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sultand has three unaffected sons, how does her carrier risk
change?

Bayesian analysis starts with mutually exclusive
hypotheses. In this example, there are two: that the consul-
tand is a carrier, and that the consultand is a noncarrier.
Setting up a table with separate columns for each hypoth-
esis facilitates Bayesian analyses, as shown in Figure 5-1b
for this case. The first row of the table comprises the prior
probability for each hypothesis. In this example, the prior
probabilities are the probability that the consultand is a
carrier (1/2), and the probability that she is a noncarrier
(also 1/2), prior to taking into account the subsequent
information that she has three unaffected sons.

The second row of the table comprises the conditional
probability for each hypothesis. The conditional probabil-
ity for each hypothesis is the probability that the subse-
quent information would occur if we assume that each
hypothesis is true. In this example, the subsequent infor-
mation is that the consultand has three unaffected sons.
Thus, the conditional probabilities are the probability that
the consultand would have three unaffected sons under the
assumption (or condition) that she is a carrier, and 
the probability that she would have three unaffected sons
under the assumption (or condition) that she is a noncar-
rier. If we assume that she is a carrier, the probability that
she would have three unaffected sons is 1/2 × 1/2 × 1/2 =
1/8. This is because she would have to have passed the
normal X chromosome three times in succession, each time
with a probability of 1/2. If we assume that she is a non-
carrier, the probability that she would have three unaf-
fected sons approximates 1, since only in the event of a rare
de novo mutation would a noncarrier have an affected son.
Thus, the conditional probabilities in this example are 1/8
and 1 (Figure 5-1b).

The third row of the table comprises the joint probabil-
ity for each hypothesis, which is the product of the prior
and conditional probabilities for each hypothesis. For the
first hypothesis in this example, that the consultand is a
carrier, the joint probability is the prior probability that she
is a carrier, multiplied by the conditional probability that a
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Introduction

The purpose of this chapter is to describe basic and general
principles of Bayesian analysis for molecular pathologists.
Thomas Bayes first described the theorem named after him
in an essay on “the doctrine of chances,” published posthu-
mously in 1763, and republished in 1958.1 Analyses based
on Bayes’ theorem are routinely applied to calculate prob-
abilities in a wide variety of circumstances, not limited to
medicine or genetics. In molecular pathology, Bayesian
analysis is commonly used to calculate genetic risk, incor-
porating population data, pedigree information, and
genetic testing results. First, Bayesian analysis will be intro-
duced with two simple, concrete examples. In subsequent
sections, the general principles illustrated by these exam-
ples are discussed and applied to more complex scenarios.
For more in-depth treatments, the reader is referred to
Introduction to Risk Calculation in Genetic Counseling by
Young2 and The Calculation of Genetic Risks by Bridge3 as
well as several articles on genetic risk assessment that
include advanced Bayesian analyses, particularly for spinal
muscular atrophy (SMA)4,5 and cystic fibrosis (CF).6–9

Bayesian Analysis Using 
Pedigree Information

In the pedigree shown in Figure 5-1a, the two brothers of
the consultand (indicated by the arrow) have Kennedy
disease (X-linked spinal and bulbar muscular atrophy;
Online Mendelian Inheritance in Man [OMIM; database
online] #300377), which is caused by a CAG trinucleotide
expansion in the androgen receptor (AR) gene (OMIM
#310200). Because both of the consultand’s brothers are
affected, we can assume that the consultand’s mother is an
obligate carrier. Before taking into account her three unaf-
fected sons, the consultand’s carrier risk is 1/2, since there
is a 1/2 chance that she inherited the mutant X chromo-
some from her mother. If we take into account that the con-
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carrier would have three normal sons, which in this case is
1/2 × 1/8 = 1/16 (Figure 5-1b). For the second hypothesis
in this example, that the consultand is a noncarrier, the
joint probability is the prior probability that she is a non-
carrier, multiplied by the conditional probability that a
noncarrier would have three normal sons, which in this
case is 1/2 × 1 = 1/2 (Figure 5-1b).

The fourth row of the table comprises the posterior
probability for each hypothesis. The posterior probability
for each hypothesis is the probability that each hypothesis
is true after (or posterior to) taking into account both prior
and subsequent information. The posterior probability for
each hypothesis is calculated by dividing the joint proba-

bility for that hypothesis by the sum of all the joint proba-
bilities. In this example, the posterior probability that the
consultand is a carrier is the joint probability for the first
hypothesis (1/16), divided by the sum of the joint proba-
bilities for both hypotheses (1/16 + 1/2 = 9/16), or 1/16 ÷
9/16 = 1/9. The posterior probability that the consultand is
a noncarrier is the joint probability for the second hypoth-
esis (1/2 = 8/16), divided by the sum of the joint probabil-
ities for both hypotheses (1/16 + 1/2 = 9/16), or 8/16 ÷ 9/16
= 8/9. Thus, taking into account the prior family history,
and the subsequent information that the consultand has
three unaffected sons, the probability that the consultand
is a carrier is 1/9 (Figure 5-1b).

The preceding example is illustrated graphically in
Figure 5-1c. The total area represents the total prior prob-
abilities. The left half represents the prior probability that
the consultand is a carrier (1/2), and the right half repre-
sents the prior probability that she is a noncarrier (also
1/2). Under the hypothesis that the consultand is a carrier,
there are eight possibilities, comprising all the permuta-
tions of zero, one, two, or three affected sons. The area of
the small rectangle that contains three unshaded squares
(for three unaffected sons) comprises one eighth of the left
half and represents the conditional probability of three
normal sons under the hypothesis that the consultand is a
carrier. The area of this small rectangle is one sixteenth of
the total area and therefore also represents the joint prob-
ability that the consultand is a carrier (1/2), and that as a
carrier she would have three normal sons (1/8), or 1/2 × 1/8
= 1/16.

Under the hypothesis that the consultand is a noncarrier,
there is essentially only one possibility, which is that all
three sons are unaffected. The area of the larger rectangle
that contains the pedigree with three unshaded squares
(for three unaffected sons) comprises all of the noncarrier
half and represents the conditional probability of three
normal sons under the hypothesis that the consultand is a
noncarrier. The area of this larger rectangle is one half of
the total area and therefore also represents the joint prob-
ability that the consultand is a noncarrier (1/2), and that as
a noncarrier she would have three normal sons (~1), or 1/2
× 1 = 1/2. The reverse-L-shaped box, which is demarcated
by a bold line, represents the sum of the joint probabilities,
or nine sixteenths of the total area.

Because the consultand has three unaffected sons, the
area of the reverse-L-shaped box represents the only 
component of the prior probabilities needed to determine
the posterior probability that the consultand is a carrier.
Taking into account that all three of the consultand’s sons
are unaffected, Bayesian analysis allows us to exclude 7/16
of the prior probabilities, those that include one or more
affected sons, from consideration. (Note that this explains
why the joint probabilities sum to less than 1.) The poste-
rior probability that the consultand is a carrier is therefore
the area of the small rectangle with three unshaded squares
(for three unaffected sons) divided by the area of the entire
reverse-L-shaped box, which represents the only probabil-

a

c

b

sisehtopyH
Carrier Non-carrier 

2/12/1ytilibaborProirP
Conditional Probability 
(of three normal sons) 

1~8/1

2/161/1ytilibaborPtnioJ
Posterior Probability (1/16) / (1/16 +1/2) = 1/9 (1/2) / (1/16 + 1/2) = 8/9 

Non-carrier
(1/2)

7/8

Carrier
(1/2)

1/8

Figure 5-1. (a) Pedigree of a family with individuals affected with Kennedy disease (see
text). Consultand is indicated by an arrow. (b) Bayesian analysis for the consultand in
Figure 5-1a. (c) Schematic representation of the Bayesian analysis of Figure 5-1b. Pedi-
grees shown in the rectangles represent all possible disease status outcomes for the third
generation of the pedigree in Figure 5-1a, given the carrier or noncarrier status of the
consultand. Each small rectangle to the left represents one sixteenth of the total area.
(See text for full description.)
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ities relevant to the consultand’s risk, or 1/16 ÷ 9/16 = 1/9.
Likewise, the posterior probability that the consultand is a
noncarrier is the area of the larger rectangle with three
unshaded squares (for three unaffected sons) divided by
the area of the entire reversed-L-shaped box, or 8/16 ÷ 9/16
= 8/9.

Bayesian Analysis Using Genetic 
Test Results

In the second example, information from a test result
modifies the prior risk. In the pedigree shown in Figure 5-
2a, the consultand is pregnant with her first child and has
a family history of CF (OMIM #219700). CF is caused by
mutations in the cystic fibrosis transmembrane conduc-
tance regulator gene (CFTR; OMIM #602421). The consul-
tand is an unaffected European Caucasian and her brother
died years earlier of complications of CF. She undergoes
carrier testing for the 23 mutations recommended by the
American College of Medical Genetics (ACMG) CF screen-
ing guidelines,10–12 which detects approximately 90% of
disease alleles in European Caucasians. The consultand
tests negative for all 23 mutations. What is her carrier risk
after testing?

As in the first example, the two hypotheses are that the
consultand is a carrier and that she is a noncarrier.
The prior probability that she is a carrier is 2/3. Because
the consultand is unaffected, she could not have inherited
disease alleles from both parents. Thus, she either inher-
ited a disease allele from her mother or father, or she inher-
ited only normal alleles; in two of these three scenarios she
would be a carrier (shown in Figure 5-2b). The prior prob-
ability that the consultand is a noncarrier is 1/3 (Figure 5-
2c).

As in the first example, the conditional probability for
each hypothesis is the probability that the subsequent
information would occur if we assume that each hypothe-
sis is true. In this example, the subsequent information is
that the consultand tests negative for all 23 mutations.
Thus, the conditional probabilities are the probability that
the consultand would test negative under the assumption
(or condition) that she is a carrier, and the probability that
she would test negative under the assumption (or condi-
tion) that she is a noncarrier. If we assume that she is a
carrier, the probability that she would test negative is 1/10,
since the test detects 90% of European Caucasian disease
alleles or carriers. If we assume that she is a noncarrier, the
probability that she would test negative approximates 1.
Thus, the conditional probabilities in this example are 1/10
and 1 for the carrier and noncarrier hypotheses, respec-
tively (Figure 5-2c).

As in the first case, the joint probability for each hypoth-
esis is the product of the prior and conditional probabili-
ties for that hypothesis. For the first hypothesis in this
example, that the consultand is a carrier, the joint proba-
bility is the prior probability that she is a carrier (2/3) 

multiplied by the conditional probability that a carrier of
European Caucasian ancestry would test negative (1/10), or
2/3 × 1/10 = 1/15 (Figure 5-2c). For the second hypothesis
in this example, that the consultand is a noncarrier, the
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Figure 5-2. (a) Pedigree of a family with an individual affected with CF (see text). Con-
sultand is indicated by an arrow. (b) Possible genotypes of the sibling (consultand in this
case) of the affected child prior to genetic testing. The mt/mt genotype (in parentheses)
is excluded based on the fact that the consultand is unaffected. mt, mutant; N, normal.
(c) Bayesian analysis for the consultand in Figure 5-2a. (d) Schematic representation of
the Bayesian analysis of Figure 5-2c (see text).
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joint probability is the prior probability that she is a non-
carrier (1/3) multiplied by the conditional probability 
that a noncarrier would test negative (1), or 1/3 × 1 = 1/3
(Figure 5-2c).

Finally, the posterior probability is calculated for each
hypothesis by dividing the joint probability for that
hypothesis by the sum of all the joint probabilities. In this
example, the posterior probability that the consultand is a
carrier and tests negative for 23 CF mutations is the joint
probability for the first hypothesis (1/15) divided by the
sum of the joint probabilities for both hypotheses (1/15 +
1/3 = 2/5), or 1/15 ÷ 2/5 = 1/6 (Figure 5-2c). The posterior
probability that the consultand is a noncarrier and tests
negative for 23 CF mutations is the joint probability for the
second hypothesis (1/3) divided by the sum of the joint
probabilities for both hypotheses (2/5), or 1/3 ÷ 2/5 = 5/6
(Figure 5-2c).

The preceding example is illustrated graphically in
Figure 5-2d. The total area represents the total prior prob-
abilities. The left two thirds represents the prior probabil-
ity that the consultand is a carrier, and the right third
represents the prior probability that the consultand is a
noncarrier. Under the hypothesis that the consultand is a
carrier, there are two possibilities for the test result: posi-
tive or negative. The area of the small rectangle on the
lower left comprises one tenth of the 2/3 carrier region of
the figure and represents the conditional probability of a
normal test result under the hypothesis that the consultand
is a carrier. The area of this small rectangle is 1/10 × 2/3 =
1/15 of the total probabilities area and therefore also rep-
resents the joint probability that the consultand is a carrier
(2/3) and that as a European Caucasian carrier she would
test negative for all 23 mutations (1/10), or 2/3 × 1/10 = 1/15
(Figure 5-2d).

Under the hypothesis that the consultand is a noncarrier,
there is essentially only one possibility for the test result,
which is negative. The area of the rectangle that comprises
all of the 1/3 noncarrier region represents the conditional
probability of a negative test result under the hypothesis
that the consultand is a noncarrier. The area of this rec-
tangle is one third of the total area and therefore also 
represents the joint probability that the consultand is a
noncarrier (1/3), and that as a noncarrier she would test
negative (~1), or 1/3 × 1 = 1/3. The reverse-L-shaped box,
which is demarcated by a bold line, represents the sum of
the joint probabilities, or 2/5 (= 1/3 + 1/15) of the total area.

Because the consultand tested negative, the area of the
reverse-L-shaped box represents the only component of the
prior probabilities needed to determine the posterior prob-
ability that the consultand is a carrier. Taking into account
that she tested negative, Bayesian analysis allows us to
exclude 3/5 of the prior probability, that portion compris-
ing a positive test result, from consideration. (Note, again,
that this explains why the joint probabilities sum to less
than 1.) The posterior probability that the consultand is a
carrier is therefore the area of the small rectangle at the
lower left divided by the area of the reverse-L-shaped box,

which represents the only probabilities relevant to the con-
sultand’s risk, or 1/15 ÷ 2/5 = 1/6. Likewise, the posterior
probability that the consultand is a noncarrier is the area
of the larger rectangle on the right divided by the area of
the reverse-L-shaped box, or 1/3 ÷ 2/5 = 5/6.

Simple Bayesian Analyses Generalized:
Carrier Versus Noncarrier

The preceding Bayesian analyses can be generalized as in
Table 5-1. Note that if the correct prior and conditional
probabilities can be determined, the rest is simple calcula-
tion. Setting up a spreadsheet, as in Table 5-1, facilitates
clinical Bayesian analyses.

A very common application of Bayesian analysis in
molecular pathology is to calculate carrier risk after a neg-
ative test result, as in the second example, above. The need
to calculate carrier risk in this scenario stems from the fact
that the sensitivity of most carrier tests is, at present, less
than 100%; therefore, a negative test result decreases, but
does not eliminate, carrier risk. Hypothesis 1 in this sce-
nario is that the consultand is a carrier, and Hypothesis 2
is that the consultand is a noncarrier (Table 5-1). The prior
carrier probability (“A” in Table 5-1) depends on whether
there is a family history, and if there is, on the relationship
of the consultand to the affected family member as shown
by the family pedigree. In the absence of a family history,
the prior carrier probability is the population carrier risk
for that disease. In the case of CF and some other diseases,
the appropriate population risk depends on the ethnicity
of the consultand. The conditional probabilities (“C” and
“D” in Table 5-1) are 1 minus the test sensitivity, and the
test specificity, respectively. The remainder of the table is
completed through calculation, with the posterior proba-
bilities (“G” and “H” in Table 5-1) representing 1 minus the
negative predictive value, and the negative predictive value,
respectively. This is shown schematically in Figure 5-3.

For illustration, suppose in the second example above
(Figure 5-2) that the consultand’s husband is Ashkenazi
Jewish, that he has no family history of CF, and that he tests
negative for all 23 mutations in the ACMG screening guide-
lines panel. What is his carrier risk? The carrier risk in
Ashkenazi Jewish populations, and therefore the husband’s
prior carrier risk in the absence of a family history, is
approximately 1/25 (“A” in Table 5-1). Thus, his prior prob-
ability of being a noncarrier is 24/25 (“B” in Table 5-1). The

Table 5-1. Simple Bayesian Analysis Generalized

Hypothesis

1 2

Prior probability A B = 1 − A
Conditional probability C D
Joint probability E = AC F = BD
Posterior probability G = E ÷ (E + F) H = F ÷ (E + F)
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ACMG screening guidelines panel of 23 mutations detects
94% of CF mutations in Ashkenazi Jewish populations,10–12

so the conditional probability of a negative test, under the
hypothesis that he is a carrier, is 6% = 3/50 (“C” in Table 5-
1). Under the hypothesis that he is a noncarrier, the condi-
tional probability of a negative test approximates 1 (“D” in
Table 5-1). (This is generally the case in genetic testing,
since noncarriers by definition lack mutations in the rele-
vant disease gene and, hence, unless there are technical
problems, essentially always should test negative.) The
Bayesian analysis table for this example is shown in Table
5-2. The joint probabilities are the products of the prior
and conditional probabilities (“E” and “F” in Table 5-1),
and the posterior probabilities (“G” and “H” in Table 5-1)
derive from each joint probability divided by the sum of
the joint probabilities. The husband’s posterior carrier risk
after the negative test result is 1/401 (Table 5-2).

What is the risk that the fetus of the mother (consultand)
in Figure 5-2 and the father from Table 5-2 is affected with
CF? Prior to testing, the risk was the prior probability that
the mother was a carrier (2/3), multiplied by the prior
probability that the father was a carrier (1/25), multiplied
by the probability that the fetus would inherit two disease
alleles (1/4), or 2/3 × 1/25 × 1/4 = 1/150. After testing, the
risk is the posterior probability that the mother is a carrier
(1/6), multiplied by the posterior probability that the father
is a carrier (1/401), multiplied by the probability that the
fetus would inherit two disease alleles (1/4), or 1/6 × 1/401
× 1/4 � 1/9600.

Often, testing is performed on additional family
members, and genetic risks need to be modified accord-

ingly. In the example above, testing of both parents of the
mother (consultand) would affect her carrier risk calcula-
tions. Detection of mutations in both parents using the
same mutation test panel would essentially rule out carrier
status for the mother, since we would then know that the
sensitivity of the test for the mutations she is at risk of
carrying is essentially 100%. Alternatively, if the test results
for the mother’s parents are positive for only one of her
parents (for example, her father) and negative for the other
parent (her mother), then the sensitivity of the test for the
mutations she is at risk of carrying is essentially 50%. The
Bayesian analysis for the mother, modified from Figure 5-
2c, is shown in Table 5-3a. The conditional probability of a
negative test under the hypothesis that she is a carrier has
changed from 1/10 to 1/2, which increases the posterior
probability that she is a carrier to 1/2. Taken together with
her husband’s carrier risk of 1/401 (Table 5-2), the risk that

Hypothesis 1
(carrier)

Prior probability = A

Hypothesis 2
(Noncarrier)

Prior probability = B

1 - C
(Sensitivity)

 C
(1 - Sensitivity)

 1 - E
(True positive)

 1 - F
(False positive)

 1 - D
(1 - Specificity)

 D
( Specificity)

 F = BD
(True negative)

 E = AC
(False negative)

Figure 5-3. Schematic representation of the generalized Bayesian analysis shown in
Table 5-1, for the case of a negative carrier test. The small rectangles represent true-
positive, false-positive, true-negative, and false-negative rates for a particular consul-
tand; that is, the prior probabilities are influenced by factors such as family history or
signs and symptoms, and the sensitivity and specificity of the test are influenced by
factors such as ethnicity. For a negative carrier test, the posterior carrier probability (1
minus the negative predictive value) is the false-negative rate divided by the sum of the
false- and true-negative rates, or E ÷ (E + F).

Table 5-2. Bayesian Analysis for an Ashkenazi Jewish Individual
Without a Family History of CF Who Tests Negative for the
ACMG Screening Guidelines Panel of 23 CFTR Mutations

Hypothesis

Carrier Noncarrier

Prior probability 1/25 24/25
Conditional probability 3/50 1

(of negative test 
result)

Joint probability 3/1250 24/25
Posterior probability (3/1250) ÷ (24/25) ÷ (3/1250

(3/1250 + 24/25) + 24/25) = 400/401
= 1/401

Table 5-3a. Bayesian Analysis for the Consultand in Figure 5-2a
After Testing of the Parents (see text)

Hypothesis

Carrier Noncarrier

Prior probability 2/3 1/3
Conditional probability 1/2 1

(of negative test 
result)

Joint probability 1/3 1/3
Posterior probability (1/3) ÷ (1/3 + 1/3) (1/3) ÷ (1/3 + 1/3)

= 1/2 = 1/2

Table 5-3b. Alternative Bayesian Analysis for the Consultand in
Figure 5-2a After Testing of the Parents (see text)

Hypothesis

Carrier

Carrier with Carrier with 
Paternal Maternal
(detectable) (undetectable)
Mutation Mutation Noncarrier

Prior probability 1/3 1/3 1/3
Conditional 0 1 1

probability
(of negative 
test result)

Joint probability 0 1/3 1/3
Posterior probability 0 1/2 1/2
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the fetus is affected with CF can be modified to 1/2 × 1/401
× 1/4 � 1/3200.

Another way of conceptualizing the Bayesian analysis
described above is to separate the carrier hypothesis into
two subhypotheses, as shown in Table 5-3b. (See also
“Bayesian Analysis with More Than Two Hypotheses,”
below.) The two subhypotheses are (1) that the consultand
is a carrier with a paternal (detectable) mutation and (2)
that she is a carrier with a maternal (undetectable) muta-
tion. The prior probability of each hypothesis is 1/3, that is,
half of 2/3. The conditional probability of a negative test
result, under the subhypothesis that she is a carrier of a
detectable paternal mutation, is 0. The conditional proba-
bility of a negative test result, under the subhypothesis that
she is a carrier of an undetectable maternal mutation, is 1.
As in the generalized Bayesian analysis shown in Table 5-
1, the joint probability for each hypothesis is the product
of the prior and conditional probabilities for that hypoth-
esis, and the posterior probability for each hypothesis is the
joint probability for that hypothesis divided by the sum of
all the joint probabilities. The posterior probability that the
consultand has a detectable paternal mutation is 0, and the
posterior probability that she has an undetectable mater-
nal mutation is 1/2 (Table 5-3b).

Simple Bayesian Analyses Generalized:
Affected Versus Unaffected

Another common application of Bayesian analysis in
molecular pathology is to calculate the risk that a patient
is affected with a particular disease after a negative test
result. Again, the need to calculate risk in this scenario
stems from the fact that the sensitivities of many genetic
tests are less than 100%. Hypothesis 1 (in Table 5-1 and
Figure 5-3) in this scenario is that the patient is affected,
and Hypothesis 2 is that the patient is unaffected. The prior
probability (“A” in Table 5-1 and Figure 5-3) usually derives
mostly from signs and symptoms but also may depend on
aspects of the patient’s history, including family history in
diseases with a genetic component. As in the CF example,
above, the conditional probabilities (“C” and “D” in Table
5-1 and Figure 5-3) are 1 minus the test sensitivity, and the
test specificity, respectively. The remainder of the analysis
is accomplished by calculation, with the posterior proba-
bilities (“G” and “H” in Table 5-1) representing 1 minus the
negative predictive value, and the negative predictive value,
respectively.

For example, suppose that a child with clinically typical
spinal muscular atrophy type III (type III SMA; Kugelberg-
Welander disease; OMIM #253400) tests negative for the
homozygous deletion of the SMN1 gene found in most
affected individuals. What is the probability that the child
is affected with SMN1-linked SMA? The Bayesian analysis
for this scenario is shown in Table 5-4a. Wirth et al. found
that 17 of 131 individuals with clinically typical type III

SMA lacked mutations in both SMN1 alleles (and therefore
were considered to have diseases unrelated to SMN1);13

hence, the prior probability that the child is affected with
SMN1-linked type III SMA is 114/131, or 0.87. Approxi-
mately 6% of individuals with SMN1-linked type III SMA
have a deletion of one SMN1 allele and a subtle mutation,
undetectable by simple polymerase chain reaction (PCR)
testing for a homozygous deletion, in the other SMN1
allele;14 hence, the conditional probability of a negative test
result under the hypothesis that the child is affected is
6/100 or 0.06. Homozygous deletions of SMN1, when
present, are highly specific for SMN1-linked SMA; hence,
the conditional probability of a negative test result under
the hypothesis that the child is unaffected with SMN1-
linked SMA approximates 1. Following the simple calcula-
tion rules in Table 5-1, the posterior probability that the
child is affected with SMN1-linked type III SMA is approx-
imately 0.29 (Table 5-4a).

Suppose that SMN1 dosage analysis is performed on the
child’s DNA (i.e., the SMA carrier test), and the result is that
the child has one copy of the SMN1 gene. What is the prob-
ability that he or she is affected with SMN1-linked SMA?
The Bayesian analysis for this scenario is shown in Table 5-
4b. Again, the prior probability that the child is affected
with SMN1-linked type III SMA is 0.87. Because approxi-

Table 5-4a. Bayesian Analysis for a Child with Clinically Typical
Type III SMA Who Tests Negative for Homozygous Deletions of
the SMN1 Gene

Hypothesis

Affected Unaffected

Prior Probability 0.87 0.13
Conditional Probability 0.06 ~1

(of negative test result)
Joint Probability 0.052 0.13
Posterior Probability 0.29 0.71

Table 5-4b. Bayesian Analysis for a Child with Clinically Typical
Type III SMA Who Has One Copy of the SMN1 Gene by Dosage
Analysis

Hypothesis

Affected Unaffected

Prior probability 0.87 0.13
Conditional probability 0.06 0.026

(of 1-copy test result)
Joint probability 0.052 0.0034
Posterior probability 0.94 0.06

Table 5-4c. Bayesian Analysis for a Child with Clinically Typical
Type III SMA Who Has 2 Copies of the SMN1 Gene by Dosage
Analysis

Hypothesis

Affected Unaffected

Prior probability 0.87 0.13
Conditional probability 0.0009 0.9

(of 2-copy test result)
Joint probability 0.00078 0.12
Posterior probability 0.006 0.994
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mately 6% of individuals with SMN1-linked type III SMA
have a deletion of one SMN1 allele and a subtle mutation
in the other SMN1 allele that is detectable as a single copy
by dosage analysis,14 the conditional probability of a single-
copy test result under the hypothesis that the child is
affected is again 0.06. However, the carrier frequency for
SMA in the general population is approximately 1/38;14

hence, in this scenario the conditional probability of a
single-copy test result under the hypothesis that the child
is unaffected with SMN1-linked SMA is 1/38 or 0.026. Fol-
lowing the simple calculation rules in Table 5-1, the poste-
rior probability that the child is affected with SMN1-linked
type III SMA is approximately 0.94 (Table 5-4b).

Suppose instead that the result of the SMN1 dosage
analysis is that the child has two copies of the SMN1 gene.
What is the probability that the child is affected with
SMN1-linked SMA? The Bayesian analysis for this scenario
is shown in Table 5-4c. Again, the prior probability that the
child is affected with SMN1-linked type III SMA is 0.87.
Only approximately 9 in 10,000 individuals with SMN1-
linked type III SMA would be expected to have two subtle,
nondeletion mutations, detectable as two gene copies by
dosage analysis;14 hence, the conditional probability of a
two-copy test result under the hypothesis that the child is
affected is approximately 0.0009. Because more than 7% of
unaffected individuals have three copies of the SMN1 gene,
and approximately 2.5% of unaffected individuals have one
copy of the SMN1 gene, for a total of 9.5% of unaffected
individuals without two copies of SMN1,14 the conditional
probability of a 2-copy test result under the hypothesis that
the child is unaffected with SMN1-linked SMA is 90.5/100,
or approximately 0.9. Following the simple calculation
rules in Table 5-1, the posterior probability that the child
is affected with SMN1-linked type III SMA is only approx-
imately 0.006 (Table 5-4c).

Profiling by proteomics, RNA microarrays, or analysis of
single-nucleotide polymorphisms (SNPs), or some combi-
nation of these, is likely to play an important role in molec-
ular pathology in the future, and clinical test results will be
reported, in many cases, as probabilities or relative risks.
For example, suppose that a consultand has a 20% lifetime
risk of developing a particular disease (based on family
history, physical examination, or clinical laboratory test
results, or a combination of these) and that his or her pro-
teomic profile is 16 times more common in those who go
on to develop the disease than in those who do not. What
is his or her lifetime risk of developing the disease? The
Bayesian analysis for this scenario is shown in Table 5-5.
Hypothesis 1 (from Table 5-1) is that the consultand will
develop the disease, and Hypothesis 2 is that the consul-
tand will not develop the disease. The prior probabilities
are 0.2 and 0.8 for Hypotheses 1 and 2, respectively. Because
the conditional probability of the proteomic profiling
result is 16 times more likely in those who develop the
disease than in those who do not, the conditional proba-
bilities (“C” and “D” in Table 5-1) are 16 and 1, respectively.
Following the simple calculation rules in Table 5-1, the pos-

terior probability that the consultand will develop the
disease is 0.8 (Table 5-5).

Note that because posterior probabilities are normalized
joint probabilities, the absolute values of the conditional
probabilities are unimportant, as long as the ratio (i.e., the
odds ratio) between them is correct. This is also true of
prior probabilities. For example, in the scenario above,
prior probabilities of 1 and 4 can be substituted for 0.2 and
0.8 and the same answer is obtained. Likewise, in the first
example of this chapter (Figure 5-1a), prior probabilities of
1 and 1 can be substituted for 1/2 and 1/2, and conditional
probabilities of 1 and 8 can be substituted for 1/8 and 1,
and the same answer is obtained. Hence, relative risks are
easily incorporated into Bayesian analyses.

Bayesian Analyses with More Than 
One Conditional Probability

Often there is more than one test result, or more than one
set of pedigree information, or both, that can be incorpo-
rated as conditional probabilities in a single Bayesian
analysis. For example, consider the pedigree in Figure 5-4a,
in which the two maternal great uncles of the consultand
were affected with Duchenne muscular dystrophy (DMD;
OMIM #310200), a severe X-linked recessive disease caused
by mutations in the DMD gene (OMIM #300377). The con-
sultand’s maternal grandmother’s carrier risk was 1/2, her
mother’s carrier risk was 1/4, and therefore the consul-
tand’s prior carrier risk is 1/8. Suppose that her carrier
testing is negative using a highly specific test (an analysis
for heterozygous deletions in the DMD gene) that detects
2/3 of carriers. Suppose also that her serum creatine phos-
phokinase (CPK), which is elevated in two-thirds of carri-
ers, is within normal limits. Taking into account her prior
probability of 1/8, her normal molecular and CPK test
results, and, in addition, her three normal sons, what is the
probability that she is a carrier?

The Bayesian analysis for this scenario is shown in
Figure 5-4b. Each conditional probability is given its own
line. Because the genetic test detects 2/3 of carriers and is
highly specific, the conditional probabilities of a negative
genetic test result under the hypotheses that she is a carrier
and noncarrier are 1/3 and 1, respectively. Because serum
CPK is elevated in 2/3 of carriers, the conditional 

Table 5-5. Bayesian Analysis for a Consultand with a 20% Life-
time Risk of Developing a Disease and a Proteomic Profile 16
Times More Common in Those Who Develop the Disease Than in
Those Who Do Not

Hypothesis

Affected Eventually Never Affected

Prior probability 0.2 0.8
Conditional probability 16 1

(of profiling result)
Joint probability 3.2 0.8
Posterior probability 0.8 0.2
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probability of a normal serum CPK for the hypothesis that
she is a carrier is 1/3. Because 5% of noncarrier women
have an abnormal serum CPK (i.e., the normal range is
defined as comprising 95% of normal individuals), the con-
ditional probability of a normal serum CPK under the
hypothesis that she is a noncarrier is 95% or 19/20. Finally,
as in Figure 5-1b, the conditional probabilities of three
normal sons under the hypotheses that she is a carrier and
noncarrier are 1/8 and 1, respectively. The joint proba-
bilities for each hypothesis are the products of the prior
probability, and all conditional probabilities, for each
hypothesis (Figure 5-4b). Calculation of posterior proba-
bilities then proceeds exactly as in Table 5-1. In this sce-
nario, taking into account her normal test results and her
three normal sons, the consultand’s carrier risk is lowered
from 1/8 to 0.002, or approximately 1/500.

Bayesian Analyses with More 
Than Two Hypotheses

In some Bayesian analyses, more than two hypotheses must
be considered. For example, consider the pedigree in
Figure 5-5a, in which a child with clinically typical type I
SMA (type I SMA; Werdnig-Hoffman disease; OMIM

#253300) lacks both copies of the SMN1 gene. By dosage
analysis, the child’s (unaffected) mother has one copy of
the SMN1 gene and therefore carries one copy of the SMN1
gene on one chromosome 5, and zero copies of the SMN1
gene on the other chromosome 5, called the “1 + 0” geno-
type. However, the child’s (unaffected) father has two
copies of the SMN1 gene and therefore could have one of
three possible genotypes: (1) two copies of the SMN1 gene
on one chromosome 5 and zero copies of the SMN1 gene
on the other chromosome 5 (the “2 + 0” genotype), (2) one
copy of the SMN1 gene on one chromosome 5 and a subtle
mutation in the SMN1 gene on the other chromosome 5
(the “1 + 1D” genotype, where “1D” stands for a “1-copy-
disease” allele), or (3) one copy of the SMN1 gene on each
chromosome 5 (the “1 + 1” noncarrier genotype), in which
case he passed a de novo deletion of the SMN1 gene to his
affected child. Because the relative frequencies of the
various SMN1 alleles and genotypes in the general popula-
tion are known,14 as well as the paternal and maternal de
novo deletion rates (µp = 2.11 × 10−4 and µm = 4.15 × 10−5,
respectively), the probability that the father is a carrier can
be calculated, which obviously has important implications
for recurrence risk.

The Bayesian analysis for the father’s carrier risk is
shown in Figure 5-5b. There are three hypotheses for the
father’s genotype: 2 + 0, 1 + 1, and 1 + 1D. The prior prob-
abilities are the relative population frequencies for these
genotypes.14 The conditional probabilities are the proba-
bilities that the father passes a 0-copy allele to his child
under each hypothesis. For the 2 + 0 genotype, the condi-
tional probability of passing a 0-copy allele is 0.5, whereas
for the 1 + 1 and 1 + 1D genotypes, the conditional proba-
bility of passing a 0-copy allele is the de novo deletion rate
of µp. As in the generalized Bayesian analysis shown in
Table 5-1, the joint probability for each hypothesis is the

a

b

sisehtopyH
 Carrier 

Prior Probability 
Conditional probability 
(of negative genetic test result) 

1/3 1 

Conditional Probability 
(of normal CPK result) 

1/3 19/20 

Conditional Probability 
(of three normal sons) 

1/8 1 

Joint Probability
Posterior Probability 0.002 0.998

1/576 133/160

Non-carrier
1/8 7/8

Figure 5-4. (a) Pedigree of a family with individuals affected with DMD (see text).
Consultand is indicated by an arrow. (b) Bayesian analysis for the consultand in Figure
5-4a, taking into account her normal carrier test result, her normal CPK test result, and
her three normal sons.

a

b

)epytoneGs’rehtaF(sisehtopyH
2 + 0 D

Prior Probability 
(relative probability) 

1.00 x 10-3  9.00 x 10 -1  4.58 x 10-4

Conditional Probability 
(of passing a 0-copy allele) 

0.5 µp µp

Joint Probability -4  1.9 x 10-4  9.7 x 10-8

Posterior Probability 

1 + 1 1 + 1

5.0 x 10
0.72 0.28 0.00014 

2 copies 1 copy

0 copies

Figure 5-5. (a) Pedigree of a family with an individual affected with type I SMA, with
the SMA carrier test results indicated below each individual (see text). (b) Bayesian analy-
sis for carrier risk of the father of the affected child in Figure 5-5a. µp, paternal de novo
mutation rate.
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product of the prior and conditional probabilities for that
hypothesis, and the posterior probability for each hypoth-
esis is the joint probability for that hypothesis divided by
the sum of all the joint probabilities. The father’s carrier
risk is the sum of the posterior probabilities of the first (2
+ 0) and third (1 + 1D) columns, or approximately 0.72. The
third column contributes little to the carrier risk because
the frequency of the 1 + 1D genotype is low and the condi-
tional probability of a de novo deletion is also low. In con-
trast, although the frequency of the 2 + 0 genotype is much
lower than that of the 1 + 1 genotype, this is counterbal-
anced by the higher conditional probability of passing a 0-
copy allele under the former hypothesis.

Suppose that the father’s parents, the paternal grandfa-
ther and grandmother of the affected child, are tested and
found to have three copies and one copy of the SMN1 gene,
respectively (Figure 5-6a). What is the father’s carrier risk?
The Bayesian analysis for this scenario is shown in Figure
5-6b. Again, there are three hypotheses for the father’s
genotype: 2 + 0, 1 + 1, and 1 + 1D. However, in this scenario,
the father’s prior probabilities derive from the prior and
conditional probabilities of his parents. Because the grand-
father has three copies of the SMN1 gene, his genotype is
either 2 + 1 (columns A and C) or 2 + 1D (columns B and
D), and his prior probabilities are the relative population
frequencies for these genotypes.14 Because the (unaffected)
grandmother has one copy of the SMN1 gene, her genotype
is 1 + 0, and her prior probability is the relative population
frequency of the 1 + 0 genotype for type I SMA in the
general population, which is the carrier frequency of 1/38
(2.50 × 10−2).14 (Note that because the grandmother must
be 1 + 0, simply a prior probability of 1 could be used; as
noted above, the absolute values of the conditional proba-
bilities are unimportant, as long as the ratio between them
is correct.) The four columns (A through D) show the four
possible permutations of grandparental genotypes (prior
probabilities) with passage of particular alleles to the
father (conditional probabilities) so that he would have a
2-copy SMA carrier test result. Under the hypothesis that
the father has a 2 + 0 genotype, he could have inherited a
2-copy “allele” (two copies of SMN1 on one chromosome 5)
from the grandfather (2 + 1) at a probability of 0.5 and a
0-copy allele from the grandmother (1 + 0) at a probabil-
ity of 0.5 (column A), or he could have inherited a 2-copy
allele from the grandfather (2 + 1D) at a probability of 0.5
and a 0-copy allele from the grandmother (1 + 0) at a prob-
ability of 0.5 (column B). Under the hypothesis that the
father has a 1 + 1 genotype, he could have inherited a 1-
copy allele from the grandfather (2 + 1) at a probability of
0.5 and a 1-copy allele from the grandmother (1 + 0) at a
probability of 0.5 (column C). Under the hypothesis that
the father has a 1 + 1D genotype, he could have inherited a
1D allele from the grandfather (2 + 1D) at a probability of
0.5 and a 1-copy allele from the grandmother (1 + 0) at a
probability of 0.5 (column D).

The father’s prior probabilities are the products of the
prior and conditional probabilities for the grandparents for

each column or permutation. Under the hypothesis that the
father has a 2 + 0 genotype, the conditional probability of
passing a 0-copy allele to his child is 0.5 (columns A and
B), whereas under the hypothesis that the father has a 1 +
1 or 1 + 1D genotype, the conditional probability of passing
a 0-copy allele to his child is the de novo deletion rate of
µp (columns C and D). As in the generalized Bayesian
analysis shown in Table 5-1, the joint probability for each
column is the product of the prior and conditional proba-
bilities for that column, and the posterior probability for
each column is the joint probability for that column
divided by the sum of all the joint probabilities. The father’s
carrier risk is the sum of the posterior probabilities of
columns A (2 + 0), B (2 + 0), and D (1 + 1D), or approxi-
mately 0.999. The father’s increased carrier risk in this sce-
nario derives almost entirely from the probability that he
has the 2 + 0 genotype; this is unsurprising since the grand-
father’s 3-copy test result demonstrates the presence of a 2-
copy allele in the family. (Note that because the
grandmother’s prior and conditional probabilities are the
same in every column, excluding her data from the analy-
sis will not change the result.)

Suppose instead that the father’s parents, the paternal
grandfather and grandmother of the affected child, are
tested and each is found to have two copies of the SMN1
gene (Figure 5-7a). What is the father’s carrier risk? The
Bayesian analysis for this scenario is shown in Figure 5-7b.
Again, there are three hypotheses for the father’s genotype:

a

b

Hypothesis (Father’s Genotype) 
2 + 0 D

DCBA
Grandfather’s Genotype 2 + 1 D  2 + 1 D

Prior probability 
(relative probability) 

7.18 x 10-2  1.15 x 10-5  7.18 x 10-2  1.15 x 10-5

Conditional probability 
(of passing a 2-copy allele) 

0.5

Conditional probability 
(of passing a 1 or 1D allele) 

--

Grandmother’s Genotype 1 + 0
Prior probability -2  2.50 x 10-2  2.50 x 10-2  2.50 x 10-2

Conditional probability 
(of passing a 0-copy allele) 

0.5

Conditional probability 
(of passing a 1-copy allele) 

--

Father’s Genotype 2 + 0 D

Conditional probability 
(of passing a 0-copy allele) 

0.5 0.5 µp µp

Joint Probability 2.24 x 10-4  3.59 x 10-8  9.47 x 10-8  1.52 x 10-11

Posterior Probability 0.999

2 + 1 2 + 1

0.5 -- --

-- 0.5 0.5

1 + 0 1 + 0 1 + 0
2.50 x 10

 0.5  -- --

-- 0.5 0.5

1 + 11 + 1 

0.00016 0.00042 0.000000068 

1 + 1 1 + 1

Figure 5-6. (a) Pedigree of a family with an individual affected with type I SMA with
the SMA carrier test results indicated below each individual (see text). (b) Bayesian analy-
sis for carrier risks of the father of the affected child in Figure 5-6a.
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2 + 0, 1 + 1, and 1 + 1D. However, in this scenario, the
number of possible permutations of grandparental geno-
types (prior probabilities) with passage of particular alleles 
to the father (conditional probabilities) is dramatically
increased. This is because each grandparent could have a 2
+ 0, 1 + 1, or 1 + 1D genotype, and the father could have
received a 2-copy allele, a 0-copy allele, a 1-copy allele, or a
1D allele from either grandparent, in most cases by direct
Mendelian inheritance and in some cases from de novo
deletions. The organization of the Bayesian analysis in
Figure 5-7b is guided by the possible genotypes of the
father, which determine the grandparental genotype per-
mutations that need to be considered. Under the hypothe-
sis that the father has the 2 + 0 genotype, he could have
received a 2-copy allele from one (2 + 0) grandparent and
a 0-copy allele from the other (2 + 0) grandparent, both by
direct inheritance (columns A and B), or he could have
received a 2-copy allele from one (2 + 0) grandparent by
direct inheritance and a de novo deletion allele from the
other (1 + 1 or 1 + 1D) grandparent (columns C, D, E, and
F). Under the hypothesis that the father has the 1 + 1 geno-
type, he must have received a 1-copy allele from each (1 +
1 or 1 + 1D) grandparent (columns G, H, I, and J). Under the
hypothesis that the father has the 1 + 1D genotype, he must
have received a 1-copy allele from one (1 + 1 or 1 + 1D)
grandparent and a 1D allele from the other (1 + 1 or 1 + 1D)
grandparent (columns K, L, M, and N).

More specifically, under the hypothesis that the father
has the 2 + 0 genotype, column A shows the prior proba-
bility that the grandfather is 2 + 0 (1.00 × 10−3), the condi-
tional probability that he passes a 2-copy allele to the father
(0.5), the prior probability that the grandmother is 2 + 0
(1.00 × 10−3), and the conditional probability that she
passes a 0-copy allele to the father (0.5). Under the hypoth-
esis that the father has the 1 + 1 genotype, column G shows
the prior probability that the grandfather has a 1 + 1 geno-
type (0.90), the conditional probability that he passes a 1-
copy allele to the father (1), the prior probability that the
grandmother has a 1 + 1 genotype (0.90), and the condi-
tional probability that she passes a 1-copy allele to the
father (1). Under the hypothesis that the father has the 1 +
1D genotype, column K shows the prior probability that the
grandfather has a 1 + 1 genotype (0.90), the conditional
probability that he passes a 1-copy allele to the father (1),
the prior probability that the grandmother has a 1 + 1D

genotype (4.58 × 10−4), and the conditional probability that
she passes a 1D allele to the father (0.5).

Again, the father’s prior probabilities are the products of
the prior and conditional probabilities for the grandpar-
ents for each column or permutation. Under the hypothe-
sis that the father has a 2 + 0 genotype, the conditional
probability of passing a 0-copy allele to his child is 0.5
(columns A through F), whereas under the hypothesis that
the father has a 1 + 1 or 1 + 1D genotype, the conditional
probability of passing a 0-copy allele to his child is the
paternal de novo deletion rate of µp (columns G through
L). As in the generalized Bayesian analysis shown in Table

5-1, the joint probability for each column is the product of
the prior and conditional probabilities for that column, and
the posterior probability for each column is the joint prob-
ability for that column divided by the sum of all the joint
probabilities. The father’s carrier risk is the sum of the pos-
terior probabilities of columns A through F (2 + 0), and K
and L (1 + 1D), or approximately 1/400. Relative to the pre-
vious scenario (Figure 5-6), in which the father also had
two copies of SMN1 but the grandparents had different
copy numbers, the father’s dramatically decreased carrier
risk in this scenario derives from the much lower proba-
bility that a 2-copy allele is present in his family, and illus-
trates the importance of integrating all available genetic
testing information into risk assessment calculations.

An alternative organization of the Bayesian analysis
shown in Figure 5-7b is shown in Figure 5-7c and is guided
by the three hypotheses for the grandparental genotypes: 1
+ 1, 2 + 0, and 1 + 1D. For example, under the hypothesis
that both of the grandparents have a 1 + 1 genotype,
column A shows the prior probabilities that the grand-
father has a 1 + 1 genotype (0.9) and that the grandmother
has a 1 + 1 genotype (0.9), the conditional probability that
the father received 1-copy alleles from both of the grand-
parents (1), and the conditional probability that the father
passed a 0-copy allele to the affected child (by de novo dele-
tion, µp). Under the hypothesis that the grandfather has a
1 + 1 genotype and that the grandmother has a 2 + 0 geno-
type, column B shows the prior probabilities that the
grandfather has a 1 + 1 genotype (0.90) and that the grand-
mother has a 2 + 0 genotype (0.001), the conditional prob-
ability that the father received a 2-copy allele from one of
the grandparents (the grandmother in this case) (0.5) and
a 0-copy allele from the other grandparent (the grand-
father in this case by de novo deletion, µp), and the condi-
tional probability that the father passed a 0-copy allele to
the affected child (0.5). Under the hypothesis that the
grandfather has the 1 + 1 genotype and that the grand-
mother has the 1 + 1D genotype, column C shows the prior
probabilities that the grandfather has a 1 + 1 genotype
(0.90) and that the grandmother has a 1 + 1D genotype
(0.00046), the conditional probability that the father
received 1-copy alleles from both grandparents (0.5), and
the conditional probability that the father passed a 0-copy
allele to the affected child (by de novo deletion, µp). Under
the hypothesis that the grandfather has the 1 + 1 genotype
and that the grandmother has the 1 + 1D genotype, column
D shows the prior probabilities that the grandfather has a
1 + 1 genotype (0.90) and that the grandmother has a 1 +
1D genotype (0.00046), the conditional probability that 
the father received a 1D allele from one of the grandparents
(the grandmother in this case) and a 1-copy allele from the
other grandparent (the grandfather in this case) (0.5), and
the conditional probability that the father passed a 0-copy
allele to the affected child (by de novo deletion, µp). The
father’s carrier risk is the sum of the posterior probabili-
ties of columns B, D through G, I, J, and L, or approximately
1/400.
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In both approaches (Figures 5-7b and 5-7c), the use of
one comprehensive Bayesian analysis table incorporating
all necessary information allows simultaneous calculations
of the carrier risks of the father, grandfather, and grand-
mother. Such a comprehensive approach is necessary
because the 2-copy test results for the grandparents
influence the carrier risk of the father, and the 2-copy test
result for the father influences the carrier risks of the
grandparents. Using Figure 5-7b, the posterior carrier risk
of the grandfather is the sum of the posterior probabilities
of columns A through D, F, I, J, and L through N, or approx-
imately 0.0020 (1/500), and the carrier risk of the grand-
mother is the sum of the posterior probabilities of columns
A, B, D through F, H, J, K, M, and N, or approximately 0.0022
(1/450). The posterior probability that all three of them are
carriers is the sum of the posterior probabilities of columns
A, B, D, F, M, and N, or approximately 0.0015 (1/600). Using
Figure 5-7c, the carrier risk of the grandfather is the sum
of the posterior probabilities of columns E through L, or
approximately 0.0020 (1/500), and the carrier risk of the
grandmother is the sum of the posterior probabilities of
columns B through D, F, G, and J through L, or approxi-
mately 0.0022 (1/450). The posterior probability that all
three of them are carriers is the sum of the posterior prob-
abilities of columns F, G, J, and L, or approximately 0.0015
(1/600).

Concluding Remarks

Bayesian analysis plays a central role in genetic risk assess-
ment, and those who offer genetic testing should be
proficient. Genetic risk should be assessed as accurately as
possible, using all available information at a particular
point in time, from the pedigree, from laboratory testing,
or from both. Although the technologies for genetic testing
will continue to change, Bayesian analysis and genetic risk

assessment will remain fundamental aspects of genetic
testing and genetic counseling.
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