
K

Kendall, Maurice George

Kendall, Maurice was born in 1907 in Ket-
tering,Northamptonshire,England.Hestud-
ied Mathematics at St. John’s College, Cam-
bridge. After graduation as a Mathematics
Wrangler in 1929, he joined the British Civ-
il Service in the Ministry of Agriculture. He
was elected a Fellow of the Society in 1934.
In 1937, he worked with G. Udny Yule in the
revision of his standard statistical textbook,
Introduction to the Theory of Statistics. He
also work on the rank correlation coefficient
which bears his name, Kendall’s tau, which
eventually led to a monograph on Rank Cor-
relation in 1948.
In 1938 and 1939 he began work, along with
Bernard Babington Smith, on the problem
of random number generation, develop-
ing both one of the first early mechanical
devices to produce random digits, and for-
mulated a series of tests such as frequency
test, serial test and a poker test, for statisti-
cal randomness in a given set of digits.
During the war he managed to produce vol-
umeoneoftheAdvancedTheoryofStatistics
in 1943 and a second volume in 1946.
In 1957, he published Multivariate Analysis
and in the same year he also developed, with
W.R. Buckland, a Dictionary of Statistical
Terms.

In 1953, he published The Analytics of Eco-
nomic Time Series, and in 1961 he left the
University of London and took a position as
the Managing Director of a consulting com-
pany, Scientific Control Systems, and in the
sameyearbeganatwo-year termasPresident
of the Royal Statistical Society.
In 1972, he became Director of the World
Fertility Survey, a project sponsored by the
International Statistical Institute and the
United Nations. He continued this work
until 1980, when illness forced him to retire.
He was knighted in 1974 for his services
to the theory of statistics, and received the
Peace Medal of the United Nations in 1980
in recognition for his work on the World Fer-
tility Survey. He was also elected a fellow of
the British Academy and received the high-
est honor of the Royal Statistical Society, the
Guy Medal in Gold. At the time of his death
in 1983, he was Honorary President of the
International Statistical Institute.

Some principal works and articles of Ken-
dall, Maurice George:

1938 (with Babington Smith, B.) Random-
ness and Random Sampling Num-
bers. J. Roy. Stat. Soc. 101:1, 147–
166.

1979 (with Stuart, A.) Advanced theory of
Statistics. Arnold.
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1957 (with Buckland, W.R.) A Dictionary
of Statistical Terms. Internation-
al Statistical Institute, The Hague,
Netherland.

1973 Time Series, Griffin, London.

FURTHER READING
� Kendall rank correlation coefficient
� Random number generation

Kendall Rank
Correlation Coefficient

The Kendall rank correlation coefficient
(Kendall τ ) is a nonparametric measure of
correlation.

HISTORY
This rank correlation coefficient was dis-
cussed as far back as the early 20th century
by Fechner, G.T. (1897), Lipps, G.F. (1906),
and Deuchler, G. (1914).
Kendall, M.G. (1938) not only rediscov-
ered it independently but also studied it
using a (nonparametric) approach. His 1970
monographcontainsacompletedetailedpre-
sentation of the theory aswell asabiography.

MATHEMATICAL ASPECTS
Consider two random variables (X, Y)
observed on a sample of size n with n
pairs of observations (X1, Y1), (X2, Y2),
. . . , (Xn, Yn). An indication of the correla-
tion between X and Y can be obtained by
ordering the values Xi in increasing order
and by counting the number of correspond-
ing values Yi not satisfying this order.
Q will denote the number of inversions
among the values of Y that are required to

obtain the same (increasing) order as the val-
ues of X.
Since there are n(n−1)

2 distinct pairs that can

be formed, 0 ≤ Q ≤ n(n−1)
2 ; the value 0 is

obtained when all the values Yi are already
in increasing order, and the value n(n−1)

2 is
reached when all the values Yi are in inverse
order of Xi, each pair having to be switched
to obtain the desired order.
The Kendall rank correlation coefficient,
denoted by τ , is defined by:

τ = 1− 4Q

n(n− 1)
.

If all the pairs are in increasing order, then:

τ = 1− 4 · 0
n(n− 1)

= 1 .

If all the pairs are in reverse order, then:

τ = 1− 4 · 1
2 · n(n− 1)

n(n− 1)
= −1 .

An equivalent definition of the Kendall rank
coefficient can be given as follows: two
observations are called concording if the
two members of one observation are larg-
er than the respective members of the oth-
er observation. For example, (0.9, 1.1) and
(1.5, 2.4) are two concording observations
because0.9 < 1.5and1.1 < 2.4.Twoobser-
vations are said to be discording if the two
members of one observation are in opposite
order to the respective members of the other
observation.Forexample, (0.8,2.6) and(1.3,
2.1) are two discordingobservationsbecause
0.8 < 1.3 and 2.6 > 2.1.
Let Nc and Nd denote the total number of
pairs of concording and discording observa-
tions, respectively.
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Two pairs for which Xi = Xj and Yi = Yj

are neither concording nor discording and
are therefore not counted either in Nc or in
Nd .
With this notation the Kendall rank coeffi-
cient is given by:

τ = 2(Nc − Nd)

n(n− 1)
.

Notice that when there are no pairs for which
Xi = Xj or Yi = Yj, the two formulations of
τ are exactly the same. In the opposite situa-
tion, the values given by both formulas can
be different.

Hypothesis Test
The Kendall rank correlation coefficient is
often used as a statistical test to determine
if there is a relation between two random
variables. The test can be a two-sided test
or a one-sided test. The hypotheses are:

A: Two-sided case:

H0: X and Y are mutually independent.

H1: There is either a positive or a neg-
ative correlation between X and Y.

There is a positive correlation when the
large values of X tend to be associated
with the large values of Y and the small
values of X with the small values of Y.
There is a negative correlation when the
large values of X tend to be associated
with thesmallvaluesofY andviceversa.

B: One-sided case:

H0: X and Y are mutually independent.

H1: There is a positive correlation
between X and Y.

C: One-sided case:

H0: X and Y are mutually independent.

H1: There is a negative correlation
between X and Y.

The statistical test is defined as follows:

T = Nc − Nd .

Decision Rules
Thedecisionrulesaredifferentdependingon
the hypotheses that are made. That is why
there are decision rules A, B, and C relative
to the previous cases.
Decision rule A
Reject H0 at the sigificant level α if

T > tn,1− α
2

or T < tn, α
2

,

where t is the critical value of the test given
by the Kendall table; otherwise accept H0.
Decision rule B
Reject H0 at the sigificant level α if

T > tn,1−α .

otherwise accept H0.
Decision rule C Reject H0 at the sigificant
level α if

T < tn,α .

otherwise accept H0.
It is also possible to use

τ = 1− 4Q

n(n− 1)

as a statistical test.
When X and Y are independently distributed
in a population, the exact distribution of τ

hasanexpected valueofzeroandavariance
of:

σ 2
τ =

2(2n+ 5)

9n(n− 1)

and tends very quickly toward a normal
distribution, the approximation being good
enough for n ≥ 10.



280 Kendall Rank Correlation Coefficient

In this case, to test independence at a 5%
level, for example, it is enough to verify if τ

is located outside the bounds

±1.96 · στ

and to reject the independence hypothesis if
that is the case.

DOMAINS AND LIMITATIONS
The Kendall rank correlation coefficient is
used as a hypothesis test to study the depen-
dence between two random variables. It
canbeconsideredasa test of independence.
As a nonparametric correlation measu-
rement, it can also be used with nominal
or ordinal data.
A correlation measurement between two
variables must satisfy the following points:
1. Its values are between −1 and +1.
2. There is a positive correlation between X

and Y if the value of the correlation coef-
ficient is positive; a perfect positive cor-
relation corresponds to a value of +1.

3. There is a negative correlation between
X and Y if the value of the correlation
coefficient is negative; a perfect nega-
tive correlation corresponds to a value
of −1.

4. There is a null correlation between X and
Y when the correlation coefficient is close
to zero; one can also say that X and Y are
not correlated.

The Kendall rank correlation coefficient has
the following advantages:
• The data can be nonnumerical observa-

tions as long as they can be classified
according to a determined criterion.

• It is easy to calculate.
• The associated statistical test does not

make a basic hypothesis based on the

shape of the distribution of the popula-
tion from which the samples are taken.

The Kendall table gives the theoretical val-
ues of the statistic τ of the Kendall rank cor-
relation coefficient used as a statistical test
under the independence hypothesis of two
random variables.
AKendall tablecanbefoundinKaarsemaker
and van Wijngaarden (1953).
Here is a sample of the Kendall table for n =
4, . . . , 10 and α = 0.01 and 0.05:

n α = 0.01 α = 0.05

4 6 4

5 8 6

6 11 9

7 15 11

8 18 14

9 22 16

10 25 19

EXAMPLES
In this example eight pairs of real twins take
intelligence tests. The goal is to see if there is
independence between the tests of the one
who is born first and those of the one who is
born second.
The data are given in the table below; the
highest scores correspond to the best results.

Pair of twins First
born Xi

Second
born Yi

1 90 88

2 75 79

3 99 98

4 60 66

5 72 64

6 83 83

7 83 88

8 90 98
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The pairs are then classified in increasing
order for X, and the concording and discord-
ing pairs are determined. This gives:

Pair of twins
(Xi , Yi )

Concording
pairs

Discording
pairs

(60,66) 6 1

(72,64) 6 0

(75,79) 5 0

(83,83) 3 0

(83,88) 2 0

(90,88) 1 0

(90,98) 0 0

(99,98) 0 0

Nc = 23 Nd = 1

The Kendall rank correlation coefficient is
given by:

τ = 2(Nc − Nd)

n(n− 1)

= 2(23− 1)

8 · 7
= 0.7857 .

Notice that since there are several observa-
tions for which Xi = Xj or Yi = Yj, the value
of the coefficient given by:

τ = 1− 4Q

n(n− 1)
= 1− 4 · 1

56
= 0.9286

is different.
Inbothcases,wenoticeapositivecorrelation
between the intelligence tests.
We will now carry out the hypothesis test:

H0: There is independence between the
intelligence tests of a pair of twins.

H1: There is a positive correlation between
the intelligence tests.

We chose a significant level of α = 0.05.
Since we are in case B, H0 is rejected if

T > t8,0.95 ,

where T = Nc−Nd and t8,0.95 is the value of
the Kendall table. Since T = 22 and t8,0.95 =
14, H0 is rejected.
We can then conclude that there is a positive
correlation between the results of the intel-
ligence tests of a pair of twins.

FURTHER READING
� Hypothesis testing
� Nonparametric test
� Test of independence
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Kiefer, Jack Carl
Kiefer, Jack Carl was born in Cincinnati,
Ohio in 1924. He entered the Massachusetts
Institute of Technology in 1942, but after
1 year of studying engineering and eco-
nomics he left to take on war-related work
during World War II. His master’s thesis,
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Sequential Determination of the Maxi-
mum of a Function, was supervised by
Harold Freeman. It has been the basis for
his paper “Sequential minimax search for
a maximum” which appeared in 1953 in
the “Proceedings of the American Mathe-
matical Society”. In 1948 he went to the
Department of Mathematical Statistics at
Columbia University, where Abraham Wald
was preeminent in a department that includ-
ed Ted Anderson, Henry Scheffé, and Jack
Wolfowitz. He wrote his doctoral thesis in
decision theory under Wolfowitz and went
to Cornell University in 1951 with Wol-
fowitz. In 1973 Kiefer was elected the first
Horace White Professor at Cornell Univer-
sity, a position he held until 1979, when he
retired and joined the faculty at the Univer-
sity of California at Berkeley. He died at the
age of 57 in 1981.
Kiefer’s research area was the design of
experiments. Most of his 100 publications
dealt with that topic. He also wrote papers
ontopicsinmathematicalstatisticsincluding
decision theory, stochastic approximation,
queuing theory, nonparametric inference,
estimation, sequential analysis, and condi-
tional inference.
Kiefer was a fellow of the Institute of Mathe-
matical Statistics and the American Statis-
tical Association and president of the Insti-
tuteofMathematicalStatistics(1969–1970).
He was elected to the American Academy of
Artsand Sciences in 1972 and to theNational
Academy of Sciences (USA) in 1975.

Selected works and publications of Jack
Carl Kiefer:

1987 Introduction to Statistical Inference.
Springer, Berlin Heidelberg New
York

FURTHER READING
� Design of experiments
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Kolmogorov,
Andrei Nikolaevich

Born in Tambov, Russia in 1903, Kol-
mogorov, Andrei Nikolaevich is one of the
founders of modern probability. In 1920,
he entered Moscow State University and
studied mathematics, history, and metallur-
gy. In 1925, he published his first article in
probability on the inequalities of the partial
sums of random variables, which became the
principal reference in the field of stochas-
tic processes. He received his doctorate in
1929 and published 18 articles on the law of
large numbers as well as on intuitive logic.
He was named professor at Moscow State
University in 1931. In 1933, he published
his monograph on probability theory.
In1939hewaselectedmemberof theAcade-
my of Sciences of the USSR. He received
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the Lenin Prize in 1965 and the Order of
Lenin on six different occasions, as well as
theLobachevskyPrize in1987.Hewaselect-
ed member of many other foreign academies
including the Romanian Academy of Sci-
ences (1956), the Royal Statistical Society
of London (1956), the Leopoldina Academy
of Germany (1959), the American Acade-
my of Arts and Sciences (1959), the Lon-
don Mathematical Society (1959), the Ame-
rican Philosophical Society (1961), the Indi-
an Institute of Statistics(1962), the Hol-
land Academy of Sciences (1963), the Roy-
al Society of London (1964), the National
AcademyoftheUnitedStates(1967),andthe
Académie Française des Sciences (1968).

Selected principal works of Kolmogorov,
Andrei Nikolaevich:

1933 Grundbegriffe der Wahrschein-
lichkeitsrechnung. Springer, Berlin
Heidelberg New York.

1933 Sulla determinazione empirica di
una lege di distribuzione. Giornale
dell’Instituto Italiano degli Attuari,
4, 83–91 (6.1).

1941 Local structure of turbulence in
incompressible fluids with very high
Reynolds number. Dan SSSR, 30,
229.

1941 Dissipation of energy in locally
isotropic turbulence. Dokl. Akad.
Nauk. SSSR, 32, 16–18.

1958 (with Uspenskii, V.A.) K oprede-
leniyu algoritma. (Toward the def-
inition of an algorithm). Uspekhi
Matematicheskikh Nauk 13(4):3–
28, American Mathematical Society
Translations Series 2(29):217–245,
1963.

1961 (with Fomin, S.V.) Measure,
Lebesgue integrals and Hilbert space.
Natascha Artin Brunswick and Alan
Jeffrey. Academic, New York.

1963 On the representation of continu-
ous functions of many variables by
superposition of continuous func-
tions of one variable and addition.
Doklady Akademii Nauk SSR, 114,
953–956, 1957. English translation.
Mathematical Society Transactions,
28, 55–59.

1965 Three approaches to the quantita-
tive definition of information. Prob-
lems of Information Transmission,
1, 1–17. Translation of Problemy
peredachi informatsii 1(1), 3–11
(1965).

1987 (with Uspenskii, V.A.) Algorithms
and randomness. Teoria veroyatnos-
tey i ee primeneniya (Probability the-
ory and its applications), 3(32):389–
412.

FURTHER READING
� Kolmogorov–Smirnov test

Kolmogorov–Smirnov Test

The Kolmogorov–Smirnov test is a nonpara-
metric goodness-of-fit test and is used to
determine wether two distributions differ,
or whether an underlying probability distri-
bution differes from a hypothesized distri-
bution. It is used when we have two sam-
plescomingfromtwopopulationsthatcanbe
different. Unlike the Mann–Whitney test
and the Wilcoxon test where the goal is to
detect the difference between two means or
medians, the Kolmogorov–Smirnov test has
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the advantage of considering the distribution
functions collectively. The Kolmogorov–
Smirnov test can also be used as a goodness-
of-fit test. In this case, we have only one
random sample obtained from a population
where the distribution function is specific
and known.

HISTORY
The goodness-of-fit test for a sample
was invented by Andrey Nikolaevich Kol-
mogorov (1933).
The Kolmogorov–Smirnov test for two sam-
ples was invented by Vladimir Ivanovich
Smirnov (1939).
In Massey (1952) we find a Smirnov table
for the Kolmogorov–Smirnov test for two
samples, and in Miller (1956) we find a Kol-
mogorov table for the goodness-of-fit test.

MATHEMATICAL ASPECTS
Consider two independent random samples:
(X1, X2, . . . , Xn), a sample of size n coming
from a population 1, and (Y1, Y2, . . . , Ym),
a sample of dimension m coming froma pop-
ulation 2. We denote by, respectively, F (x)
and G (x) their unknown distribution func-
tions.

Hypotheses
The hypotheses to test are as follows:

A: Two-sided case:

H0: F (x) = G (x) for each x

H1: F (x) �= G (x) or at least one value
of x

B: One-sided case:

H0: F (x) ≤ G (x) for each x

H1: F (x) > G (x) for at leastonevalue
of x

C: One-sided case:

H0: F (x) ≥ G (x) for each x

H1: F (x) < G (x) for at leastonevalue
of x

In case A, we make the hypothesis that
there is no difference between the distri-
bution functions of these two populations.
Both populations can then be seen as one
population.
In case B, we make the hypothesis that
the distribution function of population 1 is
smaller than those of population 2.We some-
times say that, generally, X tends to be small-
er than Y.
In case C, we make the hypothesis that X is
greater than Y.
We denote by H1 (x) the empirical
distribution function of the sample
(X1, X2, . . . , Xn) and by H2 (x) the empir-
ical distribution function of the sample
(Y1, Y2, . . . , Ym). The statistical test are de-
fined as follows:

A: Two-tail case
The statistical test T1 is defined as the great-
est vertical distance between two empirical
distribution functions:

T1 = sup
x
|H1 (x)− H2 (x) | .

B: One-tail case
The statistical test T2 is defined as the great-
est vertical distance when H1 (x) is greater
than H2 (x):

T2 = sup
x

[H1 (x)− H2 (x)] .

C: One-tail case
The statistical test T3 is defined as the great-
est vertical distance when H2 (x) is greater
than H1 (x):

T3 = sup
x

[H2 (x)− H1 (x)] .
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Decision Rule
We reject H0 at the significance levelα if the
appropriate statistical test (T1, T2, or T3) is
greater than the value of the Smirnov table
having for parameters n, m, and 1−α, which
we denote by tn,m,1−α, that is, if

T1(or T2or T3) > tn,m,1−α .

If we want to test the goodness of fit of an
unknown distribution functionF (x)of a ran-
dom sample from a population with a spe-
cific and known distribution function Fo (x),
then the hypotheses will be the same as those
for testing two samples, except that F (x)and
G (x) are replaced by F (x) and Fo (x).
If H (x) is the empirical distribution function
of a random sample, then the statistical tests
T1, T2, and T3 are defined as follows:

T1 = sup
x
|Fo (x)− H (x)| ,

T2 = sup
x

[Fo (x)− H (x)] ,

T3 = sup
x

[H (x)− Fo (x)] .

The decision rule is as follows: reject H0 at
the significance level α if T1 (or T2 or T3)
is greater than the value of the Kolmogorov
table having for parameters n and 1 − α,
which we denote by tn,1−α, that is, if

T1(or T2or T3) > tn,1−α .

DOMAINS AND LIMITATIONS
To perform the Kolmogorov–Smirnov test,
the following must be observed:
1. Both samples must be taken randomly

from their respective populations.
2. There must be mutual independence

between two samples.
3. Themeasurescalemustbeat leastordinal.

4. To perform an exact test, the random vari-
ables must be continuous; otherwise the
test is less precise.

EXAMPLES
The first example treats the Kolmogorov–
Smirnov test for two samples and the second
one for the goodness-of-fit test.
In a class, we count 25 pupils: 15 boys and
10 girls. We perform a test of mental calcula-
tions to see if the boys tend to be better than
the girls in this domain.
The data are presented in the following table;
the highest scores correspond to the results
of the test.

Boys (Xi ) Girls (Yi )

19.8 17.5 17.7 14.1

12.3 17.9 7.1 23.6

10.6 21.1 21.0 11.1

11.3 16.4 10.7 20.3

13.3 7.7 8.6 15.7

14.0 15.2

9.2 16.0

15.6

We test the hypothesis according to which
the distributions of the results of the girls and
those of the boys are identical. This means
that the population from which the sample
of X is taken has the same distribution func-
tionas thepopulation from which thesample
of Y is taken. Hence the null hypothesis:

H0 : F (x) = G (x) for each x .

If the two-tail case is applied here, we calcu-
late:

T1 = sup
x
|H1 (x)− H2 (x)| ,

where H1 (x) and H2 (x) are the empiri-
cal distribution functions of the samples
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(X1, X2, . . . , X15) and (Y1, Y2, . . . , Y10),
respectively. In the following table, we have
classed the observations of two samples in
increasing order to simplify the calculations
of H1 (x)− H2 (x).

Xi Yi H1 (x) − H2 (x)

7.1 0− 1/10= − 0.1

7.7 1/15− 1/10= − 0.0333

8.6 1/15− 2/10= − 0.1333

9.2 2/15− 2/10= − 0.0667

10.6 3/15− 2/10= 0

10.7 3/15− 3/10= − 0.1

11.1 3/15− 4/10= − 0.2

11.3 4/15− 4/10= − 0.1333

12.3 5/15− 4/10= − 0.0667

13.3 6/15− 4/10= 0

14.0 7/15− 4/10= 0.0667

14.1 7/15− 5/10= − 0.0333

15.2 8/15− 5/10= 0.0333

15.6 9/15− 5/10= 0.1

15.7 9/15− 6/10= 0

16.0 10/15− 6/10= 0.0667

16.4 11/15− 6/10= 0.1333

17.5 12/15− 6/10= 0.2

17.7 12/15− 7/10= 0.1

17.9 13/15− 7/10= 0.1667

19.8 14/15− 7/10= 0.2333

20.3 14/15− 8/10= 0.1333

21.0 14/15− 9/10= 0.0333

21.1 1− 9/10= 0.1

23.6 1− 1= 0

We have then:

T1 = sup
x
|H1 (x)− H2 (x)|

= 0.2333 .

The value of the Smirnov table for n =
15, m = 10, and 1 − α = 0.95 equals
t15,10,0.95 = 0.5.
Thus T1 = 0.2333 < t15,10,0.95 = 0.5,
and H0 cannot be rejected. This means that

there is no significant difference in the level
of mental calculations of girls and boys.
Consider the following random sample of
dimension 10: X1 = 0.695, X2 = 0.937,
X3 = 0.134, X4 = 0.222, X5 = 0.239,
X6 = 0.763, X7 = 0.980, X8 = 0.322,
X9 = 0.523, X10 = 0.578.
We want to verify by the Kolmogorov–
Smirnovtest if thissamplecomesfromauni-
form distribution. The distribution func-
tion of the uniform distribution is given by:

Fo (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < 0

x if 0 ≤ x < 1

1 otherwise .

.

The null hypothesis H0 is then as fol-
lows, where F (x) is the unknown distri-
bution function of the population associated
to the sample:

H0 : F (x) = Fo (x) for each x .

If the two-tail case is applied, we calculate:

T1 = sup
x
|Fo (x)− H (x)| ,

where H (x) is the empirical distribution
function of the sample (X1, X2, . . . , X10).
In the following table, we class the 10 obser-
vations in increasing order to simplify the
calculation of F0 (x)− H (x).

Xi Fo (x) H (x) Fo (x) − H (x)

0.134 0.134 0.1 0.134− 0.1= 0.034

0.222 0.222 0.2 0.222− 0.2= 0.022

0.239 0.239 0.3 0.239− 0.3= − 0.061

0.322 0.322 0.4 0.322− 0.4= − 0.078

0.523 0.523 0.5 0.523− 0.5= 0.023

0.578 0.578 0.6 0.578− 0.6= − 0.022

0.695 0.695 0.7 0.695− 0.7= − 0.005

0.763 0.763 0.8 0.763− 0.8= − 0.037

0.937 0.937 0.9 0.937− 0.9= 0.037

0.980 0.980 1.0 0.980− 1.0= − 0.020
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We obtain then:

T1 = sup
x
|Fo (x)− H (x)| = 0.078 .

The value of the Kolmogorov table for n =
10 and 1− α = 0.95 is t10,0.95 = 0.409.
If T1 is smaller than t10,0.95 (0.078 < 0.409),
then H0 cannot be rejected. That means that
the random sample could come from a uni-
formly distributed population.

FURTHER READING
� Goodness of fit test
� Hypothesis testing
� Nonparametric test
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Kruskal-Wallis Table
The Kruskal–Wallis table gives the theoreti-
cal values of the statistic H of the Kruskal–
Wallis test under the hypothesis that there

is no difference among the k (k ≥ 2) popu-
lations that we want to compare.

HISTORY
See Kruskal–Wallis test.

MATHEMATICAL ASPECTS
Let k be the number of samples of probably
different sizes n1, n2, . . . , nk. We designate
by N the total number of observations:

N =
k∑

i=1

ni .

We class the N observations in increasing
order without taking into account which
samples they belong to. We then give rank 1
to the smallest value, rank 2 to the next great-
est value, and so on until rank N, which is
given to the greatest value.
We denote by Ri the sum of the ranks given
to the observations of sample i:

Ri =
ni∑

j=1

R
(
Xij

)
, i = 1, 2, . . . , k ,

where Xij represents observation j of sample
i and R(Xij) the corresponding rank. When
many observations are identical and of the
same rank, we give them a mean rank (see
Kruskal–Wallis test). If there are no mean
ranks, the statistical test is defined in the fol-
lowing way:

H =
(

12

N(N + 1)

k∑
i=1

R2
i

ni

)
− 3 (N + 1) .

On what to do if there are mean ranks, see
Kruskal–Wallis test.
The Kruskal–Wallis table gives the values of
the statistic H of the Kruskal–Wallis test in
the case of three samples, for different values
of n1, n2, and n3 (with n1, n2, n3 ≤ 5).
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DOMAINS AND LIMITATIONS
The Kruskal–Wallis table is used for non-
parametric tests that use ranks and particu-
larly for tests with the same name.
When the number of samples i is greater
than 3, we can make an approximation of the
value of the Kruskal–Wallis table by the chi-
square table with k−1 degrees of freedom.

EXAMPLES
See Appendix D.
For an example of the use of the Kruskal–
Wallis table, see Kruskal–Wallis test.

FURTHER READING
� Chi-square table
� Kruskal-Wallis test
� Statistical table

REFERENCES
Kruskal, W.H., Wallis, W.A.: Use of ranks

in one-criterion variance analysis. J. Am.
Stat. Assoc. 47, 583–621 and errata, ibid.
48, 907–911 (1952)

Kruskal-Wallis Test

The Kruskal–Wallis test is a nonparamet-
ric test that has as its goal to determine if all
k populations are identical or if at least one
of the populations tends to give observations
that are different from those of other popu-
lations.
The test isusedwhenwehavek samples,with
k ≥ 2, coming from k populations that can
be different.

HISTORY
The Kruskal–Wallis test was developed in
1952 by Kruskal, W.H. and Wallis, W.A.

MATHEMATICAL ASPECTS
The data are represented in k samples. We
designate by ni the dimension of the sample
i, for i = 1, . . . , k, and by N the total number
of observations:

N =
k∑

i=1

ni .

We class the N observations in increasing
order without taking into account whether or
not they belong to thesamesamples.We then
give rank 1 to thesmallestvalue, rank 2 to the
next greatest value, and so on until N, which
is given to the greatest value.
Let Xij be the jth observation of sample i, and
set i = 1, . . . , k and j = 1, . . . , ni; we then
denote the rank given to Xij by R

(
Xij

)
.

If many observations have the same value,
we give them a mean rank. The sum of the
ranks given to the observations of sample i
is denoted by Ri, and we have:

Ri =
ni∑

j=1

R
(
Xij

)
, i = 1, . . . , k .

If there are no mean ranks (or if there is a lim-
ited number of them), then the statistical test
is defined as follows:

H =
(

12

N(N + 1)

k∑
i=1

R2
i

ni

)
− 3 (N + 1) .

If, on the contrary, there are many mean
ranks, it isnecessary tomakeacorrectionand
to calculate:

H̃ = H

1−
∑g

i=1

(
t3i − ti

)

N3 − N

,

where g is the number of groups of mean
ranks and ti the dimension of ith such group.

Hypotheses
The goal of the Kruskal–Wallis test is to
determine if all the populations are identical
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or if at least one of the populations tends to
give observations different from other pop-
ulations. The hypotheses are as follows:

H0: There isno differenceamongthek pop-
ulations.

H1: At least one of the populations differs
from the other populations.

Decision Rule
If there are 3 samples, each having a dimen-
sion smaller or equal to 5, and if there are no
mean ranks (that is, if H is calculated), then
we use the Kruskal–Wallis table to test H0.
The decision rule is the following: We reject
the null hypothesis H0 at the significance
level α if T is greater than the value of the
table with parameters ni, k − 1, and 1 − α,
denoted hn1,n2,n3,1−α, and if there is no avail-
able exact table or if there are mean ranks, we
can make an approximation of the value of
the Kruskal–Wallis table by the distribution
of the chi-square with k− 1 degrees of free-
dom (chi-square distribution), that is, if:

H > hn1,n2,n3,1−α (Kruskal–Wallis table)

or H > χ2
k−1,1−α (chi-square table) .

The corresponding decision rule is based on
H̃ > χ2

k−1,1−α (chi-quare table).

DOMAINS AND LIMITATIONS
The following rules should be respected to
make the Kruskal–Wallis test:
1. All the samples must be random samples

taken from their respective populations.
2. In addition to the independence inside

each sample, there must be mutual inde-
pendence among the different samples.

3. The scale of measure must be at least ordi-
nal.

If the Kruskal–Wallis test makes us reject the
null hypothesis H0, we can use the Wilcox-
on test for all the samples taken in pairs to
determine which pairs of populations tend to
be different.

EXAMPLES
We cook potatoes in 4 different oils. We want
to verify if the quantity of fat absorbed by
potatoes depends on the type of oil used. We
conduct 5 different experiments with oil 1, 6
with oil 2, 4 with oil 3, and 5 with oil 4, and
we obtain the following data:

Type of oil

1 2 3 4

64 78 75 55

72 91 93 66

68 97 78 49

77 82 71 64

56 85 70

77

In this example, the number of samples
equals 4 (k = 4) with the following respec-
tive dimensions:

n1 = 5 ,

n2 = 6 ,

n3 = 4 ,

n4 = 5 .

The number of observations equals:

N = 5+ 6+ 4+ 5 = 20 .

We class the observations in increasing order
and give them a rank from 1 to 20 taking into
account the mean ranks. We obtain the fol-
lowing tablewith therankoftheobservations
in parentheses and at the end of each sample
the sum of the ranks given to the correspond-
ing sample:
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Type of oil

1 2 3 4

64 (4.5) 78 (14.5) 75 (11) 55 (2)

72 (10) 91 (18) 93 (19) 66 (6)

68 (7) 97 (20) 78 (14.5) 49 (1)

77 (12.5) 82 (16) 71 (9) 64 (4.5)

56 (3) 85 (17) 70 (8)

77 (12.5)

R1 = 37 R2 = 98 R3 = 53.5 R4 = 21.5

We calculate:

H =
(

12

N (N + 1)

k∑
i=1

R2
i

ni

)
− 3 (N + 1)

= 12

20 (20+ 1)

·
(

372

5
+ 982

6
+ 53.52

4
+ 21.52

5

)

− 3 (20+ 1)

= 13.64 .

Ifwemakeanadjustment to take intoaccount
the mean ranks, we get:

H̃ = H

1−
∑g

i=1

(
t3i − ti

)

N3 − N

= 13.64

1− 8− 2+ 8− 2+ 8− 2

203 − 20
= 13.67 .

We see that the difference between H and H̃
is minimal.

The hypotheses are as follows:

H0: There is no difference between the four
oils.

H1: At least one of the oils differs from the
others.

The decision rule is as follows: Reject the
null hypothesis H0 at the significance level
α if

H > χ2
k−1,1−α ,

where χ2
k−1,1−α is the value of the chi-

square table at level 1 − α and k − 1 = 3
degrees of freedom.
If we choose α = 0.05, then the value of
χ2

3,0.95 is 7.81, and if H is greater than χ2
3,0.95

(13.64 > 7.81), then we reject the hypothe-
sis H0.
If H0 is rejected, we can use the procedure
of multiple comparisons to see which pairs
of oils are different.

FURTHER READING
� Hypothesis testing
� Nonparametric test
� Wilcoxon test

REFERENCE
Kruskal, W.H., Wallis, W.A.: Use of ranks

in one-criterion variance analysis. J. Am.
Stat. Assoc. 47, 583–621 and errata, ibid.
48, 907–911 (1952)




