v*(\) +
AE(V)]7! and is the residual life of a vacation with probability 1 — p.
The means of W; and W, are given by

AE(V?)
EWa) = sy s AB
E(W,) = A AE(V) (2.2.11)

2(1=p)  2Qv*(A\) + AE(V)]

Remark 2.2.2. Equation (2.2.10) shows that W, is a mixture of zero
and the residual life of a vacation. If the vacation is a PH-distributed
random variable with a representation of (c, T), where T is an m x m
matrix and ay,11 = 0, then Wy also follows a PH distribution with a
representation of (v, T), where

i _ v
AT T R AR

7 is the stationary probability vector of the infinitesimal generator T* =
T + T%x. Note that the additional queue length Ly is the number
of arrivals during Wy. For the PH distributed vacations, Ly follows a
discrete PH distribution with an irreducible representation (7, U), where

AE(V) B 1
TV N+ AE(Y) LT )+ AB (V)
U=)\A-T)"! U’=0p1-1)'1°%

Ar(AL—T)~L,

Using the results of the busy period analysis for the M/G/1 (E, MAV),
we have
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1
E(D,) = M(l—ﬂ)[ (A) +AE(V)]
E(VG) =F V)v
B(,) = "W,

Py = p,

_ AM1I=pE(V)
Pv=" () + AE(V)
b =)

v*(A\) + AE(V)’

2.2.3 Setup Time Model

Consider an M/G/1 system where the first customer in each busy
period requires a random setup time U. For example, in a production
system, to reduce the operating cost the machine is shut down, and when
the next job arrives, the facility is turned on again and must experience
a warmup or setup period before processing the job. The setup time
may also represent the switchover time from working on supplementary
jobs to serving the arriving customer that initiates the busy period. We
denote this system by M/G/1 (E, SU).

We first illustrate the relationship between M/G/1 (E, MV) and
M/G/1 (E, SU), as was established by Levy and Kleinrock (1986). In a
multiple vacation model, the waiting time of the first customer, denoted
by R, in each busy period is the time interval from its arrival instant to
the current vacation completion instant. Note that R is equivalent to
the setup time triggered by the first arrival in a setup time model. The
following preliminary result is useful.

Lemma 2.2.1. In an M/G/1 (E, MV) with FCFS service sequence,
the LST and the mean of R are, respectively,

Al*(s) — v*(A)]

B =0 - sy
COEV) 1

Proof: Due to the memoryless property of exponential interarrival
times, if a customer arrival occurs during the server’s vacation, the in-
terarrival time 7" can be counted from the instant of starting the vacation
and T" < V. Therefore, the distribution function of R can be written as

R(t)=P{R<t}=P{V-T <tV >T}.
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Taking the LST of the distribution of R, we get
R*(s) = BNV > 1]
_ o V@) f§ e (@Y e~ M dy
JoT (1 —eA?)dV ()

Note that the denominator of (2.2.14) is 1 — v*(\) and the numerator is

/ dV(x)/ e TV dy = A [/ ()‘_s)ydy] dV (z)
0 0 0 0

A
e ORI
Substituting these results into (2.2.14) gives (2.2.13). From (2.2.13) we
have E(R).0)

Letting U and u*(s) be the setup time and its LST in the M/G/1
(E, SU) and using the relation between M/G/1 (E, MV) and M/G/1
(E, SU), we have the stochastic decomposition property for the queue
length.

Theorem 2.2.5. For p < 1, in an M/G/1 (E, SU) system, the
stationary queue length L, can be decomposed into the sum of two
independent random variables,

(2.2.14)

Ly,=L+ Ly,

where L is the queue length of a classical M/G/1 queue without vacations
with its p.g.f. given in (2.1.2). L, is the additional queue length due to
the setup time effect, with the p.g.f.

1—zu*(A(1—2))
1+ XEWU)](1-2)
Proof: Consider a fictitious M/G/1 (E, MV) in which U is the waiting
time of the first customer of a busy period, and let V' be the vacation
time of this system. From Lemma 2.2.1, U and V satisfy the relation
Al (s) — v*(A)]
[1—v* (WA =s)’
AE(V) =14+ AEU)](1 —0v*(X\)

La(z) = (2.2.15)

u*(s) =
). (2.2.16)
In the first equation of (2.2.16), replacing s with A(1 — 2), we have
v'(A(1 = 2)) = 2(1 = v*(N)u" (M1 = 2)) + 0" (A).

Now, substituting AE(V) and v*(A(1—2)) into Ly of (2.2.2) gives (2.2.15).
O
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Note that (2.2.15) can be rewritten as

1 AE(U)  1—u*(\(1—2))
T1+AEU) 1+ EU) AE(U)(1—2z)

Ld(z)

This expression indicates that Lg is zero with probability of
p=[1+AE(V)]! and is the number of arrivals occurring during the
residual setup time plus one customer that triggers the setup time with
probability of 1 — p. The means of L; and L, in the M/G/1 (E, SU)
are, respectively,

2AE(U) + NE(U?)
21+ AE(U))
A2b(2) N 2AE(U) + N E(U?)
2(1 - p) 2(1+ \E(D))

E(Lg) =

E(Ly) =p+ (2.2.17)

Theorem 2.2.6. For p < 1, in an M/G/1 (E, SU) system, the
stationary waiting time W, can be decomposed into the sum of two
independent random variables,

Wy =W+ Wy,

where W is the waiting time of a classical M/G/1 queue without vaca-
tions, with its LST given in (2.1.2). Wj is the additional delay due to
the vacation effect, with the LST

A— (A= s)u*(s)
1+ AEU)]s

Wi(s) = (2.2.18)

Proof: Consider the same M/G/1 (E, MV) system used in the proof
of Theorem 2.2.5. From (2.2.16), we get

1

vi(s) = JuT(s)[1 = T (WA = ) + v (A),
B(V) = %[1 — ][+ AE(U)].

Substituting these results into Wj(s) of (2.2.4) yields (2.2.18). [
Now, (2.2.18) can be rewritten as
1 . AEU) 1—u*(s)
= ———u”(s) .
1+ \E(D) 1+ E(U) E(U)s

Wi(s)

From this expression, we see that W, is a complete setup time U with
probability p = [L + AE(U)]~! and is the residual life of a setup time (or
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residual setup time) with probability 1 —p. This is because the expected
number of customers in the system at the beginning of the busy period is
E(Qp) = 1+AE(U). For these customers, the first customer that triggers
the setup time must wait U; other customers behind the first customer,
including those arriving during the busy period, have to wait, on average,
the additional time of residual setup time as compared with a classical
M/G/1 system. The means of W; and W, are obtained, respectively, as

2E(U) + AE(U?)
AL+ AE(U)]
A2 2E(U) + AE(U?)

E(W,) = Gt RO (2.2.19)

E(Wy) =

2.3 M/G/1 Queue with Threshold Policy

In this section, we discuss the M/G/1 systems with threshold policy.
In this type of system, the server becomes unavailable at the end of a
busy period and resumes serving the queue instantly either when the
queue length reaches a critical number N or at a vacation termination
instant when the queue length equals or exceeds N. This type of policy
is called a threshold or N-policy. Compared with the MAV model, the
server’s returning to queue service under the N-policy may be further
delayed. We first treat the N-policy model without vacations.

2.3.1 N-Threshold Policy Model

In an M/G/1 queue with N-policy without vacations, at the end of
a busy period, the server is shut down until the Nth customer arrival
instant, and then the server starts another busy period with N > 1
customers. Note that we can still consider the sum of N interarrival
times as a special server vacation. This model is motivated by some
practical systems where a significant setup cost occurs for each busy
period and thus there is an economic benefit in reducing the frequency
of setups. In fact, finding the cost-minimization N-policy is a typical
optimal control problem in queueing theory.

Now, the busy period starts with exactly N customers in the system.
Thus, the p.g.f and the expected value of @)y are given, respectively, by

Qp(z) = 2V, E(Qp) = N.
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The embedded Markov chain at customer departure instants {L,,n > 1}
has the probability transition matrix

0 0 cee ap aq
a ap -+ aN-1 aN
P= a - aN-2 ON-1 " | (2.3.1)

With the classical method, it can be proved that {L,,n > 1} is positive
recurrent if and only if p = A=t < 1.

Theorem 2.3.1. For p < 1, in an M/G/1 system with N-policy,
the stationary queue length L, can be decomposed into the sum of two
independent random variables,

L,=L+ Ly,

where L is the queue length of a classical M/G/1 queue without vacations
with its p.g.f. given in (2.1.2). L, is the additional queue length due to
the effect of N-policy, with the p.g.f.

L) = =2 (2.3.2)
N(1—2)
Proof: Using the equilibrium equation IIP = II and (2.3.1), we have
k+1
Wk:ZWjak—&-l—j’ 0<k<N-2,
k+1
Ty = ToAk—N+1 + Zﬂ—jak"'l_j’ k>N —1.
j=1

The p.g.f. of {7, k > 0} is obtained as follows.

N—2  k+1 k+1
= § § TjQk+1—5 + E TOOk+1—-N + E TjQ+1—j
k=0 k=N-1 j=1
o k—i—l
E E Ti0k+1—5 + 0 E P Ak—N+1
k=N-1
o0
_ 1 Sh—it1 k—N+1
= E j 20~ E T j+1+7roz E z ak—N+1
k=j—1 k=N—1
1

== [Lo(2) — o) B¥(M(1 = 2)) + mo2V 1 B*(A\(1 — 2)).



M/G/1 type Vacation Models: Exhaustive Service 29

Solving this equation for L,(z), we get

mo(1 — 2N)B*(\(1 — 2))
B*(A(1—2)) -z

Ly(z) = (2.3.3)

Using the normalization condition L,(1) = 1, we find my = (1 — p)N 1.
Substituting 7 into (2.3.3) gives
1—p)(1—2)B* — — 2N
Ly(2) = (1-p)(A=-2)B"A1=-2)) 1—-=
B*(AN(1—2)) —=z N(1-=2)
= L(z)L4(2).

O
From this stochastic decomposition property, the expected values of
Ly and L, are given, respectively, by

N -1
B(Lg) = —5—
A2 N -1
E(L,) = 2.34

The LST and the expected value of the busy period D, can be obtained
easily as follows:

Dy(s) = (D@ B(D) = .

The idle period follows an Erlang distribution, with the respective LST
and expected value given by

v (s) = <)\j\—s>N; BE(V) = %

The busy cycle B, has the expected value

N
A1 =p)

Using E(B,), it is easy to show that the proportion of busy or idle time
isp, = porp, =1—p. Note that the waiting time for a customer
arriving during a server’s idle period depends on the interarrival times
of customers arriving later. Let A, and Ajp represent the arrival of a
customer during an idle period and during a busy period, respectively.
Due to the property of complete randomness of the exponential distrib-
ution, for any particular one of these N arrivals during the idle period,

E(Bc) - E(V) + E(Dv) -
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the probability that the customer is the kth arrival is N~!. The waiting
time of the first of these IV arrivals is the sum of N —1 interarrival times.
The waiting time of the second arrival is the sum of N — 2 interarrival
times plus one service time, and so on. Conditioning on event A,, we
have the LST of the waiting time:

N-1 N—1—j .
o=y 3 (xh;) ey

- 1( A >N1 AW — A+ )N (B ()Y (2.35)

TN \\M+s A — (A +5)B*(s)

Let us now prove a conditional stochastic decomposition property for
the waiting time. In fact for the multiserver vacation models to be
discussed in chapters 5 and 6, we can establish only the conditional
decomposition properties at the time of writing this book. We use the
method of the delayed busy period developed by Conway (1960), Nair
and Neuts (1969), and Kleinrock (1975) to give the following result.

Theorem 2.3.2 For p < 1, the conditional waiting time for customers
arriving in a busy period, (W,|Ap), can be decomposed into the sum of
two independent random variables,

(Wy|Ap) = W + (Wa|Ap),

where W is the waiting time of a classical M/G/1 queue without vaca-
tions, with its LST given in (2.1.2). (Wy|A,) is the conditional additional
delay due to the effect of N-policy, with the LST

1—[B*(s)|N

Wi(s|4y) = 14 [NS( g (2.3.6)

Proof: Let X be the sum of the first N customer service times, called
the initial delay or initial phase of a busy period. According to the FCFS
sequence, let X1 be the sum of the service times of all customers arriving
during Xy, called the first phase of the busy period. In general, the sum
of the service times of the customers arriving during the (m — 1) phase
Xm—1 is called the mth phase and is denoted by X,,. Thus we have the

busy period
o0
Dy=Y Xp.
m=0

Let D,,(t) and d;,(s) be the distribution function and the LST of X,,,
respectively. Then d%(s) = [B*(s)]". If there are j arrivals during X,,_1,
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X, is the sum of j service times. Therefore, we get
00 00 i
* * (AL
G =Y [ ep S e van, )
j=0"" '

_ / e A-BOap. (1)
0

=d_,(M1—B*(s), m>L (2.3.7)

If a customer arrives at an instant of y time units before the end of
the mth phase of length X,,, then the waiting time of this customer is
y plus the sum of the service times of all customers arriving in the time
interval X, —y. Thus the LST of the conditional waiting time is

E{e *Wm|X,, = t, arriving at an instant of y time units before the end

of X, }

= i v (5 () AE= 9 a-w)
n=0

n!

=exp{—[sy + At —y)(1 - B*(s))]}
Due to Poisson arrivals, given that the customer arrives in [0,%], the

arrival instant is uniformly distributed over [0,t] with density of t~!dy.
Conditioning on y, we have

t
Ble W X =t} = [ exp (~lsy + Mt~ )1 - B()]} jdy
0

1 _\a_p ! .
= e [exp(—fs - A1~ B(s)ly)dy
0
—X1-B*(s))t _ _—st
= c . (2.3.8)
tls — A1 — B*(s))]
Given that a customer has arrived during X,,, the conditional probabil-
ity that the arrival occurs in (¢, ¢ + dt) is

t

——dDpy (1)
(X, "
Unconditioning (2.3.8), we have
0 t
()= | E{e*"m|X,, =t} ——~dDp,
Wils) = [ Bl X, = t) D)

— 1 OO e—)\(l—B*(s))t _ st

T T ) | JdDm (1)

_ oy (s) — dr(s)
B(X)ls = A1 — B ()]

(2.3.9)
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Given that a customer arrives in the busy period D,, the probability that
this arrival occurs in the mth phase is E(X,,)[F(D,)]"!. Moreover, for
p < 1, with probability of 1, D, ends in a finite time interval. That is,

lim X, =0, as.; lim d;,(s) =1.
m—00 m—00

Now from (2.3.9), we have

E(Dv) Wm(s)

Wy (slAp) =
m=0

o [dha(s) — ()]
E(Dy)[s = M1 = B*(s))]
1 —ds(s)
E(Dy)[s — A(1 = B*(s))]’
Substituting F(D,) = N[u(l — p)]~! and dj(s) = [B*(s)]" into the
equation above, we get

\  (=ps  p{1-[B*(s)V}
Wv (5|Ab) - 5 _ )\(1 — B*(S)) Ns .

O
(2.3.6) indicates that the additional delay for the customers arriving
during a busy period is the residual life of the sum of N service times,
and its expected value is given by
A2 N -1
E(Wy|Ap) = .
Furthermore, from (2.3.4), (2.3.5), and (2.3.6), we get the LST of the
unconditional waiting time distribution as
Wi(s) = (1= p)W*(s|Av) + pW*(s|Ap).

v

2.3.2 Other Threshold Policy Models

Due to different practical applications, several related threshold-type
policies have been studied in the past. Heyman (1977) presented a T-
policy M/G/1 model. In such a model, the server is turned off for a fixed
time interval T" at the end of each busy period and then either resumes
the queue service or stays idle depending on whether or not there are
waiting customers at the end of 7. Obviously, the T-policy model is
equivalent to the M/G/1 (E,SV) with a constant vacation. In section
2.2.2, letting



M/G/1 type Vacation Models: Exhaustive Service 33

we obtain the results of the T-policy model.

Another variant of the threshold policy model is the D-policy M/G/1
model, which was studied by Balachandran and Tijms (1975). With
the D-policy, after a busy period, the server will not start another busy
period until the cumulative work (or the total service times of waiting
customers) exceeds a critical number D. The detailed analysis of the
D-policy model is more complex and can be found in Balachandran and
Tijms (1975).

As an extension of the N-policy, Yadin and Naor (1963) investigated
the M/G/1 queue with N-policy and setup and closedown times. In this
system, the server needs a random closedown delay time C, with the LST
c*(s). If a customer arrives during C, the customer is served immediately
or a new busy period starts at the arrival instant; if no customer arrives
during C, the server is shut down and will not be turned on until the
number of waiting customers reaches N. When the server is turned on,
it must experience a random setup time V', with the LST v*(s). Again,
letting )y be the number of customers in the system at the beginning
of a busy period, we have

Qu(2) = [1 = (V)] + NN (A1 - 2),
E(@Qp) =1+ c" (N[N -1+ AE(V)].
Similarly, we can prove the stochastic decomposition property on the

queue length. That is, L, = L + L4, where the p.g.f. and the expected
value of Ly are given, respectively, by

La(z) = 1—(1—c*(\)z =NV (A1 = 2))
d {1+ cNN—1+XE(V)Y1—-2)
FN[N(N = 1)+ ANE(V) + N2 E(V?)]
2{1 + (AN — 1+ AE(V)]} '

E(Lqg) =

Because the waiting time of a customer is not independent of the inter-
arrival times after its arrival, the analysis of the waiting time is fairly
complex. Using a similar approach to that of the M/G/1 with N-policy
model, we can establish the conditional decomposition property on the
waiting time. The LST of the waiting time is

(1= c"A)A = p)s + V(1 = p)[1 — v*(s)(B*(5))"]
{1+ (N[N =1+ AE(V)[}Hs — M1 — B*(s))]

M=) ()" - B

{1+ WIN = 1T+ AEW)]} [ 25 - B*(s)]

Wi(s) =

v
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The combination of N-policy and multiple vacations is also a well-
known vacation policy. Under this policy, at the end of a busy period,
the server takes i.i.d. random vacations consecutively until the number
of customers in the system at a vacation completion instant is at least IV,
and then it resumes serving the queue. Consider a set of Markov points
comprising the vacation completion and busy period ending instants.
Let gj, be the joint probability that a randomly selected Markov point is
the vacation completion instant and that the number of customers in the
system at that instant is k. Let hg be the probability that a randomly
selected Markov point is the busy-period ending instant. We then have

min(k,N—1)

qk = hovk + Z qjvk—j, k=0,
=0

oo
1= hO +qu7
k=1

where

0 (Nt k
Vg :/ %e‘”dV(t).
y K

Defining the p.g.f. as
o0
=2 wt
k=0

and using the transition relation, we have

00 N-1
= thvkz + Z Z:waLJ + Z 2" qjv
k=0 ;=0 k=N  j=0
N-1 (o)
= hov*(A(1 — 2) +qu:2 Tvp—;
J=0 k=j

= ho+ZquJ (A1 = 2)).

Furthermore, let

1
-— Z
h qk
k=0

Thus ¢(z) can be rewritten as

q(2) = ho[l + g (2)]v*(A(1 = 2)).

(2.3.10)
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The coefficients of qn(2), qo,q1," - ,qn—1, can be determined by solving
a set of equations

k

G = hovk + Y _ 40k, k=0,1,---,N —1.
=0

Note that the busy period does not start at a vacation completion instant
when the number of customers in the system is less than N. Therefore,
the p.g.f. of @ is given by

XN a(1) = hogn (1)
From (2.3.10), we have (1) = ho(1 + qy(1)), and hence
q(1) — hogn (1) = ho.
Now substituting q(z) of (2.3.10) into (2.3.11) gives
Qv(z) = v (A1 = 2)) —an(2) [1 = v"(A(1 = 2))].

Based on the method used before and Q(z), we can obtain the stationary
distribution of the queue length and the corresponding decomposition
property. However, like the N-policy M/G/1 system, the residual life
of the vacation may depend on the arrival process after a customer’s
arrival; the waiting time of this customer cannot be determined by using
the classical relation between L, and W,. Therefore, we should use the
same approach as in the N-policy M/G/1 model to obtain the stationary
waiting time.

Qu(2) = Sicn w7 _ 4(z) ~ hogn(2) (2.3.11)

2.4  Discrete-Time Geo/G/1 Queue with
Vacations

In this section, we discuss some discrete-time vacation models. In a
discrete-time queueing system, the time axis is divided into fixed-length
intervals called slots, and customer arrivals and service completions occur
only at discrete time instants, which can be either the starts or the ends
of the slots. In computer and telecommunication systems, the basic time
unit is a fixed interval called a packet or ATM cell of transmission time.
Therefore, the discrete-time models in this section are more appropriate
for studying computer and telecommunication systems. The early work
in this area was presented by Meisling (1958), and the discrete-time
queueing models, including vacation models, have been developed as
continuous counterparts (see Hunter (1983) and Takagi (1993a)).
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2.4.1 Classical Geo/G/1 Queue

We first describe the classical discrete-time Geo/G/1 queueing system.
In this system, we assume that customer arrivals can only occur at dis-
crete time instants t =n~",n =10,1,2,---. The service starting and end-
ing times can only occur at discrete time instants t = n",n = 1,2,---.
The model is called a late arrival system. The interarrival times are i.i.d.
discrete random variables, denoted by 7', with a geometric distribution
of parameter p. That is,

P{T =j}=pp' ", j=1,2,---,

where p = 1—p. Thus the number of arrivals in interval [0, n], C,,, follows
a Binomial distribution

The service times are also i.i.d. discrete random variables, denoted by
S, with a general distribution. We have

P{S=j}=g;, j>1 Gx)=) #g;
j=

We assume that the interarrival times and the service times are inde-
pendent and that the service order is FCFS.

Let A be the number of customers arriving during a service time. We
have

kj = P(A=j) = f:p{s ! <I;)pjpk—j

k=j
e E\ . .
:ng()p]p’“‘], j=0.
= N
The p.g.f. and the expected value of A are given, respectively, by

A(z) = Z =34 ; o <I;>pjpk—j

0
=Gl —p(1l—2)]. (2.4.1)
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Let L, be the number of customers in the system at the nth cus-
tomer departure instant. Thus {L,,n > 1} is a Markov chain, with the
transition probability matrix

[ ko ki ke ks

ko ki ko ks

P— ko ki ko
ko k1

It can be proved that {L,,n > 1} is positive recurrent if and only if
p < 1. For p < 1, let L be the stationary queue length or the limiting
random variable of {L,,n > 1}, and let W be the stationary waiting
time. Now L and W are nonnegative integer random variables. Like the
Pollaczek-Khinthin formulas for the continuous-time M/G/1 system, we
have

(1 - p)(1 = 2)G[ —p(1 - 2)]

L(z) = G[l1-p(1—2)] -z ’
. (1=p-==-)
S e )
2
BE(L)=p+ ﬁE[S(S ~ 1), (2.4.2)
E(W) = ﬁE[S(S —1)).

The busy period of the Geo/G/1 queue is also a positive integer random
variable, with the p.g.f. D(z) satisfying the functional equation

D(z) = GzD(1 - p(1 - 2))],

and the expected value
E(S)
E(D) = . 2.4.3

2.4.2 Geo/G/1 Queue with MAVs

Like the continuous-time M/G/1 (E, MAV) model, we introduce the
multiple adaptive vacation policy into the Geo/G/1 system. For the
Geo/G/1 (E, MAV) model, the server attempts to consecutively take a
maximum number of H vacations. H is a random variable, with the
respective distribution and p.g.f.

(e.)
P{H=j}=h;, j>1; H(z) =Y 2h;
j=1
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The vacations are i.i.d. discrete random variables, with the respective
distribution and p.g.f.

o0

P{V=j}=v;, j>1; v(z)= szvj.

j=1
If no customer arrives during H consecutive vacations, the server be-
comes idle and is ready to serve the next arrival. If the first customer
arrives during the kth vacation, where 1 < k < H, then the server starts
serving the customer (or starts a busy period) at the kth vacation com-
pletion instant. Let J be the actual number of vacations consecutively
taken by the server between the two busy periods. Obviously, J depends
on H and the arrival process. Let T be the interarrival time and V¥
the kth convolution of vacation time V. Then we have

J=min{H k: V& D 7 <v®y

Define the events A; and A, as in section 2.1.2. We get

P{A;} = iP{H =i} iP{V(i) = k)p*
=1 k=1

=Y hifo(p)]' = H[v()),
=1
P(A,) =1 - Hlv(p)].
Let L,, be the number of customers in the system at the nth departure
instant. {L,,n > 1} is a Markov chain. We have

L _ Ln_1+A7 anl;
nH Qb_1+A7 Ln:07

where A is the number of arrivals during a service time, and its p.g.f.
and expected value are as in (2.4.1). @y, as defined earlier, is the number
of customers in the system at the beginning of a busy period. The case
Qp» = 1 is the classical Geo/G/1 queue. Let ¢; be the probability that
exactly j customers arrive during a vacation V. It follows that

o)
c-:ZU k pjfk_j 1 =0.1.---
J k ] b ) J s Ly y

k=j

with respective p.g.f. and expected value

C(z) =v(l=p(1—2)), E(C)=)_jej=pE(V).
j=0
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To establish the stochastic decomposition theorem, we first present
the following lemma.

Lemma 2.4.1. The p.g.f. and the expected value of Q) are given,
respectively, by

Qule) = Hio)s + 12 P ol1 = (1 = 2) ~ )],
B(Qw) = Hlo()] + T P (Y), (244

Proof: For @ = 1, we must have either an arrival occurring during
an idle period or only one arrival occurring during a vacation time. Then
it follows that

PLQy =1} = HIv(p) + 2 P,
For j > 2, we have
p@ =i} = TPy,

Multiplying P{Q; = j} by 2/ and taking the sum of these products from
J =1 to oo gives the Q(z) in (2.4.4). Computing Q;(1) yields E(Qy).
]

The probability transition matrix of {L,,n > 1} is

bo by by b3
ko ki ke k3
P= ko k1 ky oo | (2.4.5)

ko k1

where k; is defined as before and

b= P{Qy—1+A=j)
_\7 J+1
= H{U(}j)]k}] + 11__1{1%(9};)] Z Cl'kijJrl,i, j Z 0 (246)
=1

Theorem 2.4.1. For p < 1, in a Geo/G/1 (E, MAV) system, the
stationary queue length L, can be decomposed into the sum of two
independent random variables,

Lv:L+Lda
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where L is the queue length of a classical Geo/G/1 queue without va-
cations, with its p.g.f. as given in (2.4.2). L, is the additional queue
length due to the vacation effect, with the p.g.f.

1 — Qu(2)
E(Qp)(1—2)’
where Qp(2) is given in Lemma 2.4.1.

Proof: Tt follows from the equilibrium equation ITP = IT and (2.4.5)
that

La(z) = (2.4.7)

j+1
T = 7T0bj + Zﬂ-@'k‘jJrlfi, 7 >0. (2.4.8)
=1

Using (2.4.6), we can compute the p.g.f. of {b;,j > 0} as
> 2= ~G(1—p(1 - 2))@u(2).
—

Multiplying both sides of (2.4.8) by 2/ and taking the sum over j, we
have

0o Jj+1

—Wozzjb +Z Zﬂ'z j+1—i

7"' .
:;OG(l— p(1 —2))Qu(2 +Z771 Z 2 kji1-i

=1 j=i—1

s
= TG~ p(1 — 2)@lz) + G~ p(1 ~ 2)) [Lalz) ~ o]
Solving this equation for L,(z) gives

ToG(1 = p(L - 2)) [1 - Qy(2)]
Gh-pl-2]-2

Ly(2) =

Using the normalization condition L,(1) = 1, we can determine my =
(1 — p)[E(Qp)] L. Substituting 7y into L,(2), we get

(1-p)A-2)G1—p(—2)] 1-@C2)
Gl=p(l=2)—2  E(@)(~>2)
= L(2z)L4(2).

L,(z) =



M/G/1 type Vacation Models: Exhaustive Service 41

From the stochastic decomposition theorem, we can obtain the ex-
pected values as follows:

PPEQ}) _1-Hp@)|p*E(V(V —1))

2 (s 9
B(L) = p+ 5 BOS(S = 1) + -2 )R By - )

(2.4.9)

Let D be the system time of the kth customer, which extends from
its arrival instant to its departure instant. We have

Q-+ S, Dy —T <0, (2.4.10)

{Dk—T—I-S, Dy —T > 0;
Dj11 =
where T and S are the interarrival time and service time, respectively,
and (2 is the waiting time of the first customer of a busy period. Similarly
to Lemma 2.2.1, we have the following;:

Lemma 2.4.2. The p.g.f. and the expected value of €2 are given,
respectively, by

_ Hiw(m) o L= @) plo(z) — v(p)]

1— H[v(p)] p*E(V) — p(1 — v(p))
1—(p) P’ '

E(Q) = (2.4.11)

Proof: For j > 0, we have
P{Q = ]} = P{AI}5j0 + P{AU}P{Q = j‘A@},

where 9§ is the Kronecker symbol. If A, occurs and the vacation during
which customers arrive is the first vacation, then Q = (V3 — TV} > T);
otherwise, due to the memoryless property of Poisson process, the con-
ditional probability of 2, given that event A, occurs, can be computed
from the start of the second vacation. That is,

P{Q = j|A,) = P{Vi > T}P{Vi - T = j|Vi > T}
+ P{V} < T}P{Q = j|A,}. (2.4.12)

Note that

P{vi =T —J|V1>T}— Z vepp” T, J=0.
k=j+1
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Taking the p.g.f. of the conditional probability distribution above, we
have

plv(z) — v(p)]
(1 —o(@)(z-p)
Taking the p.g.f. of the probability distribution © and using (2.4.12)
and the conditional p.g.f. above, we obtain Q(z). O

Theorem 2.4.2. For p < 1, in a Geo/G/1 (E,MAV), the stationary

waiting time W, can be decomposed into the sum of two independent
random variables,

E{LN TV > T} =

Wy =W+ Wy,

where W is the waiting time of a classical Geo/G/1 queue without va-
cations, with its p.g.f. given in (2.4.2). Wy is the additional delay due
to the vacation effect, with the p.g.f.

p— (2 —P)Q2)
E(Qy)(1—2)

Wa(z) = (2.4.13)

where (z) is as in (2.4.11).
Proof. Note that the Dy,; and Dy have the same stationary distrib-
ution. From (2.4.10), taking the p.g.f., we have

D(z) = P{D —T > 0YE(zP~T|D > T)E(2°) + P{D < TYE(z*)E(z°).

(2.4.14)
Because P{D > T} = D(p), we have
1 © X )
EE"TID>T)= —— > "2 Y P{D=k}pp" 7"
1-D(p) = 5
j= =j+1
1 oo k—1
=—— Y P{D=k ity
k=1 7=0
1 p _
B (P®) - D)
Substituting the equation above into (2.4.14) gives
D®)[p—(z—p)Q
D(z) = () [p — (2 = p)2=2)] G(2) (2.4.15)

pG(z) —z+Dp
Using the normalization condition and and the L’Hopital rule, we have
_ 1—p

®) = om
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Note that 1+ p¥(1) = E(Qs). Substituting D(p) above into (2.4.15)
gives

D(z) = Wy (2)G(2)

Q- p0-2)p— (-
= 00G) = p BQ(—2) C)

From this expression, we obtain the stochastic decomposition property.
O
Based on Theorem 2.4.2; we can get the expected values as follows:

1 - Hlp(p)|pE(V(V - 1))
1—v(p) 2E(Q)

P 1
E(W,) = mE(S(S —-1))+

Note that the p.g.f. of L; can be rewritten as

E(Wq) =

— Hv(p)] _p
1—w(p) 2E(Q)

E(V(V —1)).

_ Hlv(®)] N 1 1-Hp(p)]
E(Qy)  E(Qy) 1-wv(p)

1—o[l —p(1 = 2)]

Lal2) PE(V)(1—2)

E(V)

This expression indicates that Ly is a mixture of two random variables.
That means that Lg is zero with probability p* = H[v(p)][E(Qs)] ™! and,
with probability 1 — p*, is equal to the number of customers arriving
during the residual life of a vacation. Similarly, the p.g.f. of W, can be
rewritten as

_ Hv(®)] 1 1-H[p(p)]
E(Qy)  E(Qy) 1-uv(p)

1—v(z)

Wa(z) BV —2)’

E(V)

which shows that Wy is zero with probability p* and is equal to the
residual life of a vacation with probability 1 — p*. In addition, we can
perform the busy-period analysis for this discrete-time system in the

same way as for the M/G/1 (E, MV) system.

2.4.3 Special Cases of the M AV Model

There are several classical models that can be considered as special
cases of the Geo/G/1 (E, MAV) model.

Ezample 1. Discrete-time Geo/G/1 with multiple vacations.

To obtain the results for the Geo/G/1 with multiple vacation and
exhaustive service, we can simply let H = oo, H(z) = 0. From (2.4.4),
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we have
Q) = s (1= p(1 = 2) ~ (@),
£0) = {25
From (2.4.11), we get
0z) = — 7 v(z) —v(p)

1-v(p) z-D
1 p*E(V)—p(l— v(D))

B =1 v(p) p?

Substituting these expressions into (2.4.7) and (2.4.13) gives the stochas-
tic decomposition properties for the queue length L, and the waiting
time W,. The p.g.f.’s and the expected values of the additional queue
length and delay are given by

1=l —p(1—2)

HE = e
_ 1-w(2)
Wi = v -
B(La) = 5BV (V = 1),
EM@:ZAWEWW—D)

Like the M/G/1 (E, MV), now Wy is the residual life of a discrete-time
vacation and L is the number of customers arriving during the residual
life. If the vacation time follows a discrete PH distribution of order m,
we can use the closure property of the PH distribution to prove easily
that Ly and Wy are also discrete PH distributions.

Ezxample 2. Discrete-time Geo/G/1 with single vacation.

Let H = 1; then H(z) = z. From (2.2.4) and (2.2.11), we have

Qu(2) = ol = p(1 - 2)] — (@)1 - 2),
E(@y) = v(p) + pE(V),

oy Pl() — ()]
Qz) = o(p) + 2P

Substituting these expressions into (2.4.7) and (2.4.13) gives the sto-
chastic decomposition properties. The p.g.f.’s and the expected values
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of the additional queue length and delay are given by
_1+u(E)(1—2) — o[l — p(1 - 2)]

La(z) 0@ FPEI—2)
w1 - 2) +p(1 — v(2)
W) = T pB - 2)
2
B = gy pm 2V D)
E(W,) = P E(V(V —1)).

2[v(p) + pE(V)]
Note that L can be rewritten as
v(p) pE(V) 1-v[l—p(l-2z)]
v(P) +pE(V) (@) +pEWV) pE(V)(1-2)
This means that Ly is zero with probability p* = v(p)[v(p) + pE(V)] !
and is equal to the number of customers arriving during the residual life
of a vacation with probability 1 — p*. Similarly, Wy(z) can be rewritten

as
v(p) pE(V) 1—v(2)

v(P) +pE(V) o) +pE(V) E(V)(1-2)

Therefore, Wy is zero with probability p* and equals the residual life of

a vacation with probability 1 — p*.

Ezample 3. Discrete-time Geo/G/1 with setup time.

A Geo/G/1 queue with setup time can be considered as an equivalent
Geo/G/1 (E, MV) with the waiting time of the first customer of a busy
period being equal to the setup time, U. Let V and v(z) represent the
vacation time and its p.g.f., respectively. Using Lemma 2.4.2 or the
relation between (z) and v(z) in Example 1, we have

Ld(z) =

Wa(z) =

p_ v(z) —v({p)
u(z) o) 27 (2.4.16)
Now to express the v(z) and E(V) of the equivalent Geo/G/1 (E,MV)
in terms of the known u(z) and E(U), we take the derivative of both
sides of (2.4.16) at z = 1 and obtain

_P*E(V) —p(1 —v(p))
BU) == (2.4.17)

From (2.4.17), we get

E(V)=-(1-v{)+ 1 -v{@)EU),

v(z) = ~(1 = v(P))(z = P)u(z) + v(p).

[V
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Substituting these two equations into Wy(z) of the Geo/G/1 (E, MV)
in Example 1 gives

_ p—(z2—pu»)
Wa(z) = 1 +pE(U)] — (2.4.18)

(
Similarly, replacing z with 1 — p(1 — 2) in (2.4.16) yields
v[1 —p(1 = 2)] = zu[l —p(1 = 2)](1 = v(p)) + v(P).

Substituting this relation into L4(2) of the Geo/G/1 (E, MV) in Example
1, we obtain the p.g.f. of the additional queue length due to the setup

time effect
1—zu[l —p(1 — 2)]

L = .
&= B )
Note that (2.4.19) can be rewritten as

1 pE(U) Zl—u[l—p(l—z)]
1+pEU)  1+pEU)  pEU)1-2)

This expression indicates that Ly is zero with probability of p* = [1 +
pE(U)]~! and equals the number of arrivals during the residual life of a
setup time plus one with probability 1 — p*. Similarly, (2.4.18) can be
rewritten as

(2.4.19)

La(z) =

1 u(z) + pE(U) 1 —u(z)
1+ pEU) 1+pE(U)EU)(1-=2)

This equation means that the additional delay W, is equal to a complete
setup time with probability p* and is the residual life of a setup time with
probability 1 —p*. It is easy to verify that all results for the discrete-time
Geo/G/1 type vacation system are similar to those for the corresponding
continuous-time M/G/1 vacation system.

Wa(z) =

2.5 MAP/G/1 Vacation Models

In this section, we discuss the vacation model with nonrenewal ar-
rival process. The Markov arrival process (MAP) is a tractable non-
renewal process that can realisticlly represent the bursty input process
in many computer and telecommunication systems. Some popular in-
put processes, such as the Markov-modulated Poisson process (MMPP)
and the PH-renewal process, are special cases of the MAP. The com-
plete analysis of MAP/G/1 (E, MV) has been performed by Lucantoni
et al. (1990). We present here some main results concerning this type
of system. The detailed derivations of these results and other MAP-
arrival vacation models can be found in the references provided in the
bibliographic notes for this chapter.



M/G/1 type Vacation Models: Exhaustive Service 47

MAP Arrival Process. Consider a Markov process on the finite
state space {1,2,--- ,m+1}, where {1,2,--- ,m} are transient states and
{m + 1} is an absorbing state. The arrival process is defined as follows:
The Markov process evolves until the absorption occurs. The epoch of
absorption corresponds to an arrival in the arrival process. The Markov
process is then instantaneously restarted in a transient state, where the
selection of the new state is allowed to depend on the state from which
absorption occurred. The sojourn in a transient state ¢ is exponentially
distributed with parameter A;. When the sojourn time has elapsed,
there are two possibilities. With probability p;; 1 < j < m, the Markov
process enters the absorbing state and is instantaneously restarted in
the transient state j. With probability ¢;;, 1 < j < m, j # i, the process
immediately enters the transient state j. Note that

m m

ZQij+2pij:1; I1<i<m.
j=1 j=1

J#i

Equivalently, if for each 4, 1 <1i < m, we define D;; = A\;p;;, 1 < j < m,
Cij = Nigij, 1 < 4,5 < m, and Cj; = —\;, then the probability of an
arrival in an infinitesimal interval of length dt that leaves the Markov
process in state j, given that the Markov process is in state 4, is D;;dt.
Similarly, the probability that the process enters the transient state j
(without an arrival) in an interval of length dt, given that it is in state
i, is Cyjdt, i # j. In fact, the MAP can be considered as a semi-Markov
process whose transition probability matrix F(-) is of the form

F(z) = /Oz eClduD = (I — e©*)(-C 1D,

where C = [C};] and D = [D;j] are, respectively, a stable matrix and a
nonnegative matrix whose sum is an irreducible infinitesimal generator
(see Ramaswamy (1990) for properties of the matrix exponential). Let
N; be the number of arrivals in (0,¢] and J; the state of the Markov
process at time . Now let

Hj(n,t) = P{Nt =n, Jt = j’NO = O,J(] = Z}
be the (i,j) entry of the matrix P(n,t). P(n,t) satisfies the forward

Chapman-Komogorov equations

!

P (n,t) =P(n,t)C+P(n—1,t)D, n>1,t>0,
P(0,0) =1,
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and the matrix generating function P(z,t) = >">° (P (n,t)z" is explicitly
given by
P(z,t) = CHDX 2] <1t >0.

The stationary vector 7 of this Markov process satisfies the equations
m(C+ D) =0, me = 1.

The fundamental mean of the transition probability matrix F(-) is given
by \| = (mDe)~!, so (\])~! is the fundamental arrival rate of the MAP.
Note that the assumption that the absorption is certain, starting from
any transient state, is equivalent to the nonsingularity of the matrix C
and —C~! > 0.

The Embedded Markov Renewal Process. For the MAP/G/1
(E, MV) system with i.i.d service and i.i.d vacation times, denoted by
H (rather than B, as defined in most sections of this book) and V,
respectively, we can define the embedded Markov renewal process at
customer departure instants as follows. Let 7, be the epoch of the kth
departure from the queue, with 79 = 0, and let ({, Jx) be the number
of customers in the system and the phase of the arrival process at T,j .
Then (&, Ji, Tke1 — Tk) i a semi-Markov process on the state space
{(i,7) : 1 > 0,1 < j <m}. Let pjand E(V) be the means of the service
time and the vacation time, respectively. The semi-Markov process is
positive recurrent when the traffic intensity p = pj/\] is less than 1
(note that the symbols p} and A} are means rather than rates, as used
in other sections). The transition probability matrix is given by

Bo(z) Bi(z) Ba(z)
Ao(z) Ai(z) As(z) -
1’5(1-) = 0 Ap(z) él(l') AR x>0, (2.5.1)
0 0 Ag(z) -

where for n > 0, A, (z) and B,(z) are the m x m matrices of mass
functions defined as follows:

[ A, (z)];; is the probability that, given a departure at time 0 that left
at least one customer in the system and the arrival process in phase 1,
the next departure occurs no later than time x with the arrival process
in phase j, and during that service there were n arrivals; [B,,(x)];; is the
probability that, given a departure at time 0 that left the system empty
and the arrival process in phase i, the next departure occurs no later
than time x with the arrival process in phase j, leaving n customers
in the system. In addition, we introduce the conditional probabilities
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[\an(:n)]w, the probability that, given a vacation beginning at time 0
with the arrival process in phase i, the end of the vacation occurs no
later than = with the arrival process in phase j, and during the vacation
there were n arrivals. From the definition of P(n,t), we have

An(m):/OwP(n,t)dH(t), Vn(a:):/oxP(n,t)dV(t), (2.5.2)

We define the transform matrices of A, (z) as
Al (s) = / e dA,(z), A(z,s) = Z A7 (s)z",
0 n=0

and the matrices A,, = A,(0) = A,(c0) and A = A(1,0). Using the
properties of P(n,t), we get

[e.e] o0
A(z,s) = / e FIEC=EDl (), V(z,s) = / e~ FI=C==Dlt gy (1),
0 0
(2.5.3)
From these expressions, we see that A = fooo e(C+D)tdB(t) and matrix A
is stochastic. Note that the stationary vector 7 satisfies TA = 7w, me = 1.

The corresponding transform matrices for En(:n) can be developed as
follows:

oo ntl .y oy py—u
B, (z) = @) (1)eCuP (4, v v —u—v
Bul) =33 L[] oo oavany - u=—)
xPn—j7+1,y—u—o).

This expression is obtained by using the decomposition based on the law
of total probability. That is: there are ¢ vacations with no arrivals, and
the ¢th vacation ends at time uw. The next vacation is of length v, and
there are 7 > 1 arrivals during that vacation. The first service of the
busy period ends at y < x, and there are n — j + 1 arrivals during that
service. The transform matrices of B,,(z) are

B? (s) = /0 TemdBaa),  Bles)= Y Bh(s)",
n=0

It can be shown that the transform matrix B(z, s) is given by

[V(z,s) — V(0,5)]A(z,s)

B(z73) = z[I _V(O,S)]
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It is also easy to prove that the matrices B, (s) satisfy
n
Bn(s) =Y Vj(s)Anj(s),
j=0

where V?(s) = [I - Vo(s)] 7' V;41(s), for n > 0. Note that the matrix
V? = V?(O) = (I - Vo) 'Vjy4, for j > 0, is the probability that,
following a sequence of vacations without arrivals, there are j+1 arrivals
during the first vacation in which arrivals occur.

The Stationary Queue Length at Departures. The stationary
vector of Markov chain P = P(c0), embedded at departures from the
queue, is the joint probability density of the stationary queue length and
the phase of the arrival process. From (2.5.1), we have

[ By B, B,
Ay Ay Ay ---
P=| 0 Ao A - | (2.5.4)
0 0 Ay ---

Writing the stationary probability vector x of P in the petitioned form
x = (x0, X1, - ), we get the set of equations
i+1
x; = x0B; + ZXUAZ‘JA,U, 1> 0. (255)
v=1
Once the vector x( is obtained, an efficient recursion presented in Ra-
maswami (1988) can be used to compute the vectors x;, ¢ > 1. It takes
a few steps to compute x¢, as shown in Lucantoni et al. (1990). The
first step is to study the first-passage times from level i + 1 to i. Define
égz],(ky x) as the probability that the first passage from state (i +7,j) to
state (i,7'), 4> 1,1 < 4,7/ <m, r > 1, occurs in exactly k transitions
no later than time z, and that (i, 5’) is the first state visited in level i.
é[’"}(kz;m) is the matrix with elements ég?,(k‘,x) By the first-passage
argument, it can be shown (see Neuts (1976)) that the joint transform
matrix G(z, s), defined as

oo 00 .
G(z,s) = Z/ e 2 dGU (K, z) 2", |z| <1, Res>0,
k=170
satisfies the nonlinear matrix equation

G(z,s) = zZAU(s)G“(z,s). (2.5.6)
v=0
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Let us define the matrices

G(2) = G(2,0) =2 Y _A,G"(2),
v=0

G=G() = f:Ava.
v=0

The matrix G is stochastic when p < 1. It can also be shown that G(z, s)
satisfies the functional equation

G(zs) = Z/ ¢~ 57[CHDC e gy ().
0

which implies that
(0.0
G = / PG (1),
0

For p < 1, the stationary probability vector g of the positive recurrent
stochastic matrix G satisfies

gG =g, ge=1.

It can also be shown that g is the stationary vector of the infinitesimal
generator C + DG. It is shown in Lucantoni and Ramaswami (1985)
that the matrix G may be efficiently computed by the following recursive
scheme. Start with Go =0, and for £ =0,1,2,---, compute

Hn-‘rl,k; = [I+0_1(C+DG]€)]HTL7]§7 n=0,1,2,---,

00
Gk+1 = Z’Yan,kv
n=0

where Hoj, = I, § = max;(—Cj;), and 7, = fgoe_(’g”(e%!)nd]{(a:). It
is shown in Lucantoni and Ramaswami (1985) that the sequence Gy
converges monotonically to G. After computing G, we can obtain g.
The next step is to compute xg. The quantity (:z:oj)_l is the mean re-
currence time of the state (0,7) in the Markov chain P. Considering
the chain P only at its visits to the level 0 and recording the indices
of the states visited as well as the number of transitions in P between
consecutive visits to 0, we obtain an irreducible m-state Markov renewal
process, with the transition matrix given by the matrix generating func-
tion K(z). The matrix K(z) is obtained as follows. Define K (k;x),
k> 1,z > 0,1 < j,7/ < m, as the conditional probability that the



52

Markov renewal process, starting in the state (0, j), returns to set 0 for
the first time in exactly k transitions and no later than time z, by hitting
the state (0,'). The joint transform matrix of K(k; ) = {K jit(ksa)}is
defined by

K(z,s) = Z/ e dK (k; z) 2", |z <1, Re(s)>0.
=170
A first-passage argument shows that K(z, s) satisfies
K(z,s) ==z Z B;(s)G"(z, s).

v=0

We define the matrices
K(z) =K(2,0) =2 Y B,G"(2)
v=0
K=K(1)=K(1,0) =) B,G"

It can be shown that
V(G(Za 8)7 S) — VO(S)

K -
and, therefore,
V(G) - Vy
K=K(1,0)= ———.

In Neuts (1989), it has been shown that xo can be expressed in terms of
the stationary probability vector x of K, which satisfies kK = k, ke = 1,
and the vector k* = K'(1)e, of the row-sum means of K(z). Specifically,

we have
K

X0 = .
KK*

Furthermore, we can show (see Lucantoni et al. (1990)) that

M —p)

BEV) g(I— Vo).

Xo =

Once xp has been obtained, the remaining components of x are ef-
ficiently computed using a recursion developed by Ramaswami (1988).
Defining X(z) = ;2 x;2", we get from (2.5.5)

X(2)[zI — A(2)] = x0[zB(z) — A(2)].
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Using the expressions for B(z) and xg, it follows that
X(2)[21 - A(2)] = 20T = Vo) '[V(2) — JJA(2)

(1 -
= lé(v)p)g(V(z) ~DA(2), lz| < 1. (2.5.7)
Next, we present a natural matrix analogue of the stochastic decompo-
sition of the queue length at departures in M/G/1 (E, MV).

Theorem 2.5.1. For |z| <1, X(z) = Xo(2)V(z), where X(z) is the
corresponding transform of the MAP/G/1 queue without vacation and
where

V(z) -1
E(V)(C+ :D)’
is the matrix generating function of the number of arrivals during a time
interval with the same distribution as the residual life of a vacation time.

Proof: For |z| < 1, it can be shown (see Heffes and Lucantoni (1986))
that

V(z) =

Xo(2) = M(1 — p)g(C + zD)A(2)[1 — A(2)]
= N(1 - p)gA(2)A(2)[zI - A(2)]"}(C + 2D).

The second expression follows from the commutativity of the matrices
C + zD and A(z). Based on this expression, we can obtain

Xo(1) =7+ N (1 - p)g(C+D)A(I - A +em)~ L.

Now

V(z) = nzo/ooo P(n,t)[l;j(“//gmdtz” - /OOO e(C-&-zD)t[l;j(“Zv()t)]dt.

Integratng by parts and using the commutativity of C + zD and V(z),
we have V(z) = E(V)1(C + zD)"![V(z) — 1], from which it follows
that

V(1) =er— E(V) ' (V-I)(er—C-D) "

Thus, for |z| < 1, we have

Xo(V(E) = (1~ AT - AG)] Y

by the commutativity of C + zD, V(z), and A(z). Using (2.5.7), we
obtain the decomposition property. [

In addition, we can relate the queue length distribution at an arbi-
trary time ¢ to the stationary queue length distribution at departures



54

by using a classical argument based on the key renewal theorem (see
Cinlar (1969)). Therefore, we can obtain all the corresponding results
at an arbitrary time and the waiting time distribution of the MAP/G/1
(E,MV) system. Readers are referred to Lucantoni et al. (1990) for
the detailed development of these results and for more references on the
MAP processes.

2.6 General-Service Bulk Queue with Vacations
2.6.1 M*/G/1 Queue with Vacations

The batch arrival vacation model appears in many situations such as
computer communication systems. The common method of studying the
batch arrival queueing system with vacations is by using supplementary
variables. We present M* /G/1 (E, MV) as an example of this class of
models (see the work by Baba (1986)).

Consider an MX /G /1 queue where customers arrive in batches ac-
cording to a Poisson process with rate A\. The batch size X is a random
variable, with the distribution function and p.g.f.

P(X=j)=gj, =12, G(z) =) gi#, (26.1)
j=1

respectively, the mean of g = F(X); and the second moment of ¢g(?) =
E(X?). The service times are i.i.d. random variables denoted by B,
with general distribution B(x) and probability density b(x). The vaca-
tion times are also i.i.d. random variables, denoted by V', with general
distribution V'(x) and probability density v(z). In addition, the service
time and the vacation time are independent. To study the queue length
distribution, we use the residual service time or the residual vacation
time as the supplementary variable. At an arbitrary time, the steady
state of the system can be described by the following random variables:

¢ = 0 if the server is on vacation,
1 if the server is busy,

L, = the number of customers present,
B = the residual service time for customer in service,

V = the residual vacation time for the server on vacation.
Now we define
Tn(x)dz = P(Ly, = n,x < B<z+dx = 1), n=1,2,---,
wp(x)dx = P(Ly, =n,x < YA/S:E—l—d:E,g:O), n=0,1,---,
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and the LST
T (s) = / ey (x)dr, wy(s) = / e wy(x)d. (2.6.2)
0 0

By considering the steady-state transitions, we obtain the following dif-
ferential difference equations:

M) _ (@) + ma(0)b(@) + w1 (0)b(z),

_‘w = —\mp(z) + ni:z AgjTn—j () + T2 (0)b(x) + wn (0)b(x), n > 2,
p

0D (@) + m(0)e(a) +wo(0)o(a),

_w = wn(2) +j§n;Agjwn_j(x), n>1. (2.6.3)

Taking the LST on both sides of the equations of (2.6.3), we have

—smi(s) + m(0) = —A7wi(s) + m2(0)B*(s) + w1(0)B*(s),
n—1
s (5) + 7(0) = — Mi(s) + 3 Agyma_ (s)
j=1

+ Tn1(0) B*(s) + wn(0) B (s),
—swy(s) +wo(0) = —Awg(s) + 1 (0)V*(s) + wo(0)V*(s),

—swh(s) + wn(0) = =Xwi(s) + Y Agjwh_;(s), n>1. (2.6.4)
7j=1

We also define

m(z,0) = Zﬂn(O)z", w(z,0) = an(O)z",
n=1 n=0

(2, 8) = Zﬂ,’;(s)z”, w*(z,s) = Zw;(s)z”. (2.6.5)
n=1 n=0

Multiplying the second equation by 2", summing over n, and using the
first equation of (2.6.4) and G(z), we have

[s = A= AG(2)|7"(z,s) = — B*(s)[m(2,0) — m1(0)z] /2
— [w(2,0) —wp(0)]B*(s) + 7(2,0). (2.6.6)
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Similarly, multiplying the fourth equation by 2", summing over n, and
using the third equation of (2.6.4), we have

[s = A+ AG(2)|w*(2,5) = w(z,0) — w1 (0)V*(s) —wo(0)V*(s). (2.6.7)
Substituting s = A — AG(z) into (2.6.6) and (2.6.7), it follows that

—B*(A = AG(2))[r(2,0) — m1(0)z] /=

— [w(z,0) = wo(0)]B*(A = AG(2)) + m(2,0)

w(z,0) =T () V(A= AG(2)) — wo(0)V* (A — AG(2)) = 0.

(2.6.8)

Next, inserting z = 0 in the second equation of (2.6.8) and using w(0,0) =
wp(0), we have
wo(0) = V(N1 (0)/[1 — V(). (2.6.9)

Substituting (2.6.9) into the second equation of (2.6.8) gives
w(z,0) = V(A= AG(2))m1(0)/[1 — V*(N)]. (2.6.10)
From the first equation of (2.6.8) and (2.6.10), we obtain

2B* (A — AG(2))[V* (A — AG(2)) — 1]m1(0)
[1=V*(N][z — B*(A = AG(2))] '

Substituting (2.6.9), (2.6.10), and (2.6.11) into (2.6.6), we get
V(A= AG(2)) — 1[B*(A = AG(2)) — B*(s)Im1(0)

m(z,0) =

(2.6.11)

) = TR O = B = MGl — A £ AG(2)]
(2.6.12)
Substituting (2.6.9) and (2.6.10) into (2.6.7) yields
w*(z, S) — [V*()\ — )\G(Z)) — V*(S)]’]Tl(()) (2613)

[1—V*(N)][s — A+ AG(2)]

Since 7*(1,0) + w*(1,0) = 1, using the L’Hopital’s rule on (2.6.12) and
(2.6.13), we obtain

m1(0) = (1 = p)[1 = VFN)I/E(V).

Therefore, the expected number of customers in the system is

on*(z, s 8w
E(L) - (;Z ) (9(2’ )
z=1,s= 0 z=1,5s=0
MEV?)  AXg*® + ¢ EB
_ 1 MEOT) AR 4+ g B(B)] (2.6.14)

2B(V) 2(1—p)
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Now we give the waiting time and the busy-period analysis for this
model. The stationary waiting time W,, of an arbitrary or test customer
in an arriving batch can be decomposed into the sum of two independent
random variables. We first write W,, = W1+Ws, where W7 is the waiting
time of the first customer in the test customer’s batch and W5 is the
waiting time for the service of the batch-mates who are served before
the test customer under consideration. The LST of W7 can be written
as

Wi(s) =D mi()[B ()" + ) wils)[B* ()"
k=1

k=1 =
= 7*(B(5),5)/B*(s) +w*(B*(s), )
_ @-pll- V()

E(V)[s — XA+ AG(B*(s))]

Let r,, (n = 1,2,---) be the probability of the test customer being in
the nth position of the arriving batch. Using the result in the renewal
theory (Burke (1975)), we have

1 o0

’]”n = — gn
g kz
=n

(2.6.15)

Hence, we have
o
_ 1—G(B*(s))
Wy(s) =) m[B*(s))f 1 = — -2
Using (2.6.15), (2.6.16), and the fact that W3 and Wy are independent,
it follows that
W (s) = Wi (s)W5(s)
_ (1—p)sI-GB*(s)]  1-V*(s)
gls = A+ AG(B*(s))|[1 = B*(s)] sE(V)
This expression gives the following stochastic decomposition property of
the stationary waiting time.

Theorem 2.6.1. For p = A\gE(B) < 1, in an MX/G/1 (E, MV)
system, the waiting time W, can be decomposed into the sum of two
independent random variables,

Wy, =W + Wy,

where W is the waiting time of a classical M* /G /1 queue without va-
cations, with its LST given as
. (1—p)s[l = G(B*(s))]
W*(s) = ,
P W Y ) [ O

(2.6.16)

(2.6.17)
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and W, is the residual vacation time for the server on vacation, with the
LST

1—V*(s)

Wils) = = Ew)

From (2.6.17), the expected value of the waiting time is given by

EWV?) = Agp® gD E(B)
2E(V)  2(1—p) 29(1—p)

Let us now obtain the LST and the expected value of the busy pe-
riod D,. Define D, as the busy period starting with n customers in
the system at a vacation completion instant where n =1,2,---. In Ra-
maswami (1980), it is shown that D}, (s) is the root with the smallest
absolute value in z of the equation

E(Wv) =

z=DB"(s+ X — \G(z)) (2.6.18)

and satisfies
D3, (s) = [Dg(s)]".

Thus, the LST of D, is given by

* Al‘ —\xr _*
Di(s) = / Ay ()

— V(0 = AG( ;';1<s>>>, (2.6.19)

where g]*k is the kth-fold convolution of g; itself, with g;fo = 00. Taking
the first derivative with respect to s and letting s = 0 in (2.6.18), we
have

E(Du) = E(B)/(1 - p). (2.6.20)

Similarly, taking the first derivative of (2.6.19) at s = 0 and using
(2.6.20), we have
B(Dy) = pE(V)/(1 - p). (2.6.21)

Using a similar approach, Choudhury (2002) provided a complete
analysis on the single vacation batch arrival model (M* /G/1 (E, SV)).
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2.6.2 M/G*/1 Queue with Vacations

Now we discuss the batch service vacation model by using an M/G(%) /1
(E, SV) queue. In such a system, customers arrive according to a Pois-
son process and are served in batches of maximum size b and minimum
threshold a. The server takes a single vacation when it finds less than
a customers after the service completion. The results in this section are
mainly based on the study of Sikdar and Gupta (2005). For other batch
service vacation models including the M/G(*%) /1 (E, MV), we provide
several references in the bibliographic notes for this chapter.

Similarly to the batch arrival vacation model, the supplementary vari-
able method is used to develop the results below. At an arbitrary time,
the steady state of the system can be described by the following random
variables:

0 if the server is dormant and ready to serve,
& =< 1 if the server is on vacation,
2 if the server is busy,

L, = the number of customers present,
B = the residual service time of the batch in service,

V = the residual vacation time for the server on vacation.

Note that there are differences in the definitions of £ and B between the
batch service model and the batch arrival model in the previous section.
Accordingly, we define

Wn(x)d:E:P(Lv:n,m<§§m+d:n,§:2), n=0,1,2,---,
wn(a:)dx:P(Lv:n,:c<17§x+d:c,§:1), n=0,1,2,--,
Ry=P(Ly=n,€6=0), n=0012-,a—1.

and the LSTs

It follows from the above that
o oo
m(0) =m, = / Tn(x)dz, and w;,(0) = w, = / wp (x)dz.
0 0

It is clear that 7, (wy,), n > 0, represents the probability of n customers
in the queue when the server is busy (on vacation) at arbitrary time
instants.



60

By considering the steady-state transitions, we obtain the following
system of the differential difference equations:

0 =—ARo + wo(0),

0= ARy + ARt +wa(0),  1<n<a-1,
_dwc(;ix) = —\mo(z) + b(x) nzbi(ﬂn(o) 4w (0)) + ARg_1b(z),
_W = =AW (@) + A1 (2) + b(@) (T 46(0) + wn45(0)), 7> 1,
_di?;x) = —wo(x) + mo(0)v (),
_dwsggx) = —dwn(2) + Awn-1(z) + T (0)o(z),  l1<n<a-1,
_dwgy) = —dwn (@) + Awn—1(z),  n=a (2.6.22)

Taking the LST on both sides of the last five equations in (2.6.22), we
have

(A = 8)m(s) )

(A = 8)wg(s) = V7 (s)m0(0) — wo(0),

(0 — )i () = A (5) + V3 (5)m(0) — wn(0),  1<n<a—1,

(A= 9s)wi(s) = Awr_1(s) —wp(0), n>a (2.6.23)

Now, using the first two equations of (2.6.22) and all equations of (2.6.23),
we obtain a set of results that later lead to queue length distribution at
various epochs.

Lemma 2.6.1. There exist two relations

j
> wn(0)=AR;, 0<j<a-—1, and (2.6.24)
n=0

a—1 oo

> m(0) =) wn(0). (2.6.25)
n=0 n=0

Proof: Using the first equation and letting n = 1 in the second
equation of (2.6.22), we obtain Y.!_ w,(0) = AR;. Recursively, for
n=2,3,..,a— 1, from the second equation of (2.6.22), we get (2.6.24).
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Setting s = 0 in the first two equations of (2.6.23), we have

b
70(0) = > (10 (0) + wn(0)) + ARq_1 — Ao, (2.6.26)

Tn(0) = Tp16(0) + wnt6(0) + N1 — mp), n > 1. (2.6.27)

Summing over n on (2.6.27), adding (2.6.26), and using (2.6.24), we
obtain (2.6.25) after some simplification. O

Define the nonserving period D, as the sum of a vacation V' and an
idle time I,,. We then have the following lemma.

Lemma 2.6.2. The expected value of D is given by

a—1—1 )

E(D¢) = E(V) + Z sz Zhj . (2.6.28)
n:O j=

where pj is the stationary probability that ¢ customers are left at a
departure instant of a batch, and h; = [;° ()‘J.—x!ye_’\xd‘/(m).

Proof: Let N(t) (the number of customers in the system at time t) be
the state of the system at time ¢. Thus, at the end of a busy period, N(t)
enters the set of vacation states S = {0,1,2,...,a — 1}. The conditional
probablhty that N(t) enters state ¢ € S, given that N(t) enters S, is

p /4"t pt. For fixed i € S, if j < (a — 1 —1i) customers arrive during
a Vacatlon with probability /;, then at the vacation completion instant,
N(t) enters the set of idle states U = {k : k = a—1i—j}. Note that N(¢)
leaves the set U when a — (i + j) customers arrive. Thus the expected
sojourn time of N(¢) in U is (a — (i + j))/A. Using the conditional
argument and E(DS) = E(V) + E(I,), we obtain (2.6.28). O

Lemma 2.6.3. The probability that the server is busy is given by

AE(B)

pb: a a n
AE(B) + AE(V) Y00 ph + S0 Zipn 520 " 4,

. (2.6.29)

where A; = S20_ hy.

Proof: Using p, = E(D,))/(E(Dy)+E(DS)), E(D,) = E(B)/ 3129 p}
(derived on page 324 in Chaudhry and Templeton (1983)), and (2.6.28),
we obtain (2.6.29) after substitution and simplification. [J
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In addition, we can find the probability that the server is in the idle
state p;ge as follows:

Didle = P(server is in the nonserving period)
X P(server is idle|server is in the nonserving period)

= (1 - p)[E(L)/E(D})]
(A ithd) (2w i Al

= (1 —p) — — — .
E(V) + (1//\ Zizépi) [Z?:olpi* > 1AJ}
(2.6.30)
Alternatively, by the definition of R;, we have
a—1
Pidie = »_ Rj. (2.6.31)
§=0
The probability that the server is on vacation p, is given by
po=E(V) ) w(0). (2.6.32)
n=0

Using the fact that p, + pigie + po = 1, (2,6.30), (2.6.31), and (2.6.32),
we get the following result after some simplification:

- L—m
wy(0) = . (2.6.33)
nz;) BV)+ (YAt ) [ vl S0 4

Now we are ready to get the p.g.f. of the queue length distribution at
various epochs.

Theorem 2.6.2. The p.g.f.’s of sequences { R, “;5, {mn(0)}22 0, {wn}o2 0,

n
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{5 (5)}9% g, and {w) (5)}92, denoted by R(z), 7(z,0),w(z,0),7*(z, s),

n=01 n=0>
and w*(z, s), respectively, are given by

a—1
R(2) = 5oy S = )en(0), (2.6.34)
_ B -2)
™0 = F o moa - )
a—1
X (VAL =2) = 1) 7 (0)2"
n=0
b a—1
+ ) (2P = 2 ((0) + wn(0) + Y wa(0) (2" — 2" |
o " (2.6.35)
a—1
w(z,0) = V(A1 -2)) > m(0)z", (2.6.36)
n=0
71'*(21 8): B*(A(].—Z))—B*(S)
’ (s — A+ A2)(zb — B*(A\(1 — 2)))
a—1
X (VX1 =2)) = 1)>_ ma(0)2"
n=0
b a—1
+ > (2" = 2" (7(0) + wn(0) + Y wa(0)(z" — ") [,
o " (2.6.37)
* —2)) — V*(s a-1
w(z,8) = 4 ()\(51_ )\)ﬁ )\ZV (5) Zﬂ'n(O)z”. (2.6.38)
n=0

Proof: From (2.6.22), multiplying the second equation by 2", sum-
ming over n from 1 to a—1, and adding the first equation, we get (2.6.34).
Now from (2.6.23), multiplying the second equation by 2", summing over
n (n > 1), and adding the first equation, we have

(A—s—Az)1%(2, )

*(g) — 2P r(g) &
- B(Z)va 0) + Bzi ) 3 (0 (0) + wi(0)) (2 — 2™)
*(g a—1 a—1
* Bzg | (w(Z’ 0) - Z m(0)2" + an(o)(zb - Z")> .
n=0 n=0
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Similarly, from (2.6.23), multiplying the fourth and the fifth equations
by z", summing over n (n > 1), and adding the third equation, we get

A —=s—=Az)w*(z,8) =V*(s) i: ™ (0)2" — w(z,0). (2.6.40)

Inserting s = A(1 — 2) in (2.6.39) and (2.6.40), we have

_ B*(M1-2))
™0 = =) =
b
X [ (10 (0) + wn(0)) (2" = 2") — w(2,0)
a—1 a—1
—i—ZWn(O)z”—an(O)(zb—z ), (2.6.41)
n=0 n=0
a—1
w(z,0) = V(A1 = 2)) > m(0)2". (2.6.42)
n=0

Using (2.6.42) in (2.6.41) and (2.6.40), we obtain (2.6.35) and (2.6.38).
Also, using (2.6.42) and (2.6.35) in (2.6.39), after simplification we get
(2.6.37).0

Note that the p.g.f.’s of sequences {m,}5° and {w}° are w(z) =
7(2,0) and w(z) = w*(z,0), respectively. Setting s = 0 in (2.6.37)
and (2.6.38), these p.d.f.’s are given by

B*(\1-2)) -1

m(z) = Az -1z — B*(M\1—2)))
a—1
(VAL =2)) = 1)) m(0)z
n=0
b a—1
+ ) (@ = 2 (1 (0) + wn(0) + D wn (0)(2F — 2M) |
o i (2.6.43)
—1
w(z) = LA 12—_21 Z (2.6.44)

Furthermore, we obtain the p.g.f. of the queue length of the system.
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Theorem 2.6.3. For p < 1, in an M/G(®%) /1 (E, SV) system, the
p.g.f. of the stationary queue length L, at arbitrary time is given by

B*(\1—2)) — 1

LG =sone—moa-9)
b a—1
X D (2" = 2" (mn(0) + wa(0)) + D wn(0)(z" — 2")
n=a n=0
VEA(1 = 2)) — b1 = .
TG D zb—B*()\(l—z)) E_:OW"(O)Z
a—1
S 20
n=0

Proof: For the number of customers in the system L,,, we have

R, + m +wp 0<n<a-1,

T+ n>a (2.6.46)

P{L, =n} = {

Multiplying both sides of (2.6.46) by 2™ and summing over n, we obtain
L,(z) = R(z) + 7(2) + w(z). (2.6.47)

Substituting (2.6.34), (2.6.43), and (2.6.44) into (2.6.47), we get (2.6.45)
after simplification. [J

If we consider the queue length at service and vacation completion
instants, we get an embedded Markov chain with two state variables.
One is the queue length and the other is an indicator variable ¢, with
@ = 0 representing a service completion instant and ¢ = 1 a vacation
completion instant. For n > 0, let w5 (w;) be the probability of n
customers in the queue at a service completion (vacation completion)
instant. From Y °° ((mF 4+ w;l) =1, it follows that

+
7Tn

1
+ _ =
m7(0), w, = an(()),
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where o = >°° (7,(0) + w,(0)). From (2.6.35) and (2.6.36), it is easy

n=0
to find the p.g.f.’s of m! and w;’, respectively, as

) = B0 =)
2b — B*(A\(1 —2))
a—1 b
< (VA1 =2) =) ) mz"+ Y (2" = 2")(m) +wy)
n=0 n=a
a—1
+y (2" - z”)wil : (2.6.48)
n=0
a—1
wh(z) =V M1 -2)> " (2.6.49)
n=0

As defined earlier, pj, j > 0, is the stationary probability that j
customers are left in the system at a departure epoch of a batch (service
completion instant). To find its p.g.f., we introduce two symbols E; and
FE5 as follows:

a—1 a—1 a—1-—k
By = pp(AE(V)) <Zp;F + ok Y Am)
=0 k=0 =0

a—1
+ (1= m)AE(B)) Y _»;,
=0

a—1 00 a—1—k
Ey = \E(V) p:r—%Zp; Z Ap,.
k=0 k=0 m=0
It is easy to get
oo L (2.6.50)
E(B)E,

Now by differentiating the first two equations of (2.6.23) with respect
to s at s = 0, we obtain

b

AmiD(0) — 7 = —E(B) > (mn(0) + wn(0)) = AE(B)Ra-1, (2.6.51)
b

Mg (0) =m0 = —E(B) Y (70(0) + wn(0) = AE(B)o—1,  n>1.

n=a

(2.6.52)
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Adding (2.6.51) and (2.6.52) and using (2.6.24) and (2.6.25) gives

> =E(B)> m(0), (2.6.53)
n=0 n=0

which is also the probability that the server is busy, pp.
Similarly, differentiating the remaining three equations of (2.6.23)
with respect to s, setting s = 0, and using the same approach, we obtain

D wn=E(V) Y wn(0). (2.6.54)
n=0 n=0

Using (2.6.53) and (2.6.50), we get

o0

Z pr2 (2.6.55)

=0

From p; = m/ Y%, and (2.6.55), it follows that

Fn
= = ). 2.6.56

Multiplying both sides of (2.6.56) by 2", summing over n, and substi-
tuting 77 (z) from (2.6.48), we get the following theorem.
Theorem 2.6.4. The p.g.f. of p; is given by

[ Br B*(A\(1-2))
P = [pbba 2= B (\1— z))]

a—1
(VAL =2) = 1)) mre"
n=0

b a—1
Y (=2 )+ (2= 2wt | (26.57)
n=a n=0

Based on the transform equations of (2.6.23), we can develop some
relations among these queue length distributions at various epochs that
are useful in numerically computing these distributions. Here are a few
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important relations.

g
=33 f ~wf),  0snsa-1, (2:6.58)
§=0
o a—1 n
Wn =+ 7r;-r - Zw;r ,  n>a, (2.6.59)
j=0 j=0
o n
R, = 3 wit, 0<n<a-1. (2.6.60)
=0
o b+n b+n n
n-f (S XS], azo es
=0 i=a =0

Define a; = [;° e MaB(1) = SV BO(N), j > 0, and by =
fooo (’\j—!)je_)‘th(t) = (_J%’})JV*U)()\), j > 0. Under the , the probabilities
{m}5°, and {w; }§° satisfy the following equations:

a—1 b
o = ao ij + ag Z(ﬂ':r + wj), (2.6.62)
i=0 i=a
a—1 n b
Tt :anij—I—Zan_k(wakﬂtw;;k)—|—an2(7rlj—|—w,j), n>1,
=0 k=1 k=a
(2.6.63)
n
wh =Y a;mt_, 0<n<a-1, (2.6.64)
j=0
a
wl = Zan—aﬂ'ﬂj—j’ n > a, (2.6.65)
j=1

and Y > (mF +w;) = 1.

From (2.6.58), (2.6.59), (2.6.60), and (2.6.61), it is clear that {R,}§°,
{mn}§°, and {wy, }3° can be obtained by using {m; }5° and {w;’ }¢°. Note
that {m,} }&° is dependent on {w; }5°. From (2.6.64) and (2.6.65), we find
that {m,}2~" is needed to compute {w;}}$°. In addition, from (2.6.63)
we also need to get {m,}2. These probabilities can be obtained by using
{p;"}8°, which are computed by solving a set of equations p™ = p™P,
where p* = [pf, p], ...,p}', ...] and P = [p;;] is the transition probability
matrix of the Markov chain embedded at the batch departure instants,
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with p;;’s given by

Zz_i()an907 OSZSG_la ]207
b . .
Zn oangj+zn:rjbzl+1amg] m—+b—i» 0<i<a-—1, 7521,
Dij = 9j a<i<b j=>0
9j—(i—b)> J<it—=b,i>b+1,5>0
0, otherwise.

The system of equations can be solved by using the algorithm given in
Latouche and Ramaswami (1999). The algorithm is based on the state

truncation method, in which p;; is truncated so that Zé’:o pij = 1 for
all 4, i.e., py=1-— Z] oPij, 0 <1 <[, where [ indicates a sufficiently

large i and j (i = j) so that P becomes an [ x [ square matrix. Here is
a summary of the procedure of computation:

= Step 1: Using the algorithm called GTH in Latouche and Ramaswami
(1999) to solve the equation system p* = p*P and get {p; }}.

» Step 2: Compute p;, using (2.6.29).

» Step 3: Compute Y o, using (2.6.55).

» Step 4: Compute {m,} }} using the relation m,5 = p;7 3°°° ..
= Step 5: Compute {w; }} using (2.6.64) and (2.6.65).

» Step 6: Compute o using (2.6.50).

» Step 7: Compute {w;}3~" and {w;}} using (2.6.58) and (2.6.59), re-
spectively.

» Step 8: Compute {R;}¢~! and {m;}¢ ' using (2.6.60) and (2.6.61),
respectively.

» Step 9: Finally, compute {p; 8_1 and {p;},, using (2.6.46).

2.7  Finite-Buffer M/G/1 Queue with Vacations

The vacation models discussed in the previous sections have infinite
buffers for waiting customers. However, some practical queueing systems
in computer or telecommunication networks have finite-buffers for wait-
ing messages. The early work on the finite buffer vacation system was
reported by Lee (1984) using the embedded Markov chain at both ser-
vice and vacation completion epochs, the supplementary variable, and
the sample-biasing technique. Frey and Takahashi (1997) studied the
same vacation system using a simpler analysis. The results in this sec-
tion are based mainly on the work by Frey and Takahashi (1997).
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Consider an M/G/1 (E, MV) system with a finite buffer of capacity
N, denoted by M/G/1/N (E, MV). We assume that the service discipline
is nonpreemptive and FCFS order. With the same symbols used before,
such as B for the service time, V for the vacation time, and

(At © (A)F
a; :/0 (j!)e MAB(t), vk:/o (k:') e MdV (¢),

we have the probability that j customers arrive (and are accepted) during
an idle period (the server is on vacation), denoted by ¢;, as

o0
! Yj ;
Yi= lz(:](vo) vj = 1— v’ J=1.,N-1,
o0 ’UC o0
ON = Z(Uo)lvf\f =1 —Nvg’ where vy = Z vj.
1=0 j=N

Let m;, j = 0,..., N — 1, be the stationary probability that j customers
are left in the system at a customer departure instant, and define

Clearly, the stationary distribution =; satisfies the following equilibrium
equations:

j+1 j+1
Tj = T E Pij—it1 + E Ti@j—it1, J=0,...; N =2,
i=1 i—1
N N-1
TN—1 = T0 E piaf_; + E Ay (2.7.1)
=1 i=1
N-1
m; = 1.
J=0

From (2.7.1), we can numerically solve the stationary distribution {7;}5 ~*
recursively.

It is worth noting that m;’s are different from the probabilities of
the number of customers in the system, p;’s, given in Lee (1984), where
vacation completion epochs are also considered. The relationship is given
by »

Tj = ———, i =0,..,N—1.
e ’
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Now we derive the relationship between the queue length distribution
at an arbitrary time, denoted by {W;}(])V , and the queue length distribu-

tion at a customer departure epochs {Wj}év ~1. We focus on the service
facility (or the server), excluding the waiting buffer. From the PASTA
property, it follows that 7} is also the probability that N customers are
in the system just before an arrival epoch. Thus the rate A(1 — 7}) is
the arrival rate of customers accepted by the system, which is also the
throughput of the service facility. Using Little’s law, the expected num-
ber of customers in the service facility is equal to p' = A(1 — 7} )E(B),
which is also the probability that the server is busy. The following lemma
gives another expression of p'.
Lemma 2.7.1. p/ is given by

. E(B)1-w)
P = EWV)ro+ EB)(1—v0)

Proof: Consider two point processes. One is formed by the beginning
epochs of busy periods, and the other is formed by the end epochs of
busy periods. Denote the rates of these two point processes by A\, and
Ae, respectively. Note that (1 —p)/E(V) is the rate of the point process
formed by the vacation termination instants, and the probability that
the system is not empty is 1 — vg. Thus we have

(1—p)(1 =)

Ap = AR (2.7.3)

(2.7.2)

On the other hand, the rate of the point process formed by the service
completion instants is p’/E(B), and the probability that no customer is
left in the system at these instants is mg. Therefore, we get

_ 'm
© EB)
Using the fact that A\, = A¢, (2.7.3) and (2.7.4), we obtain (2.7.2). O

Theorem 2.7.1. The stationary queue length distribution at an
arbitrary time {Wj}év is given by

(2.7.4)

. 7 (1— o)At .

T = E(V)7rJ0+E(B)(1—vo)’ j=0,..,N—1, (2.7.5)
(1 — ’Uo))\fl
E(V)mo + E(B)(1 —vo)

Proof: From p' = A(1 —7})E(B) and (2.7.2), we solve for 7} to get
(2.7.6). Based on the PASTA property, we see that 7 is also the proba-
bility that there are j customers in the system just before an arrival. It

mh=1— (2.7.6)
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follows from the general version of Burke’s theorem (see Cooper (1981))
that

k
¥

1 — 73 N
Substituting (2.7.6) into (2.7.7) yields (2.7.5).00

Note that in a finite buffer system, 7} in (2.7.6) is the probability
that an arrival is lost, and is thus an important system performance
measure.

We now derive the LST of the waiting time of this finite-buffer va-
cation system. The waiting time of an arriving customer depends on
the number of customers in the system and on the residual service time
if the server is attending the queue or the residual vacation time if the
server is on vacation at this instant. We need the joint distribution of the
residual service time (or the residual vacation time) and the number of
arrivals during the backward-recurrence service time (or the backward-

7'[']'_

j=0,..,N—1. (2.7.7)

recurrence vacation time). Define B as the residual service time, V as
the residual vacation time, Nz as the number of arrivals during the
backward-recurrence service time, and Ny as the number of arrivals
during the backward-recurrence vacation time. The quantities

were derived in Lee (1984) as

{v* ()
(2.7.8)

Theorem 2.7.2. The LST of the waiting time, denoted by W, is
given by

wo = w0 ()

L\ L= /A =) ™) (B*())M)mo/ (1 = vo) (V*(s) — 1)
A — s+ AB*(s) )

+

(2.7.9)
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Proof: An arriving customer sees the server either serving with prob-
ability p’ or on vacation with probability 1 — p’. If the server is serving,
the probability that the actual service epoch started with k& customers
is m, + mog. Thus the LST of the waiting time is given by

Wy(s) = Z ZP' Tk + Tok)aj—k(s)(B*(s)) "
- N j=1 k=1
N-1 .
+ s)(B*(s)) ¢ . (2.7.10)
jZO

Substituting (2.7.8) into (2.7.10) gives (2.7.9) after some algebraic sim-
plification. [J

Remark 2.7.1. Using a transform-free method, Niu and Cooper
(1993) presented the waiting time distribution in terms of the stationary
probability that there are k customers in the system immediately after
a service-start epoch 0. The relation between o; and 7y, is given by

Ok = Tk+1 + TOPk+1, I{;:077N_1

2.8 Bibliographic Notes

A large number of studies in vacation models focus on the M/G/1
systems with exhaustive service and single or multiple vacations. These
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general vacation policy, namely, at the completion of the (i — 1)th va-
cation (i > 1), if there are waiting customers, the server starts serving
customers; otherwise, the server takes a vacation with probability p;
and enters the idle period with probability ¢; = 1 — p;. Clearly, the case
of p; = 1 corresponds to the multiple vacation policy and the case of
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batch when the number of the customers reach a minimum batch size.
For the studied on the (r, N) policy systems, see Chaudhry and Tem-
pleton (1981), Easton and Chaudhry (1982), Chaudhry et al. (1987),
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If the nonrenewal arrival process is a Markov arrival process (MAP), the
queueing system can be treated by using the matrix geometric method.
Most results for the M/G/1 vacation models have been extended to the
MAP/G/1 vacation models. Blondia (1991) studied the vacation model
with a nonrenewal arrival process and a finite buffer. Scholl and Klein-
rock (1994) discussed the MAP /G /1 vacation system with batch arrivals.
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(1992, 1994), Bruneel (1994), Lee (1995), etc. It is worth noting that
there are also some studies on the M/G/1 vacation models with retrials
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Discrete-time models are more appropriate for modeling computer and
telecommunication systems. Compared with research on continuous-
time vacation models, there are fewer studies on discrete-time vacation
models. The Geo/G/1 queue with multiple adaptive vacations was an-
alyzed by Zhang and Tian (2001). For other related works on discrete-
time vacation models, see Bruneel (1984, 1994), Isgizaki et al. (1995),
Fiems and Bruneel (2001, 2002), etc.. Alfa (1995, 1998) presented an
analysis of the discrete-time MAP/PH/1 type vacation model. Using
the matrix analytical method, Alfa (2003) treated a more general type
of Markov-based-representation discrete-time vacation models. Takagi
(1993) provided a complete analysis of the discrete-time Geo/G/1 queue
with and without vacations.



Chapter 3

M/G/1 TYPE VACATION MODELS:
NONEXHAUSTIVE SERVICE

In this chapter, we will analyze the M/G/1 type vacation models with
nonexhaustive service. In section 3.1, we introduce the regeneration
cycle method. There are three types of vacation models to be treated.
Section 3.2 discusses gated service models with either single or multiple
vacations. Section 3.3 deals with several limited service models and a
Bernoulli service model. Section 3.4 is devoted to decrementing service
models.

3.1 Regeneration Cycle Method
3.1.1 Nonexhaustive Service and Service Cycle

Nonexhaustive service (NE) means that the server may start a va-
cation when some customers are still in the system. Some typical NE
service rules are as follows.

Gated Service: In the gated service system, when the server returns
from a vacation, it accepts and serves continuously only those customers
present at that time, deferring the service of all customers that arrive
during the service period until after the completion of the next vacation.
This service rule can be considered to be like as a gate that closes at the
vacation completion instant so that only those inside the gate get served
during the current service period.

Limited Service: In the limited service system, the amount of work
done in serving customers during a given service period is limited: for
example, the number of customers served during a service period may be
limited or the total service time length of a service period may be lim-
ited. Whenever the service limit is reached, the server starts a vacation
regardless of the number of customers in the system.
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Decrementing Service: With the decrementing service rule, once
the server resumes queue service after a vacation, it keeps serving cus-
tomers until the amount of work (total customer service time) is smaller
than the amount of work at the beginning of the busy period, and then
it takes a vacation. For example, the server may start a vacation when
the number of customers in the system becomes M less than the number
of customers when the busy period started.

Bernoulli Scheduling: With this service rule, the server takes a
vacation with probability p and serves another customer, if any, with
probability 1 — p after each customer service.

Note that these service rules determine when the server starts a va-
cation. To completely specify a service policy, we also need rules that
determine when the server returns to serve the queue, such as the MV
and SV rules discussed in Chapter 2. In this chapter, we discuss various
service policies of NE type.

With an NE service policy, the server may start a vacation when some
customers are in the system. This feature is not available in exhaustive
(E) service systems. To analyze an NE service vacation model, we in-
troduce here a few new terms. A service period is defined as the interval
between a vacation ending instant and the next vacation starting instant.
The difference between a service period and a busy period is that the
former may end when some customers are still waiting in the system and
the latter ends only when no customers remain in the system. Let S,
be the length of a service period and let Sj(s) be its LST. Let @ be the
number of customers continuously served in a service period and ®(z)
be its p.g.f. Recall that the symbols B(t) and B*(s) are the distribution
function and its LST of the service time, respectively. Clearly, we have

Si(s) = B[B*(s)]. (3.1.1)

Similarly, we define a service cycle as the interval that begins at the end
of a vacation and terminates at the end of the next vacation. It is quite
common that a service cycle is the sum of a service period (sometimes
including an idle period) followed by a vacation period.

3.1.2 A Renewal-Reward Theorem

In an NE service system, the state transition of the Markov chain em-
bedded at customer departure instants is very complex, and the analysis
method used for the exhaustive service system cannot be applied. We
introduce the regeneration cycle method as a powerful tool for analyzing
the NE service vacation models.

Consider a renewal process with N (¢) representing the number of re-
newals during (0,¢). The interval between two consecutive renewals is
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called a regeneration cycle (or a renewal cycle), and the instant of a
renewal is called a regeneration point. Assume that a random reward Y}
is associated with the kth regeneration cycle, with common mean E(Y').
Thus the total reward obtained during (0,¢) is given by

N(t)
Y(t)=) Y,
k=1

which is then called a renewal-reward process. Based on the renewal-
reward theory (see Heyman and Sobel (1982)), we have the following
theorem about the limit reward rate of the process Y (¢):

. EY(@)] _ EY)
tlirgo I T BR) (3.1.2)

where E(R) is the mean of the regeneration cycle.

For the queue length process L,(t) of an NE service vacation model,
we select the service cycle starting instants of L, (t) = 0 as the regener-
ation points. Then a renewal of the L, (t) process occurs at one of these
selected points in time. If the process is positive recurrent, then L,(t)
will reach state O infinitely often. Therefore, there are infinitely many
regeneration points. The interval between the two consecutive regen-
eration points is called a regeneration cycle. Note that a regeneration
cycle may consist of several service cycles, and all regeneration cycles
are i.i.d..

Let N(t) represent the number of regeneration points of L,(t) in [0, )
with ¢ = 0 as the Oth regeneration point not counted. Let ® be the
number of customers served in one service period, and introduce the
following notation:

M), =the number of service periods contained in the kth regeneration

cycle,

®,,,. =the number of customers served during the mth service period

of the kth regeneration cycle,

tfg])c =the nth departure instant during the mth service period of the

kth regeneration cycle.

Using these symbols, we can express the p.g.f. of L, (the stationary
limit of L,(t)) as

1B [ St e 1)

m=1 n=

(3.1.3)

e iE [ ivz(tl) 2%21 ‘I’mk}
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Theorem 3.1.1. If L,(t) is a positive recurrent process, the p.g.f. of
the stationary queue length L, is given by

E {23:1 ZL"}

L,(2) = B(3) ) (3.1.4)
where L,, is the number of customers at the nth departure of a service
period.

Proof: Define the reward of the kth regeneration cycle as
My Pk
Vo= >3
m=1 n=1

Thus the expected reward in (0,t) is given by

N(t) My @

Ehshop ottt

k=1 m=1n=1

From (3.1.2), we have

N(@) My, ®pp M; ®ma (n)
lim E ZZZZL(t = ZZZ (b ]
tooot k=1 m=1n=1 m=1n=1

where F(R) is the mean of a regeneration cycle. Similarly, for the de-
nominator of (3.1.3), we have

t) My, My
Jim 1 ZZ@M E Z@m].
k=1 m=1 m=1

Substituting these results into (3.1.3) and suppressing subscript 1, we
get

[, i 5]

Ly(z) = 3.1.5
O ] (3.1.5)
Using the discrete-time version of (3.1.2), we have
E Y1 ®m
R
c B[l S L))
E ;ZL"] = B ,

where E(M) is the mean number of service periods contained in a regen-
eration cycle. Substituting these expressions into (3.1.5) gives (3.1.4).00
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3.2 Gated Service M/G/1 Vacation Models
3.2.1 Gated Service Multiple Vacation Model

In a gated service system with multiple vacations, when the server re-
turns from a vacation, it accepts and serves only those customers present
at that instant. If no customers are in the system, the server starts an-
other vacation and keeps taking vacations until it finds some customers
waiting in the system. This system, called a gated service multiple va-
cation model, is denoted by M/G/1 (G, MV).

Let @ be the number of customers present in the system at the begin-
ning of a service period, and let S, be the length of the service period. It
is clear that the number of customers arriving during S, and the num-
ber of customers arriving during V' are independent, with the p.g.f.’s
Sy(A(1 = 2)) and V*(A(1 — z)), respectively. For convenience in analy-
sis, we assume that there is always a zero-length service period between
two consecutive vacations. Therefore, the service period and the vaca-
tion occur alternatively. The number of customers in the system at the
beginning of a zero-length service period, @y is 0.

Lemma 3.2.1. In a steady-state M/G/1 (G, MV), the p.g.f. of Qp(2)
satisfies the equation

@v(2) = Qu [B*(A(1 = 2))] VF(A(L = 2)), (3.2.1)
and the expected value @y is
AE(V)
(1—p)

Proof: Let Ql()n) and SI(,n) be the number of customers present at the
beginning of the nth service period and the length of the nth service

E(Qp) =

(3.2.2)

period, respectively. According to the gated service rule, QI()”H) equals
(n)

the sum of the number of customers arriving during S, ’and the number
of customers arriving during the vacation following SI(,n). Therefore, we
have

én—H)(z) — S]gn)*()\(l —2))V*(A\(1 - 2)). (3.2.3)

Note that due to the gated service rule, the number of customers served
in a service period is equal to the number of customers present at the
beginning of the service period. Thus we have

S5 (s) = Q4 [B*(s)].
Substituting this equation into (3.2.3) gives

QY (2) = QB (A1 - 2)]VF (AL - 2)).
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Because of the steady state, the p.g.f. does not depend on n. Thus we
get (3.2.1). Taking the derivative of both sides of (3.2.1) with respect to
z at z =1 gives E(Qp). O

Theorem 3.2.1. For p < 1, in an M/G/1 (G, MV) system, the
stationary queue length L, can be decomposed into the sum of three
independent random variables,

L,=L+ L4+ L,, (3.2.4)

where L is the queue length of a classical M/G/1 queue without vaca-
tions, with its p.g.f. given in (2.1.2). The p.g.f.’s of Ly and L, are given
by

_1=Vr(A(L = 2))
La=) = =gaa=—2

Lo(z) = QB (M1-2)].  (3.25)

Proof: It follows from the gated service rule that the number of cus-
tomers served during a service period ® equals Q. Let L, be the number
of customers at the nth customer departure instant in this service period.
We have

n
Ln:Qb_n+ZAk7 n:laza"'7Qb7
k=1

where Ay is the number of customers arriving during the kth cus-
tomer service. Note that Ay’s are i.i.d. random variables with the p.g.f.
A(z) = B*[A\(1 — z)]. Then

o Qb
B {Z an} e {Zsz" (A1 - zm”}
n=1 n=1

o k
=Y P{Qu=Fk}D_ S [B A1)
k=1 n=1

B*\1-2) < "
=T s o @ =B -
_ B0a-2)
B*(M1—-2))—=z

{Qp [B*(A(1 = 2))] — Qu(2)}-
Using (3.2.1), we get

Qp[B*(A(1 = 2))] = Qu(2)
= Qp[B*(A(1 = 2))][1 = V*(A(1 - 2))].
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Substituting these results into (3.1.4) and using the fact that E(®) =
E(Qp) and (3.2.2), we obtain

Ly(z) = 3=PU=2)B" A1 =2) 1= V(A1 = 2))
Y B*(A(1—=2)) — =z AE(V)(1—2)
= L(2)Lq4(z)L(2).

Qp[B*(A(1 = 2))]

This completes the proof. [J

Theorem 3.2.1 indicates that the number of customers in the M/G/1
(G, MV) system can be decomposed into the sum of three parts. One of
these is the queue length of a classical M/G/1 queue. The second part,
Lg, is the number of customers arriving during a residual vacation time,
and the third part, L,, is the number of customers arriving during a
service period. Compared with an M/G/1 (E, MV) system, the M/G/1
(G, MV) has an extra term, L,, in the queue length. It follows from the
stochastic decomposition property that

B N2 XE(V2)  MpE(V)
Bl =rt 50— ) Y -p)

(3.2.6)

We can also obtain the stochastic decomposition property for the wait-
ing time as follows.

Theorem 3.2.2. For p < 1, in an M/G/1 (G, MV) system, the
stationary waiting time W, can be decomposed into the sum of three
independent random variables,

Wv:W+Wd+Wra

where W is the waiting time of a classical M/G/1 queue without vaca-
tions, with its LST given in (2.1.2). W, and W, are the additional delay
due to the vacation effect, with the LSTs

1 =V*(s)

Wa(s) = “EW)s Wi(s) = Qp [B*(s)]. (3.2.7)

Proof: In an M/G/1 (G, MV) system, a customer’s waiting time is
independent of the arrival process after its arrival. Thus the following
classical relation exists:

Ly(2) = Wy (A1 = 2))B*(A(1 = 2)).

Substituting the expression of L,(z) in Theorem 3.2.1 into this relation
and replacing s with A(1 — z) yields the waiting time decomposition
property. [
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From Theorem 3.2.2, it is easy to obtain the expected value of the
waiting time:

A2 E(V?)  pE(V)

B =sa = Y amm) -y

3.2.2 Gated Service Single Vacation Model

In a gated service system with a single vacation, the server always
takes exactly one vacation after each service period. If at least one cus-
tomer arrives during the vacation, the server resumes the queue service
after the vacation. If no customers arrive during the vacation, the server
becomes idle regardless of the number of customers present in the system
at the end of the previous service period and starts serving the queue
when the next customer arrives. For each service period, the server only
serves those customers present in the system at the beginning of the ser-
vice period and starts a single vacation after the service period. Hence,
this system is called a gated service single vacation model and is denoted
by M/G/1 (G, SV).

Lemma 3.2.2. In a steady-state M/G/1 (G, SV), the p.g.f. of Qy(2)
satisfies the equation

Qp(2) = Qp [B*(A(L = 2)) {V* (A1 = 2)) = VAL - 2)}, (3.2.9)
and the expected value @) is
V*(A) + AE(V)

E(Qy) = (3.2.10)

(1—p)
Proof: If some customers arrive during a single vacation following the
service period SI(,n), ,()nﬂ) equals the sum of the number of customers

arriving during Sz(,n) and the number of customers arriving during the

single vacation, given that some customers have arrived in this vaca-

(n+1)
b

tion. If no customers arrive during the vacation, then ) equals the

)

plus 1. Therefore, we have

VA —2)) = V*(})
1- V()

. . . n
number of customers arriving during S](J

() = (1 - VST (AL - 2))

+ V(NS A - 2)]
= S AL = )V AL - 2)) = (L= 2)V* (V).

Because of the steady state, the p.g.f. does not depend on n. Thus we
have

Qp(2) = Sy AL = 2)[V* (AL = 2)) = (1 = 2)V* (V). (3.2.11)
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Due to the gated service rule, we have the relation
Sp(s) = Qo[ B (s)].

Substituting this equation into (3.2.11), we obtain (3.2.9). It is easy to
compute (3.2.10) from (3.2.9). O
The expected value of ), is given by

V*A) + AE(V)
p(l—p)
Theorem 3.2.3. For p < 1, in an M/G/1 (G, SV) system, the

stationary queue length L, can be decomposed into the sum of three
independent random variables,

E(Sp) =

Ly=L+Ls+L,,

where L is the queue length of a classical M/G/1 queue without vaca-
tions, with its p.g.f. given in (2.1.2). The p.g.f.’s of Ly and L, are given,
respectively, by

La(2) = 1-V*A1=2))4+ (1 —2)V*N)
=TT ) S AEV) (1 - 2)

» Lr(2) = @ [B*(AM(1 - 2))].

(3.2.12)
Proof:  Using a method similar to the proof of Theorem 3.2.1, we
obtain

E {;ZLH} - Bﬁj\((i(i ;)j)z G BT (AL = 2))] = Qu(2)} -

Dividing both sides of the equation above by E(®) and using E(®) =
E(Qp) and (3.2.10), we obtain

(=P =B A1=2), .
O ) @B - )

1=V (A1 —2)+ (1 —-2)V*N)
[V*A) + AE(V)] (1 —2)
= L(z)Lq(2z)Lr(2).

Ly(z) =

This completes the proof. [J

Remark 3.2.1. L; in the M/G/1 (G, SV) system is the same as in
the M/G/1 (E, SV) system. The p.g.f. of L, of the M/G/1 (G, SV)
system has the same form as in the M/G/1 (G, MV) in Theorem 3.2.1.
However, these are p.g.f.’s of different random variables. This is because
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the Qp(z)’s are determined by two different equations, namely, (3.2.1)
and (3.2.9). Finally, L,(z) is still the p.g.f. of the number of customers
arriving during a service period for the M/G/1 (G, SV) system.

Now we obtain the expected value of L, as

A2 NE(V?) V*(AN) + AE(V)

E(L) =t 50— sy 2B (1-p)

p. (3.2.13)

Similarly, we can get the stochastic decomposition property for the
stationary waiting time of the M/G/1 (G, SV) system.

Theorem 3.2.4. For p < 1, in an M/G/1 (G, SV) system, the
stationary waiting time W, can be decomposed into the sum of three
independent random variables,

WU:W+Wd+WT7

where W is the waiting time of a classical M/G/1 queue without vaca-
tions, with its LST given in (2.1.2). W, and W, are the additional delay
due to the vacation effect, with respective LSTs

sVEA) + A1 = V*(s))

Wils) = "y + 2B(V)]s

W*(s) = Qp[B*(s)]. (3.2.14)

From this theorem, we get the expected value of the waiting time

Ab®) N AE(V?) N V*A) + AE(V)
2(1—p) " 2[V*(\) + AE(V)] p(l—p)

which also follows Little’s Law.

Another variation of the M/G/1 (G, SV) model is the system where
the server starts a service period as long as there is at least one customer
in the system at the end of a vacation (the waiting customers may arrive
during the previous vacation). The server becomes idle only when no
customers are in the system at the end of a vacation. Using the same
method as in Lemma 3.2.1 and Lemma 3.2.2, we obtain

Qp(2) = Qp [B*(A(1 = 2))] V7 [A(1 = 2)] = VE(N)Qu[B*(W)](1 = 2),

which can be the basis for developing all the corresponding results ob-
tained in this section.

E(Wv) =

3.2.3 Binomial Gated Service Vacation Model

In this system, the number of customers served in a service period
is a Binomial random variable with parameters p (0 < p < 1) and Qy,
the number of customers present in the system at the beginning of the
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service period. This means that the probability of serving k customers
in a service period is given by
Ple =k ) = (P)ha-pet k=010
k

At the end of a service period, the server leaves for a vacation. If the
server finds no customers present in the system at the end of a vacation,
it takes another vacation. If the server finds some customers in the
system at the end of a vacation, it starts a service period and accepts
only a random number ® of customers. This system, called a Binomial
gated service model, is denoted by M/G/1 (BG, MV) and was introduced
by Levy (1989). Note that the special case of p = 1 corresponds to the
M/G/1 (G, MV) model.

For convenience in analysis, we allow the service period with zero
length in this subsection. Thus we can say that a zero-length service
period occurs between two vacations continuously taken by the server.
There are two possible cases in which a zero-length service period may
occur. The first is when there is no customer in the system at the end of
a vacation, and the second is when the number of customers accepted in
a service period is zero according to the Binomial distribution. Using the
zero-length service period, we can consider any vacation to be followed
by a service period, and thus the number of customers in the system
at the end of a vacation is equal to the number of customers at the
beginning of the following service period Q.

It is clear that the p.g.f. of the number of customers served during a
service period @, given that (), customers are in the system, is given by

Qp
Bl =Y (ib) (2p)F(1 = p)@F = (1 = p(1 — ).
k=0

Unconditioning the expression above, we get the p.g.f. of ®:

®(z) = Qp[1 —p(1 —2)].

Note that in both M/G/1 (G, MV) and M/G/1 (G, SV) systems the
customers present in the system at the beginning of a vacation are those
who have arrived during the preceding service period. However, in an
M/G/1 (BG, MV) system, the number of customers at the beginning
of a vacation may include those who were left at the end of the earlier
service period.

Lemma 3.2.3. In a steady-state M/G/1 (BG, MV), the p.g.f. of
Qp(z) satisfies the equation

Qp(2) = Qp[1 —p(1 = B*(A(1 = 2))] VI (A(L = 2)). (3.2.16)
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: : : . 1) .
Proof: Consider two consecutive service periods. QénJr ) is equal to

Ql()n) minus ¢ customers served and plus the number of arrivals during
the service period and the following vacation. From the fact that the
arrival processes in nonoverlapping intervals are independent, it follows
that

Q) =V (A1~ 2)
ad ke , )
. {ZP{Qé"’ =k <i)p2(1 — )P B - zw}
k=0 1=0

= Q" {1—p[l = B*(\(1 — )]} V*(A(L — 2)).

In a steady state, Q (1) and Ql()n) have the same distribution. Thus we
obtain (3.2.16). O
Using (3.2.16) and the relation between ® and @, we have

AE(V ApE(V
m@) =20 gy = PV

1 —pp 1—pp
Theorem 3.2.5. For p < 1, in an M/G/1 (BG, MV) system, the

stationary queue length L, can be decomposed into the sum of two
independent random variables,

L,=L+ Ly,

(3.2.17)

where L is the queue length of a classical M/G/1 queue without vaca-
tions, with its p.g.f. given in (2.1.2). L4 is the additional queue length
due to the vacation effect, with the p.g.f.

L)~ B0 =) + (- p)e] - (=)
PE(Qy)(1—p)(1—2)

Proof: Let L, be the number of customers in the system left by the
nth departure in a service period. Thus

Ln:Qb+Al++An_na n=12..,90.

For a given ®, we have

P (]
E {ZM@} =F {Zsz—n [B*(A(1 —2))]" |<1>}

n=1
Br(A(1 - Z))
(A1 -

{ A1 - 2) ))‘I’ZQb_ZQb,@}, (3.2.19)

(3.2.18)
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Note that when @y is fixed, ® follows a Binomial distribution. Therefore,

we get
. { (o z)))q’z@,@}

B {% <C]ib> <B*(>\(i - Z))>kpk(1 _p)Qb—szb}

k=0
= B{pB*(\1-2) + (1 - p)2*}
= Qu[pB* (A1 - 2)+ (1 - p)3].

Using the same method to compute E {sz|<I>} and substituting both
results into (3.2.19), we obtain

= B = ) {Qu[pBT (A1 - 2) + (1 - p)2] — Qu(2)}
E{ZZL }: B*(A1—2))— =z

n=1

It follows from Theorem 3.1.1 that

E {Zgj:l ZL”}
E(®)
_ (1=p)(A=2)B*(A(1 = 2))
B*(A(1—-2)) -z
@ lpB" (A1~ 2)) + (1 —p)z] — Qu(2)
(1= p)pE(Qp)(1 — 2)
= L(z)L4(2).

Ly(z) =

O
Similarly to Theorem 3.2.2, we utilize the classical relation

Ly(z) = Wy (A(1 = 2)) B*(A(1 - 2)),

and (3.2.18) to get the following theorem.

Theorem 3.2.6. For p < 1, in an M/G/1 (BG, MV) system, the
stationary waiting time W, can be decomposed into the sum of two
independent random variables,

Wy =W + Wy,

where W is the waiting time of a classical M/G/1 queue without vaca-
tions, with its LST given in (2.1.2). Wy is the additional delay due to
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the vacation effect, with the LSTs
M@ pBs)+ (1-3) A -p]-@(1-3)}
PE(Qyp)s '

From the stochastic decomposition theorems, we obtain the following
expected values:

Wi (s)

(3.2.20)

B(L) = p+ 5aroh (1= p)+ (14 o),
B = 5B (1= )+ (L)

From (3.2.16), we can obtain

QU(1) = NpE(V)0 + 2ppA*E2(V) + (1 — pp) N E(V?)
v (1—pp)(1 - p?p?) ‘

See Takagi (1991), page 215, for the details of computing this expression.
Substituting E(Qs) and @} (1) into E(L,) and E(W,) yields

(=) () [ O B wppB(V)
E(L,) = 1+ pp {2(1_pp) 2E(V) + 1—pp },

_A=p)+(tpp) [ P BV ppE(V)
E(Wy) = 1+ pp {2(1 —p) " 2E0V) T T-p }

3.3 Limited Service M/G/1 Vacation Models
3.3.1 P-Limited Service Model

In a pure limited (P-limited) service system, the server takes a vaca-
tion after each customer service. In other words, the service period is
only one customer service. At a vacation completion instant, if there are
no customers in the system, the server takes another vacation. Vacations
are repeated until at least one customer is found at the end of a vaca-
tion. This system, called a P-limited service multiple vacation model,
is denoted by M/G/1 (PL,MV). It is assumed that the service order is
FCFS and the interarrival time, the service time, and the vacation time
are mutually independent. Define a general service time as the sum of a
service time and a vacation time. Thus the M/G/1 (PL,MV) system can
be converted to an M/G/1(E,MV) system, with a service-time’s LST of
B*(s)V*(s). Now the stability condition becomes p = p+ AE(V) < 1,
and p = Au~!. Using the results of the M/G/1 (E, MV) system, we
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can obtain the stochastic decomposition properties for the M/G/1 (PL
MV) system as

L) (LR —2)B 0 - z))V*()\(l ) 1-VEA( - 2))
‘ B0 - )V - ) NEWV)(1—2)
_ (L—p)s - V(s )
Wol2) = =5 - B*(s)V*(s)) BV)s (3:3.1)
and
X[+ 2ZEWV)+ BV \pay
BLo) =p+ 2ﬂ(1 —7) YN
A [b@) F2E(V) + E(V2)} E(V?)
B(W) =7 T 3E(W)

Skinner (1967), Gelenbe and Mitrani (1980), and Lavenberg (1983)
considered a variation of the model above in which the vacation time
after no customer is served, denoted by Vj, can be different from those
after a customer is served, denoted by V,, n > 1. In this system, a
server’s vacation time depends on the system state at the beginning of
the vacation. Since the general service time is the sum of a service time
and a vacation time, we can consider a sequence of independent two-
dimensional random vectors, the service time and the following vacation
time, (By, Vy,), n > 1, which have the same joint distribution. However,
for the mth customer, its service time B, and the following vacation
V, can be dependent on each other. Let B = B, + V,,, with the LST
B*(s). Now this special M/G/1 (PL, MV) system can be converted to
an M/ G /1 (E, MV) system, where the service time is B, the vacation
time is Vp, and p = AE(B ) Based on the results obtained in section
2.2.1, we have

(L=p)(1 = 2)B" A1 -2) 1 - VFA(1 - 2)
B*(A\(1—2)) — 2 AE(Vo)(1—2)

_ (A=p)s  1-V{(s)
Wole) = — A1 = B*(s)) E(V)s ’ (33.2)

Ly(2) =

and

A2E(B?) N AE(V2)
20-p)  2E(W)’
AE(B%)  E(V})
2(1-p) 2E(Vo)

E(Lv) =p+

E(Wv) =




92

For a P-limited service single vacation model, denoted by M/G/1 (PL,
SV), we can use the general service time method to convert the system
to a classical M/ G /1 without vacation, where the general service time is
a service time plus a vacation time, with the LST B*(s) = B*(s)V*(s).
All results for section 2.1.1 apply to this model.

3.3.2 G-Limited Service Model

We now consider the general limited (G-limited) service vacation sys-
tem. In such a system, we use a positive integer M as the upper limit
for the number of customers served during a service period. This means
that if Ql()n) represents the number of customers present in the system at
the beginning of the nth service period, the number of customers served
in this service period should be

o = min{Ql()n), M}.

At the end of the service period, the server takes multiple vacations.
Obviously, the case M = 1 corresponds to the P-limited service system
and the case M = oo corresponds the gated service system. The system
with 2 < M < oo is called a G-limited multiple vacation model, denoted
by M/G/1 (GL, MV). This type of system has been studied by Hashida
(1981) and Genter and Vastola (1988).

Consider the number of customers in the system at the beginning of a
service period {Q,()n), n > 1}, which is an embedded Markov chain. The
transition probability of this Markov chain is given by

pir = P{Q"™ = k|QM™ = 5}

— I (%)ke—xtdg(j) « V (1), j<M,

where BU) is the jth-fold convolution of B(t) (the distribution function
of the service time) with itself, and BU) 5 V(t) is the convolution of
BU)(t) with V(t) (the distribution function of the vacation time). Let

g = lim P{Q'™ =k}, k>0,
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be the steady-state distribution of Qén). It follows from the steady-state
equations of a Markov chain that

M-1 00 ()\t)k 4
03w /0 Sl e Mapo) v ()

M+k
+ Z At T gpon V(t)
QJ ] +M 9
k> o. (3.3.3)

Define the p.g.f. of {qx}§° and the partial p.g.f. of {qk}éw !

M—

o
2) =Y @, Qu(z) = 2"
k=0

k=

[y

[e=]

Lemma 3.3.1 In a steady state M/G/1 (GL, MV) system, Qp(z)
satisfies the following functional equation

Qp(2)
{ZMQM [B*(A(1 - 2))] — [B*(A(1 — 2))] QM(Z)} V(A1 - 2))
M — V(N1 = 2)) [B*(A(L — )] '

(3.3.4)
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Proof: It follows from (3.3.3) that

— _k N e L G)
Qb(z):Zz k:Zz qj/ o€ dBVY) x V(1)
k=0 k=0  j=0 0 '
© k+ o0 k—j+M
(AL)"7 —\t (M)
+) 2k q'/ ————e "dB"™ x V()
kZO j:M] o (k—j+M)
M-1 0
= qj / e M= BU) V(1)
J=0 0
+ Z g7 M “A=2)tg M)y v (1)

B*(A\(1—z)]M
A=) <Qma—@M@»}.
Solving this equation for Qp(z), we obtain (3.3.4). O

To determine Qp(z), we need to compute the coefficients of Qps(z),

40,91, ---,qrm—1- In the denominator of the right-hand side (r.h.s.) of
(3.3.4), let

fz) ==Y g(z) = V(A1 - 2)[B* (A1~ 2.

Using Rouche’s theorem and Lagrange’s theorem, for any ¢ > 0, it can
be proved that |f(z)| > |g(z)| on the circle |z| = 1+¢ and that f(z) and
f(2) + g(z) have the same number of zeros inside |z| = 1+ ¢. Therefore,
the denominator of the r.h.s. has M roots inside |z| = 14+¢&. One of these
roots is z = 1, and the other M — 1 roots are given by using Lagrange’s
theorem (see Saaty (1983) and Chaudhry and Templeton (1983)) as

n/M

{voa-amoa-nM""

z=0

00 i —
e27rmnz/M dn—1

Z. =
mn n!  dznl
n=1

m=1,2,...,M—1.
(3.3.5)
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where i = y/—1. Since Qp(2) is analytic in |z| < 1, the numerator of the
r.h.s. of (3.3.4) must also be zero at z = z,, for m = 1,2,.... M — 1.
Therefore, we have m — 1 equations as

M—-1
> ac{= B A0 =z = [B AL =z 2 } =0,
k=0
m=1,2,...M—1.
(3.3.6)

Another equation is provided by the condition Q(1) = 1. In (3.3.4),
letting z — 1 and using the L’Hopital rule, we get

M(1—-p)Qu(1) — (1 - p)Q), (1)

1= M(1=p)— AE(V) ’
which yields
Q1) = )~ 21— Q)
or
S - K — M- D) (3.3.7)
k=0 P

Now we can compute the M coefficients {qk}g/[ ~1 using M equations of
(3.3.6) and (3.3.7).

We can also intuitively explain the stability condition of the system
as follows: the expected number of customers arriving during a service
period and a vacation period must be smaller than M. That is,

NE(S,) + BV)] = 50 = B@) < 1
which is equivalent to
M1 —p)—AE(V)>D0. (3.3.8)

Theorem 3.3.1. For M(1—p)—AE(V) > 0, in an M/G/1 (GL, MV)
system, the stationary queue length L, can be decomposed into the sum
of three independent random variables,

Ly=L+Ls+ L,,

where L is the queue length of a classical M/G/1 queue without vaca-
tions, with its p.g.f. given in (2.1.2). L; and L, are the additional queue
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lengths due to the vacation effect, with the p.g.f.’s

1V - 2))
L) = =gaa=o

1) - QBT = 2))) — [B (1= 21 Qu(2)
' AM=VH(A1 = 2)[B*(A(1 = 2))IM
Proof: From ® = min{Qy, M} and (3.3.7), we obtain

M—-1 00
= Z kg, + M Z qk
k=1 k=M

= Q)+ M(1 - Qu(1) = 22

Using L, and Aj as defined before, we have

n
ZQb—TL—i-ZAk, n=12..9®.
k=1

From the definition of ®, we get

® ®
E {leL"} =E {ZIZQZ’_” [B*(A(1 - Z))]n}

M—

—_

k
P{Qy=k}Y " [B* A1 - 2)"

n=1

0o M
+ Z P{Qy = k} Z 7 B* (A1 = 2)]"

k=0

((*)5(1 1__22 ) —= {%%1%{ 1—2))]k—zk}
+ [[B (A1 —=2) zM} 3 }

kak M
k=M
_ BO(-2)
B*(AM1-2))—=z
x{Qum [B*(A(1 = 2))] — Qu(2)

P [FOOZ gy - QM<z>>}.

(3.3.9)
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Substituting this result and E(®) into (3.1.4) gives

(1= p)(1 = 2)B*(A(L - 2))
B*(A1—-2))—z

QuIB* (M1 — 2))] ~ @o(2) + [ZR0=D]" (4 (2) — Qui(2))

Ly(2) =

X

NE(V)(1—2)
(3.3.10)

Substituting (3.3.4) into (3.3.10), we have
(1= p)(1— 9B (A1 =) 1 - VA1 2))
B*(A1—2))—=z AE(V)(1 - 2)
L AQuIB (A1 = 2))] - [B* (M1 — 2))1" Qui(2)
M= VHML = 2))[B*(A(1 = 2))|M
= L(2)Lq(z)L(2).

L,(2) =

O

Based on Theorem 3.3.1 and the relation between L, and W,,, we can
obtain the stochastic decomposition property of the stationary waiting
time.

Theorem 3.3.2. For M (1 — p) — AE(V) > 0, in an M/G/1 (GL,
MV) system, the stationary waiting time W, can be decomposed into
the sum of three independent random variables,

Wy =W +Wa+ W,

where W is the waiting time of a classical M/G/1 queue without va-
cations, with its LST given in (2.1.2). Wy, and W, are the additional
delays due to the vacation effect, with the LSTs

Wils) =
s\M * * s
W:(S) _ (1 B X) QM(B (3)) - [B (3)]MQM (1 B X) ] (3'3‘11)

(1" —ve(s) [B=(s)M

Using these stochastic decomposition results, the expected values of the
queue length and the waiting time are given, respectively, by

A2b(2) N AE(V?)
2(1—p)  2E(V)
b2 E(V?)

BW,) = 5=+ g7 + 3 E(@) — E(V).

E(Ly) =p+ + E(Qp) — AE(V),
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Note that E(Q) can be computed using (3.3.4). In an M/G/1 (GL,
MV) queue, if Q, = k < M, the service period is the sum of k service
times; if @y = k > M, the service period is the sum of M service times.
Thus it follows that

M-1 0o
Sp(s) =D B &) + B M Y an
k=0 k=M
= Qu(B*(5)) + [B*(s)]" (1 - Qu(1)).

From this expression, we have the expected value of the service period:

B(S) = [Qh(1)+ M(1 - Qu(1)]
_PEV) _1pg),
IL—p p

3.3.3 B-Limited Service Model

In some practical situations, the service period consists of a fixed num-
ber M of customer services. In other words, the server takes a vacation
after a batch of M customers has been served continuously. If the server
finds fewer than M customers present in the system at a vacation com-
pletion instant, it takes another vacation, and it continues to operate in
this manner until it finds at least M customers queued upon returning
from a vacation (a multiple vacation rule). Then the server starts a
service period. After completing M services, the server takes a vacation
no matter how many customers are in the system. This system is called
a batch limited (B-limited) service multiple vacation model, denoted by
M/G/1 (BL, MV). This model was introduced by Wortman and Disney
(1990). Clearly, the special case M = 1 reduces to the P-limited service
multiple vacation model.

To form an embedded Markov chain for the queue length, we choose
a set of Markov points at vacation and service period completion in-
stants. Let g be the joint probability that a Markov point is a vacation
completion and that there are k customers in the system at that time,
and let hy be the joint probability that a Markov point is the service
period completion and that there are k customers at that time, where
k=0,1,2,.... It is easy to establish the following equations for these
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probabilities:
min(k,M—1) k
= D GO+ Y hve k>0,
j=0 j=0
M+E
M
o= qiag) . k>0, (3.3.12)
j=M
where

00 k
vk:/ Me*)‘th(t) and
0

Now we define

00 M-1 [}
= Z azt, qu(z) = Z a2, h(z) = Z hy 2",
k=0 k=0 k=0
Lemma 3.3.2. In an M/G/1 (BL, MV) system, we have
{1 =B =M au(2)V* (M1 - 2))
M VAL =2)) [BEAL =T

_ A —2) - B A -2 qu(z)
h,(Z) o M * * M ’
M =V*A(1 = 2)) [B* (A1 = 2))]
Proof: Taking the p.g.f.’s of both ¢ and hy in (3.3.12), we have

q(z) =

(3.3.13)

M-1
=) 2 Zqﬂ’k J*Z qu’Uk J*Z Z’“’k ~j
k=0
M-1 0o
:quzJZ’Uk kJ—I—ZhZ]ZUk ]Z —J
Jj=0 k=j
=V*(\1 - 2))(qm(z )—|—h(z)). (3.3.14)
0o M+k
sz Z ajaj J+M
J=
_Zqsziakj Sh—i+M
k=j—M

=;%@@r—mA@nB%M1—wnM. (3.3.15)
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Solving (3.3.14) and (3.3.15) for ¢(z) and h(z) gives (3.3.13). O

To determine the coefficients of qn(2), qo,q1,---,qr—1, We use the
same root-finding method as in section 3.2. In (3.3.13), letting z— 1
and applying the L’Hopital rule, we obtain

M(1 - p)gm(1)
M1 —p)—AE(V)’
AE(V)qnm(1)
M1 —p)—AE(V)’

q(1) =

h(1) =

From the normalization condition ¢(1) 4+ h(1) = 1, we can determine

M(1—p) = AE(V)

(1) = M(1—p)+ AE(V)

Substituting ¢gas(1) into ¢(1) and k(1) gives

_ M(1—p) AE(V)
D= a—paevy "W A ) B0

which are the probabilities that the embedded point is a vacation com-
pletion and a service period completion, respectively.

Theorem 3.3.3 For M(1—p)—AE(V) >0, inan M/G/1 (BL, MV)
system, the stationary queue length L, can be decomposed into the sum
of three independent random variables,

Lv:L+Ld+Lrv

where L is the queue length of a classical M/G/1 queue without vaca-
tions, with its p.g.f. given in (2.1.2). Ly and L, are the additional queue
lengths due to the vacation effect, with the p.g.f.’s

-V —2)

Liz) = Sgma—2

[M(1 = p) + XE(V)] qu(2)[zM — (B*(A(1 — 2)))"]
M(1 = p)[zM — V*(A(1 = 2))(B*(A(1 - 2)))M]

L,(z)= (3.3.16)

Proof: Let ® be the number of customers served in a service period. If
the number of customers in the system at a vacation completion instant
is k < M, we consider that a zero duration service period occurs; if
k > M at this instant, then the service period is the sum of M service
times. Thus we have

d = 07 Qb<M7
N Mv QbZM
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Since the distribution of the number of customers in the system at a
vacation completion instant is {g}3°, we get

=M Z qr = M(q(1) — qar(1))
e

AME(V)
= . 3.3.17
M1 —p)+AE(V) ( )
Let L, be the number of customers at the nth departure of a service
period. Hence

0 Qp < M
= J 1<n<M.
Ln {Qb_n+EZ:1Aka Qy>M ==

Now we compute

(i3] ) M
5 {Z an} SRR SRRl

n=1 k=M

A1 =2)) {zM = [B*(AM1 - 2))|M}

= Z ar=* Mz — B*(A\(1 - 2))]
B*(A(1 —2)) {zM — [B*(\(1 — )M
= (a(2) — aaa (o) 2 ZM[Z{— B*(A(1 (— i))] o

(3.3.18)
Using (3.3.13), we can rewrite (3.3.18) as

. {Z = [B* A1 = )M} B*(A1 - 2))
{Zz }‘ B (N1 = )Mz = B*(\(1 - 2))]
aum (2 )[1 — V*(A(L = 2))]
(B*(A(1=2)) — 2)
X{z — [B*(A1 = 2))|M} B* (A1 - 2))
{zM = V(A1 = 2))[B*(A(1 - 2))|M}
It follows from Theorem 3.1.1 that

P
=F {Z an} (E(®))!
n=1

_ (1=p)A=2)B"(A1 —2)) 1 - V(A1 = 2))
B*(AN(1—2))—=z )\E(V)(l —2)
[M(1 = ) + AB(V)] qae(2) £ — [B*(A(1 — 2]}
M(1—p){zM - V*O\(l —2)[B*(A(1 = 2)M}
= L(z)L4(2)Lr(2).




102

O
From Theorem 3.3.3, the expected value of the queue length is given
by
(D) | BV
E(V?) + 2MpAE(V) 4+ AMb®?
2[M (1 = p) = AE(V)]
(M = 1)(1 = p)[2Mp + AE(V)]
2M (1= p) = AE(V)]
Remark 3.3.1. In an M/G/1 (BL, MV) system, the waiting time of
a customer arriving during a vacation may depend on the arrival process
after its arrival. Therefore, the waiting time and the interarrival time
are not independent. For example, if a customer’s arrival makes the
number of customers in the system k& < M, then the interarrival times
of the following M — k customers determine when the nonzero service
period starts. Thus there is no classical relation between the LST of the

waiting time and the p.g.f. of the queue length. However, based on the
PASTA, Burke’s theorem, and Little’s law, we can obtain

(1 E(V?
BEW.) = )i]gjy\jw((l)) 2>\2(E(X)/)
E(V?) +2MpAE(V) 4+ AMb®
2AM(1 = p) = AE(V)]
(M —1)(1 = p)2Mp+ AE(V)]
2AM(1—p) = AE(V)]

E(Ly) =p+

_l’_

3.3.4 E-Limited Service Model

Now we consider an exhaustive and limited (E-limited) service system
where the server continues to serve until either (1) M customers (in-
cluding the arrivals after the service period starts) are served, or (2) the
system becomes empty, whichever occurs first. We denote this system
by M/G/1 (EL, MV). Clearly, this service policy combines the features
of both an exhaustive service and a nonexhaustive service system. Note
that the special cases M =1 and M = oo correspond to the P-limited
service and the exhaustive service policies, respectively. The difference
between the E-limited service and the G-limited service is that the cus-
tomers arriving after the start of the service period may be also served
in the current service period in the E-limited service system. Based
on the method introduced by Lee (1989) and Takagi (1991), we choose
the vacation completion and the service completion instants as Markov



M/G/1 type Vacation Models: Nonexhaustive Service 103

embedded points so that the queue length at these points is an embed-
ded Markov chain. Let g; be the joint probability that the embedded
point is a vacation completion and that k customers are present in the
system at this instant, and let h,,; be the joint probability that the em-
bedded point is the mth service completion instant in a service period
and that k£ customers are present in the system at this instant, where
m=1,2,...M, k=0,1,.... Using the symbols introduced earlier, we
have

00 k 00 k
a = / W') e MdB(t), v, = / (At') e Mav(t),
0 k! 0 k!

and these joint probabilities satisfy the following equations:

k+1
hik =Y gjar—jp, k>0,
j=1
k+1
hmk = Zh’m—l,jak*]#*l’ m = 2737"'7M7
j=1
M—-1 k
qr = [Z hmo+qo| vk + ) hajve—j, k> 0.
m=1 j=1
Defining the p.g.f.’s
o0
Hy,(2) :thkzk, m=1,2,...,.M,
k=0

(o ¢]
q(z) = ar?",
k=0

we can rewrite the joint probability equations in terms of p.g.f.’s:

H(2) = ~(4(=) — a0) B* (N1~ 2))
H(2) = %(Hm,l(z) o) BS AN —2)),  m =23, M,
M—1
q(z) = himo + qo + Hpr(2) | V(AL = 2)).

3
I
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Using H,,(z) recursively, we obtain

% m m—1 % m—k
O e R S e
k=1
m=2,...M (3.3.19)
We also introduce
M—1
Z mOZ
m=1

Theorem 3.3.4 For M(1—p)—AE(V) >0, inan M/G/1 (EL, MV)
system, the stationary queue length L, can be decomposed into the sum
of three independent random variables,

L,=L+Lg+ L,,
where L is the queue length of a classical M/G/1 queue without vaca-
tions, with its p.g.f. given in (2.1.2). Ly and L, are the additional queue

lengths due to the vacation effect, with the p.g.f.’s

1=V - 2))

L= = g2
L) = =L EEW)

(1 - {13(,\21—2))}]\4) qo + Ho(1) + Hy [M}

% M — V(M1 = 2))(B*(A(1 — 2)))M

(3.3.20)

Proof: Defining

= Z Hp(z)

m=1

as the p.g.f. of the joint probability h,,;, we have
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From (3.3.19), we compute

__E{B%Mi—wq_ﬂ@)b_<3wxi—@vM]}

(3.3.21)
Letting m = M in (3.3.19), we have

[1 - (B*(A(Zl_zw]q %

ﬂaZMV%Ml@){M4VWM1anB%M1anM

Ho(1) — Ho (73*(“1#)))
TV~ )BT A ) [ (3.3.22)

_l’_

Substituting (3.3.22) into (3.3.21) yields
(1= p)(1 = 2)B* (A1 - 2))
B*(M1—-2))—=z
1-V*(A1 - 2)) AE(V)q(z)
NEWV)(1—2) (=pV-(M1-2))
To determine H(1), letting z = 1 in (3.3.22), we obtain
= (L= )My + Hy(1)
M1 —p)—XE(V)
and letting z = 1 in (3.3.23), we get

H(z)=

(3.3.23)

H(1) =
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Using the normalization condition ¢(1) + H(1) = 1, we have

1—0p AE(V)
a(1) = 1—p+AE(V)’ H(1) = 1—p+AE(V)

Dividing (3.3.23) by H(1) and simplifying gives results. [J

Note that there are M unknown coefficients, qo, hxo (K =1,2,..., M —
1), to be determined. We have already proved in the G-limited service
model that under the condition M (1—p)—AE(V) > 0, the denominator
of the r.h.s. of (3.3.20) has M —1 roots, 2z, (m = 1,..., M —1), inside the
circle |z| = 14 €. The numerator of the r.h.s. of (3.3.20) must also be
zero at these points, which gives M — 1 equations for the M unknowns:

{1 - [Fe- zm>>}M} "

M-1 * M-k
s {1_ (500~ z0))] }hko:&

k=1 “m
m=1,2,...,M—1.

Another equation is the normalization condition. We have

= _ M(1—p) = AE(V)
Maqo + ;(M—k)hko = T 2BV

Now we have M independent equations to solve for M unknown coeffi-
cients. Under the FCF'S service sequence, there exists a classical relation

Ly(2) = Wy (A(1 - 2))B*(A(1 = 2)).

Based on this relation, we have the following stochastic decomposition
property of the waiting time.

Theorem 3.3.5. For M (1 —p) — AE(V) > 0, in an M/G/1 (EL,
MV) system, the stationary waiting time W, can be decomposed into
the sum of three independent random variables,

Wy =W 4+ Wy + Wy,

where W is the waiting time of a classical M/G/1 queue without va-
cations, with its LST given in (2.1.2). Wy and W, are the additional
delays due to the vacation effect, with the LSTs

1—V*(s)
Wi(s) = ———>

d(S) E(V)S )

Wis) =L, (1-3).
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where L,(z) is determined by (3.3.20).
From Theorem 3.3.5, we have
A2 N E(V?)
2(1—p) 2E(V)

EW,) =

where ¢/(1) is given by
q'(1)
B 2(1 — p) + A2
(1= p)*[M(M —1)go + Hg (1)]
2[M(1 = p) = AE(V)]
N q(D)N2MBP — M(M —1)(1 — p)2 + N2E(V?) + 2M M pE(V)]
2M(1 = p) = AE(V) |

See Takagi (1991), page 244, for the details about computing the expres-
sion.

3.3.5 T-Limited Service Model

In the limited service vacation models discussed above, the number of
customers served during a service period is limited in various ways. We
now consider a multiple vacation system where the length of each service
period is limited by a given length of time 7". This model is denoted by
M/G/1 (TL,MV). The parameter T is also called the mazimum server
attendance time. It is assumed that service is preempted when T ex-
pires and is resumed at the next service period without loss or creation
of work. Clearly, the service completion instants are not the regeneration
points of the queue process. Because of the service preemption, we are
concerned with the unfinished work instead of the number of customers
in the system at various time points. Let U,(¢) be the unfinished work
at time ¢, which is equal to the time required for the server to finish
serving all customers present at this instant ¢ without taking vacations.
Note that U,(t) is different from the virtual waiting time, denoted by
Wy (t), which is defined as the waiting time of a customer that arrives
at this instant ¢. This difference exists because W, (t) may include the
vacation times after ¢. Hence W, (t) is stochastically larger than U, (t).
Due to the PASTA, the actual waiting time and the virtual waiting time
should have the same limiting distribution in an M/G/1 queue. Boxma
(1989) established a general stochastic decomposition property for the
unfinished work of an M/G/1 system with vacations and a work conser-
vation law. In such a system, the customer service can be preempted
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by a vacation and resumed after the vacation without loss or creation of
work.

Theorem 3.3.6 Under a vacation policy with work conservation,
the stationary unfinished work can be decomposed into the sum of two
independent random variables,

Uy=U+Y, Uis)=U"(s)Y*(s),

where U is the unfinished work in a classical M/G/1 queue without
vacations and Y is the unfinished work at any time during a vacation.

Proof: We provide a sketch of the proof here; the details can be found
in Boxma (1989). Since there is no loss or creation of work, the workload
to the vacation system does not change. At any time point, the server is
serving the queue with probability p and is on vacation with probability
1 — p. Therefore, using the conditioning argument, we have

UZ(s) = E(e™*Y) = pE(e~*Y|server is busy) + (1 — p)E(e~*Y).

(3.3.24)
However, the unfinished work at any time point during a service period
is the sum of two independent parts. One of them is caused by the
new arrivals occurring from the beginning of the service period to this
time point and is equal to the unfinished work at this time in a classi-
cal M/G/1 queue. The other part is present in the system before the
beginning of the service period and is equal to the unfinished work at
any time during the vacation preceding the service period, Y. Hence we
have

E(e *Yv|server is busy) = E(e~*Y[server is busy)E(e ).

In a classical M/G/1 queue, U has the same stationary distribution as
the waiting time. Since the probability that an arrival occurs in a busy
period is p and in an idle period is 1 — p, from the Pollaczek-Khinchin
formula, we get

s(1—p)
s — M1 — B*(s))

From this expression, we obtain

W*(s) = = (1 —p) + pE(e %Y |server is busy).

p(l = p)(1 = B*(s))
s—A1—-B*(s))

Substituting (3.3.25) into (3.3.24) yields

AL = p)(1 = B*(s))
s — A1 — B*(s))

_ S(l_p) *(s) = U*(s)Y*(s

E(e *Y|server is busy) = (3.3.25)

Uy (s) = Y¥(s) + (1= p)Y*(s)
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0

The following discussion is based on Theorem 3.3.6. There are two
classes of T-limited vacation models. The first class is under a gated
service and multiple vacation policy, which was studied by Leung and
Eisenberg (1989). In such a system, the maximum number of customers
served during a service period is the number of customers present in the
system at the beginning of the service period. When the cumulative
service time reaches the limit 7', or the maximum number of customers
are served, whichever occurs first, the service is stopped and the server
takes a vacation and keeps taking vacations until the system is nonempty
at a vacation termination instant. This policy is called T-gated limited
service and the M/G/1 type vacation model can be denoted by M/G/1
(TG, MV). The second class is under a policy that combines T-limited
service with exhaustive service and multiple vacations. In such a system,
the service period is terminated when either the cumulative service time
reaches T' or the system becomes empty, whichever occurs first. This
policy is called T-exhaustive limited service and was also studied by
Leung and Eisenberg (1990).

Theorem 3.3.7. In both classes of M/G/1 (TL, MV) systems, the
stationary unfinished work at an arbitrary time point can be decomposed
into the sum of three independent random variables,

Uv:U+Ud+Ura

where U is the unfinished work in a classical M/G/1 queue, Uy is addi-
tional unfinished work with the LST

1SV BY(s)
Vi) = SEma—Bs)

and U, is the unfinished work at the end of a service period.

Proof: Using Theorem 3.3.6, we see U, = U +Y and U and Y are
independent. Because no loss and creation of work take place in the
vacation model, Y can be decomposed into the sum of two parts. That
is, Y = Ug + U,, where U, is the unfinished work present in the system
at the end of a service period (or the start of the following vacation) and
Uy is the increased work caused by arrivals occurring from the start of
the vacation to the time point of interest (for computing the unfinished
work). From the renewal theory, the p.g.f. of the number of arrivals
during this period is

VA 2)
X&) = SEma=2
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Note that every new arrival contributes a complete service time to the
unfinished work. Thus we have

) — xig(a — L VA= B(9)
Vi) = XIB* () = S Eai = By

and obviously U; and U, are independent. [J

Note that the LST of U,., the unfinished work at the end of a service
period, is not given in Theorem 3.3.7. It can be obtained for the T-gated
limited service and the T-exhaustive limited service cases.

Let Up be the unfinished work in the system at the beginning of a
service period, and let U (s) be its LST. Since there is no loss of work
during vacations, Up can be expressed as the sum of two parts, U, =
Uy, + U,, where Uy, is the work increase due to new arrivals during the
vacations. Clearly, U,, and Uy are independent and the LST of Uy, is

Up(s) = V*(A(1 = B*(5))).
Based on Uy (s) = Uy (s)U}(s), we get

* o U*(S)
V) = = )

(3.3.26)

In a T-gated limited service system, if U, = x < T', then the length of
the service period is x and the unfinished work at the end of this service
period, U,, is equal to the sum of service times of the arrivals during
period z; if Uy, = x > T, then the length of the service period is T', and
U, is equal to (z — T') plus the increased work due to the new arrivals
during T'. Therefore,

T 0
U(s) = [ e E Oty (o) 4 T [T e D),
T

0
(3.3.27)
Using (3.3.26) and (3.3.27), we obtain the integral equation that U (s)
satisfies:

Ul;k(s) _ V*()\(]. - B*(S))) {/T e—Az(l—B*(S))dUb(m)

0
e AT(-B(5)) /oo

e8<wT>dUb(x)} . (3.3.28)
T

Leung and Eisenberg (1989) provided a technique for finding Uy(z) by
expanding 1 — Up(x) in Lagureer functions.

For a T-exhaustive limited service system, Takagi (1991) presented
the integral equation that U} (s) satisfies by using a modified process
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of the unfinished work such that, starting with U;(s) at ¢ = 0, once
the system becomes empty it continues to be empty afterwards. The
modified unfinished work at ¢ = T is the unfinished work at the end of a
service period (either ended at an empty system or with the maximum
server attendance time reached) in the original system. The following
equation can be obtained:

Ui (s) = V(A1 — B*(s)))e s AA=B*&)IT

X{Uﬂ@—my—ml—Bn@»Zfe[smlg%mm%@mx},
(3.3.29)

where Py(z) is the probability that the modified system is empty at time
x, and the LST of Py(x) is

_ Uilw+ M1 = D*(w))]

@]
/ e YT Py(x)dx
0

Here D*(s) is the LST of the busy period of a classical M/G/1 queue. For
the detailed development of (3.3.29), see Takagi (1991), pages 260-261.
The numerical solution to (3.3.29) was given in Leung and Eisenberg
(1990).

3.3.6 Bernoulli Scheduling Service Model

With Bernoulli scheduling, at the end of each service, the server takes
a vacation with probability 1 — p or continues serving a customer, if any,
with probability p, where 1 < p < 1. This model is denoted by M/G/1
(BS, MV) and was studied by Servi and Disney (1986), Ramaswamy and
Servi (1988), Tedijianto (1990), and Wortman et al. (1991). By choosing
the vacation and service completion instants as a set of embedded points,
we have a Markov chain for the number of customers in the system.

Let g be the joint probability that the embedded point is a vacation
completion instant and that there are k customers in the system at that
time, and hj be the joint probability that the embedded point is a service
completion instant and that there are k customers in the system at that
time, where k = 0,1,2, .... These probabilities then satisfy the following
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equations:

g0 = (qo + ho)vo

ax = (qo + ho)vr, + (1 —p Zhvk] k>1,

k+1 k+1
hy, = qu'ak—jﬂ +pz hjag_ji1 k>0,
j=1 j=1
1= aqc+ Y M, (3.3.30)

k=0 k=0

where

CF A
v = ~——e NdV(t), and a= e “dB(t), k>0.
o K 0o K

Now we define

= Z 2" h(z) = Z 2"
k=0 k=0
Using ¢(z) and h(z), (3.3.30) can be rewritten as
q(2) = lgo + pho + (1 = p)h(2)][V*(A(1 - 2)
h(z) = [q(2) + ph(2) = (g0 + pho)l(1/2) B"(
1 =q(1) + h(1). (3.3.31)
From (3.3.31), we solve for ¢(z) and h(z):

(g0 + pho)lz — B*(A\(1 — 2))]V*(A(L - 2))
e+ (L= PV (A1 = 2) B (A1 —2))
(40 + Pho)[V* (M1 - 2)) — 1]B* AL - 2))

e+ (L= PV AL —2)B* (A1 —2))

N —
—~
—_
|
N
~—
N

q(z) =

h(z) =

Using the normalization condition, we have

1—p—A1-p)E)
1—p+ AE(V)

qo + pho =

The expected number of customers served during a service period can

be obtained as h1) AE(V)
B
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For an FCFS system, the LST of the waiting time, W (s), is related to
h(z) and B*(s) by the equation

>

() _ it - N B -
1 = Wi =B (0 = 2).

From this equation, we get

>

v sE(V) s— X+ ApB*(s) + (1 —p)B*(s)V*(s)]’
BOW,) E(V?) A {0+ (1= p)[2bE(V) + E(V?)]}

T 2E(V) 2{(1—p—(1-pAE(V)}

Now we again use the supplementary variable method to obtain the
joint probability distribution of the server status, the number of cus-
tomers in the system, and the elapsed vacation or service time at an
arbitrary time. Introduce the following stationary random variables:

¢ = 0 if the server is on vacation,
1 if the server is busy,

L, = the number of customers in the system,
B_ = the elapsed service time for the customer in service,

V_ = the elapsed vacation time for the server on vacation.
Define the joint stationary probability,

mn(x)de = P(Ly, =n,c < B_ <z +dr,£=1), n=1,2---,
wp(x)dxr = P(Ly, =n,z < V_ <z +dz, £ =0), n=0,1,---,

and the LSTs

w*(z,s) = sz /000 e wp(z)de. (3.3.32)
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where v(z) = dV(z)/dz, the p.d.f. of the vacation time, and b(z) =
dB(z)/dx, the p.d.f. of the service time. By considering the steady-
state system, we obtain the following system of differential difference
equations:

d“’gf) N+ T wn(x) = Mg (@), k>0
wo(0) = /U ” wo(@)o(z)da + /O " i (2)b(x)da,
wr(0) = (1— p) /0 " e (2)b()da, k> 1
dﬁc’;ix) N+ b@)] (@) = A (z), k> 1
(0) = /0 ~ won(@)o(@)da + p OOO Th (2)b(@)dz, k> 1

e s S
7(z,z) & ZW = 7(z,0)e 72)7, (3.3.33)
where . .
7(z,0) = &=, 0)z[1 = VAL = 2))] (3.3.34)

B*(M1—-2))—=z
To determine w(z,0), we use the result that the p.g.f. of the number of

customers in the system immediately after the start of a service can be
obtained as (see Chapter 1 of Takagi (1991))

7(z,0) zh(z)

7(1,0)  A(1)B*\1-2)) (3.3.35)
Substituting h(z) of (3.3.31) and (3.3.34) into (3.3.35), we get
(=p— (LA = B =2)]

Y0 B+ G-V A 2B - )]
Thus, from (3.3.32), we have the LSTs of the joint distributions as fol-
lows:
1-V*(s+A(1-2))

s+ A1 —2) ’
1—-B*(s+A(1—-2))
s+ A1 —2)

w*(z,8) =w(z,0)

7 (z,5) =7(z,0) (3.3.37)
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From (3.3.34), (3.3.36), and (3.3.37), we can obtain the expression

(2, 8) = M6 /1%, 8) La(2) Lr(2), (3.3.38)
where
. A1 =p)z(1 = 2)[1 — B*(s + A(1 — 2))]
m™ycn(z8) = BO1-2) -G -A1-2) (3.3.39)
La(z) = 1;E‘EV()A((11__ZZ))), (3.3.40)
Lo(z) = {1-p—(A=-pAEV)}[z - B* A1 = 2))]

(L=p{z =+ @ =pV*(A1-2)|B*(AM1-2))}
(3.3.41)

Using (3.3.37) and (3.3.38), we obtain the stochastic decomposition
property for the number of customers in the system at an arbitrary
time.

Theorem 3.3.8. For an M/G/1 (BS, MV) system, the stationary
queue length L, can be decomposed into the sum of three independent
random variables,

Ly=L+Ls+ L,

where L is the queue length of a classical M/G/1 queue without vaca-
tions, with its p.g.f.given in (2.1.2). Ly and L, are the additional queue
lengths due to the vacation effect, with the p.g.f.’s given in (3.3.40) and
(3.3.41).

3.4 Decrementing Service M /G /1 Vacation
Models

3.4.1 P-Decrementing Service Model

Decrementing service means that the service period in a vacation
model ends when the number of customers becomes smaller than the
number of customers in the system at the start of the service period. The
simplest case is the pure decrementing service system, or the so-called
P-decrementing service model, which was studied by Takagi (1985). In
a P-decrementing model, if at least one customer is in the system at a
vacation termination instant, the server starts a service period and keeps
serving customers until the number of customers in the system is one
less than that found at the beginning of the service period. If there is no
customer waiting in the system at a vacation termination instant, the
server takes another vacation. This system is denoted by M/G/1 (PD,
MV). We first determine the distribution of the number of customers in
the system at the beginning of a service period, denoted by Q.
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Lemma 3.4.1. For a steady-state M/G/1 (PD, MV) system, the
p.g.f. of @ is given by
(1 =AE(V))(1—=2)V*(A\1 - z))

@ulz) = Vi A1—2) — 2

(3.4.1)

Proof: If a service period with zero duration is allowed, then the num-
ber of customers in the system at the nth vacation completion instant is
the number of customers in the system at the beginning of the following
service period Ql()n). It follows from the P-decrementing service that a
service period continues until the number of customers in the system
becomes one less than that at the start of the service period. Thus the
number of customers in the system at the next vacation completion in-
stant is the sum of the number of customers left by this service period
and the number of customers arriving during the following vacation. If
no customer is in the system at a vacation completion instant, another
vacation starts immediately (i.e., a zero-duration service period is be-
tween these two vacations). Hence

QM (z) = Dyeai = 2)) + QP OV (A1 - 2)).

For a steady-state system, the p.g.f.’s in the equation above are not
dependent on n, and therefore, we have

Qu(2) — Qp(0)

Qp(2) = + Qu(0) | V(A1 = 2)).

Solving this equation for Qy(z), we have

Qv (0)(1 - 2)V*(>\( 2))
VAL = 2)) - ’
and using the normalization condition Qp(1) = 1, we get
Qp(0) =1 - AE(V). (3.4.2)

Substituting (3.4.2) into Qp(2) gives (3.4.1). O

From (3.4.2), it is clear that the stability condition for an M/G/1
(PD, MV) system is p < 1 and AE(V) < 1. The latter means that the
expected number of arrivals during a vacation is less than one. This con-
dition is intuitive because under the P-decrementing service, the number
of customers in the system at the end of a service period is only one less
than that at the beginning of the service period. Therefore, if the ex-
pected number of arrivals during the following vacation is more than
one, the expected queue length will increase to infinity.

Qu(2) =
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Theorem 3.4.1. For p < 1, and AE(V) < 1, in an M/G/1 (PD, MV)
system, the stationary queue length L, can be decomposed into the sum
of three independent random variables,

Lv:L+Ld+LT7

where L is the queue length of a classical M/G/1 queue without vaca-
tions, with its p.g.f. given in (2.1.2). Ly and L, are the additional queue
lengths due to the vacation effect, with the p.g.f.’s

1=V - 2))

La=) = =paa—2

(1—AE(V))(1—2)
V(A1 —=2))—2z

Ly(2) = (3.4.3)

Proof: Since the stationary queue length distribution under a last-
come-first-served (LCFS) sequence is the same as under an FCFS se-
quence, we consider an LCFS sequence. In an M/G/1 (PD, MV) system
with LCFS service, the service period is the same as a busy period in
a classical M/G/1 queue. Now the number of customers in the system
at a departure instant consists of two independent components. One is
the number of customers that are present in the system at a vacation
termination instant minus one, if @y > 0, and has the p.g.f.

Qv(2) — Qs(0)
(1—Qu(0))z
The other is the number of customers arrived and served (according to

the LCFS) during the busy period that is initiated by the first customer
and has the p.g.f.

(3.4.4)

(1—-p)(A = 2)B*(A(1 - 2))
B*(\1—2))—=z )

Because of the independence of these two components, we have

(1= p)(1 = 2)B*(A(1 - 2)) @u(2) — Q(0)
B*(A(1-2)) -2 (1-Qu(0))z

Substituting the expressions of Qp(z) and Q4(0) in Lemma 3.4.1 into the
equation completes the proof. [J

L, is the number of arrivals during the residual life of a vacation and
L, can be proven to be the number of customers present in the system
at the end of a service period (see Takagi (1991)). The expected value

L,(z) =
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of the queue length for the M/G/1 (PD, MV) system is given by

A2 N2E(V?) NE(V?)
2(1—p) T AEWV) T 201 = AE(V))
A2p(2) AE(V?)
2(1-p) 2E(V)(1=AE(V))

E(Lv) =p+

=p+ (3.4.5)
From Theorem 3.4.1 and the relation between W,, and L,,, we obtain the
following stochastic decomposition property for the stationary waiting
time.

Theorem 3.4.2. For p < 1, and AE(V) < 1, in an M/G/1 (PD,
MV) system, the stationary waiting time W, can be decomposed into
the sum of three independent random variables,

Wv:W+Wd+Wra

where W is the waiting time of a classical M/G/1 queue without va-
cations, with its LST given in (2.1.2). Wy and W, are the additional
delays due to the vacation effect, with the LSTs

Wils) =
We(s) = L AEW))s (3.4.6)

s—=M1—=V*(s))
and the expected value

Ab?) E(V?)
20—p) " 2E(V)(1 - AE(V))’

E(Wv) -

3.4.2 G-Decrementing Service Model

As a generalization of the P-decrementing service, we consider a gen-
eral decrementing (G-decrementing) service system where the service
period ends when either the number of customers decreases to M less
than that found at the beginning of the service period or the system
becomes empty, whichever occurs first. Clearly, the case M = 1 cor-
responds to the P-decrementing service system and the case M = oo
reduces to the exhaustive service system. The G-decrementing service
model is denoted by M/G/1 (GD, MV). Again, if we assume that a
zero-duration service period occurs between two consecutive vacations,
then the number of customers in the system at the end of nth vacation

Qén) is also the number of customers in the system at the beginning of
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the (n+ 1) service period. {an), n > 1} forms a Markov chain with the
transition probability

pik = P{Q"™ = k1QM™ = 5}

Uk_j+M, I{ZZ]—MEO
= Uk, J<M
0, j>Mand k<j— M,
where .
(M)
vj = /0 (j!)e_MdV(t), j>0.

Similar to the M/G/1 (PD, MV) system, the stability condition for the
M/G/1 (GD, MV) system is p < 1 and AE(V') < M. Let {qx, k > 1} be
the stationary distribution of {an), n > 1}. The stationary probabilities
satisfy the equilibrium equations

M-1 M+k
Ge=vk Y G+ Y GUe—jer, k>0 (3.4.7)
§=0 j=M
Define the p.g.f.’s
[e'S) M-1
Qu(z) = Far,  Qulz) = Q7"
k=0 k=0

Taking the p.g.f.’s of (3.4.7) gives
@(2) — Qu(1)
M

z

) - | +Quia)| a2,

Solving this equation for Qp(z), we have

() = [Qu(2) = 2MQu ()] V*(A(1 - 2))
b VA1 = 2)) — M '

If \AE(V) < M, the denominator of the r.h.s. of (3.4.8) has M — 1
Zer0s, 21,22, ..., Z2M—1, inside |z| = 1, and these are given by Lagrange’s
theorem as

(3.4.8)

00 eZwmni/M dn—1 . .
St VO = ) g

m=1,2,...,M—1.

Zm = ’]’L'
n=1 ’
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Note that the numerator of the r.h.s. of (3.4.8) must also be zero at
z =z, form=1,2,..., M — 1. Thus these M coefficients of Q(z) are
determined by a set of linear equations

{ MM — 2k g, =0, m=1,2.. M—1,
Qy (1) = AE(V) — M(1 - Qum(1)),

where the last equation comes from the normalization condition Qy(1) =
1.

Theorem 3.4.3. For p < 1, and AE(V) < M, in an M/G/1 (GD,
MV) system, the stationary queue length L, can be decomposed into
the sum of three independent random variables,

Ly,=L+Li+ L,,

where L is the queue length of a classical M/G/1 queue without vaca-
tions, with its p.g.f. given in (2.1.2). Ly and L, are the additional queue
lengths due to the vacation effect, with the p.g.f.’s

1=V - 2))
L&) = Sgma—2

~ Qu(z) = 2MQu(1)
S VEAM1 = 2)) =M

L. (2) (3.4.9)

Proof: Let b be the mean number of customers served during a busy
period in a classical M/G/1 queue, and let b = (1 — p)~L. Let ® be
the number of customers served in a service period of the M/G/1 (GD,
MV). If Qy = k, 1 <k < M — 1, the service period is k busy periods of
a classical M/G/1 queue; if Q, = k > M, the service period is M busy
periods of a classical M/G/1 queue. Hence we have

M-—1 00
B(®) =0 [Z kg + M q
k=1 k=M

_ 11[) (@ (1) + M1 — Qu(1))]

- 11[, AE(V) = M1 - Qu(1)) + M(1 - Qu(1))]

_AEV) (3.4.10)
L—p

Now we compute

E{ian}, (3.4.11)
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where L,, is the number of customers in the system at the nth departure
in a service period. Similarly to the proof of Theorem 3.4.1, we consider
the LCF'S discipline. If the busy period in a classical M/G/1 queue starts
with j customers present, j > 1, the p.g.f. of the number of customers
at a departure instant during the busy period is given by the second
equation of (2.1.2). Thus the contribution to (3.4.11) of the busy period
starting with j customers is

1B (A1 =2))(1 - 2) ,
1 BMi—z)—- =t

If £k < M, the service period starting with & customers can be decom-
posed into k standard M/G/1 busy periods starting with k, & — 1, ...,
and 1 customer, respectively. The contribution of these busy periods to
(3.4.11) is

k
i | =2)B"(A(1 - 2))
@ | D7 B*(M1—2)) -2

j=1
ar(1 = 2")B*(A\(1 - 2))
B*(A1—-2))—z

Similarly, if k£ > M, the service period is decomposed into M standard
M/G/1 busy periods starting with &k, k—1, ..., and k — M + 1 customers,
respectively. Their contribution to (3.4.11) is

k
L) 1-2B00 - 2)
WP DE g s i

j=k—M+1
_ qk.(zk_M — zk)B*()\(l —2))
B*(AN(1—2)) — =

Summing these two expressions, we have

)

M-1
_ _ Lk Mk B*(A(1-2))

{Qur(1) ~ @u(2) + = V@) — Qu B — 2)
B*(A(1—2)) -z
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Substituting Qp(z) in (3.4.8) into the expression above, we obtain

. {iL} _ L=V OO = 2)Ru(2) — 2MQu(D)]

V(A1 —2)) — M
LB - 2)
B*(\1—-2))—=z
Finally, using Theorem 3.1.1, we get

n=1

P

Ly(z) = E {Z ZL"} (B(®)™

n=1
(1—p)(1—2)B*(A(1 - 2))
B*(A(1—2))— =z
1= V*(\(1 ~2)) Qu(2) — 2MQu(1)
AE(V)(1—2) V*(A\1—2))—2M
= L(2)La(2)Ly(2).

O
The expected value of the queue length of the M/G/1 (GD, MV)
system is given by
A2p(2) N N E(V?)
2(1—p)  2XE(V)
N NE(V?) - Qf (1) = M(M —1)(1 = Qu(1))
2(M — AE(V))

Using the relation between the queue length and the waiting time in
an FCFS system and Theorem 3.4.3, we obtain the stochastic decompo-
sition property for the stationary waiting time.

Theorem 3.4.4. For p < 1, and AE(V) < M, in an M/G/1 (GD,

MV) system, the stationary waiting time W, can be decomposed into
the sum of three independent random variables,

WU:W+Wd+WT7

E(Ly) =p+

(3.4.12)

where W is the waiting time of a classical M/G /1 queue without vacations,
with its LST given in (2.1.2). W, and W, are the additional delays due
to the vacation effect, with the LSTs

Wils) = e
S M S
Wi (s) = (1=%)" Qu(l) = Qull = 5) (3.4.13)
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and the expected value

B Ab(2) E(V?)
E(W,) = 2(1—p) T 2E(V)
N NE(WV?) —Q%(1) — M(M —1)(1 — Qu(1))
2A(M — AE(V)) '

3.4.3 Binomial Decrementing Service Model

In a binomial decrementing service system, if there are (), customers
present in the system at the beginning of a service period, this service
period continues until the number of customers in the system becomes
k less than @, with probability

(Clgcb>l’k(1 —p)@rF, k=0,1,....Qp,

where 0 < p < 1. Note that the special case of p = 1 corresponds to
the exhaustive service system. It is also assumed that the server takes
multiple vacations. Therefore, the vacation model is denoted by M/G/1
(BD, MV) and was studied by Levy (1989) as a fractional exhaustive
service model (see Takagi (1991), page 267-269).

Lemma 3.4.2. For a steady state system, the p.g.f. of the number of
customers at the beginning of a service period Q) satisfies the functional
equation

@(2) = V(AL = 2))Qu[p + (1 — p)2]. (3.4.14)

Proof: The number of customers in the system at the beginning of

a service period {Ql()n),n > 1} is a Markov chain, with the transition
probability

Dik = gz,j—k (Z)pz(l _p‘)j‘_ivk—j—i-iy Jj =k,
’ 1o (P (1 =Py o, i<k

The stationary probabilities

g = lim P{Q\" =k}, k>0

J

J . 00 .
7 . . ] 4 i

j=k i=j—k



124

Taking the p.g.f.’s of the above equation, we obtain

= VA1 = 2)Qu[p+ (1 —p)z].

O
From (3.4.14), it is easy to get

AE(V)

E(Qy) = Qy(1) = »

Expression (3.4.14) also indicates that @ is the sum of two indepen-
dent random variables. One of them is the arrivals during the vacation
period and the other is those that are present in the system at the end
of the previous service period.

Theorem 3.4.5. For p < 1, in an M/G/1 (BD, MV) system, the
stationary queue length L, can be decomposed into the sum of three
independent random variables,

Lv:L+Ld+Lr7

where L is the queue length of a classical M/G/1 queue without vaca-
tions, with its p.g.f. given in (2.1.2). Ly and L, are the additional queue
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lengths due to the vacation effect, with the p.g.f.’s
(2) = 1—-V*(A1-2))
T TXEV)(1=2)
Ly(2) = Qu(p + (1 — p)2). (3.4.15)

Proof: Let ® be the number of customers served during a service
period. In a P-decrementing service system, the number of customers in
the system at the end of a service period is one less than that found at
the beginning of the service period; thus the service period is the same as
a classical M/G/1 busy period, and the expected number of customers
served during the service period is (1 — p)~!. Now in a Binomial decre-
menting service system, the reduction in the number of customers after
a service period follows the Binomial distribution. Therefore,

PE(@Qy) _ AE(V)
1—p 1—p

E(®) = (3.4.16)

On the other hand, if ), = k, then using the same method as in Theorem
3.4.3, we have

E{izm@,:k}

:qk;G)pi( p)F=i k= zz i1 ( lf_()\z(;)—_?)

et Q-pef o)
N B*(A1—-2))—=z BT AL =2)).

From this expression, we obtain

{ZZLH} (@lp+(-p)a = QI BAL=2) (g,

B*(M1—=2))—=z

Substituting (3.4.16) and (3.4.17) into (3.1.4) completes the proof. O
Using the relation between L, and W, we get the stochastic decom-
position property for the stationary waiting time.
Theorem 3.4.6. For p < 1, in an M/G/1 (BD, MV) system, the
stationary waiting time W, can be decomposed into the sum of three
independent random variables,

Wv:W+Wd+WT7
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where W is the waiting time of a classical M/G/1 queue without va-
cations, with its LST given in (2.1.2). Wy and W, are the additional
delays due to the vacation effect, with the LSTs

Wits) = pe
Wi(s) = Qo [1 - (1 —p)ﬂ : (3.4.18)

Based on Theorem 3.4.6, we have

(L-p)s  1-V*(s)

Wy (s) = s—\1—B*(s)] E(V)s

Q[1-1-ps].

Using the relation
s . s
Qs (1-3) =V (5@ 1 -1 -p)3].
W*(s) can be rewritten as

(1—p)s Qb [1*(1*29)%]*@5(1*%)
s — A1 — B*(s)] E(V)s .

Wis) =

The expected values are given by

A2 N2B(V?)  (1-p)AE(V)

Bl =04 50— ¥ xEW) P
(2 2 _
E(W,) = Q(Alb_ 5 fé‘(/‘/; e p;E(V). (3.4.19)
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vided a treatment of the limited service vacation model with a finite
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buffer, denoted by M/G/1/N. Levy (1989) studied the system in which
the number of customers served during a service period follows a Bi-
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presented a discrete-time Geo/G/1 vacation model with limited service.
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(1986). The works related to Bernoulli schedule service M/G/1 vacation
models are Keilson and Levy (1987, 1989), Servi (1986), Levy (1989),
Ramaswamy and Servi (1988), Choi and Park (1990), Tedijanto (1990),
Wortman et al. (1991), Kumar and Ariuvdainambi (2002), and Madan
et al. (2003).



Chapter 4

GENERAL-INPUT SINGLE SERVER
VACATION MODELS

In the previous two chapters, we studied the M/G/1 type vacation
models. Now we devote this chapter to the GI/M/1 type vacation mod-
els. Section 4.1 presents the GI/M/1 type structure matrix, which is the
foundation for analyzing this class of vacation models. In section 4.2,
the multiple vacation models are developed for the PH and exponentially
distributed vacations. Section 4.3 discusses the single vacation model.
The threshold policy model is given in section 4.4. The batch service
model is treated in section 4.5. Section 4.6 focuses on the GI/M/1 va-
cation model with finite buffer. Finally, in section 4.7, the discrete-time
vacation model with general input is provided.

4.1 GI/M/1 Type Structure Matrix
4.1.1  Classical GI/M/1 Queue

In this chapter, we focus on the GI/M/1 type vacation models and
start with a classical GI/M/1 queueing system. Let 7, be the nth arrival
instant, n = 1,2,..., and 79 = 0. The interarrival times T,, = 7, —
Tn—1,n = 1,2, ..., are i.i.d. random variables with a general distribution
function A(x) and

== /0 T 2dA@), a'(s) = /0 " emdA().

The service times are exponentially distributed i.i.d. random vari-
ables, denoted by B, with rate u and are independent of the interarrival
times. The service order is an FCFS discipline. Now we present the main
results of the classical GI/M/1 queue to fulfill the need of later sections.
The details of deriving these results can be found in any standard queue-
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ing theory book (for example, see Cohen (1982), Cooper (1981), Gross
and Harris (1985), etc.).

Let L(t) be the number of customers at time ¢. Then L,, = L(, — 0)
is the number of customers in the system just before the nth arrival
instant, and {L,,n > 1} is the embedded Markov chain of L(t) process,
with the transition probability matrix

b() aq
bl aly Qo
P=| b2 a2 a1 ao , (4.1.1)

bs a3z a2 a1 ap

pr) e ;
aj:/o (j!)e“dA(x), bjzl—éoai, j>0.

{aj, j > 0} is a probability distribution, with respective p.g.f. and mean

o0 o
. ) I _
Ax) =) daj=a"(p(l=2), Y jaj=7=p"
=0
{Ly,n > 1} is positive recurrent if and only if p < 1, and the equation
z=a"(pu(l—=2)) (4.1.2)

has a unique root ¢ in (0,1). Let {7;, j > 0} be the stationary distrib-
ution of {L,,n > 1}:

nj = P{L =j} = lim P{L, =j}, j>0.
The stationary random variable L follows the geometric distribution
m = (1-€)¢, j=>0. (4.1.3)

The stationary waiting time W follows a modified exponential distri-
bution, with the distribution function

W(z) =1— e 197, x> 0. (4.1.4)

The expected values of L and W are given by
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Note that L is the number of customers in the system at an arrival
instant, and, for a queueing system with a non-Poisson arrival process,
its distribution is different from the distribution at any time. Define

Pr = tlim P{L(t) = k}, k> 0.
It can be proved that

bo = 1- P
pk:p(l_é)gkilv k=1

Let D be the length of the busy period of a GI/M/1 queue. The
distribution function and the expected value are given by

D(z) = il ’“‘(’“‘gn_le—w /OOO [1 — A(”)(t)} dt, x>0,
1
E(D) = preEs (4.1.5)

where A (z) is the nth-fold convolution of A(z).

4.1.2 Matrix Geometric Solution

In the analysis of GI/M/1 type queues, the matrix analytical method
developed by Neuts (1981) plays an important role. We briefly intro-
duce this elegant method here. Details can be found in Neuts (1981) or
Latouche and Ramanswami (1999).

Consider a two-dimensional Markov chain {(X,, J,,), n > 1} with the
state space

Q={00,7): 1 <j<mi}U{(k,j): k> 1,1 <j<m}.

The transition probability matrix can be written as the Jacobi parti-
tioned form

Boo Aot
B: A7 Ay
P=| B2 Ay A1 Ay , (4.1.6)

Bs A3 Ay A; Ay

where Bgg is an my X m1 matrix, Ag; an m; X m matrix, all By, k£ > 1,
are m X mq matrices, and all A, k > 1, are m X m matrices. Note that
(4.1.6) is the extension of the transition probability matrix (4.1.1) from
the scaler entry form to the submatrix entry form. Thus the transition
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matrix (4.1.6) is called a GI/M/1 type matriz. States {(0,7) : 1 < j <
mq} are called boundary states, and states {(k,j) : 1 < j < m} are
called level k states, k > 1 . It can be proved that if {(X,, J,),n > 1}
is positive recurrent, the matrix equation

[e.e]
R=>) RFA; (4.1.7)
k=0

has a minimum nonnegative solution R with spectral radius sp(R) <
1. The matrix equation (4.1.7) is the extension of (4.1.2). Hence the
minimum nonnegative solution R, similar to & for (4.1.2), is called the
rate matrix.

To accommodate the block-partitioned structure of P, we write the
stationary distribution of {(X,,J,),n > 1} in the partitioned vector
form as

IT = (0, Ty eeey Ty ov)s

o0 = (701, T02, -, TOmy )

T = (7T]<;1,7Tk2, ..-,ka), k Z 17
where
my=P{X =k J=j)= lm P(X, =k Jy=j},  (ki)eQ

Theorem 4.1.1. The Markov chain {(X,,J,),n > 1} is positive
recurrent if and only if the spectral radius of the minimum nonnegative
solution, R, to (4.1.7) is smaller than 1 (sp(R) < 1) and the (m; +m) x
(mq + m) stochastic matrix

Boo Ao

B[R] = thil Rk*lBk 22021 kalAk

has a positive invariant vector. The stationary distribution can be ex-
pressed as
7 = mRFL k>1, (4.1.8)

and (mp, 1) is the positive invariant vector of B[R] and satisfies
(mo, m1) B[R] = (70, m1).

The normalization condition is

-1

me+m(I-—R) e=1.
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The solution (4.1.8) is called the matriz geometric solution and is the
extension of the geometric distribution. The marginal distribution of
(4.1.8) is given by

P{X =0} = moe,
P{X =j}=mR/ e, j>1, (4.1.9)
and its p.g.f. is
X(z) =mpe+2zm (I-R) ' (I-zR) "' (I-R)e.

Note that (4.1.9) has a form similar to a discrete PH distribution with
an irreducible representation ((, R), where

(=m(A-R), ¢ny1 =me, RO=(I-R)e.

However, R may not be a substochastic matrix, and thus ({, R) may
not be a discrete PH representation. In Neuts (1981), this form is called
the general PH distribution. Sengupta (1991) proved that the marginal
distribution (4.1.9) must be an mth-order discrete PH distribution and
constructed the true PH representation from (¢, G).

We introduce the following row vector and diagonal matrix

C=m(@-R)" =(C,¢Cm)  A=diag(Cr G5 Gm).
Since w1 (I — R) ™! is strictly positive, A is invertible. Define
G=A"'R'A, G'=(1-G)e.

Lemma 4.1.1. The distribution of (4.1.9) is an mth-order discrete
PH distribution with the irreducible representation (¢, G).
Proof: From the definition, G is a nonnegative matrix. Note that

G'=e—Ge=A"'A(e - Ge)
— Afl (CT—RTAG) — Afl (CT_RTCT)
=ATI-R)(T=AT"1-R)T [m(I-R)]

= A_lﬂip.

T

This indicates that G? is a nonnegative column vector. Furthermore,
Ge + GY = e, and therefore G is a substochastic matrix. Now (4.1.9)
can be rewritten as

P{X =j}=mRTe=mA T (AR"A ") Ae
= @@ @
= (ccT'a)”
= (G 1@Y, j>1
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Furthermore, note that (11 = moe and moe+Ce = mpe+71 (I — R) ‘e =
1. Thus (¢, G) is a PH representation. [J

4.2 GI/M/1 Queue with Multiple Vacations
4.2.1 PH-Type Vacation Model

Consider a GI/M/1 queue where the server follows an exhaustive ser-
vice and multiple vacation policy. We denote this system by GI/M/1 (E,
MV). In various M/G/1 type vacation models, the service completion in-
stants have been chosen as the regeneration points for the queue length.
Therefore, no embedded points are found during a vacation. However,
in GI/M/1 vacation models, the arrival instants are chosen to be the
embedded points, and thus the embedded points can be during either a
busy period or a vacation. Furthermore, the vacation starting and end-
ing instants are not the embedded points. This difference in embedding
point selection makes the analysis of GI/M/1 models more difficult than
that of their M/G/1 counterparts. We start with a GI/M/1 vacation
model with PH-type vacations.

Assume that the vacation follows an mth-order PH distribution with
the irreducible representation (3, S),

6: (517/3%"'5771)7 /Be:l

This means that the vacation has positive length, and consecutive vaca-
tions form a PH renewal process. Let N(t) be the number of renewals
during (0,t), and let J(¢) be the phase number of the vacation at time
t. Define J(t) = 0 as the state when the server is in a busy period and

pij(n,t) = P{N(t) = n, J(t) = j|N(0) = 0, J(0) = i},
P(n,t) = (pij(nﬂ t))mxm’ P*(z,t) = exp [(S + ZSO/B) t] :

The (i, j) entry of the matrix exp(St) is the conditional probability that
the vacation is not completed and is in phase j at time ¢, given that the
vacation is in phase 4 at time ¢t = 0. Similarly,

m
vit) =1-> pi;(0,1), i=1,2,..,m,
j=1

is the conditional probability that the vacation is completed at time ¢,
given that the vacation is in phase i at time ¢t = 0. The entry (7, j) of
the exponential matrix

P*(1,t) =exp [(S+8%8) t] =exp(S*t), t>0,
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is the conditional probability that the vacation is in phase j at time ¢
(several consecutive vacations may have occurred during (0,t)), given
that the vacation is in phase i at time ¢ = 0. Since S* = S 4+ S°3 is an
infinitesimal generator, for any ¢ > 0, exp (S*¢) is a stochastic matrix.
Let

CI(t) = (Q1(t)>Q2(t)> T 7Qm(t))a t>0,

where ¢;(t) is the unconditional probability that the vacation is in phase
j at time t. Hence

q(t) =Bexp[(S+8°8)t], t=>o0.

Let Ly, = Ly(7,, ) be the number of customers in the system just before
the nth arrival instant, and let

Ty = J(7) = 0 if the arrival occurs during a busy period,

TN 4 if the arrival occurs at jth phase of a vacation.
where j = 1,2,...,m. Clearly, {(Ly, J,), n > 1} is a Markov chain with
the state space

Q={0,7): 1<j<miU{(k,j): k=1, 0<j<m}

State (0, j) represents the case where an arrival occurs in the jth phase
of a vacation and no customer is in the system, state (k,0), k > 1, repre-
sents the case where an arrival occurs in a busy period and k customers
are in the system, and state (k,j), k > 1,1 < j < m, represents the case
where an arrival occurs in the jth phase of a vacation and k customers
are in the system. Now we develop the transition probabilities of the
Markov chain.

For state transitions during a busy period, we have the same transition
probabilities as in a classical GI/M/1 queue. If i > 1, we have

o0 (pt)it1 g g
. . == %6_ t:a' 4 1<<Z+1
P(i,0)(5,0) / Gi+1—j) (t) i+1—3> SJ s
The state transition from (¢,0) to (0,h) represents the case where an
arrival occurs in a busy period with ¢ customers in the system and the
next arrival occurs in the hth phase of the vacation after i+ 1 consecutive
services. Using the symbols introduced for the PH renewal process, we
have

oo gt ui o ) _
P(i,0)(0,h) = /0 /0 qn(t — u)M(Z)e HldudA(t), 1>0,1<h<i.
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Similarly, we obtain other transition probabilities as

P(ih)(i+1k) = /O pri(0,8)dA(1),
i>1,1<hk<m.

_ z+1 —J .
P(i,h)(5,0) / / Z n 1 — j — Y —¢€ =i —u)duh(u)dA(t),

121, 1<57<i4+1, 1<h<m.

D(i,h)(0,k) / / /t ' t—T—u)M(M u) e M dudvy(T)dA(t),

1>0,1<h, E<m.

Using the lexicographical sequence for the states, the transition proba-

bility matrix of {(Ly, J5), n > 1} can be written in the block-partitioned
form

Boo Ao 1
B A Ay
P=| B2 Ay A; Ay

B: Az Ay A; A 7

where Ay, k > 0, are (m + 1) x (m + 1) matrices that can be further
partitioned as

)

ap 0 ag 0
= ~ = >
Ay I:VO H(S) :|, Ay I:Vk: 0:|, k>1

where vy, is an m-dimension column vector and H(S) is an m X m matrix

Vi = / / t_“ e M= exp(Su)dudA(t)S°, k>0,
f(S) = /0 exp(StAA(L).

Ao = (vo, H(S)) is an mx (m+1) matrix. Bgg and By, k > 1, are mxm

and (m + 1) x m matrices, respectively, and can be further partitioned
as
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where {a,io), k > 1} are all m-dimension row vectors and {o,k > 0} are
all m x m matrices and

ak / / e MBexp(S*(t — u))dudA(t), k=>1,

T u)k —pu 0 *
o = k" e Hexp(ST)S"Bexp [S*(t —u— 7))
0 0 JO :
x dudtdA(t), k> 0.

Using the fact that S* = S + S%3 is an infinitesimal generator and
S*e = 0, we can easily verify that

o] t
a,(f)e_/O /0“(’;2!‘ e M dud At _1—2%, k>1, (4.2.1)

oo pt pt—T k
ope = D) e M exp(ST)dudrdA(t)SP,
0 0 JO k'

[I - ] e— Zvj k>0, (4.2.2)
and .
Bre+ > Aje=e,  k>1
j=0

Therefore, P is a stochastic matrix.
Let ¢ be the unique root in (0,1) of z = a*(A(1—2)) for p=Ap~! < 1
and define the matrices

C(8) =S +u(I - H(S)),
D(S) = H(S) — Hu(H(S) - 1),
Lemma 4.2.1. If p <1 and —u(1 —¢) is not the eigenvalue of S,
then the m x m matrices (I — H(S), C(S), and D(S) are all invertible.
Proof: Since S is a Metzler matrix, all eigenvalues have the nega-

tive real parts. Let o be the eigenvalue of S and v the corresponding
eigenvector. Then Sv = ov and

H(S)v = /000 exp(St)vdA(t) = /000 e dA(t)v.

This indicates that -
o= / e"tdA(t)
0
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is the eigenvalue of H(S). The matrix £I — H(S) has the eigenvalue
& —0o. Since 0 # —p(l =€), then 0 # £ and &I — I;T(S) does not have
zero eigenvalue and is thus invertible.

It is easy to verify that the eigenvalue of C(S) is

clo) =0+ p (1 - /OOO e"tdA(t)> .

If o # —p(l — &), then ¢(o) is not zero, and hence C(S) is invertible.
Finally, the eigenvalue of D(S) is

o0
d(o) =5 — / e A= GA(1).
0
If o # ¢, then d(o) is not zero, and thus D(S) is invertible. [J
It is assumed that —p(1—¢§) is not the eigenvalue of S in the following

discussion.
Theorem 4.2.1. For p < 1, the matrix equation

R=>) RFA; (4.2.3)
k=0

has the minimum nonnegative solution

R = ( éo Er(()S) ) : (4.2.4)

where HY is the m -dimensional column vector and is given by
HO = (51 - I?{(S)) C~1(S)Se. (4.2.5)

Proof: In (4.2.3), all Ay, k > 0, are lower block-form triangular ma-
trices, so the solution to this matrix equation must be a lower block-form

triangular matrix. Let
11 0
R = ,
( R21 R )

where rq11 is a real number, Ry is an m -dimensional column vector,
and Roe is an m x m matrix. For k > 1, we have

R” it 0 k>1
= k—1_j pk—1—j ) = L.
{ijo 11 R j} Roi RS,
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Substituting R* and Ay, into (4.2.3) yields

{ ri = a*(p(l —r11)),

Ry — 71(S), )
Ro1 = (I-U(S)) ' Y02 HX(S)vi,

where
00 k—

U(S) = Z aj
k=1 j

To obtain the minimum nonnegative solution to (4.2.3), we take rj; = &.

It follows from Lemma 4.2.1 that sp(H(S)) < 1 and

1
T%lﬁkflfj(sy
0

00 k—1
o = Zak E k1=
k=1 =0

is the eigenvalue of U(S). Thus sp(U(S)) < 1, and (I — U(S))~! exists
and is nonnegative. To compute (I — U(S))™!, we have

1—U(S) =1 i ar (1 H4(s)) (e - H(8))
k=0

-1- | " {exp(p(1 - 9N - exp(—p(1 — H(S)))} dA()
X (51 - 1@{(5))71

—1- {gI iy [M (ﬁI(S) - I)} } (51 - fI(S))*l

—-D(8) (e1-H(S))

Hence,
(I-U(S) ! = <§I - fJ(S)) [—D(S) . (4.2.6)

Note that
t

> HE(S)vy, = / h exp(—u(I — H(S))t) exp(C(S)u)dudA(t)dS°
k=0 0 0

- /Ooo {exp(St) ~exp [—M(I ~ fI(S))t} } dA)C™L(S)S°
= D(S)C~1(s)s". (4.2.7)

Substituting (4.2.6) and (4.2.7) into Rg; and using S° = —Se gives
(4.2.5). Since (I — U(S))™! is a nonnegative matrix, HY is also non-
negative. [
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4.2.2 Stochastic Decomposition Property

To establish the stochastic decomposition properties of the stationary
performance measures, we first study the (2m + 1) x (2m + 1) matrix

Boo Ao ]
BR]| = o _ s _
[ ] |:Zk1 Rk: 1Bk Zk:l Rk 1Ak
Using
R™! £ 0
—¢'HTY(S)HY HTY(S) )
we have

> RFIAL =R R-Ap=I-R'Ag
k=1

1 0
- [ HY(S) [2H° — v| 0 ] '

Now B[R] can be rewritten in the block-partitioned form

[ mxm mx1 mxm
BR]=] 1xm 1x1 1xm
| mxm mx1l mxm
_0'0 Vo ﬁ(S)
_ | Ay 1—“5—0
_AQ ﬁ_l(S) [%)HO—VO} 0

(4.2.8)

where Aj is an m -dimensional row vector and As is an m X m matrix

given by

o0
A=Y o,
k=1

o0

Ay =Y H*N(S)oy + i (a51(8) — ¢+ (d(S) - 51)_1 Ho\".
k=1

k=1

It is difficult to compute A; and A,. However, some theoretical results

can be obtained without computing these quantities.

Lemma 4.2.2. For p < 1, B[R] and A = 0o+ H°A; + H(S)A; are

positive stochastic matrices.
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Proof: B[R] and A are nonnegative matrices. Using (4.2.1), (4.2.2),
and the fact S*e = 0, we have

00 k
Ae=>"¢"1[1-Y ¢ | =2, (4.2.9)
k=1 j=0 3
[es) k i
Ase =Y H*(S) (1 - ﬁ(S)) ey v,
k=1 J=0 |
00 k
+y [Hk L(S) — ¢k 11} ()80 (1Y ay ],
k=1 Jj=0
—e— H7Y(S) [C?HO - vo] : (4.2.10)

Substituting (4.2.9) and (4.2.10) into (4.2.8) gives B[R]e = e. Thus
B[R] is a stochastic matrix. It also follows from (4.2.9) and (4.2.10)
that

Ae = ope + H'Ae + H(S)Ase

= <I—ﬁ(S)>e—vo+%H0

+ H(S) [e — HN(S) (‘?HO = vo)]

= e.

Hence A is a stochastic matrix. [J

If p < 1, let (Ly, J) be the limiting random variables of {(Ly,, J,),n > 1}.
Then the stationary joint distribution can be written in the partitioned
form

IT = (7o, 71y oey Ty ---)
7o = (701, T02, ---Tom)
Tk = (Tho, Tk, - Thm), Kk > 1.

Theorem 4.2.2 For p < 1, the distribution of (L, J) is given by
o= K7
n = K7 ([g’HI - f{rﬂ'(S)} C~1(S)Se, ffﬂ'(S)) ,>1, (4.2.11)
where 7 is the invariant vector of A satisfying 7A =7 and 7e = 1 and

K =(1-¢) [f(u(l - I +8)C ' (S)e] .
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Proof: If p < 1, then 0 < £ < 1, sp(R) < 1, and the positive and
finite B[R] must have the positive left invariant vector. It follows from
Theorem 4.1.1 that the process {(Ln,Jn),n > 1} is positive recurrent
and

7T]g=771Rk71, k>1.

Rewriting the (2m + 1) -dimensional row vector (m, 1) in a segment-
partitioned form as

(71'0, 7T1) = (7-‘—0)7(107 (7-‘—111 12, --'Wlm))a

substituting it into the equation (mp,71)B[R] = (mo,71), and using
(4.2.8) yields

7000 + T10A1 + (711, T12, ... T1m) A2 = T,
ToVo + 10 (1 - %) + (711, T2y - 1m) HH(S) <%HO - Vo) = 10,

ﬂoﬁ(S) = (7T11,7T12, ...7T1m>.

Solving these equations, we have

Ty = 70 |:Uo + HOAl + ﬁ(S)A2:| = T,
710 = moHP
(711,12, . T1m) = ToH(S).

From Lemma 4.2.2 and letting mg = 7, we obtain
(70, m10, (711, 712, ... T1m)) = K7 (I, H°, ﬁ(S)) ,
which means
w0 = K%, m=K7 (HO, fI(S)) .

Substituting 71 and R*~!, k > 1, into the matrix geometric solution gives
(4.2.11). The constant K is determined by the normalization condition

K7e+ K7 (ﬁo, Er(S)) (I-R)le=1.

O

Theorem 4.2.3. For p < 1, in a GI/M/1 (E, MV) system, the
stationary queue length L, can be decomposed into the sum of two
independent random variables,

Lv:L+Lda
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where L is the queue length of a classical GI/M/1 queue without vaca-
tions, following the geometric distribution with parameter &; Ly is the
additional queue length due to the vacation effect, with the p.g.f.

Ly(2) = KorC™H(S) {S + (1 — €2)(I— zH(S)) "' (I - H(S))} e,
(4.2.12)
where

Ko=(1-&7'K = {7 (u(1 - I +8)C7(S)e} .
Proof: The distribution of L, is

P{L,=0}=Kre=K
{ P{L,=j}=K7 {(gﬂ'l — HI(S))CL(S)S + ﬁj(S)} e, j=1

Taking the p.g.f. of this distribution, we have

L,(z)
= Z ZjP{Lv = ]}
j=0
= (1 -¢)Kom
X { [(1 ) M+ (I- 2H(S) 7 oY(S)S + (I- zH(S))’l} o
_ 11__521(0%0‘1(8)
X {s (1= €2)(I— 2H(S)) 'S + (1 — 26)(I — zﬁ(S))—lc(S)} e.
Using N
C(S) =S+ pu(I—H(S)),
we have

Lo(2) = 1 KoFC () {8+ p(1 — €)1 2H(8)) (1~ H(S))} e

The p.g.f. (4.2.12) can be rewritten as

La(2) = Ko — KoiC™(8) {ul = p(1 = £2) (1= 2H(S)) ™ } (1 - H(S))e
= Ko + 2uKo7C~ Y (S)(H(S) — €1)(I — zH(S)) (I — H(S))e.
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This expression indicates that Ly follows an mth-order discrete PH dis-
tribution with the representation (v, H(S)) where

7 = pKow(H(S) = EDCY(S), ym+1 = Ko.

Using the closure property of the convolution of PH distributions, we
know that the stationary queue length L,,, as the sum of two independent
PH-distributed random variables, follows an m+1 order PH distribution
with the irreducible representation (§, L), where

6= (& u(l — OKom(H(S) — I)C(S)),
Oma2 = Ko(1 =),
L [ & n(l—OKor(H(S) —EDCT(S)
0 H(S) ’

= e |

The expected value of the queue length is given by

E(Lq) = pKoii(H(S) = D)0 (S)(1~ H(S)) e,
E(L,) = % + E(La).
—¢
There also exists the stochastic decomposition property for the sta-
tionary waiting time.
Theorem 4.2.4. For p < 1, the stationary waiting time W, of
GI/M/1 (E,MV) can be decomposed into the sum of two independent
random variables,

Wy =W+ Wy,

where W is the waiting time of a classical GI/M/1 queue without vaca-
tions and Wy is the additional delay due to the vacation effect, with the
LST

Wi(s) = KorC™H(S) [u(1 — )T + S] (sT — S)~'8C. (4.2.13)

Proof: If a customer arrives at state (j,0), the LST of the conditional
waiting time is given by

Y
Wk = ) > 1
(],0)(8) <,Uf+8> ) J =1,
and if the customer arrives at state (j,h), j > 0,1 < h < m, the LST of
the conditional waiting time is

J
W(j,h)(s) = <,LL—|- s> vy (s), j>1, 1<h<m,
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where

vi(s) = /0 — [1 -3 phj(o,t)] :

j=1
Using the law of total probability, we get the LST of W),
W (s)
© N
= K7 () (€T — H’(S))C~1(S)Se
=0\t

(e 9]

+§:<Miéyﬁﬂ$@1$lg}

j=1
= (1 - §)Ko%

s+p -1
) {Sﬂb(l—f)c ®)

—(s+ p) [SI +p [I — fJ(S)} - (C7H(S) — (&1 - S)_l)] } Se

A—=86+m) o~
=-————KonC (S
stud-¢ " 5
X [sT =8 — (s 4 p(1 — )] (sI — S)"1Se
(L=O6+p) .~ ~1g0
=-————KonC (S 1-&)I+S](sI-S)"°S
o RCTHS) (1 - )L+ 8] (1 - 8)
= W*(s)Wj(s).
O
Defining the row vector
7= KorCTH(S)(S + u(1 - &),
we can verify that v*e = 1. Equation (4.2.13) can be rewritten as
Wi(s) = v*(sI — S)S°.
Hence, W, follows an mth-order PH distribution with the irreducible
representation (v*,S). Note that W, = W 4+ W, follows an (m+ 1) order
PH distribution. The expected values are given by
E(Wy) = —v*S™le = KonC(S)(S + (1 — €)I)S28°,
&
p(l =¢)
Note that the GI/M/1 queue with PH setup times can be treated simi-
larly (see Tian and Zhang (2003)).

EW,) = + E(Wy).
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4.2.3  Exponential Vacation Model

As a special case of the model above, we consider the GI/M/1 (E,
MV) with exponential vacations. Assume that the vacation follows an
exponential distribution, with parameter 6 and distribution function

Vizg)=P{V<a}=1—e% z>0.

Let L, be the number of customers in the system just before the nth
arrival instant 7,, and let

0 7, occurs during the busy period,
1 7, occurs during the vacation period.

In = J(m) = {
Thus {(Ln, Jn), n > 1} is a Markov chain with state space

Q= {(0,1)}U{(k,j) : k> 1,5 = 0,1},
Define

00 k
ag _/ (,U,l‘) 7)\tdA( )

0
v = / x_t -MfUQGMMA() k> 0.

The transition probability matrix of {(L,J,), n > 1} should be the
same as in (4.1.6). Now the infinitesimal generator S* reduces to 0.
Therefore,

© _ [* ["p(pw)” -
O = /0 /o X e MOdA(x) =1 — Zaj’
=0
oo prt opt—T k k
o) = / / / Me_“uee_gTdudeA(t) =1—-a%(0) — Zvj,
o Jo Jo k! =0

k>0, (4.2.14)

and

By =1—a"(0) — vy, a*

(3 ) (5 8).
)

k
Bk_< 1- Zz 162

k> 1.
1—a*(0) —> v -
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The matrices and vectors introduced in the previous section reduce
to scalers:

C(~0) =~ + u(1 — a*(9)),
D(~0) = a*(0) — a* [u(1 — a*(9))],
o 6 —a*(0))
B = i —ae))

Lemma 4.2.3. If p <1 and 0 < 6 # p(1 — &), then H? > 0.

Proof: If p < 1, the equation z = a*(u(1 — 2)) has the unique root
¢ in (0,1). Furthermore, (i) if 0 < z < &, a*(u(1 — 2)) > z; and (ii) if
E<z<1,a*(u(l —2)) < z For the case 0 < 0 < p(1 — &), taking
the LST, we have a*(6) > a*(u(1 —§)) = & Thus € — a*(f) < 0 and
0 — (1 —a*(0)) < 0. Otherwise, if 8 > u(1 —a*()), taking the LST, we
get a*(0) < a*(p(1—=¢)), which contradicts a*(0) > £ and (ii) Therefore,
if 0 <0< u(l—¢), we have

00— a*(0)
B = =i —a (o))

Similarly, we can prove the case pu(1 —¢) < 6. O

Using the results of the previous section, we get the following theorem.

Theorem 4.2.5. If p < 1, in a GI/M/1 (E, MV) system with expo-
nential vacations, the matrix equation

> 0.

o0
R =) R'A,
k=0

has the minimum nonnegative solution

R = < I§O a*(zé?) >,

0
IR R
We introduce the following symbols for convenience:

4 0 — p(1 —a*(0))
o—n(l—a@®) 7 6-pl-¢
From Lemma 4.2.3, 5(§ — a*(0)) > 0. Note that o can be re-written,

1 —a*(0)

T I-E+BE-a(0))

where
HO

B = (4.2.15)

> 0.

g
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Now the (2m + 1) x (2m + 1) matrix B[R] reduces to a 3 x 3 matrix,

1—a*0)—v9e wvo  a*(0)

B[R] = 9 1-2 0 |,
1—1(0) (@) 0
where v
1#(9) fa ( )/8(5_ ( )) - a*(tg)'

The positive invariant vector of B[R] can be computed directly as

K(1, (€ —a*(0)), a*(0)),

where constant K > 0 is determined by the normalization condition.

From Theorem 4.2.2, we can obtain the stationary distribution of {(L,, J) =

limy, o0 (Ln, Jn)}-
Theorem 4.2.6. If p < 1, the distribution of (L,, J) is given by

i = (1= &)a[a*(0)]", k>0,
k—1

ho = (1= &oBE —a*(0) Y & [a*(0)]" 177, k>1. (4.2.16)
7=0

Proof: In (4.2.11),let S = —0, 7 = 1, H(S) = a*(#), and note that

k—1

BLE —[a*(0)/} = B(E —a*(9)) D_ & [a"(0))" 7,

§=0
and K is determined by the normalization condition as
0 — u(l —a*(0))
0 —pl—¢)

Substituting these results into (4.2.11) yields (4.2.16).0
Based on (4.2.16), the probability that an arrival occurs during a
vacation period or a busy period is computed as

K=(1-¢ = (180

1-¢
=&+ BE—a(0)’

P{I=1}=> m =
k=0

A€ —a™(0))
1—&+B(E—a*(0))

P{J=0}=) my=
k=0
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Theorem 4.2.7. For p < 1, in a GI/M/1 (E, MV) system with ex-
ponential vacations, the stationary queue length L, can be decomposed
into the sum of two independent random variables,

L,=L+ Ly,

where L is the queue length of a classical GI/M/1 queue without vaca-
tions, following the geometric distribution with parameter &; L, is the
additional queue length due to the vacation effect, with the p.g.f.

1 — 26+ 28(€ —a*(0))
= . (4.2.17)

Ld(z) =0

Proof: This theorem is a special case of Theorem 4.2.3. We give a
simple proof based on Theorem 4.2.6. From (4.2.16), we have

P(Ly=0} = (1~ o
P{L, =k} = 1 + mko
= (1= 8o {BE" — [ OF) + [ O]}, k>0

Taking the p.g.f. of the queue length, we get

o0

Ly(z) =Y 2*P{L, = k}

k=0

—~0-90{ i P o - T )

_ 1€ 1-26+28(€—a’(0))
11— z¢ 1 — za*(0) '

O
Expanding the r.h.s. of (4.2.17) indicates that the additional queue
length L4 follows a modified geometric distribution. In fact,

La(2) = o [L+ 2B(¢ — a*(0)) — 2] Y _ [za”(0)]"

k=0

o {Z [za*(0)]" + [B(¢ — a™(0)) — €] > _ 2 [a*(9)]k1}
k=0 k=1
:a{l—l—[ () + B¢ - Zz }
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Note that

a*(0) + B(§ —a™(0)) — €
= (B -1 —a%(0))

zgu_awmw&—a%®>

Substituting this expression into Lg(z) gives

{ P{L;=0}=0

P{Lq =k} = 05(1 - a*(0)B(§ — a*(0))[a*(O))*", k=1
(4.2.18)

The geometric distribution and the modified geometric distribution of

(4.2.18) are first-order PH distributions. As the sum of two indepen-

dent PH random variables, L, = L + L, follows the second-order PH

distribution with the representation (v, L), where

Y= (102) = (€& (1=QobB(E—a*(0), 1= (1-o,

E (1-8€oLp(&—a*(0 o(l—-¢
o R B e |

From the stochastic decomposition property, the expected values of
Ly and L, are given, respectively, by

B(€ —a*(0))
1 =&+ B(E—a*(9))’
1-¢ 01-&+B(E—a*9))
Theorem 4.2.8. For p < 1, the stationary waiting time W, of a
GI/M/1 (E,MV) system with exponential vacations can be decomposed
into the sum of two independent random variables,

B
E(Lg) = 2

Wy =W+ Wy,

where W is the waiting time of a classical GI/M/1 queue without vaca-
tions and Wy is a residual exponential vacation that is also an exponen-
tial random variable with parameter 6.

Proof: This theorem is a special case of Theorem 4.2.4. We give a
simple proof based on Theorem 4.2.6 here. Since both the service time
and the vacation time follow exponential distributions, the residual ser-
vice time and the residual vacation time also follow the same exponential
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distributions. Using the total probability law, we have
Wy(t) = P{W, <t}

V() + 3 {maV « OO + moBO (0},
k=1

where B(t) = 1—e #*, B()(t) is the kth-fold convolution of B(t). Taking
the LST of W,(t), we get

k
Wi(s) = o(1—¢) <1+Z <S+M> )
+ﬂk§j:0 (5k o) ()

= o(1-¢)

{ 0 0—p N pé 4 }

05 50— pu(i—a () "5+ u1—8) 0 p(l—a*(0))

_(A=96+p) 0 (6 —p)(s+p(l—§)) — g0 +5)
s+pu(l—§) 0+s 0 — u(l —a*(0))

_(A=86+p 0 6-pd-¢
s+p(l—=&) 0+s 60— pu(l—a*9))

_ (A =8+p) 0

s+ u(l—¢) 0+

=W*(s)Wg(s).

O
From Theorem 4.2.8, we obtain
1 _ 13 1

E(Wd)—gv E(Wv)—m—i—g-

As the sum of an exponential and a modified exponential random vari-
ables, W, follows a second order PH distribution. Using the closure
property of the convolution of PH distributions, we can easily get the
PH representation for W,,.

4.3 GI/M/1 Queue with Single Vacation
4.3.1 Embedded Markov Chain

Now we consider the single vacation model with exhaustive service,
denoted by GI/M/1 (E, SV). In a multiple vacation model, the server is
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in either a busy state or a vacation state. However, in a single vacation
model, the server can be in one of three states - busy, vacation, and idle
states. We use the same symbols as in the previous section. That is T’
is the inter-arrival times, B the exponential service time with parameter
w, V the exponential vacation with parameter 0, L, = L,(7,,), n > 1,
and

Jp = J(1n) = {

Then {(Ln,Jpn), n > 1} is a two -dimensional Markov chain with the
state space

0 an arrival occurs during vacation,
1 an arrival occurs during busy or idle period.

State (0,0) represents the state where a customer arrives at an empty
state and the server is on vacation and state (0,1) the state where ar-
rival occurs in a server idle state and the service starts immediately.
Furthermore, we need the following symbols:

k!
[ [t —w)]® 0
v = / / 76_M(t_u)9€_ “dudA(t), k>0,

k= / / t_“ e M= gue~ % dud A(t), k> 0.

Here, {a;} and {v;} are the same as in section 4.2, and {c;} is the
probability that an arrival occurs in a vacation state with k customers in
the system, the server completes k+1 services after the current vacation,
and the next arrival occurs at an idle period after the next vacation. The
transition probabilities are as follows:

00 k
ap = / Mef‘LtdA(t), k>0
0

D@,1)(,1) = itj—1, 120, 1<j<i+1.

The transition from (4, 1) to (0, 1) represents the case where the interar-
rival time is greater than the sum of ¢ + 1 services and a vacation. That
is,

P =P{T>B1+-+ Biy1 +V}

A

¢ “Ht=0) | ge= 0 qud A(t)
zl—a*(O)—ka, i > 0.
k=0
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Similarly, we have

P(i,0)(i+1,0) = / e "dA(t) = a*(0), i>0;
z+1 -7 (i) g0
D(i,0)(5,1) / / i+ 1 T e M WPe™ M dud A(t)
= Vi+1—j, 1>0,1<j<i+1;
i+1 i+1
PG {ZBk<T<ZBk+V}
+1
/ / {t —u< Z B < t} HefeududA(t)
k=1

/ / {i By, < t} Oe " dud A(t)

+ka—2ak, i > 0;
P(i0)0,1) = P{T > V1 +Bl 44 By + Vo}
/ / —fe 0 — 9u679“> Meiﬂ(tfu)dudfl(t)

7!

_1_a(9)_zvk_0i7 ZZO,
k=0
i+1 i+1
D(i,0)(0,0) = {V1 + ZBk <T<Vi+ ZBk 4 \/2}
k=1
/ / t — ) Mt_u)@ue_eududA(t)
- CZ7 Z Z 0

Summarizing the cases above, we obtain the transition probability ma-
trix of {(Ly, J,), n > 1}

By, Ao
B: Ay Ap
P By Ax A Ao (4.3.1)
Bs Az Ay A A
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where all submatrices are 2 x 2 matrices and

o ag 0 . . (475 0 .
A0_|:'U0 CL*(G):|7 Ak_|:,0k 0:|7 kZL
B, = 1—a*(0) - Z?:o U a*(0) + Z?:o vj — Z?:o a;
L—a*(0) = Sh_gvj — Ch ’
k>0.

Note that the matrices Ay, k > 0, are the same as those in the GI/M/1
(E, MV) system with exponential vacations. Using the same symbols as
in section 4.2.3, if p < 1, the matrix equation

R = i RFA,
k=0

has the minimum nonnegative solution

RZ(B@fwm>£%>'

For p < 1, we introduce the symbols

o 1-a®) _0—p(l-a"(6)
1 =&+ B(E—a*(0)) 0—p(l-2¢)
5§ =48(0) = 9‘;(%9)),

where o/(0) is the first order derivative of o with respect to 6. ¢ and
play an important role in deriving the stationary distribution.

Lemma 4.3.1. f and g are differentiable functions in (0, +00), for a
given a, such that f(a) = g(a), and

(i) if in (a,+00), f and g are positive monotone increasing functions,
and f’/g¢' is positive monotonically increasing (or decreasing), then f/g
is also positive monotone increasing (or decreasing);

(ii) if in (@, +00), f and g are negative monotone increasing functions,
and f’/¢' is positive monotonically increasing (or decreasing), then f/g
is also positive monotonically increasing (or decreasing).

The proof of this lemma can be found in most real analysis books (see
W. Rudin (1966)).

Lemma 4.3.2. If p<1land 0 # p(l —¢), then 0 < o < 1, and o is
monotonically increasing in 6.

Proof: 1In the proof of Lemma 4.2.3, if 6 < pu(1 —£), then

0> 06— p(l—a’(6)) > 6 — (L - €);
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and if 0 > p(1 —¢), then
0<0—pu(l—a"0)) <0—ul-ye).

Thus it follows that, in both cases, we have 0 < o < 1. To prove that o
is monotonically increasing in 6, we take

f(0) =0 — u(1 - a™(0)), 9(0) =0 — u(1-¢),

and f(u(l —¢&)) = gl =¢)) =0, f/(0) = 1+ pa™(0) is monoton-
ically increasing. Because of f(0) = f(u(1 —€&)) = 0, there exists a
0* € (0,u(1 —&)) such that f(6*) = 0. In (0,0%), f is negative and
monotonically decreasing; in (6%, u(1 —€)), f is negative and monoton-
ically increasing; in (u(1 — £),400), f is positive and monotonically
increasing.

Fo<O<O ff=14pa"0) <0,0—pul-¢) <0,and o >0, we

have
, 1

0 —p(1—-2¢)
which means that ¢ is monotonically increasing in (0, 6*). In (6%, u(1-¢))
and (p(1—¢&), +00), using Lemma 4.3.1, we get the same results. Finally,
since o = o(#) is continuous in (0, +00), o is monotonically increasing
inf. O

Lemma 4.3.3. If p<1,then 0 < § < 1.

Proof: From Lemma 4.3.2, we have ¢ > 0 and ¢’ > 0. Thus § =
9o’/o > 0. To prove § < 1, we first show that cf~! is monotonically
decreasing in 6. Note that

o [1+ pa™(0) — o] >0,

S EA0)

0 6—u(1-¢)’
and let f and g be the numerator and denominator of the r.h.s. of the
above equation. We have
f [ R
?:f’:@(ea '(0) +1—a*(0))
pof
:92/0 e 0 [eet—l—Ht} dA(t) > 0,
where f’ and ¢’ are the first order derivatives with respect to 6, and
therefore, f'/¢’ is monotonically decreasing in 6. It follows from Lemma
4.3.1 that o6~ is monotonically decreasing in 6 and
o— 00’ d /o

1-0=T =0 (5) >0
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4.3.2 Stationary Distribution

The GI/M/1 type matrix structure of (4.3.1) is slightly different from
that of (4.1.6) in the sense that the matrix (4.3.1) does not include the
boundary states. Therefore, the corresponding results of the matrix
(4.3.1) are also slightly different from that of Theorem 4.1.1. Now we
have

=> R'B, (4.3.2)

and 7o is the invariant probability vector of B[R]. The stationary dis-
tribution are given by

Tk Ziﬁofik, k > 0
mo B[R] = mo,
m(I—-R) le=1. (4.3.3)

Lemma 4.3.4. If p < 1, for a GI/M/1 (E, SV) system,

> o 1—0
=> R'B; = [ -5 & ] (4.3.4)
k=0

where o and ¢ are given by Lemma 4.3.2 and Lemma 4.3.3.
Proof: If p <1, z = a(u(l — 2)) has a unique root £ in (0,1). B[R]
can be written as
Hyi Hio
B[R] =
[R] [ Hy Hy ]

where

H12 = ng a* aj
k=0 7=0 7=0
[e'S) k

Hy =Y {55 + (1= 90" O)} | 1-a"0) =D 05 | -
k=0 7=0
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Note that
oo k 00
PIPBATE Z
k=0 j=0

= Z / /gﬂ —u)l *Mt*ume*aududA(t)
=0

1 *

£
S e = Lwui—g) = 5

k=0 j=0 —¢

Similarly, we have

oo k
>3O 4y = gy L= 0" O).

k=0 j=0

oo k
>SS O 1) = s o (1L~ a7 (0)) — a*(6)]

k=0 j=0

oo k
> ala"OF = ufa(6) - N a (ul1 - a'(6)) - ')

k=0 j=0

Substituting these results into H;j, 4,5 = 1,2, gives (4.3.4).0
Theorem 4.3.1. For p < 1, the distribution of (L, J) is given by

o = K(1—0)[a*(0)]*, k>0,

k—1
M = K {(1 — 0+ (1= 0)BE —a"(0) )¢ [a*(9>]’“j} k>0,

j=0
(4.3.5)
where
_ 1-¢
1 =6+ 5B —a*(0))
Proof: 1t follows from (4.3.4) that B[R] has the positive left invariant
vector K (1 — 6,1 — o). Substituting

& 0

RF = k-1 o k—1—j k
B —a*(0) 3= & [a* ()] [a*(0)]
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into (4.3.3) yields (4.3.5). Using the normalization condition

o0

1= (mko + mh1)

k=0
_ K{(1=0)(1 —a"(0)) + (1 —0)[1 = £+ B(€ — a*(0))]}
(1 =81 —a*(0)) ’

and

(1 =0)[1 =&+ B —a™(0)] = 5 (1 —a"(0))B(€ - a™(0)),

SRS

we get K. [

Theorem 4.3.2. For p < 1, in a GI/M/1 (E, SV) system with ex-
ponential vacations, the stationary queue length L, can be decomposed
into the sum of two independent random variables,

L,=L+ Ly,

where L is the queue length of a classical GI/M/1 queue without vaca-
tions, following the geometric distribution with parameter &; and Ly is
the additional queue length due to the vacation effect, with the p.g.f.

Ld<z>=1[_(£{<1—5>+

l1—0

s (-G Bl 0)a) |

(4.3.6)
Proof: The distribution of L, is given by

P{L, = j} = mjo + 7j1, j=>0.

Substituting the distribution of (4.3.5) and taking the p.g.f.’s, we have

Lo(:) =3 P{L, = j}»
=0
1-6 1 1 1-0
:K{1—§z+(1_0)ﬂ[1—52_1—a*(9)z]+1—a*(9)z}
_ 1=t K - 1o z —a*(0))z
R e R e B OB
= L(z)Lg(2).
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Expanding the p.g.f. of (4.3.6), we find that Ly follows the modified
geometric distribution

L(2) = T (=5
+(1=—0)[1— &2+ B(¢ }: }
K
:17_5{(1—5)“‘(1—0)
+1 =) (B =1 —a*(0) > [a* () zj} :

Substituting

into the expanded Lg(z) and considering the coefficients of 27, we obtain

_ 0 - (1=0)+(1-0)
P{Ly=0} = W7
1-a % * j— .
P{Lo=j} = SOA D s —a @) @), iz
(4.3.7)
Note that L and L, are independent and follow the first-order discrete
PH distributions. Thus it follows from the closure property of PH distri-

butions that L, = L+ L4 follows a second-order discrete PH distribution
with the irreducible representation (-, L), where

1-90-0) u, .
=6 B3 —a@) 0" (9)))

1-6)+(1-0)],

7 =0172) = <€,

_ 1-¢
BT EB(E — a*(0) I

)
[€ (1-9(1=0) p
L— =6+ Z3(E—a*(9)) 0

0 a*(0)

L 0-90-0) s
L0<1—5+gﬂ@—awm>e
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Based on the stochastic decomposition property, it is easy to get the
expected values of Ly and L,:

(1—0)5B8(&—a*(0)) 1
BE(Lq) = ’
) = 5 B v 0) -0 0
B = & L A-0)5BE—a(®) 1 (4.3.8)

16 16+ EB(E—a*(0)1—a ()

For the stationary waiting time, there exists the stochastic decompo-
sition property.

Theorem 4.3.3. For p < 1, the stationary waiting time W, of a
GI/M/1 (E,SV) system with exponential vacations can be decomposed
into the sum of two independent random variables,

Wy =W+ Wy,

where W is the waiting time of a classical GI/M/1 queue without vaca-
tions and Wy is the additional delay, with the LST

_ ! v Fae —aron
_1—5+’;B(§—a*(0)){(1 5)+06(§ (9))34-6’}'

(4.3.9)
Proof: Using the standard conditional probability argument, we have
the distribution function of the stationary waiting time

Wi (s)

o0 oo
Wy(t) =mor + Y mjnBO) + ) mjoV « BU(1),
j=1 j=0
where BU)(t) is the distribution function of the jth-fold convolution of

the service time and "+" represents the convolution operation. Taking
the LST of W,(¢) gives

R () (Gt B A ko [ CRet )
WU(S>K{ s+ p(l—§) s+0s+pu(l—a*0))
. ué B pa*(6)
+(1 )B[erM(l—{) s+u(1—a*(9))]}
_(A=8(s+p) K
s+pu(l-¢ 1-¢

o (1-o)(s+pl-%)

X{“_5*+s+9 s+ u(l—a"(0))
Bl @O u - ©)
+s+u(1 )/B{f 8+M(1—a*(9))H

= W*(s)WE(s). (4.3.10)
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The first factor of the r.h.s. of (4.3.10) is the LST of the waiting time
of a classical GI/M/1 queue. For the second factor, we have

Wis)
- T {0+ -0 - )
-
o la-9)
b [ s (S|}
Using
P4y B a @)

in the expression of Wj(s), we obtain

K

Wits) = g { (L= 0+ (1= o) [+ e - a0)] 135 }-

Using the expression of o, after some algebraic simplification, we get
(1-0) [1+ 286 - a*(0)] = £(¢ - a*(0)).

Substituting this relation into W (s) gives (4.3.9). O
Theorem 4.3.3 indicates that the additional delay W, is zero with
probability

. 1-6
b T s EB(€—a*(0))

and is equal to the residual life of a vacation with probability 1 —p*. As
the sum of the two independent first-order PH distributions, W, follows a
second-order PH distribution with the irreducible representation (v, L),
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where

_ (€ —a(6)
7= e ( 5+“ﬁ£ *w»>’
£)(1—9)

73:1—6+“5( a*(0))’

¢ §gB(E—a*(0))
L= 1—6+%6(£—a*(9)) ,
0

—0

(1-0)¢
LY = 1*5+%5§E*a*(9)) .

The expected values of the Wy and W,, are given by

seE—a'(0) 1
6+ I3 —a"(0) 0

e 1 BBE—a0) 1
POV = e 15+ Epe — ' (9) 0

4.4 GI/M/1 Queue with N-Threshold Policies

Now we consider a GI/M/1 system where the server follows a thresh-
old type policy. In such a system, the server stops attending to the
queue whenever the system becomes empty and resumes service when
the number of waiting customers in the system reaches the threshold
value N.

Assume that in a classical GI/M/1 queueing system, the nth customer
arrives at instant 7,,n = 0,1, ..., with 79 = 0. The interarrival times
{T,,,n > 1} are i.i.d. random variables with the general distribution
function A(t), the mean A~!, and the LST a*(s). The service times are
independent of the interarrival times and are i.i.d. exponential ransom
variables with rate p. Let p = Ap~! < 1. The server follows a threshold
N > 1 policy and the service order is FCFS. Let L,(t) be the number of
customers in the system at time, ¢ and let L,, = L, (7, ). Define

EWy) =

(4.3.11)

the nth arrival occurs during a server’s on
(or attending) status.

the nth arrival occurs during a server’s off
(or not attending) status.

L,
Jn =
0,

Note that under the N—policy, if the system is in the state with N —
1 customers and the server’s off status, then a new server’s attending
period will start at the next arrival instant. Obviously, {(Ly, Jp), n > 1}
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is an embedded two-dimension Markov chain with the state space
Q={((k,0;0<k<N-2U{(k1); k>1}.
Let

> (pt)! :
aj = /0 Te_“tdA(t), bj =1- Zai, j > 0,
’ i=0

The transition probability matrix of the Markov process {(Ly, Jp), n >
1} is written as

-0 1 -
0 0 0 1
b1 0 al 0 ap
0 0 0 0 0 1
b2 0 as 0 al 0 aq
P= : : :
0 0 0 0 0 0 0 1
by—2 0 any—2 0 an—3 0 an_4 ap
bv-1 0 ay-1 0 ay—2 0 an—3 ay ap
bN 0 an 0 anN-—-1 0 anN—2 as aip ag

(4.4.1)
The structure of P indicates that (Lp, Jy) is irreducible and aperiodic
and is positive recurrent if p < 1.

To obtain the stationary distribution of (L, .J,), we introduce the
determinant below:

a; — 1 ag
as a1 —1 ag

ak—1 Af—2
Qg Ap—1

ak_3 DY aO
Ak—9 a; — 1

It is easy to verify that this determinant satisfies the recursive relation

k—1
By = (a1 —1)Bi_1+ Y _(~1)"afavs1Be1-v, k > 1,

v=1

where By = 1, B; = a1 — 1. We define the empty sum to be zero. Based
on this recursion, we obtain

B(z)=> Bpz"={z+a5'a"(u(l+ap2))} ", |z < L
k=0
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The recursive relation and the p.g.f. (z-transform) provide a feasible
way of computing Bj, which will be needed in the expression of the
stationary distribution given below.

If p < 1, we denote the steady state by (L,,JJ) and its distribution by

7 = (700, (710, T11), - - (TN—-2,0, TN—2,1)s TN—1,1, TN, 15" * ),

and these probabilities satisfy the equations
_ N-2 00
P =T, > o+ > ma =1 (4.4.2)
k=0 k=1

Based on (4.4.2), we can obtain the stationary distribution as follows.
Theorem 4.4.1. If p < 1, the distribution of {L,, J} is
Too =10 =+ =7TN-20 = C(1 = §)B,
e = C(1 — &§ag(§a0,a1,- - ,an—2), 1<k<N-=-2 (4.4.3)
T =C(1—-&¢& k>N-1

where ¢ is the only root in (0,1) for z = H(u(1 — z)) and

1 N-2
B = {15 [lebNQ - (f — Z @r§T>]
r=0

4Nl Z J+1 byn_o2_;Bj

+ZbN g EN T2 JZ 1)t _UH <§ ZGT§T>

-1
N-3

< (143 (~1Vag Y by s B | (4.4.4)
=0
ai(&ag, a1, ,an—2)
N—2—k N—2—k—v
— ‘Ek Z (_1)’U+1aa(y+1)£’u (é- _ Z ar£r> Bv
v=0 =

FEVT ) ()N Y B 1<k <N -,
(4.4.5)
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C={N-1)A -8B
N-2 -1
9> oy 5’a0,a1,...,aN2)+gN11} : (4.4.6)
k=1

Proof: Note that when p < 1, there is a unique root £ in (0,1) for
z=a*(u(1 — z)). Based on the first set equations of (4.4.2), we have

oo
Tkl = Z TulQy—Fk+1, k > N. (4.4.7)
v=k—1

and we can verify that for &k > N, m,1 = Coé¥, where Cy is a con-
stant that can be determined later using the normalization condition.
In (4.4.7), if k = N, we have my_11 = Coé¥V 1. From (4.4.2), we know
that mog = m9 = -+ = mn_20. Let these server’s-off state probabili-
ties be Cyf. To determine Cy, 8, and 71,k = 1,2,--- , N — 2, we use
mp1 = Co€¥ for k > N — 1, and from (4.4.2) obtain

(7n—1,1 = CoB + aomn—2.1 + CotN (€ — ap),
Tl = om i Tot@y—1 + Co€F! (5 SN 1a7’§r> ;
2<k<N-2 (4.4.8)
m1 =Yy Toiay + Co (f D i ar§T> ;

[ CoB =307 bumor + Co 302 iy bu€?

From b, = 1-Y_] , a;, it is easy to verify that the sum of the first (N —1)
equations is equivalent to the last equation. Hence, we can eliminate the
(N — 1)th equation and rewrite the remaining equations as

)
apTN—2,1 = do,

(a1 — )n—21 + aomN—_31 = di,
asmN—21 + (a1 — 1)TN_31 + aoTN_4,1 = da,

aN-_3TN-21+ aN—amN—31+ -+ (a1 — 1)m21 + apmi1 = dn—3,
| bv_2mN_21 +byv_smN_31+ -+ bim = Co (8= ol y_1 bu&")
(4.4.9)

where

do = —Co&™N72(€ — ag) + CotN ™ — Co

k
diy = ~Cog" 27" (5 - a@’") , 1<k<N-3

r=0
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To solve these equations, we solve the first N — 2 equations for 7y
in terms of 8 and Cj, then substitute these m;1’s into the last equa-
tion of (4.4.9), and finally determine the constant Cj via the normaliza-
tion condition. Note that the coefficient determinant of the first N — 2
equations is A = ao 2 £ 0, and there exists a unique solution, 71,
k=1,---,N—2,

ap dO

al — 1 ap dl

—(N—1—k) as ap—1 ag da
Tk1 = Qg . . .
aN-3-k OGN—a—f "' ap  dn-_3-k
| an—2-k an-3— - 0 a1 —1 dy_o |
N-2—k

ST (-1)%ag " Vdn_s iy Bo. (4.4.10)
v=0

Substituting dj’s into (4.4.10) gives

N—-2—k N—2—k—v
T = C’Ofk Z (_1)v+1a6(v+1)£v <£ . Z ar§T> Bv
v=0 r=0

+Co(eN T = B)(=1)N 2 Fag M By oy,
1<E<N-2 (4.4.11)

Substituting (4.4.11) into (4.4.9) yields the expression for 5 of (4.4.4).
Using the normalization condition, we obtain Cy = C(1 —¢), and C' is
expressed as (4.4.6). Finally, substituting Cy into (4.4.11) gives (4.4.5).00

With the distribution of {L,,J}, the queue length distribution at
arrival instants is given as

mo = moo = C(1 — §)B,
T = Tko + Tk

=C(1 =&+ ar(&ao, a1, -+ ,an_2)],
=1k = C(1 — {)fk,

27

?r'l/\

k<N
>N —

(4.4.12)
Like M/G/1 systems with N-policy with or without vacations (see Doshi

(1986)), there also exist the stochastic decomposition properties in the
GI/M/1 system with N-policy.

Theorem 4.4.2. If p < 1, the stationary queue length L, can be
decomposed into the sum of two independent random variables,

Lv:L+Lda
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where L is stationary queue length at arrival epochs of the classical
GI/M/1 system and Ly is the additional queue length due to the vacation
effect. Ly has the p.g.f.

L4(z) =C {(fz)Nfl

N-2 N-2
+(1—&2) (B 2+ ) (& bo, b, ,bN_z)] } :

k=0 k=1
(4.4.13)

Proof: Taking the p.g.f. of the distribution of L, in (4.4.12), we get

k=
O N=2 (Ex)N
=C(1=& |8+ ) 2B+ ar(&ao a1, 7CLN—2))+1_§Z]
k=
1_¢ ’ N-2
e {C(gz)N—l +(1-¢2) [6 kZ:O 2*
N—2
+ zkak(f;ao,al, e ,aN—2)] }
k=1
= L(z)L4(2).

It can be verified that Ly4(2) is a p.g.f. O
We can also prove the stochastic decomposition property of the wait-
ing time.

Theorem 4.4.3. If p < 1, the stationary waiting time, W, can be
decomposed into the sum of two independent random variables,

Wy =W + Wy,

where W is the stationary waiting time in a classical GI/M/1 system
and Wy is the additional delay due to the vacation effect. W, has the
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LST

Wi (s)

(4.4.14)

Proof: Given that a customer arrives at state (k,0), k =0,..., N — 2,
the conditional waiting time for this customer is the sum of N — 1 — k
interarrival times and k service times; given that a customer arrives at
state (k,1), the conditional waiting time is the sum of k service times.
Therefore,

Wi(s) = C(1 =) {BNZQWWNM (La)k P> (i”u)k

k=0 k=N-1

N-2 [ k
+ ( ) ak(g;a()aala"' 7aN—2)}

Pt S+ u

= W*(s)Wq(s),

where
1—
o) = L=+,
s+ p(l—¢)
which is the LST of the waiting time for a GI/M/1 queue.lJ
From (4.4.14), we obtain the expected waiting time

{(v —1eM!

N-2
+(1-¢) (5(N —1)?+ ) kow(& ag, a1, - - ,aN—2)> } :

k=1
(4.4.15)
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Using Little’s Law, we have the expected queue length as AE(W,,). With
(4.4.15), it is not difficult to numerically determine the optimal thresh-
old for a given cost structure. For example, consider a system with a
constant unit waiting cost h and a start-up cost of 9. According to the
embedded chain we define, a setup occurs whenever state (N — 1,1) is
reached. Using my_11 = C(1—&)¢NV 71, the long-run average cost of the
system under an N-policy, denoted by g, is

g=AC(1 =N rg + NAE(W,)h. (4.4.16)

Using (4.4.16), we can numerically search for the optimal N value that
minimizes g. Note that the setup cost term is a decreasing function of
N and the waiting cost term is an increasing function of N.

In the small-N cases, we can develop close-form formulas for com-
puting major performance measures. For examples, we consider some
special cases. The N = 1 case is actually the classical GI/M/1 queue.
The N =2 and N = 3 cases are presented below.

Example 1: The N = 2 case. Based on Theorem 4.4.1, we have
B = ap,C = (£ +aog(l — &)~ The stationary distribution of (L, J),
Lq(z), Wj(s), E(Lg), and E(Wy) are obtained as follows:

s
B(La) = S
BOV) = o —glao( = 9N +(1 = ao)u™)

Example 2: The N = 3 case. Based on Theorem 4.4.1, we have

ag
/8 = ) al(é; a07a1) =
—a

§—ap—ar§
1 b

1—CL1
. 1—&1

2a3(1 - §) + ao€ + (€ — ap — a1§)’
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Ly(z), Wj(s), and E(W,) can be obtained as

_ap+[ag(1 = &) + (€ — ap — 1))z + apé(1 — ap)=>
2a3(1 — &) + ao€ + (€ — ao — a1§) ’
. (1 = a1)(u)*
Wil =G5 1)?(2a3(1 — &) + aog + (€ — ao — a1§))
ag(s + p(l — €))ag((s + p)(a*(s))* + pa*(s))
(5 + 1)*(2a3(1 — €) + ao€ + (€ — ao — a1))
ap(s + p(l = €))u(€ — a0 — a1f)
(s + 1)*(2a3(1 — €) + ao€ + (€ — ap — a1))’
E(Ly) _af(1— &) + (6 — ap — a1§) + 2apé(1 — a)
2a3(1 — &) +ao§ + (£ —ap —ar§)
3a3(1 — A"y + [ag (1 — &) + 2ao§(1 — ao) + (€ — ap — a1§)]
2a5(1 — E)p+ aobp + (€ — ag — a1 '
Note that the N-threshold policy with multiple vacations can be treated
similarly.

Ld(z)

E(Wy) =

4.5 General-Input Bulk Queue with Vacations

In this section, we consider a bulk service GI/M (%) /1 queue with mul-
tiple exponential vacations. Customers are served in batches according
to the bulk service rule, in which at least a customers are needed to
start a service and the maximum capacity of each service is b. When the
server finishes a service and finds fewer than a customers in the system,
he or she takes a vacation. When the server returns from a vacation and
finds fewer than a customers in the system, the server immediately takes
another vacation and continues in this manner until the server finds at
least a customers in the system at a vacation completion instant. Then
the server serves a bulk of a maximum of b customers from the queue.
The analysis of this vacation model is based on the study by Choi and
Han (1994).

The interarrival times {7T,,,n > 1} are i.i.d. random variables with
the general distribution function A(t), the density function a(t), the
mean A1, and the LST a*(s). The service times and vacation times
are independent of the arrival process and are i.i.d. exponential random
variables with rates p and 6, respectively. Let p = )\(bu)_l < 1. To
obtain the distribution of the queue length at arrival instants and at
arbitrary instants simultaneously, we use the supplementary variable
method that has been used in other bulk queue models. Now we use the
residual interarrival time as the supplementary variable. At an arbitrary
instant, the steady state of the system can be described by the following
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random variables:

€= 0 if the server is on vacation,
~ | 4 if the server is busy with j customers in a batch, a < j < b.

L, = the number of customers in the queue.
A = the residual interarrival time.
Define

mio(z)de = P(Ly =i, o < A<z +dz,£ =0), i>0,

mij(@)de = P(Ly =i,z < A<z +dz,6=j), i>0,a<j<b,
and the LSTs

o.)
wm@:/ e, ()
0

By considering the steady-state system, we obtain the following differ-
ential difference equations:

d7r00 Z (iton (@ (4.5.1a)

dmo Zlmm (z)mi—10(0), i<a, (4.5.1b)

—dﬂg;(gc) = —Omio(z) + a(x)mi—1,0(0), iz a (4.5.1c)

—W = —pmoj(z)+0mjo(s) +Z P () a<j<b, (45.1d)
_ng):_mw@g+awmqﬂm, i>1, a<j<b-1,

(4.5.1e)

_dma(@) _ —pmip(x) + Omipp0(x) + Z/“Twrbn +a(z)mi—1p, @2 1.

dx
(4.5.1f)
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Taking the LST on both sides of the equations of (4.5.1), we have

smho(s) = moo(0 Z U (s (4.5.2a)
smip(s) = mio(0) — a™(s)mi—1,0(0 Z,mrm i <a, (4.5.2b)
(s = O)mip(s) = mo(O) —a’(s )m_l,o(O), i>a, (4.5.2)

( 770] +ZM7T]n +07T ( )_7701'(0)7 CLS]Sb,
(4.5.2d)

(s — Wr5(s) = my0) — a*(m1g(0), izl a<j<b,
(4.5.2¢)

( + Z “771+b n + 97Tz+b 0( )

= ﬂ'ib(O) —a (8)7’(’1',17[,(0), ) Z 1. (452f)

To find the general solution of the difference equations that occur in
the supplementary variable method, it is well known that the polynomial
of the right shift operator can be used (see Gross and Harris (1985)).
A brief summary of the operational calculus is presented here for the
convenience of reference.

For a sequence {z,} of complex numbers, the right shift operator,
denoted by D, is defined by Dz, = x,,41 for all n. If f(2) = ag + @12+

-+ 4 o2 is a polynomial with complex coefficients «a;, then f(D) =
oo+ a1D + -+ + apD¥ is defined by

f(D)-xp = gz + 01Tpy1 + - - + ApTppke

For a geometric sequence {w"} and f(z) = Y oo, axz, it is natural to
define f(D) = Y22, axDF by

B (Z %Dk> W = f(w) W
k=0

For instance, since exp(z) = Y oo 42, it follows that

w n

exp(D)-w”:e ~w'.

and for the LST of a function a*(s) = [;° e 5a(z)dz, we have a*(D) -
W' = a*(w) W If f(D) -z, = w” the inverse operator (f(D))™!is
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defined by (f(D))™!-w" = z,,. For a geometric sequence {w"}, we give
a summary below of the operator formulas that are useful in solving the
difference equations.

Properties of Operator D : For aj, a9, w € C and m € N,

(i) (a1 D™ 4+ a2) - W™ = (W™ + ag) - W™

()m "—m'w", if ajw™ + ag # 0.

(iii) a*(a1 + aaD™) - w" = a*(aq + agw™) - W™.

(iv) m'wnzm-wn,

if w—a* (a1 + agw™) # 0.

Now we are ready to solve (4.5.2). First, we present two lemmas we
need in solving nonhomogeneous difference equations.

Lemma 4.5.1. If \(bu)™' < 1, then z = a*(u — p2®) has a unique
root v in (0,1).

The proof can be found in Gross and Harris (1985).

Lemma 4.5.2. Let {z,}>2, be an unknown sequence with

> oneo lTn| < 1.

(i) A particular solution of difference equation (D — 9) - x,, = £" with
& # 4 is given by .
=5

(ii) The general solution of homogeneous difference equation (D —9) -
xn, = 0 with |§] < 1 is given by

Tn "

Ty = co”,

where c is a constant.
(iii) A particular solution of difference equation (D —a*(p—uD®)-z, =
0™ with (0 # =) is given by

571
0 —a*(p— po®)’
where v is the unique root of z = a*(pu — pz?) in (0,1).

(iv) If A(bp)~! < 1, the general solution of homogeneous difference
equation (D — a*(p — uD®)) - 2, = 0 is given by

Ip =

_
Lp = CY

where c is a constant.

Proof: (i), (ii), and (iii) are obtained immediately by using the prop-
erties of D.

For (iv), if v; is a root of z = a*(u — puz’), a solution of (D — a*(u —
uDP)) -z, = 0 is given by z, = ¢;7". Thus the general solution is
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a linear combination of such solutions. However, it is required that a
solution {x,} satisfy > 7 ,|zn| < 1. To meet this requirement, a root
of z = a*(pu — puz®) must be inside the unit circle. Since there is only one
such root in (0,1) with assumption A(bu)~! < 1, the general solution of
(D —a*(pp — pDP)) - 2, = 0 is given by z,, = cy™. O

Applying the shift operator D to (4.5.2f), we have

b—1
(5 = p+ pD")miy(s) = (D — a*(8))mi—1,6(0) — 01y 0(8) — Y iy (s).

(4.5.3)
Letting s = 6 in (4.5.2¢), we get

mi0(0) = moa, i>a—1, (4.5.4)

where o = a*(f) and 79 = 7a—1,0(0)a’~® Substituting (4.5.4) into
(4.5.2c) yields

wmgzﬁ“iif“DJA, i>a. (4.5.5)

Letting s = p in (4.5.2e) gives
m;(0) = mw',  i>0, a<j<b-1, (4.5.6)

where w = a*(p) and 7; = mg;(0). Furthermore, substituting (4.5.6) into
(4.5.2e), we obtain

75(s) = Wwi—l, i>1l,a<j<b-—1. (4.5.7)

For the embedded Markov chain at arrival instants, the probability

that ¢ customers are waiting in the queue and the server is busy with a
batch of b customers is given by

0 00 ,—pt k
ml0) =3 - mirsans ) [ a0

N % e ()t
+ Z 7Ti71+kb,b(0) /(; Ta(t)dt

S >t —p(t—z) k-1
; —92€ (u(t —z))
+ ;m—urkb,o(()) ; /0 fe k1)1 a(t)dzdt.

(4.5.8)
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Substituting (4.5.4) and (4.5.6) into (4.5.8) gives
mip(0) = ( / e“(lDb)ta(t)dt> - i—1,5(0)
0

00 t
+ mofat T / / efgxe*“(lfo‘b)(t*z)a(t)dxdt
o Jo

b—1 .
+ Y mwi! / (e*ﬂﬂfwb)t - e*ﬂt) a(t)dt. (4.5.9)
. 0
j=a

Expression (4.5.9) can be rewritten as

(D a (1 — pD"ma(0) =" D)

p(l—ab) -0
b—1 '
— Zﬂj(w —a*(p — p?))wt, i >0.
j=a

(4.5.10)

It follows from Lemma 4.5.2 (iii) that a particular solution of (4.5.10) is
given by

b—1
* . 7T()9 i+b g .
Wib(o) - ma’ - j:E aﬂ]w], 1> 0, (4511)

where o # v and w # . From Lemma 4.5.1 and Lemma 4.5.2 (iv), we
get the general solution of homogeneous difference equation (D —a*(u—
D)) 7(0) = 0 of (4.5.10) as

7M(0) = Cv,

where C' is an arbitrary constant. Because the general solution of a
nonhomogeneous difference equation (4.5.10) is the sum of the solution of
a homogeneous equation and the particular solution, the general solution
of (4.5.10) is obtained as

ol

mip(0) = Cvi + —M(l - 004

b—1
N mwd, i8>0, (45.12)
Jj=a
Next we find 7m;0(0), 0 < ¢ < a — 2 by first determining p}, (s). Let
zj(s),1 < j < b, be the broots of s—p+puz® = 0 for a fixed s with Re(s) >

0. Clearly, the general solution of the homogeneous difference equation
(s—p+uD®)7h(s) = 0 of (4.5.3) is 22:1 d;z;(s) where d;’s are arbitrary
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constants. Substituting (4.5.5), (4.5.7), and (4.5.12) into (4.5.3) and
using Lemma 4.5.2 (i), we have a particular solution of (4.5.3):

O @) o, mofle—a)
Ts—u—)" T —ah) —0)(s—0)

b—1 o ‘
_ Zﬁj (w—a (S>)wz—1‘
j=a STH

Thus the general solution of (4.5.3) is

~ s — p(1=1")
mof(a —a*(s) g _ L _w—d'(s) i
(n(1 —ab) —0)(s - 0) JZ:: Tos—p
(4.5.13)

It follows from » 72,75 (0) < 1 that > 3%, mp ., ,(0) < 1,1 <k < b.
Note that z§i+k(0) = z]( ) because z; ¥(0),1 < j < b, are the bth root
of 1. Setting s = 0 in (4.5.13) and summing over %, we must have
the convergence of Y -2 Z?:l djzé(s) because ) 2, 744, (0) converges
and 7,a, and w are less than 1. This requirement is met only when
22:1 djzé(()) =0, for i = 1,2,...,b. The determinant of b x b matrix

<zf(0)) is known as the Vandermonde determinant of order b and is not

equal to zero. Hence all d; (1 < j < b) must be zero, and we have

_Ch=a) 1 mbla—d )

W) == - o = 66— )
b—1 *
_ Zﬁj(w;_‘l;é‘))wi—l, i > 1. (4.5.14)

Setting s = 0 in (4.5.2b) and using (4.5.7) and (4.5.14), we obtain the
recursive relation

io(0) — mi—1,0(0 Z,WTU + 1 (0)

_ 0(1 - 7)7171 4 mop(l — a) qito-1
1—qb p(l—ab) -0
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Based on this recursion, we have

o

mi0(0) = ———5 (1"~ =) + (=)0 = pa"7),
0<i<a-—2 (4.5.15)

We use a set of b—a+ 2 equations to determine C, 7y, and 7;(a < i < b),
in which b — a + 1 equations are boundary conditions (4.5.2d) and one

equation is
[e%S) © b
A=) "mio(0) + > mij(0). (4.5.16)
i=0

i=0 j=a
From (4.5.15), we get

S~ (CO T =7 | mol(p = 0! — patt)
A=
10< >

1—1b p(l —ab) -0
9] ) oo b—1
+ Z T + Z Zﬁjwz
i=a—1 =0 j=a
[e%S) i b—1
7T09042+b
+ Cv' + W
; pl—at)—0 =~
C B ,ya—l o ’}/Z
— — 1)~ 1
e L
7T090¢i+b . aa—l . ab
_— —1Da* _ 4.5.1
+,u(1—ozb)—6[(a )t + o (4.5.17)
Setting s = p in (4.5.2d) yields
b
m0i(0) = Y (1) + 07l (1), a<i<b. (4.5.18)
j=a

Substituting (4.5.5), (4.5.6), (4.5.7), (4.5.12), and (4.5.14) into (4.5.18)
gives the other b — a + 1 equations:

i+b b-1
¢, _mba ) (4.5.19)

v ml—ab) -0

i—b—1 mof(a —w) ;4

<i<b-—1. (4.5.2
pi—at)—g® 0505 (45.20)

i =C(y —w)y
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Solving the b — a + 2 linear equations (4.5.17), (4.5.19) and (4.5.20) for
C, o, and m;(a < i < b—1), we havewhere

-1
C =X\f(a) {f(f_)gy(? + ¢ _59)££739(a)} (4.5.21a)
A0 —p(1—a”)f(r) {f(a)g(v) L 0=w10)g(e) }—1

0 ’y@abfl 1— ’Yb W/Qabfl

(4.5.21b)
S {f(a)W —w' Tt ()@ —w)a ! }
Yy b1 ab—1
-1

x {fla_gjl) + U _59)55739(00} ,a<i<b—1, (4.5.21c)

xr — X
— -1 a—1
o) = (0 — )"t + T

(x —w)(1 —ab)
w(l — x)zb—a

I

The main results are summarized in the following theorem.

Theorem 4.5.1. (i) The stationary distributions Wl(g) (or 7ri(]‘-l)) that

an arrival sees ¢ customers in the queue and the server is on vacation (or
busy with j customers in a batch) are given by

a—1 _ A3 o a—1 _ b+1i
(a)_l{C(’Y 7") | mo((p—0)a pox )}70§i§a_2’

o TN 1—7b p(l—ab) -0
1 .

ng) = Xﬂgal, 1>a—1,

ORI i>0,a<j<b-1

1) Y J ) - =7 > )
b—1

W(a)_l C i+L€ai+b—Zw-oﬂ 1>0

N u(l —ab) -6 "I ’ -
j=a

(ii) The stationary distributions 7j,(0) (or 77;(0)) that there are i

customers in the system and the server is on vacation (or busy with j



General-Input Single Server Vacation Models 179

customers in a batch) at arbitrary instants are given by

m(0) = P (1 a)a’!, i>a,
m3;(0) = %(1-@&1, i1, a<j<b-1,
LfCO=7) m-a)(p=0) ;4
*(0) = = J .
65 (0) u{ 1=y " pli—ab—g ¢ T
CLS] Sb_]-v
* Cl—79) i mo(l—a)
5 (0) = VT
»(0) (1 —AP) w(l—ab)—6
b—1
_ij(l_w)wi—l’ i1,
* 1 c b—1 ((1—& b 1
0) =~ ~1
mi0) =} T D +Zm

m/5(0) (0 < i < a — 1) are obtained from (4.5.2a) and (4.5.2b). The
constants C, mp, and 7; (a < i < b— 1) are given by (4.5.21).

Proof:  Since Wl(j) = A !7m;;(0), (i) follows from (4.5.15), (4.5.4),
(4.5.6), and (4.5.12). Setting s = 0 in (4.5.5), (4.5.7), (4.5.2d), and
(4.5.14), we obtain (ii).0]

Although we can numerically compute the distributions of the queue
length at various time instants, unlike the nonbulk GI/M/1 vacation
model, we cannot obtain the explicit expressions for the p.g.f. of the

queue length and the LST of the waiting time.

4.6  Finite-Buffer GI/M/1 Vacation Model

As an example of the finite-buffer GI/M/1 vacation systems, we con-
sider a multiple vacation model with exhaustive service, denoted by
GI/M/1/K (E, MV), where K is the buffer capacity. The results of
this system were obtained by Karaesmen and Gupta (1996). Like most
finite-buffer vacation systems, a set of equations are developed for solv-
ing the stationary distribution of the queue length numerically. The
vacations are exponentially distributed i.i.d. random variables with rate
f. Customers arriving at a full buffer are assumed to be blocked and lost
to the system. Most symbols are the same as before, and two important
probabilities are reproduced below for the convenience of reference:
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ak_/oo(“t) *MtdA() k>0

0
t —
v = / vl _“(t_“)He_eududA(t), k> 0.

Define the probability that the residual life of a vacation V exceeds the

interarrival time T as
w= / A(z)dV (z)
0

Consider the Markov chain embedded at the arrival instants with
state denoted by (7,j), where j = 0 (or 1) denotes that the server is
on vacation (or not on vacation) and that there are i customers in the

system. The stationary probabilities 7r( @) (0 <i< K, j=0,1) satisfy
the following set of equations:

K-1 K—-1
o = 3 o+ i + =) | 3 oo+ o

r=1 r=0
(4.6.1a)
gl - Z - 1+r1ar +mictax—
K—j
+A—w) | S w0 + wﬁ?&v;{_j] . 2<j<K-1,
r=0
(4.6.1b)
T = (Wﬁ?) L+ meao+ (1 — @) (e o+ 7)o, (4.6.1c)
o) = Z Y ary1 + W(a)aK +( [Z 'y Uryr + ”K())UK] ;
r=1
(4.6.1d)
T = @, 1<j<K-—1,
(4.6.1¢)
77&?()) = w(n‘&?ll ot 77&?())) ) (4.6.1f)
where af = p s —;ar and v§ = =y _; vr. Another equation needed is the

boundary condition:

K K
Salg+ Y Al =1 (4.6.2)
r=0 r=1
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Solving (4.6.1) and (4.6.2) simultaneously, we can obtain the stationary
distribution of the queue length at arrival instants. To find the stationary
distribution at an arbitrary time, we need to consider a semi-Markov
process {L(t),J(t)}, where L(t) is the queue length and J(¢) (=0, or
1) is the server status (on vacation, or not on vacation) at time ¢ with
embedded points at arrival instants. Note that this semi-Markov process
changes state at arrival instants, and therefore the time spent in a state
at each visit is an interarrival time. Let 7;; be the expected sojourn time
of the process at state (i,7). Thus

TZ] :E(T)7 7’207152aaK7 ]:071 (463)

Since all expected sojourn times are equal, the stationary distribution
of the semi-Markov process is equal to the stationary distribution at
embedded points, TrZ(;) (0<i< K,j=0,1). Let A and A be the
forward recurrence (residual life) and backward recurrence times of an
interarrival time, respectively. Then

A(z) = A(z) = /Ooo A1 — A(y))dy. (4.6.4)

To relate the stationary distribution of the semi-Markov process to the
stationary distribution at an arbitrary time, let d; denote the probability
that there are k service completions in the backward recurrent time of
an arrival given that the server was available at the time of arrival, and
let d,‘: denote the same probability given that the server was on vacation
at the time of arrival. Hence, we have

00 k R

4, = / W) o g 3 (), (4.6.5)
o K
%) k R

df = / (“]j) e Mg AT (z), (4.6.6)
0 .

where AT is the random variable denoting the amount of time A exceeds
V', and

121\+(£C) _ fsx:o fyoio f?(?i)fg/(\y + S)dyds'
Pr(A>1V)

(4.6.7)
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Now letting 7;; denote the stationary probabilities of the queue length
at arbitrary time, as in Ross (1983), we have the following equations

K-1 K—1
o= 32 ol -0 | St
r=1 r=0
(4.6.8a)
Z 7T(a)1+r 1dr + ”g(idK —j
(1- k) [Z D rods T j], 2<j<K—1,
(4.6.8b)
Ty = @g L1+ T do + (1 &) o+ mi)d], (4.6.8¢)
Too = Z r\Vde g+ mids
(1— k) [Z () + 7 (d;)C] , (4.6.8d)
71';0 = mr](-_)l’o 1<j<K-1,
(4.6.8¢)
TRo = /ﬂ(ﬂ%) 10+ W%[))) , (4.6.8f)

where dS = Y% d, and (dj) =% df and & = [ A(x)dV (x).
A useful performance measure for a finite-buffer system is the blocking
probability pp. Since the Markov chain is embedded at arrival epochs,

this probability is obtained as
pp =79 + 79, (4.6.9)

Due to the memoryless property of the exponential service time and
vacation time, a customer arriving at a state (,0),0 < ¢ < K, has to
wait for a vacation completion and ¢ service completions, and a customer
arriving at a state (4,1),1 < ¢ < K, has to wait for i service completions.
Using the conditional probability argument, we obtain the LST of the
waiting time as

K—1

K-1 i i
* (a) K g (a) K
W = E + g — ] . (461
v (5) 7o <,u—|—s> (9+S> . i1 (u—i—s) (4.6.10)

=0 1
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4.7  Discrete-Time GI/Geo/1 Queue with
Vacations

In this section, we will discuss the discrete-time vacation models with
general input.

4.7.1  Classical GI/Geo/1 Queue

In a classical discrete-time queueing system, the customer arrivals oc-
cur at discrete time instants t = n~,n = 0,1,..., and the interarrival
times {1}, k > 1} are i.i.d discrete random variables with the distribu-
tion, the mean, and the p.g.f., respectively, as follows:

P{Tp=j}t =X, j>1 E(Ty) =AY A(z) =) 2.
j=1

The service time follows a geometric distribution
P{S=j}=p(l—py", j>21,0<p<L

It is assumed that the service starts and ends only at discrete time
instants t = n",n = 1,2, .... By letting n~ and n* be arrival and service
start/end instants, respectively, we have a well-defined queue length at
time instant n. This model is called a late arrival GI/Geo/1 system.
For detailed analysis of this system, see Chapter 9 of Hunter (1983).
Let L,, denote the number of customers in the system just before the
nth arrival instant. Thus {L,,n > 1} is an embedded Markov chain.

Let
> AN o
aj:ZAi(j)wu—m”, j>0,
i=j

be the probability that, during a discrete interarrival time, exactly j con-
secutive services are completed. Therefore, {a;, j > 0} has the following
p.g.f. and mean, respectively:

C(z) =) a;a = A1 - p(1 - 2)),
=0

B(C)=C'(1) =Y ja; =5 =p".
j=1

Similarly to the continuous-time GI/M/1 system, it can be proved that
the system is positive recurrent if and only if p = Ap=! < 1. If p < 1,
z = A(1 — p(1 — 2)) has a unique root z = £ in (0,1). The stationary
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distribution of the queue length just before an arrival instant is given by
mj=P{L=3j}= lim P{L,=j}=(1-6€¢, ;>0 (47.1)
n—oo
The p.g.f. of the waiting time is obtained as

(1= -1 —-p)
1-[1—pl=9Jz"

W(z) = (4.7.2)

The expected values are

_ ¢
w(l—¢)

4.7.2 GI/Geo/1 Queue with Multiple Vacations

In the GI/Geo/1 queue described above, if the server follows an ex-
haustive service, multiple vacation policy, the system become a discrete
time vacation model, denoted by GI/Geo/1 (E, MV). Now, the vacation
time is a discrete random variable that follows a geometric distribution
with rate 6. That is,

B(L) = 1+ BOV)

PlV=j4}=0-67"1  j=1,2,... EV)=6"1' 0<6<]l.

It is also assumed that the vacation times, the interarrival times, and the
service times are mutually independent. The service sequence is FCF'S.
Let L, denote the number of customers in the system just before the
nth arrival instant, and define

J = 0 the nth arrival occurs when the server is on vacation,
"1 1 the nth arrival occurs when the server is busy.
Thus {(Ln, Jn), n > 1} is a Markov chain with the state space

Q={(0,0}U(k,j) : k=1,j=0,1}.

We also introduce the symbols

o0 .
7 . .. .
aj:ZAz(.)HJ(l_M)l 7 j >0,
=7 J
k—j—1

o0 Sk —71—1 ; i1 .
v 2w S a-ee(t T etz

k=j+1 =0 J
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As stated before, {a;, j > 0} has the p.g.f. A(1—p(1—2)). Let 6 = 1—0.
Note that

oo 00 k—1 k*jflil E—i—1 ' ' '
vj = Z)\k Z 919< , >,u3(1 — kit
=0 k=1  j=0 i=0 J
o k=1  k—i-1
— k—i—1 —i—1—7
=D M 00 ( : )/ﬂ(l—u)’“ -
k=1  i=0 =0 J

Therefore, {vj,j > 0} is not a complete probability distribution. Us-
ing the lexicographical sequence of the states, the transition probability
matrix can be written in the block-partitioned form of (4.1.6), where

BOO =1 vy — A(@), AOl = (’U(), A(g))7

. ag 0 - Q. 0
lAO—|:,U0 A(e):|7 Ak_|:?}k O:|, kZL

k
1 772j:0 Z’J , k > 1.
1—A() - Zj:() Uj
If p < 1, £ is the unique root of z = A(1 — (1 — 2)) in (0,1). Similarly
to Lemma 4.2.3 for the continuous-time model, we can prove that under
the assumption of p < 1 and 6 # (1 — &), we have
0 _

= AT =0 [A®) - €] > 0.

B; =

In the following development, we assume that 0 # p(1 — A(9)).
Theorem 4.7.1. If p < 1, the matrix equation

R=>) RFA; (4.7.3)
k=0

has the minimal nonnegative solution

R:<§ A?(%))'

Proof: Since all Ay, k > 0, are lower triangular matrices, the solution
to (4.7.3), R, must have the same form. Let
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Then .
r 0
R" = ( ket k1 >, k> 1.
"2 M 5
Substituting R*and Ay, into (4.7.3) gives the following equations:
rin = Al —p(l—ru))
99 = A(G)
_ ) k—1_j k—1—j o0 k
T12 = T12 ) ey Gk ijo T11722 + 2 k=0 VK732

Let r11 = &, rog = A(0). Note that

D o ARO) =D AN6) Y N
k=0 k=0 j=k+1
j—k—1 .
§i9 j—1—1 k(l— )j—k—l—i
x 22; ( k ) I f
oo 7—1
=> N> 00
J=1 =0
j—i—1
<3 (T ey a
k=0
oo u(10_ 4(5)) A@) — Al - p(1 = AO) - (474)
Also, we have
o] k—1 4 4
=D ) ATTE)
k=1  j=0
IR TR SRV
=1 §A(9>kzzo k(6 — A% (0))
- 5_11(9){14[1 —p(1—A0))] - A(0)}. (4.7.5)

Substituting (4.7.4) and (4.7.5) into the equation for rj2 in the above
set of equations yields r1o = d. O

Using the same analysis as in the GI/M/1 queue with multiple va-
cations, we can prove that the process {(Ly,J,), n > 1} is positive
recurrent if and only if p = Au~! < 1. Hence, if p < 1, we denote the
steady state by (L,,J) and the joint stationary probability by
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Introducing a constant

11— A(D)
TS ioers "

it is easy to verify that an equivalent expression for o is

01— A®)
0—pl—-¢)
Theorem 4.7.2. If p < 1 and 6 # p(1—¢), the distribution of {L,,, J}
in a GI/Geo/1 (E, MV) system is

o = (1 — £) AR(6), k>0,
{ 1 = o(1 — 5)5Z§;3 GARIEIG), k> 1.

(4.7.6)

(4.7.7)

Proof: Note that

BOU A[)l
BIR] = 00 _ 50 _ .
[ ] ( Zk:l R* 1Bk Zk:le 1Ak )

Substituting R, A}, and By, into the B[R] above, we obtain

1-— A(@) — Vo Vo A(@)

B[R] = ‘2—0 1-— %0 0 ,
1—9 P 0
where
w _ a05 _ Vo .
EA(0)  A(0)

It is easy to prove that B[R] has the left invariant vector 7* = (w9, 711, 710).

Solving the equation 7* B[R] = 7* gives 7* = K (1,9, A(0)), where K > 0
is a constant that can be determined by the normalization condition.
Based on the matrix-geometric solution method in Neuts (1981), we
have

moo = K,
(T, Tho) = K (5, A(B))RF L, k> 1.

Substituting R of (4.7.3) into the geometric solution above yields (4.7.7).
Using the normalization condition

K+ K(6,A0)I-R) le=1,
we get

(1-&)(1—A®0))

K=

— (1-9)0
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This completes the proof. [J
From (4.7.7), we can compute the probability that an arrival occurs
in a busy period or in a vacation period, respectively, as

1-¢
1—¢6+46’

> 5
PI=1}=) mn=—7—
— 1—¢6496

Theorem 4.7.3. For p < 1 and § # p(1—¢) in a GI/Geo/1 (E, MV)
system, the stationary queue length L, can be decomposed into the sum
of two independent random variables,

P{J=0} =) mo=
k=0

LU:L+Lda

where L is the queue length of the classical GI/Geo/1 system without
vacation and follows the geometric distribution with parameter £, and
L, is the additional queue length due to the vacation effect. Ly has the

p-g.f. et
-z z
Ly(z) =0——"—7—. 4.7.8
) =) (4.78)
Proof: From (4.7.7), we have the distribution of L, as
P{L,=0}=mp=(1—-¢&)o

P{L, =3} =mj +mjo

= (- 6)0{5i§kz4j_l_k(9) +AN0)}, j > 1.

k=0

Taking the p.g.f. of the distribution of L,, we get

Ly(2) = i P{L, = k}2*
k=0

_(1-¢ { 1 N 0z 1 }
- TN =240) T 1-261—2A(9)
1-¢ 1—26420

T 12712240
= L(2)L4(2).

(]
Expanding (4.7.8) yields the distribution of the additional queue length
Ld:
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Lg(z) = o[l — 2 + 20] Y 28 A*(6)

k=0
—a{1+pmn—§+ﬂ§3JAk%m}. (4.7.9)
k=1
Note that
— — 0
A®) - 45 (40) - 9|1+ T J
=53(1 - A®)

Substituting this result into (4.7.9) and examining the coefficients of 2",
we get the stationary distribution of Lg:

P{Lg=0}=0
{Puzzk}zﬁﬂ@—Aw»MAML k1, (4710)

Note that (4.7.10) indicates that the distribution of L; is a modified
geometric distribution. Based on the closure property of the discrete
PH distribution, as the sum of two independent first-order discrete PH
random variables, L, follows a second-order discrete PH distribution and
has the mean

3 p o od

¢ 01-A0)

We can prove the stochastic decomposition property for the stationary
waiting time W,,.

Theorem 4.7.4. For p < 1 and 0 # p(1 — &), in a GI/Geo/1 (E,
MV), the stationary waiting time W, can be decomposed into the sum
of two independent random variables,

E(Lv) =

Wy =W+ W,

where W is the waiting time of a classical GI/Geo/1 system without

vacations and Wy is the additional delay due to the vacation effect. Wy

has the p.g.f.

0
1—20
Proof: Assume that a customer arrives at t = n~. At t = n™, it

is possible that a service or a vacation ends. Hence, if the customer

arrives at state (k,1) for £ > 1, he or she will wait k£ — 1 services with

Wa(z) (4.7.11)
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probability x4 and will wait &k services with probability 1 — p. Similarly,
if the customer arrives at state (k,0), k > 0, his or her waiting time will
be the sum of k services with probability # and will be the sum of a
residual vacation time and k services with probability §. Based on the
total probability formula and (4.7.7), we obtain, by taking the p.g.f of
W,

Wy (z) = i FP{w, =k}
k=0

S-S (i)

z k) Al . .
ciow (i) pea o

J=0

- k(g Mz *
—|—(1—§)okZOA @) {9 (1_(1_M)Z>

1(:55) <1—<fz—u>z)k}

- 5)0{ po(1— (1~ p)z) _
(1—(1—pu(l—€)2) (1— (1 u(l - A@0))))
L 60w }
(1-02) (1— (1 p(1 - A(0)))2)
(L=~ (1= pz) pd(l—02) +6(1— (1 p(l—&)>)
I—(1—p1=9)z  (1—-02)(1— (1 —p(l - A®B)))z)
= W(2)Wa(2),

where W (z) is the p.g.f of the waiting time of a classical GI/Geo/1 queue
as shown in (4.7.2), and

po(1 —0z) +0(1 — (1 — p(1 - €))2)

Wa(z) =0 (1—02)(1— (1 —p(l— A(0))z)

(4.7.12)
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which can be further simplified. Note that the numerator of the expres-
sion above can be written as

po(L—0z2) +0(1— (1 - p(l—¢))2)

9 A —
= Ay g MO -1 -A0)] (1 -02)
+[1 =2+ p(l - &)z] [u(l - A(9)) — 0]}
0
" (1 —A@) -0

< {(1—2) (w1 = &) = 0) + p(1L — A(0))z(u(1 - &) — 0)}

_ p1=¢-9 1 w1 — A
= = A@) _09 [1—(1—p(l - A0)))?]
=00~ [1— (1—p(l— A(9)))z] (4.7.13)

The last equality of (4.7.13) is obtained by using the alternative
expression of ¢ in (4.7.6). Substituting (4.7.13) into (4.7.12) gives the
expression for Wy in (4.7.11).00

As with the GI/M/1 (E, MV) system, Theorem 4.7.4 indicates that
the additional delay is equal to a residual vacation time. Note that
when the vacation time follows a geometric distribution without zero,
the residual vacation time follows the geometric distribution with the
same parameter and with zero as a permissible value. Finally, we can
obtain the expected value for the waiting time from the stochastic de-
composition property:

| DI

E(Wq) =

Y

oL p———

p(l—¢§)

It is worth noting that our analysis in this section can be extended to

the case with PH distributed vacations. This extension would increase

the size of the Ay matrices but would not alter the structure of the
probability transition matrix.

|

4.8 Bibliographic Notes

Compared with vacation models with Poisson arrivals, the research on
GI/M/1 vacation models started late. The early work on the D/G/1 va-
cation model was due to Servi (1986). He introduced a model in which
the waiting time depends on the initial state of the system. Tian et
al. (1989) used the matrix geometric solution method to analyze the
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GI/M/1 vacation model. They obtained the explicit expression of the
rate matrix and proved the stochastic decomposition properties for the
queue length and the waiting time in a GI/M/1 vacation model with mul-
tiple exponential vacations. Independently, Chatterjee and Mukherjee
(1990) also studied the GI/M/1 queue with exponential vacations. Tian
(1993) studied the GI/M/1 queue with single vacation. Using the matrix
analytical method, Tian and Zhang (2004) discussed the GI/M/1 queue
with PH vacations or setup times. Dukhovny (1997) used the Reimann
boundary value method to study the GI*/MY/1 system.

Karaesman and Gupta (1996) studied the finite buffer GI/M/1/K
vacation model and obtained the queue length distribution and the cus-
tomer loss probability. Laxmi and Guipta (1999) used the supplementary
variable method to analyze the batch-service and finite-buffer vacation
model of GI/M/1 type. Zhang and Tian (2004) provided an analy-
sis of the GI/M/1 queue with N-policy. Ke (2003) treated the finite-
buffer GI/M/1 queue with N-policy by using the supplementary variable
method. Dukhovny (1997) presented the batch-arrival and batch-service
vacation model of GI/M/1 type. Machihara (1995) studied a more gen-
eral G/SM/1 system with vacations. Tian and Zhang (2002) developed
the discrete time GI/Geo/1 vacation model and obtained the stochas-
tic decomposition results. It is worth noting that the GI/M/1 vacation
models with nonexhaustive service have not been studied and that the
studies on discrete-time GI/Geo/1 vacation models are limited to cases
with geometric vacations. Compared with M/G/1 and Geo/G/1 vaca-
tion models, there are more GI/M/1 and GI/Geo/1 vacation systems
that require future research.



Chapter 5

MARKOVIAN MULTISERVER VACATION
MODELS

In the three previous chapters, we focused on single server vacation
models of different types. In this and the next chapter, we will discuss
the multiserver vacation models.

5.1 Introduction to Multiserver Vacation Models

In many practical queueing systems, multiple servers attend to the
queue. Call centers, banks, and fast food restaurants are a few exam-
ples. A common feature of these systems is that the servers can perform
some secondary, nonqueueing tasks when they are not busy. For exam-
ple, call center agents may make outbound calls to potential customers
when no inbound calls are on hold. These outbound calls are secondary
or supplementary jobs that can be done by the idle agents. To model
this feature, we use the multiserver model with vacations that represent
the durations of secondary jobs. Compared with single server vacation
models, the multiserver vacation models are more complex to analyze.
Levy and Yechiali (1976) studied the M/M/c queue with exponential
vacations and obtained the distribution of the number of busy servers
and the expected number of customers in the system. Neuts (1981) de-
veloped the matrix analytical method, which provides a powerful tool in
studying complex stochastic systems. Vinod (1986) presented the analy-
sis of M/M/c queue with vacations by using the quasi-birth-and-death
(QBD) process. By finding the explicit expression of the rate matrix,
Tian and Zhang (2000) obtained the distributions of the queue length
and the waiting time in various M/M/c queueing systems with vacations
and established the conditional stochastic decomposition properties for
the queue length and the waiting time. Like the unconditional stochas-
tic decomposition properties for the single server vacation model, the
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conditional stochastic decomposition properties also indicate the rela-
tionship between the multiserver vacation system and the corresponding
the classical M/M/c system.

The multiserver vacation models have more complex and different
system dynamics than the single server vacation models. Below is an
overview of the vacation policies used in multiserver vacation models.

(1) Synchronous All-Server Vacation Policy. Under such a policy in
an M/M/c queue, all ¢ servers start a random vacation V simultane-
ously. As in the single server model, for the multiple vacation case, if
the system remains empty at a vacation completion instant, these servers
take another vacation together, and they repeat this process until they
find the waiting customer(s) in the system. Then the ¢ servers resume
serving the queue. This type of policy applies to the situation where
the servers are controlled by the same means or are required to perform
a teamwork-type job. For instance, in a mainframe computer system
with multiple user terminals, the user terminals are considered to be
the servers and the mainframe computer’s shutdowns due to power fail-
ures or maintenance activities can be treated as synchronous vacations.
In this and the next chapter, we denote the multiple and synchronous
vacation system by (SY, MV). Similarly, for the single vacation case,
when the system becomes empty at a service completion instant, all ¢
servers take only one vacation together. After completing the vacation,
these servers either start serving the customers, if any, or stay idle if
the system remains empty. The single and synchronous vacation system
is denoted by (SY, SV). The third case is that all servers are turned
off when the system becomes empty at a service completion instant and
are turned on with a setup or warmup period when the next customer
arrives. This type of system is called a synchronous setup model and
is denoted by (SY, SU). Note that these policies are exhaustive service
type.

(2) Asynchronous All-Server Vacation Policy. Under such a policy
in an M/M/c queue, any of ¢ servers starts a vacation independently
if this server finds no waiting customer in the system at his or her ser-
vice completion instant. At this instant, other servers may be serving
customers, or on vacation, or idle (for single vacation case). Since the
servers take individual vacations independently, we say that the servers
follow an asynchronous vacation policy. The condition for taking a va-
cation now is that there is no waiting customer. Thus there may be still
some customers in service in the system when a server starts a vacation.
Therefore, the policy is also said to be semiexhaustive. If the servers
take individual vacations consecutively as long as the queue length is
zero, the servers follow a multiple vacation policy. Therefore, the sys-
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tem is denoted by (AS, MV). On the other hand, if the server takes only
one vacation when no waiting customer is in line at a service comple-
tion instant and either resumes service or stays idle, the system then
is under a single vacation policy. This system is denoted by (AS,SV).
Similarly, if a server is turned off when there is no waiting customer at
the server’s service completion instant and is turned on with a setup (or
a warmup) period when the next customer arrives, the system is called
an asynchronous setup model and is denoted by (AS, SU).

(3) Some-Server Vacation Policy. In some situations, we want to limit
the number of servers who can take vacations in the system. Under
either an SY or an AS vacation policy in the M/M/c queue, all ¢ servers
are eligible for taking vacations. However, the maximum number of
servers on vacation at a time is no more than a prespecified number d
(0 < d < ¢). This limit also implies that the number of servers attending
to the queue (either serving or being idle) is at least ¢ — d. This class of
policies offer more flexibility in allocating the servers’ time to multiple
tasks or controlling the servers’ utilization level. Clearly, the special case
d = ¢ becomes the all-server vacation policy. The some-server vacation
policies can be either an SY or an AS type. For each type, the policies
can be further classified into multiple vacation, single vacation, or setup
time models according to the rules of resuming queue service.

(4) Threshold Vacation Policy. As a generalization of the some-server
vacation policy, we may introduce more control parameter(s) into the
policy. The basic threshold policy is similar to the threshold policy
in the single server model and is called the all-server N-policy with or
without vacations. Under such a policy in an M/M/c queue, all servers
start taking a vacation at a service completion instant when the system
becomes empty. If the servers keep taking synchronous vacations until
the number of customers in the system is at least NV at a vacation com-
pletion instant, and then resume serving the queue, we call the servers
follow an N-threshold vacation policy. If the servers are shut down at a
service completion instant when the system is empty, and start serving
the customers immediately when the number of customers in the sys-
tem reaches N, we say the servers follow an N -policy without vacations.
Another threshold-type policy is a generalization of the some-server va-
cation policy. Here is how it works. In an M/M/c queue, the servers are
allowed to take vacations only when the number of idle servers reaches
d at a service completion instant. When this condition is met, a subset
of e (< d) servers take a vacation together. These e servers keep taking
synchronous vacations until there are waiting customers at a vacation
completion instant. Then these e servers resume attending to the queue.
This policy is called an (e, d) policy. As a further extension of the (e, d)
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policy, we may introduce the threshold N for service resumption to have
a three number (e, d, N) policy. Under such a policy, a group of e servers
starts taking a vacation whenever d (< ¢) servers become idle at a ser-
vice completion instant and keep taking the vacations until the number
of customers in the system reaches N at a vacation completion instant;
then the e servers resume attending the queue. Note that in the (e, d, N)
policy, parameter d controls when the server vacation period starts, pa-
rameter e controls the number of servers on vacation, and parameter N
controls when the vacationing servers return to the queue service.

It is well known that the stochastic decomposition theorems play a
central role in the theory of single server vacation models. However, we
cannot establish the corresponding theorems in the multiserver vacation
models due to the complexity of the system dynamics. Our research
indicates that the relation between the multiserver vacation model and
the corresponding classical nonvacation model in terms of stationary
performance measures can be established under the condition when all
servers are busy. Therefore, we present a set of conditional stochastic
decomposition theorems in this and the next chapter. It can be proven
that for a steady-state system, given that all servers are busy, the con-
ditional queue length or waiting time in the multiserver vacation model
can be decomposed into the sum of two independent random variables.
One random variable is the conditional queue length or waiting time in
the corresponding nonvacation model, and the other random variable is
the additional queue length or the additional delay due to the vacation
effect. In fact, the conditional stochastic decomposition properties also
exist in the single vacation models (see Doshi,1989) and are the common
laws for both single server and multiserver vacation models.

5.2 Quasi-Birth-and-Death Process Approach
5.2.1 QBD Process

Most studies on the multiserver vacation systems focus on the M/M/c
systems. These Markovian queueing systems can be modeled as Quasi-
Birth-and-Death (QBD) processes and can be analyzed by using the
matrix analytical method (MAM). The MAM, mainly developed by
Neuts (1981) and other mathematicians, provides a powerful tool in
developing the stationary distributions for the QBD processes. A QBD
process is the generalization of a birth-and-death (BD) process from a
one-dimensional state space to a multidimensional state space. Like the
infinitesimal generator of a BD process with the tri-diagonal structure,
the infinitesimal generator of a QBD is a block-partitioned tri-diagonal
matrix. For the purpose of the model development in this and the next
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chapter, we present only some relevant materials concerning the QBD
processes. For details about the QBD processes and the MAM theory,
see Neuts (1981) and Lotouche and Ramaswami (1999).

Consider a two -dimensional Markov process {(X (t), J(t)),t > 0} with
state space

Q={(k,j): k>01<j<m}

The process {(X(t),J(t)),t > 0} is called a @BD process if the infini-
tesimal generator of the process is given by

[ Ay Co
B, A C
Q= B: Ay G : (5.2.1)

Bs A3z Cj3

where all submatrices are m X m matrices; Ag,k > 0, have negative
diagonal elements and nonnegative off-diagonal elements; and Cyg, k > 0,
and By, k > 1, are all nonnegative matrices satisfying

(Ao + Co)e = (Bk + Ay + Ck)e =0, k> 1.

State set {(0,1),...,(0,m)} is said to be the boundary level; state set
{(k,1),..., (k,m)} is said to be level k. In many applications, we have a
special case of (5.2.1) where the nonboundary submatrices of the infini-

tesimal generator are independent of level k. Thus Q is written as

Ay Cp |
B, A C
Q= B A C 5.2.2
B A C (522)

Assume that the QBD process is positive recurrent, and let (X, J) be
the limit of {(X (¢), J(t))} as t — oco. Denote the stationary probabilities
by

Ty = PAX = k,J = j} = lim P{X(t) =k, J(t) = j}, (k. j) € Q.
Tk = (Tk1, Th2, s Tkm), k> 0.

We present the following theorems without the proofs. For the proofs of
these results, see Neuts (1981).
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Theorem 5.2.1. The irreducible QBD process is positive recurrent
if and only if the matrix equation

R°B+RA +C=0 (5.2.3)

has the minimum nonnegative solution R, with spectral radius sp(R) <
1, and a set of linear homogeneous equations

m(Ap+RB1) =0

has the positive solution. Furthermore, the stationary distribution can
be expressed as the matrix geometric form

7, = moRY, k>0,

where 7 is the positive solution of the set of linear homogeneous equa-
tions and satisfies the normalization condition

mo(I-R) e =1.

In practical applications, we often encounter the variants of the stan-
dard or so-called canonical form QBD process presented above. In a
noncanonical QBD process, the infinitesimal generator, denoted by Q*,
still has the same structure as in (5.2.2), where Ay is an m x mj matrix
and Cy and By are m; X m and m X m1 matrices, respectively. In other
words, the number of states for the boundary level is different from the
number of states for the nonboundary levels. These noncanonical QBD
processes with Q*are called QBD processes with complex boundary be-
havior and follow the theorem below. B

Theorem 5.2.2. The irreducible QBD process with Q* is positive
recurrent if and only if the matrix equation (5.2.3) has the minimum
nonnegative solution R, with the spectral radius sp(R) < 1, and the
m1 + m linear homogeneous equations below have the positive solution

(mo, 1) B[R] = 0,
where B[R] is the (mi +m) x (m1 + m) matrix

Ap Co ]

mm:[B1A+RB

Furthermore, the stationary distribution can be expressed as the matrix
geometric form
m=mRN, k>1,

and (7, 71) satisfies the normalization condition as

me+m(I-—R)le=1.
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The stationary distribution mg, k > 0, is called the modified matriz
geometric solution. Note that Q* differs from the canonical form of
(5.2.1) only in the transition probabilities from the boundary states. The
probabilistic significance of the matrix R therefore remains the same, but
is applied to nonboundary states only. To analyze the M /M /c queue with
vacations, we encounter a more complex variant of the QBD process:
For a system with ¢ servers, not only the £ = 0 level but also £k =
1,2,...,c — 1 levels become boundary levels, and these boundary levels
contain different numbers of states. Thus we denote the number of states
at level £ by my, 0 < k < c¢— 1. The infinitesimal generator is given by

_A[) CO -
B, A1 C1

, (5.2.4)

&> Q

C
A

where Ay are the my x my matrices, 0 < k < ¢—1; By are the mg xmyg_1
matrices, 0 < k < ¢ —1; Cy are the my X mgq matrices, 0 < k < ¢ — 2;
C._1 and B, are the m._1 X m and m X m._1 matrices, respectively; and
A, B, and C are all m x m square matrices. We assume that the QBD
process is positive recurrent. The stationary distribution is denoted by

Wk:(ﬂ'kl,ﬂ'k%maﬂ'kmk), 0<k<c-—1,
Tk = (77_]4;]_,77']{;2, "'aﬂ_k‘m), k 2 C.

The matrix Q in (5.2.4) can be repartitioned into the block form that
is consistent with Q*as follows: Let

- Ay Co -
B, A C
AO = e e ’
Bc—2 Ac—2 Cc—2
L Bc—l Ac—l 1

0

B = (0,B,), COZ(C 1>»
c—

where Ag is the square matrix of order m* = mg + -+ + m._1, and By
and Cp are the m x m* and m* x m matrices, respectively. Thus (5.2.4)
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can be rewritten as

[ Ay Co
B, A C
Q= B A C ,
B A C

and this QBD process becomes a variant of the canonical form. Theorem
5.2.2 now is modified as follows:

Theorem 5.2.3. The irreducible QBD process is positive recurrent
if and only if the matrix equation

R°B+RA+C=0

has the minimum nonnegative solution, R, with the spectral radius
sp(R) < 1, and the linear homogeneous equations

(71'0, oty Te—1, 7TC)B[]-:{] =0 (525)
have a positive solution where
[ Ay Co

B, A C
B[R] = :

Bc—l Ac—l Cc—l
B. A+RB |

Furthermore, the stationary distribution can be expressed as the matrix
geometric form
= T RFTC, k>, (5.2.6)

where (mg, -+ ,mc—1,7) is the positive solution of (5.2.5) and satisfies
the normalization condition

c—1
Zﬂke +71(I-R) le=1.
k=0

5.2.2 Conditional Stochastic Decomposition

First, we prove an important property of the matrix geometric distri-
bution, which is the foundation of developing the conditional stochastic
decomposition results in this and the next chapter. Assume that the
two -dimensional nonnegative random vector (X, J) has the joint distri-
bution

ij:P{X:k,J:j}, kZ0,0SjSC,
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and let
ﬂ-k:(ﬂ-k[)?ﬂ-kl)”' 7’/ch)7 kZO

Furthermore, we assume that (X, J) follows a matrix geometric distrib-
ution and that there exists a nonnegative square matrix R of order c+1
with sp(R) < 1. Therefore we have

m=pRY, k>0, BI-R)'e=1,

where 8 = 79 = (Bo, f1,- -+, Bc). Now we only consider the case where
R is a triangular block-partitioned matrix,
_ | H
aefH 0] 52

where H is a ¢ X ¢ matrix, n is a ¢ X 1 column vector, and r is a real
number. It follows from sp(R) < 1 that sp(H) < 1 and 0 < r < 1.
Defining the conditional random variable

X© =X |J=¢}

we have the stochastic decomposition theorem.
Theorem 5.2.4. If R has the form given in (5.2.7), X(© can be
decomposed into the sum of two independent random variables,

X0 = Xy + X,

where X follows a geometric distribution with parameter r and Xy
follows a discrete PH distribution of order ¢, with the p.g.f.

1 -
Xa(z) = p {Be+ 2(Bo, B1, -+ Be-1) T — zH) "'}, (5.2.8)
where
0 = Fe+ (Bo, f1, -+, Ber) (T — H) .
Proof: Since R is a triangular block-partitioned matrix, we have

k—1 i s
Rk _ Hk Zi:(] 7,sz 1 17] ’ i Z L
0 rk

Substituting R” into the matrix geometric expression, we get

T =(Tho, Th1, -+ The) = BRY

k k—1 iyyk—1—i
:(ﬂoaﬁla“'aBC)[H Z OTII;I 1 77:|

1=

0 r

k-1

B <(50751’." ,Be—1)HE, Ber® + (Bo, B, -+ - ﬁa—l)Zrinlzﬁ) ;
=0

k> 0.
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From this expression, we obtain the joint probability

k—1

The = Ber® + (Bo, Br, -+ Bee1) D P HEI I k>0, (5.2.9)

1=0

Using (5.2.9), it is easy to compute the probability of the condition
event

P{J:C} :iﬂkc

k=0
00 o ko1
:Bchk—‘,— (607/31,"'  Be 1)2 Tinflfin
h=0 k=1 1:=0
%’f’ [IBC + (507/317 te 7/30—1)<I — H)_ln]
. (o
=T

Now the conditional probability is given by

1—r

P{X© =k} = Thes k> 0.

Taking the p.g.f., we have

o0

X€(z) =) FP{Xx© =k}

k=0

oo k—1
= Lor {/BCZ( )k+(507517"' 7B671)Z Tin_l_in}

k=0 k=1 i=0
— 1;7" {1% + 2(Bo, B, - - ”367”1 1 (I—zH)_ln}
- 11_ r o {Be+ 2(Bo, b1, -+ Be1) (T — zH) '}
= Xo(z )Xd( )

where Xo(2) = (1-r)(1—27) ! is the p.g.f. of the geometric distribution.
Expanding X;(z) gives

‘ L(Bo,Br,+ Bemr)HF 10 k> 1

Therefore, X, follows a matrix geometric distribution. Based on Lemma
4.1.1 in Sengupta (1991), X is a discrete PH distribution of order ¢. [J



Markovian Multiserver Vacation Models 203

If R is a lower triangular block-partitioned matrix,

r 0
R = [ ¢ H ] , (5.2.10)
where H is the ¢ X ¢ square matrix, £ is the ¢ X 1 column vector, and r
is a real number in (0,1). Defining the conditional random variable

X0 =—{x|J=0}

and using the same approach, we can prove the following theorem.
Theorem 5.2.5. If R has the form given in (5.2.10), X(9) can be
decomposed into the sum of two independent random variables,

X© = Xo + Xy,

where X, follows a geometric distribution with parameter r and Xy
follows a discrete PH distribution of order ¢, with the p.g.f.

Xa(z) = % {Bo + 2(B1, B2, -+, Be) (I — zH) ¢}, (5.2.11)

where

o= B0+ (B1, B2, ,B:)I—H)

5.3 M/M/c Queue with Synchronous Vacations
5.3.1 Multiple Vacation Model

Consider an M/M/c system with arrival rate A, service rate p, and
FCFS service order. The detailed analysis of this classical queueing
system can be found in any book on queueing theory (see Kleinrock
(1975), Harris and Gross (1985), etc.). For the convenience of reference,
we present the main results of the M/M/c queue that are relevant to
the vacation models in this chapter. If p = A(cu)™! < 1, the system
is positive recurrent, and there exists the stationary distribution of the
queue length. In the steady-state, the number of waiting customers given
that all servers are busy, denoted by L(()C), follows a geometric distribution
with parameter p. That is

P{LY =k} = (1 p)p", k> 0. (5.3.1)

Given that a customer arrives at a state when all the servers are busy,
this customer’s conditional waiting time WOC) follows an exponential dis-
tribution with parameter cu(1 — p). Therefore, its distribution function
and LST are, respectively,

() = 1 — e=ctll=p)z o5 0. (g — _HL—p) 5
Wy (z) e x>0, Wi(s) sten(—p) (5.3.2)
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Allowing servers to take multiple synchronous vacations in an M/M/c
system, we have the multiserver vacation model denoted by M/M/c (SY,
MV). In such a system, all ¢ servers start taking a vacation together
when the system becomes empty at a service completion instant. At a
vacation termination instant, if the system remains empty, these servers
take another vacation together; if there are 1 < j < ¢ customers in
the system, then j servers start serving customers and ¢ — j servers
stay idle; if there are j > ¢ customers in the system, all ¢ servers start
serving the customers and j — ¢ customers wait in the line. We assume
that the vacations are i.i.d. random variables, denoted by V, following
a PH distribution of order m with the irreducible representation (¢, T)
and ae = 1. This means that there is no positive probability that the
vacation is zero and the LST of V is v(s) = a(sI — T)~!T?. It is also
assumed that the vacation times, the service times, and the interarrival
times are mutually independent.

Let L,(t) be the number of customers in the system at time ¢ and
define

J(t) = 0 the servers are not on vacation,
| j the servers are on vacation at phase j, j =1,2,...,m.

Since the vacations are synchronous, at least one server is busy during
the nonvacation period, and some servers may be idle. Note that the
servers’ being idle is different from their being on vacation. With the
(SY, MV) policy, {((Ly(t),J(t)),t > 0} is a QBD process with state
space

Q={0,7):1<j<m}U{(k,5):k>1,0<j<m}.

The infinitesimal generator can be rewritten in the block-partitioned
form

[ Ay Co
B, A C
- B A C . 5.3.3
Q B A C (5.3.3)

In (5.3.3), Ap is a square matrix of order m* = (¢ — 1)(m + 1) +
m, representing the transitions among the boundary states, where the
number of customers in the system is no more than ¢ — 1. B; and Cy
are the (m + 1) x m* and m* x (m + 1) matrices, respectively. These
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matrices can be written as

[ Ay Co
B: Ay C
By A, C

AO: c. c. c. )

0
BIZ(O,BC), C():<C>a

where Ag = —AI+T+T%x is the square matrix of order m, Cqg = (0, AI)
is the m x (m + 1) matrix, and C = AI is the square matrix of order
(m + 1). Moreover, we have

—(A+kp) 0
Ak; = |: ( 0 :| s 1 S k é C — 1,
T “ALHT |y )
B1:<“00‘) , Bk:[k(;‘ g} 2<k<c—1.
(m+1)xm (m+1)x(m+1)

A,B, and C in (5.3.3) are all the square matrices of order m + 1, as
follows:

—(A+c 0 cn O
A:[ <T0”) —>\I+T]’ B:[SL 0}’ C=AL

Theorem 5.3.1. If p = A(cu)™! < 1, the matrix equation R*B +
RA + C =0 has the minimum nonnegative solution

- { ppe )\(AIST)—l ] : (5.3.4)

Proof: Since A, B, and C are all the lower triangular block-partitioned
matrices, the solution to the matrix equation must have the same form.

Assume that
r 0
Re|f

where r is a real number, H is a square matrix of order m, and £ is a
m X 1 column vector. Substituting R into the matrix equation, we have

cur? — (A +cp)r +1=0
H(-M +T) + AL =0 (5.3.5)
cu(rI+H)E — (A +ep)é + HTY =0
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If p < 1, the first equation of (5.3.5) has the minimum nonnegative
solution 7 = p (the other solution is r = 1). The second equation of
(5.3.5) gives H = A(AI-T) !, which is nonnegative. Substituting p and
H into the third equation of (5.3.5) and using the fact that —Te = TY,
we have

¢ = ; (I- A -T)"} AT —T)"'T°

=p{(I-T) [1-AAI-T)']} 7 T
= p(=T)7'T° = pe.

O
Note that H = A(A\I-T)~! is a substochastic matrix with sp(H) < 1.
It follows from the structure of R that sp(R) = max{p, sp{H}}. Thus
the necessary and sufficient condition for sp(R) < 1is p < 1. It is easy
to verify that under the condition p < 1, the matrix
| Ao Co
BIR] = [ Bi RB+R }

is a finite, aperiodic, and irreducible infinitesimal generator, and the
linear homogeneous equation set (5.2.5) must have a positive solution.
For instance, if x is the stationary probability vector of B[R], then
any positive vector Kx is a positive solution of (5.2.5), where K is any
constant factor. It follows from Theorem 5.2.3 that the system is positive
recurrent if and only if p < 1.
Assume that p < 1 and let (L, J) be the stationary limit of { L, (t), J(¢)},

with the stationary probability distribution denoted by

o =P{Ly=k,J=0}, k=1,
ij:P{Lv:k,J:]}’ k2071§j§m,
Tk = (Th1s T2, Thin f» k>0.

Theorem 5.3.2. If p < 1, the distribution of (L,,J) in the M/M/c
(SY, MV) system is given by

m = KB -T) 1), i>0,

1 (Y <ji< 1
xj:Kﬁ(ﬁ) (o 1<3<e—1,

oy =g S PO e e
5.3.6
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where

- A T e —

5_(51,...,57%)—1_0()\)04()\1 T)™; Be =1,
Jj—1 '

=B il [pAI=T) e, 1<j<ec—1,
1=0

c—1

LY o ()

w02 () e e e

+ 8 [I = % (A — T)l)c_l] - )\Tl)e}l .

Proof: The stationary distribution is rewritten in the segment parti-
tioned vector form as

I1 = (7T0, (.2121,71'1),'-- ,(.%'n,’]Tn),'--).

Clearly, IIQ = 0,IIe = 1. Since every column containing (—AI+ T) has
only this nonzero submatrix, we have

T = To [)\()\I—T)_l]j, jZO,
7o(=AI + T + T%) + 21 = 0. (5.3.7)

Using \I - T — T’a = (AXI - T) [I- (AT —T)'T%], for j > 1, we
have

(L= 1))’ = ) (L= T) T 0, as j — oo.

It follows that T — (A\I — T)~!T% is invertible, and thus A\I — T — T«
is also invertible. From (5.3.7), we obtain

mo = z1pe (AL - T — Toa)_l
— zpa [T— A= T)'T%] (AT -T) !

=zipa{ I+ i AP PO = T) ' Tl p (AL —T)7!
j=1

Y S
D WY
= Kp,

a(\I - T)~!



208

where K = A~ 'zy is a constant to be determined by the normalization
condition. Note that

1—v(A)=a[I+ A -T) 'T]e = a(\I-T) e,
and it is easy to verify that Se = 1. Using Theorem 5.2.3, we have
(g, ) = (Tee1, Mot )RETEHL, k>c—1.

Substituting R, given in (5.3.4), into the matrix geometric solution

above, we obtain the last equation of (5.3.6). Now we need to get x;,

j=1,...,c—1,and K. It follows from the equilibrium equation ITQ = 0

that

2uxy — Ax] = pxy — TP
{ (j+ VDpxjsr — Az = jpx; — Azj—q — m; T, j=2,...,c—1.

(5.3.8)

Substituting the relation pzq = Ampe into the first equation of (5.3.8),

we have

2uxe — Ax1 = Amge + Amo( Al — T) "1 Te = N2mg(A\I — T) le.

Taking the sum from j =2toj =k, 2 <k <c—1, we get

k
(k+ Dpxgrr — A\zg = 2uxe — A\xg — ZWJ'T
j=2
— A2my(A\I - T e+7roz (A —T)"') Te

= Ao [AAL=T)~ ]ke,

which can be written as a recursive relation as

A A k
= + AMA—T) %, 1<k<c-—1.
Th+1 (k—l—l)umk (k—l—l)um)[ ( ) ] e SRS
Using this relation repeatedly, we obtain
1 s (A)j‘i i 1 (A)j
T;=—=m it = M -T) N'e=K=(Z) ¢;, 1<j<c—1.
L 0; W) " t\p)

Finally, K is determined by the normalization condition.[]

From Theorem 5.3.2, we can get the stationary performance measures
of the M/M/c (SY, MV) system. The distribution of the queue length
is given by

P{L, =0} =K, P{L, =j} =uz; + mje, j=1,



Markovian Multiserver Vacation Models 209

and the distribution of the number of waiting customers is given by

Le—1

P{Qu=0} =) ap=1-

k=1

— [—)\Tl + ﬁ XA =T) "1 (oI — ATl)} e
P{Qv = ]} :l'cflpj-i_1

+ o {()\()\I — )1y

J .
p[MAI-T) " IZpZ (M —-T ]He}, j>1.

=0

1—

For the waiting time, consider a customer arriving at state (k,h),
k=20,1,...,c—1,1 < h < m. This customer’s waiting time is the
residual life of a vacation. The probability that this waiting time is no
more than x is the Ath component of the vector

x
/ exp(Tt)dtT?, x> 0.
0

If a customer arrives at state (k,h), K > ¢,1 < h < m, his or her
waiting time is the sum of the residual life of a vacation and k£ — ¢
i.i.d. exponential random variables with rate cu. Using the conditional
argument, we obtain the the distribution function of the waiting time
Wy

Wy (z) —1— p xc Le—c(=p)z

{ Pk —-T)7 !
—p

(AT

AL-T) (A —ch—Trlexp{—cuu—p)x}e}

+ {55 (1= PDOT=T) 7 (A = ewT - T) )
x(I—AT)™ eXpT:ce} x> 0.

X

It can be proved that the number of waiting customers @), and the
waiting time W, follow the discrete and continuous PH distributions of
order m + 1, respectively (see Tian and Li (2000)).

Obviously, the expressions for the distributions of the queue length
and the waiting time are quite complex. Thus we cannot establish the
stochastic decomposition relations for the queue length and the waiting
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time as in single server vacation systems. However, we can prove some
conditional stochastic decomposition properties in the M/M/c (SY, MV)
system. Define the conditional random variable

L) = {L, —c|Ly, > ¢,J = 0}
as the number of waiting customers in the system, given that all servers
are busy. Furthermore, from the PH distribution («, T) of the vacation
time, we build a PH random variable U of order m with the representa-
tion (v, T), where

1()\)04 AOT- T)_lr. (5.3.9)

=apon-n ] -

The mean of U is given by
c—1
E(U) =8 {A (AL — T)—l} (-T Ye.

Theorem 5.3.3. If p < 1, L% in an M/M/c (SY, MV) system can be

decomposed into the sum of two independent random variables Ll(,c) =

L(()c) + Lg, where Léc) is the number of waiting customers in the system,
given that all servers are busy, in a classical M/M/c queue and follows
the geometric distribution with parameter p. Ly is the additional queue
length due to the vacation effect and follows a discrete PH distribution
of order m, with the irreducible representation (4, S). Here,

§=2py(-T7"),  S=x(I-T)7',

., S'=p1-1)'T°,

A
g
p 1 A c—1

St =2 ) g

“ a[<c—1>! (u) Per1 e

and

1 )\ c—1
=p|l— |- — AE(U
p[(c_l)! (M) Ye-1+ e+ AEU)
is a constant. +y is the m -dimensional row vector determined by (5.3.9).

Proof: Since R is a lower triangular block-partitioned matrix, we can
use a similar approach to that in Theorem 5.2.5. It follows from (5.3.6)
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that the probability that all servers are busy at an arbitrary time is

P{L, >¢,J =0}

o0
'=C

0o j—c

— . lzpf SEETNED S5 B LYE S Vil M
j=c =0
p -1
zl_pxc,qul_pwc 1[ — AN -T)" 1} e
1

Kp 1 AN\ (e

_ Kp 1 A\

1_p{(c_1)! (M) T,Z)c1+7e+>\E(U)}
Ko
=1,

Thus the distribution of Lq(f) can be rewritten as

1
P{L(C =j}=P{L,=c+j|Ly > ¢, J =0} = Kgpxﬁ-c’ j = 0.

Taking the p.g.f. and using Theorem 5.3.2, we obtain

1—p _
L) = L2 S e
j=c
1 o0
— - P Te1 Z Z]fcp]chrl
K 4
J=c

e 1ZZJ czp [ (M- T 1}j—c—ie

BELYRY SV INEA N
_1—zp0{(c—1)!(u> Pe-1

+oy [I A - T)*l] o e} . (5.3.10)

Note that, from (5.3.1), L(()C)(z) = (1-p)(1 — zp)~ ! is the p.g.f. of the
corresponding conditional random variable in the M/M/c queue. For
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the remaining factor of (5.3.10), we have

(et G) s volimon-on) o

—1
= b1 — Lretly [I A - T)—l} e
g g

Y S o {—I P A (-T) 4 I} (I-2:8)"le
g
= Oppa1+20(I — 28)718Y,

which is the p.g.f. of a PH distribution with (4, S).O]

For the conditional stochastic decomposition property, we have the
following probability interpretation.

Remark 5.3.1: d,,11 is the conditional probability that there is no
waiting customer in the system when all the servers are busy. The
additional queue length L, is the number of customers arriving during
a random interval U* that follows the PH distribution of order m with
the representation (v*, T). Here,

« _ P -1 -t
v =2shar-m7 (T,
and § in Theorem 5.3.3 can be written as
AE(U)

= B ()\I—T)_lr_l (—T1) = -

Therefore, Ly is equal to the number of arrivals during the residual
life of U with probability p* = AE(U)o~! and is zero with probability
1—p* = dn+1. The average number of waiting customers in the system,
given that all the servers are busy, is given by

Lop [N2E(U?) + 20E(U)]

= 5.3.11
1—-0p 20 ( )

We can also prove the conditional stochastic decomposition property
for the waiting time Wéc). Define

W) = {W,|L, > ¢,J =0}

as the conditional waiting time, given that this customer arrives at a
state where all the servers are busy.

Theorem 5.3.4. If p < 1, WP can be decomposed into the sum of
two independent random variables, W,EC) = Wéc) + W, where Wéc) is the
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corresponding conditional waiting time in a classical M/M /c queue, with
the LST as in (5.3.2). W, is the additional delay due to the vacation
effect and follows a PH distribution of order m with the irreducible
representation (6, L), where

L=cu(M-T)'T, L'=c¢u(O\I-T)'T° (5.3.12)

and § is given in Theorem 5.3.3.

Proof: If a customer arrives at state (j,0), 7 > ¢, then his or her
waiting time W,; follows an Erlang distribution with parameters j—c+1
and cu, with the LST

j—c+1
Wg‘;(s):(c”) L e

s+cu

Thus the LST of Wéc) can be written as

Wy ()

1—pZ

B 1 i1 cp j—c+1
= K Le— 1Zp] <S+C}L

—C

> Jj—ct+l 1 j—c—1
+pwc,IZsz <S+C#) M- e
J=c =0

oepl=p) 1] p AT
T stepl-p)o {<c—1> <M) vet

-1
CH —1
I-———AM-T :
+m{ 8+CM( ) ] e}

It follows from (5.3.2) that the first factor of the expression above is the
LST of the corresponding conditional random variable Wéc). For the
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second factor, we have

R <A>Cl¢ + [I— - A()\I—T)l}le
ol (c=1!'\u et s+ cp

= % { (Cfl)! (2)61 o1+ (s + cu)py |:SI —ep (M —T)7! T} - e}
1

1 _
= b1 — gve + (st ep)py(sT~ L)'

A

= i1+ —py (=T (ST - L) lep (AL - T) 7' T
g

= Oyt + 0 (sT— L)' LO.

O

We can interpret the conditional stochastic decomposition property
and the additional delay W, similarly to those of Theorem 5.3.3. The
expected conditional waiting time of a customer given that he or she
arrives at a state where all the servers are busy in the M/M/c (SY, MV)
system, is

E(W(c)) _ 1 + P [)‘2E(U2) + 2AE(U)] _ LE(L(C))
cpu(l = p) 20¢cp cu Y

5.3.2 Single Vacation and Setup Time Models

In a synchronous single vacation system, denoted by M/M/c (SY,
SV), all servers take a single vacation together at a service completion
instant when the system becomes empty. At the vacation termination
instant, the servers either stay idle or serve the customers if any are
present in the system. We again assume that the vacation time follows
a PH distribution of order m with the representation («,T), e = 1.
After each vacation, there are three possible cases: (i) If no customers
are in the system, the c servers stay idle; (i) if 1 < j < ¢ customers
are in the system, then the j servers start serving the customers and
the ¢ — j servers become idle; (iii) if j > ¢ customers are in the system,
then all the c servers start serving the customers and ¢ — j customers
are waiting in the line. As with the M/M/c (SY, MV) model developed
in the previous section, {(Ly(t), J(t)),t > 0} is a QBD process with the
state space

Q= {(k,j) : k>0,0 <j<m},

where state (0,0) represents case (i). The infinitesimal generator has the
same structure as (5.3.3), where Ay is the square matrix of order ¢(m+1),
and B; and Cp are the (m+1) x ¢(m+1) and ¢(m+1) x (m+1) matrices,
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respectively. The only difference from the M/M/c (SY, MV) system is
in the following matrices:

A 0 | 0 po _
M= @ ir] Bi=|o ] G-t

Other entry blocks of the infinitesimal matrix Q are the same as the
M/M/c (SY, MV) system.

Another variation of the M/M/c type vacation model is the system
with synchronous setup times, denoted by M/M/c (SY, SU). In such
a system, whenever the system becomes empty at a service completion
instant, all ¢ servers are shut down or turned off. When the next cus-
tomer arrives, the ¢ servers are turned on and experience a set-up time
before serving the customers. After the setup time, there are only two
possible cases concerning the number of customers in the system: (i)
j > cand (ii) 1 < j < c. In the first case, all the ¢ servers start serving
the customers, and in the second case, only the j servers start serving
the customers and the ¢ — j servers become idle. The setup time, also
denoted by V, follows the same PH distribution as in the (SY, SV) case.
Now the QBD process {(Ly(t), J(t)),t > 0} has the state space

Q={(0,00} U{(k,7):k>1,0<j<m},

where state (0,0) is the state where all servers are turned off. When a
customer arrives at state (0,0), a PH setup time starts at phase j with
probability a;,1 < j <m, a = (o, ..., &y). The infinitesimal generator
has the same structure as (5.3.3) where Ay is the square matrix of order
m* = (c—1)(m+ 1)+ 1, and By and Cp are the (m + 1) x m* and
m* x (m+1) matrices, respectively. Now we have the following matrices:

Ap= -\, B1:<“) , Co=(0 ) .-
0 (m+1)x1 ( )1X( )

Other entry blocks of the infinitesimal matrix Q are the same as in
the M/M/c (SY, MV) system. Since both the M/M/c (SY,SV) and
the M/M/c (SY, SU) have the same A,B, and C matrices as in the
M/M/c (SY, MV) treated in the previous section, they have the same
rate matrix R of (5.3.4). However, we need to compute the boundary-
state probabilities using (5.3.7) and (5.3.8). Similar to Theorem 5.3.2,
we have the following theorems.
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Theorem 5.3.5. If p < 1, the distribution of (L,,J) in the M/M/c
(SY,SV) system is given by

m = KB [MA—T)1], j >0,
o = %K,@TO,
j .
%ZK%(ﬁ) ©; 1<j<ec-1,
j = ze1p? M 4 pre 1 XU 0 ML= T) T e, >,
(5.3.13)
where
B=(Brr \Bn) = (AL -T)7}; fe=1
- 1, yFm) T 1—U()\) ) -
j—1 ,
¢j:5{A1(AI—T)+Zi! [M(AI—T)I]Z}e, 1<j<e-—1,
=0
c—1
o ; A
K— BT° n - 1A\ p (u)
— )\ j:1 j' IU/ SD,] 1_p(c_1)!90671

-1

+3 [I + i, (A(AI — T)_l)c_l] (I- )\T_l)e}

Proof: We solve the following equations for the boundary-state prob-
abilities

—Axg + 7T()TO =0
mo(= AN +T) + pria=0
(j+1)uxj+1—/\:cj :ju.%'j—/\l‘j_l—ﬂjTo, 1<j<e—1.

Similarly to the proof of Theorem 5.3.2, if we use the matrix geometric
solution and recursively solve these equations, we have (5.3.13). O

Theorem 5.3.6. If p < 1, the distribution of (L,,J) in the M/M/c
(SY,SU) system is given by

7 = Ka AL -T)7)7, izl
C%:K%(ﬁ)jhj . A OSjSC—l,
Tj =1 p? T 4 pre1 Y5 pF [AAL = T) 77 e, j>ec.

(5.3.14)



Markovian Multiserver Vacation Models 217

where
J .
hj:aZi![u(/\I—T)*l]le. 0<j<c-—1,
i=0
c—1 1 )\ 7
K= 1+)\E(V)+Zﬁ (u) h;
j=1

-1

(A) c—1

Proof: The equations for the boundary-state probabilities now be-
come

—)\CL‘O + U1 = 0

Ao — m(AI-=T) =0

—~( A+ )z + 2ur0 + mTO =0

(j+ VDpxjsr — Az = jpa; — Axj—q — m; T, 1<j<cec—1.

Using the same method of solving the equations as in the proof of The-
orem 5.3.2 yields (5.3.14). O

From (5.3.13) and (5.3.14), we can obtain the stationary distributions
for the queue length and the waiting time for both the M/M/c (SY, SV)
and the M/M/c (SY, SU) systems. We can also prove the corresponding
conditional stochastic decomposition properties. All these results are
similar to Theorems 5.3.3 and 5.3.4.

As special cases of the PH distributed vacations, we present the ex-
amples with exponential vacations.

Example 1: M/M/c (SY, MV) with exponential vacations.

Assume that the vacation time V follows the exponential distribution
with parameter § and V(z) = 1 — e % 2 > 0. Then we have v*(s) =
O(s+60)"1, T = -0, T° =0, a = 1. The vector 3 in Theorem 5.3.2 is
reduced to 1 and
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The distribution of (L,,J) is given by

K 7)\ ’ i >0
T =
! A+0) 7 7=
7
K5 () s () l<jgemt
;= . j—c N j—c—1 )
Te1p? +wmwmzzoﬁ< ) ) Jj=c
where

In the conditional stochastic decomposition expression, we have

U:p{(cll)! (2)j¢c‘1+ <Aie)CIAZG}'

The additional queue length Ly follows the modified geometric distrib-
ution

P{Ly=k} = g{ =" (ﬁ)ck_ilﬁc 1+ (He)Cl}, k=0,
)T—B) ) k> 1.

Note that L, is the mixture of two random variables:

SIS
—
>
+> o~
RS
~——

Q
—

>

Lg=(1-p")Xo+p"Xq,

where X has the probability density concentrated at the origin and Xy
follows the geometric distribution with parameter A(A + 6)~1. That is,

pix= = (1o 2V (Y >0
d=Jr= A+0)\N+6) J =5

o[ A \TA+0
P=s\\+o o

and
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From Theorem 5.3.4, it follows that the additional delay W, follows the
modified exponential distribution, with the distribution function

o (A AN e,
= _ —_ _— > .
Wa(w) =1 (7<9> <A+0) e, =20
(©)

Finally, given that all the servers are busy, the expected values of Ly

and quc) are given, respectively, by

1 A N\TPAN+0)
(0)y — P AAT0)
B =15+ <A+0> PR

1 o[ A \TEAA+06)
EWOy= - P (_~2 AL
(W) cu(l = p) ts <)\+ 6) cub?

Example 2: M/M/c (SY, SV) with exponential vacations.
For the exponential vacation time with parameter 6 in an M/M/c
(SY, SV) queue, we have

1 .
)\ 0 ] K3
+ +§:ﬂ< ), 1<j<ec—1.
=1

Thus the distribution of (L,, J) is given by

A J
g >0
i (A+0)’ J=5
0
~’K
i) A |
K4 (2) o 1<j<c—1

—c+1 A )Y :
Teap o X500 () ize

where
c—1
c—1 1 A
0 1Ay p (J
K=<- — [ = PR - o
/\+j:1 '!( ) SDJ—‘_l—p(c—l)!(p !
c—1 -1
+)\+9 1+ p A
0 A+0 '

Now, replacing ¥.—1 with ¢._1 in o, we can obtain the conditional sto-
chastic decomposition expression and the distributions of L; and Wy,
which have the same forms as in Example 1.
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Example 3: M/M/c (SY, SU) with exponential setup times.
Assume that the setup time follows the exponential distribution with
parameter 6. In this case, vector « is reduced to 1. From Theorem 5.2.6,

we have 4
J i
_Z. v .
hj_io“()“|"9>7 veseml

Therefore, the distribution of (L, J) is given by

A J
=K | —— i > 1
i </\+9> ’ J=4
J . i .
o () 2t (3t
J = ) C j—c—i .
verp e S () jze

Similarly to the examples above, replacing 1._1 with h._; gives all the
corresponding results as in Example 1.

54 M/M/c Queue with Asynchronous Vacations
5.4.1 Multiple Vacation Model

In an M/M/c system with arrival rate A and service rate u, any server
starts a vacation as long as there is no waiting customer in the system
at the service completion. At a server’s vacation termination instant, if
there is no waiting customer, the server takes another vacation; and if
there are waiting customers, the server resumes serving the customers.
Since the servers take vacations individually and independently, this
system is called the asynchronous multiple vacation model, denoted by
M/M/c (AS, MV). This type of vacation model was studied by Levy and
Yechiali (1976), Vinod (1986), and Tian and Li (1999). Assume that the
vacation time follows the exponential distribution with parameter 6 and
that the interarrival times, the service times, and the vacation times are
mutually independent. Let L,(t) be the number of customers in the
system at time ¢, and, and let J(¢) be the number of busy servers. Ac-
cording to the (AS, MV) policy, the server is either busy or on vacation.
Thus {(Ly(t), J(t)),t > 0} is a QBD process with the state space

Q={(k,j):0<k<c—1,0<j<k}U{(k,j):k>c,0<j<c}

Using the lexicographical sequence for the states, the infinitesimal
generator can be written in the block-partitioned form as in (5.3.3) where
Ap is the square matrix of order ¢* = %c(c + 1), and B; and Cy are the
(c+1) x ¢* and ¢* x (¢ + 1) matrices, respectively. These matrices can
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be written as
[ Ay Cp 1
B, Ay C
By A, C
AO = .. .. ’
Bc—2 Ac—2 Cc—2
L Bc—l Ac—l i
0
B =(0,B,), Co = < C._, ) , (5.4.1)

where Ag = —\, Co = (),0), and By = (0, ). For
we have

Ak,lgkgc—l,

—ho ch i
—h1 (C — 1)0
Ak - ’ . 3
—hi—1 (c—k+1)0
L —(A+kp) J (k+1)x (k+1)
1<k<c—1,
where hg,0 < k < ¢, is defined as
hk:hk(/\,e,,u):A+ku+(c—k)0, 0<k<e

By and Cy, are the (k+1) x k and (k+1) x (k4 2) matrices, respectively,

1 <k <c—1, and are written as

0
1
B, =
(k=1)p
00 kp (k+1)xk
[\ 0
A 0
Cr = )
A0

L (k+1)x (k+2)
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Finally, A, B, and C in the infinitesimal generator (5.3.3) are the square
matrices of order ¢+ 1 and are given by

B = dlag(ovua 20, - - ,Cﬂ)a C =l

[ —ho ch
—hl (C—1>9

—he1 0
—he

To find the minimum nonnegative solution to the matrix equation (5.2.3),
we need the following lemma.
Lemma 5.4.1. If p = \(cp) ™! < 1, the equation

kpz? — [N+ kp+ (c—k)0lz + X =0, 1<k<ec,
has two roots, namely, r, <7 and 0 <7, <1, r; > 1.

Proof: 1t is easy to verify that the equation has two real roots which
are

. At kp+ (c— k)£ /[N +Ekp+ (c— k)02 — 4 ku
'I"k,'l"k = .
2ku
Note that
N —kp+ (c—k)0)* < [N+ ku+ (c— k)0]* — 4 kp
<A+ ku+ (c— K012, if A > ku,
ki — A+ (c— k)0 < [\ +kp+ (c— k)0]* — 4 kp
<[ AN+Ekpu+(c— k)02, ifA<Ekp

Substituting these estimations into the expressions 7}, and 7, we obtain
0<r,<landr; >1, 1<k < c—1 Finally, if £ = ¢, we have
re=p<landr}=1 0

Theorem 5.4.1. If p < 1, the matrix equation (5.2.3) has the mini-
mum nonnegative solution

o Tor -+ Toc

/r' PR /r‘ c
R = ! . (5.4.2)

Te
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where 79 = A(A+cf)~!, and rp, 1 < k < ¢ — 1, are given in Lemma
5.4.1, and r, = p. The nondiagonal entries satisfy the recursive relation

J
G rkiri 4 (e — 4+ DOrk 1 — A+ jp+ (¢ — )bl =0,
ik
0<k<c—-1, k+1<j<cg, (5.4.3)

where rj; =7, 0 < j <¢, and sp(R) < 1.

Proof: Since A,B, and C are all upper triangular matrices, the
solution to (5.2.3) should also be an upper triangular matrix with the
same structure as in (5.4.2). Thus the entries of R? are given by

(R?)j; =17, 0<j<c
J
(RQ)kj:ZTkiTij; 0<k<c—1, k:<j§c.
i=k

Substituting R and R? into (5.2.3), we have

A — (A—FCQ)TO :07

kur,%f[/\-i-ku-l-(c—k)e]rk—i-)\:(), 1<k<e,

gy it + (e —j 4+ D)0rk 1 — [N+ jp+ (¢ — §)0)re; =0,
0<k<c—-1,k+1<j<ec

The first equation gives ro = A(A+cf#)~!. From Lemma 5.4.1, to obtain
the minimum nonnegative solution, we take rp, < 1 as the root of the
quadratic equation. The last equation gives the recursive relation (5.4.3).
Clearly, the spectral radius of R satisfies

A

_— sy Te—1, < 1.
N+ O 1 TClp}

sp(R) = max {

O
Lemma 5.4.2. Rate matrix R satisfies RT? = \e, where

TOZBGZ(OHLL,--- 7CM)T

is the m -dimensional column vector.
Proof: Note that Ae = —(Ae + TY),Be = T, and Ce = \e. Multi-
plying both sides of (5.2.3) by e, we obtain
R?T? — R(Ae + T°) + \e = 0,
(I-R)(Ae — RTY) = 0.
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Since I — R is invertible, we have RT? = \e. O

Using (5.4.3), we can recursively compute the nondiagnoal entries
from the entries on the diagonal. In (5.4.3), setting j = k + 1, we have

(k+ Dp(rerk 1 + Tepe1metr — A+ (B + Dp+ (e — k = 1)0]ry g4
= —(c—k)rg, 0<k<c—-1.

That is

A+ (E+Dp+(c—k—1)0 — (k+ Dpripr — (b + Dpr} re g
= (¢ — k)Ory.

Note that
A (b + gt (e — k= 1)0 — (b + Dprss = (k+ Dprisy.

Substituting this expression into the previous one, we obtain

c—k 0 Tk
= — - — 0<k<c¢c-1.
Tk (’f+1> <u> T

In (5.4.3), letting j = k+ 2,k + 3, ... and using similar recursive compu-
tation, we have

(c—k)e—k—1) <e> ATy

r = — 5 O S k S Cc— 27
RER T TR 1)k + 2) Do

"
(c—k)c—k—1)(c—k—2) (e> rirh (Tl — TEk)

TS T T R Dk +2)(k+3)  \n Drrs ’
0<k<c-3,
where
Dyp = H (ry —ri), n > k.

Since (5.4.3) is a nonlinear double-subscript recursive relation, it is
difficult to find a general expression for ry;. However, we can follow a
specific sequence to recursively compute these nondiagonal entries. This
sequence starting with the diagonal entries is illustrated in Figure 5.4.1
for a ¢ = 4 case.



Markovian Multiserver Vacation Models 225

To— To1— To2— T03 — To4

T T T T

mn— T2— T13— T4

T 7 T
re — T23 — T24
7 T
s — T34
T
P

Figure 5.4.1 The sequence of computing
nondiagonal entries for the c=4 case.

If p < 1, let {Ly, J} be the stationary limit of the stochastic process
{Ly(t), J(t)} of an M/M/c (AS, MV) system as ¢ — oco. Denote the
stationary probability by

my = P{Ly = k,J = j} = lim P{L,(t) = k, J(t) = j}, (k.]) € Q.

To accommodate the block-partitioned structure of Q, we express the
distribution of {L,, J} as segment vectors as

o = oo, 1 = (T10,711), s Tk = (Tho, W15 > Thk)s 0 <k <,
and when k > ¢, all m’s are (¢ + 1) -dimensional row vectors
Tk = (Tho, Th1,* » Thie)-

Now the square matrix B[R] of order (c+1)(c+2) is constructed as

T4 G
B[R] B i Bi RB+A
~ A Co _

B, Ay G
- , (5.4.4)
Bc—l Ac—l Cc—l

B. RB+A |

which is an aperiodic and irreducible infinitesimal generator with finite
dimension. Hence, the linear equation system

(mo, 1, ,me)B[R] =0 (5.4.5)

must have positive solutions. For instance, the stationary probability
vector of the infinitesimal generator B[R| multiplied by any constant
K > 0 is a positive solution to (5.4.5).
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Theorem 5.4.2. If p < 1, the distribution of (L,, J) is given by

T = KBk, 0<k<cg,
= KB.RF ¢, k>c¢,

where [, 0 < k < ¢ is the positive solution to (5.4.5), and the constant
K is

c—1 -1
K= {Zﬁke—Fﬂc(I—R)le} .
k=0

Proof: Using Theorem 5.2.3 immediately gives the results.[]

For the stationary probability vectors, there exists the following rela-
tion.

Theorem 5.4.3. If p < 1, the stationary probability vectors satisfy

0
Ampe = w1 Ty
where

TO:(Oaﬂa"'ak/’L)Tv OSkSC_L
T = 0,1, ,ep)?, k> c.

Proof: Let Il = (m, w1, -+ ). The equilibrium equation IIQ = 0 gives

7'('1B1 + >\A(] == 0,
T—1Cl—1 + mAg + T4 1Br+1 =0, 1 <k<c—1
Te-1Ce1 + A + Tey1Bey1 = 0,
7Tk_10+7TkA+7Tk+1B:0, kZC-l-l.

Using
Cre=)Xe, Are=—(le+ Tg), Bre = T,(g.

and right-multiplying both sides of the equilibrium equations by e, we
obtain

0
Ampe — 1Ty = 0.

O

It is possible to solve (5.4.5) numerically. However, the computation
is quite complex. To compare the M/M/c (AS, MV) system with the
classical M/M/c system, we define the conditional random variables. Let
LY = {L, — ¢|J = ¢} be the number of waiting customers in the sys-
tem given that all the servers are busy in the M/M/c (AS,MV) system.
Rewrite the vector 5. and the rate matrix R, respectively, as
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/Bc = (5007 501; ceey 5cc) = (57 ﬁcc):

R_G){ Z) (5.4.6)

where 6 = (Bco, Be1, - Bee—1) is a ¢ -dimensional row vector. Compar-
ing with (5.4.2), we find that H is a ¢ X ¢ square matrix and 7 is an ¢ x 1
column vector as follows:

o Tor -~ T0,—1 T0oc
T1 o Tle—1 Tlc
H — . . y ’]7 =
Te—1 Te—1,c

Obviously, the spectral radius of H, sp(H) is less than 1.

The following theorems show the relationship between the vacation
model and the classical M/M/c model in terms of the conditional queue
length and the conditional waiting time.

Theorem 5.4.4. If p < 1, LI in an M/M/c (AS, SV) system can
be decomposed into the sum of two independent random variables,

L = L§) + La,

where L(()C) is the corresponding random variable in the classical M/M/c

system and has the geometric distribution of (5.3.1) and Ly is the ad-
ditional queue length due to the vacation effect and follows the PH
distribution of order ¢,

1
Eﬁcc; k=0,
P{Ls=k} = { Tty hot (5.4.7)

where

g = Bcc + 5(1 - H)_IT].

Proof: Based on the triangular structure of R in (5.4.6) and the matrix
geometric solution, we have

k—c—1
The = KBeep™ ¢+ K5 Y pHF 1y, k> ec.
j=0
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Using this expression, we get the probability of the conditional event:

P{J = ¢} :Zﬂ'kc

oo k—c—1

—Kﬁcczpk CLKS§ Z Z p]Hk c— 1—]

k=c+1 j=0

_ K
:fp {Bec +6(I-H) 'n} = -,

Thus the distribution of LS,C) is
P{LY =k} =P{L, =k +c|J = ¢}

1—p
:Taﬂk+c,c
1—p k = k—1—j
= Becp +5Zﬂ7H ne, k> 0.
§=0
Taking the p.g.f. of Lq(,c) , we have
o0
LY (2) = Y #PLLY = )
k=0
l—p bk N
= o IBCC zp +6ZZ ZP]H j77
_ 1 =0
1-—
— 1—zp {,Bcc—i—z:(S(I—zH) }

= LY (2)La(2),

where

L4(z) {Bcc—l-zé (I-zH)" 77}

Expanding L4(z) as a power series, we obtain (5.4.7). O

Note that H may not be a stochastic submatrix. Sengupta (1991)
proved that the probability distribution of (5.4.7) must be a discrete PH
distribution of order ¢ and provided a method of constructing the PH
expression for the d(is).tribution. From Theorem 5.4.4, we find that the
C .

is

expected value of Ly

B(L) = 1+ o= H) .
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Define the conditional waiting time Wi = {Wy|J = ¢}. We have the
following theorem for the conditional stochastic decomposition property
of the waiting time.

Theorem 5.4.5. If p < 1, W in an M/M/c (AS, MV) system can
be decomposed into the sum of two independent random variables,

Wigc) = Wéc) + Wd.

where WO(C) is the corresponding conditional waiting time in a classical
M/M/c system without vacations and follows an exponential distribution
with parameter cu(1—p). Wy is the additional delay due to the vacation
effect and follows a matrix exponential distribution

P{Wy <z} = 1—%5 exp {—cu(I—H)z} (I-H))"'n, z>0. (5.4.8)

Proof: Assume that a customer arrives at state (k, c) for k > c. If we
condition on this event, the customer’s waiting time, denoted by W,

has the LST
k—c+1
vk s+ cp ’

for k > c¢. The LST of Wéc) is given by

Wy O(s) = i P{LY) = k}W;i(s)

k=c
1—p { 00 . ci k—c+1
= Bee Z pre
o — s+ cu
00 i k—c+1 k—c—1
s fk—c—1-J
s X (Ha) o
k=c+1 7=0

)
=
—

|

X
N—
| =

= We ()W (s),
where 1
Wi(s) = = { B+ end (sT— ep(H - 1) "}

It follows from W (s) that the distribution function of Wy can be written
as (5.4.8). O
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From (5.4.8), the expected value of quc) is given by

1 1 1
EWL)) = I-H) %p=—E(LY).
(W) cuﬂc—p)+cw05( )"n ” (Ly”)

5.4.2 Single Vacation or Setup Time Model

We now consider a system with asynchronous single vacation policy,
denoted by M/M/c (AS, SV). In this system, any server who finds no
waiting customer at his or her service completion instant takes only one
vacation and then either serves a customer, if any, or stays idle. There-
fore the server can be in one of three possible states: serving a customer,
taking a vacation, or staying idle. Assume that the vacation time follows
an exponential distribution with parameter ¢ and is independent of the
service time and the interarrival time.

L,(t) is defined as before, and J(t) now represents the number of
servers who are not on vacations (busy or idle). Then {(L,(t), J(t)),t >
0} is a QBD process with the state space

Q={(k,j):E>0,0<j<c}

For example, state (0,0) represents the state in which there is no cus-
tomer in the system and all servers are on vacations, and state (0,7),1 <
7 < c—1, is the state in which no customers are in the system and ¢ — j
servers are on vacations and j servers are idle. The structure of the in-
finitesimal generator Q is the same as in (5.3.3), and the (¢+1) x (¢+1)
matrices A, B, and C are the same as in the M/M/c (AS, MV) sys-
tem. Ag, B, and Cp are the c(c+ 1) x ¢(c+1),(c+ 1) x ¢(c+ 1), and
c(c+ 1) x (¢ + 1) matrices, respectively, and have the same structures
as in (5.4.1). However, for 1 < k < ¢ — 1, Ay, By, and Cy, are now the
(c+1) x (c+ 1) matrices as follows:

My,
(c—k—2)0

_hk,cfl 0
—(A+kp)
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where
[ —hy b |
—h1 (6—1)9
Mk— ‘: ‘:. ’
—hi(c— k)0
—hgg+1  (c—k—1)0
i —hp k42
hi =X+ kp+ (c— k)0, 0<k<c-—-1,
hij =X+ kp+ (c—j)0, 0<k<c—-1, k<j<c-—1,
- 0 -
0 n
0 2u
B = 0 (k—1)p ’
ki 0
L ku 0]
Cp = C = AL

and finally B, = B.

Similarly, we can also discuss the M/M/c queue with asynchronous
setup times, which is denoted by M/M/c (AS, SU). In such a system, a
server is turned off when no customers are waiting at its service comple-
tion instant and is turned on again at the next arrival instant. The server
starts serving the customer after a setup (or warmup) time. Note that
an arrival may see not only busy or turned-off servers but also servers in
the process of setup. If an arrival sees k servers are busy or in the setup
process, 0 < k < ¢—1, then ¢— k servers are in the turned-off state, and
this arrival causes one of these ¢ — k servers to be turned on. Note that
if the arrival sees some servers in the setup process, then the first server
completing the setup time starts serving waiting customers according to
the FCF'S order. Due to the random setup times, the server that first fin-
ishes setup may not be the server that is first turned-on. When a server
is experiencing setup time, other servers may be still serving customers.
Therefore, at a server’s setup time completion instant, it is possible that
there are no waiting customers in the system and this server is turned
off again without serving any customers. We use the same symbol V as
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for vacation to denote the setup time that is exponentially distributed
with parameter 6. It is also assumed that the setup time, the interarrival
time, and the service time are mutually independent. Let J(¢) be the
number of busy servers at time ¢. Thus the number of servers in the
setup processes at time ¢t is

min{L,(t),c} — J(t).

In the M/M/c (AS, SU) system, {L,(t), J(t)} is a QBD process with
the state space

Q={(k,j):0<k<c—1,0<j<k}U{(k,j):k>c0<j<c}

State (k,j), for 0 < k < ¢ —1,0 < j <k, represents the state where j
servers are busy, k— j servers are in the set-up processes, c—k servers are
off, and k—j customers are waiting in the line. Similarly, state (k, j), for
k > ¢,0 < j < c, represents the state where ¢ — j servers are in the setup
process, j servers are busy, and there are no turned-off servers. The
infinitesimal generator of the QBD process, Q, is still given by (5.3.3),
where Ag, Bi, and Cy are the Sc(c+ 1) x Le(c+1), (c+1) x 2c(c+ 1),
and %c(c + 1) X (¢ + 1) matrices, respectively, and can be expressed in
the block-partitioned structure of (5.4.1). For 1 < k < ¢ —1, Ay, the
(k+1) x (k+ 1) matrix is written as

[ 10 kO
0 Iy (k—1)0
0 Lo (k—2)0

where

Br,1 <k<ec Cp,0<k<c—1, A, B, and C are the same as in the
M/M/c (AS, MV) system.

Based on the matrix structures of the QBD processes, we find that the
analysis of the M/M/c (AS, SV) system or the M/M/c (AS, SU) system
is similar to that of the M/M/c (AS, MV) system. The main difference
is in solving (5.4.5) for the boundary-state probabilities. In particular,
these systems have similar conditional stochastic decomposition proper-
ties to Theorems 5.4.4 and 5.4.5. The only distinguished component is
the vector 8. = (Beo, Bet, -+ Bec) = (9, Bee), which is obtainable from a
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set of different equations. As an example, we give the results of these
models for the M/M/2 queue.

Example 1: The M/M/2 (AS, MV) system.

The infinitesimal generator for {(L,(t), J(t)),t > 0} becomes

Ag Cy
B: Ay C
B, A C
Q= B A C , (5.4.9)
B A C
where Ag = -\, Co = (A,0), By = (0, 2)T, and
0 O
—(\+20) 20
By = 0 u ) A = |: ( _ )
0 2 0 (A+p)
A 00
C1= [ 0 A0 ] '
A, B, and C are the 3 x 3 matrices, as follows:
—(A+26) 20 0 0
A= 0 —A+p+0) 0 , B= 1 ,
0 0 —(A+2u) 20

C =)L

Let r; < r] denote the two roots of the quadratic equation puz? — (A +
p+0)z+X=0, p=Azu)"! < 1. The rate matrix R is given by

A 20 rg 6 1 1
A+260 1 ri—ro pu 1-r1 ri—70
_ o n
R 1 2 I—r1 ’
)

where 79 = A(A 4 20) 7. Note that

Ay Cy
BR]=| B1 Ay C;
B, A+RB

becomes a 6 x 6 matrix. Let 7;; = (R);; be the (4, j) entry of R. It can be
verified by direct computation that RT? = \e, where T? = (0, 1, 2) 7.
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Solving (mp, 71, m2) B[R] = 0 gives

mo = K,

A A
W1:K51:K<)\+29,’u>7

o = K32 = K(B20, Bo1, f22),

3 2
B2o = ()\+20) ,

where

A 20 r?
Bor = =r1+ ——"2—,
2 nry—To
0 1 A T
Boo = — - *0 +7 ),
20l —ryp \ 17 — 710
A 2(0+0) R
K=<{—4+——-+ I-R .
{M+ N1 20 + Ba ) e}

From these results, we can easily obtain various performance measures
and the conditional stochastic decompositions for the queue length and
the waiting time.

Example 2: The M/M/2 (AS, SV) system.

The infinitesimal generator is still given by (5.4.9) where all elements
are the 3 x 3 matrices as follows:

[ —(\ +20) 20 0 0 00
A0: 0 —(>\+9) 0 ,B1: 1 0 0 s
I 0 0 - 0 u 0
[ —(X\+20) 20 0 0 0 0
A= 0 —()\+M+9) 0 , Bo = 0 pw O
I 0 0 —(A+ ) 0 2u 0

Matrices A,B,C, and R are the same as in Example 1. B[R] is the
9 x 9 matrix. Solving (mp, 71, m2) B[R] = 0 gives

20 0 0 (20 0
— _ AT (L S
mo = Ko K< /\+/\+u+9’A<A+A+u+9)>’

A A+20 6 (/20 A+0
Wl_Kﬁl—K<)\+207 [ 7>\< >>7

A * At+p+0
Ty = K B2 = K(B20, Bo1, B22),
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where
\ 2
52°_</\+29> ’
By = A A+ 20
21 = M+297“01 1,
A A+ 20 0 /20 M\ A+ 0
522—)\+29T02+ T12+2M<M+M+)\+M+9>’

and K can be determined by the normalization condition. Again, from
these results, we can obtain the major performance measures and the
conditional stochastic decomposition properties.

Example 3: The M/M/c (AS, SU) system.

The structure of the infinitesimal generator remains the same as in
(5.4.9), where the only different entry is

| —(A+0) 0
s [T |

All other entries of Q are the same as in Example 1. Thus the rate
matrix R is the same as in Example 1, and B[R] is the 6 x 6 matrix.
Solving (m, 71, m2) B[R] = 0 gives

7T0:K,
A A
=Kpfi=K|——, —
T B1 <)\+97 M>’
A2 A A A
=K@ =K - i
T B2 <()\+9)()\+20)’ /\+9T01+7’1,)\+9T02+MT12>,

where rg1,r12,and rgo are the entries of R. From these results, we can
develop the major performance measures and the conditional stochastic
decomposition properties.

5.5 M/M/c Queue with Synchronous Vacations
of Some Servers

5.5.1 (SY, MV, d)-Policy Model

In the vacation models discussed in the previous sections, we assume
that all servers may be on vacation. This means that a customer may see
that no servers are available at his or her arrival instant. In practical sit-
uations, we may wish to keep at least a certain number of servers always
on duty (in either busy or idle status). For a system with synchronous
vacation policy, this means that only a certain number of servers (not
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all) are allowed to take a vacation each time. For example, a border-
crossing station between the U.S. and Canada operates 24 hours a day
and requires at least one or two lanes to be open to traffic. Therefore,
we need to study the vacation model with vacations of some but not
all servers. Ikagi (1992) studied an M/M/2 system where at most one
server can take vacations. We now discuss an M/M/c system where only
a subset of servers is allowed to take vacations. Introducing a control
parameter d (1 < d < ¢), we design the following policy: at a service
completion instant, if the number of idle servers reaches d (or the num-
ber of customers in the system is reduced to ¢ — d), these d servers start
a vacation together and the remaining ¢ — d servers either serve cus-
tomers or stay idle; at a vacation completion instant, if the number of
customers does not exceed ¢ — d, these d servers take another vacation
together; otherwise, these d servers resume serving customers. Note that
when d servers start a vacation, there are still customers in the system.
Thus the policy is said to be semi-exhaustive. The system is denoted
by M/M/c (SY, MV, d). It is assumed that the vacation time follows
an exponential distribution with parameter ¢ and is independent of the
interarrival time and the service time. The service sequence is FCFS.
At a vacation completion instant with j > ¢ — d customers in the sys-
tem, there are two possible cases of resuming the queue service: (i) if
c—d < j < ¢, then j—c+d returning servers start serving customers and
¢ — j servers become idle; (ii) if j > ¢, then all returning servers start
serving customers and j — ¢ customers are waiting in the line. Now, there
is a distinguished feature of this type of vacation model compared with
the single server vacation model or the multiserver vacation model with
synchronous vacations for all servers. That is, in the M/M/c (SY, MV,
d) system, the number of customers in the system during the vacation
may either increase or decrease, since c— d servers still attend the queue,
while in the M/M/c (SY, MV) system or single server vacation system,
the number of customers never decreases during the vacation.

Let L,(t) be the number of customers in the system at time ¢, and let

J(t) = 0 d servers are on vacation at time ¢,
1 no servers are on vacation at time ¢.

{Ly(t), J(t)} is a QBD process with the state space
Q={(k0):0<k<c—dyU{(k,j):k>c—d,j=0,1}.

Note that a customer departure in state (c —d+ 1, 1) makes the process
transfer to state (¢ — d,0), and the d servers start a vacation. If we use
the lexicographical sequence for the states, the infinitesimal generator
can be written in the block-partitioned form as
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- Ay Co -
B, A C
By Ay (s
Q= B, A, C. ,  (5.5.1)
B A C
B A C
where
—(\+ kp), 0<k<c—d,
Ay = —A+(c—d)u+ 0] 0 B
( 0 (0 + k) , c—d<k<c,
A, 0<k<c—d,
Ck: ()‘50)7 k:C*d,
AL c—d<k<e.
ku 1<k<c—d,
(c—d)p _
B, — (c—d+1)u k=c—d+1,
(c—d)p 0 _
0 » c—d+1l<k<e
Furthermore,
B— (c—dyp 0 A —A+(c—d)u+ 0 0
B 0 cw )T 0 —(Atcep) )
C =\l

To obtain the rate matrix R, we need to know that the quadratic equa-
tion
(c—d)pz® — A+ 0+ (c—d)ulz+A=0 (5.5.2)

has the two real roots r < r* and 0 <r < 1, r* > 1.

.
r ,r—m{)\+9+(c—d)ui\/ﬁ},

where
H=[\—(c—d)u]*>+6%+20[\+ (c—d)u] > 0.

We are now ready to prove the following theorem.
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Theorem 5.5.1. If p = A(cu) ™! < 1, the matrix equation
R°B+RA +C=0 (5.5.3)

has the minimal nonnegative solution

r Or
R — ( a1 > , (5.5.4)
0 p

and sp(R) < 1.
Proof: The coefficient matrices of (5.5.3) are all upper-triangular. Let

_ (i1 T2
R = ( 0 29 ) )
Substituting this R into (5.5.3) gives the following set of equations:

(c—duriy = [A+0+ (c—dulrin + 1 =0
ey — (A +cp)raa + A =0
C;M‘lg(?“ll + 7‘22) + 0ri1 — ()\ + CM)Tlg =0.

To obtain the minimal nonnegative solution, let r1; = 7 in the first
equation and let 792 = p in the second equation (the other root for the
second equation is 192 = 1). Substituting r and p into the third equation,
we obtain rjg = CM(GIT_T) and sp(R) = max(r, p) < 1.0J

From Theorems 5.5.1 and 5.2.3, it can be easily proved that

{Ly(t), J(t)} is positive recurrent if and only if p < 1.

Lemma 5.5.1. R satisfies RBe = Ae and there exists the relation

A

+(c—dp=-. (5.5.5)

1—r r

A+0+ (c—dpu(l—r)=

Proof: Multiplying both sides of (5.5.3) from the right by e gives
R?Be — R(\e + Be) + \e = 0,
and rearranging the terms results in
(I-R)(Ae —RBe) =0.
Because the inverse of I — R exists, RBe = \e, which gives

1—r
r

0+ (c—du(l—r)= A

Adding A to both sides of the equation above yields (5.5.5).0
The infinitesimal generator Q can be repartitioned as follows:
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[ Hy Hop i
Hy, A C
B A C
Q: 5
B A
where
Ay Co 1
B, Ay C
Hy = ;
B, 2o Aco Ceo
L Bc—l Ac—l i
Hy = (0,B,), H —( 0 )
10 y ey 10 Cc_l .

Note that the repartitioned Q is not in the standard canonical form and
has a more complicated structure near the lower boundary. However, the
matrix analytical method can still be applied by using a modified matrix-
geometric invariant vector, as shown in section 1.5 of Neuts (1981).

Let {L,, J} be the stationary random variables for the queue length
and the status of servers. Denote the joint probability by

mej = P{Ly =k, J = j} = lim P{L,(t) =k, J(t) =3}, (k,5) € 2,

where 7, = (w0, k1), for K > ¢ —d + 1. We show below that {m;
(k,7) € Q} exist and can be obtained.
Define the (¢ —d+ 1) x (¢ — d + 1) matrix

[ Ay Co
By A (O
B[R] = o

and the 2(¢ — d + 1) -dimensional vector

Hetar1 = (T005 105 s Te—d,05 (Temd41,05 Temdt1,1) 5 -+ (Te0, Tet)).-

Lemma 5.5.2. II.; 411 B[R] = 0 has a positive solution:

'\ w
T :K(/BjO)le)u C_d<J S c,

J
mo=%(2), o0<i<e-q
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where
1 N ea
o A (e~ —d4+1<j<
Bjo c—d) (M) & , c—d+1<j53<¢
1 /A or 1 i~(ezd)-1 AN
() - _ NN
fin J! <,u) A1 =) 1—'—(c—d)! ; (c d+Z)'()\> ’

c—d+1<j<ec

The empty summation Z?:1 is defined to be zero.
Proof: Using R in (5.5.4), we have

—{A+0+(c—d)pu(l —r %
P AR

which appears in the last row of B[R]|. Then the matrix equation
II.; 411 B[R] = 0 can be written as a set of equations:

(

—Amoo + pmip = 0 (Eq. 1)
Amji—10 — (A + ) mjo + (7 + Dpmjr10 =0, 1 <j <c—d, (Eq. 2)
AMe—d-1,0 — A+ (c = d)p)me—a0 + (¢ — d)ume—_qy10
+(c—d+1Dpme—gr1,1 =0 (Eq. 3)
Ome—ar1,0 — A+ (c—d+1)p)me—gr1
+(c—d+2)ume—qra1 =0 (Eq. 4)
Amj—10 = [A+ (e = d)p + Olmjo + (¢ — d)umjt1,0 =0,
c—d<j<c—-1 (Eq. 5)
Amj_11 —Omj0 — (A +jp)min 4+ (J + Dpmjr =0,
c—d+1<j<c—1 (Eq. 6)
Ae10— A+ 0+ (c—d)p(l —7))meo =0 (Eq. 7)
)\ﬂ'cfl,l + %7700 —cpume =0 (Eq 8)

From (5.5.5) and (Eq. 7), we obtain mg = rm.—10. In (Eq. 5), letting
j=c—1, we get

AMe20=A+0+ (c—d)p)me—1,0— (c — d)prme_1
=A+0+(c—d)pu(l —7r))me—10 = %71'07170

so that m._10 = r7m.—20. Repeating using (Eq. 5) recursively, gives
Teo=1mejo  0<j<d. (5.5.7)
Let moo = K. From (Eq. 1), we obtain 79 = A~ K. Successively

substituting equations in (Eq. 2), we have

K ()
W:,'() L 0<j<e-d (5.5.8)
'\
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In (5.5.8), letting j = ¢ — d and comparing it with (5.5.7), we get

KN\,
ﬂco—(c_d)! u .

Then substituting it back to (5.5.7) yields

K AN\
= (2 J—(e=d) — P <
o (c— <H> r , c—d<j<ec

Substituting m._q—1,0, Te—d,0 and m._q41,0 into (Eq. 3) gives
Te—d11 = (g1 <u> 1=K e=dy].

From (5.5.5), it is easy to verify that

7 Or
1-— (C—d)XT: =)

Using this relation, we have

K AN\ or
Wc_dﬂ’l_(chrl)!(u) oo 289

Substituting (5.5.9) and (5.5.8) into (Eq. 4), we get
K A\ 2 pr ur
S TP — — L 14 (c—d+1 7} .
Temdt2,1 = (7 o)1 <M> )\(1—7“)[ Fle—d+ 17
Successively substituting this expression and (5.5.9) into (Eq. 6), we
obtain

i—(e—d)-1

”jl:f!(i)JA(lgir) 1+(c—1d)! > earir() g

=1

c—d<j<ec

Finally, using direct substitution, we can verify (Eq. 8).0

Based on the modification method in section 1.5 of Neuts (1981) for
the infinitesimal generator Q with complex lower boundary, it is obvious
that if and only if sp(R) < 1 and linear equation system II., 411 B[R] = 0
has a positive solution, then the QBD process {L,(t), J(¢)} is positive
recurrent. Based on Theorem 5.5.1 and Lemma 5.5.2, these conditions
are satisfied if and only if p < 1.
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For the joint distribution queue length and the status of servers, we
have the following theorem.
Theorem 5.5.2. If p < 1, the distribution of {L,, J} is

J
Wj0:%<%>; 0<j<c—d
= K(Bjo, Bjn), c—d<j<ec
50 = K Beor? ™€, Jj>c

Fjl—K,Bclp] +Kﬁcocu1 T)Zjic 1 ’ij c—1— 17 ji>e,

where ;0 and (31 are given in Lemma 5.5.2 and the constant K is as
follows:

-1

c—d g c—1
K = Z l (A) + Z (Bjo + Bj1) + (Beo, Ber) I —R)~H

!
j=0 " \H Jj=c—d+1
Proof: Based on Theorem 5.2.3, we have

T = (mhos k1) = K (Beo, Ber)RF k>c,

and 7o, 10, - Te—d,0, (Tko, Tk1), c—d < k < ¢, are given by Lemma 5.5.2.
Substituting R in (5.5.4) into the expression above gives (7 g, ;1) for
7 > c. K can be determined by the normalization condition. [J

The distribution of the number of customers in the system at any time
is

) mjo, 0<j<c—d,
P{Lv_j}_{ﬂj0+ﬂj1, ji>c—d,

Note that, based on Theorem 5.5.2, the distribution of waiting time
can be obtained by conditioning on each state (k,j) € Q. However,
this distribution is very complex and is not convenient to use. It is
also hard to compare this multiserver vacation system with its classical
M/M/c system in terms of unconditional distributions. Therefore, we
again present the conditional stochastic decomposition properties.

Let LY = {L, — ¢|L, > ¢, J = 1} and W9 = {W,|L, > ¢, J = 1}
represent the queue length and the waiting time, respectively, given that
all servers are busy.

Theorem 5.5.3. If p < 1, Lq(,c) can be decomposed into the sum of
two independent random variables,

L(c) — ( ) + Ld:

v

where L(()C) is the conditional queue length of the classical M/M/c sys-

tem without vacation and L, is the additional queue length due to the
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vacation effect. The p.g.f. of Ly is given by

1 Or 1
La(z) = p {5c1 + (1= T)ﬂcoz(l o } ; (5.5.10)
where o
ﬁcl + ,LL( )2 ﬁcO

Proof: From Theorem 5.5.2, the probability that all servers are busy
is

P{L,>c,J =1}

:Zﬂjl
_C oo j—c—1
—KBde] + K ﬁcoz Z ph gi—e=1=k

j=c j=c+1 k=0
K K Or
-7 K
I—p

The conditional probability distribution of LS,C)

P{L{ = j}
— P{L,=j+dL,>c,J=1}

is obtained as

1 .
{501ﬂ7 + ( ﬁcoz ki 1= k}, j>0. (5.5.11)
Taking the p.g.f. of (5.5.11), we have

Li)(2) = ) P{LY) = j}

j=0
1-0p >
- - k j—1-k
- e Bclzpjzj+ 5COZZ]ZTPJ
Jj=0 j=1 =
1—-p 1 Or 1
1—=2 X0{601+cu(1—r)660z1—zr}
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O
Expanding L4(z) yields the distribution of Ly as
1 .
. ~Be1, J=0,
P{Lg=j}=19 1 i .
{La =} { %cu(firfpﬁco(l — )il J=1
(5.5.12)

Note that (5.5.12) indicates that with probability B.0~!, Ly = 0 and
with probability 1 — B0~ !, Ly follows a geometric distribution with
parameter r. The following theorem gives the conditional stochastic
decomposition property of the waiting time.

Theorem 5.5.4. If p < 1, Wéc) can be decomposed into the sum of
two independent random variables,

Wi = w§? +wy,

where Wéc) is the conditional waiting time in a classical M/M/c system
without vacations, and Wy is the additional delay due to the vacation

effect. WO(C) follows an exponential distribution with parameter cp(1—p),
and Wy has the LST

(5.5.13)

W;(S)Zi{ﬁdnLc or C“(l_r))}.

u(l—r)

Proof: Assume that a customer arrives at state (k, 1) for k > c. If we
condition on this state, this customer’s waiting time Wt has the LST

k—c+1
:k<s>—<’“’“) L ke

s+cu

The conditional waiting time when all servers are busy has the LST

Wy O(s) = i P{LY) =k — c}Wyi(s)

k=c
_l=p e
- {BClerw(l - )
Or 5 cp cph }
cn(1—=r)" s+ cu(l—p) s+ eu(1—r)
_oep(l—p) 1 Or eu(l—r)
S step(l—p)o {Bd R R El e sy }
= Wi ()W ()
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Note that (5.5.13) indicates that Wy has the probability density at
the origin with probability

. 1
q = 7ﬁcla
g

and follows an exponential distribution with parameter cu(1l — ) with
probability 1 — ¢*.

From the conditional stochastic decomposition properties, we can ob-
tain the means of Lg,c) and Wﬁc):

P 1 Or

(0 _ +
E(LU ) 1_p+0'CM(1_7")3660’
1 1 6r? 1
E(WL)) = - —.
(W%) ai=p) Tt

Remark 5.5.1. Using a similar analysis, we can study the single
vacation model, denoted by M/M/c (SY, SV, d), where the d servers
take only one vacation simultaneously when the number of customers
in the system is reduced to ¢ — d at a service completion instant and
return to serve the queue or stay idle after the vacation. We can also
analyze the M/M/c (SY, SU, d) model where the d servers are turned
off when the number of customers in the system becomes ¢ — d at a
service completion instant and are turned on with a setup time when
the number of customers in the system is increased to ¢ — d + 1. Note
that in both models, the number of servers on duty never falls below
¢ — d. If we assume that the vacation time or the setup time follows
the exponential distribution with parameter # and is independent of
the interarival time and the service time, the analysis of the M/M/c
(SY, SV.d) or the M/M/c (SY, SU,d) is the same as in sections 5.5.1
and 5.5.2. The infinitesimal generator is still given by (5.5.1) and the
matrices A, B, and C are the same as in the M/M/c (SY, MV,d) system.
The only difference from the M/M/c (SY, MV, d) model is the transition
rates among the boundary states, where the number of customers in the
system is no more than ¢. All three models have the same rate matrix R
of (5.5.4). The structures of the conditional stochastic decompositions
in these models remain the same as illustrated in Theorems 5.5.3 and
5.5.4 except for the expressions of 5.9 and (.1, which are determined by
different equations.

5.5.2 (SY, MV, e-d)-Policy Model
Now we consider an M/M/c system where only a batch of idle servers
(not all) are allowed to take synchronous multiple vacations. The servers
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in such a system follow a so-called (e,d) policy. The (e,d) policy pre-
scribes that when any d (< ¢) servers become idle or the number of
customers in the system is reduced to ¢ — d at a service completion in-
stant, then e (< d) idle servers start to take a vacation together. At a
vacation completion instant, if the number of customers in the system
is no more than ¢ — e (still no waiting customers), these e servers take
another vacation together until they find that there are more than ¢ —e
customers in the system at a vacation completion instant. Then these e
servers return to serve the queue. The vacation time is assumed to be
exponentially distributed with parameter 8. The service order is FCFS
and interarrival times, service times, and vacation times are mutually
independent.

At a vacation completion instant, if there are j customers in the sys-
tem where ¢ — e < j < ¢, then 5 — ¢ 4+ e returning servers will serve
the customers immediately and ¢ — j servers become idle; if j > ¢, all e
returning servers serve the customers immediately and j — ¢ customers
are waiting in the line.

Let L(t) be the number of customers in the system at time ¢, and let

T(t) = 0, e servers are on vacation at time ¢,
1, no servers are on vacation at time t.

Then {L(t), J(t)} is a QBD process with the state space
Q={(k0):0<k<c—dlJ{(k,j):k>c—d, =0,1}.

Using the lexicographical sequence for the states, the infinitesimal gen-
erator is given by (5.5.1) where the entries are modified as follows:

— (A + kp), Osk<emd
—(A+ kp) 0 - -
A = 0 —(A+kp) ) crdsksene
_(AJFHJE)(C_@M) —(/\+ku)>,c—€<k‘<0_1’
ke, lskse—d,
(c—d+1)u —c—
(C_d—i_l)'u , k=c d‘i‘l’
B = kp 0 7 c—d+1<k<c—e,
0 ku
(c—e)u 0 _ -
0 kp )€ e<k=<c-—1,
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A, 0<k<c—d,

a07 k: _da
Ci=q ! A)O )
(0 )\>’ c—d<k<c—1,

B:<(c—e)/£ 0 ),A:<_[>\+(C_e)”+9] 0 >7

0 —(\ + cp)
e (3 1)

Note that a customer departure in state (c—d+1, 1) makes a transition to
state (¢ —d,0), in which e servers are on vacation. Because the matrices
A, B, and C are the same as before, the expression of R is still given by
(5.5.4) and the expression of r in Theorem 5.5.1 is slightly changed to

1
T:m{)\+9+(6—6)#—\/ﬁ}’

where H = [\ — (c — e)u]? + 6% + 20[\ + (c — e)p]. Define
IT= (7T007 e )T(Cfd,[% Trcfd+l,7rcfd+27 e )7 (5514)

where 7, = (7o, Tg1), for k > ¢ —d+1. To obtain the distribution {my;
(k,7) € 2}, we define

= (3) o=@ 55 Sy

For the ease of computation, the recursive relation

b~ A iy = (k= I (5.5.15)

—r

can be used. Using the same approach of treating the M/M/c (SY,
MV, d) system, we can verify that IIB[R] = 0 has the positive vector
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solution as:

( 1 (A)F
c—d
TRy = K%Jfﬁd (%) , c—d<k<c—e,
—d
1 A ¢ k—c+e _
Kw%d(”) r , c—e<k<c,
k
1 A 1 vV— C+d
KW(;) r/\wc dzucd ( ) )
c—d+1<k<c—e,
k
= 1 (A 0 1 c—e—1 w\v—ctd
k1 K (p) Tor AT s {Eu —ea¥' (8)
—c+d
+ e VH(R)T T e
c—e<k<ec

(5.5.16)

where the constant K can be determined by the normalization condition.
Similarly to the proof of Theorem 5.5.2, we can easily obtain the

following theorem.
Theorem 5.5.5. The joint distribution of {L, J}, denoted by {m;,

(k,7) € Q} for 0 <k < ¢, is given by (5.5.16) and

c—d
o= K (2) utpheen, -
Ty = Te1pF ¢ + Wcoicu(eflr) S ety phmemtoy) k>c.
(5.5.17)

The constant K is
e—d 1 k A 1 c—e—1 -
L+ 0w (’) + (ﬁ) Ve_a (1Tr + 2 h—e—dt1 W)
a1 B+ 15 (B + By )

where 8y1 = K 'mp1,c —d+1 < k < ¢, and 7 can be determined by
—d
—1

C
(5.5.16) and B = (2) v
The distribution of the number of customers in the system at any time
is
_ _ TkO, 0<k<c— d7
P{Lv_k}_{ﬂko-l-ﬂkl, k>c—d+1.

The distribution of the number of busy servers, denoted by Mp, is
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50, 0<j<c—d

mjo + 741, c—d+1<j<c—e
P{MB :]} = Z;O:cfe w0 + Me—e,1 j=c—e

i1 c—e<j<c—1,

Zsozcﬂ-z/la Jj=c

Let W and W*(s) be the stationary waiting time and its LST, respec-
tively. To obtain the waiting time distribution, we establish the following

lemmas.

Assume that X ) follows an Erlang distribution with parameters a
and v, and V follows an exponential distribution with parameter 6. In
addition, X) and V are independent. Now we have

Lemma 5.5.3. Given X*) < V, v > 1, the conditional probabil-
ity distribution, {X®)|X®) < V}, follows an Erlang distribution with
parameters v and 6 + a.

Proof: Assume that X follows an Erlang distribution with para-

meters v and . The p.d.f. and LST are f,(z) = O‘((i‘f););l

% and

(&

~ v
fu(s) = (%W) for v > 1, respectively. Also assume that V follows an

exponential distribution with parameter 6 and is independent of X. It
is well known that

P{X(”)<V}:< a > : v>1.

0+ o
Given the event {X®*) < V}, the conditional distribution function of
X s
P{XW <2, X¥) <V}
P{X® <V}

([« +0\" /x a(at)yt JT—
(6% 0 (V — 1)'

Y RPN (Ll ey
—/0( +0) 1) teltdt.

FX(V) (:E|X(V) < V) =

O

Lemma 5.5.4. Given {X®) <V < X®**+D} » > 1, the conditional
probability distribution, {V|X®) < V < X®+D1 follows an Erlang
distribution with parameters v + 1 and 6 + a.

Proof: First, it is easy to compute the probability of the conditional
event as

p{X(z/) <V < X(u+l)} — 9—&0—04 (Oia) , v>1. (5.5.18)
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From the independence property, we have

P{V <z, X" <V < X))
:/ P{V <zt <V <t+az}f,(t)dt
0

—/ fl,(t)dt/ et ge=0u gy,
0 t
0 / (6_9t _ e—Oxe—a(a:—t)> fl,(t)dt.

:9+OZ 0

Using (5.5.18), given the event {X*) < V < X#*11  the conditional
distribution function of V' is

Fy(z| X < v < x0+D)

_ P{V<z,XW <V < xt}
- P{XW <V < XD}

_ (a ;— 0>V /Om (e_et _ e—eace—a(ac—t)) £, (t)dt.

Taking the derivative with respective to x, we obtain the p.d.f. as

Fr(z]X® < v < x+h)
_ <a + (9) / (a + H)e—exefa(wft)fv (t)dt
0

(0%

a+0\" _ioe [Falat)t
:(a+«9)< 5 ) e~ (at0) /0 (1(/—)1)! dt
((0“"9)5”)”6—(0&9)3:.

= (@+9) v!
([
In the following discussion, let & = (¢ — e)p and
o — 0 < (c—e)u ) 7 y>0.
O+ (c—e)p \O0+ (c—e)u

Let Ho(or Hy) be the probability that at an arrival instant, e servers are
off (or on) duty and the arriving customer has to wait. Obviously we
have

00 A c—d . 1
Hy = Z mo =K (= —d]

v=c—e M

> 1 Or
H: vl — 57— c /1 No'tc .
1= m 1—p<“+cu<1—r>2”°>

v=c
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Theorem 5.5.6. The LST of W is

W*(S) = 1—H0—H1

0+ (c—e)u(l—r) ep(l—r)
e e o]

gl =p) [o— +(1- J)M] . (5.5.19)

s+ cu(l—p) s+cepu(l—r
where
5= 01 —7r¢) 4+ (c—e)u(l —r) oo Tel
0+(c—eu(l-r) Hy(1-p)
Proof: The probability of no waiting is
c—e—1 c—1
P{WZO}: ZWV0+ Z T =1— Hy— Hi.

v=0 v=c—d+1

If a customer (called a tagged customer) arrives at state (c —e+7,0),
0 < j < e, then the number of waiting customers before the tagged
customer is less than e. Therefore, as soon as the vacation is completed,
the tagged customer will get immediate service. Before the vacation
completion, ¢ — e servers are busy. Based on Lemma 5.5.4, given that
{(X) <V <« XDl 0 < v < j, the conditional waiting time of the
tagged customer follows the Erlang distribution with parameters v + 1,
and 0 + (¢ — e)p. If V> XU+ which means that the vacation is not
completed until the service of the tagged customer starts, then based
on Lemma 5.5.3, the conditional waiting time also follows the Erlang
distribution with parameters of j +1 and 6+ (¢ — e)u. Thus, the LST of
the waiting time for the tagged customer arriving at state (¢ — e + 7, 0),
0<j<e,is

J B J _
—etjols) = Zavfll-i-l(s) + (1 - Z%> fi+1(s).
v=0 v=0

Substituting a,, and f:,(s) into the equation above gives

_ 0 s < (c—e)p

j+1
* ) — < .
Cfe+],0(8) S+0+5+0 S+9+(C—€),LL> ,O_j<€
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Therefore, we obtain

ch e+, 00 e+30( s)

AN\ 0 1—r¢ s (c—e)u
=K|(Z 1
<,u> ¢C-d{s+c9 1—7‘+s+95+0+(c—e)u(1—7“)

x [1 - (HET(?“ 6)M>er€] } (5.5.20)

If a customer (tagged customer) arrives at state (¢ + j,0), j > 0,
then the number of waiting customers before this tagged customer is
j + e. If during the residual vacation, v services are completed, that is,
{X(”) <V < X(”H)}, 0 < v < 4, then, after the e returning servers
start serving customers, there are j — v customers before the tagged
customer. Note that at this vacation completion instant, all ¢ servers
are busy. If {X®) <V < Xt} 41 < v < j+e, then, at this
vacation completion instant, the tagged customer gets service immedi-
ately. If {V > X (j+e+1)}, the tagged customer gets the service before
the vacation is completed. Thus, based on Lemmas 5.5.3 and 5.5.4, the
LST of the conditional waiting time for this customer is

cp j—v+1 J+e _
c+30 Zavfu-i-l <5+c,u> + Z anV+1(S)

v=j+1
jte _
+ (1 - Z av) fitet1(s)

v=0

J — cp j—v+1
= Zavfl/—l-l(s) <S+C,u>

{M He(ﬁéi]?i‘em)e}-
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Therefore, from this expression, we obtain

> TerjoWeijols)
7=0
)\ c—d
e
1

cl 0
x (s—i—cu(l—r)s—i-H—i—(c—e),u(l—r)
(c— e
+{s+0+(c—e)u(1—r)

<[ero s (oretas) 1})- oo

Using (5.5.20) and (5.5.21) and simplifying the expression yields

> mioW;o(s)

j=c—e

=K<2>Cd¢;1d{ 0 [1—r6+1—r6 (c—e)u(l—r) ]

s+0|1—r 1—-rs+0+(c—e)u(l—r)
1 (c—eull—1)
l—rs+0+(c—e)u(l—r)
e 0 cp(l—r)
+1—r8+9+(c—e)u(1—r)s—i—c,u(l—r)}

0t (e—eu—)
_H0{3+9+(c—e),t1,(1—r)

B Ore s }
s+0+(c— ),u(l—’l“)s—i—c'u(l_r)
{9(1—T6)+(C—e)u(1—7“)
) 0+ (c—e)u(l—r)

Ore cu(l—r)

+9+(C—€)M(1—T)S+cu(1—r)}

—p, Pl o) _gy_d=r)
e P Dy} G

Finally, if a customer arrives at state (¢ + 7,1), 7 > 0, his or her waiting
time follows the Erlang distribution with parameters j+1 and cu. Hence,

we have -
J
. cp .
Weijals) = (S+Cu> , J20.
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Using (5.5.16) and (5.5.17), we obtain

oo
D TerjaWiija(s)

=0

B cl - Or - cu(l —r)

T sven(i—p) < T =y COS+6/~L(1—T)>

0 cu(1 —p) { Tel Ormeo cu(l—r) }
s+cu(l—p) LHi(1-p) H1(1— pep(l =7)%s+cp(l —r)

_g wd=p) f o epl—T)

B Hls+cu(1—p) { +{ )s+c,u(1 —r)}' (5:5:23)

Combining (5.5.22) and (5.5.23), we have (5.5.19).00

Note that (5.5.19) has an interesting probability interpretation. The
stationary waiting time is zero with probability 1 — Hy — Hy, is the sum
of an exponential random variable of parameter 6 + (¢ — e)u(1 — r) and
a modified exponential random variable with probability Hg, and is the
sum of an exponential random variable of parameter cu(l — p) and a
modified exponential random variable with probability H;. Thus, the
distribution function and the mean of the waiting time are obtained from
(5.5.19) as

Fw<$) =1-— HO - H1
+ H, (1 _ e—[@-l—(c—e)u(l—r)]x) [5 T (1— )1 e—cu(l—r)x)}
4y (1= 09 [+ (1= o)1 = 0]

and

E(W):H‘)[eﬂc—elmu—r)*“‘5) : }

1 1
i [cu(l s IS —r)] |

The probability distribution of the waiting time is very useful in com-
puting the service level of queueing systems, such as the probability that
a customer waits less than a certain amount of time. Now we present the
conditional stochastic decomposition propertles in this vacation model.

Let L) = {L—¢|L>¢,J =1} and W = {W|L > ¢,J = 1} be the
conditional queue length and the conditional waiting time, respectively,
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given that all servers are busy, and let Lél) ={L—c¢|L > ¢} and Wél) =
{W|L > ¢} be the corresponding conditional random variables in the
classical M/M/c queue.

Theorem 5.5.7. The conditional waiting time and the conditional
queue length given that all servers are busy can be decomposed into the
sum of two independent random variables,

w® =w wh,

1= 1l

where chl) is the additional delay due to the vacation effect and has
the LST

cp(l—)

*(1)
— 1)~
W, (s) =0+ ( U)s—i—c,u(l—r)’

(5.5.24)

and Lg) is the additional queue length due to the vacation effect and
has the p.g.f.

z(1—r)
1—z2r

W) =0+ (1-0) (5.5.25)

Proof: Note that P{L > ¢,J = 1} = > 72 _m1 = Hj. Given the
condition {L > ¢, J = 1}, the probability that there are j customers in
the system is

P{LO =j} =P{L=c+j|lL>c,J =1} = Hy 'merjn, j > 0.

Hence, the LST of W) ig

(1) 1 i cp o
W* (S) = Hl_ Tet-4,1 < ) .
= s+ cp

Using (5.5.23) in the expression above, we get

. _cp(l—p) cp(l —r)
W6 = =) {”““’)sw(l—r)}'
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From P{LWY = j} = H; '7.y;1 and (5.5.17), we have

LW(z) = isz{L(l) = j}

=0
> ; Or >, ] ;
S o e 3 S
=0 =1 v=0
— g1 Tel + Opmeo izu+1,’,u i Zj*l/flpjfufl
! 1—zp cu(l—r) — Pt
0 z
_ -1 H
b 12 {ﬂ-d * cu(l —T)ﬂ-cgl —zr}
1—p Tel m z(1—r)
= 1 + 5 7c0
—zp | Hi(1—p)  Hi(1—p)ep(l—r1) 1—2zr
1—p z(1—r)
= 1)L
1—zp{0+( G)l—zr}

]

Note that (5.5.25) indicates that L((il) is zero with probability o and
is 1 plus a geometrically distributed random variable with parameter r
with probability 1 —o. Using (5.5.24) and (5.5.25), we have the expected
values of these conditional random variables as follows:

l1—-0
1—7r’
1-01
1—rcp
P l1-0
1—p 1-1’
1 1—-0
c(l—p)  cep(l—r)

Another condition is when e servers are on vacation and the other
¢ — e servers are busy. Let L) = {L —c+e|L > ¢—e,J = 0} and
WO = {W|L > ¢ —e,J = 0}. We also have the conditional stochastic
decomposition property for the conditional waiting time.

Theorem 5.5.8. L follows a geometric distribution with parameter
r. WO can be decomposed into the sum of two independent random

variables,

wO = w4+ w,
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where WO(U) follows an exponential distribution with parameter 6 + (¢ —

e)u(l —r), and cho) follows a modified exponential distribution with
the LST

W %) =6+ (1— 5)%. (5.5.26)

Proof: Note that P{L > c—e¢,J =0} = > >° w0 = Hp. Thus,
the probability distribution of L is

P{LO = j} = P{L = c—e+j|L > c—e,J = 0} = Hy 'Te—eyjo, > 0.

Taking the p.g.f. of this distribution gives

LOz) =Y 2 P{LO = j} = Hy' Y Zmeesjo
=0 =0

A\ 1 1—7r 1—7r
=H,'K (= ! = :
0 <M> l—r%*dl—zr 1—2r

Therefore, L(® follows a geometric distribution with parameter 7. Given
the condition of {L(®) = j}, the waiting time is no longer the sum
of 7 + 1 exponential random variables with parameter (¢ — e)u. As
indicated in the proof of Theorem 5.5.6, the waiting process also depends
on the vacation completion instant. Note that (5.5.22) gives the joint
distribution of W and event {L > ¢ — e, J = 0}, and hence, the LST of
the conditional waiting time W(® is

N _ O+ (c—epu(l—r) cp(l —r)
wO(s) = s+0+(c—e)u(l—r) {6+(1_5)s+c,u(1r)}'

This completes the proof. [J

5.6 M/M/c Queue with Asynchronous Vacations
of Some Servers

In this section, we consider an M/M/c queue where servers can take
vacations independently when they become idle. The service policy now
prescribes the following: at a service completion instant or at a vacation
completion instant, if the server finds no waiting customers and the
number of servers on vacations is less than d, this server will take a
vacation individually. With such a policy, the number of servers on duty
(busy or idle) is at least c—d at any time. Because servers take vacations
individually and continue taking vacations if the vacation condition is
satisfied, the vacation policy is called an asynchronous multiple vacation
policy. The vacation time is assumed to be exponentially distributed
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with parameter 6. The service order is FCFS and interarrival times,
service times, and vacation times are mutually independent. This system
is denoted by M/M/c (AS, MV, d).

With this vacation policy, if the number of customers k < ¢ —d, there
must be d servers on vacations and ¢ — d — k servers that stay idle; if
c—d < k < ¢, there are at least ¢ — k servers on vacations and no idle
servers.

Let L, (t) be the number of customers in the system at time ¢, and let
J(t) be the number of servers on vacations at time ¢. Then 0 < J(t) < d,
and {L,(t), J(t)} is a QBD with the state space

Q={(k,d):0<k<c—d}U{(k,j):c—d<k<c—1lc—k<j<d}
U{(k,j) 1 k>c,0<j<d}

For a given k, the state set {(k,j), (k,7) € Q}, called level k, contains
the states that are sequenced in descending j starting with 7 = d. Using
the lexicographical sequence for the states, the infinitesimal generator
for the QBD has the same block structure as in (5.3.3), where Ay, By,
and Cp can be written in the block-partitioned form as in (5.4.1). Letting
hi =X+ (¢ — k)pu+ k6, 0 < k < d, the submatrices of the infinitesimal
generator are given by

Ap=—O+kp), 0<k<c—d,

B, = ku, 1<k<c—d,
Cr = A, 0<k<c—d-1,
[ (c—d)u ]
(c—d+1)p
B, = , c—d<k<c—1;
(k= 1p
i 0 0 kp
A 0
A 0

C. = ) , c—d<k<c—1;
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—hg de
a1 (d—1)8
Ay = ;
—hc,k,1 (C —k— 1)0
—(A+kp)

c—d<k<c—1.

Other submatrices A, B, and C are the (d 4+ 1) x (d + 1) matrices, as
follows:

—hg  df
—hgy (d—1)0

—hy 0
—(A+cp)

B = diag((c — d)p, (¢ — d + 1), ..., cp), and C = AL Therefore, Ag is
the square matrix with order d* = (¢ —d) + 3d(d+1). By and Cy are the
(d+1) x d* and d* x (d + 1) matrices, respectively.
To obtain the explicit expression for R, we need the following lemmas.
Lemma 5.6.1. For any 0 < k < d, the quadratic equation

(c—d+k)uz> — M+ (c—d+E)pu+d—kbz+rx=0  (56.1)

has two different real roots rp <7y and 0 <7, <1, 77 > 1.
Proof: Let j =c—d+k. Then c—d+1 < j < ¢, and hence, (5.6.1)
can be rewritten as

gt =t ju (= j)0lz+A=0, c-dtl<j<e

Then the result follows from the same approach used in the proof of
Lemma 5.4.1.01
If k =d, (5.6.1) becomes

cpzt — (A4 cp)z+ A =0,

and its two roots are rg = p = A(cp) "' and r} = 1.

Lemma 5.6.2. The rate matrix R satisfies RBe = \e.

Proof: Note that Ae = —(\e + Be). Multiplying both sides of (5.5.3)
from the right by e gives

R?Be — R(\e + Be) + \e = 0,
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and rearranging the terms results in
(I-R)(Ae —RBe) =0.

Because the inverse of I — R exists, so Ae = RBe. [J

Now we show the theorem for computing R.

Theorem 5.6.1. If p = A(cu)™! < 1, the matrix equation R?B +
RA + C = 0 has the minimal nonnegative solution

o Tor To2 - To,d-1 Tod
T Tiz2 -+ Tid-1 Tid
r cee Togo1 T
R = 2 At fad : (5.6.2)

Td—1 Td—1,d
p

where 1, 0 < k < d — 1, is the solution of (5.6.1) that is between 0 and
1 and the nondiagonal entries in R satisfy the equations

k
(c—d+k)pd rjrik — A+ (c—d+E)u+ (d— k)6
i=j
+(d—k+1)0rjr_1=0, (5.6.3)
0<j<d—1, j+1<k<d

In (5.6.3), if k = 7, let rpx = rg, 0 < k<d.

Proof: Since A,B, and C are all upper-triangular matrices, the so-
lution to the matrix equation, R, must be an upper-triangular matrix.
Let R be in form of (5.6.2). Then the entries of R? are

(R = 7, 0<k<d,

k
<R2)jk = erzﬂk, 0<j<d-1,j<k<d.
i=j
Substituting R?, R, A, B,and C into the matrix equation gives a set of
equations:

(c—d+k)yur2 —A+(c—d+k)u+(d—k)br, + A= 0,
0<k<d,
(c—d+Fk)u Ef:j ik + (d — k +1)0r; 1
=X+ (c—d+k)p+ (d— k)0,
0<j<d-1,j+1<k<d
(5.6.4)



Markovian Multiserver Vacation Models 261

Based on Lemma 5.6.1, we can obtain the minimal nonnegative solution
by letting r; be the root of (5.6.1) in (0,1) where 0 < k < d — 1, and
letting 74 = p. The second equation of (5.6.4) is the recursive relation
(5.6.3).0

From (5.6.2), we find that the spectral radius

sp(R) = max(rg,- - ,74-1,p), so sp(R) < 1 if and only if p < 1.
Therefore, p < 1is the necessary and sufficient condition for {(L,(t), J(t)),
t > 0} to be positive recurrent.

Because (5.6.3) is a set of nonlinear recursions, it is not possible to get
the explicit expression for every rj; (j < k). However, as in section 5.4.1,
it is feasible to recursively compute every 7;;. In addition, RBe = )e in
Lemma 5.6.2 is a set of d linear equations that the nondiagonal entries
satisfy. Note that we cannot use these d + 1 equations to determine
every nondiagonal entry. However, we can use the recursive relations in
(5.6.3) and Lemma 5.6.2 jointly to determine the nondiagonal entries of
R. For example, letting £ = j + 1 in (5.6.3) and using the same method
of section 5.4.1, we obtain

d—j g Ty
c—d+j+lpri, —ry

Tji+1 = j:O,l,...d—l.

With this relation, we can compute these entries on the first off-diagonal
line parallel to the diagonal of R.

If p < 1,let {L,, J} be the queue length and the number of vacationing
servers for the steady state system. Denote its joint probability by

mj = P{Ly = k,J = j} = lim P{L,(t) =k, J(¢) = j}, (k,j) € &

To accommodate the block structure of Q, we express the distribution
of {L,, J} as three probability vectors

Thds 0<k<c—d,
T =13 (Thd, Thd—1,"" > The—k), c—d<k<c—-1,
(Thds Thd—1," " > Tk 1, k), Kk > ¢,

where 7, 0 < k < ¢ —d, is a real number; 7, c—d+1 <k <c-—1,
is a (k — ¢+ d + 1) -dimensional row vector; and 7, k > ¢, is a (d+ 1)
-dimensional row vector. The marginal probability

II. = (707 oty Te—dy Te—d+15 " " 77Tc)

is a row vector of (¢ —d) + 1(d + 1)(d + 2) dimensions.
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Note that the square matrix of order (c — d) + 1(d + 1)(d + 2),

| Ao Co
BIR| = [ B, RB+A }
C Ay Co -

Bl A1 Cl

Bc—l Ac—l Cc—l
B. RB+A |

is an aperiodic and irreducible infinitesimal generator with finite dimen-
sions. Hence,
II.BR] =0 (5.6.5)

must have positive solutions. Using Theorem 5.2.3, we obtain the fol-
lowing theorem.
Theorem 5.6.2. If p < 1, the joint distribution of (L, J) is

K/Bkv OSI{;SC_CL
=< KBk =K(Brd, Brd-1," " »Brk—c), c—d<k<c—1,
KB, = KB.RF™, k>,

(5.6.6)
where (8o, -, Be—d,Be—d+1- - , Bc) is the positive solution to (5.6.5) and
the constant K is

-1

c—d c—1
K=4> 8+ > Bie+pB(I-R) e
j=0

j=c—d+1

Furthermore, we can get the distribution of the number of customers in
the system:

Tk, OSkSC—d,
P{L, =k} = mye, c—d<k<ec—1,
m.RF %, k>c.

Note that, from Theorem 5.6.2, the distribution of the waiting time
can be obtained by conditioning on every state (k, j) € 2. However, this
approach is very complex and not convenient to use.

Let LY = {L, — ¢|L, > ¢,J = 0} and W9 = {W,|L, > ¢,J =
0} be the conditional queue length and the conditional waiting time,
respectively, given that all servers are busy. Rewrite 5. and R as

/602(67500)) R:<(I]_I Z)a
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where 0 = (Bed, Be,d—1, -+ 5 Be1) is a d-dimensional vector. Comparing
with (5.6.2), we find that H is a d X d matrix and 7 is a d X 1 column
vector as follows:

To Tor -+ To,d-1 Tod
o Tid-1 T1d
H = . . s ’[7 g
Td—1 Td—1,d

Obviously, sp(H) < 1.

Theorem 5.6.3. If p < 1, the conditional queue length Lq(,c) can be
decomposed into the sum of two independent random variables,

L = L + Ly,

v

where Léc) is the conditional queue length of the classical M/M/c system

without vacation and follows a geometric distribution with parameter p.
L, is the additional queue length due to the vacation effect and follows
a matrix geometric distribution of order d. Ly has the p.g.f.

La(2) = % {Buo + z6(1 — zH) '}, (5.6.7)

where
g = BCO + 5(1 — H)_ln.

Proof: Based on the structure of R, we have

k k=1 jyrk—1—j
Rk — H Zj:() p]H JT] , k 2 1.
0 ok

Substituting the kth power of R and . = (9, Bq0) into the matrix geo-
metric expression in Theorem 5.6.2 yields

k—c—1
me = K(0HN, Boph~c 46 Y pHF ), k> ec.
j=0

If k£ = ¢, the empty sum of the second term is 0, so the last element of
T 1S
k—c—1 ' )
Tho = K (Beop™ “+6 Z pHE 1), k> c.
j=0
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The probability that all servers are busy is

P{L,>c,J =0} =) my
k=c

oo  k—c—1
=K { By — +5Z > PHE

k=c+1 j=0

K =l K
—71_p{5c0+(5(1 H) 77}—71_,00.

The distribution of LSf) is
P{L©® =k} =P{L, = k+¢|L, >¢,J =0}

1—p

= ’]r
Ko Fted
1

-1
—p k jprk—1—j

=3, § H 1ipb k>0 (568
— { Peor” + JE:O/J] 7 > (5.6.8)

Taking the p.g.f. of (5.6.8), we have

o

[e'e) [e'e) k—1

1 — . 4

L) = —L B0 )t +8 S pH
k=0 k= j=

1-— - -
I 2 5c0 + Z‘SZ )y S (H)y
g Jj=0 k=j+1
1-—

-1, {Bco—i—zé(l—zH) n}

1-—
= L{? () La(2).
Expanding (5.6.7), we obtain

1 c0s /CZO,
P{Ld:k}:{ ({?I;’“n k> 1.

Hence, Ly follows a matrix geometric distribution. [

Note that (5.6.7) implies that Ly has a PH expression of order d. How-
ever, (0716, H) may not be a PH representation because H may not be
a stochastic submatrix. Sengupta (1991) proved that the distribution of
L, must be a discrete PH distribution of order d and provided a method
of constructing the PH representation for this type of distribution.
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From Theorem 5.6.3, we find that the expected conditional queue
length, given that all servers are busy, is

1 1 _

The following theorem gives the conditional stochastic decomposition

property of the waiting time.

Theorem 5.6.4. If p < 1, WQSC) can be decomposed into the sum of
two independent random variables

W = Wi + wy,

where WO(C) is the conditional waiting time in the classical M/M/c when
all servers are busy and follows an exponential distribution with para-
meter cu(l — p). Wy is the additional delay due to the vacation effect
and has the LST

Wi(s) = % {Beo + cpd(sI — cu(H — 1)) "'} (5.6.9)

Proof: Assume that a customer arrives at state (k,0) for k > ¢, if we
condition on this state, this customer’s waiting time, Wyg, has the LST

cu k—c+1
Wio(s) = <s+cu> , k> c.

The LST of the conditional waiting time when all servers are busy is

Wr9(s) =Y P{LY) = k}Wiy(s)
k=c

1—p 0 . cu k—c+1
_ —c
T 5 5(:0 kz_cp <S + cu)

__all=p) 1], +5(I_ cp H>_1
Cstcep(l—p)o 0 s+ cu K

_ oul—p) 1 -
= mg{ﬁco‘Fcﬂd(SI—Cﬂ(H—I)) 177}

= Wo(s)Wq(s)-
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O
Based on (5.6.9), the distribution function of W, can be written as

1
PWy<z}=1- ;5 exp{ —cp(I — H)z}(I - H) !n, x> 0.

This expression indicates that the additional delay W, follows a matrix
exponential distribution. From Theorem 5.6.4, we can get the mean of
the conditional waiting time:

1 1
E(W )y = SO —H)2n = —E(LY). 6.1
(Wy) C#(1—0)+C#U( ) n ” (Ly”) (5.6.10)
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setup times. The M/M/c queue with asynchronous vacations presented
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were studied by Zhang and Tian (2003a, 2003b). Multiserver vacation
models with two or three threshold policies were treated by Tian and
Zhang (2004) and Zhang and Tian (2004). For a variety of other M/M/c
vacation models with some server vacations and threshold policies, see
Zhang and Tian (2003a, 2003b) and Tian and Zhang (2004, 2006). Most
past studies on multiserver vacation models were M /M /c systems; other
types of multiserver vacation models are more difficult to study. GI/M/c
type vacation models will be discussed in the next chapter. Like the non-
vacation M/G/c queues, M/G/c type vacation models might be studied
in the future by using approximation methods.



Chapter 6

GENERAL-INPUT MULTISERVER
VACATION MODELS

In Chapter 5, we presented the Markovian multiserver vacation mod-
els. Although these M/M/c type vacation models are good for modeling
teletraffic systems like e-mails or telephone systems, they are not ap-
propriate for other types of systems such as production and distribution
systems, where the interarrival times are not exponentially distributed.
Therefore, we need to study the multiserver vacation model with general
interarrival times. Section 6.1 discusses the GI/M/c (SY, MV) model
with exponential vacations. A more general model with PH distributed
vacations is presented in section 6.2.

6.1 GI/M/c Queue with Exponential Vacations
6.1.1 GI/M/c Type Structure Matrix

Consider a classical GI/M/c system where the interarrival times are
i.i.d. random variables with distribution function A(x), mean A~!, and
LST A*(s). The service time of each server follows an exponential dis-
tribution with parameter p. The interarrival times and the service times
are independent and the service order is FCFS. The analysis of the
GI/M/c queue can be found in most queueing theory books (see, for
example, Gross and Harris (1985), and Kleinrock (1975)). Assume now
that the servers follow the same synchronous vacation policy as in section
5.3.1 and vacations are exponential i.i.d random variables with parame-
ter 6.

Denote the nth arrival instant by 7,,, n = 1,2,..., and 79 = 0. Let
L, = Ly(7,;,) be the number of customers just before the nth arrival
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instant, and let

To = J (1) = 1, the nth arrival occurs in a nonvacation period,
TN 10, the mth arrival occurs in a vacation period.

With the synchronous vacation policy, at least one server is busy during a
nonvacation period. Thus the embedded Markov chain {(Ly, J,),n > 1}
has the state space

Q={0,0U{(k,j): k>1, j=1,0},

which is again a QBD process. To develop the probability transition
matrix of the Markov chain, we introduce the symbols

0 tk
a _/ (CN ) —cutdA( ) k > 07
0

/ / [ep(t —w)]” t—u —cu<t Woe " dudA(t), k> 0.

Here, a; is the probability that, during an interarrival time, exactly k
services are completed when all ¢ servers are busy and {ag,k > 0} is
a complete distribution with the p.g.f. A*(cu(l — 2)); vy is the prob-
ability that, during the interval from a vacation completion instant to
the following arrival instant, exactly k services are completed when all
¢ servers are busy. Note that

o0 00 t
D = / / O O dudA(t) = 1 — A*(0)
k=0 0 0

indicates that {vg, k > 0} is not a complete distribution. Moreover, let

Jo (510 — ey e intdA®m), 1<i<e0<j<ivl,

bij=19 Jo fo CZWCZUC T (gc)(l — emrtmmyemieminlt=u epdud A(t),
i1>¢, 0<7<cg,

57 (1) (1 = 1= ge—uua A(t)

uij = fo fo t—u c;;zc)' e_c“x(j)(]. _ e—u(t—u—z))c—j

we Ju(t u= m)cudxee_eududA(t),

i1>c, 0<5<ec

Note that b;; has a clear probability interpretation in the analysis of
the classical GI/M/c queue and wu;; has a similar probability interpreta-
tion. The probability transition matrix of (L, J,) can be written in the
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partitioned-block form as

- (P, 0
P_<P2 P3>, (6.1.1)

where By = ugo, Bo1 = (uo1, A*(0)), and

Boo Bo1
Bo B B2
Py=1": : : ;
Bc 2o Beo21 Beo22 - Beoe
B 1o Be1g Bee12 o0 Beo1eo1 Beoie
Bc,O Bc,l Bc72 te Bc7c—1 Al
P Berio Bet1,1 Bet12 o0 Berie—1 As
27| Ber2o Bei2g Bejop o0 Bepae1 As |
Ay
A1 Ay
Ps=1 Ay A1 A ’

o ag 0 . . aj 0 .
AO_('U() A )7Ak_<vk O>7 kzla
0

(0)
B;; —( g ) i>1,1<j<min(i+1,c¢);
Uij
1>1

bio .
B = (u0> Biiv1= < bigv1 0 >7 1<i<c—-1.

uiiv1 A*(0)
The transition matrix (6.1.1) has the GI/M/1 type matrix structure
introduced in Chapter 4. In a classical GI/M/c queue, if p = A(cu) ™t <
1, z = A*(cpu(1 — z)) has the unique root z = r in (0,1). Introducing a
constant 0

b= 0 —cu(l — A*(9)’
and using the same approach as in section 4.2.3, we can prove that if
p <1, then

B(r — A*(9)) > 0. (6.1.2)
Theorem 6.1.1. If p < 1, the matrix equation

R =) RFA; (6.1.3)
k=0
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has the minimum nonnegative solution

r 0
R~ s 4o | (o440

Proof: Since all A, k > 0, are lower block-partitioned triangular
matrices, the solution to the equation, R, must have the same structure.

Thus we assume
r 0
R=( " :
To1  T22

Substituting R* and Ay, into (6.1.3) yields

r11 = A*(ep(1 — 1)),
99 = A*(Q), .
P
To1 = To1 ) ey G Z?:é M1 D opeg T2k

To obtain the minimal nonnegative solution to (6.1.3), we set ri; = r,
which is the root of z = A*(cpu(1 — 2)) in (0,1). Note that

> 4@ =3 / © [ e e

k=0
/ / —cu[1—A*(0)](t— u)9€ GududA( )
= B{A [ep(1 — A™(0))] — A7(0)} .
On the other hand, we have

o k-1
LY A
k=1  j=0
=1--— ,11*(9) > ar(rt = [A%(0)]")
k=0
= gy Al = (0]~ A0}

Substituting these expressions into the the last equation of the set of
equations for ri1, o2, and roy gives ro; = 5(r — A*(0)). It follows from
(6.1.2) that R in (6.1.4) is nonnegative. [J

6.1.2 Stationary Queue Length Distribution

Now we present the stationary queue length distribution for the GI/M/c
model with exponential vacations.
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Theorem 6.1.2. The Markov chain (L, J,) is positive recurrent if
and only if p < 1.

Proof: If p < 1, there exists the unique root z = r for z = A*(cu(1—=2))
in (0,1) and sp(R) = max(r, A*(6)) < 1. In addition,

Boo Bo:
Bio B B2
B[R] = | : : : (6.1.5)
B. 20 Bc21 Beop - Beoc
BoR] Bi[R] Bs[R] --- Bei[R]

is a stochastic matrix of order (2¢ — 1), where

o0
ByR]= > R/"Bj, k=0,1,.,c-1

j=c—1
Let IT5.—1 be the (2¢—1)-dimensional row vector. Since B[R] is a regular
stochastic matrix, the matrix equation

.1 B[R] = My, (6.1.6)

must have a positive solution, and thus (L, J,) is positive recurrent.
To prove the necessity of the condition, assume that (L, J,) is positive
recurrent and note that the matrix

a=3 a4 4l )

is a reducible stochastic matrix. Based on Theorem 1.4.1 in Neuts
(1981), it follows that

o0

% {Z(Ak)llzk} _ %A*[Cu(l _ Z)szl _ p*1 -
z=1

k=0

]
Assume p < 1, and let (L,, J) denote the stationary limit of (L, J,,).
The stationary distribution of (L, J),

gy = P{Ly =k,J =3} = lim P{L,=k,J, =3}, k>0, j=0,1,
n—oo
can be written in the partitioned-segment form

T = o0, Tk = (Tk1,Tko), k> 1,
H:(ﬂ-()aﬂ-l;"' aﬂ-k’“')'
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Theorem 6.1.3. If p < 1, the distribution of (L,, J) is given by

o =K (1 — A*(0))[A*(0)]", k>0,

Tk1 :K.Clik, 1§/€§C—1,

mhy =Kz 1p" T+ KB(1 — A*(0)[A"(0)] ("~ — [A*(0))" ),
kze (6.1.7)

where 21, ...x.—1 can be obtained by solving (6.1.6), and constant K can
be determined by the normalization condition.

Proof: If p < 1, there exists the stationary distribution that satisfies
ITP = II and Ile = 1. Note that every column containing the entry
A*(0) has only this one non-zero entry. It follows that

Ter1,0 = A (O)mho, k> 0; mro = K(1— A(0))[A*(0)]", k>0,
where K is determined by the normalization condition. Thus we have
mj = K(zj, (1 - A%0))[A*(0)Y), 1<j<c—1,

and 7, 71, - - - M1 is the positive solution of (6.1.6). The ¢—1 equations
of (6.1.6) are in that form w4109 = A*(0)mro, k = 0,1,...,c — 2. With
the remaining ¢ equations containing x1, x2, ..., z.—1 and K, we can de-
termine x;, j = 1,...,c—1, up to the constant K and express w1 = Kxy.
From the matrix geometric solution form, we have

e =T RFHL k> 1. (6.1.8)
Substituting
rk 0
Br — A(60)) S5 rI[A*(0)]F 10 [A*(0)]F |

into (6.1.8) yields the last equation of (6.1.7). Finally, K is determined
by the normalization condition as

RF = k> 1,

K=¢1-[A%0 —I—ZLL‘J
(@1, (1 - A*(@))[A*(@]H)(I ~R) e} .

Define

) ={L,—¢|L,>¢,J =1}
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as the queue length (not including the customers in service) seen by

an arrival when all servers are busy. Let L(()c) be the corresponding
conditional random variable in the classical GI/M/c system. It is easy
to verify that Lgc) follows a geometric distribution with parameter r,
with the p.g.f.

1—r
S l—ar

L9 () (6.1.9)

Theorem 6.1.4. If p < 1, L' in a GI/M/c (SY, MV) system can
be decomposed into the sum of two independent random variables,

L =1 + Ly,

v

(c)

where L~ is the corresponding random variable of the classical GI/M/c
system without vacation and follows the geometric distribution (6.1.9),
and Ly is the additional queue length due to the vacation effect, with
the p.g.f.

Laazi{mk1+6w—A%m»¥ww*fjj;%}, (6.1.10)

where

o=rx.1+pB(r— A*(H))[A*(H)]C_l.

Proof: From (6.1.7), the probability that an arrival sees that all servers
are busy is

P{L,>c,J=1}
0o
=D
k=c

K {7;’”0—1 + B(1— A*(0)[A* ()] (1 - 1 fl&%)) }

= B (e B - ANO)A O
K
1—7“0‘

The distribution of Lq(jc) is given by

P{Lq(}c) :]} :P{LU :C‘i‘]‘Lv >c,J= 1}

1—7r .
= g Tetils J >0,
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and its p.g.f. can be computed as

LO(z) = i A P{LY = j}
§=0
= 1;T T 12,2]7“]—1—3 A™(0))[AT(0)]
=0
i il i 1A+
i=0 7=0
_ 11__; : {T’xc 1+ B(r— A*(Q))[A*(e)]c_lll—_j‘;(f@))}
= L(()C)(Z)Ld(z)‘

O

It follows from (6.1.10) that Lg is zero with probability p* = rz. 107!
and follows a geometric distribution of parameter A*(#) with probability
1 — p*. Thus L, is a first-order discrete PH random variable. As the
sum of two independent first-order PH-distributed random variables,
Ll()c) follows a second-order discrete PH distribution. It is also easy to

)

obtain the expected value of L&C :

Lo 0T

6.1.3 Stationary Waiting Time Distribution

Let W, denote the stationary waiting time in the GI/M/c (SY, MV)
system. To obtain the distribution of W,,, we first find the probability
of zero waiting time as

c—1 o) o)
P{W, =0} = Kij =1 —Zﬂ'jo —Zﬁjl
j=1 Jj=0 Jj=c

=1- Ki(l — A ON[A*O)) — P{L, > ¢, J =1}

:1—K(1+1U ) (6.1.11)

Note that K is the probability that an arrival occurs at a state where
all servers are on vacation and Ko(1 —r)~! is the probability that an
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arrival occurs at a state where all servers are busy and the number of
customers in the system is at least c. In these two cases, the arrival
has to wait. Thus one minus the sum of these two probabilities is the
probability of zero waiting time.

Theorem 6.1.5. If p < 1, in a GI/M/c (SY, MV) system, the
distribution function of W, is given by

Wo(z) =1 — K(1 — B[A*(0)]%)e 0"

- (et B~ AO)A(@)) ) O,

z >0, (6.1.12)

Proof: If a customer arrives at state (j,0), j = 0,1,...,c — 1, its
waiting time is the residual life of a vacation that follows the exponential
distribution with parameter 6; if a customer arrives at state (j,0), j >
¢, its waiting time is the sum of the residual life of a vacation and
j — ¢+ 1 exponential i.i.d. random variables with parameter cu; if a
customer arrives at state (j,1), j > ¢, its waiting time follows the Erlang
distribution with parameters j — c+ 1 and cu. For z > 0, we have

c—1
Wo(z) = P{W, = 0} + K(1 — A*(9))(1 — ¢~™) ' [A*(0)Y

Il
o

o0

+ QK (1—A%(6))> [A"

j=c
j—c
« / / [CN(U )] C“(“t)Heetdtc,udu}
o Jo (J c)!

(e.)
+ KZ {a:c_lrjfcﬂ

+B(L = A%(0)[A*(0) T (7~ [A(O)F )}

v (C:u’t)j_ce—c tc
x/o Goor " ,u,dt) . (6.1.13)
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Computing the individual terms, we get

1

Q
|

(L-A%@)(1 — ) YA O = (1~ [AO)) (1 — ),

(]

J
0 o rToru —t j—c
ZA* (0)] j/ / We_c“(“_t)ee_etdtcudu
j=c

/ / —ep(1=A"O) (=) ge =0 gtepduy

Il
o

—

— —Cu(l A*( )) C/I/

= [A*(0)]°B [ =40 — ?(1 6990)] ‘

Similarly, we can compute the last summation of (6.1.13) as

B L O R ) P )

Substituting these results and (6.1.11) into (6.1.13) and simplifying gives
(6.1.12). O
From (6.1.12), the expected waiting time is given by

* c K
E(W.) =1 - BlA"ON) 5
+ _ R {a: 1+ B(r — A*(G))[A*(H)]Cfl} (6.1.14)
cp(l —r)2 ' o
Now we introduce the conditional waiting time when all servers are busy
as

W) ={W, | L, >¢,J =1}.
It is easy to show that the corresponding conditional random variable

WOC) in the classical GI/M/c queue follows an exponential distribution
with parameter cu(1 — r), with the LST

Wi (s) = % (6.1.15)

Theorem 6.1.6. If p < 1, in a GI/M/c (SY, MV) system, Wi can
be decomposed into the sum of two independent random variables,

Wi = wi + Wy,

(%
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where Wy is the additional delay due to the vacation effect, with the
LST

1
Wi(s) = p {ree_q

* * * = ki
FB(r = AN~ A ONA O T } ‘

(6.1.16)

Proof: If a customer arrives at state (j,1), 7 > ¢, the conditional
waiting time follows an Erlang distribution with parameters cy and j —
¢+ 1, with the LST

j—c+1
clh .
() = ( ) , jze

s+cu

Computing the LST of Wﬁc), we have

W3(s)

1—r§: clt jmetl
= — T4
Ko — i s+ cu
1—r = . ep \? M
—_ j—c+1
o {%1Zr <s~l—cu>

j=c

+B(1— A%(0)[A*(0))"

o] c j—c+1
SO - e (L2
j=c

Ss+cu

1—r { CUTT o1

o |s+ceu(l—r)
(1 — AT(0))[AT(0))
" [ cpr B ciA*(0) ]}
s+eu(l—r)  s+cu(l — A*(0))

_olorn) 1f — an (o)LL O s+ o)
_s+cu(1—r)0{ -1+ A A(Q))SJFCM(l—A*(@))}

= Wy (s)W; (s).
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Remark 6.1.1. The additional delay W, can be interpreted by
rewriting o and W} (s) as
0 = rae1 + B(r — A%(0))(1 — A*(0))[A*(9))
+Blr = AODAO

Wis) = & {raes + Br — A°(0)(1 - A°(0)[A°(0))
* * c CM 1 - A*( ))
I O e I

Thus W, is zero with probability
* 1 * * * c—1
¢ = —{rae1+ Br — AT(0))(1 = A"(0)[A"(O))" '},

and equals the exponential random variable of parameter cu(1 — A*(6))
with probability 1—¢*. As the sum of the two independent first-order PH

random variables, the conditional waiting time WU(C) follows a second-
order PH distribution with the representation (4, L). Here 6 = (1, d2) =
(1 - q*70)753 = q*7 and

[ —en(l - A*0)) eu(1 - A%(6)) [ o
L= 0 —cp(l—r) ]’ LO_[cu(l—r)]'

The means of W, and WQEC) are given, respectively, by

(W) = ~(r - A*w))m,
BWE) = —L— 4 Lo ar(e) AT

cp(l—r) cu(l — A*(6))

6.2 GI/M/c Queue with PH Vacations

For the GI/M/c (SY, MV) model, the vacation time can be generalized
to a PH distribution of m phases with the irreducible expression (3, S).
We define that Se = 1, which means the vacation time cannot be zero.
Hence, the multiple vacation process is a PH renewal process (see Neuts
(1981)). Denote the number of renewals in (0 ¢) by N(¢) and the phase
stage at time t by J(t) where J(t) = 1,...,m. J(t) = 0 represents the
case in which the system is in a nonvacation state. Let

pij(n,t) = P{N(t) = n, J(t) = jIN(0) = 0,J(0) =4}, 1<i,j<m.

P(n,t) = (pij(n,t))mxm, P*(2,t) = Zz"P(n t

n=0
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Then (see Neuts (1981)),
P(0,t) = exp(St), P*(z,t) = exp[(S + 28°3)1]. (6.2.1)

The (i, 7) entry of the square matrix exp(St) is the probability that the
vacation starts from phase ¢ at ¢ = 0 and is not complete and is in phase
j at t. Similarly,

m
vilt) =1-=Y pi(0,t), i=1,..,m;t>0. (6.2.2)
j=1

is the conditional probability that the vacation is completed before ¢,
given that the vacation started in phase i at ¢ = 0. The entry (4,7) of
the exponential matrix P*(1,¢) = exp[(S + SB)t] = exp(S*t) is the
conditional probability that the vacation phase is j at ¢, given that
the vacation started from phase ¢ at ¢t = 0 (it is possible that several
vacations have occurred consecutively during this period). Note that
S* = S+ S%3 is an m x m infinitesimal generator: that is, S*e = 0. For
any t > 0, we have exp(S*t)e = e, and this means that exp(S*t) is a
stochastic matrix. Let

Q(t) = (QI(t)v "'7Qm(t))a t >0,

where ¢;(t), j = 1,...,m, represents the unconditional probability that
the vacation is in phase j at t. Hence,

q(t) = Bexp(S*t). (6.2.3)
We introduce a column vector
v(t) = (v (t), om())T,
where v;(t) is defined in (6.2.2). Using (6.2.1) and —Se = SY, we have
dv(t) = exp(St)S°dt. (6.2.4)

An embedded Markov chain can be developed at customer arrival
instants. Let 7, be the nth arrival instant, and let 79 = 0. Let L,, =
L,(7,7) represent the number of customers just before the nth arrival
instant, and let

0, an arrival occurs in a non-vacation period,
Ip = J(1) = . an arrival occurs in phase ¢ of a vacation period.
’ j=1..m.
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Then {L,, J,} is a two-dimensional embedded Markov chain with the
state space

Q={0,7):1<j<m}U{(k,5):k>1,0<j<m}.

Note that state (0,7) represents the case where a customer arrives at
phase j of a vacation, 1 < j7 < m, and no customers are in the system
at this instant; state (k,0), k > 1, represents the case where a customer
arrives at a non-vacation period and there are k customers in the system
at this instant; and state (k,j), £ > 1, 1 < j < m, represents the
case where a customer arrives at phase j of a vacation and there are
k customers in the system at this instant. State set {(k,0),...,(k,m)}
is called level k. The transition probability can be specified for this
Markov chain as follows:

Case 1: The state transition during a nonvacation period is the same
as in a classical GI/M/c. Let

00 t k
ar = / (cpt) e MdAt), k>0
0

k!
fo (k+1) e MY HI=he=hutq A1), 1<k <c,0<h<k+1,
=1 5% fy W@,’; 7M7) (1= e M M cpdud (),
k>c, 0<h<ec

Then we have

_J oaps1-n, E>c,ce<h<k+1,
Pk0)(R0) T\ bep, k>1,0<h<min{k+1,c}.

Case 2: The state transition from (k, 0) to (0,¢) means that the system
changes from the state where an arrival occurs in a nonvacation period
and k customers are in the system to the state where the next arrival
occurs after k£ 4+ 1 consecutive services and the server is in phase ¢ of a
vacation. Hence,

fO fO q7’ 1 —¢ Mu)k+1]dA(t)v 1< k <c-— 17
Pe0y00) = 4 Jo7 Jo Jo ailt — u— v) ks

x e~ MUd[(1 — e ") eududA(t), k> c.

Case 3: The state transition from (k,%) to (h,j) represents two con-
secutive arrivals occurring in the same vacation. This type of transition
is only possible for h =k + 1

P(k,i) (k+1,5) :/0 pij(0,t)dA(t), k>0,1<1i, j<m.
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Case 4: The state transition from (k,7) to (0,j) represents the case
where the system changes from the instant at which an arrival occurs
in phase ¢ of a vacation period and there are k customers in the system
to the instant at which the next arrival occurs after the vacation is
completed, k+ 1 customers are served, and the next vacation is in phase
J. Thus

fo fo (= u—v)d[(1 - e M) du; (u)dA(t),
0<k<e 1<4, j<m,
P o) =\ JoT S o Iy e gyt — u— v — w)
xd[(1—e ’“")C]cudvdvz( VdA(t),
k>c.

Case 5: The state transition from (k,¢) to (h,0) represents the case
where the system changes from the instant at which an arrival occurs
in phase ¢ of a vacation period and there are k customers in the system
to the instant at which the next arrival occurs after the vacation is
completed, k + 1 — h customers are served, and 1 < h < k+ 1. We have

J&2 Sy (N (1 = et yhlmhe—hult=u) g, (u)dA(E),
0<k<c 1<h<eg,
Jo fo cu(;iﬁf—zﬂh —er(t=w) du, (u)dA(t),
P(k,i)(h,0) = k>c, c<h<k+1,

fo fo t—u c;w )'ce_c;w( )(1—6 u(t—u— w))c h
e~ t=u=v) ey dudu; (u)dA(t),

k>c, 1<h<ec

Sequence the states in the lexicographic order and write the transition
probabilities in block-partitioned form based on level k. From (6.2.1) to
(6.2.4), the transition probability matrix can be written as

Boo Bo1
Bio B B2

B 1o Be1g Beig o0 Beoie

f) = BcO Bcl Bc2 te Bcc AO )
Bir1o Bet1 Beyi2 o0 Berie A1 Ag
Beroo Bei2n Beyoo o0 Bepae Az Ay A

Beyzo Begsi Beys2 - Bepsze Az Ay Ap Ay

where Bgg is an m x m matrix; Bo; is an m x (m+1) matrix; Byo, k > 1,
are (m+1) x m matrices; and all other submatrices are (m+1) x (m+1)
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matrices. These matrices can be expressed as

Tko bekr1 O >
By = ,k>1, B = ’ ~ ,1<k<e—1;
*0 (Hk:0> S ( upp+1 A(S)

Bkh:<bkh 0), kE>1, 1 <h<min(k+ 1,c¢);

ao 0 Qg 0
_ - — > 1.
w0 g ) a0 o)

Here,

A(S)mxm = /Ooo eXp(St)dA(t),

oo ot _ k
v = / / [Cu(tk‘u)]e_c“(t_”) exp(Su)dudA(t)S°, k>0,
Jo© Jo Bexp[S*(t — w)]d[(1 — e #)FHdA(L),
1<k<c—1,
cuu)k—c
oko = fo fo " Bexp S*(t—u—v)]%
x e~ MUd[(1 — e ") cududA(t),

k>c,

I fo " exp(Su)SBexp[S*(t — u — v)]
xd[(l—e “”)k“]dudA( ), 0<k<c,
' fo t uy (C(*]gv) e exp(Su)S®B
X exp[S*(t —u — v — w)]
X d[(1 — e ) cudvdudA(t),
k>c,

fO fo (k+1) (1 —e —p(t— u))kJrl h
X e~ hu(t—u) exp(su)dUdA( )SO7
0<k<ec1<h<ec,
Uk, = —u (cp)k = epu (e —p(t—u—v)) e
fo fo H or € a (h) (1_6 u ))
>< e*hﬂ(t u—v) exp(Su)CudvdUdA(t)SO>
k>c,1<h<c




General-Input Multiserver Vacation Models 285

If we note that S*e = 0, exp(S*t)e = e, it is easy to verify that

- / / e MG A(E)

= / (1— e gA), 1<k<c-1,
k: c
Troe = / / (epu)” " ce (1 — e M) eudud A(t), k> c,

Hyge = / / (1- 6_“(t_“))k+1 exp(Su)SCdudA(t), 0 <k <c—1,
0 0

oo pt pt—u k—
Hyge = / / / (1 o e—p(t—u—v))c (C:U/U“) 'c
o Jo Jo (k —o)!
X e~ exp(Su)S cpdvdudA(t), k> c.
Using these expressions, we can prove the followings
okoe +bg1 + ..+ b1 =1, 1<k<c—1,
Ukoe+bk1+...+bkc:1—(a0+...+ak,c), k>c,
Hioe +ugt + .. +uppir +A(S)e=e, 1<k<c—1,
Hipoe + g + . + Upe + 00+ . + vpc + A(S)e =, k>c.

Thus, P is a stochastic matrix, and we provide the analysis of this PH
vacation model in the next section.

6.2.1 Stationary Distributions of Queue Length
and Waiting Time

The transition probability matrix P of the Markov chain {Ln, Jn}
is a GI/M/1 type structural matrix with complex boundary states (see
Neuts (1981)). The minimal nonnegative solution of the matrix equation

o0
R=>) RFA; (6.2.5)
k=0
can be obtained explicitly. It is well known that, for the classical GI/M/c
queue, the functional equation
2= Alep(l — 2)) (6.2.6)
has the unique solution z = ¢ in (0,1) if p = A(cu) ™! < 1. Defining the
matrices
C(S) =S + cu(I - A(S)),
D(S) = A(S) — Alen(A(S) — 1),
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we can prove the following lemma.
Lemma 6.2.1. If p < 1, and —cu(1 — &) is not the eigenvalue of S,
then the m x m matrices I — A(S), C(S), and D(S) are all invertible
Proof: Since S is a Metzler matrix (see Neuts (1981)), all eigenvalues
have negative real parts. Let ¢ be one of the eigenvalues of S, and let
be the corresponding eigenvector. Then Sn = o5, and

A(S)n = /000 exp(St)ndA(t) = /000 et dA(t)n.

This implies that

a:/e%mo
0

is the eigenvalue of E(S) and 7 is still the eigenvector. Note that the
matrix I — Z(S) has the eigenvalue £ — 7, and because o # —cu(l —¢§),
then & # &, &I — A(S), does not have a zero eigenvalue and thus is
invertible.

From the fact that the eigenvalue of S is o, we get the eigenvalue of

C(S):
c(o) =0+ cp (1 - /OO e“tdA(t)> :

0

If 0 # —cp(1 = &), then ¢(o) # 0, and hence, C(S) is invertible. Based
on the eigenvalue o and the eigenvector n of S, we have

D(S)n = A(S)n — Aleu(A(S) — I)]n

=on— /000 exp [—cu (I — A(S)) t| ndA(t)

= {5 —/ ec“(la)tdA(t)} 7.
0

Thus the eigenvalue of D(S) is

awza—/ e—en=BgA(p).
0

If 0 # —cp(1 — &), then d(o) # 0, and hence, D(S) is invertible.[J

In the following, we assume that —cu(1l — &) is not the eigenvalue of
S.

Theorem 6.2.1. If p < 1, the matrix equation (6.2.5) has the mini-
mal nonnegative solution

R = ( f—IO %(S) ) , (6.2.7)
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with the m-dimensional column vector
H® = (¢ — A(S))C(S)Se. (6.2.8)

Proof: In (6.2.5), all Ay, k > 0, are block-form lower-triangular ma-
trices. The solution, R, must therefore be a block-form lower-triangular

matrix. Let
T 0
R = ,
( Ro1 Rao )

where 7 is a real number, Rg; is an m-dimensional column vector, and
Ro9o is an m x m matrix. For k > 1, we have

RF < rk 0 )
= k=1 jipk—1—j .
Zj:é "Ry 'Ra R5,

Substituting R* and Ay, into (6.2.5) yields

r= Alcu(l —r)],
Roo = A(S), | (6.2.9)
Roy = (S0 an S50 /RE ') Ray + 077, Ry

To obtain the minimal nonnegative solution to (6.2.5), we take r = ¢,
which is the minimal nonnegative solution to (6.2.6). Substituting r = ¢
and Rgs = A(S) in the last equation of (6.2.9) and letting

e
—

U=3 apy &AV1(S),

=1

<.
Il
o

we find that U is a positive matrix and

1= U1 ape1— () (€1 - A(5) !

part
1o /OOO [exp(—cn(1 — )01 — exp [~en (1- A()) 1]}
dA() (51 ~ 21(8))_1

- {51 .y [c,u (K(S) - I)] } (51 - K(S)yl

= D(s) (- A9))
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From Lemma 6.2.1, we have that I — U is invertible and (I — U)~! =
<§I ~ A(S)) [~ D~1(S)]. Note that

ki;ﬁk(s)vk = /OOO /Ot exp [—Cu (I — A(S)) t} exp [C(S)u] dudA(t)S°
= D(S)C(8)s".

Then we obtain Rgy = (I—U)"1Y2° A¥(S)ug, and this expression
indicates that Ro; is a positive vector. Using the result above and the
fact that S® = —Se, we get Rg; = HY, as given in (6.2.8). O

We now can get the stationary distributions of the number of cus-

tomers in the system and the waiting time. Obviously, A(S) has the

spectral radius sp(A(S)) < 1, and R has the spectral radius

sp(R) = max{¢, sp(A(8))}.

Thus sp(R) < 1 if and only if £ < 1; and the sufficient and necessary
condition for ¢ < 1is p = A(cu)™! < 1. Based on Theorem 1.5.1 of
Neuts (1981), we can prove that the Markov chain {L,, J,} is positive
recurrent if and only if p < 1. Denote the stationary distribution by:

mpj = lim P{L, =k, Jo=4}=P{L=Fk J=j}, k>0, 1<j<m,

tho = lim P{L, =k, J, =0} = P{L=k,J=0}, k>1, j=0,
T = (Th1,Tk2s -0, Thm) k> 0.

To use the matrix geometric solution method, we write

Boo Bo:
Bio B B2
B[R] =] : : : , (6.2.10)

B.o1po Beo11 Beo12 -0 Beoie
BoR] B[R] BuR] - B.R

where -
Bj[R] =Y RF By, i=0,1,..,¢c

k=c

and the probabilities of the boundary states can be written as a [c x
(m + 1) + 1]-dimensional row vector

. = (7T07 (.%'10,7‘(1), Tty ($6077Tc))-
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Theorem 6.2.2. If p < 1, the distribution of {L, J} can be expressed
as

T, = moAR(S), k>0,
Tho = TeolF 0+ moAS(S) NG AR I (SO, k>
(6.2.11)
and 7, 71, ..., Te, and x1g, ..., Ty are the unique positive solution to the
equation system

II.B[R] = IL,
c—1 c—1
S wjo+ Y mie+ (z,me) I - R) e = 1. (6.2.12)
j=1 j=0

Proof: Note that every column containing Z(S) in P has only one
nonzero submatrix. From this structure, we obtain the recursive relation
Tr+1 = TA(S), k > 0. Hence, we get

T = mAR(S),  k>0.
Using Theorem 1.5.1 of Neuts (1981), we have
(@k0, ™) = (20, M A°(S))RF €, k> c.

Substituting R in (6.2.7) into (zyo,7x) above and after some algebraic
manipulation, we get the second equation in (6.2.11). Note that II.B[R] =
II. has ¢ x (m + 1) + m equations. Besides the m X ¢ equations with
the form w41 = ij(S), there are m + c remaining equations. Using
the normalization condition and these m + ¢ equations, we can uniquely
determine 7, x1g, ..., Tco- LThus, we can determine the distribution of
{L,J}. O
The distribution of the number of customers in the system at arrival
instants can be written as follows:
moe k=0,
P{L =k} = { Tro + e k> 1.
We can also derive the distribution for the queue length (or the number
of waiting customers) at arrival instants from the following theorem.
Theorem 6.2.3. If p < 1, the distribution for the queue length at
arrival instants is

P{L, =0} =1 — moA(S)(I— A(S)) ‘e — f“ico‘g

T AS(S) (I — A(S))'H (6.2.13)

1
1-¢
P{L, = k} =(zc0,m0)H"e, k>1,
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where H is the (m + 1)x(m + 1) matrix and can be written as

e 0
i (G 1))
Proof: Note that

C
P{Ly =0} =me+ Y w0
k=1

=1-) mA(S)e— Y zpo. (6.2.14)
k=1 k=c+1

Substituting (6.2.11) into (6.2.14) gives the first equation of (6.2.13).
For k > 1, we have

P{L, = k} =m0 A*(S)e + Tpteo
k—1
=moA¥(S)e + z&" + moA°(S) ijﬁk*l*j(S)Ho
=0

:(JZCQ, 7T0)er.

This completes the proof. [I
The expected queue length at arrival instants can be computed as

E(L,) = (20, m0)H(I — H)2e. (6.2.15)

For the waiting time, we have the following theorem.
Theorem 6.2.4. If p < 1, the distribution of the waiting time has
the following LST

W*(s) =P{W = 0} 4 mo(I — A%(S))(I — A(S)) (sI — 8)~'s®
+cpmeo(s +ep(1 =€)
+ moAY(S)ep[sI — cpu(A(S) —I)] 1 (sT — S)~'S°

+ 70 A°(S)ep(s + cp(1 — €) eulsI — cp(A(S) — ] 'HY,
(6.2.16)

where

P{W =0} = 1‘”0(1—11(8))_16_ Lo 1

e A(S)A-AS) T

Proof: First, we obtain

c—1

PW=0}=) ap=1-m@—-AS)e—> zpo.  (6.2.17)
k=1 k=c
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Substituting zyo in (6.2.11) into (6.2.17) gives the expression for P{WW =
0}. For a customer arriving at state (k,j), 0 <k <c—1,1<j<m,
his or her conditional waiting time is the residual life of a vacation with
LST

W];kj(g) :/0 e—5td (1 —ijv((),t)) ,0<k<c—-1,1<j<m.
v=1

For a customer arriving at state (k,j), & > ¢, 1 < j < m, his or her
waiting time is the sum of two independent random variables. One of
these is the residual life of a vacation, and the other is an Erlang random
variable with parameters k 4+ c+ 1 and cu. The LST for this conditional
waiting time is

k—c+1 00 m
* C/,L —S8
wio = () e (1= S o).

v=1
kE>c,1<j5<m.

Finally, for a customer arriving at state (k,0),k > ¢, his or her condi-
tional waiting time is just an Erlang random variable, with the LST

cu k—c+1
Wiy (s) = <s+w> k>

Based on the three cases and the conditional probability argument, we
obtain the LST for the waiting time as

c—1 %)
W(s) =P{W =0} + Y _mA¥(S) / e~ exp(St)Sdt
k=0 0

00 k—c+1 00
A cp —st 0
+ AF(s / St)S%dt
§k:jcm <><S+CM) [ e esp(s)

e} k—c—1
+ > w0 mAY(S) Y AR (S)HC
j=0

k=c

k—c+1

X < H > . (6..2.18)
s+ cu
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Every term in (6.2.18) can be computed as follows:
c—1 ~ )
Z moAF(S) / et exp(St)SYdt
k=0 0
= mo(I— A°(S))(I— A(S)) ! (sI — 8)~'8";

0o . c k—c+1 0o
> mAk(s) ( K ) / et exp(St)SOdt
k=c 0

s+cu
= 1o A°(S)cu(sT — cu(A(S) — 1))~} (sT — 8) 7’8"

o] k—c+1
S e () e
L s+ s+ep(l—€)

© ci k—c+1 k—c—1 o '
T Y. AC(S)< ) > gAeei(8)HD
=0

= WUEC(S)LC/L (sI — cpu(A(S) — I))71 H°

Substituting these results into (6.2.18) yields (6.2.16).0
Based on the LST of the waiting time in (6.2.16), we can compute the
mean waiting time as

E(W) =mq (I . Z(S)) s e+ WOEC(S);H <I - A(S)>_2 e
1 N
* g A S g (1 A) H
1

+ Wogc(S)m (I - Z(S))

xCO NC
3 + mo A°(S)

2H0.

6.2.2 Conditional Stochastic Decomposition
Properties

To show the conditional stochastic decomposition properties, we de-
fine the conditional queue length and the conditional waiting time given
that all servers are busy, as
LW ={L—c|L>c¢J=0}

v

W) ={W | L>¢J=0},

v

respectively. For the classical GI /M /c queue, we denote the correspond-
ing conditional random variables by Lg and Wy, respectively. It is easy
to find that Ly follows a geometric distribution with parameter £ and
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that Wy follows an exponential distribution with parameter cu(l — £).
The p.g.f. and LST of these distributions, respectively, are

1-¢ - cp(1 —§)

L = = > 6.2.19
and their means, respectively, are
BE(Ly) = ——,  E(Wy) ! (6.2.20)
0 fr— s O = - . .
1-¢ cpu(l = &)

Theorem 6.2.5. If p < 1, ngc) can be decomposed into the sum of
two independent random variables,

L{) = Lo + Ly,

where L4 is the additional queue length due to the vacation effect and
has the p.g.f.

LI9(z) = % {ZL'CO + zmg A(S) (I - zIZ(S))i1 HO} , (6.2.21)
where
o = 20 + mA%(S) (I - ,Z(S)>_1 HO.

Proof. From the second equation of (6.2.11), the probability that all
servers are busy is

P{L>c,J =0} =) mp
k=c

Zco Tec e 1
= A S) (1 . A(S)) HO

e

The conditional distribution of the queue length, L,, can be written as

1—
P{LY =k} =P{L=c+klL>¢,J =0} = wacwc,o, k> 0.
(6.2.22)



294

Substituting (6.2.11) into (6.2.22) and taking the p.g.f., we have

L{(z) = > 2 P{L =k}

k=0
=L e S e 4 mpde(s) S 4 Y 6 A (SR
g k=0 k=1 j=0
1—¢1 - N1
= — ,ffa {mco + 21 A°(S) (1 - zA(S)) HO}
= L()(Z)Ld(z).

This completes the proof.[]

Similarly, we can prove the conditional stochastic decomposition prop-
erty for the waiting time when all servers are busy.

Theorem 6.2.6. If p < 1, Wv(c)can be decomposed into the sum of
two independent random variables,

Wi = Wo + W,

where W, is the additional delay due to the vacation effect. W, has the
LST

! {xco + cumoA(S) |:SI —cl (E(S) - I)] o HO} .

g

Wi (s)

Proof: For a customer arriving at state (k,0), & > ¢, his or her
conditional waiting time has the LST

ch k—c+1
Wi = (2) ke
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The conditional waiting time Wéc) for a customer arriving at a state
with all busy servers has the LST

o0 © o k+1
¢ = P{L\¥ =k
°) Z: s }(8+cu>
o {%025 <s+cu>
k-1
< i >k+1zéjgk—1—j(S)Ho
s+ cu =

M8

+moA(S)

B
Il

1

cp(l = §)
s+ cu(l =€)

1 Te cp e ) o
Xo_ xeo + moAS(S) (s+c,u> <I S+C,LLA(S)> H

cu(l =)
s+op(l—¢)
X % {IBCO + cumoA(S) |:SI — cp(A(S) — I)} o HO}

= Wy (s)Wa(s).

This completes the proof. [J

Using the stochastic decomposition properties of Theorems 6.2.5 and
6.2.6, we can get the means of the conditional queue length and the
conditional waiting time, respectively:

E(LY) = 115 ;1 WUAC(S) (I - ﬁ(s)) _2 HO,
BV = cu(ll— £) " C;UWOAC(S) (I B A(S))i2 H' = CluE(Lq(JC))'

(6.2.23)

Comparing (6.2.23) with (6.2.20) shows the simple relationship between
the vacation model and the classical GI/M/c queue. Finally, it is easy
to verify that the special case of m = 1 corresponds the exponential
vacation model discussed in section 6.1.

6.3 Bibliographic Notes

Compared with the Markovian multiserver vacation models, there are
fewer studies on general-input multiserver vacation systems. Using the
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diffusion approximation, Bardhan (1993) presented a GI/M/c model in
which service can be interrupted. Chao and Zhao (1998) studied the
multiserver vacation models of both M/M/c and GI/M/c types with
exponential vacations and developed the numerical approach to evalu-
ating stationary performance measures. Tian and Zhang (2003) treated
the GI/M/c vacation model with PH-type vacations and established the
conditional stochastic decomposition results. Besides the general-input
multiserver models, Browne and Kella (1995) analyzed the M/G /oo sys-
tem where all servers become unavailable for a random period of time,
after which, all waiting customers are served. In such a system, the
stationary distribution of the number of customers in the system is ob-
tained based on a delayed busy-period distribution of a classical M/G /oo
system without vacations.



Chapter 7

OPTIMIZATION IN VACATION MODELS

This chapter is devoted to solving the optimization problems in va-
cation models. Both static and dynamic control models are presented
for determining the optimal vacation policies in systems with certain
cost and revenue structures. Sections 7.1 and 7.2 discuss the search for
the optimal policies in single server models. In section 7.3, we use a
two-threshold policy model to illustrate the computation of the optimal
policies in multiserver models.

7.1 M/G/1 Queue with Threshold Policies

In this section, we address the control issues for single server vacation
models by considering an M/G/1 queue with two types of vacations and
a two-threshold policy. In such a system, the server serves the queue
exhaustively and leaves for a type 1 vacation at the end of a busy pe-
riod. Upon returning from the vacation, the server inspects the system
and decides whether to take a type 1 (long) vacation, a type 2 (short)
vacation, or to resume serving the queue exhaustively. With the two-
threshold (n, N) policy where 0 < n < N, if the number of customers, 1,
in the system at a vacation completion instant is less than n, the server
will take a type 1 vacation; if n < i < N, the server will take a type 2
vacation; and finally, if ¢ > N, the server will resume serving the cus-
tomers. The main reasons for using this model to discuss control issues
are as follows: (1) Most single server vacation models are special cases
of this model as shown in Table 7.1.1. (2) With two control parameters,
the vacation model is more flexible in representing the practical queue-
ing situations where optimal utilization of server time is the goal. For
example, type 2 vacations may represent idle or nonproductive periods
and type 1 vacations may represent the supplementary jobs done by the
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server when not too many customers are waiting in the system. Thus,
with the two-threshold policy, we can control the server utilization level
by assigning the appropriate amount of supplementary jobs when the
system is not too busy. In contrast, in a vacation model with single type
vacations, the multiple vacation policy or the threshold vacation policy
eliminates the server’s idle period, resulting in a 100% utilization level,
and the single vacation policy reduces the server’s idle period and in-
creases the utilization to a fixed (or noncontrollable) level. (3) Using the
semi-Markov decision process, this policy structure has been observed
via numerical analysis as the optimal policy structure under a common
cost and revenue structure (see Zhang et al. (2000)).

Case n, N Description
1 n=0, N=0 | M/G/1 queue with a single vacation.
2 n=1 N=1 | M/G/1 queue with multiple vacations.
3 1<n=N M/G/1 queue with a single-threshold policy.
4 n=0, N>0 | M/G/1 queue with setup times and multiple vacations.
5 0<n<N M/G/1 queue with a general two-threshold policy.

Table 7.1.1. Some Special Cases of the M/G/1 Vacation Queue with
Two-Threshold Policies.

7.1.1 Average Cost Function

To address the issue of optimal control in the two-threshold-policy
model, we develop the average cost function under a typical cost and
revenue structure. In an M/G/1 queue, customers arrive according to a
Poisson process with rate A. The service times are general i.i.d. random
variables denoted by S. There are two types of vacations. Type 1 (or
type 2) vacations are i.i.d. random variables denoted by V; (or V2), with
their means denoted by V1 (or V3). The server follows a two-threshold
policy and serves the queue exhaustively. As usual, the arrival process,
the service times, and the vacation times are mutually independent. It
is also assumed that type 1 vacations are stochastically larger than type
2 vacations. The cost and revenue structure consists of a linear waiting
cost with a unit cost parameter h ($’s per customer per time unit), a
fixed vacation start-up cost rg, and revenue rates of r1 and ro for type
1 and type 2 vacations, respectively.

For i = 07 1, ey let a; = fooopi(t) dFV1 (t) and bi = fooopi(t) dFVz(t)
be the probabilities that there are ¢ arrivals during a type 1 and a type 2
vacation, respectively. Here, p;(t) = e (A\t)?/i! is the probability that
i arrivals occur during [0, ¢]. Finally, we assume p = AE(S) < 1 for
stability of the system.
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Define an (n, N)-cycle period, denoted by 6,,x, as the interval between
two consecutive busy—period ending instants. 6,5 can be divided into
three parts. These are the accumulation period (Tx) of N arrivals,
the residual life (or forward recurrence time) of the last vacation (R),
and the queue attending period (A) during which the server serves the
customers exhaustively (see Figure 7.1.1). In the following development,
we also use the fact that the LST of the M/G/1 busy-period 0 satisfies
0*(s) = S*(s+ A — A\0*(s)) and the mean is E(0) = E(S)/(1 — p).

en.N

Figure 7.1.1. A sample path of the work process in a system for the
case of an (n, N) cycle with n=2, N=4.

Let R = R, y denote the residual life of the last vacation in the (n, N)
policy. The mean cycle length is given by

E(0nn) = E(Tn) + E(R) + E(A)

:¥+mm+w+nmmﬂw

zlip<A+Em0. (7.1.1)
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The mean residual life of the last type 1 vacation, E(R7), is the same as
E(R,y) and is related to E(6,y,) as

% " L ER)). (7.1.2)
1—p \A

Enn) =
Let TC\,n be the expected total cost during an (n, N) cycle. Obviously,
TC,n consists of the cost incurred in T, denoted as C’TN; the cost
incurred in R, denoted as Cg; the cost incurred in A, denoted as Cy;
and the revenues earned in Ty and R. Using the Poisson arrival property
and the linear waiting cost function H(l) = hl for queue length [, we
develop the expressions for these costs and revenues.
First we determine C’TN and Cr. Due to the Poisson arrivals with
rate A, we have

SAAC Akl L (7.1.3)

Furthermore, by conditioning on R and the number of arrivals k
during R, and noting that, given k arrivals occurring in an interval of
length ¢, the interarrival times have a mean of ¢/(k + 1), Cr can be
obtained as

dFR(t)

k
Cr=hNE(R +Z/ —At >‘t [Z khj_tl

=0

= hNE(R) + §AhR(2). (7.1.4)

Next we determine C4. Define a 1-busy period of the M/G/1 queue
as the time interval from the service start instant with [ > 1 customers
in the system to the service completion (customer departure) instant
with [ — 1 customers in the system. Let C’l1 be the expected waiting cost
during such a 1-busy period:

h AS(2)
cl = ( o

5 (o)

Cl=h(l-1)+0Cf, 1>1.
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Let D be the number of customers in the system when A begins, and
let dj, be the probability that D = k. Then C4 is computed as

00 k
OA = Z < Cll> dk
=1

k=N
= hEQ(mD@) + (011 - hEQ@) E(D) . (7.1.5)
Since R _
D(z) = 2NR(\ — \2), (7.1.6)
the first two moments of D are
E(D) = N+ A\E(R), (7.1.7)
D@ = N2 4+ 2N + 1)AE(R) + A\2R?). (7.1.8)

Finally we determine the expected total reward (m) earned during
the vacation period. Let VT; be the average time of type ¢ vacations
during a cycle for i = 1,2. Note that VT} = n/A+ E(R,,) and V15 =
N/A+ E(R,n) — VT1. Using (7.1.1) and (7.1.2), these become VT =
(1 — p)E(Opy,) and VTy = (1 — p)[E(0pN) — E(Onn)]- Since there are

constant revenue rates r1 and ro when the server is on vacation, we have

T=rVTi + 1V = (1 — p)[(r1 — 72) E(Onn) + r2E(0nn)].  (7.1.9)

The first vacation start instant is a regeneration point of the process.
Combining the renewal reward theorem with (7.1.3)-(7.1.9) yields the
average cost (gnn) of the system:

gnN:(T0+CTN+OR+OA—F)/E(9nN)- (7.1.10)

Here 7o is the shut-down cost for switching the server from the service
mode to the vacation mode; it may include a fixed setup cost whenever
the server resumes work.

Another way to derive the average cost is based on the Poisson-
arrivals-see-time-average (PASTA) property (see Wolff (1982, 1989)).
Let T, denote the average sojourn time of an arbitrary customer, and
let L be the average number of customers in the system. Then, using
the PASTA property, we obtain

L (@) _
T, = LE(S) +p (22(5) - E(S)) +3 <NA’“ + E(R))

+ qrE(RR) + B(S), (7.1.11)
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where g is the probability that an arbitrary customer is the kth ar-
rival during T, qr is the probability that an arbitrary customer arrives
during R, and E(Rp) is the expected residual life of the last residual
vacation, as measured from the arrival instant of such a customer. The
first two terms of (7.1.11) represent the mean time the arbitrary arriv-
ing customer has to wait for the customers in front of him to be served
(including a possible customer in service). The third and fourth terms
represent the mean time the arbitrary arriving customer has to wait be-
fore the server returns from a vacation and starts serving customers. The
final term is the mean service time of the arbitrary arriving customer.
Rewriting (7.1.11) yields

_ S(2)
Ts =LE(S)+p ( — E(S)) + E(S)

2E(S)
41— p NMWNV = 1)/@;;1%(2)) + E(R) B(RR) (74 19
Using Little’s Law, i.e., L = AT, we finally obtain
[ S N((N —1)/(2)) + E(R)) + AE(R) E(RR)
T 1-p2E) Tn + E(R) '
(7.1.13)

Note that the first two terms correspond to the average number of
customers in the standard M/G/1 queue (see Fuhrmann and Cooper
(1985a)). Knowing L, we can obtain

gnn = Lh + (ro — m VT — V). (7.1.14)

b
E(0.n)

7.1.2 The Exponential Vacations Case

For exponential vacations, we can obtain E(R), E(R;), and R? ex-
plicitly for (7.1.1), (7.1.2), (7.1.4), and (7.1.7)—(7.1.9). Note that R can
be either the residual type 1 vacation or the residual type 2 vacation.
Because the vacations are exponentially distributed and T is indepen-
dent of the server’s vacation process, the residual vacation has the same
distribution as a full vacation. Let P,%N be the probability that R is a
type 1 vacation. In terms of the distribution function, we have

Fr(t) = PanFi (1) + (1 = Pay) Fiy (1) (7.1.15)
The memoryless property of the exponential distribution implies

Pl =pV (7.1.16)
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where p = A\V; /(1 + AV;). Thus
E(R)=Vi, B(R)=p " "E(WV])+1-p"""EWVY), j=12.
E(Rpg) is given as

PinVi ; (A=P)Ve
PLVi+ (1= PV, P + (1= PBly)V: V. (7.1.17)
nN V1 nN/ V2 nN "1 nN/ V2

E(Rg) =

After some algebraic manipulation, we can verify that (7.1.14) is in agree-
ment with (7.1.10) for the exponential vacation case.

7.1.3 The General Vacations Case

If the vacations are not exponentially distributed, the distribution of
R is not determined by (7.1.15). Therefore, we cannot get explicit ex-
pressions for E(R), E(R1), R®, and E(6,y). However, the recursive
relations can be developed to compute these quantities. Now we com-
pute E(0,n) and RS}, recursively, and obtain E(R,y) from (7.1.1):
E(RnN) = (1 _p)E(enN) - N/>‘

Let U be the number of customers in the system at the first vacation
termination instant. If U > N, the rest of the (n, N) cycle consists of
U independent standard M/G/1 busy periods, denoted by 6*,...,0Y,
which have the same distribution as 8. If n < U < N, the rest of the
(n, N) cycle has the same distribution as the sum of a single-threshold
N — U cycle with only type 2 vacations, denoted by 6% _;;, and U in-
dependent standard M/G/1 busy periods. Finally, if U < n, the rest of
the (n, N) cycle is the sum of an (n — U, N — U) cycle and U indepen-
dent standard M/G/1 busy periods. From these observations and the
conditional probability argument, we obtain the equation for the LST of
0,n for 1 <n < N as follows:

o k
Onn(s) = Z /0 Eexp |—s (t + Op—kN—k + Z 91)] pr(t) dFy, (t)
k=0 =0
N-1l .o ko
+ Z /0 Eexp |—s (t—i—@fv_k —l—ZH”) pr(t) dFy, (t)
k=n i=1

0 [e's)
+ Z/ Fexp
k=N "0

k
—s (t + ZHZ)] pr(t) dFy, (t).  (7.1.18)
=1
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This implies

n—1

E(0nn) =Vi+ Y ar(kE(0) + E(On—k 1))
k=0
+ ) aw(KE(0) + E(0% ) + > apkE(0)
= k=N
~ B N-1
=W+ \V1E +ZakE nka+ZakE0N k)
k=0 k=n
= N-1
= 1V ). (7.1.19)
k=n

The second equality follows from the fact that Y :°ia; = AVi, and the
third equality follows because E(0) = E(S)/(1 — p). Rewriting (7.1.19)
in a recursive fashion gives

1 n—1
E0.n) = T ( Z any kE(0}) + ) an BBk n- n+k)>

k=1
N>n>1, (7.1.20)

where the empty sum is equal to 0.
To complete the computations, we may obtain E(6;) using the fol-
lowing recursive relation derived by Kella (1989):

1
1—

E(0F) =

SEO |, k>, (7.1.21)

and E(fp) = 0. Similarly, for N > n = 0, we have

_ N—-1
%1

E(bon) = T, > arE(By ), (7.1.22)
k=0

and for N =n = 0, we have

E(6o0) = V1+ao(1 ) ZakkE 0)

1i (Vl A) (7.1.23)
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Let R(3), denote the residual life of the last vacation in a single-
threshold policy with threshold n > 1 and type 2 vacations only. De-
fine U as before. For 0 < U < n, R, n has the same distribution as
R,_uyn-vu;forn <U < N, R, v has the same distribution as R(2)7N_U;
and for U > N, R, y equals Vi — T. We thus have

N-1
Ron(s Z%R(z N—k(8) + An(s), (7.1.24)
-0
~ 1
Ry n(s Z%Rn k,N—k(S +ZakR N-k(s) + An(s) |,

(7.1.25)
where
An(s) = E[L{U > N}esVi=T¥)] = B[1{Ty < ;Y *(V1=TV)]
= /OOO In(s,t) dFy, (1),

with
EANZN-1
= e AT 7S(t77—)
In(s,t) /0 N =) e e dr
N-1 _
— A Ne—st o Z A Nk (At)ke—)\t‘
A=s A—s k!
k=0
This gives
A N " N-1 A N—k
AN(S)Z()\S) Vi(s) — ak<)\ ) . (7.1.26)
k=0
Similarly,
R(2),0(s) [Z bR @) n-i(5) + Ba(s)| , (7.1.27)
where
)\ n - n—1 )\ n—k
Bn(s) = <A_S> Vg(s)—gbk (A_S> . (7.1.28)

Equations (7.1.25)7(7.1.28) yield recursive expressions for the moments
of R, . In the first-moment case the results are not new, since (7.1.1)
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implies their equivalence to (7.1.20). For the second-moment case we
have

R, = Z akR yN—k T AN (7.1.29)
k=0
2
R£L])V = ]._(10 ZakRn k,N—k + Z ak:R N k +AN 3 (7130)
k=n
where
N—
_ @ 2N
Ay =V, —TV1+)\2NN+ kz k)N 41— E)ag
N-1
2_ 2N 2
k=0
and )
@ 1 |5 %)
R(Q)ﬂ 1—bg [; ka(Q),n—k + B, (7.1.32)
where
_ @ 2ne 1 1
B, =V, 7v +33n(n +1) )\QZ n—k)(n+1— k)b
=B, — Av2 + -3z Z b(n — (7.1.33)

Remark 7.1.1:
1. For the special case of exponentially distributed vacations, the
equations from (7.1.25) to (7.1.28) imply

Ryn(s) =p" " /(14 Vis) + (1= p" ") /(1 + Vas),

in agreement with (7.1.15).
2. For generally distributed vacations and 0 < n < N,
;{%Enn(S) = [1 = Va(s))/sWA, ;in%énN(S) = [1 = Va(s)]/sVa.
These are intuitive results, for [1 — V;(s)]/sV; is the LST of the equi-

librium residual life of the V; renewal process, or limiting residual life
distribution if this limit exists. When A — 0, arrivals are rare, so by
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the time the N th arrival occurs, many type 2 vacations will have been
completed. Note, however, that the result applies even if the V; renewal
process does not have a limiting residual life distribution, as in the case
of deterministic vacation times, for example.

3. For numerical stability, RS}, and RE;; n

the following simpler but equivalent recursions. Define

should be computed using

uny = R = N(N +1)/02, un = RE) = n(n+1)/)2,

for 1 <n < N. Then (7.1.30) and (7.1.32) may be rewritten as

n—1 N-1
1 _
UnN = > Rt gkt Y arun—k + V¥ —2NVi/A |,
1=a0 \;5 k=n
1 n—1 @ B
tn = T (; bt 4 Vo — 2nV2/)\> :

Using the equations developed, we can compute performance measures
such as the average queue length and the average cost for a given two-
threshold policy, and address the parametric optimization issue in the
vacation model. However, we cannot determine the optimal n and N
values explicitly. The next section justifies a finite search procedure to
find these optimal values in the case of exponentially distributed vacation
times.

7.1.4  Determination of Optimal Threshold Values

A Search Algorithm: the Exponential Vacations Case

Suppose that vacations are exponentially distributed. To find the
optimal service policy in an M/G/1 queue with two types of vacations,
we may consider the no-vacation policy, the single-threshold policy, and
the two-threshold policy. For the no-vacation policy, the system is a
standard M/G/1 queue, and its average operating cost, denoted by go,
is simply C1/(A~! + ). The average operating cost g](\?) for the single-
threshold policy with only type 2 vacations can be obtained by using
(7.1.10) with n = N and V; = Va. For the two-threshold policy, the
feasible (n, N) combinations must satisfy 0 < n < N. The case n = N
corresponds to a single-threshold policy with only type 1 vacations and

has average cost denoted by gg\}). For the exponential vacation case,
the finiteness of the search for the optimal (n, N) is guaranteed in the
following theorem.

Theorem 7.1.1. Suppose V; and Vs are exponentially distributed.
Then
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(1) there is a finite computable ny such that when n > ng, the optimal
higher threshold NV is equal to the lower threshold n, and

(2) given n < ng, the global minimum of g,y occurs for N < n +
x*(n), where z*(n) is the computable optimal z in a g, problem with
n-dependent cost data.
Proof: (1): For N = n > 0, a sample path of the work process for a
cycle period is shown in Figure 7.1.2.

A W

T, 0)

Figure 7.1.2. A sample path of the work process in a system with
n=N=3 (n=3, i=0).

In this system, the server resumes serving the queue when he or she
completes a type 1 vacation and first finds that the queue length @ is
greater than or equal to n. We select a special service order in which
the first n arrivals will not be served until all other subsequent arrivals
have been served. Since this order is independent of service times and
the service is nonpreemptive, it will lead to the same distribution for
the queue length as in the FCFS order. The average cost is also the
same as that in the FCFS order for the linear-holding-cost situation.
Note that the cycle period can be decomposed into three parts by using
the memoryless property of the exponential vacations. These are (a) the
time period 7, of accumulating n customers; (b) the time period 7; from
the nth arrival instant to either a service or a type 1 vacation completion
instant when the queue length is exactly n; and (c) the busy period 6(n)
of an M/G/1 queue starting with n customers. Actually, this system can
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be also considered to be a special case of the system in which the server
takes ¢ type 2 vacations after he or she completes a type 1 vacation and
first finds that @ > n. Our system corresponds to the case of ¢ = 0.

Denote the long-run average cost of the system with ¢ type 2 vaca-
tions by g, (i) = TCy(i)/T,(i). We first prove the existence of a finite
computable ng such that n > ng implies

gn(0) < gn(i), i=1,2,---. (7.1.34)
By the reward renewal theorem, we have
ro + C(7) + C(m) + nhip + >, C}

: (7.1.35)

Inn = gn(O) =

_ rp(n) + C(m) + nhi
m + a(n)

where

ro(n) =ro+C(m) + ) Cl,
=1
a(n) = 7, + né.

Here C(7,) is the expected net cost during 7, and C(n;) is the expected
net cost during 7, excluding the expected holding cost of the customers
present at the beginning of 71; these are computed below. Now consider
another system in which the server takes just one type 2 vacation after he
or she completes a type 1 vacation and first finds that Q > n. Comparing
the sample path of the work process of this system in Figure 7.1.3 with
that in Figure 7.1.2, we see that the cycle period increases by a subcycle
period 1y starting with a type 2 vacation. The long-run average cost,
gn(1), is given by

ro(n) + C(m) + nhijy + C(n2) + (n 4+ AVi)hij
M+ a(n) + 2 '

gn(1) = (7.1.36)
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L ‘ n,
N+,

T, @)

A
v

Figure 7.1.3. A sample path of the work process in a system with
n=N=3 (n=3, i=1).

We thus have g,(0) < g, (1) if

(C(n2) + (n+ AVi)hiiz) (1 + a(n)) > (ro(n) + C(m) + nhip) 7.
(7.1.37)
Note that
C(m) = ihn(n —1)— 27’1,

2\ A
n (2)
ZCZI = }(Lf(_s) n? + ( AS + E(S5) ) hn
=1

2(1-p) 21-p)*  2(1-p)
ni = 1‘?# 1=1,2
(m:) = 1&‘7@2 (2(?5;(2;)2 + f@)) AV =iV, i=1,2,
a(n) = ﬁ

Using the equations above to simplify (7.1.37), we thus have g¢,(0) <
gn(1) if n > ng. Here, ng is the smallest nonnegative integer such that

an?® +bn+c>0 (7.1.38)
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holds for all n > ng, and

hVs
=— = >0
I e
h — h — - h KL —T9 —
b= V2 LV 1%
1—02+1—p12+(2A(1—/))Jr A )2’
h\

c= V1V2 (r1 — ro)ViVa — 1o Va.

We consider now a third system in which the server takes two type 2
vacations. Expression (7.1.34) for ¢ = 1 reads as follows:

TCn(0) _ TCw(0) + Clme) + (n+ >\V1)h772
7.00) < 7,00+ (7.1.39)
C(n2) + (n+ AV1)hita > gn(0)72 1 > ny. (7.1.40)

From the sample path in Figure 7.1.4, we have

TCn(2) = TCH(0) + 2 (C(m2) + (n+ AV1)hij2) + AVahij
> TCp(0) + 2¢,(0)72 + AVahij
> gn(o) (Tn(o) + 2772) = gn(O)Tn(z)’ (7'1'41)

where the second inequality holds because of (7.1.40). Expression (7.1.41)
gives

gn(0) < — =gn(2) n>ne. (7.1.42)
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A
v

0 )

n,+M,+M,

T, Q)
Figure 7.1.4. A sample path of the work process in a system with n=3
and i=2.

»
>

A

In the same way, we can prove that (7.1.34) holds for all i.

Now consider a system with a two-threshold policy where N > n > ng.
Let Y ={0,1,2,---} be the number of type 2 vacations the server takes
during the leave period and let P,n(Y = i) be the probability that
Y =14. Then, conditioning on Y, we obtain

TCpy =Y E(ICuN|Y =i)Pun(Y =)
=0

= gn(i)Tn (i) Pan (Y = i)
=0

> a(0) Y Tu(i) Pan (Y = )
=0
= gn(0)E(0nnN), (7.1.43)

where the inequality follows because of (7.1.34). Note that (7.1.43) im-
plies gony = TCon/E(0nN) > gn(0) = gnn. This completes the first part
of the theorem.

(2) For n < mg, a two-threshold policy with N > n can be optimal.
Again we decompose the cycle period illustrated in Figure 7.1.5 into
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three parts, namely, (a) 7,; (b) the subcycle period 6y y—_p from the
nth arrival instant to the service completion instant when the number
of customers in the system becomes n again; and (c) #(n). For a given
n, the average costs during 7, and 6(n) are constant and independent of
N. The subcycle period is actually the cycle period of an M/G/1 queue
with a single-threshold (N — n) policy and an exceptional (type 1) first
vacation and subsequent type 2 vacations.

A W

6

nN

Figure 7.1.5. Another way of decomposing the sample path of the work
process in a system with n=2, and N=4.

It is easy to see that the average cost during 6,5 can be written as

ro + C(7a) + C(6os) + 31, C}
T + 0oz + 1

_ rp(n) + C(on)

B Q_Oz + a(n)

N éOx + a(n)’

gnN =

(7.1.44)

where x = N —n > 0, C(6y,) is the expected net customer holding cost
during 6o, and g, = (r4(n) + Cps) /0. Note that, for a given n, gg, can
be considered to be the average cost for a system with a single-threshold
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policy and an exceptional type 1 first vacation. We call this imaginary
system the related single-threshold system (RSTS) with shutdown cost
ro(n) and customer holding cost function H'(i,n) = (n + ¢)h. Since
Federgruen and So (1991) have shown that there exists a finite optimal
threshold z*(n) for the RSTS, we have

Jowe(m) — J0u <0, x> a*(n). (7.1.45)
Then (7.1.44) implies that, if N > No(n) = n + 2*(n), we have

!
Yo+ (n) 90z

= — - . 7.1.46
Ooz+(n) + (n)  boz + a(n) ( )

InNo(n) — gnN

If we bring the terms in (7.1.46) over a common denominator and then
use (7.1.45) and gy« (ny < oz for x > x*(n), we can conclude that the
r.h.s. of (7.1.46) is nonpositive. Thus

InNo(n) — 9nN <0, N > No(n) = n+ z*(n). (7.1.47)
This implies that the optimal N > n does not exceed n + x*(n). O

Remark 7.1.2:

1. Since the average cost in the single-threshold case is unimodal in
the threshold value (see Kella), the optimal value of n = N for n > ng
is easily found by a finite search.

2. Zhang et al. (2001) has found a computable upper bound zq for
x*(n) in the RSTS. In other words, z*(n) can be obtained by finite search
and we can test in any given problem whether the global optimum has
been attained.

3. In extensive numerical computations, we always find that g(, is
unimodal in z > 0. However, we cannot at present establish this result
theoretically. Kella has shown that the average cost for the system
with a single-threshold policy and a single type vacation is a unimodal
function of the threshold n, and we might expect this property to hold
also when the first vacation is of exceptional type. If this property could
be established, we would know that the first local minimum is the global
minimum and could more quickly locate z*(n) for the RSTS.

In the case of exponentially distributed vacations, Theorem 7.1.1 jus-
tifies the following search procedure for finding the optimal policy. (For
generally distributed vacations, we merely compute enough g,y values
to be “almost” sure that the minimum has not been missed.)

A search procedure for the optimal two-threshold policy:

Step 1. Find ng from eq. (7.1.38)

Steo 2. For each n < ng, compute No(n) = n + z*(n) and find
N*(n) as the value of N that minimizes g,y for N € {n,...,No(n)}.
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Let g.p be the resulting minimum average cost, with n = o < ng and
N = ﬁ S N()(Ck).
Step 3. Compute go, gﬁl = miny g](\}), and gﬁl = miny gﬁ), where

g](\i,) is the average cost of a single-threshold N-policy with type ¢ vaca-

tions only. Find the overall minimum value

v =min{ go, g\, 0%, gas} (7.1.48)

and the corresponding optimal policy.
Note. The optimal g,y with N = n and n > ng is found during the

course of determining gj(\}z

7.1.5  The Convexity of the Average Cost function

If the difference between the lower and higher thresholds is fixed and
denoted by ¢, we can prove that the average cost function under a two-
threshold policy is convex in the lower threshold n for the exponential
vacation case. Using (7.1.13) and (7.1.14), we can rewrite the long-run
average cost, gnc, as

Ao S®?
Ine =1 5 2B(8)
(n+c)((n+c—1)/(2\) + E(R)) + AE(R)E(RR)
(n+c¢)/A+ E(R)
L_md=p) ri(1 = p)(n/A+ V1)
(n+c¢)/\+ E(R) (n+c¢)/A+ E(R)
r2(1 = p)(c/A + E(R) — V1)

B (n+¢)/\+ E(R) ' (7.1.49)

h

+ ph +

Due to the exponential vacations, we have

E(R)=pVi+ (1—-p°)Vy,
PV — (1—p9)Vs

E(RR) = —= — V] + —= _
N TR Ay s

Vo.  (7.1.50)

where - B
p= )\Vl/(l + /\Vl).

Now we can prove the convexity of the average cost function.
Theorem 7.1.2. If r; > ry, the long-run average cost of g, . is convex
in n for a fixed c.
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Proof: 1t follows from (7.1.50) that E(R) and E(Rgr) do not depend
on n for a fixed c¢. The condition for convexity is that the second deriva-
tive of g, with respect to n is nonnegative, so we can omit the first two
constant terms (7.1.49). For the four remaining terms of (7.1.49), mul-
tiplying the numerator and the denominator by A , we have a fraction
function with the numerator, denoted by a(n), as

a(n) :%hnz + chn + %th - %ch + AE(R)hn + AE(R)ch
+ M E(R)E(RR)h + Mro(1 — p) — (1 — p)(n+ A\V71)
—79(1 = p)(c+ AE(R) — A\V1).
and the denominator 5(n)
B(n) =n+c+ AE(R).

Differentiating a(n)/3(n) with respect to n and using the fact that
B'(n) =1, we get the numerator as

1 1 1
§h”2 + 5hc2 +enh+ AE(R)nh + AE(R)ch — S AE(R)h + M E(R)%*h
— ME(R)E(Rp)h — Xro(1 = p) — (r1 — r2)(1 = p)(c + AE(R) — AV1),

and the denominator
(n+ ¢+ AE(R))*.

When differentiating (7.1.49) again with respect to n, we obtain for the
numerator

(n+c+ AE(R))(AE(R)h — NX>E(R)*h + 2\2E(R)E(RR)h
+2r9(1 — p) + 2(r1—m2)(1 — p)(c + AE(R) — A\V1)) (7.1.51)
and the denominator as
(n+c+ AE(R))%

Hence, since n + ¢ + AE(R) > 0 and the denominator is positive, it
follows from (7.1.51) that the condition for convexity becomes

AE(R)h — N2 E(R)*h + 2)E(R)E(RR)h + 2ro(1 — p)
+2(r, — r2)(1 = p)(c+ AE(R) — AV1) > 0. (7.1.52)
Using (7.1.50), the first three terms of (7.1.52) can be written as
AR(pV 1 + (1 — p°)Vq — Ap2V 5 — A1 — p)2Va — 2Xp°(1 — p°)V1 V5
+ 22V 4+ 20(1 — p9)Va). (7.1.53)
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Clearly, (7.1.53) is at least equal to

M(pV 1+ (1= V2 = Ap* V' = 22p° (1= p°) V1 + 20V + A1 = p)V3),
which is a nonnegative expression

A (pV 1+ (1—p°)Vo +)\pc(prV§ -2(1 pr)V§ +QV?) +A(1 pr)Vg > 0.

Thus it follows that the sufficient convexity condition in the last two
terms of (7.1.51) is nonnegative and equivalent to

ro + (r1 —ro)(c+ AE(R) — AV1) > 0. (7.1.54)

Because of rg > 0, this condition is satisfied as long as 1 > 79 and
(c + AE(R) — \V1) is nonnegative. We can show that the latter is
always true. For the two-threshold policy with exponentially distributed
vacations (see Figure 7.1.1), we have

T.+R> W, (7.1.54)

where T, is the time interval of accumulating ¢ customers. Taking the
expected value of both sides of (7.1.54), we obtain

% +E(R) >V,

which is equivalent to (¢ + AE(R) — AV1) > 0. Therefore (7.1.54) holds.
This completes the proof. [J

Now taking the first derivative of g,. with respect to n, setting it to
be zero, and solving for n, we get

n' = —(c+ AE(R)) + VH, (7.1.55)

where

2(1;”) (Ao + (1 — r2)(c + AE(R) — AT)

+ AE(R) + 2)\*E(R)E(RR) — \2E(R)>.

H =

The optimal n*(c) is one of the (possibly) two nearest integer to n'.

With the convexity property and the explicit expression for the optimal
n, we can compute the optimal threshold directly for any given ¢ instead
of using a search algorithm as suggested in several past studies such as
those by Zhang et al. (1997) and Zhang and Love (1998). To find the
optimal (n, ¢) policy, we can simply search for the optimal ¢* such that
gne 1s minimized at (n*(c*), c*).
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Note that if we choose to use very short type 2 vacations, i.e., Vo — 0,
the model can approximate the situation in which, after the queue length
is at least m, the server simply stays idle (or stops working) until the
queue length reaches N = n + ¢. This is a kind of hybrid policy of the
N threshold with and without vacations: that is, if the queue length
L is below n, the server is allowed to take vacations or work on some
productive jobs; if n < L < N = n+c¢, the server stops taking vacations
and stays idle; and if L = N, the server resumes the queue service
immediately.

7.2  Dynamic Control in M/G/1 System with
Vacations of Multiple Types

To develop a dynamic control model, we consider an M/G/1 queue
where a server can take vacations of multiple (or N) types that are
indexed by n, where n = 1, ..., N. At the end of a busy period or a vaca-
tion, the server can choose the vacation type to take. The service times
are i.i.d. random variables, denoted by S, with a general distribution
function Fs(x) (Note that some symbols used in this section are different
from those in the previous chapters.) To make the model more general,
we also assume that the availability of type n vacation is random. That
is, a type m vacation is available (or can be taken) with probability g,.
If a type n vacation is available, its duration is an i.i.d. random vari-
able, denoted by V,,, where n = 1,2, 3,...N, with a general distribution
function Fy, (z). We use “>4” to stand for “stochastically greater than
or equal to.” It is assumed that V4 >4 Vo >4 V3 >4 ... >4 Vy. If a
type n vacation is not available, the server will try to search for a type
n + 1 vacation. There are two types of vacation searches in this setting.
A type 1 search is a continuous search. That is, if the search for type
n is not successful (the vacation is not available), the server will search
for a type n + 1 vacation (a stochastically smaller vacation) and take it
as long as it is available. A server absence period of type n is defined as
the time interval from the end of a busy period to a vacation completion
of type n or greater. This definition is based on the assumption that the
server always searches for the largest available vacation of “> n” type if
a type n search is chosen. The stochastically smallest or type IV vacation
is assumed to be always available. Hence, if the server starts a search
for a type i vacation in a state, then there is, in sequence, a probability
g; of taking a type i vacation, a probability (1 — g;)g;+1 of a type i + 1
vacation, a probability (1 — ¢;)(1 — ¢i+1)gi+2 of a type i 4+ 2 vacation,...,

m—1
a probability g;1m H (1 — q) of a type ¢ + m vacation,..., and finally
=1
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N—1
a probability H (1 — q) of a type N vacation during this type i server
1=i

absence period (the type N or shortest vacation may simply represent
idle or nonproductive time, such as a break time). A type 2 search is
a “one-time” search for a type ¢ vacation, where 1 < ¢ < N — 1. In
this search rule, the server only searches the vacation type selected. If
the search is successful, the server will take this vacation; otherwise, the
server takes an always-available type N (or smallest) vacation. We as-
sume that the vacation search is instantaneous. In this section, we treat
the type 1 search case (the type 2 search can be treated similarly). The
decision epochs for the server are the vacation and busy period ending
instants. The decision is based on the queue length at a decision epoch.
If the number of waiting customers equals or exceeds a specified and
sufficiently large number (M), the server starts serving the queue imme-
diately. This means that a threshold-type policy is assumed to prevent
the queue size from becoming too large. If the number lies between 0
and M — 1, the server is then free to select a vacation type to search.
With this assumption, we define a type n wvacation cycle as the time
interval from one decision epoch at which a type n vacation is selected
to the next decision epoch. The vacation cycle is used in the following
development. Clearly, we need to find the optimal dynamic policy for
the server in this environment. Therefore, we formulate a semi-Markov
Decision Process (SMDP) for the system to determine the optimal pol-
icy. This SMDP structure is general enough to represent many service
policies in M/G/1 vacation models.

The major symbols are listed below for the convenience of reference
(some symbols are similar to those in the previous section) in the SMDP
formulation:

m X is the state space of the SMDP.

» A(7) is the action set of a state 4, where ¢ is the number of customers
in the system at a decision epoch.

m g =n > 0is the action of searching for a type n vacation at a decision
epoch.

m g = 0 is the action of serving the queue exhaustively.

® p;i(a =n) is the transition probability from state i to state j, given
that action a = n is taken at state 1.

» 7;(a = n) is the one-step expected transition time when action a = n
is taken at state 1.
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m (1] is the total expected cost of a busy period of a single server system
starting with one customer.

" C’l1 is the total expected cost during a service period starting with
queue length [ > 1 and ending with queue length | — 1 at a service
completion instant.

m (Cy,., is the total expected cost of a busy period of length 6 in an
M/G/1 queue starting with ¢ + & customers.

m (;(a = n) is the one-step expected cost when action a = n is taken
at state .

m h is the holding cost per unit time of a customer in the queue.

m 7, is the per-time unit reward of a type n vacation search cycle, where
it is assumed that r, > r,_1 Vn.

m 7, is the per-time-unit reward of processing a type n vacation if the
vacation is available.

m F, is the lump-sum reward of processing a type n vacation if any.

m g is the startup cost to resume queue service if the queue length is
less than M.

m ) is the arrival rate of customers.
= F(S) is the mean service time.
» 5 is the second moment of service time.

» V, is the mean of type n vacations;

" Vn(z) is the second moment of type n vacations;

® [g1,92, " ,qN—1,qn] is the vacation search success probability vector,
where ¢;,1 <7 < N, represents the probability that a type ¢ vacation
is found when the server searches for it and gy = 1.

m [, is the mean period of a type n vacation cycle if a = n is chosen.

" U7(12) is the second moment of a type n vacation cycle if a = n is
chosen.

= B, is the mean number of customer arrivals to the system during a
type n vacation cycle if a = n is taken;
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L] B7(12) is the second moment of the number of customer arrivals to the
system during a vacation cycle if a = n is taken;

= p = AE(S) is the traffic intensity;

= F(0) is the mean of the busy period of an M/G/1 queue;
m R is the stationary policy of an SMDP;

m u(7) is the relative value function of an SMDP; and

= g(R) is the long-run average cost of an SMDP when a stationary
policy is implemented.

7.2.1 The SMDP Model

The State Space:

Since the decision epochs are vacation and busy period ending instants
and customers arrive according to the Poisson process, we can use one
variable with two distinguished empty states to describe the state of the
system.

Let X = {0,0,1,2,3,....M — 1} be the state space at the decision
epochs. X = 0 represents the state at a busy period ending instant,
and X = i, where ¢ = 0,1,2...M — 1, represents the state in which the
system has i customers at a vacation completion instant. Based on X,
we develop the SMDP model.

The Action Set:

For state X = 0" or 0, the action set is A(0" or 0) = {1,2,3,...N}.
An action a = n > 0 represents the case where the server starts a type
n vacation search cycle. For state X = ¢, where ¢ = 1,2,3,..M — 1,
the action set is A(7) = {0,1,2,...N}, where a = 0 represents the case
where the server starts serving the queue exhaustively. Note that with
these action sets, we assume that the server must take a vacation if the
system is empty (i.e., a multiple vacation rule is followed).

The Transition Probabilities:

Note that the server will immediately serve the queue if the queue
length is at least M at a vacation completion instant. Therefore, at any
state ¢ € X, if the server chooses a type n vacation to search where
n = 1,2,3,...N, then the next state (at the next decision epoch) will
be either state 0’ or state j, where ¢« < j < M — 1, depending on the
number of arrivals during the type m vacation cycle. There are three
possible cases after each vacation cycle.

Case 1: Transition i —> 0, given a = n > 0 at state 1.

This is the case when the number of arrivals during the period of a
type n vacation cycle is more than M — 1 — ¢. In this case, the server
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will serve the queue immediately and exhaustively after the completing
the vacation. Therefore state 0" will be the next state. The probability
of this transition is

M—-1—1

pio(a=n)=1- Z Un ks (7.2.1)
k=0

where

Unk = @nUnk + (1 — @n)@ny1Vns1e + -

+ I 2 (1 — ) an—1vn -1k

N-2
+ (1 —gn— > I (1— Qj)Qm—H) UN
m=n

and vpp = [ e_)‘t(/\,:!)deVn (t) is the probability that the number of

arrivals during a type n vacation is k. If this case occurs, the vacation
completion instant is skipped as a decision epoch because no decision is
needed at that instant under the threshold policy.

Case 2: Transition ¢ —> j, where ¢t < j < M — 1, givena =n > 0 at
state <.

This is the case when the number of arrivals during a type n vacation
cycle is between 0 and M — 1 —i:

pij(a=mn) = up ;. (7.2.2)

Case 3: Transition i—>0', given a = 0 at state i.
This is the case when the server chooses to serve the queue at state
1< M —1:

pir(a=0)=1 (7.2.3)

The Expected Transition Times
Based on the conditional probability argument, we obtain the ex-
pected transition time as follows:
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Ti(a =n)
=Un+ Y kuniBE0)+iE0) Ytk
k=M—i k=M—i
M—i—1 M—i—1
=Up+AURE(0) — > kuniBE(0) +iE@)(1— > ung)
k=0 k=0
= M—i—1 M—i—1
= - = > kunkEO) +IiEO)(1— ) ), (7.2.4)
P k=0 k=0
ila = 0) = iE(6), (7.2.5)
where

Un = ann + (1 - Qn)qn+1vn+1 +-+ vaz_n?(l - q‘j)QNflval

+ IS N1 — ) Vn

n

and E(0) = E(S)/(1 — p) is the mean busy period of a classical M/G/1
queue.

The One-Step Expected Costs

The cost structure imposed on the system includes a linear holding
cost, h, for customers in line; a reward rate, r,, for a type n vacation
cycle; and a setup cost, rg, for the server to serve the queue (we may
assume this cost is zero when the queue length is more than M). Con-
ditioning on the period of a type n vacation search and the number of
arrivals during this period and using the property of Poisson arrivals, we
can obtain the one-step expected cost of a type n vacation search cycle
as follows:
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k=0 =0
o) k
() hit
+ > / Al > +Co,,, | dFu, (1)
k=M—i”0 k! 1=0 (k+1)
+ihU,, — Uy,
1 o —_ hE(®O) Mt
_ 2) _ 2) _
=S AU + ihUy = Uy + =~ (B > uppk?)
k=0
M—i—1
hE(0) . _
+ (2(>(21 -1+ C’%) (Bn - Z unkk>
k=0
M—i—1
hE®®) o . .
+ (2((22 —i)+ zC’ll) 1-— Z un,k>
k=0
AR hi — _
= UP 4+ (ha+ Up—rUp
T R P
M—i—1
hE(6
+ # 2 — umk(k + Z)2>
k=0
M—i—1
+ali- wm%+w>7 (7.2.6)
k=0
whore o — AS@h N E(S)h
2(1-p)2  2(1-p)’

1 _
rn =g {60 (Vi + En)

+ (1= gn)gn+1 (ms1Vnr1 + Enga) + -+

+ T2 (1= g)gn 1 (w1 Vo1 + Ena)

HIE N1 = g5) (ywV v + EN)} )

and

U2 = gV + (1= an) it Voh + -+ 521 - gj)an—1 Vi,

I - gV,

Note that C7, Cll, and Cy,,, have been previously defined in the list of
symbols. Under the FCFS service order for the queue and linear holding
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cost structure, we have

Cl =h(l-1)E®) + C1,
and

itk hE(0)

C@H—k = chl = Tk(k -1)+ kcll-
=1

Furthermore, the total expected cost of a busy period of an M/G/1
queue, starting with one customer can be evaluated as

cl—_n (AS@) +E(S)>.

T \20-p)

The one-step expected cost of resuming the queue service when the queue
length ¢ is less than M is then

hE(6)
2

For the details of deriving these formulas, see Zhang and Love (2000).
The specification for the SMDP is thus complete with these formulas.

Ci(a=0) = (i — 1) +iCt +7o. (7.2.7)

7.2.2 Computation of the Optimal Policy

Since the SMDP has a discrete finite state space and a discrete finite
action set, there exists a constant g(R) where R is a stationary policy
and a nonnegative function {u(i), i € X} that satisfy the optimality
equation

M'—1
u(i) = main{C’i(a) —g(R)Ti(a) + Z pij(a)u(j) + pi (a)u(0')}. (7.2.8)

Thus we can find the optimal stationary policy for the server using the
policy-improvement algorithm, provided that the upper bound for the
optimal threshold M has been given. To determine both the optimal
M and the optimal vacation search policy, the following algorithms are
suggested.

Algorithm A: Finding the optimal vacation type selection
policy for a given upper bound M’ for the optimal threshold.

= Step 1: For a given upper bound for the optimal threshold, M’, choose
a stationary policy R.
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= Step 2: For the current rule R, compute the average cost g(R) and
the relative values u(7),7 € X, as the solution to the linear equations

M'—1
u(i) = Ci(a) — g(R)i(a) + Y pij(a)u(f) + pio (a)u(0), i€ X,
j=i

where s is an arbitrarily chosen state.

m Step 3: For each state i € X, determine the action a; yielding the
minimum in

M -1
aren}(;) Ci(a) — g(R)7i(a) + Z pij(a)u(y) + pio (a)u(0)

The new stationary policy R is obtained by choosing R; = a; for
all 4 € X, with the convention that R; is chosen to be equal to the
old action R; when this action minimizes the policy-improvement
quantity.

» Step 4: If the new policy R equals the old policy, then go to Step 5.
Otherwise, go to Step 2, with R replaced by R.

m Step 5: Stop Algorithm A. The optimal policy is R.

The next algorithm is to find the optimal threshold M for serving the
queue.
Algorithm B: Finding the optimal threshold M.

m Step 1: Let & = 0 be the iteration index. Choose a reasonable M’ as
the upper bound of the optimal threshold M.

= Step 2: Run Algorithm A (a policy-improvement-iteration algo-
rithm) with M’ to find the optimal policy R(k) = R.

m Step 3: If for the policy R(k), A(M’ — 1) # 0 (the action in the last
state is not a queue service), then increase M’ = M’ +«, where o > 1
is a reasonable increment for the upper bound of M, and then go to
Step 2. Otherwise, go to the next step.

= Step 4 (now M’ is truly an upper bound for M): Let M = M + 1,
k =k + 1, and run Algorithm A again. If R(k) = R(k — 1) for the
common state space and |g(k) — g(k — 1)| > ¢, then repeat Step 4
again. Otherwise, go to the next step.
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= Step 5: Stop the algorithm. The optimal policy is R(k), with M ={min:
x: A(z) =0}

The optimal policy obtained may result in some vacation types being
passed over (i.e., not included in the optimal vacation selection menu).
In practice, queueing managers are often interested in the minimum
revenue rate for the excluded vacation type to be included in the optimal
selection menu when the revenue rates for all other types of vacations
are fixed. The following procedure can be used to find this minimum
revenue rate.

Algorithm C: A procedure for determining the minimum rev-
enue rate for a type n vacation to be included in a vacation type
search policy.

= Step 1: Check whether there is any state ¢ in which @ = n is an action
in the optimal stationary policy found from the optimizing algorithm.
If yes, go to Step 3; otherwise, go to next step.

= Step 2: Increase the reward rate of the type n job by a constant step
[ > 1, that is, r, = r, + [. Rerun the optimizing algorithm, and go
to Step 1.

= Step 3: Reduce the reward rate by a small (unit) increment, that is,
rn = Tn — X, Where x is the minimum change in revenue rate. Rerun
the optimizing algorithm, and go to the next step.

= Step 4: Check whether ¢ = n is an action in the optimal stationary
policy. If yes, go to Step 3; otherwise r"™ = r,, + x. Stop.
This procedure also provides the penalty associated with including a
suboptimal vacation type into the optimal policy.

7.2.3 Numerical Examples

To illustrate the algorithms developed in this section, we present a
numerical example. Tables 7.2.1 and 7.2.2 provide a set of parameters
for the case with three vacation types. The interarrival times, the cus-
tomer service times, and the three types of vacations are assumed to
be exponentially distributed for computational convenience. The va-
cation search success probability vectors are given in Table 7.2.2. We
assume that a type 1 search (or the continuous search) is used. Note
that Case I is actually the “100% available vacation model” (see Zhang
et al. (2001)). In this example, g converges when M reaches 25 and the
optimal policy converges when M becomes 15. The optimal policy con-
vergence is observed by comparing the optimal policies for these three
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cases in Tables 7.2.3 and 7.2.4. From Tables 7.2.4, 7.2.5, and 7.2.6, we
can make the following observations:

(1) The shorter the queue is at a vacation completion instant, the
(stochastically) larger is the vacation type searched. While we cannot
prove the optimality of this structure theoretically, the numerical results
support the intuitive conjecture that the optimal policy has a multi-
threshold structure.

(2) In certain cases, some vacation types may not be included in the
search menu of the optimal policy. For example, in Case 3, the type 2
vacation is not present. This situation indicates that, to minimize the
long-run average cost, type 2 vacations should not be searched unless
the revenue rate for this vacation type is increased. Algorithm C can be
used to compute the minimum required revenue rate for this vacation
type to be included in the optimal policy.

(3) Tt is also observed that the waiting cost affects the vacation search
policy. The higher the waiting cost, the smaller the vacations are that
should be searched. This effect is observed in Table 7.2.5 for a higher
waiting cost of h=%4, a $2 increase from the base value. Table 7.2.6
shows that the threshold M is nonincreasing in h. Similarly, we can also
perform a sensitivity analysis on other cost parameters such as the setup
cost or the revenue rates.

(4) The average cost g for the cases with random vacation availability
are higher than the case with always available vacations (Case I). There-
fore, the benefit of reducing or eliminating the randomness of vacation
availability can be computed. For example, from Table 7.2.4, we can see
that the benefit of increasing the search success probability from 0.45 to
0.95 is that g has been reduced from 8.31 to 6.61, a very significant cost
saving. With the SMDP, we can also perform a sensitivity analysis on
other system parameters such as the arrival rate, the service rate, the
traffic load, or the vacation rate.

ES) |Xx |[W][Ww|Wn
1 06 | 3 2 1
h To 1 T2 T3
2 100 | 15 | 13 | 1

Table 7.2.1. Base parameters of exponential random variables.
Availability ¢ q2 qs
Case I 1 1 1
Case II 0.30 | 0.95 | 1
Case 111 0.30 | 0.45 | 1
Table 7.2.2. Vacation Type Search Success Probability Vectors of Three Cases.
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States
1 €X 001|213 |4|5|6|7|8]0915
Case I g=6.15 1 1{1}12]0]0|0]0O]O0]0O
Case II g=6.61 1 |1(1f(1|2]0]0|0]0O]O0|0O
Case III g=8.31 | 1 1{1}(11]0]0|0O]O]O0]O

Table 7.2.8. Optimal Vacation Type Search Rule for M=15.

States
1e€X 0|01 (2|3|4|5[6]|7|8]|9]10-20
Case I g=6.16 1 /1{1|1(2]0|0|0|0O]O0O]0O]|O
Casellg=663 |1 |1]1|1|2|0|0|0]O0O|O0|0]|O
CaseIllg=831 |1 |1 |11 |1|0|0O|O0O]O|O|O]|O

Table 7.2.4. Optimal Vacation Type Search Rule for M =20 for the base

parameters.
States
1eX 0]l0| 12345 |6|7]8]|9] 1020
Case I g=12.97 2 212(210|0]0|0]JO0O]O]O0O]O
Case IT g=13.19 2 212(210|0]0|0]JO]O]O]O
Case 111 g=14.96 | 1 1{112|0(0|0]0]O0O|0|0]0O0

Table 7.2.5. Optimal Vacation Type Search Rule for M =20 with higher waiting

cost of h=4.

Case III States

i1e€X 0lo0|1]|2(3[4|5|6]|7|8]|9]10-20
h=2. g=8.31 1 1111 }(1]0|0|OJO]JO]O]O
h=3. g=11.78 | 1 1|11(1}0]0|O|O|JO]JO]O]O
h=4 g=14.96 1 111(2(0]0]0|0OJ0O]JO0O]O]O
h=5 g=17.98 1 11210(0j0|O0O|JO|JO]JO]O]O
h=6 g=20.69 2 122|000 ]0]O]O|O|O]O

Table 7.2.6. Optimal Vacation Type Search Rule for M =20 with various waiting
costs h for Case III

It is easy to see that many vacation models discussed in the previ-
ous chapters, such as the single vacation model, the multiple vacation
model, the N-threshold policy model, and the adaptive multiple vaca-
tion model, are special cases of the SMDP. Using the SMDP, we can
obtain some stationary performance measures such as the mean queue
length or the mean waiting time under a given server’s vacation policy or
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a combination of these policies. For example, the combination of multi-
ple adaptive vacations and N-threshold is a very useful policy. However,
with the embedded Markov chain method, it is extremely hard to study
it, if not impossible. Using the SMDP, we can numerically compute
the mean waiting time and mean queue length under a special cost and
revenue structure. Another advantage of the SMDP is that we allow
most random variables to be generally distributed in the model. The
limitation of the SMDP, however, is that we cannot obtain the station-
ary distributions of the queue length and the waiting time. For more
queueing control applications of the SMDP, see Senott (1999).

7.3 M/M/c Queue with Threshold Policies
7.3.1 The (d, N)-Policy Model

To discuss the optimal control issue in multiserver vacation models, we
consider the M/M/c queue with a two-threshold policy and vacations. In
this system, when the number of idle servers reaches d (< ¢) at a service
completion instant, these d idle servers will go on a vacation together.
These vacationing servers will not resume serving the queue until the
number of customers in the system reaches or exceeds a critical number
N > c at a vacation completion instant. This policy has two thresholds
(d, N) which jointly determine when any d of ¢ servers should go on a
vacation and when these servers should return to serve the queue again.
Under the (d, N) policy, the queue can be served at either a higher service
rate of ¢y or a lower service rate of no more than (¢ — d)u, depending on
the congestion level of the system. With service rate control, the service
resource or servers’ times can be better allocated to both primary and
secondary jobs. Due to the complexity of the system, we cannot develop
the formulas for computing the optimal control parameters to minimize
the average cost. However, the optimal policy can be searched over a
set of feasible (d,N) policies. Furthermore, the multiserver vacation
model with a (d, N) policy applies to many real service systems whose
servers perform multitasks, for example, fast food restaurant employees,
supermarket cashiers, bank tellers, or telephone operators.

7.3.2 Model Formulation and Performance
Measures

Consider the M/M/c queue with arrival rate A and service rate p and
a two-threshold (d, N) vacation policy. These synchronous vacations are
i.i.d. exponential random variables with rate . When d (< ¢) servers
are on vacation, the remaining ¢ — d servers are always available (busy
or idle).
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Let L,(t) be the number of customers in the system at time ¢, and let

T(t) = 0 d servers are on vacation at time ¢,
1 no servers are on vacation at time t.

Then {L,(t), J(t)} is a Markov process with the state space
Q={(k,0):0<k<c—d}U{(k,j):k>c—d, 7=0,1}.

Using the lexicographical sequence for the states (k, j), the infinitesimal
generator for the Markov process can be written in the block-partitioned
form:

_ Q
Q: Q2 )
Qs
where
- A, Cq -
B, A1 G
B, A; Gy
Bcfd Acfd Ccfd
Bc—d+l Ac—d+l C
-Bc—l Ac—l C
B A, C
Q2 = B A, C |-
[B A, C
B A C
Qs = B A C ;
A= (~R+C-du 0
< 0 “ (0 + k) ,c—d+1<k<c,
k‘/.L, 1§/€§C—d,
(c—d)p e
B, — (c—d+Dp ) k=c—d+1,
(e—djp 0 ,c—d+1<k<c—1,
0 ku



332

Furthermore, we have
C=) B (c—d >,

< Dorle- - o).

From the matrix structure of Q, we find that {L,(t), J(¢)} is a QBD
process with complex boundary states (see Neuts (1981)). To analyze
this QBD process, we need the minimal nonnegative solution R of

R’B+RA +C =0. (7.3.1)

The explicit R is obtained similarly as in the vacation models of chapter
5.

Theorem 7.3.1. If p = A(cu) ! < 1, the matrix equation (7.3.1) has
the minimal nonnegative solution

P
R:< w@ﬂ). (7.3.2)
0 »p

Proof: To get R, we use the fact that the quadratic equation
(c—d)pz®> — A+ 0+ (c—d)ulz+A=0 (7.3.3)
has a unique real root r in (0, 1),

1
z:r:m{)\+9+(c—d)u—\/ﬁ},

where
=[N+ 0+ (c—d)u)® —4X\c—d)pu.

Because the coefficient matrices of (7.3.1) are all upper triangular, we
can assume that
_f 11 T2
R= ( 0 29 ) )

To obtain the minimal nonnegative solution, we substitute this R into
(7.3.1) and let r1; = 7, the solution in (0,1) of (7.3.3), and let rqg = p.
We then obtain (7.3.2).00

The spectral radius of R is sp(R) = max(r, p). Hence, sp(R) < 1 if
and only if p < 1. Using Theorem 3.1.1 of Neuts (1981), we can easily
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show that the condition for QBD process {L,(t), J(t)} to be positive
recurrent is p < 1.

When p < 1, let {L,, J} be the stationary random variables for the
queue length and the status of a subset of servers. Denote the stationary
probability by

Ty = P{Ly = k,J = j} = lim P{L,(t) =k, J(t) = j}, (k.j) € 2.

Define the stationary vectors m = (7o, k1), for k > ¢ —d + 1, and the
square matrix of order {2N +1 — (¢ —d)} is

(4 C
mm_<B RB+A>, (7.3.4)
where

Ay Gy
B, Ay C

Bcfd Acfd Ccfd

Ao = : : :
Bc—l Ac—l C
B A. C

Using the matrix analytic method, we can obtain the distribution of
the QBD process.
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Theorem 7.3.2. If p < 1, the distribution of {L,, J} is

k
%(%) 00, 0<k<c—d,
mo=d 1 <A>c_d Ui roo. e—d+1<k<N -1
ey i) eaTo Sks )
1 AN\ 1 kN )
(C—d)! (ﬁ) m?’ +17T007 k 2 N7
(7.3.5)
( 1 A)k or 1 00
k' \ p )\(1 r) Ye—q (c—d)! '
T e—d e (LY, e—d+1<k<e
1 9r 00 <A>
Tkl = (e—d)!' MN(1—7) Ye—q \ 1 p
< (G e —d+ ! (§) + 252 (1)),
c<k<N,
| Bnimoop™™ N+5N07T002 o N k> N,
(7.3.6)
where
N—k—-1 v
¢k—1+ 1—7“ Z < >7C_d§k§N_17
v=1
3 ™NO r </\>C_d 1
M0 (e—d)! \u Ve—d’
T
By =—2
00
1 Or 1 (A)C
(c=d AL —7)Ye—aq \ 1

X ;pN‘CjO(cd+j)!(’;)j+W(§)d :

and the constant myg can be determined by the normalization condition.

Proof: Based on the matrix-geometric solution method in Neuts (1981),
we have

(ko> 1) = (mvo, Tv1)REY k> N. (7.3.7)
Note that the boundary state probability vector

Mont1—(c—d) = (7005 -+, Ted,05 (Te—d 1,0, Te—dt1,1), -+ (TNO; TN1))
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satisfies the following equations:

oni1-(c—aq) B[R] =0,

Zﬂ'ko—f— Z 7Tk0+7Tk1 —i— (ﬂ'NO,Ter)(I—R)_le: 1. (7.3.8)
k=c—d+1

Using (7.3.2) and RBe = \e, we obtain

RB+A_(—()\+9+(co—d)u(1—r)) ﬁ)_ < —Oﬁ ﬁ)

Substituting this expression into the last row of the matrix in (7.3.4)
and solving (7.3.8) via the same method as in Lemma 5.5.2, we obtain
(7.3.5) and (7.3.6).00

Based on this theorem, the distribution of the number of customers
in the system is

0<k<c—d

_ _ TKO, SRS s
P{L, =k} = { o S (7.3.9)

Like the multiserver vacation models discussed in Chapters 5 and 6,
we can also establish the conditional stochastic decomposition properties
given that the number of customers in the system is at least IV and all
servers are busy. Let

LN ={L, —¢|L, > N,J =1}

v

and

W) = {W,|L, > N, J =1}

represent the conditional queue length and the conditional waiting time,
respectively. In a classical M/M/c queue, we define the corresponding
conditional random variables:

L(N) ={L— L >N},
W ={W|L > N}.

It is well known (Gross and Harris (1985)) that L((]N) and WU(N) have the
p.g.f. and the LST, respectively, as

L(N) (2) SN—c L—p W*(N)( ) CH N=e ep(l = p)
= — s) = .
0 1—zp® 0 stcp s+ cu(l—p)
(7.3.10)
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and their expected values, respectively, are

N - 1
B(L{M) =N —c+ L Bavi™)y = =5

+ .
l—p e ep(l—p)

(7.3.11)

The following theorems demonstrate the relationship between the vaca-
tion model and nonvacation model in terms of the conditional random
variables.

Theorem 7.3.3. If p < 1, LQ(,N) can be decomposed into the sum of
two independent random variables,

LM =V 4+ 1, (7.3.12)

v

where L(()N) is conditional queue length of the classical M/M/c queue
without vacation and L4 is the additional queue length due to the vaca-
tion effect, with the p.g.f.

Lq(z) = % {/BNl +Bnog i rzl(l_z:)} , (7.3.13)

where Sy1 and Sy can be computed from the expressions in Theorem

7.3.2 and

1
1—7

o = Bn1 + Bno

Proof. From 7y and 71 in Theorem 7.3.2, the probability that all
servers are busy and at least N customers are in the system is

P{L,>N,J =1}

)
=2 ™
k=N

[e’s) [e'e] k—N-1 . ‘
= Bn1Too Z "N + Bnomoo Z Z rd ph N1
k=N k=N-+1 j=0

00 1
=7 {5]\/1 + Ao }

—-p 1—r

o
= TT00-

I—p
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Using this probability, we obtain the conditional distribution of LgN) :

P{LW™ =k} =P{L, =c+k|L, > N,J =1}
=Teypn [P{Ly > N, J=1}]""

1— P k+c—N-1 ' ‘
- F 5N1pk+ch + 5N0 Z ,’,,_]pk"‘rC*Nflfj ’
g X
7=0
k>N-—c (7.3.14)

Multiplying both sides of (7.3.14) by z* for k > N — ¢, and taking the
summation over k, we get

o)

LM ()= > P{L{ =k}

k=N-—c

o0
_1-°r { B Z ok phte=N
k=N-—

c

oo

k+c—N-1
VD SR DI
=0

k=N—c+1

1-p 2= Neery 1 1
= Bn1 + Bnoz T ——
1—2p 1—2pl—2r
1

= ZN*Cil —7 {5N1 +Bnoq o }
zpo

1— —r 1—2zr

= LV (2)La(2).

O

Expression (7.3.13) indicates that with probability By10~!, Ly is zero
and with probability 1 — %B}\n = 0 'Bno(1 — )71, Ly is one plus a
geometric random variable with parameter r. The expected values can
be obtained, respectively, as

1 1
E(Lqg) = gﬁ]\mm,

Theorem 7.3.4. If p < 1, WISC) can be decomposed into the sum of
two independent random variables,

WM =w™ 4w,
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where WéN) is conditional waiting time in a classical M/M/c queue
without vacations when all servers are busy and Wy is the additional
delay due to the vacation effect, with the LST

w1 1 cu(l—r)
Wi(s) —U{5N1+5N01_r8+cu(1_7ﬂ)}. (7.3.16)

Proof: Assume that a customer arrives at state (k,1), k& > c. If we
condition on this state, the customer’s waiting time, Wy, has the LST

cu k—c+1
Wii(s) = <s+cu) , k> c.
If we use (7.3.14), W) has the LST
Wi (s)
) k+1
- Z P{LM =k} <“)
vl S+ cu
1-p o0 N
— k+c—
- {Bm Z P <S n C,u>
k=N-—c
[e) i k+1 k+c—N—-1 ) ‘
+ANo Z <s + c#) Z rl et
k=N—c+1 =0

N—c
1—p cl clh
= Bn1 ( )
o s+ cu s+ cu(l—p)
cp N=e clt cp
+
ﬁNO(swu) 8+cu(1—p)8+w(1—r)}

-(25) T )
X{ﬁNﬁﬁNO 1 eu(1—7) }

1—rs+cu(l—r)
— WM ()W (s).

O

Expression (7.3.16) indicates that with probability Sy10~t, Wy is zero
and with probability 1 — By107t = o~ '8no(1 — r)~1, Wy follows an
exponential distribution with parameter cu(1—r). From the conditional
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stochastic decomposition property, we can obtain the expected values:

1 1 1
BWa) = oo =y

N —c 1 1 1 1
E(WWMN)Y = — = —EB(LWM).
(W) it +c,u(l— )jL ﬂ Ol—rcu(l—r) i (L)

7.3.3 Searching for the Optimal Two-Threshold
Policy: A Computational Example

Unlike the single server vacation model, we cannot provide a proof of
the convexity of the average cost function or the existence of the upper
bound for a finite search of the optimal threshold. However, with the
performance measures, we can evaluate and compare (d, N) policies. For
example, using the distribution 7o, and 71, we can discuss the trade-
off between serving the queue (doing primary jobs) and taking vacations
(doing secondary jobs). For the queue performance, we use the expected
number of customers in the system, denoted by E(L,). The more that
the servers’ time is allocated to serving the queue, the smaller the L
value is. To measure the level of the servers’ time for taking vacations,
we use the expected number of servers on vacation at any time, denoted
by E(M). Obviously, E(M) = d(>_32, Tko), because the probability of
d servers on vacation is Y, mko. If the vacation represents performing
some productive work with a revenue rate of re per server, then the
expected revenue rate of taking vacations under the (d, N) policy equals
re x E(M). We present an example to show the search for the optimal
policy. Tables 7.3.1 and 7.3.2 show the values of L and E(M) for a
number of combinations of d and N values. This system has a set of
parameters ¢ = 5, A = 1.5, u = 0.5,p = 0.60, and § = 0.2. Clearly, we
can see some correlations between these two measures for different (d, N)
policies. Note that these correlations are quite complex and will change
if the system parameters ¢, A, i, and 0 are changed from the base values.
With these L and E(M) values in Table 7.3.1 and Table 7.3.2 below, if a
cost and revenue structure is imposed on the system, we can search for
the optimal threshold (d, N') policy to maximize the expected profit or to
minimize the expected cost. For example, the expected profit, denoted
by E(profit), in Table 7.3.3 is for a linear cost and revenue structure
of we (the waiting cost per customer per time unit)= $6 and re (the
revenue rate per vacation server per time unit) = $45. That is,

E(profit) = re x E(M) — we x E(Ly).

The linear waiting cost and the constant vacation revenue rate are rea-
sonable in many practical systems. In Table 7.3.3, we find that the
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optimal threshold policy is d = 2, N = 13, with the maximum expected
profit per time unit of $14.66. Figure 7.3.1 shows that the relationship
between the expected profit and IV changes significantly as d varies.

N 5 6 7 8 9 10 11 12 13 14

1] 5479| 5357 5294| 5255| 5221| 5185 5142 5.094 5.042|] 4989

d 2] 6516| 6644 6801 6980 7176 7386 7607 7.838 8.075| 8317
3] 7.733] 8.070( 8429 8801 9182 9569 9.958| 10347| 10.734| 11115

4| 8289 8633] 8994| 9361 9.729 10.095] 10456] 10.810] 11.154| 11485

Table 7.3.1. Expected number of customers in the system, E(L,), for

(d, N) policies.

N 5 6 7 8 9 10 11 12 13 14

1] 0611] 0648] 0683 0.718f 0.752 0.785 0.815| 0.843 0869 0.891

d 2] 1023 1.091| 1151 1205] 1254 1297 13351 1371 14021 1432
3] 1214] 1273 1328 1378 1423 1464 1501 1534 1565 1594

4] 1256 1294| 1332 1370 1405 1439 1471 1502 1532 1561

Table 7.3.2. Expected number of servers on vacation, E(M), for (d, N)

policies.
N 5 6 7 8 9 10 11 12 13 14
1] 5395 2982 -1.030f 0.765| 2502 4198 5834 7386 8.830| 10149
d 2| 6951 9225| 11.009| 12367| 13359 14.039| 14 454| 14 648| 14 657| 14 515
3] 8208 8873 9203 9219 8957 8462 7777 6.950 6.024 5.046
4] 6.791| 6438 5999 5470| 4861 4188 3474 2.745 2.029 1358

Table 7.3.3. Expected profits, E(profit), for (d, N') policies.
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d=3
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d=4

Figure 7.3.1. Expected proft chart for (d, N) policies.
c=5X=15u=0.5p=0.60,wc=$6,re = $45.
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Note that under the (d, N) policy, all idle servers start a vacation
when the vacation condition is met. If only a subset of idle servers is
allowed to take a vacation each time, then the (e, d) policy discussed in
Chapter 5 can be extended to form a three-parameter threshold policy,
called the (e,d, N) policy. The vacation model with the (e,d, N) policy
can be studied by using the same method.

7.4  Bibliographic Notes

There are two types of vacation models of optimization. The first type
of models is the optimal design or static models, which are generally the
vacation systems with superimposed cost and/or revenue structures to
be optimized with respect to policy parameters. Kella (1989) studied the
N-policy for an M/G/1 queue with multiple vacations and developed a
simple algorithm to determine the optimal threshold under a cost and
revenue structure. Lee and Srinivasan (1989) provided an algorithm for
the optimal threshold for a more general case with a compound Poisson
arrival process. Lee at al. (1994, 1995) considered an M*/G/1 queue
with N-policy and multiple or single vacations. Lee (1995) also treated
the finite-buffer batch arrival vacation model. Artalejo (1998) studied
the M/G/1 retrial queue with vacations and obtained, as a special case,
the optimal control of the M/G/1 retrial queue under N-policy. Zhang
et al. (1997) discussed the two threshold policies for the M/G/1 queue
with two types of vacations, on which section 7.1 is mainly based in this
chapter. The two-threshold model is a generalization of several previous
vacation models and can be used for the optimal design of the vaca-
tion policies. Ke (2001, 2003b) addressed the optimal design problems
for both M/G/1 and M*/G/1 queues with threshold policies. It is ex-
tremely difficult to prove the convexity of the average cost function in the
two-threshold model. Recently, Zhang (2005) proved the convexity in
the lower threshold for a two-threshold model, given that the difference
between the two thresholds is a constant. The second type of model is
the optimal control or dynamic models, which are mainly based on semi-
Markov decision process (SMDP). Zhang et al. (2001) used the SMDP
to study the optimal control issue for the vacation system with multiple
vacation types. Zhang et al. (2005) generalized this SMDP model to the
case where the availability of vacations is random. Section 7.2 of this
chapter is mainly based on Zhang et al. (2005). For the multi-server va-
cation models, Tian and Zhang (2005) studied the two-threshold policy
and showed the search for the optimal policy under a cost and revenue
structure. Section 7.3 is mainly based on Tian and Zhang (2005). Li
and Alfa (2000) discussed the optimal threshold policies for the M/M/c
queue without vacations. In their model, the servers are turned off when
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no customers are present in the system and turned on again when either
N customers are present or the waiting time of the leading customer
reaches a predefined time T'. These authors showed how to compute the
optimal (N, T) policy for a cost structure that consists of a fixed setup
cost and a linear waiting cost per unit time. Gans and Zhou (2003) pre-
sented a dynamic-control call -enter routing model that is also related to
the multiserver vacation model. Recently, Tadj and Choudhury (2005)
published a survey paper on the optimal design and control of queues,
where the optimization issues in the vacation models are also addressed.



Chapter 8

APPLICATIONS OF VACATION MODELS

In this chapter, we present a few practical systems that can be studied
as single or multiple server vacation models. Using these examples, we
demonstrate the wide applications of the vacation models discussed in
this book.

8.1 Modeling the Flexible Production System

There are two extremes in production strategies for manufacturing
firms: Make-to-Order (MTO) and Make-to-Stock (MTS). The MTO
systems offer a high variety of customer-specified and usually more ex-
pensive products, and the MTS systems offer a low variety of producer-
specified and typically less expensive products. Recently, the combina-
tion of MTO and MTS has become quite common in some industries,
such as computer assembling or food processing. There are several rea-
sons that combined MTO and MTS strategies are becoming more attrac-
tive in these industries. For example, as a part of competitive supply
chains, computer manufacturing companies cater to increasing number
of product types with customer-specified features in order to increase
or maintain their market shares. Moreover, some customers (retailers
or wholesalers) also prefer the MTO policy with short response time
because consumer behavior can be erratic. As a consequence, manu-
facturers in computer industries have been forced to shift part of their
production system from MTS to MTO and to operate under a hybrid
MTO and MTS strategy. Due to the advance of flexible manufacturing
technology, it is possible for a flexible production facility to switch be-
tween these two production modes. To find the optimal switching policy,
the flexible production facility can be approximately modeled as a single
server queue with vacations. In such a vacation model, server vacations
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represent times of producing MTS items and customer service times rep-
resent times of producing customer-specified products. If a production
facility is the main source for making multiple types of MTS products,
the demand for the MTS products is random, and the inventory control
for the MTS products is under a base-stock policy, then the determina-
tion of the optimal base-stock policy is based on the analysis of a polling
system (see Federgruen and Katalan (1999)). On the other hand, the
performance of processing MTO products can be analyzed by using the
vacation model in which vacations are the times of making MTS prod-
ucts. However, if a flexible production facility mainly processes MTO
items and is only a supplementary source for production of a particular
type of MTS products, and if the objective of assigning some MTS jobs
is to utilize the idle time of the facility, then the vacation time is simply
the time needed to make one unit of MTS product. In other words,
we can ignore the inventory control policy for MTS products. There-
fore, we can focus on the vacation model to find the optimal policy for
processing MTO items. The vacation model with a multiple-threshold
policy is appropriate for this purpose. For example, the model with
the two-threshold policy and two vacation types discussed in the pre-
vious chapter can be used in this situation. The customer arrivals are
the orders received for MTO items, and type 1 vacations are the time
durations needed to make a particular type of MTS products; type 2
vacations may represent the production times for another type of MTS
product or simply the interreview periods for the number of waiting
orders. We show this application by using a numerical example.

Example 8.1.1. A production facility in a furniture factory is used
mainly to make customer-specified products (MTO) and can be used
to make standard products (MTS) for wholesalers as well. The MTO
products are made according to customer orders, and the two types
of MTS products are made during the time when customer orders are
accumulated. Because of the significant switchover costs between MTS
and MTO modes, a two-threshold policy is used to control the time
allocation of the production facility. It is assumed that customer orders
arrive according to a Poisson process with rate A = 0.6; the service
time (time needed to make an MTO item) is exponentially distributed
with mean E(S) = 1.0; and the vacation times of type 1 and type 2
(times needed to make the two types of MTS items) are exponentially
distributed, with means V{ = 2 and V, = 1. The cost and revenue
structure consists of a linear waiting cost with rate h = $2.0, a switchover
cost rg = $20.0, and two revenue rates for the two MTS types r; = $12.0
and ro = $10.0. Using the finite search procedure presented in section
7.1, we obtain the average costs of two-threshold policies in Table 8.1.1
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and find the optimal two-threshold policy as (n = 1, N = 2), with the
minimum long-run average cost ¢ = $2.637.  With this policy, the
production facility should make type 1 MTS items when no MTO item
orders exist; should make type 2 MTS items if only one customer order
is waiting; and should be switched to produce the MTO items if at least
two customer orders are waiting.

ON) |gw ON) [gow ON) |9 nN) gnv

(0,0) 4160((Q,1) 2.782|@,2) 2.752| 3, 3) 3171
0,1) 2940[(@1,2) 2637 @, 3) 2998|@3,4) 3618
©,2) 2.713[@,3) 2.989|@2,4) 3569[@3,5) 4 293
©,3) 3.083|(@,4) 3617|@2,5) 4 315|@3,6) 5104
©,4) 3.723|(@,5) 4392|,6) 5161 3,7) 5.990

Table 8.1.1. Average costs of two-threshold policies.

Certainly, if the system parameters A and E(.S) or the cost and revenue
parameters change, the corresponding optimal policy will also change.
The optimal two-threshold policy helps the production manager opti-
mally schedule the production facility.

8.2 Modeling the Stochastic Service System with
Multitask Servers

In this section, we present an application of the multiserver vacation
model. It is the case of evaluating the performance of a queueing system
with multitask servers.

Example 8.2.1. We consider a software company’s telephone service
and marketing center, which usually has five workers. During the rush
hours, at least three workers are always available for answering customer
calls. Therefore, the system can be modeled as an M/M/5 vacation
model with d = 2 as discussed in section 5.2 (we use the same symbols
as in Chapter 5).

With ¢ =5 and d = 2, A, B, and C are the 3 x 3 matrices

—(A+3u+20) 20

—(A+5p)
34
B = Ap ;
Op
A
C= A
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Assume that p = A\(5u)~! < 1. From section 5.2, we have

To =

[A+3u+29— VOt 3+ 20)2 — 12Au} ,

1
6
1
r(r) = & [A+4u+9— (VA +4p+6)% — 16/\u] :

Note that 0 < rg,r1 <1 and 7] > 1. Let 79 = p, and let 5 = 1. Based
on the quadratic equation of these two roots, it is easy to verify that

A+ 26+ 3p(1 — o) =

0
4p(l —r1)

A A
—, )\4‘04‘4#(1—7‘1):*,
To 1

=ri—1

Based on section 5.2, we can find

po O _ro 20 To(ri—1)
0 2uri—ro 5w (ri—ro)(1—ro)
R = r 0 )
1 S5u 1—rq
p

and verify that RBe = le. B[R] is a 9 x 9 square matrix. The joint
distribution of (L,, J) can be written as

T = Tk2, k:07172737
T4 = (Ta2, Ta1)

Tk = (Th2, Th1, Tho), Kk > 5.

Solving the linear equation system

(7T(),7T1, co ,7T5)B[R] - 07
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gives

k
o= (2 K k=0,1,2,3.
K\

w

a2 = KB = K

K
-
2@

S~

ma1 = KBy = K

= =

S
7 N N 7N 7N N

TI> EI> TI> TI> T>
=
?w

52 = K352 = K

L9070 r1(rF — 1) + 70(1 — 79)
A (ry —ro)(L—mo)
5 20rg Mrf—1)+0rg
) A2 (rf —ro)(1 —ro)

For k > 5, the distribution can be expressed as the matrix geometric
solution

51 = KfB51 = K

N— 7 N— 7 N~
=
—_
|
<
(=)
~

==

m50 = KBs0 = K

S =

T = K(Bs2, Bs1, Bs0) R 5, k > 5.

The constant K is determined by the normalization condition as

3

J
K= 211(2) + (Baz2 + Ba1) + (Bs2, B51, Bso) (I — R) e

=07’

Using the theorems in section 5.2, we have

ro 0 1o 20  7mo(ri—1)
H = 2p TI_TO s n= S (T%_T(;ﬂ)l(l_ro) ,
" Bul—ry
1 /2\? 9 1 /A 1 207, ri(ry —ro) + ro(l — 7o)
= ) = (3 )b () S )

Based on the distribution obtained, we can conduct some numerical
analysis on the performance measures. Table 8.2.1 contains a set of pos-
sible values of input parameters (A, u, 8, ¢, d) and the computed expected
queue length and expected waiting time of this example.

cld| X| p 0 | E(Ly) | E(Wy)
512210502 8550 4.275
Table 8.2.1. Parameters and performance measures of a system with multitask

servers.
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We summarize some findings from this numerical example.

(1) To investigate the effect of traffic intensity on the d value to meet
the minimum service standard, we change the arrival rate A in the al-
lowable range for given ¢ and u values (i.e., p = A(cu)™! < 1). The
four curves in Figure 8.2.1 show the relationship between the expected
waiting time, E(W), and the arrival rate A for four d values (0,1,2,3).
For example, if the service standard for the teleservice/marketing center
is E(W) =2 minutes for callers, then from the graph, we find that the
maximum number of workers doing other secondary jobs (taking vaca-
tions) at any time is 2 for lower arrival rates of no more than A = 1.3
and becomes 1 for medium arrival rates of no more than A = 1.6. For ar-
rival rates higher than 1.6, we cannot allow any worker to do secondary
jobs, or d = 0. If we still need some secondary jobs to be done while
maintaining the minimum service standard (i.e., E(W) < 2), we have
to increase the total number of workers (increase c), and then we can
allow d (< ¢) of them to do the secondary jobs. It is also interesting to
see that for the three d > 0 cases, the difference in the expected wait-
ing times is diminishing when the arrival rate is either very low or very
high. For the very low traffic intensity, most servers are idle, so some
servers’ doing secondary jobs does not have a significant impact on the
expected waiting times (this means that the minimum ¢ — d servers on
duty can serve customers promptly). For very high traffic intensity, the
probability of having idle servers becomes small, so most of the time,
all servers are busy serving the queue; hence, different d values do not
result in significant differences in the expected waiting time either.

6 /
5 £/
-
4 /
-
3 /,/
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2 = /
// /

1
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. .

05 06 07 08 09 1 11 12 13 14 15 16 17 18 19 2 21 22
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‘ G- =S=—g-]  =#=d-2 = =d=3 ‘

Figure 8.2.1. Expected waiting time vs. arrival rate for a fixed service rate and

different d values.
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(2) Using the vacation model, we can also discuss the trade-off between
doing primary jobs and doing secondary jobs. Based on the results
obtained in this example, we can compute the distribution and the mean
number of servers on vacations. Figure 8.2.2 shows the relationship
between the expected number of servers on vacation and the arrival
rate for the fixed u and c values. The expected number of servers on
vacation can be considered as a measure of the service resource allocated
to perform secondary task. From Figure 8.2.1 and Figure 8.2.2, for a
given arrival rate, queueing managers can choose an appropriate d value
to achieve the desired expected waiting time and the expected number
of vacationing servers.

25

15
1
) \‘\_4\\\\

05 06 07 08 09 1 11 12 13 14 15 16 17 18 13 2 21 22

Expected numberofservers onvacatbn

—

ArivalRate

[z=a=0 =—a-1 d=2 a-3)

Figure 8.2.2. Expected number of servers on vacation vs. arrival rate for a fixed

service rate and different d values.

(3) If a cost structure is imposed on the system, the vacation model
can be used to determine the optimal d value. For a simple linear cost
and revenue structure, the expected costs (or expected revenues, if neg-
ative) per unit time are presented in Table 8.2.2.
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A d=0 d=1 d=2 d=3
05] 0.000f -0.798] -1.787] 2.773
06] 0.002f -0.708] -1683] 2655
0.7] 0.005] -0601] -1552] 2500
08] 0.010] 0476 -1389] 2299
09 0.018] 0331 -1.189] -2.042
1] 0.032] -0.164] -0.945] -1.718
11] 0.053 0.031) -0651] -1317
12 0.084 02591 -0298] -0.828
13] 0129 0530 0123 0244
14] 0.193 0.855 0620 0445
15] 0283 1251 1206 1242
16| 0410 1.737 1.893 2153
1.7] 0589 2341 2696 3.181
18| 0844 3.097 3635 4 322
19] 1215 4 .053 4.724 5559
2 1.773 5270 5.964 6.829
21] 2662 6.798 7301 7.971
22| 4215 8519 8 533 8622

Table 8.2.2. Expected cost per unit time under a linear cost ($0.8 per custimer

per time unit) and revenue ($1 per server on vacaton per time unit) structure.

Note that when the arrival rate is low, assigning secondary jobs to
servers will improve the overall performance of the system. From A = 0.5
to A = 1.3, d = 3 remains the best policy in terms of the expected costs
and revenues per unit time. However, when the arrival rate is getting
higher (A > 1.4), d = 0 policies (not allowing servers to do the secondary
jobs) outperform d > 1 policies. This indicates that the waiting cost
dominates the expected costs and revenue of the system and the benefit
of doing secondary jobs is less than the cost of increasing the waiting
time. If the queueing manager does want to implement a vacation policy
(d > 0) for the high-arrival-rate system (A > 1.4), he or she will find
that as the arrival rate increases, the optimal d will decrease (e.g. for
A = 1.4, the optimal d = 3; for A = 1.5, the optimal d = 2; and for
A > 1.6, the optimal d = 1).

(4) If the queueing manager does not want all d idle servers to take
vacations, he or she can use the (e, d) policy for the multitask servers.
The results for the vacation model with (e, d) policy presented in section
5.5 can be used to evaluate the performance or search for the best policy.

8.3 Modeling SVCC-Based ATM Networks

Vacation models are useful analytical tools in telecommunication net-
work planning and design. Asynchronous Transfer Mode (ATM) is a
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connection-oriented network. An end-to-end connection, called a virtual
channel connection (VCC'), has to be set up first before information or
data can be exchanged between the two end systems. There are two
different VCC setup mechanisms: (i) Permanent VCC (PVCC), where a
VCC is set up a priori and left open indefinitely, and (ii) Switched VCC
(SVCC), where a VCC is set up and closed down dynamically as needed
using a signaling protocol. Classical queueing models without vacations
can effectively model a PVCC where the VCC is always open. On the
other hand, vacation models are needed to model an SVCC environment,
as since the vacation and setup time are analogous to closing the VCC
and setting up the VCC. Hassan and Atiquzzaman (1997) proposed an
M/G/1 queue with delayed vacation to model an ATM SVCC. Their
analysis is based on a continuous-time vacation model. However, infor-
mation or data in an ATM network is transferred in a fixed length of 53
bytes called a cell per time unit. Thus the discrete-time vacation model
is more accurate. In this section, we present a discrete-time vacation
model for this type of application.

With SVCC, the number of concurrently open VCCs in the networks is
minimized by dynamically opening and closing VCCs. However, setting
up a VCC using a signaling protocol involves some delay for the data
to be transmitted. This delay is due to the processing overhead for the
end systems and the intermediate switches and extra signaling traffic in
the network. One way to reduce the cost of an SVCC is to reduce the
number of VCC setups by implementing a timer to manage the closing
of an inactive or idle VCC. An idle VCC is closed down only if no data
arrive within the time-out interval. If data arrive at the SVCC within
the time-out interval, no setup time is needed. This reduces the number
of VCC setups at the cost of some wasted resource during the VCC idle
time.

Let an ATM-cell transmission time be the basic time unit, called a slot.
The time axis can be divided into slots. We assume that customers (data
packets) arrive only just before the end of the slot t =n~", n=20,1,---,
and depart only just after the end of the slot t =n", n =1,2,---. In
addition, we assume that, in a slot, an arrival occurs with probability p,
no arrival occurs with probability ¢ = 1 —p, and the arrival in one slot is
independent of other slots. Thus, during an N-slot period, the number
of arrivals A(NN) follows a Binomial distribution,

PLA(N) = k} = (Z);)k(l )V k=0, N,

and the interarrival time 7" follows a geometric distribution with para-
meter p. The transmission time of a data packet (service time) is the
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number of ATM cells contained in the data packet and is denoted by .S,
with distribution function and p.g.f., respectively, as follows:

P{S=k}=by, k=1,2,-; S(z) = B(z°) =) 2"t
k=1

The data packets to be transmitted wait in an infinite buffer and are
served according to FCFS order. Let U be the start-up time that is
triggered by the control signal to establish the SVCC. Let D be the
inactive or delay period. If a packet arrives during D, it is transmitted
without a start-up period. If no packet arrives during D, then, at the end
of D, the idle VCC is closed down. This closed-down period is denoted
by C. For the data-packets arriving during C, their transmission period
(or the busy period) starts after a start-up time U. Based on this SVCC
mechanism, the data packet transmission can be modeled as a discrete-
time Geo/G/1 queue with a setup time, an inactive period, and a closed-
down period. It is assumed that discrete random variables T', S, U, D,
and C' are mutually independent. U, D, and C are also positive-integer
random variables, with distributions and the p.d.f.’s as follows:

P{U=k}=u, k=1,2,---; U(z) = E(zY) :szuk,

P{D=k}=dy, k=1,2,---; D(z) = EzP) =) 2Fd,,

P{C=k}=cp, k=1,2,---; C(2) = E(z°) =

Finally, we assume that all random variables have finite second moments.

To obtain the performance measures of the SVCC, we first provide
a simple analysis of the discrete-time queueing system. Let Ag be the
number of data packets arriving during the service or the transmission
time of a packet. Its distribution and p.g.f. should be

P{A, =k} =" (i)pkqﬂ'—’“, k>0,
=k
As(z) = ") b (i)pkqj"“ =S(g+zp), |2/ <1.
k=0  j=k

Similarly, let A,, Ay, and A, be the number of arrivals during U, D,
and C|, respectively, and their p.g.f.’s are A,(z) = U(q + 2p), Aq(z) =
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D(q + zp), and A.(z) = C(q + zp), respectively. Thus, D(q),U(q), and
C(q) are the probabilities that no arrivals occur during D,U, and C,
respectively. Consider an embedded Markov chain at the transmission
completion instants. Denote by L, the number of packets in the system
at the nth transmission completion instant. The sufficient and necessary
condition for this Markov chain to be positive recurrent is p = pE(S) <
1. Obviously, we have

— >
Lot = { Ln=1+44s Lo 21, (8.3.1)

m, L, =0,

where 7 is the number of packets left after the first departure in the busy
period. To obtain the distribution of 7, consider the following cases:

(1) Let E; represent the event that “there are arrivals during D.”
The first arriving packet is transmitted immediately. We have P{E;} =
1—D(q), and E{z"|E1} = S(q + zp).

(2) Let E represent the event that “there are no arrivals during both
D and C.” It follows that P{E>} = D(q)C(q), and E{z"|E2} = S(q +
zp)U(q + 2p).

(3) Let E3 represent the event that “there are no arrivals during D
but there are arrivals during C.” It follows that P{F3} = D(q)[1—C(q)],
and n = (AJA. > 1) — 1+ A, + As. Therefore, we get

B} = ) =0

S(q+ 2p)U(q + zp).

Using the conditioning argument, we have
E(2") = S(q+ zp)
1
«{1- D)+ D@+ (Cla +20) - Cla1 - 2] |
(8.3.2)

From (8.3.1), the p.g.f. of the number of packets at the transmission
completion instants, L(z), satisfies the relation

L(z) = P{L > 1}E[zX" YL > 1} + P{L = 0}E(z").  (8.3.3)
Substituting (8.3.2) into (8.3.3) gives

L(z) = P{L =0}S(q + zp)
o 1L =2+ D(g)z = D(9)U(g + 2p)[C(q + zp) = Cla)(1 — 2)]}
S(q+zp) — = '
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Letting z — 1 and using the normalization condition L(1) = 1 and the
L’Hospital rule, we obtain

L—p
D(q) + D(q)C(q) + pD(q)[E(U) + E(C)]
1—p
H

P{L=0}=-—

where

H=1-D(q) + D(q9)C(q) + pD(q)[E(U) + E(C)].

Thus, L(z) can be written as the stochastic decomposition form

(1-p)(1—2)S(g + 2p)

o= S(q+2p) — 2
{ 1—2z+ D(q)z
(1-2)H
—D(9)U(q + 2p)[C(q + zp) — C(g)(1 — 2)]
- - } . (8.34)
It follows from (8.3.4) that the expected value of L is
2
B(L) =p+ 5 1p_ SES(S 1)+ D(ql)f(‘”pE(U)
PD@IEWUU — 1)) + E(C(C - 1)) + 2B(U)E(C)]
+ oH '

Similarly, we can also obtain the p.g.f. and the mean waiting time for
the packet to be transmitted

(1=p)(-2)
W) - pS(z) —z+¢q
 (1=2) + D(g)(z = q) = D(@U(2)[pC(2) — C(g)(1 — 2)]
(1—-2)H ’
E(W) :2(1]9_ SES(S-1)+ D(ql)r{C(Q)E(U)
pD(Q)[E(UU —1)) + E(C(C —1)) +2E({U)E(C)]
+ i :

(8.3.5)

Now we define a service-cycle R as the period between two consecutive
busy period ending instants. If an arrival occurs during an inactive
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period D, then R consists of an inactive period and a busy-period; if
no arrival occurs during D but an arrival occurs during the close-down
period C, then R equals D + C + U plus a busy period; if no arrival
occurs during D 4+ C, then R equals D + C + I + U and a busy period,
where I represents the idle or off period. We first compute the expected
values of U, D, C, and I. Denote by D,,U,, I,, and C, the actual values
of D,U, I, and C within a service cycle R. Note that with probability
D(q), D, = D and with probability 1 — D(q), D, equals the conditional
length given that T' < D. Thus, the distribution, the p.g.f., and the
expected value of D, are, respectively,

P{D, =k} = d¢" + qk_lpidj, k>1.
j=k
S0P gy = Lo ),

D,(z ,
a(2) 1—gqz p

There is an idle- or off-period I only when no arrival occurs during D+C'.
Its length is a residual interarrival time. According to the memoryless
property of the geometric distribution, we have

1
E(I.) = -D(q)C(q)-
p
Similarly, in a service cycle, the expected start-up time and the expected
close-down time are, respectively,

E(U.) = D(q)E(U), E(Ca) = D(Q)E(C).

To compute the expected service cycle, we need to determine the distri-
bution of the number of packets in the system at the beginning of a busy
period, denoted by Q3. Considering the three possible cases described
above, denoted by E1, F», and F3, we have the conditional p.g.f. of @
as

E(ZQb|E1) =z,
E(sz|E2) = zU(q + zp),

C(q+2zp) — C(q)

2U(q + zp).

Using these expressions, we obtain the p.g.f. and the expected value of
Qy as follows:

Qp(2) = (1= D(q))z + D(q)U(q + 2p) [C(q + 2p) — C(q)(1 — 2)],
E(Qpy) =1— D(q) + D(q)C(q) + pD(q)(E(U) + E(C)) = H.
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It is well known that the mean busy period for a standard Geo/G/1
queue is (1 — p)~LE(S). Therefore, the mean of the busy period for the
system described above is

E(Ba) = E@)(1 — p) E(S) = H(1 - p) 'E(S).
Now the expected service cycle is obtained as
H
p(1-p)

Let py, pd, Pe, Pu, and p; be the probabilities that the system is in a
busy period, a delay period, a close-down period, a start-up period, and
an idle period, respectively. From the renewal reward theorem, we have

E(R) = E(D,) + E(C,) + E(I,) + E(U,) + E(B,) = . (8.3.6)

P = E;((B;)) = pE(S) = p,
_ ED.) _ (1=-D(g))( = p)
"B R) H )
_ E(U.) _ p(1—p)D(@)EU)
Pu= E(R) H )
be= EE%)) = (1= p)D(9)E(C),
_ E(lL) _ D(@)C(9)(1 —p)
" BR) H '

For an SVCC, practitioners are interested in the following performance
measures:

(1) Start-up rate . This is the number of start-ups during a unit
time. This rate measures the frequency of establishing the SVCC. Note
that during a service cycle, as long as no arrival occurs during D, there is
a start-up (and a close-down) period. This means that, with probability
D(q), the SVCC is established. Thus from (8.3.6), we have

D(q) _ p(1—p)D(q)
E(R) H
_ p(1—p)D(q)
1 — D(q) + D(q)C(q) + pD(q)[E(U) + E(C)]’

(2) SVCC idle rate, ¢. This is the the ratio of the delay period to the
SVCC existence period. This rate measures the proportion of the SVCC
idle period and can be computed using the system state probabilities.
During the start-up and idle periods, the SVCC is not established and

’}/:
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does not take network resources. The SVCC exists during busy, delay,
and close-down periods. Note that the busy period is for transmitting
data packets and the close-down period is for interchanging some impor-
tant commands. However, the delay period is inactive, and the SVCC
is idle. Therefore,

E(Da) _ DPd
E(Ba) + E(D,) + E(Ca) B Db+ Pd + Pe
_ (1= p)(1 = D(9))
pH + (1 —p)[1 — D(q) + pD(q)E(C)]

¢ =

(3) Transmission efficiency, ¢. This is the ratio of the transmission
period to the SVCC existence period. It is easy to find:

. E(Ba) _ 4
YT E(B.) + E(Da) + E(Ca) Db+ pa+ pe
~ pH+ (1-p)[1 = D(q) +pD(q)E(C)]’

(4) Average response time, 7. This is the sum of the expected waiting
time and the expected transmission time. It follows from (8.3.5) that

E(T") =B(S) + ﬁE[S(S _ 1]+ IX‘J;{(X‘J)E(U)
L PD@IEUU ~1)) + BE(C(C — 1) + 2B(U) E(C)]

2H

In a network, the process of setting up and closing down the SVCC
are controlled by a signaling protocol. The signaling protocol defines a
set of standard information elements. These information elements have
fixed lengths of time. Therefore, U and C' should be constants (positive
integers). Furthermore, the delay period is controlled by a timer and
should also be a constant. The p.g.f.’s of these periods are

U(z)=2Y, D(z)=2P, C(z) = 2%,

and
H=1-¢"+¢""C +p°(U+0).

In the case of constant U, C, and D, it is easier to compute the per-
formance measures of the SVCC: v, ¢, p, and T*. Below we present a
numerical example to show the major performance measures obtained
via this discrete-time vacation model.

Example 8.3.1. Consider the connection process of Telnet via ATM
in a local area network (LAN). A typical set of constant start—up and
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close-down values is U = 50 ms and C' = 30 ms. The delay period D is
also constant and can be controlled by the network designer. By using
the discrete-time vacation model, the major performance measures can
be computed for different delay periods as in Table 8.3.1.

Traffic intensity | D (ms) | E(T™) (ms) | v (frequency/ms) | ¢ ®
1000 282.4746 0.0156 0.7478 | 0.2697
p=0.25 2000 282.0042 1.3832e-004 0.7500 | 0.2500
3000 282.0000 1.2231e-006 0.7500 | 0.2500
4000 282.0000 1.0816e-008 0.7500 | 0.5000
1000 422.0044 1.8033e-008 0.5000 | 0.5000
p = 0.50 2000 422.0000 1.3788e-008 0.5000 | 0.5000
3000 422.0000 1.2506e-010 0.5000 | 0.5000
4000 422.0000 8.0606e-017 0.5000 | 0.5000
1000 842.0000 1.1432e-006 0.2500 | 0.7500
p=0.75 2000 842.0000 7.3883e-013 0.2500 | 0.7500
3000 842.0000 4.7750e-019 0.2500 | 0.7500
4000 842.0000 3.0860e-025 0.2500 | 0.7500

Table 8.3.1. Performance measures of the SVCC in a LAN.

From this table, we can see the impact on the major performance mea-
sures of changing the delay period for different traffic intensities. This
information is useful for the network designer in determining appropriate
parameters of the network.

8.4  Bibliographic Notes

Vacation models have been used in many areas such as flexible manu-
facturing, production and inventory control, computer and telecommu-
nication networks, and call centers. Some successful applications have
been published in specialized journals in these fields. The examples
presented in this chapter are only a sample of the wide applications of
the vacation models. The example in section 8.1 is based on Zhang et
al. (1997). Section 8.2 is mainly from Zhang and Tian (2004). The
continuous-time vacation models for SVCC in computer networks can
be found in Hassan and Atiquzzaman (1997), Niu et al. (1998), Niu
(1999), and Niu et al. (2003). Section 8.3 is based on a recent study by
Jin and Tian (2004).



Chapter 9

REFERENCES

10

Abolnikov, L.M., Dshalalow, J.H. and Dukhovny, A.M. (1993). A
multilevel control bulk queueing system with vacationing server. Oper.
Res. Lett., 13, 183—-188.

Alfa, A.S. (1995). A discrete MAP/PH/1 queue with vacations and
exhaustive service. Oper. Res. Lett., 18, 31-40.

Alfa, A.S. (1998) A discrete MAP/PH/1 vacation queue with gate
time-limited service, Queueing Sys., 29, 35-54.

Alfa, A.S. and Li, W. (2001). Matrix-geometric solution of the dis-
crete time GI/G/1 system. Stoch. Models, 17, 541-554.

Alfa, A.S. (2003). Vacation models in discrete time, Queueing Sys.,
44 (1), 5-30.

Ali, O. and Neuts, M. (1984). A service system with two stages of
waiting and feedback of customers. J. Appl. Probab., 21, 404-413.

Altiok, T. (1987). Queues with group arrivals and exhaustive service
discipline. Queueing Sys., 2 (4), 307-320.

Altman, E., Blabc, H., Khamisy, A., and Yechiali, U.(1994). Gated-
type polling systems with walking and switch-in times. Stoch. Mod-
els, 10, 741-763.

Altman, E., Khamisy, A and Yechiali, U. (1992). On elevator polling
with globally gated regime. Queueing Sys., 11, 85-90.

Altman, E. (2002). Stochastic recursive equations with applications
to queue with dependent vacations. Ann. Oper. Res., 112, 43-61.



360

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Amal, S., Acharya, D. and Rao, V. (1986). M/M/1 queue with server
vacations. Asia-Pacific J. Oper. Res., 3, 21-26.

Artalejo, J. R. (1998). Some results on the M/G/1 queue with N-
policy. Asia-Pacific J. Oper. Res., 15, 147-157.

Artalejo, J. (2001a). The D-policy for the M/G/1 queue length and
optimality. FElectron. Model., 23, 35-43.

Artalejo, J. (2001b). On the M/G/1 queue with D-policy. Appl.
Math. Model., 25, 1055-1069.

Avi-Itzhak, B. and Naor, M. (1963). Some queueing problems with
the service station subject to server breakdown. Oper. Res., 10,
303-320.

Baba, Y. (1986). On the M*/G/1 queue with vacation time. Oper.
Res. Lett., 5, 93-98.

Baba, Y. (1987) On the M*/G/1 queue with and without vacation
time under non-preemptive last-come first-served discipline. J. Oper.
Res. of Jpn., 30, 150-159.

Bacot, J.B. and Dshalalow, J. H. (2001). A bulk input queueing
system with batch gated service and multiple vacation policy. Math.
and Comput. Model., 34, 873—-886.

Balachandran, K. (1973). Control policies for a single server system.
Manage. Sci., 19, 1013-1018.

Balachandran, K. and Tijms, H., (1975) On the D-policy for the
M/G/1 queue. Manage. Sci., 21, 1073-1076.

Bardhan, I. (1993). Diffusion approximations for GI/M/s queue with
service interruptions. Oper. Res. Lett., 13, 175-182.

Bell, C. (1972). Optimal operation of an M/G/1 priority queue with
removable server. Oper. Res., 21, 1281-1289.

Bellman, R. (1960). Introduction to Matriz Analysis. McGraw-Hill,
New York.

Bischof, W. (2001). Analysis of M/G/1 queues with setup time and
vacations under six different service disciplines. Queueing Sys., 39,
265-301.

Blondia, C. (1991). Finite capacity vacation models with non-renewal
input. J. Appl. Probab., 28, 174-197.



References 361

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Borthakur, A., Medhi, J. and Gohain, R. (1987). Poisson input
queueing system with start-up time and under control-operating pol-
icy. Comput. Oper. Res., 14, 33-40.

Borthakur, A. and Choudhury, G. (1997). On a batch arrival Poisson
queue with generalized vacation. Sankhya Ser. B 59, 369-383.

Boxma, O.J. and Groenendijk, W.P. (1987). Pseudo-conservation
laws in cyclic-service systems. J. Appl. Probab., 24, 949-964.

Boxma, O.J. (1989). Workloads and waiting times in single-server
with multiple customer class. Queueing Sys., 5, 185-214.

Boxma, O.J. and Groenendijk, W. (1998). Waiting time in discrete
time cyclic service systems. IEEE Trans. Commun., 36, 164-170

Brill, P. and Harris, C., (1992). Waiting times of M/G/1 queues with
service time or delay dependent server vacations, Nav. Res. Log., 39,
T75-T87.

Brill, P. and Harris, C., (1997). M/G/1 queues with Markov gener-
ated server vacations. Stoch. Models, 13, 452-491.

Browne, S. and Weiss, G. (1992). Dynamic priority rules when polling
with multiple servers. Oper. Res. Lett., 12, 129-138.

Browne, S. Coffman, E.G., Gilbert, E.N. and Wright, E.W. (1992a).
The gated infinite server queue: Uniform service times. SIAM J.
Appl. Math., 52, 1751-1762.

Browne, S., Coffman, E.G., Gilbert, E. and Wright, E.-W. (1992b).
Gated, exhaustive, parallel service. Prob. FEng. Inform. Sci., 6,
217-239.

Browne, S. and Kella, O. (1995). Parallel service with vacations.
Oper. Res., 43, 870-878.

Brownell, W. and Lawerre, J. (1976). Scheduling of workforce re-
quired in continuous operations under alternative labor policies. Man-

age. Sci., 22, 597-605.

Bruneel, H. (1984). Analysis of discrete-time buffer with single server
output, subject to interruption process. In Performance ’84 (Else-
vier, Amsterdam, 1984), 103-115.

Bruneel, H. (1994). Analysis of an infinite buffer system with random
server interruption. Comput. Oper. Res., 11, 373-386.



362

40 Burke, P.J. (1975). Delay in single-server queues with batch ar-
rivals. Oper. Res., 23, 830-833.

41 Buzacott, J. and Shanthikumar, J. (1992). Stochastic Models of Man-
ufacturing Systems, Prentice-Hall, Englewood Cliffs, N.J.

42 Chae, K. and Lee, H. (1995). M*/G/1 vacation models with N-
policy: heuristic interpretations of waiting time. J. Oper. Res. Soc.,
46, 258-264.

43 Chae, K.C., Lee, HW. and Ahn, C.W. (2001). An arrival time ap-
proach to M/G/1-type queues with generalized vacations. Queueing
Sys., 38, 91-100.

44 Chao, X. and Zhao, Y. (1998). Analysis of multi-server queues with
station and server vacation, Fur. J. Oper. Res., 110, 392-406.

45 Chatterjee, V. and Mukherjee, A. (1987). Two bulk queueing models
with vacation periods. Cah. CERO, 29, 1-2.

46 Chatterjee, U. and Mukherjee, S. (1990). GI/M/1 queue with server
vacation. J. Oper. Res. Soc., 41, 83-87.

47 Chaudhry, M. and Templeton, J. (1981). The queueing system M/G? /1
and its ramifications. Eur. J. Oper. Res., 6, 56—60.

48 Chaudhry, M. and Templeton, J. (1983). A First Course in Bulk
Queues, John Wiley and Sons, New York.

49 Chaudhry, M., Madill, B. and Briere, G. (1987). Computational
analysis of steady-state probabilities of M/G* /1 and related nonbulk
queues. Queueing Sys., 2, 93-114.

50 Choi, B.D. and Park, K., (1990) The M/G/1 retrial queue with
Bernoulli schedule. Queueing Systems, 7, 219-228.

51 Choi, B.D. (1999). Single server retrial queues with priority calls.
Math. Comput. Model., 30, 7-32.

52 Choi, B.D., Kim, B., and Choi, S.H. (2003). An M/G/1 queue with
multiple type of feedback gated vacations and FIFS policy. Comput.
Oper. Res,, 30, 1289-1309.

53 Choudhury, G. (1996). On a Poisson queue with general setup time
and vacation period. Indian J. Pure Appl. Math., 27, 1199-1211.

54 Choudhury, G. (1998). On a batch arrival Poisson queue with a
random setup time and vacation period. Comput. Oper. Res., 25,
1013-1026.



References 363

95

56

57

o8

99

60

61

62

63

64

65

66

67

68

69

Choudhury, G. (2000). An M?/G/1 queueing system with a set-up
period and a vacation period. Queueing Sys., 36, 23-38.

Choudhury, G. (2002). A batch arrival queue with a vacation time
under single vacation policy. Comput. Oper. Res., 29, 1941-1955.

Cinlar, E. (1969). Markov renewal theory. Adv. Appl. Probab., 1,
123-187.

Cohen, J. (1982). The Single Server Queue. North-Holland, Amster-
dam.

Conway, R.W., Miller, L.W., and Maxwell, W.L. (1967). Theory of
Scheduling. Addison-Wesley, Reading, MA.

Cooper, R. (1970). Queues served in cyclic order waiting times. Bell
Syst. Technol. J. 49, 399-413.

Cooper, R. (1981). Introduction to Queueing Theory, 2nd edition.
North-Holland, New York.

Cooper, R., Niu, S., and Srinivasan, M. (1996). A decomposition
theorem for polling models: The switchover times are effectively ad-
ditive. Oper. Res., 44, 629-633.

Courtois, P. (1980). The M/G/1 finite capacity queue with delays.
IEEE Trans. Commun., COM-28, 165.

Cramer, M. (1989). Stationary distributions in a queueing system
with vacation times and limited service. Queueing Sys., 4, 57-78.

Doshi, B. (1985). A note on stochastic decomposition in a GI/G/1
queue with vacations or set-up times. J. Appl. Probab., 22. 419-428.

Doshi, B. (1986). Queueing systems with vacations-A survey. Queue-
ing Sys., 1, 29-66.

Doshi, B. (1990a). Conditional and unconditional distributions for
M/G/1 type queue with server vacations. Queueing Sys., 7, 229-252.

Doshi, B. (1990b). Single server queue with vacations. In Stochastic
Analysis of Computer and Communications Systems, ed. H. Takagi,
217-265.

Doshi, B. (1990c). Generalization of the stochastic decomposition
results for the single-server queue with vacations. Stoch. Models, 6,
307-333.



364

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

Dshalalow, J.H. (1991). A single-server queue with random accumu-

lation level. J. Appl. Math. Stoch. Anal., 4, 203-210.

Dshalalow, J.H. (1992). On a first passage problem in general queue-
ing systems with multiple vacations, J. Appl. Math. Stoch. Anal., 5,
177-192.

Dshalalow, J.H. and Yellen, J. (1996). Bulk input queues with quo-
rum and vacations. Math. Prob. Eng., 2, 95-106.

Dshalalow, J.H. (1997). Queueing systems with state dependent pa-
rameters. In Frontiers in Queueing, ed. Dshalalow. CRC Press,
Boca Raton, FL, 61-116.

Dshalalow, J.H. (1998). Queues with hysteretic control by vacation
and post-vacation periods. Queueing Sys., 29, 231-268.

Dukhovny, A. (1997). Vacations in GI*/M*/1 systems and Riemann
boundary value problems. Queueing Sys., 27, 351-366.

Easton, G. and Chaudhry, M. (1982). The queueing system E /M*/1
and its numerical analysis. Comput. Oper. Res.,, 9, 197-205.

Eisenberg, M. (1972) Queues with periodic service and changeover
time. Oper. Res., 20, 440-451.

Eisenberg, M. and Leung, K.K. (1991). A single sever queue with
vacations and non-gated time-limited service. Perform. FEvaluation,
12, 115-125.

Eisenberg, M. (1994). The polling system with a stopping server.
Queueing Sys., 18, 387-431.

Erlang, A. (1918). Solution of some problems in the theory of prob-
abilities of significance in automatic telephone exchages. Post Office
Electr. Eng. J., 10, 189-197.

Evans, R. (1967). Geometric distribution in some two dimensional
queueing systems. Oper. Res., 15, 830-846.

Federgruen, A. and Green, L. (1986). Queueing systems with service
interruptions. Oper. Res., 34, 752—768.

Federgruen, A. and Green, L. (1988). Queueing systems with service
interruptions, II. Nav. Res. Log., 35, 345-358.

Federgruen, A. and So, K.C. (1991) Optimality of threshold policy
in single server queueing systems with server vacations. Adv. Appl.
Probab., 23, 388-405.



References 365

85

86

87

88

89

90

91

92

93

94

95

96

97

Federgruen, A. and Katalan, Z. (1999). The impact of adding a Make-
to-Order item to a Make-to-Stock production system. Manage. Sci.,
45, 980-995.

Feinberg, E.A. and Kella, O. (2002). Optimality of D-policies for an
M/G/1 queue with a removable server. Queueing Sys., 42, 355-376.

Feller, W. (1968). An Introduction to Probability Theory and Its
Applications. Vol. 1. Wiley, New York.

Ferrandiz, J. (1993). The BMAP/GI/1 queue with server set-up
times and server vacations. Adv. Appl. Probab., 25, 235-254.

Fiems, D. and Bruneel, H. (2001). Discrete time queueing systems
with vacations governed by geometrically distributed times. in Proc.
Africom, Fifth International Conference on Communication Systems,

South Africa.

Fiems, D. and Bruneel, H. (2002). Analysis of a discrete time queue-
ing system with timed vacations. Queueing Sys., 42, 243-254.

Fiems, D., Vuyst, S. and Bruneel, H. (2002). The combined gated
exhaustive vacation system in discrete time. Perform. Evaluation,
49, 227-239.

Frey, A. and Takahashi, Y. (1997). A note on an M/GI/1/N queue
with vacation time and exhaustive service discipline. Oper. Res.
Lett., 21, 95-100.

Frey, A. and Takahashi, Y.Fery, A. and Takahashi, Y. (1998). An
explicit solution for an M/GI/1 queue with vacation and exhaustive
service discipline. J. Oper. Res. Soc. of Jpn., 41, 430-441.

Fuhrmann, S. (1984). A note on the M/G/1 queue with server vaca-
tions. Oper. Res., 32, 1368-1373.

Fuhrmann, S. and Cooper, R. (1985). Stochastic decompositions in
the M/G/1 queue with generalized vacations. Oper. Res., 33, 1117—
1129.

Fuhrmann, S. and Cooper, R. (1985). Application of decomposition
principle in M/G/1 vacation model to two continuum cyclic queueing
models. ATET Tech. J., 64, 1091-1099.

Gans, N. and Zhou, Y. (2003). A call-routing problem with service-
level constraints. Oper. Res., 51, 255 — 271.



366

98

99

100

101

102

103

104

105

106

107

108

109

110

111

Gaver, D. (1962). A waiting line with interrupted service including
priorities. J. Roy. Stat. Soc., 24, 73-90.

Gavish, B. and Sumita, U. (1988). Analysis of channel and disk
subsystems in computer systems. Queueing Sys., 3, 1-23.

Gelenbe, E. and Mitrani, 1. (1980). Analysis and Synthesis of Com-
puter Systems. Academic Press, London.

Genter, W. and Vastola, K. (1988). Performance of high priority traf-
fic on token bus nextwork. Proc. 27th IEEFE conference on Decisions
and Control, 2, 1495-1498.

Gold, H. and Tran-Gia, P. (1993). Performance analysis of a batch
service queue arising out of manufacturing system modeling. Queue-
ing Sys., 14, 413-426.

Gray, W., Wang, P. and Scott, M. (2000). A vacation queueing model
with service breakdowns. Appl. Math. Model., 24, 391-400.

Gross, D. and Harris, C. (1985). Fundamentals of Queueing Theory,
2nd edition, John Wiley and Sons, New York.

Gupta, D. and Srinivasan, M. (1996). Polling systems with state-
dependent setup times. Queueing Sys., 22, 403-423.

Gupur, G. (2002). Well-posedness of M/G/1 queueing model with
single vacations. Comput. Math. Appl., 44, 1041-1056.

Harris, C. and Marchal, W. (1988). State dependence in M/G/1
server vacation models. Oper. Res., 36, 560-565.

Hashida, O. (1981). A study of multi-queues in communication con-
trol. Ph.D. Dissertation, University of Tokyo.

Hassan, M. and Atiquzzaman, M. (1997). A delayed vacation model
of an M/G/1 queue with setup time and its application to SVCC-
Based ATM network. IEICE, Trans. Commun., E80-B, 317-323.

Heffes, H. and Lucantoni, D.M. (1986). A Markov modulated charac-
terization of packetized voice and data traffic and related statistical
multiplexer performance. IEFE J. Sel. Areas Comm., Special Issue
on Network Performance Evaluation, 4, 856—868.

Hersh, M. and Brosh, I. (1980). The optimal strategy structure of
an intermittently operated service channel. Fur. J. Oper. Res., 5,
133-141.



References 367

112

113

114

115

116

117

118

119

120
121

122

123

124

125

Heyman, D. (1968). Optimal operating policies for M/G/1 queueing
systems, Oper. Res., 16, 363-382. .

Heyman, D. (1977). The T-policy for the M/G/1 queue. Manage.
Sci., 23, T75-T78.

Heyman, D. and Sobel, M. (1982). Stochastic Models in Operations
Research, Vol.1, McGraw-Hill, New York.

Hunter, J.,(1983). Mathematical Techniques of Applied Probability,
Vol. 2. Academic Press, New York.

Hur, S. and Park, S.J. (1999). The effect of different arrival rates on
the N-policy of M/G/1 with server setup. Appl. Math. Model., 23,
289-299.

Igaki, N. (1992). Exponential two server queue N-policy and multiple
vacations. Queueing Sys., 10, 279-294.

Ishizaki, F., Takine, T., and Hasegawa, T. (1995). Analysis of a
discrete-time queue with gated priority. Perform. FEvaluation, 23,
121-143.

Jacob, M.J. and Madhusoodanan, T.P. (1987). Transient solution for
a finite capacity M/G*/1 queueing system with vacations to server.
Queueing Sys., 2, 381-386.

Jaiswal, N. (1968). Priority Queues. Academic Press, New York.

Jin, S. and Tian, N. (2004). Performance evaluation of virtual chan-
nel switching system based on discrete time queue. Journal of China
Institute of Communications, 25, 58-68.(in Chinese).

Kabayashi, H. and Konheim, A. (1977). Queueing models for com-
puter communications system analysis. IEEFE Trans. Commun. COM-
25, 1-29.

Karaesmen, F. and Gupta, S.M. (1996). The finite capacity GI/M/1
queue with server vacations. J. Oper. Res. Soc., 47, 817-828.

Kasahara, S., Takine, T., Takahashi, Y. and Hasegawa, Y. (1993).
Analysis of an SPP/G/1 system with multiple vacations and E-limited
service discipline. Queueing Sys., 14, 349-367.

Kasahara, S., Takine, T., Takahashi, Y. and Hasegawa, T. (1996).
MAP/G/1 queues under N-policy with and without vacations. J.
Open. Res. Soc. of Jpn., 39, 188-212.



368

126

127

128

129

130

131

132

133

134

135

136

137

138

139

Katsaros, A. and Langaris C. (1995). An N-class structured priority
queue with vacations. Stoch. Models, 11, 235-248.

Ke, J.C. (2001). The control policy of an M/G/1 queueing system
with server startup and two vacation types. Math. Method. Oper.
Res., 54, 471-490.

Ke, J.C. (2003a). The analysis of a general input queue with N-policy
and exponential vacations. Queueing Sys., 45, 135-160.

Ke, J.C. (2003b). The optimal control of an M/G/1 queueing system
with server vacations, start-up and breakdowns. Comput. Ind. Eng.,
44, 567-579.

Keilson, J. and Servi, L. (1986). Oscillating random walk models for
GI/G/1 vacation systems with Bernoulli schedules. J. Appl. Probab.,
23, 790-802.

Keilson, J. and Servi, L. (1987). Dynamics of the M/G/1 vacation
model. Oper. Res., 35, 575-582.

Keilson, J. and Ramaswamy, R. (1988). The backlog and depletion-
time process for M/G/1 vacation model with exhaustive service dis-
cipline. J. Appl. Probab., 25, 404—412.

Keilson, J. and Servi, L. (1989). Blocking probabilities for M/G/1
vacation systems with occupancy level dependent schedules. Oper.
Res., 37, 134-140.

Keilson, J. and Servi, L. (1990). The distributional form of Little’s
law and the Fuhrmann-Cooper decomposition. Oper. Res. Lett., 9,
239-247.

Kella, O. (1989). The threshold policy in the M/G/1 queue with
server vacations. Nav. Res. Log., 36, 111-123.

Kella, O. (1990). Optimal control of the vacation scheme in an
M/G/1 queue. Oper. Res., 38, 724-728.

Kella, O. and Whitt, W. (1991). Queues with server vacations and
Levy processes with secondary jump input. Ann. Appl. Probab., 1,
104-117.

Kleinrock, L. (1975). Queueing Sys., Vol. 1: Theory. John Wiley,
New York.

Kleinrock, L. and Scholl, J. (1980). Packet switching in radio chan-
nels. IEEE Trans. on Commun., COM-28, 1015-1029.



References 369

140

141

142

143

144

145

146

147

148

149

150

151

152

153

Kleinrock, L. and Gail, R. (1996). Queueing Sys.: Problems and
Solutions. John Wiley & Sons, New York.

Kopzon, A. and Weiss, G. (2000). A push-pull queueing system.
Oper. Res. Lett., 30, 351-359.

Kuehn, P.M (1979). Multiqueue systems with non-exhaustive service.
Bell Syst. Tech. J., 58, 671-798.

Kumar, B. and Arivudainambi, D. (2002). The M/G/1 retrial queue
with Bernoulli schedules and general retrial times. Comput. Math.
Appl., 43, 15-30.

Labzovski, S., Mehrez, A. and Frenkel. (2000). The a priori vacation
probability in the M/G/1 single vacation models, Math. Comput.
Simulat., 54, 183-188.

Langaris, C. and Moutzoukis, E. (1995). A retrial with structured
batch arrivals priorities and server vacations. Queueing Sys., 20,
341-368.

Latouche, G. and Rammaswami, V. (1999). Introduction to Matrix
Analytic Methods in Stochastic Modeling. ASA- SCAM series on Ap-
plied Probability.

Lavenberg, S. (1983). Computer Performance Modeling Handbook,
Academic Press, New York.

Laxmi, P. and Gupta, U. (1999). On the finite-buffer bulk service
queue with general independent arrival: GI/M*/1/N. Oper. Res.
Lett., 25, 957-967.

Lee, H. and Srinivasan, M. (1989). Control policies for the M*/G/1
queueing system. Manage. Sci., 35, 707-721.

Lee, H. (1988). M/G/1 queue with exceptional first vacation. Com-
put. Oper. Res., 15, 441-445.

Lee, H., Lee, S., Park, and Chae, K. (1994). Analysis of the M*/G/1
queue with N-policy and multiple vacations. J. Appl. Probab., 31,
476-496.

Lee, H., Lee, S. and Chae, K. (1994). Operating characteristics of
M?/G/1 queue with N-policy. Queueing Sys., 15, 387-399.

Lee, H. (1995). Optimal control of the M*/G/1/K queue with mul-
tiple server vacations. Comput. Oper. Res., 22, 543-552.



370

154

155

156

157

158

159

160

161

162

163

164

165

166

167

Lee, H., Lee, S. and Chae, K. (1996). A fixed-size batch service queue
with vacations. J. Appl. Math. Stoch. Anal., 9, 205-219.

Lee, H., Yoon, S. and Lee, S. (1996). A continuous approximation
for batch arrival queue with threshold. Comput. Oper. Res., 23,
299-308.

Lee, H. W., Aha, B. Y., and Park, N. L. (2001). Decompositions of
the queue length distributions in the MAP/G/1 queue under multiple
and single vacations with N-policy, Stoch. Models, 17, 157-190.

Lee, H. W., Seo, W. J. and Yoon, S. H. (2001). An analysis of multiple
class vacation queues with individual thresholds. Oper. Res. Lett.,
28, 35-49.

Lee, S., Lee, H. ,Yoon, S. and Chae, K. (1995). Batch arrival queue
with N-policy and single vacation. Comput. Oper. Res.,, 22, 173—
189.

Lee, T. (1984). M/G/1/N queue with vacation time and exhaustive
service discipline. Oper. Res., 32, 7T74-784.

Lee, T. (1989). M/G/1/N queue with vacation time and limited
service discipline. Perform. Fwvaluation, 9, 181-190.

Lee, T. (1999). Analysis of infinite server polling systems with cor-
related input process and state dependent vacations. Eur. J. Oper.
Res., 115, 392-412.

Lee, T. (2004). The effect of workers with different capabilities on
customer delay. Comput. Oper. Res., 31, 359-381.

Leung, K. (1992). On the additional delay in an M/G/1 queue with
generalized vacations and exhaustive service. Oper. Res., 40, 272—
283.

Leung, K. and Eisenberg, M. (1989). A single queue with vacations
and gated time-limited service. IEEE INFOCOM, 89, 897—906.

Leung, K. and Eisenberg, M. (1990). A single queue with vacations
and non-gated time-limited service. IEEE INFOCOM, 90, 277-383.

Levy, H. and Kleinrock, L. (1986). A queue with starter and a queue
with vacations: Delay analysis by decomposition. Oper. Res., 34,
426-436.

Levy, H. (1989). Analysis of cyclic polling systems with binomial-
gated service, In Performance of Distributed and Parallel Systems,



References 371

168

169

170

171

172

173

174

175

176

177

178

179

180

181

eds. Hasegawa, Takagi, and Takahashi. North-Holland, Amsterdam,
127-139.

Levy, Y. and Yechiali. (1975). Utilization of idle time in an M/G/1
queueing system. Manage. Sci. 22, 202-211.

Levy, Y. and Yechiali. (1976). A M/M/s queue with servers vaca-
tions. INFOR, 14, 153-163.

Li, H. and Yang, T. (1995). A single server retrial queue with server
vacation and a finite number input source. Fur. J. Oper. Res. 85,
149-160.

Li, H. and Zhu, Y. (1995). On M/G/1 queue with exhaustive service
and generalized vacations, Adv. Appl. Probab., 27, 510-531.

Li, H. and Zhu, Y. (1997). M(n)/G/1/N queues with generalized
vacations. Comput. Oper. Res., 24, 301-316.

Li, W. and Alfa, A.S. (2000). Optimal policies for M/M/m queue
with two different kinds of (N, T)-policies. Nav. Res. Log., 47, 240~
258.

Lotfi, T. and Choudhury, G. (2005). Optimal design and control of
queues. To appear in TOP.

Lucantoni, D.M. and Ramaswami, V. (1985). Efficient algorithms for
solving the non-linear matrix equations arising in phase type queues.
Stoch. Models, 1, 29-51.

Lucantoni, D.M., Hellstern, M.K. and Neuts, M. (1990) A single
server queue with server vacations and a class of non-renewal arrival

processes, Adv. Appl. Probab., 22, 676-705.

Machihara, F. (1995). A G/SM/1 queue with vacations depending
on service times. Stoch. Models, 11, 671-690.

Machihara, F. (1996). A preemptive priority queue as a model with
server vacations. J. Oper. Res. Soc. Jpn., 39, 118-131.

Madan, K. (1991). On a M*/M*/I queueing system with general
vacation time. J. Inform. Manage. Sci., 1, 51-61.

Madan, K. and Saleh, M. (2001). On M/D/1 queue with general
server vacations. J. Inform. Manage. Sci., 12, 25-37.

Madan, K. and Mohammad, F.S. (2001). On single server vacation
queue with deterministic service or deterministic vacations. Calcutta
Stat. Assoc. Bull., 51, 225-241.



372

182

183

184

185

186

187

188

189

190

191

192

193

194

195

Madan, K. and Mohammad, F.S. (2001). On M/D/1 queue with
deterministic server vacations. Sys. Sci., 27, 107-118.

Madan, K., Adel, Z. and Al-Rub, A. (2004). On a single server queue
with optional phase type vacations based on exhaustive deterministic
service and a single vacation policy. Appl. Math. Comput., 149, 723—
734.

Madan, K., Abu-Dayyeh, W. and Taiyyan, F. (2003). A two server
queue with Bernoulli schedules and a single vacation policy. Appl.
Math. Comput., 145, 59-71.

Matendo, S. (1993). A single-server queue with server vacations and
a batch Markovian arrival process. Cah. C.E.R.O., 35, 87-114.

Medhi, J. (1991). Stochastic Models in Queueing Theory. Academic
Press, San Diego.

Medhi, J. and Templeton, J.G. (1992). A Poisson input queue under
N-policy and stateup time. Comput. Oper. Res.,, 19, 35-41.

Meier-Hellstern, D.L., and Neuts, M. (1990). A single server queue
with server vacations and class of nonrenewal arrival processes. Adwv.

Appl. Probab., 22, 676-705.

Meisling, T. (1958). Discrete time queueing theory. Oper. Res., 6,
96-105.

Miller, L. (1964). Alternating priorities in multi-class queues. Ph.D.
dissertation. Cornell University, Ithaca, New York.

Minh, D. (1988). Transient solutions for some exhaustive M/G/1
queue with generalized independent vacations. Fur. J. Oper. Res.,
36, 197-201.

Mitrani, I.L. and Avi-Itzhak, B. (1968). A many server queue with
service interruptions. Oper. Res., 16, 628—638.

Miyazawa, M. (1994). Decomposition formulas for single server queue
with vacations: An unified approach. Stoch. Models, 10, 389-413.

Moutzoukis, E. and Langaris, C. (1996). Non-preemptive priorities
and vacations in a multi class retrial queueing system. Stoch. Models,
12, 455-472.

Muh, D.C. (1993). A bulk queueing system under N-policy with
bilever service delay discipline and state-up time. Appl. Math. Stoch.
Anal., 6, 359-384.



References 373

196

197

198

199

200

201

202

203

204

205

206

207

208

209

Nair, S.S. and Neuts, M. (1969). A priority rule based on the ranking
of the service times for the M/G/1 queue. Oper. Res., 17, 466-477.

Neuts, M. (1979). A versatile Markovian point process. J. Appl.
Probab., 16, 764-779.

Neuts, M. (1981). Matriz-Geometric Solutions in Stochastic Models.
Johns Hopkins University Press, Baltimore, MD.

Neuts, M. and Ramalhoto, M. (1984). A service model in which
the server is required to search for customers. J. Appl. Probab., 21,
157-166.

Neuts, M. (1995). Matrix-analytic methods in queueing theory. In
Advances in Queueing, edi. Dshalalow. CRC Press, Boca Raton, FL,
265-292.

Neuts, M. (1989). Structured Stochastic Matrices of M/G/1 type and
Their Applications. Marcel Dekker, New York.

Neuts, M., Perez-ocon, R. and Torres-Castro, I. (2000). Repairable
models with operating and repair time governed by phase type dis-
tributions. Adv. Appl. Probab., 32, 468-479.

Nishimura, S. and Jiang, Y. (1995). An M/G/1 vacation model with
two service models. Prob. Eng. Inform. Sci., 9, 355-374.

Niu, S.C. and Cooper, R.B. (1993). Transform-free analysis of
M/G/1/K and related queues. Math. Oper. Res., 18, 486-510.

Niu, Z., Takahashi, Y. and Endo, N. (1998). Performance evaluation
of SVC-Based IP-Over-ATM network. IEICE Trans. Commun. E81-
B, 948-957.

Niu, Z. and Takahashi, Y. (1999). A finite capacity queue with
exhaustive vacation/close-down/setup time and Markovian arrival
processes. Queueing Sys., 31, 1-23.

Niu, Z. Shu, T. and Takahashi, Y. (2003). A vacation queue with
setup and close-down times and batch Markovian arrival processes.
Perform. Evaluation, 54, 225-248.

O’Cinneide, C. (1990). Characterization of phase type distributions.
Stoch. Models, 6, 1-57.

Okamura, H., Dohi, T. and Osaki, S. (2000). Optimal policies for
a controlled queueing system with removable server under a random
vacation circumstance. Comput. Math. Appl., 39, 215-227.



374

210 Panken, J. M. (1999). The interseparture time distribution for each
class in the queue with set-up times and repeated server vacation.
Perform. FEvaluation, 38, 219-241.

211 Park. O.J. and Lee, H. (1997). Optimal strategy in N-policy system
with early set-up. J. Oper. Res. Soc., 48, 303-313.

212 Prabhu, N. (1997). Foundations of Queueing Theory. Kluwer Acad-
emic Publishers, Boston.

213 Puterman, M. (1994). Markov Decision Processes. John Wiley, New
York.

214 Ramaswami, V. (1980). The N/G/1 queue with vacation time and
exhaustive service discipine. Oper. Res., 4, 183—188.

215 Ramaswami, V. (1988). Stable recursion for the steady state vector
for Markov chains of M/G/1 type. Stoch. Models, 4, 183-188.

216 Ramaswamy, R. and Servi, L. (1988). The busy period of the M/G/1
vacation model with a Bernoulli schedule. Stoch. Models, 4, 507-521.

217 Ramaswamy, R. (1990) From the matrix-geometric to matrix expo-
nential. Queueing Sys., 6, 229-260.

218 Ramaswamy, V. and Taylor, P. (1996). Some properties of the rate
operators in level dependent quasi-birth-and-death processes with a
countable number of phases. Stoch. Models, 12, 143-164.

219 Reddy, G.V., Nadarajan, R. and Arumuganathan, R. (1998). Analy-
sis of a bulk queue with N-policy multiple vacations and setup times.
Comput. Oper. Res., 25, 957-967.

220 Reddy, G.V. and Anitha, R. (1998). Markovian bulk service queue
with delayed vacations. Comput. Oper. Res., 25, 1159-1166.

221 Resing, J.A. (1993). Polling systems and multitype branching processes.
Queueing Sys., 13, 409-426.

222 Righter, R. and Shanthikumar, J. (1998). Multiclass production sys-
tems with setup times. Oper. Res., 46, S145-5153.

223 Robertazzi, P. (2000). Computer Networks and Systems: Queueing
Theory and Performance Evaluation. Springer, New York.

224 Rosberg, Z. and Gail, H. (1991). ASTA implied an M/G/1 like load
decomposition for a server with vacations. Oper. Res. Lett., 10,
95-97.



References 375

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

Rosenberg, E. and Yechiali, U. (1993). The M*/G/1 queue with
single and multiple vacation under LIFO service regime. Oper. Res.
Lett., 14, 171-179.

Ross, S.M. (1983). Stochastic Processes. John Wiley, New York.

Rubin, I. and Zhang, Z. (1988). Switch-on policies for communica-
tions and queueing systems. Proc. of the 3rd Int. Conf. on Data
Commun.. Elsevier, Amsterdam, 329-339.

Rudin, W. (1966). Real and Complex Analysis. McGraw-Hill, New
York.

Saaty, T. (1961). Elements of Queueing Theory with Applications.
McGraw-Hill, New York.

Sakai, Y., Takahachi, Y. and Hasegawa, T. (1998). A composite
queue with vacation/set-up/close-down time for IP over ATM Net-
works. J. Oper. Res. Soc. of Jpn,, 41, 68-80.

Schellhaas, H. (1994). Single server queue with a batch Markovian
arrival process and server vacations. OR Spektrum, 15, 189-196.

Scholl, M. and Kleinrock, L. (1983). On the M/G/1 queue with rest
periods and certain service independent queueing discipline. Oper.

Res., S1, 705-719.

Scholl, M. and Kleinrick, L. (1994). On the M/G/1 queue with a
batch Markovian arrival process and server vacations. OR Spektrum,
15, 189-196.

Selvam, D. and Sivasankaran, V. (1994). A two phase queueing sys-
tem with vacations. Oper. Res. Lett., 15, 163—168.

Sengupta, B. (1990) A queue with service interruption in an alter-
nating random enviroment. Oper. Res., 38, 308-318.

Sengupta, B. (1991). Phase type representation of matrix-geometric
solution. Stoch. Models, 6, 163-167.

Senott, L. (1999). Stochastic Dynamic Programming and the Control
of Queueing Systems. John Wiley, New York.

Serfozo, R. (1972). Processes with conditional stationary indepen-
dent increments. J. Appl. Probab., 9, 303-315.

Servi, L. (1986a). Average delay approximation of M/G/1 cyclic
queues with Bernoulli schedules. IFEE J. Select. Areas Commun.,
SAC-4, 813-822.



376

240

241

242

243

244

245

246

247

248

249

250

251

252

Servi, L. (1986b). D/G/1 queue with vacations. Oper. Res., 34,
619-629.

Servi, L. and Finn, S. (2002). M/M/1/queue with working vacations
(M/M/1/WV). Perform. Evaluation, 50, 41-52.

Shanthikumar, J. (1980). Some analysis of the control of queues
using level crossing of regenerative processes. J. Appl. Probab., 17,
814-821.

Shanthikumar, J. (1981). Optimal control of an M/G/1 priority
queue via N-control. Am. J. Math. Manage. Sci., 1, 191-212.

Shanthikumar, J. (1988). On stochastic decomposition in M/G/1
type queues with generalized server vacations. Oper. Res., 36, 566—
569.

Shanthikumar, J. (1989). Level crossing analysis of priority queues
and a conservation identity for vacation models. Nav. Res. Log., 36,
797-806.

Shanthikumar, J. and Sumita, U. (1989). Modified Lindley process
with replacement: dynamic behavior asymptotic decomposition and
applications. J. Appl. Probab., 26, 552-565.

Shomrony, M. and Yechiali, U. (2001). Burst arrival queue with
server vacations and random timers. Math. Method. Oper. Res., 53,
117-146.

Sikdar, K. and Gupta, U. (2005). Analysis and numerical aspect of
batch service queue with single vacation. Comput. Oper. Res., 32,
943-966.

Singh, M. and Srinivasan, M. (2002). Exact analysis of the state
—dependent polling model. Queueing Sys., 41, 371-399.

Skinner, C. (1967). A priority queueing system with server-walking
time. Oper. Res., 15, 278-285.

Stidham, S. (1972). Regenerative process in the theory of queues with
applications to the alternative-priority queue. Adv. Appl. Probab.,
4, 5b42-577.

Sumita, S. (1989). Performance analysis of inter-processor commu-
nications in an electronic switching system with distributed control.
Perform. FEvaluation, 9, 83-91.



References 377

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

Tadj, L. and Choudhury, G. (2005). Optimal design and control of
queues. To appear in TOP.

Takacs, L. (1962). Introduction to the Theory of Queues. Oxford
University Press, New York.

Takagi, H. (1985). Mean message waiting time in a symmetric polling
system. Performance’ 84, Glenbe (editor), Elsevier Science Publish-
ers, Amsterdam, 293-302.

Takagi, H. (1986). Analysis of Polling Systems. MIT Press, Cam-
bridge, MA.

Takagi, H. (1990). Time dependent analysis of M/G/1 vacation mod-
els with exhaustive service. Queueing Sys., 6, 369-389.

Takagi, H. (1991). Queueing Analysis, Vol. 1, Vacation and Priority
Systems. North-Holland Elsevier, Amsterdam.

Takagi, H. (1992). Time dependent process of M/G/1 with exhaus-
tive service. J. Appl. Probab., 29, 418-424.

Takagi, H., (1992). Analysis of an M/G/1//N queue with multiple
server vacations and its application to a polling model. J. Oper. Res.
Soc. Jpn., 35, 300-315.

Takagi, H. (1993a). Queueing Analysis, Vol. 3, Discrete-time Sys-
tems. North-Holland Elsevier, Amsterdam.

Takagi, H. (1993b). M/G/1/K queues with N-policy and setup times.
Queueing Sys., 14, 79-98.

Takagi, H. (1994). M/G/1//N queue with server vacations and ex-
haustive service. Oper. Res., 42, 926-938.

Takagi, H. and Leung, K. (1994). Analysis of a discrete-time queueing
system with time-limited service. Queueing Sys., 18, 183-197.

Takaki, H. (1997). Queueing analysis of polling models: Progress in
1990-1994. In Frontiers in Queueing, ed. Dshalalow. CRC Press,
Boca Raton, FL, 119-146.

Takine, T. and Hagesawa, T. (1990). A note on M/G/1 vacation
system with waiting time limits. Adv. Appl. Probab., 22, 513-518.

Takine, T. and Hasekawa, T. (1992). A generalization of the decom-
position property in the M/G/1 queue with server vacations, Oper.
Res. Lett., 12, 97-99.



378

268

269

270

271

272

273

274

275

276

277

278

279

280

281

Takine, T. and Hasegawa, T. (1993). A batch SPP/G/1 queue with
multiple vacation and exhaustive service discipline. Telecommun.
Sys., 1, 195-215.

Takine, T. and Sengupta, A. (1997). A single server queue with
service interruption. Queueing Sys., 26, 285-300.

Takine, T. (1999). The nonpreemptive priority MAP/D/1 queue.
Oper. Res., 47, 917-927.

Takine, T. (2000). A new recursion for the queue length distribution
in the stationary BNAP/GI/1 queue. Stoch. Models, 16, 335-341.

Takine, T. (2001). Distributional form of Little’s law for FIFO queue
with Markovian arrival streams and its application to queue with
vacation. Queueing Sys., 37, 31-63.

Tang, Y. (1994). The departure process of the M/G/1 queueing
model with server vacation and exhaustive service discipline. J. Appl.
Probab., 31, 1070-1082.

Tang, Y. (1997). A single-server M/G/1 queueing system subject to
breakdowns—some reliability and queueing problems. Microelectron.
Reliab., 35, 1131-1136.

Tedijanto, E.E. (1990). Exact results for the cyclic service queue with
a Bernoulli schedule. Perform. Evaluation, 11, 107-115.

Teghem, J. (1985). Analysis of a single server systems with vacation
periods. Belg. J. Oper. Res., 25, 47-54.

Teghem, J. (1986). Control of the service process in queueing system.
Eur. J. Oper. Res., 23, 141-158.

Tian, N., Zhang, D. and Cao, C. (1989). The GI/M/1 queue with
exponential vacations. Queueing Sys., 5, 331-344.

Tian, N., Cao, C. and Zhang, D. (1991). M/G/1 queues with control-
lable vacations and optimizing of vacation policy. Acta Math. Appl.
Sinica, 7, 363-373.

Tian, N. (1993). The GI/M/1 queue with single exponential vacation.
Syst. Sci. Math. Sci., 13, 1-9 (in Chinese).

Tian. N. (1992). The M/G/1 queue system with multiple-stage adap-
tive vacation. J. Appl. Math., 4, 1218 (in Chinese).



References 379

282

283

284

285

286

287

288

289

290

291

292

293

294

295

Tian. N. (1994). Stochastic service systems with server vacations—a

survey. China J. Oper. Res., 13, 29-33 (in Chinese).

Tian. N., Li, Q. and Cao, J. (1999). Conditional stochastic decom-
positions in the M/M/c queue with server vacation. Stoch. Models,
14, 367-377.

Tian, N. and Li, Q. (2000). M/M/c queueing systems with synchro-
nous phase type vacations. Syst. Sci. Math. Sci., 13, 7-16.

Tian. N. and Zhang, Z.G. (2002). The discrete-time GI/Geo/1 queue
with multiple vacations. Queueing Sys., 40, 283-294.

Tian, N. and Zhang, Z.G. (2003a). Stationary distributions of GI/M/c
queue with PH type vacations. Queueing Sys., 44, 183-202.

Tian, N. and Zhang, Z.G. (2003b). A note on GI/M/1 queues with
phase-type setup times or server vacations. INFOR, 41, 4, 341-351.

Tian, N. and Zhang, Z.G. (2005). The performance effects of idle
time utilization in multi-server queueing systems. Working paper,
Department of Decision Sciences, Western Washington University,
Bellingham, WA.

Tian, N. and Zhang, Z.G. (2006). A two threshold vacation policy in
multi-server queueing systems. Fur. J. Oper. Res., 168, 153—-163.

Tijms, H.C. (1986). Stochastic Molelling and Analysis. John Wiley,
New York.

Vinod, B. (1986). Exponential queue with server vacations. J. Oper.
Res. Soc., 37, 1007-1014.

Walrand, J. (1988). An Introduction to Queueing Networks, Prentice-
Hall, Englewood Cliffs, NJ.

Wang, K.H. (1997). Optimal control of an M/Ek/1 queueing system
with removable service station subject to breakdowns. J. Oper. Res.
Soc., 48, 1131-1136.

Wang, K.H., Chang, K. and Sivazlian, B. (1999). Optimal control of
a removable and non-reliable server in an infinite and a finite M/H2/1
queueing system. Appl. Math. Model., 23, 651-666.

Wang, K.H. and Ke, J.C. (2000). A recursive method to the optimal
control of an M/G/1 queueing system with finite capacity and infinite
capacity, Appl. Math. Model., 24, 899-914.



380

296 Watson, K. (1984). Performance evaluation of cyclic service strate-
gies: a survey. In Proceedings of the Tenth International Symposium
on Computer Performance. North-Holland, Amsterdam.

297 Weiss, G. (1999). Scheduling and control of manufacturing systems—
a fluid approach. Proceedings of the 37 Allerton Conference, Monti-
cello, 577-586.

298 Welch, P. (1964). On a generalized M/G/1 queueing process in which
the first customer of each busy period receives exceptional service.
Oper. Res., 12, 736-752.

299 White, H. and Christie, L. (1958). Queueing with preemptive prior-
ities or with breakdown. Oper. Res., 6, 79-95.

300 Wolff, R. (1982). Poisson arrival see time averages. Oper. Res., 30,
223-231.

301 Wolff, R. (1989). Stochastic Modeling and the Theory of Queues,
Prentice-Hall, Englewood Cliffs, NJ.

302 Wortman, M. and Disney, R., (1990) Vacation queues with Markov
schedules. Adv. Appl. Probab., 22, 730-748.

303 Wortman, M., Disney, R. and Kiessler, P. (1991). The M/G/1 Bernoulli
feedback queue with vacations. Queueing Sys., 9, 353-364.

304 Xu, E. and Alfa, A. (2002). A vacation model for the non-saturated
Readers and Writers system with a threshold policy. Perform. Ewval-
uation, 50, 233-244.

305 Xu, X. and Zhang, Z.G. (2005). The analysis of multi-server queue
with single vacation and an (e, d) policy. To appear in Perform.
Evaluation.

306 Yadin, M. and Naor, P. (1963). Queueing systems with a removable
server. Oper. Res., 14, 393—405.

307 Yashkov, S. (1983) A derivation of response time distribution for an
M/G/1 processor-sharing queue. Probl. of Control Inform. Theory,
12, 133-148.

308 Yates, R. (1994). Analysis of discrete time queues via the reversed
process. Queueing Sys., 18, 107-166.

309 Yechiali, U. (1993). Analysis and control of polling systems. In
Perform. Evaluation of Computer and Communications Systems, ed.
Donantiello and Nelson, Berlin.



References 381

310

311

312

313

314

315

316

317

318

319

320

321

322

Yehia, R. (1998). Polling models: Decomposition of waiting times
and effects of switchover and setup times. Ph.D. dissertation, Dept.
of Computer Science and Engineering, Florida Atlantic University.

Yoon, B. and Chae, K. (1999). An invariance in the priority M/G/1
queue with generalized vacations. Working paper, Dept. of Industrial
Engineering, KAIST Taejonshi, Korea.

Zhang, Z.G. and Vickson, R. (1993). A single approximation for
mean waiting time in M/G/1 queue with vacations and limited service
discipline. Oper. Res. Lett., 13, 21-26.

Zhang, 7Z.G., Vickson, R. and Eenige, M. (1997). Optimal two-
threshold policies in an M/G/1 queue with two vacation type. Per-
form. FEvaluation, 29, 63-80.

Zhang, Z.G. and Love, C. (1998). The threshold policy in M/G/1
queue with an exceptional first vacation. INFOR, 36, 193-204.

Zhang, Z.G. and Tian, N. (2001). Discrete time Geo/G/1 queue with
multiple adaptive vacations. Queueing Sys., 38, 419-429.

Zhang, Z.G., Vickson, R.G. and Love, C.E. (2001). The optimal
service policies in an M/G/1 queueing system with multiple vacation
types. INFOR, 39, 357-366.

Zhang, Z.G. and Tian, N. (2003a). Analysis on queueing systems
with synchronous vacations of partial servers. Perform. Evaluation,
52, 296-282.

Zhang, Z.G. and Tian, N. (2003b). Analysis of queueing systems
with synchronous single vacation for some servers. Queueing Sys.,
45, 161-175.

Zhang, Z.G. and Tian, N. (2004). The N- threshold for the GI/M/1
queue. Oper. Res. Lett., 32, T7-84.

Zhang, Z.G., Love, C.E., and Song, Y. (2005). The optimal service
time allocation of a versatile server to queue jobs and stochastically
available non-queue jobs of different types. To appear in Comput.
Oper. Res..

Zhang, Z.G. (2005). On the convexity of the two-threshold policy for
an M/G/1 queue with vacations. To appear in Oper. Res. Lett..

Zhang, Z.G. (2006). On the three threshold policy in the multiserver
queueing system with vacations. To appear in Queueing Sys..



382

323 Zheng, Y. (1992). On properties of stochastic inventory systems.
Manage. Sci., 38, 87-103.

324 Zheng, Y. and Chen, F. (1992). Inventory policies with quantized
ordering. Nav. Res. Log., 39, 285-305.

325 Zhu, Y. and Prabhu, N. (1991). Markov-modulated PH/G/1 queue-
ing systems. Queueing Sys., 9, 313-322.



Index

Additional delay, 4

Additional queue length, 4
Asynchronous setup times, 231
Asynchronous vacation policy, 194
ATM networks, 350

Average cost function, 298

Batch arrival, 54

Batch service, 59

Bernoulli scheduling, 78, 111

Binomial decrementing service, 123

Binomial gated service, 87

Bulk queue with vacations, 170
GI/M(@:b) /1 (E, MV), 170
M*/G/1 (E, MV), 54
M/G(@:b) /1 (E, MV), 59
M/G(@b) /1 (B, SV), 65

Busy period, 11

Classical queueing model, 3

GI/M/1 model, 129

M/G/1 model, 10

M/M/c model, 203
Closure property of PH distribution, 44
Conditional stochastic decomposition , 5, 200
Convexity of cost function, 315

D-policy, 33

Decrementing service, 78, 115

Delayed busy period, 30

Differential difference equations, 55, 114, 171

Discrete-time queue
Geo/G/1 model, 36
GI/Geo/1 model, 183

Discrete-time vacation model, 35, 183
Geo/G/1 (E, MAV)
Geo/G/1 (E, MV)
Geo/G/1 (E, SU), 4
Geo/G/1 (E, SV), 4

GI/Geo/1 (E, MV), 184
Dynamic control model, 318

Eigenvalue, 137
Eigenvector, 137
Embedded Markov chain, 10, 92, 130
Embedded Markov renewal process , 48
Equilibrium equation, 14
Erlang distribution lemma, 249
Exhaustive service, 3
Exhaustive service vacation model
M/G/1 (E, MAV), 12
M/G/1 (E, MV), 19
M/G/1 (E, SU), 24
M/G/1 (E, SV), 21
Expected total reward, 301
Expected waiting cost, 300

Finite buffer vacation model
GI/M/1/K (E, MV), 179
M/G/1/N (E, MV), 70

First-passage time, 50

Flexible production system, 343

Gated service, 77

General decrementing service, 118

General input vacation model
GI/M/1 (E, MV), 134, 146
GI/M(@:2) /1 (E, MV), 170
GI/M/1 (E, SU), 145
GI/M/1 (E, SV), 151
GI/M/1 N-policy, 162
GI/M/1/K (E, MV), 179
GI/M/c (SY, MV), 269

General limited service, 92

GI/M/1 type structure matrix, 129, 285

Holding cost of customers, 309

Infinitesimal generator, 21



384

Jacobi partitioned form, 131

Laplace-Stieltjes transform (LST), 4
Law of total probability, 49, 145
Limited service, 77

Little’s Law, 71

Markov arrival process, 47
Markovian multiserver vacation models
M/M/c (AS, MV), 220, 233
M/M/c (AS, MV, d), 258
M/M/c (AS, MV, d-N), 330
M/M/c (AS, SU), 231, 235
M/M/c (AS, SV), 230, 234
M/M/c (SY, MV), 204
M/M/c (SY, MV, d), 235
M/M/c (SY, MV, e-d), 245
M/M/c (SY, SU), 220
M/M/c (SY, SU, d), 245
M/M/c (SY, SV), 214
M/M/c (SY, SV, d), 245
Matrix analytical method, 131
Matrix equation, 132, 138
Matrix geometric solution, 131
Memoryless property, 17, 182, 302

Minimum nonnegative solution, 132, 198, 272

Multiple adaptive vacations, 10
Multiple vacations, 19
Multitask servers, 345

N-threshold policy, 27, 162
Nonexhaustive service, 3

Nonexhaustive service vacation models
M/G/1 (BD MV), 123

M/G/1 (BG, MV), 8
M/G/1 (BL, MV), 9
M/G/1 (BS MV), 111
M/G/1 (EL, MV), 102
M/G/1 (G, MV), 8
M/G/1 (G, SV)
M/G/1 (GD MV), 118
M/G/1 (GL, MV), 92
M/G/1 (PD, MV), 115
M/G/1 (PL, MV), 90
M/G/1 (TG, MV), 109

M/G/1 (TL, MV), 109
Nonqueueing tasks, 193
Normalization condition, 15, 100, 142, 200

Optimal threshold values, 307
Optimization in vacation models, 297

Parametric optimization, 307
PH distribution, 21, 133

PH distribution or Phase type distribution, 133

PH representation, 133
PH-renewal process, 46

Policy-improvement algorithm, 325
Pollaczek-Khinthin formulas, 11
Probability generating function, 4
Pure decrementing service, 115
Pure limited service, 90

PVCC, 351

Quasi-birth-and-death process, 196
Queue length, 4

Rate matrix, 132, 223

Recursive relation, 163, 224, 289, 303
Recursive scheme, 51

Regeneration cycle, 79

Regeneration cycle method, 77
Renewal reward theorem, 301, 356
Residual life of vacation, 20

Revenue structures, 297

Sample path of work process, 308
Search algorithm, 307

Semi-Markov decision process, 319
Server utilization level, 298

Server vacation, 1

Service cycle, 78

Service period, 78

Setup time, 24

Single vacation , 3

Spectral radius, 132

Startup cost, 320

Stationary policy, 325

Stationary state, 68

Steady-state transitions, 55

Stochastic decomposition, 4, 19
Subcycle period, 309

Supplementary variable method, 59, 113
Supplementary variables, 54

SVCC, 351

Synchronous multiple vacation policy, 203
Synchronous setup time, 215
Synchronous single vacation policy, 214
Synchronous vacation policy, 194, 204

T-exhaustive limited service, 109
T-gated limited service, 109
T-limited service, 107
T-policy, 32
Threshold vacation policy, 195
Traffic intensity, 10, 48
Triangular matrix
block-form, 138
block-partitioned, 201
Two-threshold policy, 297

Unfinished work, 107

Vacation duration distribution, 3
Vacation policy, 3



INDEX 385

Vacation startup rule, 3 Work conservation law, 107
Vacation termination rule, 3
Virtual channel connection (VCC), 351
z-transform, 4
Waiting cost, 169 Zero-length service period, 81, 87



Early Titles in the
INTERNATIONAL SERIES IN

OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Frederick S. Hillier, Series Editor, Stanford University

Saigal/ A MODERN APPROACH TO LINEAR PROGRAMMING
Nagurney/ PROJECTED DYNAMICAL SYSTEMS & VARIATIONAL INEQUALITIES WITH
APPLICATIONS
Padberg & Rijal/ LOCATION, SCHEDULING, DESIGN AND INTEGER PROGRAMMING
Vanderbei/ LINEAR PROGRAMMING
Jaiswal/ MILITARY OPERATIONS RESEARCH
Gal & Greenberg/ ADVANCES IN SENSITIVITY ANALYSIS & PARAMETRIC PROGRAMMING
Prabhuw/ FOUNDATIONS OF QUEUEING THEORY
Fang, Rajasekera & Tsao/ ENTROPY OPTIMIZATION & MATHEMATICAL PROGRAMMING
Yu/ OR IN THE AIRLINE INDUSTRY
Ho & Tang/ PRODUCT VARIETY MANAGEMENT
El-Taha & Stidham/ SAMPLE-PATH ANALYSIS OF QUEUEING SYSTEMS
Miettinen/ NONLINEAR MULTIOBJECTIVE OPTIMIZATION
Chao & Huntington/ DESIGNING COMPETITIVE ELECTRICITY MARKETS
Weglarz/ PROJECT SCHEDULING: RECENT TRENDS & RESULTS
Sahin & Polatoglu/ QUALITY, WARRANTY AND PREVENTIVE MAINTENANCE
Tavares/ ADVANCES MODELS FOR PROJECT MANAGEMENT
Tayur, Ganeshan & Magazine/ QUANTITATIVE MODELS FOR SUPPLY CHAIN MANAGEMENT
Weyant, J./ ENERGY AND ENVIRONMENTAL POLICY MODELING
Shanthikumar, J.G. & Sumita, U./ APPLIED PROBABILITY AND STOCHASTIC PROCESSES
Liu, B. & Esogbue, A.O./ DECISION CRITERIA AND OPTIMAL INVENTORY PROCESSES
Gal, T., Stewart, T.J., Hanne, T. / MULTICRITERIA DECISION MAKING: Advances in
MCDM Models, Algorithms, Theory, and Applications
Fox, B.L. / STRATEGIES FOR QUASI-MONTE CARLO
Hall, R.W. / HANDBOOK OF TRANSPORTATION SCIENCE
Grassman, W.K./ COMPUTATIONAL PROBABILITY
Pomerol, J-C. & Barba-Romero, S./ MULTICRITERION DECISION IN MANAGEMENT
Axsiter, S. /INVENTORY CONTROL
Wolkowicz, H., Saigal, R., & Vandenberghe, L. / HANDBOOK OF SEMI-DEFINITE
PROGRAMMING: Theory, Algorithms, and Applications
Hobbs, B.F. & Meier, P. / ENERGY DECISIONS AND THE ENVIRONMENT: A Guide
to the Use of Multicriteria Methods
Dar-El, E. / HUMAN LEARNING: From Learning Curves to Learning Organizations

Armstrong, J.S. / PRINCIPLES OF FORECASTING: A Handbook for Researchers and
Practitioners

Balsamo, S., Personé, V., & Onvural, R./ ANALYSIS OF QUEUEING NETWORKS WITH

BLOCKING

Bouyssou, D. et al. / EVALUATION AND DECISION MODELS: A Critical Perspective

Hanne, T./ INTELLIGENT STRATEGIES FOR META MULTIPLE CRITERIA DECISION MAKING

Saaty, T. & Vargas, L./ MODELS, METHODS, CONCEPTS and APPLICATIONS OF THE

ANALYTIC HIERARCHY PROCESS
Chattcrjee, K. & Samuelson, W. / GAME THEORY AND BUSINESS APPLICATIONS
Hobbs, B. et al. / THE NEXT GENERATION OF ELECTRIC POWER UNIT COMMITMENT
MODELS

Vanderbei, R.J. / LINEAR PROGRAMMING: Foundations and Extensions, 2nd Ed.

Kimms, A. / MATHEMATICAL PROGRAMMING AND FINANCIAL OBJECTIVES FOR
SCHEDULING PROJECTS

Baptiste, P., Le Pape, C. & Nuijten, W. / CONSTRAINT-BASED SCHEDULING

Feinberg, E. & Shwartz, A./ HANDBOOK OF MARKOV DECISION PROCESSES: Methods
and Applications

Ramik, J. & Vlach, M./ GENERALIZED CONCAVITY IN FUZZY OPTIMIZATION
AND DECISION ANALYSIS

Song, J. & Yao, D. / SUPPLY CHAIN STRUCTURES: Coordination, Information and
Optimization

Kozan, E. & Ohuchi, A. / OPERATIONS RESEARCH/ MANAGEMENT SCIENCE AT WORK

Bouyssou et al. / AIDING DECISIONS WITH MULTIPLE CRITERIA: Essays in
Honor of Bernard Roy



Early Titles in the
INTERNATIONAL SERIES IN

OPERATIONS RESEARCH & MANAGEMENT SCIENCE
(Continued)

Cox, Louis Anthony, Jr. / RISK ANALYSIS: Foundations, Models and Methods

Dror, M., L’Ecuyer, P. & Szidarovszky, F./ MODELING UNCERTAINTY: An Examination
of Stochastic Theory, Methods, and Applications

Dokuchaev, N. / DYNAMIC PORTFOLIO STRATEGIES: Quantitative Methods and Empirical Rules
Jfor Incomplete Information

Sarker, R., Mohammadian, M. & Yao, X. / EVOLUTIONARY OPTIMIZATION

Demeulemeester, R. & Herroelen, W. / PROJECT SCHEDULING: A Research Handbook

Gazis, D.C. / TRAFFIC THEORY

Zhw/ QUANTITATIVE MODELS FOR PERFORMANCE EVALUATION AND BENCHMARKING

Ehrgott & Gandibleux/ MULTIPLE CRITERIA OPTIMIZATION: State of the Art Annotated Bibliographical
Surveys

Bienstock/ Potential Function Methods for Approx. Solving Linear Programming Problems

Matsatsinis & Siskos/ INTELLIGENT SUPPORT SYSTEMS FOR MARKETING
DECISIONS

Alpern & Gal/ THE THEORY OF SEARCH GAMES AND RENDEZVOUS

Hall/HANDBOOK OF TRANSPORTATION SCIENCE - 2™ Ed.

Glover & Kochenberger/ HANDBOOK OF METAHEURISTICS

Graves & Ringuest/ MODELS AND METHODS FOR PROJECT SELECTION:
Concepts from Management Science, Finance and Information Technology

Hassin & Haviv/ TO QUEUE OR NOT TO QUEUE: Equilibrium Behavior in Queueing Systems

Gershwin et al/ ANALYSIS & MODELING OF MANUFACTURING SYSTEMS

Maros/ COMPUTATIONAL TECHNIQUES OF THE SIMPLEX METHOD

Harrison, Lee & Neale/ THE PRACTICE OF SUPPLY CHAIN MANAGEMENT: Where Theory and
Application Converge

Shanthikumar, Yao & Zijm/ STOCHASTIC MODELING AND OPTIMIZATION OF
MANUFACTURING SYSTEMS AND SUPPLY CHAINS

Nabrzyski, Schopf & WRglarz/ GRID RESOURCE MANAGEMENT: State of the Art and Future Trends

Thissen & Herder/ CRITICAL INFRASTRUCTURES: State of the Art in Research and Application

Carlsson, Fedrizzi, & Fullér/ FUZZY LOGIC IN MANAGEMENT

Soyer, Mazzuchi & Singpurwalla/ MATHEMATICAL RELIABILITY: An Expository Perspective

Chakravarty & Eliashberg/ MANAGING BUSINESS INTERFACES: Marketing, Engineering, and
Manufacturing Perspectives

* A list of the more recent publications in the series is at the front of the book *





