
3 Continuation Power Flow 

3.1 Introduction 

As mentioned in the previous chapter, the continuation method is a 
mathematical path-following methodology used to solve systems of 
nonlinear equations. The numerical derivation of this method is shown in 
[1]. Using the continuation method, we can track a solution branch around 
the turning point without difficulty. This makes the continuation method 
quite attractive in approximations of the critical point in a power system. 
The continuation power flow captures this path-following feature by 
means of a predictor-corrector scheme that adopts locally parameterized 
continuation techniques to trace the power flow solution paths. The next 
sections explain the principles of continuation power flow. 

3.2 Locally Parameterized Continuation 

A parameterization is a mathematical means of identifying each solution 
on the branch, a kind of measure along the branch. When we say "branch," 
we refer to a curve consisting of points joined together in n + l dimen­
sional space that are solutions of the nonlinear equations 

F(jc,;i) = 0 (3.1) 

This equation is obtained by introducing a load parameter,/I, into the 
original system of nonlinear equations, F(x) = 0. For a range of values 

of >i, it is quite possible to identify each solution on the branch in a 
mathematical way [2]. But not every branch can be parameterized by an 
arbitrary parameter. The solution of Eq.3.1 along a given path can be 
found for each value of A, although problems arise when a solution does 
not exist for some maximum possible X value. At this point, one of the 
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state variables, x^, can be used effectively as the parameter to be varied, 

choice of which is determined locally at each continuation step. Thus, the 
method is designated as the locally parameterized continuation. In sum­
mary, local parameterization allows not only the added load parameter A, 
but also the state variables to be used as continuation parameters. 

3.3 Formulation of Power Flow Equations 

To apply locally parameterized continuation techniques to the power flow 
problem, the power flow equations must be reformulated to include a load 
parameter, A. This reformulation can be accomplished by expressing the 
load and the generation at a bus as a function of the load parameter, A. 
Thus, the general forms of the new equations for each bus i are 

A / ^ . = P ^ , . ( ; i ) - P , , ( / l ) - P , , = 0 (3.2) 

^Q<=QGt-QLM)-Qn-o (3.3) 

where 

and 0 < A < A^f.ificai • A = 0 corresponds to the base case, and 

/i = A^f.ificai t^ ^^^ critical case. The subscripts!., G and T respectively 

denote bus load, generation, and injection. The voltage at bus / is V.ZS., 

and yy^Yij is the {i^jy element of the system admittance matrix 

[yBus^-

To simulate different load change scenarios, the P^. and Q^^ can be modi­

fied as 

Pu(^) = Pu. •^A.KuS^.sE cos(^,)] (3.4) 

QuW = Quo +^[K,,S^,sE sm(?^,)] (3-5) 
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where S^^SE COS(^ , ) = Pj,,, and ^L/O = ^ABASE sin(^,) 

LQIQ^.Q = Pj^.Q tan(^.) , then Eqs.3.4 and 3.5 can be rewritten as 

QuW-PaoimC¥i)[l + ^KJ 
where 

• Pj^.Q 5 Qj^.Q = original load at bus / , active and reactive respectively; 

• K^. = multiplier designating the rate of load change at bus / as X 

changes; 

• y/. = power factor angle of load change at bus / ; 

• S^^s^ = apparent power, which is chosen to provide appropriate scal­

ing of / I . 

The active power generation can be modified to 

PaM) = PG>oa + ^a>) (3.6) 

where 

• ^Gio "̂  active generation at bus / in the base case; 

• KQ- = constant specifying the rate of change in generation as A, var­

ies. 

Now if F is used to denote the entire set of equations, then the problem 
can be expressed as a set of nonlinear algebraic equation represented by 

Eq.3.1, with x = [S^^V] . The predictor corrector continuation process 

can then be applied to these equations. 

3.4 The Predictor-corrector Process 

The first task in the predictor process is to calculate the tangent vector. 
This can be obtained from 
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[£..Zv.£J dV 

dX 

= 0 

On the left side of the equation is a matrix of partial derivatives multi­
plied by the vectors of differentials. The former is the conventional power 
flow Jacobian augmented by one column (F^ ), whereas the latter 

T = [dS^,dV_,dXf^ is the tangent vector being sought. Normalization 

must be imposed to give t_ a nonzero length. One can use, for example 

where ^^ is an appropriately dimensioned row vector with all elements 

equal to zero except the k^^, which is equal to one. If the index k is 
chosen properly, letting tj^ = ±1.0 imposes a nonzero norm on the tan­
gent vector and guarantees that the augmented Jacobian will be nonsingu-
lar at the point of maximum possible system load [3]. Thus, the tangent 
vector is determined as the solution of the linear system 

(3.7) F, 
e. 

P I 
[£] = 

0 
±1 

Once the tangent vector has been found by solving Eq.3.7, the prediction 
can be made as 

V 
r 
X 

-

's' 
V 

_A_ 
+ <7 

'dS' 

dV_ 
_dX_ 

where '* ' denotes the predicted solution, and cr is a scalar designat­
ing step size. 

After the prediction is made, the next step is to correct the predicted so­
lution. As mentioned in Chapter 2, the technique used here is local 
parameterization, whereby the original set of equations is augmented by 
one equation specifying the value of one of the state variables. In equation 
form, this relation is expressed as 
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0, 

where rj is an appropriate value for the k^^ element of x . Once a suit­

able index k and the value of 7] are specified, a slightly modified N-R 

power flow method (altered only by one additions equation and one addi­
tional state variable) can be used to solve the set of equations. This proce­
dure provides the corrector needed to modify the predicted solution found 
in the previous section. 

3.4.1 Selecting the continuation parameter 

The best method of selecting the correct continuation parameter at each 
step is to select the state variable (change the underlined to variable) with 
the largest tangent vector component. In short, we select the state variable 
(change the underlined to variable) evidencing the maximum rate of 
change near a given solution. To begin with, /I is a good choice, and 
subsequent continuation parameters can be evaluated as: 

x,:\t,\=max{\t,l\t,l'-,\tj} (3.8) 

Here, t_ is the tangent vector. After the continuation parameter is se­

lected, the proper value of either +1 or -1 should be assigned to tj^ in the 

tangent vector calculation. 

3.4.2 Identifying the critical point 

To find the stopping criterion for the continuation power flow, we must de­
termine whether the critical point has been reached. This can be done eas­
ily because the critical point is the point at which maximum loading (and 
hence maximum A) occurs before decreasing. For this reason, at the criti­
cal point, the tangent vector component corresponding to X (which 
is dZ) is zero and becomes negative once it passes the critical point. Thus, 
the sign of the dX component tells us whether the critical point has been 
passed or not. 

The previous paragraphs summarize the basic continuation power flow. 
More details can be found in [4]. 
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3.5 Examples 

Two bus example: constant power load: the above approach is first dem­
onstrated through a simple two bus example as shown in Fig.3.1. 

V, = 1Z0° V^ = V,ZS 
yo.i 

-P-jQ 

Fig.3.1 Two bus system 

For this two bus example, the power flow equation at bus 2 can be for­
mulated as: 

Suppose 

• The voltage at the generator bus is: V^ = IZO 

• The voltage at the load bus is: F2 ~ ^ 2 ^ ^ 

• The load is: P + y g , so the injected power is: -P-jQ 

• The load power factor keeps constant. 

By introducing parameters X and K, we can represent load increase sce­

nario at bus 2 as follows: 

where Q^^ P^"^ tan(^^) and is the constant load changing factors speci­

fied for bus 2. 
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Then we get two equations corresponding to real power and reactive 
power: 

0 = Po *(l + ̂ ^ ) + ^2/2 cos(0^,-S) + Y^^V^^ cos(^22) = fiiS,V^,X) (3.9) 

0 = a * a + ̂ ^)-^2i^2sin(^2i-^)-i^22^2'sin(^J = /2(^,F,,A) (3.10) 

Now the original Jacobin matrix can be expressed as follows: 

Jo = 

e/i 5/i 
dS dV^ 

dS dK 

Y^y^ cos(^2, -d) -7^, sin(^2, -5)-lY^y^sinC^'^^) 

In the example, the system parameters are given as follows: ^ = 1.0, 

P o = 0 . 1 , cos(5^)=1.0, };2=^22=10' ^12=90% 2̂2 = - 9 0 " . 

Suppose we start from the following initial point: 

^2 =1.004, J = 0.075°, A = 0 

Using the initial guess of V^,?i prediction of the next solution can be 
made by taking an appropriately sized step in a tangent direction to the so­
lution path. The tangent vector can be calculated using the augmented 
Jacobin matrix: 

"^Aug -

J ^ 

5/i a/i 
dd dV^ 

df2 df. 

dS dK 

Po*K 

Qo*K (3.11) 

where e^ is an appropriately dimensioned row rector with all elements 

equal to zero except the A:̂ ,̂ which equals one. If the index k is chosen 
correctly, the augmented matrix is nonsingular. In the beginning, A: = 3 is 
chosen which corresponds to the parameter / I . So J^^^ is 
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•^/f«g -

10.0392 0.13 0.1 

0.1305 10.0808 0 

0 0 1 

Define the tangent vector as: 

t = [dS dV^ dXf 

During the prediction process, we have: 

•/.„,*^=[0 0 I f 

In the beginning the tangent vector is 

^ = [-0.01 0.0001 i f 

With this tangent vector, we get the predicted solution: 

(3.12) 

r^ .̂i -

F/^' 

U*̂ ' 
= 

> " 

F/ 

A' 

+ a 

'dd'' 

dV^ 

dA' 

where cr is a specified step length (we start at an initial step length a of 
0.3. Subsequent step lengths can be determined according to the procedure 
described in Chapter 2). So we have 

's'' 
^2 

r 
= 

's'' 

/ 

+ (T 

'dS'' 

dV^ 

dX' 
= 

'0.013" 

1.004 

0 

+ 0.3* 

' -0.01 ' 

-0.0001 

1 
= 

'o.or 
1.004 

0.3 _ 

Now that a prediction has been achieved, we can use this predicted solu­
tion as an initial guess for the corrector. We use the local parameterization 
method. Substituting these values into Eqs.3.9 and 3.10, we get the mis­
match: A/|^,A/2'^. Here we let ?i be constant and apply the same aug­
mented Jacobin matrix, to obtain the corrector: 
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AS''' 

2 
_ r - l * 

-^ Aug A// 

0 

So the corrected solution is: 

's'''' 
vl^' 
x'^' 

= 

-gk.x -

yk.X 

X'^' 

+ 0-

'^5'''' 

AVt' 

AX'^' 

The final converged solution for a given tolerance (10" )̂ is 

[S' V^ X'Y = [ - 0 . 0 1 2 9 1.0002 0 . 3 ] ^ Then we can use this 

value as the starting point for the predictor and start the next step and so 

on. 

After we get the tangent vector, we need to verify whether the system 
has reached the critical point. The sign of the product dVdX provides 
the information related to the critical point (dX=0 corresponds to the criti­
cal point. If the sign of the product dvdX is positive then the critical point 
has been passed). 

The tracing process based on continuation method includes the follow­
ing three situations: 

a) Tracing the upper part of the PV curve 
b) Tracing near the critical point 
c) Tracing the lower part of the PV curve 
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Fig.3,2 Tracing the upper part of the PV curve 

a) Tracing the upper part of the PV curve: 

As shown in Fig.3.2, suppose the predictor begins at Aj (0.1750, 

0.9841) {p- PX/E^). At point Aj , the augmented Jacobian matrix is 

^Aug -

9.6837 -1.7783 0.1 

-1.75 9.8406 0 

0 0 1 

So the tangent vector is 

[dd dV^ JAf =[-0.0107 -0.0019 i f 

The estimated step length a at this point is 7.68. Then the predictor 
becomes 

^ . . 1 

' 1 

P̂ ' 
= 

5' 

V' 

A' 

+ a 

dS' 

dV^ 

dX" 
= 

"-0.1788' 

0.9841 

16.5 

+ 7.68* 

"-0.0107" 

-0.0019 

1 
= 

"-0.2608" 

0.9695 

24.18 
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which corresponds to the point A^ (0.2518, 0.9695) in Fig.3.2. With 

same augmented Jacobian, one can perform corrector iterations using Aj 

as initial guess for Newton method. After checking for proper convergence 
tolerance, the final solution is: 

\gk.X 

F/^' 

;i^ '̂ 

= 

gk.X 

F/^' 

P̂ ' 
+ 

^^'^' 

AVl^' 

AA'"' 

= 

'-0.2639" 

0.9654 

24.18 

which is the point 6^(0.2518, 0.9654). Then we can begin the next pre­

dictor. 

b) Tracing near the critical point 
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-
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Fig. 3.3 Tracing near the critical point 
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As shown in Fig.3.3, suppose the predictor begins at A^CO.S, 0.709) 

which is close to the critical point. At point A2, the augmented Jacobian 

matrix is 

"5.0264 -7.0524 O.l" 

-4.9999 7.0897 0 

0 0 1 

J Aug -

So the tangent vector is 

[dd dV^ j ; i f =[-1.893 -1.335 i f 

which corresponds to the point A2 (0.5, 0.7057) in Fig.3.3. It should be 
noted here that the absolute value of dX is less than the other tangent vector 
absolute values, so we changed the continuation parameter from X to V2 for 
the corrector. For the corrector convergence, the step length a is reduced to 
0.0025. 

The final corrected solution: 

gk.X 

vt' 
/l*^' 

= 

gk.X 

f/̂ ' 
P '̂ 

+ 

A^*"' 

Ar/"' 
AA*̂ ' 

= 

•-0.7874' 

0.7057 

48.9996_ 

which is the point B2 (0.5, 0.7057). 

Actually the real critical point of the system is (0.5, 0.7071), which is 
very close to B2. 

c) Tracing belov^ the critical point 
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V 

0.42 

0.4 
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0.34 

0.32 
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Predictor 

A3 Corrector 

0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 p 

Fig. 3.4 Tracing below the critical 

In Fig.3.4, suppose the predictor begins at A3 (0.3774, 0.4147). At 

point A3, the augmented Jacobian matrix is 

J Aug 

1.72 -9.0995 0.1 

-3.7738 4.1473 0 

0 0 1 

So the tangent vector is 

[d5 dV^ J l f =[-0.0152 -0.0139 1]' 

The predictor then becomes (cr = 5.154) 

- ^ . . 1 -

F/̂ ' 

P*' 
= 
P'l 
F/ 
X' 

+ a 
'dS'' 
dV^ 
dA' 

= 

"-1.1432" 

0.4147 

36.7379 

+ 5.154* 

"-0.0152' 

-0.0139 

-1 

= 

"-1.2217' 

0.3432 

31.5839 
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which to the point A3 (0.3258, 0.3432) in Fig.3.4. With same aug­

mented Jacobian, one can perform corrector iterations using A3 as initial 

guess for Newton method. After checking for proper convergence toler­
ance, the final solution is: 

^-1.2159 

0.3475 

31.5839 

which is the point 83(0.3258, 0.3475). Then we can begin the next pre­

dictor. 

Finally, the whole tracing trajectory is shown in Fig.3.5. Compared with 
the PV curve for the example in Chapter 1, we can see that the results are 
identical. The PV curve in Fig.3.5 corresponds to unity power factor case 
of Fig. 1.6 in Chapter 1. 

- ^ . . 1 -

r/̂ ' 
x'^' 

— 

-^k.x-

r/̂ ' 
p̂ ' 

+ 

'^s'^'' 
AF/"' 

A/l'^' 

= 

0.2 0.3 0.4 0.5 

Fig. 3.5 The tracing trajectory 
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Two bus example: Nonlinear load: 

The above two bus example is based on a constant power load model, and 
load is independent of voltage. Thus, load is made to vary in direct propor­
tion to any change in A. But in a nonlinear load model, the response of the 
load to a change in voltage magnitude must be considered, and in such 
load model, the load is not in direct proportion to change in Jl. We can 
represent load increase scenario at bus 2 with nonlinear model as follows: 

In the above equation, V2Q is the initial voltage magnitude and parameter 

KPV and KPQ can be used to represent different load models. For QX-

?implQ, KPV = 0 , KQV = 0 is constant power model; KPV = \ , 

KQV = 1 is constant current model; KPV = 2, KQV = 2 is constant 
impedance model. With nonlinear load model, we can get new equations 
for real and reactive power: 

We use constant current and constant impedance load model to demon­
strate the effect of different load model on critical point with 2 bus system. 
In the simulation, the system parameters are given as follows: A'= 1.0, 

Po=OA4, cost^=1.0, 1̂2 =^22 = 1 0 ' ^12=90% ^ 2 2 ^ - 9 0 ' ^o 

Figs 3.6, 3.7 and 3.8 show PV curve, P-/1, and V-/lfor constant current 
load model. As parameter Z increases, power consumption first increases 
and reaches maximum and then decreases. Here Xmax does not correspond 
to Pmax. Here X can be interpreted as connected load as opposed to actual 
load. 



64 Continuation Power Flow 

0.9 

0.8 

«̂̂  
=> 0.7 
a 

^ 
^ 0.6 
> 

0.5 

0.4 

-

- . . .1 . . 1 

1 1 . < • " • " " 

/>' 

""""---^ 

y" 

\.. 

\ 
\ 
) 

/ 

/ 

1 1 1 

-

-

_ 

-

' 

-

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 
Total Load 

Fig. 3.6 V vs. P curve for constant current load 

Fig. 3.7 V vs. A. curve for constant current load 
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Fig. 3.8 P vs. X, for constant current load 

Figs. 3.9, 3.10 and 3.11 show PV curve, P- /1 , and V-/lfor constant im­
pedance load. 

Fig. 3.9 V vs. P curve for constant impedance load 
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Fig. 3.10 V vs. A. curve for constant current load 
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Fig. 3.11 P vs. X for constant current load 
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For example if it is purely a resistive load then X represents the number of 
parallel resistors connected at bus2. As we can see form the Fig. 3.11, Pmax 
occurs when the reactance of the transmission line( here we neglected the 
resistance of the transmission line) equals the total resistance connected at 
bus2. As the number of resistors increase beyond the one correspond to the 
maximum power, net load power decreases. The voltage at bus 2 also de­
creases with X as shown in Fig. 3.10. 

39 bus New England test system example 

The data related to this test system is given in Appendix A: three scenarios 
are considered to demonstrate the capability of the continuation power 
flow. 

Scenario 1 

In the scenario 1, loads at 8 buses are increased, while the increased load is 
picked up by 9 generators. These load buses are bus 7, 8, 15, 16, 18, 20, 
21, 23, and the load is increased proportional to their initial load levels. 
Scheduled generator buses are generators 30, 31, 32, 33, 34, 35, 36, 37, 38. 
The generator output is also increased proportional to their initial genera­
tions. Among these 9 generators, generator 31 is chosen as the slack bus. 
Besides scheduled generation output increment, generator 31 is also re­
sponsible for the load balance of the network. 

For the load, the load increment is defined as: 

e „ ( A ) = P, ,o tan(^0[ l + ^ ^ . J 

The initial total load {Pjotaii)) ^^ 6141MW with/I = 0 , and in the next step, 

the total load is 6783MW with>^ = (6783-6141)/6141 = 0.104548. 

The total load increment is 642MW which is distributed among 8 load 
buses proportional to their initial bus load. The following Table 3.1 shows 
the initial bus load level, the coefficients K^, bus load increment, new load 
level and the power factor at each bus: 
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Table 3.1 Scenario 1 for load variation 

Bus 

7 

8 

15 

16 

18 

20 

21 

23 

Initial Load 
(MW) 
233.8 

522 

320 

329.4 

158 

680 

274 

247.5 

K 

2.221326 

2.221326 

2.221326 

2.221326 

2.221326 

2.221326 

2.221326 

2.221326 

Load Increment 
(MW) 

54.15286 

120.9059 

74.11854 

76.29577 

36.59603 

157.5019 

63.464 

57.32606 

New Load Level 
(MW) 

287.9529 

642.9059 

394.1185 

405.6958 

194.596 

837.5019 

337.464 

304.8261 

Power Factor 

0.94 Lagging 

0.95 Lagging 

0.90 Lagging 

0.93 Lagging 

0.98 Lagging 

0.99 Lagging 

0.92 Lagging 

0.95 Lagging 

For the generator 
P,,=P,Jl + XK,,) 

K. Gi 

GiO 

GiO 

The following Table 3.2 shows the initial generator output, the coeffi­
cients KQ , generation increment and new generation level: 

Generators 

30 

31 

32 

33 

34 

35 

36 

37 

38 

Table 3.2 

Initial 
Generation 

(MW) 
230 

722.53 

630 

612 

488 

630 

540 

520 

810 

Scenario 1 for generation distribution 

KG 

1.185 

1.185 

1.185 

1.185 

1.185 

1.185 

1.185 

1.185 

1.185 

Generation 
Increment (MW) 

28.41914 

89.27687 

77.84372 

75.61962 

60.29799 

77.84372 

66.72319 

64.25196 

100.0848 

New Generation 
(MW) 

258.4191 

811.8069 

707.8437 

687.6196 

548.298 

707.8437 

606.7232 

584.252 

910.0848 
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Because generator 31 is the slack bus, the actual output is 827MW instead 
of scheduled 81IMW, and the additional 16MW is for the load balance. 

Fig.3.12 shows the variation of individual generators real power with total 
system load. Fig.3.13 shows the variation of individual bus load with re­
spect to the total system load. Fig.3.14 presents PV curves at four critical 
load buses (these buses are based on the largest tangent vector elements 
corresponding to voltages at the critical point). Fig.3.15 shows the rela­
tionship between the bus voltage and the parameter X. For constant power 
loads X^^^ corresponds t oP ^,. However for nonlinear loads A^,, does 

nidx A iTidx mdx 

not correspond to P^^^ as shown in two bus example. 
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Scenario 2 

The only difference in this scenario compared to scenario 1 is that the 
loads at those 8 buses are increased equally. This means load increment is 
the same among all the load buses. All other conditions are same as in sce­
nario 1. 

Table 3.3 Scenario 2 for load variation 

Bus 

7 

8 

15 

16 

18 

20 

21 

23 

Initial Load 
(MW) 

233.8 

522 

320 

329.4 

158 

680 

274 

247.5 

K 

3.283136 

1.470493 

2.398741 

2.330289 

4.85821 

1.128819 

2.80145 

3.101403 

Load Increment 
(MW) 

79.16 

79.17 

79.16 

79.17 

79.16 

79.18 

79.17 

79.15 

New Load Level 
(MW) 

312.96 

601.17 

399.16 

408.57 

237.16 

759.18 

353.17 

326.65 

Figs.3.17 to 3.21 are similar to Fig.3.12 to 3.16 respectively. 

The initial total load is 6141MW with/I = 0 , and in the next step, the total 
load is 6774MW with A = (6774-6141) /6141-0 .103127 . The total 
load increment is 633MW which is distributed among 8 load buses 
equally. The following Table 3.3 shows the initial bus load level, the coef­
ficients K^, bus load increment and new bus load level. The power factor 
at each bus is same as in scenario 1. 
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3.6 Simultaneous Equilibria Tracing in Power Systems 

In power system analysis, it is frequently of interest to find solutions of the 
system at an equilibrium point. For instance, the solution of the power 
flow equations is needed in system planning and static security analysis. In 
stability analysis, a power flow is used to calculate the voltages and angles 
at all buses, and then the dynamic state variables are evaluated using the 
device equations. This procedure causes some problems as will be shown 
in the following sections. To overcome these problems, we will further ex­
tend the continuation technique to simultaneously trace the total system 
equlibria of the structure preserving power system model, which is de­
scribed by a set of nonlinear differential and algebraic equations (DAEs). 
Physical interpretations of the new approach will give insights into some 
issues which are important to a good understanding of the power system. 

Unlike in power flow analysis, a detailed dynamic representation of the 
power system is required to analyze the system's stability behavior. As a 
typical nonlinear dynamic system, with the multiple time-scale property, a 
set of nonlinear DAEs can be employed to describe the behavior of the 
power system, i.e.. 
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X = F(XJ,P) (3.13) 

0 = G(XJ,P) (3.14) 

where X includes the dynamic states, Y includes the algebraic state 
variables, and P consists of all parameters explicitly appearing in 
F andG . Some of these parameters can be control input settings. 

3.6.1 Total solution at an equilibrium 

A system equilibrium solution is needed for the evaluation of the stability, 
the solution XQ and YQ of Eqs.3.13 and 3.14 at steady state, i.e., when 

X = 0 , constitute the equilibrium point. Setting the differential to zero in­
dicates a state of equilibrium of the system. In small signal stability analy­
sis, the right hand side of the DAEs is first linearized, and then the system 
state matrix ^̂ ^̂  (where A^^^ = F^ -FyGy^G^ , see section 3.8.7) is 
evaluated at (XQ , ^Q ) • ^^^ eigenvalues give small signal stability informa­
tion of the current equilibrium point. In nonlinear time domain analysis, 
the equilibrium solution {X^, Y^) gives the initial conditions to start nu­
merical integration. In direct Lyapunov type stability analysis, this solution 
is also required. 

3.6.2 Traditional approach 

In Eq.3.14, G corresponds to the power balance equations at all buses in 
the system. Therefore its dimension is larger than that of the power flow. 
In power flow, it is assumed that the voltage at PV buses and vohage and 
angle at the slack bus(es) are known and constant. Consequently, for a net­
work of n buses, if there are m generators, m^ of which are desig­
nated as slack, then the number of equations in the power flow formulation 
will be 2n-m — m^ (for polar coordinates). For a constant generator 

terminal voltage, it is assumed that the static gain of the excitation system 
is infinite. No limitations on the slack bus generation can be enforced dur­
ing the solution process. Once a power flow is solved, together with the 
pre-specified generation and voltages for PV and slack buses, the X^ 
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values will be updated using Eq.3.13 at steady state. The control parameter 

settings in P corresponding to this X^ are then computed. This proce­

dure of solving for {X^, 7^, P^) is termed as the two-step approach. With 

this total system equilibrium solution, further stability analysis can then be 
conducted. 

The above procedure has some drawbacks. Firstly, if control limits are 
enforced, a solution (XQ,7Q,PQ) satisfying these limits may not exist. 

The slack bus generation might also exceed limits after the power flow. In 
this case, the state which is limited would need to be fixed at its limiting 
value and a corresponding new steady state equilibrium solution would 
have to be found. This would require a new power flow, for each specified 
value of PV bus generation or terminal voltage, or possibly generator reac­
tive power injection. For the last case, the generator voltage becomes part 
of the power flow solution. For a heavily loaded system, this trial and error 
procedure may have to be repeated several times, each time requiring a 
new power flow solution. Secondly, even after a set of (XQ , 7Q , P^ ) val­
ues satisfying all limits are found, there still exists another problem which 
is inevitable in using the power flow based two-step approach to produce 
equilibria solution for stability analysis. That is, the description of the gen­
erators in the power flow is very different from that in the dynamic re­
sponse. How the generators behave in a dynamic process depends on the 
dynamic characteristics of the synchronous machine and the control sys­
tems associated with them. These controls are not represented for the PV 
bus generators and the slack bus generators are simply left out in the power 
flow. Therefore, it may not be unusual that this discrepancy in representa­
tion leads to erroneous results. 

3.7 Power Flow Methodology and Assumptions 

Before introducing the simultaneous equilibria tracing technique, let us 
first have a closer look at the assumptions used in the power flow, particu­
larly the reasons why they are needed. With a clearer understanding of 
these assumptions, we will then be able to devise a procedure in which the 
problems encountered in the traditional approach can be avoided. 
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3.7.1 Nonlinearity in power flow 

In normal electrical network analysis, the voltages and/or currents of 
power sources are given as known quantities. In order to find the voltages 
at various nodes and currents in all branches, one simply needs to solve the 
network nodal equations which are linear. Correspondingly, for power 
network, this refers to the nodal representation, given in phasor notation as 

YV = 1 (3-15) 

where Y is the network admittance matrix, V is the vector of phasor 

voltages at all buses, and / is the nodal phasor injection currents. The 
conditions for Eq.3.15 to have a solution with a specified set of injection 

currents / are 

• 7 is nonsingular; 

• rank(Y \I) = rank(7) if Y is singular. 

Were the injection currents known, the power flow would have involved 
no nonlinear equations. However, in power system analysis, the nodal 
voltages and injection currents are both unknown before a power flow is 
solved. Instead, the generation and load powers are given as the known 
quantities. They are related to the nodal voltages and injection currents as 
shown below. 

Vi 

—* 
Vi 

The '*' sign indicates the complex conjugate. With the real and imaginary 
parts separated, Eq.3.15 is transformed into the following form 

^-PEi-Pu-Pn i = ̂ ,-n (316) 

(i-QEi-Qu-Qn i-^,-n (31V) 

where 
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Pn = ViY/kyik cos(^, - ^ , - r / J (3.18) 
k=\ 

n 

Qn = ^ Z^kytk sin(^/ -Oj,- /ik) (3.19) 
A : = l 

The two nonlinear Eqs.3.16 and 3.17 correspond to the algebraic part of 
the DAE formulation given in Eq.3.14. With the powers specified at the 
terminal buses, X variables are not of concern in the power flow equa­
tions. 

3.7.2 Slack bus assumption 

The unknowns in Eqs.3.16 and 3.17 a r e ( K , 0 , the number of which is 2 ^ . 
The underline sign is used to denote vectors. If we want o solve these un­
knowns directly using the Newton's method, we have to specify the gen­
erations and load powers at all buses. And most probably, with a starting 

point (V_ ,0_ ) close to normal operating conditions, this approach will 
lead to divergence. A closer look of the structure of the power balance 
equations will give more insight into the problem. Designating the genera­
tor at the n^^ bus as the slack, summing up the first n-l equations in 

Eqs.3.16 and 3.17 and then adding them to the n^^ and 2n^^ equations 
respectively will yield 

Pos = tPn+P>oss(V,i)-I.PE> (3.20) 

QOS=T,QU+QIOSS(V,0-I,QE> (3.21) 
i=\ i=\ 

Since we know that 

tPn = P:oss(K,0 
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These two equations can be put together with the first n-l equations 
from 3.16 and 3.17 respectively to represent the complete network. Eqs. 

3.20 and 3.21 show that, if a solution (V_ ,0 ) exists, for a possible suc­
cessful convergence, we must specify the generations subject to the con­
straints given in Eqs.3.20 and 3.21. Since the losses as a function of the 
network solution are unknown before the power flow is solved, it is practi­
cally impossible to do so. Therefore, it is very likely that, if we have to 
specify the power generations for all generators, constraints Eqs.3.20 and 
3.21 may be greatly violated, and correspondingly the staring point 

(F , ^ ) might be well out of the radius of convergence of the Newton's 
method. Also, there is a possibility that a real solution simply does not ex­
ist corresponding to this set of specified generations. (From algebraic 
equations theory, we know that a solution always exists if we also consider 
complex roots.) If one can devise a scheme so that there is freedom of ad­
justing the generation during the course of iteratively solving the power 
flow equations, then convergence performance might be much better. Re­
ferring to this, an immediate thought would be to eliminate Eqs.3.20 and 
3.21 altogether from the power flow iterations. Consequently, the slack bus 
generation need not be specified. To do so, we must remove two un­
knowns from ( F , 0 . This is no difficulty at all. Because the goal of a 
power flow is to give a dispatch of the generation so that the system load 
can be served with the bus voltages being close to normal operating condi­
tions, usually close to 1.0 p.u., we can reasonably assign 1.0 to V^ and 

0 to ^^, the latter of which is simply to set a reference for the angle 

measurement, and thus it is arbitrary. After the power flow converges, we 
then calculate the losses and assign all of them to the slack generators. 
This procedure makes sure that the loss-generation imbalance does not 
cause convergence trouble during iteration. And this imbalance is fixed 
only after the power flow is solved. The above discussion shows that the 
slack bus assumption is a mathematical requirement for possible/good 
convergence of the Newton's iterative algorithm. 

3.7.3 PV bus assumption 

In order to maintain the system voltage levels, the generators are equipped 
with automatic voltage regulators (AVR) so that terminal voltages are 
within limits during system load increase or other disturbances. With the 
power flow description of the system, the only way to reflect this fact is to 
force the terminal voltages at the generator buses as constant since AVR is 
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not represented. To achieve this, the reactive power balance equations for 
generator buses must be removed. As a consequence, Q^^ is no longer 

needs to be specified as input, it is released as a variable. Physically, this 
means that reactive support from generators helps maintain a relatively 
high and steady terminal voltage. Numerically, this possibly also leads to 
better convergence characteristics of the Newton-Raphson power flow al­
gorithm. 

After the above discussion, we are now ready to devise a strategy that 
eliminates the unreasonable assumptions used in the power flow. It solves 
for a reasonable set of (X,Y) values with control limits automatically 
implemented. This leads us to the topic of simultaneous equilibria tracing 
technique. 

3.8 Total Power System Equilibria Solutions 

From the discussion given in Section 3.7 , we can make two conclusions 
about the assumptions used in the power flow: 

• Slack bus methodology provides a means of "automatically" adjusting 
real and reactive power generation "during" the iteration, not at all 
buses, but only for the slack, so that at any iteration the losses are not 
causing the point to be too far away from the true solution, therefore 
making Newton's iterative method possible to converge. 

• The PV bus assumption is used to reflect the need of maintaining the 
system voltage levels by AVRs and it also possibly helps improve the 
convergence rate of the Newton-Raphson algorithm. 

In the following sections, we will study how these assumptions, which 
cause the problems mentioned in subsection 3.6.2 can be removed, while 
the goals they are made to achieve are not sacrificed. 

Before we introduce the simultaneous equilibria tracing technique, let us 
first give a detailed representation of the structure-preserving power sys­
tem model. 
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3.8.1 Formulation of power system DAE model 

A power system is assumed to have n buses and m generators. Each gen­
erator is assumed to be equipped with the same type of excitation control 
system and speed governor. The formulation of power system modeling is 
presented in this chapter. The commonly used power system notations are 
adopted here. 

3.8.1.1 Synchronous generators 

Without loss of generality, the rotor angle of the m^^ generator is chosen 
as the system angle reference. This choice of reference is different from 
the conventional slack bus selection. No assumptions are necessary for 
choosing such a reference. When stator transients are ignored, the two-axis 
model [5, 6] describing the synchronous machine dynamics can be given 
as: 

^qi ~ ^dOi l^fdi ^qi \^di ^di )^di J *̂ - 1?' * • 5 m 
(3.24) 

(3.25) 

where O)^ is the system frequency, O). is the machine frequency, 

namely, generator angular speed and co^ is the system rated frequency 

(377.0 rad/sec). I^. and I^. are direct axis and quadrature axis currents 

respectively; E'^. and E'^- are transient direct axis and quadrature axis 

EMF respectively; T^Q^ and T^^. are direct axis and quadrature axis 

open circuit time constants respectively; X'^. and X^ are direct axis and 

quadrature axis transient reactances and R^. are armature resistance of 
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the machine; M. is inertia constant and Z). is the damping constant of 

the machine. All the quantities are in per unit except COQ . 

Interface voltage equations to the network are given as follows: 

^^, = F;. COS(J, -0,) + RJ^, + Z , , / , , (3.26) 

E,, = V, sin(̂ ,. - ^,) + RJ,, - X'J^, (3.27) 

where V. and 9.^ are bus voltage and angle respectively. 

The machine currents 7^. and 7 .̂ can be eliminated by solving the gen­

erator interface equations to the network. Hence, 

/„. = \RX^ + <,.X;, -R,V, siniS, -e;)- X\y, cos(^, - ^ J W (3.28) 

l,i = {RsiKi -^'^i^'-^i -Rsy> cos(J, -e,)- X,y, sin(^, -9 , ) ] ^ r ' (3.29) 

A.=R\^X'.X'. (3-30) 
I SI di qi 

Note that Eq.3.22 does not include the differential equation for S^, and 

all the angles here and henceforth are relative angles with respect to the 

m ̂ ^ generator' s rotor angle. 

3.8.1.2 Excitation Control system 

The simplified IEEE type DC-1 excitation system [5] as shown in Fig.3.22 
is used here. The corresponding mathematical model is 

V, -T^l-V.^-K^XVrefi-V^-Rfi)] i - \ - . m (3 32) 

If n̂,min ^ Vri ̂  K^m... ^pssi = ̂  (at Steady state), 
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^fi " ^/^"^Ji " ^^ei + ^ei i^fdi )\KfiEfdi / ^e/ + ^y.'^n ' ^ei (3.33) 

where V^^j- is the reference voltage of the automatic voltage regulator 

(AVR); V^. and 7?̂ ^ are the outputs of the AVR and exciter soft feed­

back; Ej^^. is the voltage applied to generator field winding; T^., T^. 

and Tjj are AVR, exciter and feedback time constants respectively ; Kah 

Kei and Kfi are gains of AVR, exciter and feedback respectively; V^. ^-^ 

and V^. ^^^ are the lower and upper limits of V^. respectively. 

3.8.1.3 Prime mover and speed governor 

Fig.3.23 shows the block diagram for a simplified prime mover and speed 
governor. Two differential equations are involved to describe the dynamics 
when no //. limit is hit. 

Pmi = K~h](Mi -Pmi) i = l'",m (3 34) 

Mi =^gi[Pgsi(^i -^ref)lRi -Mi] if/^/,min ^ Mi ^/^/,max (3.35) 

/ == 1, • • •, m 

where P^^. = P^^. (1 + K^.ju) is the designated real power generation; i^^. 

is its setting at base case; Kg^ is the generator load pick-up factor that 
could be determined by AGC, EDC or other system operating practice; 
P^. is the mechanical power of prime mover and jU. is the steam valve 

or water gate opening; R. is the governor regulation constant represent­

ing its inherent speed-droop characteristic; Q)^^y(=l.O) is the governor ref­

erence speed; T^^. and T^. are the time constants related to the prime 

mover and speed governor respectively; ju.^^-^ and //. ^^^ are the lower 

and upper limits of jU , where a parameter ju is introduced to designate 

the system operation scenario. At the base case, jU equals to zero. 
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Fig. 3.23 The simplified speed governor and prime mover 

3.8.1 A Nonlinear load model 

The voltage and frequency dependent load can be modeled as follows: 

i = l,'-',m (3.36) 

where Ĵ .Q and QJ.Q are the active and reactive powers absorbed by the 

load at the nominal voltage V.and frequency 6;̂  (=1.0). The frequency 

dependent term is included to prevent the equilibrium computation from 
divergence in case all the generators reach their maximum real power lim-
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its due to load increase or generator outages. Here K^^j- and K^^j- are the 

load changing factors with respect to system frequency. 

3.8.1.5 LTC model 

Eqs.3.37 and 3.38 show the response of Load Tap Changer modeled as 
continuous. Assume the transformer is between bus / and busy, then 

Vj^rV, (3.37) 

T^r^Vf -Vj (3.38) 

where r is the tap ratio of an LTC; ^ / is the reference voltage at the 

LTC regulated busy; 7] is the time constant. 

3.8.1.6 Other Models 

Generic Dynamic Load Model: Ref [20] proposed a generic load model 
to capture nonlinear characteristics as well load recovery. This model in­
cludes both steady state and transient load characteristics. Ref [21] further 
classifies this model in term of multiplicative generic model and additive 
generic model based on how load state variables affect the transient load 
characteristic. For additive generic model the corresponding equations that 
represent relevant responses are [21]: 

Transient load response at particular bus /: 

PHr=PuA^Pi+i^r] (3.39) 

Qnr=Qn.[^Qi+i^Y'] (3-40) 
WO 
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Where the dyanmic state variables Zpj and ZQJ represented by the 
following equations: 

d Vi Vi 
r , , . ^ z , , . = - z , , + ( ^ r - ( ^ r (3.41) 

at r .Q y.Q 

TA,-a.=--.,H^y'-(^)'' (3.42) 

At steady state 

Vi 
P,.s=P,io(—r (3.43) 

Qns-Quoi^Y' (3.44) 
WO 

These models can be easily incorporated in general DAE formulation for 
equilibrium tracing or for time domain simulation. Time domain simula­
tions for short term and for long term are discussed in chapter 6. Ref [21] 
also includes one chapter that provides wide coverage of various load as­
pects including the induction motor for voltage stability studies. 

HVDC Models: 

HVDC can also be easily incorporated into power flow. References [5, 
7] provide a systematic presentation for power flow formulation for AC-
DC power systems. These references cover AC -DC power flow solution 
both for single converter and multiterminal DC systems. Basically, there 
are real and reactive power mismatches at the converter terminal bus bars 
similar to AC power mismatches at particular AC bus. At converter termi­
nal bus bar there are additional real and reactive power injections which 
are function of DC system variables and the converter AC terminal bus bar 
voltage. The variable corresponds to DC include: average DC voltage, 
converter DC current, firing angle of the converter, the converter trans­
former off- nominal tap ratio [7]. 
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Ref [23] specifically discusses the comparison between point of collapse 
methods and continuation methods for large scale AC/DC systems. The 
detailed modeling related to AC-DC dynamic systems for point of collapse 
methods is discussed in ref [24]. This reference included inverter and con­
verter control functions and showed voltage dependent current order limits 
affect the voltage stability margin of the system. This reference also ob­
served Hopf bifurcation. For Hopf bifurcation, voltage dependent current 
order limit also played an important role. 

In a recent paper [27] a single-infeed HVDC model is incorporated in 
combination with detailed synchronous machine modeling and excitation 
voltage control. The authors derived analytical expressions for 
power/voltage stability indices. 

FACTS Device Models: 

Reactive power plays an important role in voltage stability studies. Flexi­
ble AC Transmission Systems (FACTS), such as Static Var Compensator 
(SVC), Thyristor Controlled Series Capacitor (TCSC), Static Synchronous 
Compensator (STATCOM), and Unified Power Flow Controller (UPFC) 
can provide required fast control to improve voltage stability. 

Reference [8] came with a general FACTS device model that is flexible 
enough to represent any FACTS device including the ones mentioned 
above. Functional characteristics of various FACTS devices are derived 
from Voltage Source Converter (VSC) model. This model can be used 
both for power flow as well stability studies. Ref [28] provided steady state 
models for SVC and TCSC with controls for voltage stability analysis. 
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3.8.1.7 Network power equations 

Corresponding to the above models, the network equations can be written 
as: 

\0 = P^^-(\ + K,^A)P,-P, 

\0 = Q^,-il + K,,A)Q,-Q, 
i = l 

Where 

Pn=tlKVJ,COs(0,-0,-<p^,) 
k=\ i = l,"',n 

Q.=ZV>VJ,sm(0,-0^-<P,) 
k=\ 

And 

(3.45) 

(3.46) 

[ e , . - / . . ) ^ cos(^, -0,)-I^,V,sm{5, -e,) 
i = \,'",m (3.47) 

P^. and 2g/ ^̂ ^ the generator output powers, which are primarily deter­
mined by the inherent characteristics of the speed governor and the AVR 
regulations. They will change if real power generation rescheduling and 
secondary voltage control is applied. /J. and 2// ^̂ ^ the powers injected 

into the network at bus /. K^. is load changing factor specified for bus / 

as mentioned in Section 3.8.3. 
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3.8.1.8 Power system DAE model 

The above differential and algebraic equations are commonly known as a 
DAE representation of the power system. In a compact form, they can be 
simply represented by Eqs.3.13 and 3.14 as described in Section 3.6. 

The state vector X and algebraic vector 7 contain the following variables: 

Y = (V,0) 

The P in Eqs.3.13 and 3.14 can be further divided into control vector U 
and parameter vector Z 

U = (Ke,,P,s,-), Z = (P„Q,) (3.49) 

In short, X contains all the system state variables; Y includes the algebraic 
variables; U is the control vector, whereas Z characterizes system loading 
condition. 

3.8.2 Bifurcation modeling of power system dynamics 

As discussed in Chapter 3, for a dynamic system parameterized by a single 
or a set of static parameters, bifurcations occur when the character of equi­
librium changes within an arbitrary small local neighborhood of a critical 
parameter set. Those static parameters are defined as bifurcation parame­
ters. Note that the prerequisite condition of bifurcation parameters is that 
their derivatives always equal zero. That is, they are out of dynamic vari­
able set that characterize system state. 

An extensive power system literature is available for the application of bi­
furcation related approach to voltage stability [9]. 

In power system DAE model, the change of equilibrium character with re­
spect to bifurcation parameter is often effectively studied by analyzing 

changes of the eigenvalues of A^^^ (A) = F^ - Fy {GyY^ G^ in response 

to parameter variations. 

The various types of bifurcation points generally will form surfaces or 
manifold in the multidimensional parameter space. These surfaces serve in 
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the parameter space as boundaries separating regions where a certain type 
of system operation (as characterized by equihbria and trajectories) per­
sists. A point on such a surface can be identified by a single bifurcation pa­
rameter X-X^, These bifurcations are classified as codimension one. 
Only local codimension one bifurcations are discussed here. 

3.8.2.1 Saddle-node bifurcation 

Saddle-node bifiircation occurs when the Jacobian of the system A^^^ {X^) 

has a simple eigenvalue and there is no other eigenvalue on the imaginary 

axis. The equilibrium cease to exist when/I moves beyond AQ. Corre­

spondingly in the state space x, two equilibriums approach each other as 

X approaches X^; then at X^ they fuse in a nonhyperbolic equilibrium 

(with a zero eigenvalue). 

Under certain additional transversality (non-degenerate) conditions, the 
presence of the simple zero eigenvalue of the Jacobian essentially charac­
terizes this bifurcation. In second-order systems, this bifurcation corre­
sponds to the annihilation of a saddle point and a node, hence the name 
saddle-node bifurcation [10]. 

3.8.2.2 Hopf bifurcation 

When Hopf bifurcation occurs, the Jacobian A^^^ of the system has a sim­
ple pair of purely imaginary eigenvalues and there are no other eigenvalues 
on the imaginary axis. As the parameter changes, certain inequality condi­
tions need to hold that ensure that this pair of critical eigenvalues crosses 
the imaginary axis. They can be formulated as 

^Re[MA)]^0 

when Re(^) denotes the real part of the eigenvalue |i, which moves across 

the imaginary axis, and djdX denotes the derivative with respect to the 

bifurcation parameter X. 

Typically, this means that for X^ XQ the system has an equilibrium and a 

closed trajectory; a limit cycle exists near this equilibrium for one side of 
the parameters. This limit cycle can be unstable (or stable), that is, trajecto­
ries diverge (converge) from (to) it from both the inside and the outside. 
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The stable limit cycle corresponds to super critical Hopf bifurcation. The 
unstable Hmit cycle corresponds to sub critical Hopf bifurcation. The su­
percritical Hopf bifurcation corresponds to a transition in the system oper­
ating condition from a small-signal stable equilibrium point for/ l</l^, 

and a small-signal stable limit cycle for ŷ  > >^. That is, when the system 
undergoes a supercritical Hopf bifurcation at/l = /Ic, the system operating 
condition changes to sustained oscillation for /I > /Ic. This type of super­
critical Hopf bifurcation appears and played a fundamental role in the os­
cillating event experienced by Union Electric in 1992 [11, 12]. Ref [12] 
applied Hopf bifurcation analysis to large scale power system. The authors 
in this reference studied power system model in DAE form. Hopf related 
segments are traced by continuation based approaches. The critical eigen­
value is estimated either by power method or modified Amoldi method. 

3.8.3 Manifold models in power systems 

Mathematical models of many, practically important scientific and techni­
cal problems involve differentiable manifolds. Differentiable manifolds are 
implicitly defined as the solution sets of systems of nonlinear equations. 
The mathematical basis for manifold and its numerical treatment are well 
established in the mathematical literature [3,13,15]. Following sections 
provide brief summary based on these references. 

3,8.3.1 Manifold 

Assume a dynamic system is represented by: 

X = F{x,X) F:R"xR' -^R" (3.50) 

where F is a sufficiently smooth mapping, x G R" is a state variable vec­
tor, A e R"^ is a parameter vector. The computational study of equilibria 
leads to nonlinear equations of 3.51. 

F(x,A) = 0 (3.51) 
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As we see in the previous sections, it is of interest to determine the behav­
ior of the solution under variation of/I. Here /I is a vector of parameters. 

The zero set M = {(x,A) eR" xR"^ : F(x,Ji) = 0} has the structure of 

a submanifold of dimension d of the product R" xR"^ of state and pa­
rameter space. Computational techniques are well developed to find the 
critical point of interest on the manifold or any other dynamic behavior of 
interest. This approach can also be used in connection with equality con­
strained dynamical systems that are modeled by differential-algebraic 
equations (DAE) which are of interest to power system security analysis. 
Such DAE is known to be closely related to ordinary differential equations 
(ODE) on implicitly defined differentiable manifolds [13]. 

The basic computational problems arising in connection with any implic­
itly defined manifold is to come up with certain parameterizations. Finally 
it leads to solving certain set of nonlinear equations. 

3.8.3.2 Natural parameterization 

In many applications one can identify certain quantities that can be inde­
pendently changed (for example constant load power change in power sys­
tems). This can be identified as parameter. This means that we have an in­
trinsic splitting, which includes a d-dimensional parameter space A and 
a state space X of dimension n, 

X®A and dim(A) = d 
This is a natural parameter splitting of original variable space. One can use 
the parameter space A as the coordinate space of a local coordinate sys­
tem. 

For example for power system we can identified parameters involved in 
power flow type formulation as well DAE type formulation. For some 
cases, the natural parameterization may be not suitable to be a local 
parameterization, in which cases singularity is always encountered while 
solving for the solution of nonlinear equation system. 

3.8.3.3 Local parameterization 

Rheinboldt [13] described mathematics behind the local parameterization 
to trace the equilibrium curve. The local parameterization could avoid the 
singularity encountered by the natural parameterization. The procedure for 
one parameter problem is described here. Continuation methods produce a 
sequence of solutions for changing parameter. Local parameterization pro-
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vides a way to trace this path successfully. Local parameterization at a 

given step requires a nonzero vector e e R"" such that 

e ^ rangeDF {xY (3.52) 

Basically (3.52) implies e should not be normal vector of M at x. 

Then the local parameterization involves solving the following augmented 
system of equations for a given value of rj which is a scalar. 

( F(x) ^ fO^ 
H(x)^\ ' ' \ 

(3.53) 

^J 

The Jacobian 

DF(x) 
DH(x) = 

is nonsingular in an open neighborhood of x = x^[l3]. 

This general setting becomes background material for the continuation 
power flow discussed in section 3.4. Basically DH(x) can be related to 
the augmented jacobian Jaug. How to choose vector e and the scalar pa­
rameter r| are discussed in the predictor and corrector tracing process in the 
same section. 

This basic manifold approach can be exploited to identify and trace voltage 
stability boundaries 

Power system equilibrium manifold is defined in this chapter for power 
system equilibrium tracing. 
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Saddle node bifurcation related voltage stability margin boundary mani­
fold is defined in Chapter 5 for voltage stability margin boundary tracing. 

3.8.4 Equilibrium manifold Tracing of power systems 

Simultaneously solving forX and Y will enable us to avoid the as­
sumptions used in power flow. This leads us to the question whether it is 
possible to solve for X and Y directly and simultaneously from 
Eqs.3.13 and 3.14 at equilibrium, i.e., 

0 = F(XJ,U,Z) (3.54) 

0 = G(XJ,U,Z) (3.55) 

The immediate concern is whether the Newton's method would work with 
as good convergence as that in the power flow. 

As mentioned earlier, the release of slack bus generation is used in power 
flow so that network losses corresponding to a set of system voltages are 
not causing convergence trouble during iterations. In the complete descrip­
tion of the system at equilibrium state, this compensation becomes possible 
without the necessity of removing the slack bus power balance equations. 
With the description of the system at steady state by 3.54 and 3.55, genera­
tion at terminal interface to the network is now a function of system states 
(see Eqs.3.47). The governor frequency regulation together with the boiler 
valve control, as described by Eqs.3.35 and 3.34, interacts with the net­
work real power balance constraints, through mechanical power P^. 

(Eqs.3.23 and 3.34), to adjust the interface generation P^. so that real 

power losses are automatically compensated by regulating the system fre­

quency. Similarly, the automatic voltage regulator (described by Eqs.3.14 

and 3.16) interacts with the network reactive power balance constraints, 

through Ej^^. to adjust Q^. so that reactive power losses are compen­

sated by regulating terminal bus voltage V.. In regard to PV bus assump­

tion, it is not needed any more since AVR is actually represented. 

Based on the above analysis, it is possible to solver for X and Y si­
multaneously by directly applying Newton's method to Eqs.3.54 and 3.55. 
Further, in the following section, we will show how we can incorporate 
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this into continuation and apply the resultant simultaneous equilibria trac­
ing technique to voltage collapse identification. Overall solution method­
ology is given in the sequel. 

Eqs.3.54 and 3.55 define the equilibrium manifold of power system. The 
conventional power flow solution is simply a point on this manifold corre­
sponding to certain condition. It could be thought of as an intersection 
point of the equilibrium manifold and a cut line (or hyper-plane) defined 
by system condition. Naturally power system condition is parameterized 
by control variables U and loading condition Z that present in the power 
system DAE model. 

The equilibrium is the solution of a set of nonlinear equations which are 
introduced in the previous sections. It could be calculated by Gauss-Sedel 
method or Newton-Raphson method (or their derivatives). Newton-
Raphson type of method is widely used due to its super linear convergence 
rate. But when load stress on power system is increased, both methods can 
diverge however close the initial guess is. This is caused by singularity of 
the total system Jacobian of (Eqs.3.54 and 3.55). 

Similar approach to the continuation power flow presented in Section 3.4 
can be also applied to trace the total equilibrium as defined by (Eqs. 3.54 
and 3.55). 

To trace this equilibrium, first we need an initial starting point. Next sec­
tion provides details related to this initial condition. 

3.8.5 Initialization for power system equilibrium tracing 

To start power system equilibrium tracing, we need initial conditions that 

are defined by following variables at all buses S, co, E^, E^, Ej^ ,V^,Ry, 

I^.Iq ^V^6. Solution from power flow provides V^6 at all buses. The 

remaining values are obtained as shown as follows [6]. 

The first step in computing the initial conditions is to obtain the generator 
currents from Eq.3.55: 

T / Y . ^i ^Gj 
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and the relative machine rotor angels from manipulation of the stator and 
flux equations 

S, = angle of (V,e''' + (R, + jX^, )/^. e^'') (3-57) 

With these quantities, the remaining dynamic and algebraic states can be 
obtained by 

followed by Ef^ from the stator and flux equation 

^/.,. = ^ . / . , . + ^ . , + ^ . / . - (3.60) 

With this field voltage, R^, Vjj and V. can be found from the exciter 

equations as 

Kf^ (3.61) 

K,=(Ke^+S,^(EM))Ef,^ (3.62) 

V, (3.63) 

This initial value of E^. and E^i are then found from the flux equations: 

^ . , = - ( ^ , , - 0 / , , (3.65) 

This completes the computation of all dynamic state initial conditions. 
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3.8.6 Continuation method with local parametrization 

This section extends the apphcation of the continuation method described 
in Section 3.4 to the power system DAE formulation. The system equilib­
rium manifold defined by Eqs.3.54 and 3.55 could be traced, according to 
a scheduled scenario parameterized by X, from base case up to the point 
where voltage collapse associated with the saddle node bifurcation occurs. 

The same predictor and corrector process described in Section 3.4 can be 
applied here. Then the tangent vector is solved from 

Fv F^ A \dX~ 
\dY 

\dX 

— 

"0 " 
0 
±1 

(3.66) 

Once the prediction is made with the tangent vector, the following correc­
tion is performed to find the equilibrium point. 

(3.67) 
^ Y 

G. 

[AZ' 
A7 

[AA 
= -

'F~ 
G 
0 

where [dX^ ,dY^ ,dA.Y is the tangent vector, e^is a column unit vector 

with all the elements equal to zero except for the k^^ one, which corre­
sponds to the current continuation parameter. Since Fx and Gx can not be 
null vectors at the same time even at the base case (A =0), the singularity 
of the augmented Jacobian matrix can be easily avoided by appropriately 
selection of the continuation parameter. To speed up the computation, the 
same Jacobian can be used in Eqs.3.66 and 3.67. 

Since A is introduced to parameterize the system generation and load 
level, it increases monotonically to the maximum value. Hence dZ is 
positive before/I reaches its maximum, and negative afterwards. Null 
dJi indicates that the system total Jacobian matrix is singular. This can 
be clearly seen as follows. 
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3.8.7 Linerization of power system DAE 

When the parameter in Eqs.3.13 and 3.14 is varied, the corresponding state 
vector X and the eigenvalues of the system matrix evaluated on this path 
change accordingly. 

Linearization of Eqs.3.13 and 3.14 at the equilibrium point with specified 
U and Z is presented as follows: 

(3.68) 
AX 
0 

= 
Px ^Y\ 

PAZ" 

[Ar_ ~ '^ total 

~bJC 

_A7_ 

Matrices Fx, Fy, Gx, and Gy contain first derivatives of F and G with re­
spect to Jf and 7, evaluated at the equilibrium point. 

Note that matrix Gy is an algebraic Jacobia matrix that contains the power 
flow Jacobian matrix. In the above equation, if det(Gr) does not equal zero 

AY = -Gy^Gj^AX 

Substituing in (3.68) results in 

AX = A AX 
sys 

(3.69) 

(3.70) 

Ays =^X-^YGY Gj^ (3.71) 

The essential small-disturbance dynamic characteristics of a structure-
preserving model are expressed in terms of eigen-properties of the reduced 
system matrix Asys. This matrix is called dynamic system state matrix. 

Eigenvalue analysis of ^5^ ,̂will give small signal stability information of 
the current equilibrium point under small disturbances. At voltage 
collapse, the system loses the ability to supply enough power to a heavily 
loaded network. At that point, the so-called saddle node bifurcation occurs 
which is described by the movement of one eigenvalue of A^ys on the real 
axis crossing the origin from the left half complex plane. Eigenvalue 
computation will help detect this movement, participation factor studies 
will show how bus voltages participate in this collapse mode, and 
sensitivity analysis will show the parameter influence on this critical 
situation [5]. 
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At saddle node bifurcation which leads to voltage collapse, one of the 
eigenvalue of Asys becomes zero. Equivalently, the determinant of Asys 
equal zero. From matrix theory, we know that, 

det( / , , , , ) = det 
Fx Fy 

det(F^ -FyG'yG^)det(Gy) 
(3.72) 

= de t (^ , , Jde t (G, ) 

So if Gy is nonsingular, the determinant of ^̂ ^̂  becomes zero if and only if 
the determinant of Jtotai is zero. This is the Schur formula. Jtotai is very 
sparse and thus allow efficient handling using sparse techniques. Therefor 
detection of the singularity of Asys is equivalent to the detection of the 
singularity of Jtotai-

3.8.8 Detection of Saddle Node Bifurcation with System Total 
Jacobian 

Proposition 1: When Gy^ exists and u^ ii^O , then the following 
equivalent condition is valid 

if and only if 

Ays^X = ^^X 

F^-M Fy 

where 

Gx Gy 

Uy = —Gy G j^U ^ 

= 0 

We define the extended eigenvector u — \u^ Uy \ 

Proof. 

1. Assume A^^^u^ - Xu^ , i.e., 

{F^-FyG~y^G^)u^=Xu^ 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

FromL.H.SofEq.3.74 
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F^-XI FyJu^' 

G^ Gyl_Uy_ 

\F^-XI) U^+F^Uy 

G^u^ •\-GYUY 

UF^-M)U^-F^G;'G^U^ 

I ^X^X-^Y^'Y 'G^ K^X 

\F,-F,G 

{3.11) 

X^Y ^XJ'^X ^^^X 

0 
- 0 

Substitution of Uy = -G'^G^u^ in the above equation verifies Eq.3.74. 
Or 

2. Assume 

F^-XI Fy 

Gy Gv Wv 

G^U^ + GyUy 

= 0 

= 0 

(3.78) 

(3.79) 

From the second item in Eq.3.79, Uy =-Gy'G;^u^- Substitute this into the 
first item 

(Fy - AI)Uj^ - F^Gy^G^u^ = 0 

After rearrangement, based on the definition of A^^^ 

Ays^x = ^X 

is obtained. This concludes the proof for proposition 1. 

From Eq.3.74, the total Jacobian matrix 

(3.80) 

(3.81) 

D 

Aolal ~ 
Fx Fy 

Gx Gy. 

can be used to detect either Saddle node or Hopf bifurcation. 

3.8.8.1 Detection of saddle-node bifurcation 

From proposition 1, the condition 

^X ^Y II ^X 

G^ Gy II Uy 
= 0 

(3.82) 
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can be utilized to detect Saddle node bifurcation, that is, to detect the sin­
gularity of the total Jacobian matrix. 

During the direct equilibrium tracing, the saddle node bifurcation point can 
be readily identified by utilizing a cut function, without computing eigen­
values [13,15]. 

A cut function for Saddle node related fold bifurcation can be implicitly 
defined as /SNB M in the following equation: 

Px 
G, 

4 

Fy 

Gy 

eJ 

oj 

\<] 
4 

[_/sNB 

+ 
'0' 
0 

1 

(3.83) 

= 0 

where we denote u" = [M° ulf • Or equivalently, 

Gx Gy 

Vx 

YSMB 

(3.84) 

= 0 

where we denote v^=[v^ v^f 

At the fold point, the cut set condition is satisfied, that is 

At each continuation step, y^^^^ is checked. If y^^^ changes sign. Saddle 

node bifurcation has just been passed. This y^^^ is nothing but J/l [16]. 

If null dX is detected at some step, then Eq.3.36 reduces to 

F. 

' X Gv 

dX 

dY 

(3.85) 

Since 

kl 
'dX' 
dY 
0 

= 

'0 " 
0 
±1 

(3.86) 
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So one of the components of dX or dY is ±1, not a null vector, Eq.3.85 

hence implies the total system Jacobian J^^^^j singular. As mentioned be­

fore, from Eq.3.72, the singularity of /̂ ^̂ ^̂  coincides with the singularity 

of A^y^ if GY is nonsingular. 

The singularity of A^^^ implies it has a null eigenvalue at the current step. 

Therefore null dX exactly signifies a saddle node bifurcation. Thus it can 
readily identify the saddle node bifurcation point by equivalently detecting 
null dX during the direct equilibrium tracing, without formation of A^^^ 

and computing its eigenvalues. 

However, when system limits are considered, sometimes we could not cap­
ture the null dX point even using a very small step length. It most probably 
means an immediate voltage collapse encountered due to some generators 
hitting their limits [17]. On the other hand, in order to investigate the volt­
age collapse mechanisms or to develop an effective control strategy 
against voltage collapse, the critical eigenvalue responsible for the voltage 
collapse may be needed. 

In general, there is no simple way to capture the critical eigenvalue at an 
iimnediate voltage collapse point. However, this critical eigenvalue can 
readily be detected via simultaneous equilibrium tracing. That is, we can 
use the general tracing scheme illustrated in Fig.3.24 to locate the saddle 
node bifurcation point where the critical eigenvalue crosses the origin on 
the complex plane. 

First, we use a relatively large step size to trace the system equilibrium 
diagram BCim until the negative dX is detected at point C/ .̂ Then we should 
change the tracing direction and continue the process with a smaller step 
size up to the saddle node bifurcation point Csnb where null dX could be 
easily detected. If the traced equilibrium diagram is the same as depicted in 
Fig.3.24, we can conclude that the point C/̂  is the system immediate volt­
age collapse point. Otherwise, in case null dX is detected but the saddle 
node bifurcation point Csnb is sitting on the BCtm diagram, it means that the 
voltage collapse results from the saddle node bifurcation rather than the 
system limits. Note that the tracing process always stops at the saddle node 
bifurcation point. The solid curve with arrows indicates the tracing path 
and direction. 
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4 F 

\ ^Si 

Fig. 3,24 Illustration of direct equilibrium tracing process 

3.8.9 Limits implementation 

It is very important to reasonably represent the system limits when study­
ing voltage stability. In fact, voltage collapse occurs more than often as a 
consequence of limited local reactive power supply. When the system 
loses the ability to further meet the load demand in a heavily stressed net­
work, the cascaded hitting of limits usually leads to system collapse. There 
are basically two types of limits to be considered. One is the governor 
limit, and the other is the AVR output limit. For voltage stability, the latter 
usually plays a more important role. 

3.8.9.1 Governor limits 

The governor limits are implemented by regulating the real power genera­

tion/load settings. Those generators which hit P^^"" will then be forced to 

stay at maximum, and no longer allowed to further pick up the system load 
increase. 

3.8.9.2 AVR limits 

The automatic voltage regulator (AVR) controls the terminal voltage of the 
synchronous machine. It indirectly controls the reactive power output by 
regulating the AVR output voltage V^. In the new formulation, we are able 
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to directly implement the limits which are usually given to restrict the out­
put of the voltage regulator. Forcing the AVR output voltage at a particular 
value will directly control the rotor current to stay below limits and indi­
rectly control the reactive generation. This can be shown as follows. At an 
equilibrium state, the AVR output voltage is related to the synchronous 
machine rotor current as 

V,={K^,-^S,)Ef,, (3.87) 

where E^^ is the generator's internal induced quadrature axis voltage 

[18]. So if we ignore the saturation effect, the rotor current is proportional 

torK^., which verifies the first half of the above statement. A machine's re­

active power output can be written as: 

^ di ^ di ^ qi 

When V^. is fixed at a certain value, the reactive power will then be lim­
ited indirectly, at lease not increase exponentially when approaching volt­
age collapse. This shows the second half of the previous statement. 

Once the AVR of a generator hits the limit, it loses the ability to adjust 
V^. and thus 2 G / ^̂  vciQQi the load increase. The AVR has to be set so 

that F .̂ stays at the limiting value. Referring to Eq.3.32, the dynamic dif­
ferential equation will be dropped and will not be included for stability 
analysis. This is obvious if one recalls the definition of stabiUty from con­
trol theory. That is, the limited dynamic state will stay as a constant, and it 
no longer participates in the dynamic response of the system. If we solve 
the remaining equations which provide the DAE description of the system 
with the same control inputs, we may not be able to find a solution. This is 
because, when the system load further increases, in order to continuously 
keep F .̂ at the limiting value, the corresponding excitation reference 

voltage F̂ ŷ̂  may have to be reduced. The decrease of the exciter refer­
ence voltage reflects the inability of the generator to keep pace with the 
load increase. In the conventional two-step based equilibria tracing ap-
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preach, this would require a new power flow solution with a different set 
of generation and/or voltage specifications for the PV buses. After this, the 
X variables are then calculated and the control inputs including the exciter 
reference voltage will then be updated to a new smaller value in this case. 
As mentioned in the first section of this chapter, this causes the problem of 
inconsistent description of the generators. In the new formulation, when 
some new limits are hit, this update of control settings can be done auto­
matically during continuation. To do so, we include the following equa­
tion, which is nothing but the right hand side of Eq.3.32 with F .̂ at its 

maximum. 
1 

0 - — ( ~ C ^ ^ •^K^XVre.-Vi -R,))-fi 
AVR+ (3.89) 

If a new limit is found to be violated at the end of the current correction, 
the following Jacobian will then be used in the immediate correction to 
update the input exciter reference voltage. 

A iVR-¥ 
iX h AVR+ 

Y 

0 F, 

0 G, 
AVR+ 

J iVref 0 

r AT ' 
AF 

AF . 
refi 

|_ A« 

F 

G 
rAVR\ 

0 

(3.90) 

'•ArR+ where F = {F}-{fr} and X = {X}-{VJ and f^;;'=df; 

IdV^^j^^. After this, if no new limits are violated, the following equation 

will then be used for subsequent correctors: 

(3.91) 
> J 

G-, 
PAVR+ 

J ix 

Fy 

Gy 
PAVR+ 

JiY 

el 

0 

0 

10'^ 

FA 
GA 
0 

FAZ" 
A7 

\^v. 
\ n 
[AA_ 

~F~ 

G 

0 

0 

Once the limit is hit, the predictor equation from then on is changed to 
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\Fl 

Gj 
rAVR+ 

Jix 

Fy 

Gy 
rAVR+ 

JiY 

el 

0 

0 

10'̂  

^J 
GA 
0 

\ dX' 
dY 

dV, 

[dX_ 

~ 0 

0 

0 

±1 

(3.92) 

The large number is used to keep the size of the matrix unchanged which 
provides programming ease. And by using this Jacobian, we observe that 
neither the AVR output voltage nor the input exciter reference voltage is 
updated during the prediction process. This makes sure that we get the tan­
gent of the equilibrium curve corresponding to the current input settings 
while satisfying the limits already encountered. The above analysis is illus­
trated in Fig.3.25. 

When dX is zero, from Eq.3.92: 

And we have 

' F . 
det X 

-AVR+ 
\^X 

det 
F, 

' X 
-AVR + 

Jx Jy \Jx 

r A VK->r r 

Jx / } 
AVR+ 

Y 
AVR+ 

0 

0 

lO'V 

0 

0 = 0 

= det 
yG, 'Y J 

(3.93) 

(3.94) 

det(10''/) 

Thus we observe that t//l = 0 again signifies saddle node bifurcation of 
the DAE model. 

The above derivation [19] provides the validity of using the iterative con­
tinuation of Jacobian (Eq.3.92) in simultaneous equilibria tracing to iden­
tify voltage collapse, both before and after hitting AVR limits. In Chapter 
4, we will see that the continuation Jacobian can also be used for studying 
the sensitivity of the saddle node bifurcation of the DAE model. 
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V Do not update input 

System load 

Fig. 3.25 Limits implementation during continuation 

3.9 Numerical examples for EQTP 

EQTP Scenario Description: 

In the EQTP simulation, the scenario is similar to scenario 1 in CPF. Loads 
at the same 8 buses are increased, while the increased load is picked up by 
the same 9 generators. And both load and generator are increased propor­
tionally by their initial load and generation levels. 

For this scenario the variations of load bus voltages, generator real powers, 
and reactive powers for changing load are shown in Figs. 3.26, 3.27, and 
3.28 respectively. 

As explained in the previous sections, the automatic voltage regulator 
regulates the generator terminal voltage and its reactive power output of 
the network. The speed governor adjusts the real power generation and 
frequency to meet load increase. Because all these devices are modeled in 
detail, we are able to observe how the synchronous machines interact with 
the network, both before and after hitting the limits. The inability of in­
definitely supplying power through the network to the load centers, as con­
sequence of control system or machine capacity limitations and network 
loadability restrictions, will ultimately lead to system voltage collapse. 
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For all the generators which hit their AVR output voltage limits, the termi­
nal voltage, AVR output voltage, reactive power generation, and exciter 
reference voltage have similar response profiles. Therefore we take the 
generator at bus 30 bus as the example for the explanation. 

6000 6500 7000 7500 8000 
Total Load (MW) 

8500 9000 

Fig. 3.26 V vs. Ptotai 
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Fig 3.29 shows that, before hitting its AVR output limit, the voltage regu­
lator can maintain a fairly high and steady terminal voltage. When the sys-
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tern total load exceeds 8845MW, AVR output voltage as shown in Fig. 
3.30 hits the maximum value and the terminal voltage experiences a no­
ticeable drop. 

Fig. 3.31 shows the profile of reactive power generation at bus 32. A sud­
den slowing down of the increase in the reactive power generation occurs 
when the AVR output limit is hit. From this point on, fixing the AVR out­
put voltage makes the terminal reactive power generation to decrease 
slightly. 

Figs. 3.30 and 3.32 are the AVR output and exciter reference voltages of 
the generator at bus 32. 
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Fig. 3.29 Voltage at Generator Bus 32 
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Fig. 3.30 AVR Output Voltage Vr at Bus 32 
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Fig. 3.31 Reactive power generation at bus 32 
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Fig. 3.32 Exciter reference voltage at bus 32 

The governor associated with generator at bus 30 is the first to reach its 
limit w ĥen the system loading level is 8523 MW. Fig. 3.33 shows the gov­
ernor setting value. At a system loading level of 8523 MW, when most of 
the governors hit their limits, the system frequency experiences sag as 
shown in Fig. 3.34. 
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Fig. 3.33 Govemor Response of Generator at Bus 30 
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Fig. 3.34 System Frequency Response 

As mentioned before various versions of continuation power flow methods 
are proposed in the Hterature [22-26]. These methods depend on the type 
of parameterization strategies. Continuation based approaches can also be 
used for critical eigenvalue tracing. References [12, 29, 30] discuss the ap­
plication of continuation based approaches for eigenvalue tracing. 
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