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Abstract: Many organizations, such as banks, airlines, telecommunications companies, 
and police departments, routinely use queueing models to help determine 
capacity levels needed to respond to experienced demands in a timely fashion. 
Though queueing analysis has been used in hospitals and other healthcare 
settings, its use in this sector is not widespread. Yet, given the pervasiveness 
of delays in healthcare and the fact that many healthcare facilities are trying to 
meet increasing demands with tightly constrained resources, queueing models 
can be very useful in developing more effective policies for bed allocation and 
staffing, and in identifying other opportunities for improving service. 
Queueing analysis is also a key tool in estimating capacity requirements for 
possible future scenarios, including demand surges due to new diseases or acts 
of terrorism. This chapter describes basic queueing models as well as some 
simple modifications and extensions that are particularly useful in the 
healthcare setting, and give examples of their use. The critical issue of data 
requirements is also be discussed as well as model choice, model- building and 
the interpretation and use of results. 
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I. INTRODUCTION 

1.1 Why is queueing analysis helpful in healthcare? 

Healthcare is riddled with delays. Almost all of us have waited for days 
or weeks to get an appointment with a physician or schedule a procedure, 
and upon arrival we wait some more until being seen. In hospitals, it is not 
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unusual to find patients waiting for beds in hallways, and delays for surgery 
or diagnostic tests are common. 

Delays are the result of a disparity between demand for a service and the 
capacity available to meet that demand. Usually this mismatch is temporary 
and due to natural variability in the timing of demands and in the duration of 
time needed to provide service. A simple example would be a healthcare 
clinic where patients walk in without appointments in an unpredictable 
fashion and require anything from a flu shot to the setting of a broken limb. 
This variability and the interaction between the arrival and service processes 
make the dynamics of service systems very complex. Consequently, it's 
impossible to predict levels of congestion or to determine how much 
capacity is needed to achieve some desired level of performance without the 
help of a queueing model. 

Queueing theory was developed by A.K. Erlang in 1904 to help 
determine the capacity requirements of the Danish telephone system (see 
Brockmeyer et al, 1948). It has since been applied to a large range of service 
industries including banks, airlines, and telephone call centers (e.g. Brewton 
1989, Stem and Hersh 1980, Holloran and Byrne 1986, Brusco et al 1995, 
and Brigandi et al 1994) as well as emergency systems such as police patrol, 
fire and ambulances (e.g. Larson 1972, Kolesar et al 1975, Chelst and 
Barlach 1981, Green and Kolesar 1984, Taylor and Huxley 1989). It has also 
been applied in various healthcare settings as we will discuss later in this 
chapter, Queueing models can be very useful in identifying appropriate 
levels of staff, equipment, and beds as well as in making decisions about 
resource allocation and the design of new services. 

Unlike simulation methodologies, discussed in Chapter 9, queueing 
models require very little data and result in relatively simple formulae for 
predicting various performance measures such as mean delay or probability 
of waiting more than a given amount of time before being served. This 
means that they are easier and cheaper to use and can be more readily used 
to find '̂optimal" solutions rather than just estimating the system 
performance for a given scenario. 

Timely access has been identified as one of the key elements of 
healthcare quality (Institute of Medicine 2001) and consequently, decreasing 
delays has become a focus in many healthcare institutions. Given the 
financial constraints that exist in many of these facilities, queueing analysis 
can be an extremely valuable tool in utilizing resources in the most cost-
effective way to reduce delays. The primary goal of this chapter is to provide 
a basic understanding of queueing theory and some of the specific queueing 
models that can be helpful in designing and managing healthcare systems. 
For more detail on specific models that are commonly used, a textbook on 
queueing theory such as Hall (1991) is recommended. 
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Before discussing past and potential uses of queueing models in 
healthcare, it's important to first understand some queueing theory 
fundamentals. 

1.2 Queueing System Fundamentals 

A basic queueing system is a service system where "customers" arrive to 
a bank of ''servers" and require some service from one of them. It's 
important to understand that a "customer" is whatever entity is waiting for 
service and does not have to be a person. For example, in a "back-office" 
situation such as the reading of radiologic images, the "customers" might be 
the images waiting to be read. Similary, a "server" is the person or thing that 
provides the service. So when analyzing delays for patients in the emergency 
department (ED) awaiting admission to the hospital, the relevant servers 
would be inpatient beds. 

If all servers are busy upon a customer's arrival, they must join a queue. 
Though queues are often physical lines of people or things, they can also be 
invisible as with telephone calls waiting on hold. The rule that determines 
the order in which queued customers are served is called the queue 
discipline. The most common discipline is the familiar first-come, first-
served (FCFS) rule, but other disciplines are often used to increase 
efficiency or reduce the delay for more time-sensitive customers. For 
example, in an ED, the triage system is an example of a priority queue 
discipline. Priority disciplines may be preemptive or non-preemptive, 
depending upon whether a service in progress can be interrupted when a 
customer with a higher priority arrives. In most queueing models, the 
assumption is made that there is no limit on the number of customers that 
can be waiting for service, i.e. there is an infinite waiting room. This is a 
good assumption when customers do not physically join a queue, as in a 
telephone call center, or when the physical space where customers wait is 
large compared to the number of customers who are usually waiting for 
service. Even if there is no capacity limit on waiting room, in some cases 
new arrivals who see a long queue may "balk" and not join the queue. This 
might happen in a walk-in clinic. A related characteristic that is incorporated 
in some queueing systems is "reneging" which occurs when customers grow 
inpatient and leave the queue before being served. An example of this 
behavior is found in some EDs where the patients who renege are often 
referred to as "left without being seen". 

Finally, queues may be organized in various ways. In most cases, we will 
consider a single line that feeds into all servers. But sometimes each server 
has his/her own queue as may be the case for a primary care office in which 
patients have their own physician. This is usually referred to as queues in 
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parallel In other situations, we may want to consider a network design in 
which customers receive service from different types of servers in a 
sequential manner. For example, a surgical inpatient requires an operating 
room (OR), then a bed in the recovery unit, followed by a bed in a surgical 
intensive care unit (ICU), and/or other part of the hospital. However, it might 
still make sense to analyze a single queue in these situations to determine the 
capacity requirements of a single type of resource, particularly if there is 
reason to believe that the resource is a bottleneck. 

A queueing model is a mathematical description of a queuing system 
which makes some specific assumptions about the probabilistic nature of the 
arrival and service processes, the number and type of servers, and the queue 
discipline and organization. There are countless variations possible, but 
some queueing models are more widely used and we will focus on these in 
this chapter. For these models, as well as many others, there are formulae 
available that enable the fast calculation of various performance measures 
that can be used to help design a new service system or improve an existing 
one. 

2. BASIC QUEUEING PRINCIPLES AND MODELS 

Most of queueing theory deals with system performance in steady-state. 
That is, most queueing models assume that the system has been operating 
with the same arrival, service time and other characteristics for a sufficiently 
long time that the probability distribution for the queue length and customer 
delay is independent of time. Clearly, there are many service systems, 
including health care systems, for which there are time-of-day, day-of-week 
or seasonality affects. In this section, we will assume that we are looking at 
systems in steady-state and in subsequent sections, we will discuss how to 
deal with systems that have some time-varying characteristics. 

2.1 Delays, Utilization and System Size 

In queueing theory, utilization, defined as the average number of busy 
servers divided by the total number of servers times 100, is an important 
measure. From a managerial perspective, utilization is often seen as a 
measure of productivity and therefore it is considered desirable for it to be 
high. For example, in hospital bed planning, utilization is called occupancy 
level and historically, an average hospital occupancy level of 85 percent has 
been used as the minimum level for the states to make a determination under 
Certificate of Need (CON) regulations that more beds might be needed (see 
Brecher and Speizio 1995). Since the actual average occupancy rate for 
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nonprofit hospitals has recently been about 66 percent, there has been a 
widely held perception in the health care community that there are too many 
hospital beds. Largely because of this perception, the number of hospital 
beds has decreased almost 25 percent in the last 20 years. 

But determining bed capacity based on occupancy levels can result in 
very long waiting times for beds (Green 2003). In all queueing systems, the 
higher the average utilization level, the longer the wait times. However, it is 
important to note that this relationship is nonlinear. This is illustrated in 
Figure 1 which shows the fundamental relationship between delays and 
utilization for a queueing system. There are three critical observations we 
can make from this figure. First, as average utilization (e.g. occupancy rate) 
increases, average delays increase at an increasing rate. Second, there is an 
'*elbow" in the curve after which the average delay increases more 
dramatically in response to even small increases in utilization. Finally, the 
average delay approaches infinity as utilization approaches one. (It's 
important to note that this assumes there is no constraint on how long the 
queue can get and that customers continue to join and remain in the queue.) 

The exact location of the elbow in the curve depends upon two critical 
characteristics of the system: variability and size. Variability generally exists 
in both the time between arrivals and the duration of service times and is 
usually measured by the ratio of the standard deviation to the mean, called 
the coefficient of variation (CV). The higher the degree of variability in the 
system, the more to the left the elbow will be so that delays will be worse for 
the same utilization level. System size is defined as the ratio of the average 
demand over the average service time, which is a determinant of the number 
of servers needed. The larger the system, the closer the elbow will be to 
100%, so that delays will be smaller for the same utilization level. 

Average 
Delay 

100% 
litilizalion 

Figure 10-1 Tradeoff between average delay and utilization in a queueing 
system 
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These basic queueing principles have several important implications for 
planning or evaluating capacity in a service system. First, the average total 
capacity, defined as the number of servers times the rate at which each 
server can serve customers, must be strictly greater than the average demand. 
In other words, unless average utilization is strictly less than 100%, the 
system will be ''unstable" and the queue will continue to grow. Though this 
fact may appear counter-intuitive on the surface, it has been well known by 
operations professionals for decades. So if an emergency room has ten 
patients arriving per hour on average and each healthcare provider 
(physician or physician assistant) can treat 2 patients per hour, a minimum of 
six providers is needed. (Of course, in many contexts, if arrivals see a long 
queue they may not join it or they may renege after waiting a long time. If 
so, the system may stabilize even if the average demand exceeds the average 
capacity.) Second, the smaller the system, the longer the delays will be for a 
given utilization level. In other words, queueing systems have economies of 
scale so that, for example, larger hospitals can operate at higher utilization 
levels than smaller ones yet maintain similar levels of congestion and delays. 
Finally, the greater the variability in the service time (e.g. length-of-stay), 
the longer the delays at a given utilization level. So a clinic or physician 
office that specializes in e.g. vision testing or mammography, will 
experience shorter patient waits than a university based clinic of the same 
size and with the same provider utilization that treats a broad variety of 
illnesses and injuries. These properties will be more specifically illustrated 
when we discuss applications of queueing models. 

2.2 Some simple but useful queueing models 

2.2.1 The Poisson process 

In specifying a queueing model, we must make assumptions about the 
probabilistic nature of the arrival and service processes. The most common 
assumption to make about arrivals is that they follow a Poisson process. The 
name comes from the fact that the number of arrivals in any given time 
period has a Poisson distribution. So if N(t) is the number of arrivals during a 
time period of duration t and N(t) has a Poisson distribution. 

Probability {N(t) = n} = e^' (Xif/n! 

where X is called the rate and is the expected number of arrivals per unit 
time. For example, if >. = 10 customers per hour, then the expected number 
of arrivals in any 60 minute interval is 10 and the expected number to arrive 
in a 15 minute interval is 2.5. Notice that these are averages so that X need 
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not have an integer value. Another way to characterize the Poisson process is 
that the time between consecutive arrivals, called the interarrival time, has an 
exponential distribution. So if lA is the interarrival time of a Poisson process 
with rate X, 

Probability {/A<t} = l - e " ^ ' 

and \IX is the average time between arrivals. 
An important property of the exponential distribution is that it is 

''memoryless". This means that the time of the next arrival is independent of 
when the last arrival occurred. This property also leads to the fact that if the 
arrival process is Poisson, the number of arrivals in any given time interval 
is independent of the number in any other non-overlapping time interval. 
Conversely, it can be shown analytically that if customers arrive 
independently from one another, the arrival process is a Poisson process. For 
this reason, the Poisson process is considered the most *'random" arrival 
process. 

In determining whether the Poisson process is a reasonable model for 
arrivals in a specific service system, it is useful to consider its three defining 
properties: 

1. Customers arrive one at a time. 
2. The probability that a customer arrives at any time is independent 

of when other customers arrived. 
3. The probability that a customer arrives at a given time is 

independent of the time. 

In most contexts, customers generally do arrive one at a time. Though 
there may be events, such as a major accident, that trigger multiple 
simultaneous arrivals, this is likely to be an exceptional circumstance which 
will not significantly affect the usefulness of this modeling assumption. 
Intuitively, the second property is also often a reasonable assumption. For 
example, in an emergency room, where the population of potential patients is 
very large, it is unlikely that someone arriving with a broken arm has 
anything to do with someone else's injury or illness, or that the fact that the 
number of patients who arrived between 9am and 10am was four provides 
information about the number of patients that are likely to arrive between 
10am and 11am. Again, there may be occasional exceptions, such as a flu 
outbreak, for which there is an exogenous factor responsible for generating 
multiple arrivals over a time period. However, this assumption is still likely 
to be a reasonable one in most situations. The third property may be more 
suspect. More typically, the average arrival rate varies over the day so that, 
e.g., it is more likely for an arrival to occur in the morning than in the middle 
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of the night. Certain days of the week may be busier than others as well. 
However, we may be able to use the standard Poisson process as a good 
model for a shorter interval of time during which the arrival rate is fairly 
constant. We will discuss this in more detail in a subsequent section. 

So the assumption of a Poisson process will generally be a good one 
when the three properties above are a reasonable description of the service 
system in question. However, it is possible to perform more rigorous tests to 
determine if it is a good fit. The simplest tests are based on the relationship 
of the standard deviation to the mean of the two distributions involved in the 
Poisson process. Since the variance (square of the standard deviation) of the 
Poisson distribution is equal to its mean, we can examine the number of 
arrivals in each fixed interval of time, (e.g. 30 minutes) and determine 
whether the ratio of the mean to the variance is close to one. Alternatively, 
since the exponential distribution is characterized by its standard deviation 
being equal to its mean, we can look at the interarrival times and compute 
the ratio of the standard deviation to the mean to see if it's close to one. Hall 
(1991) describes goodness of fit tests in greater detail. 

Many real arrival and demand processes have been empirically shown to 
be very well approximated by a Poisson process. Among these are demands 
for emergency services such as police, fire and ambulance, arrivals to banks 
and other retail establishments, and arrivals of telephone calls to customer 
service call centers. Because of its prevalence and its assumption of 
independent arrivals, the Poisson process is the most commonly used arrival 
process in modeling service systems. It is also a convenient assumption to 
make in terms of data collection since it is characterized by a single 
parameter - its rate X. In healthcare, the Poisson process has been verified to 
be a good representation of unscheduled arrivals to various parts of the 
hospital including ICUs, obstetrics units and EDs (Young 1965, Kim et al 
1999, Green etal 2005). 

2,2.2 The M/MA model 

The most commonly used queueing model is the M/M/s or Erlang delay 
model. This model assumes a single queue with unlimited waiting room that 
feeds into s identical servers. Customers arrive according to a Poisson 
process with a constant rate, and the service duration (e.g. LOS or provider 
time associated with a patient) has an exponential distribution. (These two 
assumptions are often called Markovian, hence the use of the two ''M's" in 
the notation used for the model.) 

One advantage of using the M/M/s model is that it requires only three 
parameters and so it can be used to obtain performance estimates with very 
little data. Given an average arrival rate, X, an average service duration, 1/|LI, 
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and the number of servers, s, easy-to-compute formulae are available to 
obtain performance measures such as the probability that an arrival will 
experience a positive delay, po, or the average delay, W :̂ 

s-\ 

W^=pJ[(l-psju)] 

10-1 

10-2 

for 

p = X/ sfi 10-3 

and 

Pn 

A" 

niju 
X" 
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10-4 

where 

Po 
n=0 

p's' 
n\ s\{s- ps) 

p<\ 10-5 

Note that p is the average utilization for this queueing system and the 
equation is only valid when the utilization is strictly less than one. Also note 
that average delay increases as utilization approaches one. These quantitative 
observations support the discussion of utilization and delays in the previous 
section. 

Many other measures of performance can be calculated as well and many 
of the formulae for both the M/M/s and other common queueing models are 
available in software packages or are easily programmable on spreadsheets. 
One common performance constraint is often referred to as the service level 
- a requirement that x% of customers start service within y time units. For 
example, many customer call centers have a target service level that 85% of 
calls be answered within 20 seconds. The delay is always measured from the 
time of the demand for service (e.g. patient registered in the ED) to the time 
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at which service begins (e.g. a provider is available to treat that patient). It's 
important to note that the model's delay predictions pertain only to waiting 
times due to the unavailability of the server. 

2,2.3 Some useful extensions of the M/M/s model 

There are several variations on the basic M/M/s queueing model. One 
important one for many healthcare organizations is the M/M/s with priorities. 
While the fundamental model assumes that customers are indistinguishable 
and are served FCFS, the priority model assumes that customers have 
differing time-sensitivities and are allocated to two or more service classes / 
= 1,2,...M and that customers are served in priority order with 1 being the 
highest priority and Â  the lowest. Within any given class, customers are 
served FCFS. But when there is a queue and a server becomes available, a 
customer belonging to class i will be served only if there are no waiting 
customers of class 1,...,M. A priority queueing model would be appropriate 
if a facility is interested in identifying the capacity needed to assure a 
targeted service level for the highest priority customers. For examples, in an 
ED, while many arriving patients would not incur any particular harm if they 
had to wait more than an hour to be seen by a physician, some fraction, who 
are emergent or urgent, need a physician's care sooner to prevent serious 
clinical consequences. In this case, a priority queueing model could be used 
to answer a question like: How many physicians are needed to assure that 
90% of emergent and urgent patients will be seen by a physician within 45 
minutes? 

There are two types of priority queueing disciplines: preemptive and non-
preemptive. In the preemptive model, if a higher priority customer arrives 
when all servers are busy and a lower priority customer is being served, the 
lower priority customer's service will be interrupted (preempted) so that the 
higher priority customer can begin service immediately. The preempted 
customer must then wait for another server to become free to resume service. 
In the non-preemptive model, new arrivals cannot preempt customers 
already in service. While priority queueing models are usually either purely 
preemptive or non-preemptive, it is possible to model a service system that 
has both preemptive and non-preemptive customer classes. This might be 
appropriate for a hospital ED where the normal triage system which 
classifies patients as emergent, urgent or non-urgent is usually assumed to be 
non-preemptive, but will use a preemptive discipline for certain urgent 
patients whose conditions are extremely time-sensitive, such as stroke 
victims. In addition to the usual input parameters for the M/M/s model, 
priority models also require the fraction of customers in each of the priority 
classes. 
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Another common variant of the M/M/s model assumes a finite capacity K 
> s and is notated as M/M/s/K. In this model, if a customer arrives when 
there are K customers already in the system (being served and waiting), the 
customer cannot join the queue and must leave. A common application of 
this would be a telephone trunk line feeding into a call center. Such a system 
has a finite number of spaces for calls being served or on hold and when a 
new call comes in and all the spaces are already taken, the new arrival hears 
a busy signal and hangs up. A similar phenomenon might occur in a walk-in 
health clinic which has a waiting room with a fixed number of seats. Though 
some patients may choose to wait even if there is no seat available upon 
arrival, many patients may leave and try to return at a less busy time. 
Customers who are ''blocked" from joining the queue are called ''lost" and 
may show up again or never return. In these types of systems, queueing 
analysis might be used to help determine how large the waiting or holding 
area should be so that the number of customers who are blocked is kept to an 
acceptably low level. 

A specific special case of these finite capacity models is the one where K 
= ^ so that there is no waiting room for those who arrive when all servers are 
busy. These are called pure "loss" models and they are often used to analyze 
service systems in which it is considered either impractical or very 
undesirable to have any customers wait to begin service. For example, 
Kaplan, Sprung and Shmueli (2003) used a loss model to analyze the impact 
of various admissions policies to ICU facilities. 

2.3 The M/G/1 and G/G/s models 

An important characteristic of the exponential distribution used in the 
M/M/s is that the standard distribution equals the mean and so the CV of the 
service time equals one. If the actual CV of service is a bit less than or 
greater than one, the M/M/s will still give good estimates of delay. However, 
if the CV is substantially different than one, the M/M/s may significantly 
underestimate or overestimate actual delays, (Recall that if variability is 
lower, the model will overestimate delays while the converse is true if 
variability is greater.) In this case, if the arrival process is Poisson, and there 
is only one server, the average delay can still be calculated for any service 
distribution through use of the following formula for what is known as the 
M/G/1 system: 

Wq = [lp/(l-p)][(l + CV^(S))/2] 10-6 

where CV^(S) is the square of the coefficient of variation of the service time. 
Clearly, this formula requires knowledge of the standard deviation of the 
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service time in addition to the mean in order to compute CV^(S), This 
formula also illustrates the impact of variability on delays. Notice that, as 
mentioned previously, as the coefficient of variation of the service time 
increases, so does the average delay. 

Though there are no exact formula for non-Markovian multi-server 
queues, there are some good, simple approximations. One such 
approximation (Allen 1978) is given by: 

W, = W,MM/s [CV'(A) + CV'iSn 12 10-7 

where CV^{A) is the square of the coefficient of variation of the arrival time 
and Wq,M/M/s is the expected delay for an M/M/s system, eq. (2). So this 
formula requires the standard deviation of the interarrival time as well and 
again demonstrates that more variability results in longer delays. 

3. ANALYSES OF FIXED CAPACITY: HOW MANY 
HOSPITAL BEDS? 

Many resources in health care facilities have a fixed capacity over a long 
period of time. These are usually ''things" rather than people: beds, operating 
rooms, imaging machines, etc, Queueing models are not always appropriate 
for analyzing such resources. In particular, if the patients for a resource are 
scheduled into fixed time slots, there is little or no likelihood of congestion 
unless patients routinely come late or the time slots are not large enough to 
accommodate most patients. An example of this would be a magnetic 
resonance imaging (MRI) facility which is only used by scheduled 
outpatients. It should be noted that the use of an appointment system can be 
an effective way to minimize or eliminate variability in the arrival stream of 
a service system and therefore minimize delays. See Chapter for more on 
appointment systems. 

However, the difficulty of managing many healthcare facilities is that the 
demand for resources is unscheduled and hence random, yet timely care is 
important. This is the case for many parts of a hospital that deal primarily 
with non-elective admissions. In these cases, queueing models can be very 
helpful in identifying long-term capacity needs, 

3.1 Applying the M/M/s model 

To illustrate the use of a queueing model for evaluating capacity, 
consider an obstetrics unit. Since it is generally operated independently of 
other services, its capacity needs, e.g. number of postpartum beds, can be 
determined without regard to other parts of the hospital. It is also one for 
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which the use of a standard M/M/s queueing model is quite good. Most 
obstetrics patients are unscheduled and the assumption of Poisson arrivals 
has been shown to be a good one in studies of unscheduled hospital 
admissions (Young 1965). In addition, the CV of length of stay is typically 
very close to 1.0 (Green and Nguyen 2001) satisfying the service time 
assumption of the M/M/s model. 

A queueing model may be used either descriptively or prescriptively. As 
an example of the descriptive case, we can take the current operating 
characteristics of a given obstetrics unit: arrival rate, average LOS, and 
number of beds; and use these in equation (10-1) to determine the 
probability that an arriving patient will not find a bed available. Let's assume 
that Big City Hospital's obstetrics unit has an average arrival rate of >. = 14.8 
patients per day, an average LOS of l/|i = 2.9 days, and ^ = 56 beds. Then 
the M/M/s formula for probability of delay (10-1) produces an estimate of 
approximately 4%. To use the M/M/s prescriptively to find the minimum 
number of beds needed to attain a target probability of delay, we can enter 
equation (10-1) in a spreadsheet and produce a table of results for a broad 
range of bed capacities to find the one that best meets the desired target. 
Table 10-1 is a partial table of results for our example obstetrics unit. 

Table 10-1 Probability of (Delay) and utilization for obstetrics unit 

No. Beds 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

Pr(Delay) 

0.666 
0.541 

0.435 

0.346 

0.272 

0.212 

0.163 

0.124 

0.093 

0.069 

0.051 

0.037 

0.026 

0.018 

0.013 

0.009 

0.006 

Utilization 

0.953 

0.933 

0.913 

0.894 

0.875 

0.858 

0.841 

0.825 

0.809 

0.794 

0.780 

0.766 

0.753 

0.740 

0.727 

0.715 

0.703 
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62 
63 
64 
65 

0.004 

0.003 

0.002 

0.001 

0.692 

0.681 

0.670 

0.660 

Though there is no standard delay target, Schneider (1981) suggested that 
given their emergent status, the probability of delay for an obstetrics bed 
should not exceed 1%. Applying this criterion. Table 10-1 indicates that this 
unit has at least 60 beds. Table 10-1 also shows the utilization level for each 
choice of servers and that at 60 beds, this level is 71.5%. This is what 
hospitals call the average occupancy level and it is well below the 85% level 
that many hospitals and healthcare policy officials consider the minimum 
target level. It is also below the maximum level of 75% recommended by the 
American College of Obstetrics and Gynecology (ACOG) to assure timely 
access to a bed (Freeman and Poland 1992). So does this example show that 
as long as an obstetrics unit operates below this ACOG occupancy level of 
75%, the fraction of patients who will be delayed in getting a bed will be 
very low? 

3.2 The problem with using target occupancy levels 

Hospital capacity decisions traditionally have been made, both at the 
government and institutional levels, based on target occupancy levels - the 
average percentage of occupied beds. Historically, the most commonly used 
occupancy target has been 85%. Estimates of the number of "excess" beds in 
the United States, as well as in individual states and communities, usually 
have been based on this ''optimal" occupancy figure (Brecher and Speizio 
1995, p.55). In addition, low occupancy levels are often viewed as indicative 
of operational inefficiency and potential financial problems. So hospital 
administrators generally view higher occupancy levels as desirable. 
However, as we saw previously in this chapter, higher occupancy levels 
result in longer delays and so basing capacity on target occupancy levels can 
lead to undesirable levels of access for patients. 

In Green (2002), the basic M/M/s model is used to demonstrate the 
implications of using target occupancy levels to determine capacity in both 
obstetrics and ICU units in New York State. Figure 1 from that paper (shown 
below as Figure 10-2) shows the distribution of average occupancy rates for 
148 obstetrics units in New York State for 1997. These data, representing 
nearly all obstetrics units in New York, were obtained from Institutional 
Cost Reports (ICRs), and unlike most other published data, reflect staffed 
beds rather than certified beds. The graph shows that many maternity units 
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had low average occupancy levels with the overall average occupancy level 
for the study hospitals was only 60%, which, based on the ACOG standard, 
would imply significant excess capacity. Applying this 75% standard to the 
1997 data, 117 of the 148 New York state hospitals had "excess" beds, while 
27 had insufficient beds. 

However, if one considers a bed delay target as a more appropriate 
measure of capacity needs, the conclusions can be quite different. Now the 
number of beds in each unit becomes a major factor since, for a given 
occupancy level, delays increase as unit size decreases. While obstetrics 
units usually are not the smallest units in a hospital, there are many small 
hospitals, particularly in rural areas, and the units in these facilities may 
contain only five to 10 beds. Of the New York state hospitals considered 
here, more than 50% had maternity units with 25 or fewer beds. 
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Figure 10-2 Average Occupancy Rates of New York State 
Maternity Units, 1997 

In the M/M/s model, probability of delay is a function of only two 
parameters: s and p, which in our context is the number of beds and 
occupancy level. Each of the three curves shown in Figure 10-3 represents a 
specific probability of delay as a function of these two variables as generated 
by equation (10-1). Thus, using the unit size and occupancy level reported 
on the ICR report for a given maternity unit, we can determine from this 
figure if the probability of delay meets or exceeds any one of these targets. 



296 PATIENT FLOW: REDUCING DELAY IN HEALTHCARE DELIVERY 

For example, if a maternity unit has 15 beds and an occupancy level of 45%, 
it would fall below all three curves and hence have a probability of delay 
less than .01 or 1%, meeting all three targets. 

Doing this for every hospital in the database, 30 hospitals had insufficient 
capacity based on even the most slack delay target of 10%. (It is interesting 
to note that two of the hospitals that would be considered over utilized under 
the 75% occupancy standard had sufficient capacity under this delay 
standard.) Tightening the probability of delay target to 5%, yields 48 
obstetrics units that do not meet this standard. And adopting a maximum 
probability of delay of 1% as was suggested in the only publication 
identified as containing a delay standard for obstetrics beds (Schneider 
1981), results in 59, or 40%, of all New York state maternity units with 
insufficient capacity. 

How many hospitals in New York State had maternity units large enough 
to achieve the ACOG-suggested 75% occupancy level and also meet a 
specified probability of delay standard? Using Figure 10-3, we see that for a 
10% target, an obstetrics unit would need to have at least 28 beds, a size that 
exists in only 40% of the state hospitals. For a 5% standard, the minimum 
number of beds needed is 41, a size achieved in only 14% of the hospitals; 
for a 1% standard, at least 67 beds are needed, leaving only three of the 148 
or 2% of the hospitals of sufficient size. 
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3.3 Choosing a delay standard 

As the previous analysis illustrates, the number of required beds can 
change substantially depending upon what level of delay is considered 
tolerable. There is no single right choice and in choosing a delay standard, 
several factors are relevant. 

First, what is the expected delay of those patients who experience a 
delay? This performance measure can be easily calculated once both the 
probability of delay (equation 10-1) and the average or mean delay (equation 
10-2) are known. Specifically, 

Expected delay of delayed customers = W^j/po 10-8 

So returning to our obstetrics example above, Table 10-1 shows that the 
average delay is .008 days (note that since the input was expressed in days, 
so is the output) which multiplying by 24 gives us .19 hours. So dividing this 
by the probability of delay of .04 results in an expected delay for delayed 
patients of about 4.75 hours. This may indicate that the probability of delay 
standard should be lower. This, of course, should be considered in light of 
what this level of congestion means for the particular hospital. 

What are the possible consequences of congestion? In the obstetrics case, 
while patients in some hospitals remain in the same bed through labor, 
delivery, recovery, and postpartum, in most maternity units, there are 
separate areas for some or all of these stages of birth. Therefore, a delay for 
an obstetrics bed often means that a postpartum patient will remain in a 
recovery bed longer than necessary. This, of course, may cause a backup in 
the labor and delivery areas so that newly arriving patients may have to wait 
on gurneys in hallways or in the emergency room. Some hospitals have 
overflow beds in a nearby unit that is opened (staffed) when all regular beds 
are full. (This is likely the case for the five hospitals that reported average 
occupancy levels exceeding 100%.) While these effects of congestion likely 
pose no medical threat for most patients who experience normal births, there 
could be adverse clinical consequences in cases in which there are com
plications. In particular, whether patients are placed in hallways or overflow 
units, the nursing staff is likely to be severely strained, thereby limiting the 
quantity and quality of personal attention. Even if a hospital is able to obtain 
additional staffing, it is usually by using agency nurses who are more 
expensive and not as familiar with the physical or operating environment, 
thereby jeopardizing quality of patient care. In addition, telemetry devices, 
such as fetal monitors that are usually in labor and delivery rooms, may be 
unavailable in other locations, thus compromising the ability to monitor 
often need the resources of an intensive care vital body functions of both 
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mother and baby. Finally, it is worth noting that such results of congestion 
may negatively affect patients' perceptions of service quality. 

Of course, all major capacity decisions need to be made in light of 
financial constraints, competing demands, and predictions concerning future 
demands for the service. 

3.4 Planning for predictable changes in demand 

When making capacity decisions about resources that will be used over 
several years, it is clearly necessary to consider how conditions may change 
over that period of time. So in determining the choice of arrival rate or 
average LOS for a queueing analysis of a hospital unit, it would be important 
to engage in analyses and discussion to gauge how these parameters may 
change and then run the model to determine the sensitivity of capacity levels 
to these changes. 

However, what may not be so obvious is the need to consider the changes 
in the arrival rate that are likely to occur on a regular basis due to predictable 
day-of-week or time-of-year patterns. For example, obstetrics units often 
experience a significant degree of seasonality in admissions. An analysis 
performed on data from a 56-bed maternity unit at Beth Israel Deaconess 
Hospital in Boston (Green and Nguyen 2001) revealed that the average 
occupancy levels varied from a low of about 68% in January to about 88% in 
July. As indicated by Figure 10-4, the M/M/s model estimate of the 
probability of delay of getting a bed for an obstetrics patient giving birth in 
January is likely to be negligible with this capacity. However, in July, the 
same model estimates this delay to be about 25%. And if, as is likely, there 
are several days when actual arrivals exceed this latter monthly average by 
say 10%, this delay probability would shoot up to over 65%. The result of 
such substantial delays can vary from backups into the labor rooms and 
patients on stretchers in the hallways to the early discharge of patients. 
Clearly, hospitals need to plan for this type of predictable demand increase 
by keeping extra bed capacity that can be used during peak times, or by 
using ''swing" beds that can be shared by clinical units that have 
countercyclical demand patterns. 
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Figure 10-4 Probability of Delay as a function of arrivals per day for a 
56 bed obstetrics unit 

Most hospital units experience different arrival rates for different days of 
the week. For example, in one surgical intensive care unit, the average 
admissions per day over a six month period varied from a low of 1.44 for 
Sundays to a high of 4.40 for Fridays. Using the average arrival rate over the 
week of 3.34 in a queueing model would indicate that given the 12 bed 
capacity of this unit, the probability of delay for a bed was about 39%, 
indicating serious congestion. However, this is very misleading because 
delays will be significantly greater in the middle of the week and quite small 
earlier in the week due to the large differences in the admissions rates (Green 
and Nguyen (2001). This illustrates a situation in which a steady-state 
queueing model is inappropriate for estimating the magnitude and timing of 
delays and for which a simulation model will be far more accurate. 

It's important to note that while in the obstetrics unit case, most arrivals 
are unscheduled and cannot be controlled, in the surgical unit case, the 
converse is true since most surgeries are elective. So while there is little that 
can be done to minimize the seasonal variability in arrivals for the former, 
the intra-week variability of the surgical unit could be reduced by adjusting 
the scheduling of surgeries so as to smooth out the demand over the week. 
This would result in higher average levels of bed occupancy and shorter 
delays for beds. 
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3.5 Using queueing models to quantify the benefits of 
flexibility 

Healthcare facilities often have to make a choice as to the extent to 
which resources should be dedicated to specific patient types. For example, 
should there be a imaging facility just for the use of inpatients, or for 
emergency patients? Should there be a ''fast-track" unit in the emergency 
room to deal with simpler, non-urgent cases. How many distinct clinical 
service units should be used for hospital inpatients? In many of these 
situations, a queueing analysis can be useful in evaluating the potential 
trade-offs between more flexible and more specialized facilities. 

For example, seriously ill patients arriving to a hospital ED often 
experience serious delays in being admitted due to highly variable patient 
demands and insufficient inpatient bed capacity. Yet, hospitals are often 
reluctant or unable to add capacity because of cost pressures, regulatory 
constraints, or a shortage of appropriate personnel. This makes it extremely 
important to use existing capacity most efficiently. Increasing bed flexibility 
can be a key strategy in alleviating congestion. For example, hospitals vary 
in the degree to which they segregate patients by diagnostic type. While all 
hospitals have separate units for pediatrics, obstetrics and psychiatric 
patients, some also have distinct units for clinical services such as 
cardiology, neurology, oncology, urology, neurosurgery, etc. Other 
hospitals may make no such distinctions and simply designate all of these as 
medical/surgical beds. What are the implications of these differing bed 
assignment policies on delays for beds? 

As mentioned in section 2.1, service systems have economies of scale 
and so in general, the less specialized the beds, the larger the pool of beds 
that can be used for any type of patient, and therefore the fewer beds should 
be needed to achieve a given standard of delay. In other words, if one 
hospital has 100 general medical/surgical beds, and another has the same 
100 beds, but allocated into 10 distinct clinical services, each of which can 
only be used for patients falling into the appropriate category, the second 
hospital will likely have considerably longer delays for beds (which usually 
show up as longer stays in the ED) and lower average occupancy levels than 
the first. This is pretty clear once you consider that by creating separate 
categories of beds, there is the possibility of patients waiting for beds even 
when beds are available if they are the "wrong" kind. This also happens 
when beds are distinguished by capability, for example, telemetry beds. 

Clearly, there are many instances in which there are compelling clinical 
and/or managerial reasons for maintaining particular patient types in 
specialized units. From a medical perspective, there may be benefits derived 
from having patients clustered by diagnostic categories in dedicated units 
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managed and staffed by specialized nurses. These include shorter LOS, 
fewer adverse events and fewer readmits. Yet, many hospital managers 
believe that nurses can be successfully cross-trained and that increasing bed 
flexibility is ultimately in the best interests of patients by increasing speedy 
access to beds and minimizing the number of bed transfers. By 
incorporating waiting times, percentage of "off-placements" and the effects 
on LOS, queueing models can be used to better evaluate the benefits of 
greater versus less specialization of beds or any other resource. This would 
be done by simply modeling the general-use unit as a single multi-server 
queueing system fed and comparing the results to those from modeling each 
distinct service as an independent queue. In the latter case, the overall patient 
delay can be obtained from an arrival rate weighted average of the individual 
queue delays (see e.g. Green and Nguyen 2001). 

4. ANALYSES OF FLEXIBLE CAPACITY: 
DETERMINING STAFFING LEVELS TO MEET 
TIME-VARYING DEMANDS 

As mentioned previously, health care facilities generally experience very 
different levels of demand over the day, over the week, and even over the 
year. Many facilities adjust their staffing - e.g. physicians, nurses, 
technicians, housekeeping staff - in order to respond to the demands in a 
timely fashion at minimal cost. This is often done without the help of a 
quantitative model and can lead to an inefficient and ineffective allocation of 
resources. Here we use the example of determining physician staffing levels 
in an ED to illustrate how queueing models can be used to improve 
performance in these types of situations. 

4.1 Data collection and model choices 

In order to use a queueing model to determine how to adjust staffing to 
meet time-varying demands, it is first necessary to collect fairly detailed data 
on the volume of demand that must be handled by that staff by time-of-day 
and day-of-week. In collecting demand data, the goal is two-fold. First, and 
most obviously, the data will be used to parameterize the queueing model. 
However, before that can be done, it must first be determined how many 
staffing models are needed. That is, will staffing be identical for all days of 
the week or vary from day to day? For example, in a study conducted in the 
ED of a mid-size urban hospital in New York City (Green et al 2005), the 
overall volume varied from a low of 63 patients per day on Saturdays to a 
high of 72 per day on Monday. This degree of variation indicated that the 
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then-current policy of identical staffing levels for all days of the week was 
likely suboptimal. However, it was deemed impractical to have a different 
provider schedule every day and so it was decided to use queueing analyses 
to develop two schedules: weekday and weekend. This required aggregating 
ED arrival data into these two groups. For each, demand data was then 
collected for each hour of the day using the hospital's admissions database to 
understand the degree of variation over the day (see Figure 10-5). This level 
of detail also allows for the use of queuing analysis to determine the impact 
of different shift starting times on delays and/or staffing levels. 
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Figure 10-5 Average Arrival Patterns for the Allen Pavilion 

A queueing model also requires an average provider service time per 
patient, which must include the times of all activities related to a patient. In 
the ED, these activities include direct patient care, review of x-rays and lab 
tests, phone calls, charting, and speaking with other providers or consults. In 
many, if not most, hospitals, these data are not routinely collected. At the 
time of the study, provider service times were not recorded and had to be 
estimated indirectly from direct observation and historical productivity data. 

4.2 Constructing the queueing models 

Since the M/M/s model assumes that the arrival rate does not change 
over the day, actual service systems that have time-varying demands 
typically use this model as part of a SIPP (stationary independent period-by-
period) approach to determine how to vary staffing to meet changing 
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demand. The SIPP approach begins by dividing the workday into staffing 
periods, e.g. one, two, four or eight hours. Then a series of M/M/s models 
are constructed, one for each staffing period. Each of these period-specific 
mo*dels is independently solved for the minimum number of servers needed 
to meet the service target in that period. The service target might be a 
desired maximum mean delay or probability of delay standard. However, 
recent research has shown that the SIPP approach is often unreliable, 
particularly when average service times are 30 minutes or more, and that a 
simple modification, called Lag SIPP, is often more effective in identifying 
staffing levels that achieve the desired performance standard (Green et al 
2001). This is because in many service systems with time-varying arrival 
rates, the time of peak congestion significantly lags the time of the peak in 
the arrival rate (Green et al 1991), While the standard SIPP approach ignores 
this phenomenon, the Lag SIPP method incorporates an estimation of this 
lag and thus does a better job of identifying staffing levels to limit delays. 
For the M/M/s model, the lag can be well-approximated by an average 
service time. 

4.3 Choosing a delay standard and applying the 
queueing results 

In our ED physician staffing study, the Lag SIPP approach was applied 
by first advancing the arrival rate curve by our estimate of the average 
physician time per patient, 30 minutes. We then constructed a series of 
M/M/s models for each 2-hour staffing interval, using the average arrival rate 
for each based on the time-advanced curve and the average 30 minute 
service time. The delay standard we choose was that no more than 20% of 
patients wait more than one hour before being seen by a provider. The use of 
one hour is consistent with the time standards associated with emergent and 
urgent patient groups used in the National Hospital Ambulatory Medical 
Care Survey (McCaig and Burt 2002). The 20% criterion reflects the 
approximate percentage of non-urgent arrivals at the study institution. 

The modeling results gave the number of ED physicians needed in each 
of the 2-hour staffing intervals to meet the delay standard. In total, 58 
physician-hours were needed on weekdays to achieve the desired service 
standard, which represented an increase of 3 hours over the existing staffing 
level of 55 hours. Model runs for the weekend indicated that the target 
performance standard could be achieved with a total of 53 provider-hours. 
In both these cases, the queueing analyses suggested that some physician 
hours should be switched from the middle of the night to much earlier in the 
day. A more subtle change suggested by the model was that the increase in 
staffing level to handle the morning surge in demand needed to occur earlier 
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than in the original schedule. Though resource limitations and physician 
availability prevented the staffing suggested by the queueing analyses from 
being implemented exactly, the insights gained from these analyses were 
used to develop new provider schedules. More specifically, as a result of the 
analyses one physician was moved from the overnight shift to an afternoon 
shift, 4 hours were moved from the weekends and added to the Monday and 
Tuesday afternoon shifts (since these were the two busiest days of the week) 
and a shift that previously started at noon was moved to 10 AM. These 
changes led to shorter average delays and a reduced fraction of patient that 
left before being seen by a physician. 

5. USING QUEUEING MODELS TO IMPROVE 
HEALTHCARE DELIVERY: OPPORTUNITIES 
AND CHALLENGES 

As this chapter has illustrated, service systems are very complex due to 
both predictable and unpredictable sources of variability in both the demands 
for service and the time it takes to serve those demands. In healthcare 
facilities, decisions on how and when to allocate staff, equipment, beds, and 
other resources in order to minimize delays experienced by patients are often 
even more difficult than in other service industries due to cost constraints on 
the one hand and the potentially serious adverse consequences of delays on 
the other hand. Therefore, it is imperative that these decisions should be as 
informed as possible and rely upon the best methodologies available to gain 
insights into the impact of various alternatives. 

Queueing theory is a very powerful and very practical tool because 
queueing models require relatively little data and are simple and fast to use. 
Because of this simplicity and speed, they can be used to quickly evaluate 
and compare various alternatives for providing service. Beyond the most 
basic issue of determining how much capacity is needed to achieve a 
specified service standard, queueing models can also be useful in gaining 
insights on the appropriate degree of specialization or flexibility to use in 
organizing resources, or on the impact of various priority schemes for 
determining service order among patients. 

On the other hand, though queueing models don't require much data, the 
type of operational data needed as input to a queueing model is often 
unavailable in healthcare settings. Specifically, though demand or arrival 
data are often recorded, service times are usually not documented. So a 
queueing analysis might require a data collection effort to estimate, for 
example, the time that a care provider spends with a patient. However, as 
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information technology systems become more prevalent in healthcare, this 
type of data will be increasingly available. 

In developing the data inputs for a model, it's also very important to 
make sure that all of the data needed for the model is collected and/or 
estimated. On the demand side, this means including all demands for care, 
including the ones that may not have been met in the past because of 
inadequate capacity. For example, in a hospital ED, some patients who are 
forced to wait a long time before seeing a physician leave the ED before 
being seen. If these are not captured in the data collection system that is 
being used to measure demands, the model will underestimate the capacity 
needed to meet the desired performance standard. On the service side, it's 
important to include all of the time spent by the servers that is directly 
associated with caring for the patient. For a physician, this may include 
reviewing medical history and test results in addition to direct examination 
of the patient. 

In addition to data, a queueing analysis of a particular healthcare system 
requires the identification of one or more delay measures that are most 
important to service excellence for that facility. These measures should 
reflect both patient perspectives as well as clinical realities. For example, 
though hospital ED arrivals with non-urgent problems may not require care 
within an hour or so from a clinical perspective, clearly very long waits to 
see a physician will result in high levels of dissatisfaction, and perhaps even 
departure, which could ultimately lead to lost revenue. Trying to decide on 
what might be a reasonable delay standard in a specific healthcare facility is 
not trivial due to a lack of knowledge of both patient expectations as well as 
the impact of delays on clinical outcomes for most health problems. 

In summary, healthcare managers are increasingly aware of the need to 
use their resources as efficiently as possible in order to continue to assure 
that their institutions survive and prosper. This is particularly true in light of 
the growing threat of sudden and severe demand surges due to outbreaks of 
epidemics such as SARS and avian flu, or terrorist incidents. As this chapter 
has attempted to demonstrate, effective capacity management is critical to 
this objective as well as to improving patients' ability to receive the most 
appropriate care in a timely fashion. Yet, effective capacity management 
must deal with complexities such as tradeoffs between bed flexibility and 
quality of care, demands from competing sources and types of patients, time-
varying demands, and the often differing perspectives of administrators, 
physicians, nurses and patients. All of these are chronic and pervasive 
challenges affecting the ability of hospital managers to control the cost and 
improve the quality of healthcare delivery. To meet these challenges, 
managers must be informed by operational and performance data and use 
these data in models to gain insights that cannot be obtained from experience 
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and intuition alone. Queueing analysis is one of the most practical and 
effective tools for understanding and aiding decision-making in managing 
critical resources and should become as widely used in the healthcare 
community as it is in the other major service sectors. 
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