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1. INTRODUCTION

Lipotoxicity can be defined as lipid-induced metabolic damage [1]. It occurs
when lipid uptake exceeds capacity to store lipids and lipid oxidative capacity
[2]. The principal function of adipose tissue is to store energy, and lipids are a
particularly efficient form in which to store energy because of their high caloric
density. However, lipids can be cytotoxic and nonadipose tissues have limited
capacity to store lipids [3]. Fat tissue is protected against lipotoxicity, but if fat
tissue function becomes dysregulated, lipotoxicity in other tissues can ensue.
Fatty acids (FAs), the essential role of which is to serve as fuels and to form
phospholipid bilayers and phospholipid messengers, are particularly damaging
to nonadipose tissues when present in excess [4, 5]. The causes, mechanisms,
and consequences of lipotoxicity are considered, with particular regard to the
role of adipose tissue in lipotoxicity in other tissues and to possible reasons
why adipose tissue is resistant to lipotoxicity.

2. FUNCTIONS OF FAT TISSUE

In addition to storing energy, fat tissue has important immune, endocrine
and homeostatic, regenerative, mechanical, and thermal functions. Fat tissue
defends against bacterial and fungal infection, as well as tissue injury. To do
so, it produces a number of cytokines, chemokines, and hemostatic factors.
Indeed, preadipocytes, which account for 15% to 50% of the cells in fat tissue,
have gene expression profiles closer to those of macrophages than fat cells [6].

FAs may play a larger than generally recognized role in the defensive func-
tion of fat tissue. While there is a lack of information about local FA con-
centrations in fat tissue, concentrations are likely very high near fat cells,
particularly during lipolysis. Direct measurements of FA concentrations ad-
jacent to fat cells are not available. However, the decrease in intracellular pH
that accompanies FA transfer across fat cell membranes following induction of
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lipolysis with isoproterenol or forskolin is as high as that which occurs when
cells are exposed to 65 µM oleic acid without albumin (see Figures 1 and 2
in [7]). This suggests that FA concentrations in the immediate vicinity of fat
cells could reach levels equivalent to the mid-millimolar range in the presence
of physiological albumin concentrations. These levels are lethal to most types
of cells. Much lower concentrations are effective in killing Helicobacter py-
lori [8], pneumococcus [9], Mycobacterium avium [10], and tuberculosis [11].
Somehow, preadipocytes and fat cells are resistant to these high local FA con-
centrations. Thus, fat tissue, which is located under the skin and around viscera
at points susceptible to invasion by microorganisms, produces both FAs and in-
flammatory mediators that protect against infection. Indeed, bacterial or fungal
infections of fat tissue are rare. Thus, lipotoxicity appears to have been adapted
by fat tissue as a defense mechanism. Further, fat cells can use the lipotoxic
effects of FAs to regulate function of other cells. For example, human fat cells
can release sufficient polyunsaturated FAs in bone marrow to inhibit osteoblas-
tic proliferation without inducing apoptosis [12].

The homeostatic, paracrine, and endocrine functions of adipose tissue are,
in part, related to its immune function. Indeed, many of the endocrine and
paracrine factors released by adipose tissue with metabolic effects are cy-
tokines (e.g., leptin), while others are lipids. Fat tissue can exert endocrine
control over other tissues in a number of ways. It has a traditional endocrine
function through releasing protein hormones and processing steroids that act
at a distance from fat tissue. Fat cells can also regulate function of other tissues
in a nontraditional endocrine manner by taking up residence in nonadipose tis-
sues and exerting effects by producing paracrine factors and lipids. Fat cells
can release or fail to remove metabolites, including lipids, that impact function
of other tissues. When fat cell numbers increase or their function is dysregu-
lated, they could conceivably contribute to dysfunction of other tissues through
lipotoxicity.

3. CONDITIONS ASSOCIATED WITH
LIPOTOXICITY

Several conditions, including obesity, diabetes, the metabolic syndrome, ag-
ing, lipodystrophies, and certain drugs have been associated with lipotoxicity
in pancreatic β-cells, skeletal muscle, cardiac muscle, hepatocytes, and os-
teoblasts. Other tissues are likely affected analogously.

Fat tissue is the repository of surplus lipid. In otherwise normal rats, a 60%
fat diet for 8 weeks causes a 150% increase in body fat, but only a small in-
crease in pancreatic, liver, heart, and skeletal muscle fat [5]. However, some
individuals with obesity, particularly massive obesity, develop lipid accumula-
tion in nonadipose tissues (a sign that lipotoxicity may be occurring). Hepatic,



The Fat Cell as an Endocrine Cell: Lipotoxicity 107

cardiac, skeletal muscle, and pancreatic steatosis have been found in ob/ob and
db/db mice and fa/fa rats, which have obesity together with increased appetite,
hyperlipidemia, and increased blood free FAs (FFAs) [2, 5, 13]. Obese hu-
man subjects can have increased intramyocellular lipid in skeletal muscle [14],
increased myocardial lipid by positron emission tomography (PET) scanning
[15, 16], and hepatic steatosis [1] associated with dysfunction in each of these
tissues. Indeed, cardiac triglyceride (TG) accumulation appears to be an early
metabolic marker of cardiac dysfunction in obese subjects [15]. Intramyocar-
dial TG overload occurs in approximately 30% of patients with nonischemic
heart failure [13]. Why some, but not all, obese subjects develop lipotoxic-
ity in nonadipose tissues is a potentially illuminating issue that remains to be
explained. Among the factors that could account for this are dyslipidemia, ge-
netic traits, altered regional fat distribution, fat tissue dysfunction, aging, extent
of adipokine and inflammatory response, hormonal status, coexisting diseases,
and activity.

As with obesity, diabetes and insulin resistance are associated with lipid
accumulation, cytotoxicity, and dysfunction in a number of tissues. For exam-
ple, proton magnetic resonance studies suggest that increased intramyocellular
lipid content is associated with reduced insulin sensitivity in healthy humans
[17]. Type 2 diabetes is associated with increased FA uptake into cardiac my-
ocytes and mitochondria, altered mitochondrial function, and decreased car-
diac contractility [2]. Lipotoxicity may be an early event in type 2 diabetes,
because inhibiting lipolysis, which results in reduced fasting plasma FFA (but
no change in adipokines) improves insulin sensitivity in subjects predisposed
to develop diabetes [18]. Of course, obesity and insulin resistance are linked
and are components of the metabolic syndrome. The failure of antilipotoxic
protection associated with obesity and insulin resistance may even be a cause
of the metabolic syndrome [1].

Defective adipose tissue may promote lipotoxicity in peripheral tissues and
be a key link among obesity, insulin resistance, and type 2 diabetes [19]. This
is highlighted by the observations that aging and congenital lipodystrophies,
conditions associated with altered fat tissue function, are themselves associ-
ated with the metabolic syndrome and accumulation of lipid associated with
dysfunction of nonadipose tissues [5, 20–22]. Congenital lipodystrophies are
the most severe of lipotoxic diseases, with little adipose tissue in which to store
lipid, low adiponectin and leptin, hyperlipidemia, cardiomyopathy, diabetes,
and liver steatosis [5, 23]. Certain drugs associated with fat tissue redistrib-
ution and dysfunction are also associated with lipotoxicity. Glucocorticoids
cause lipotoxicity with diabetes, steatosis, and hyperlipidemia in rodents [24].
HIV protease inhibitors impede adipogenesis [25] and result in fat redistribu-
tion, cardiomyopathy, and diabetes in some patients [26].
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4. MECHANISMS OF LIPOTOXICITY

Several mechanisms probably contribute to the cytotoxicity associated with
lipid accumulation in nonadipose tissues. These include increased lipid syn-
thesis, detergent effects on membranes, increased lipolysis or reduced ability
to suppress lipolysis in adjacent lipid-containing cells, β-oxidation of FAs,
reactive oxygen species (ROS) generation, lipid peroxides, effects on protein
kinase B (PKB) and PKC activity, ceramide, stimulation of apoptotic or in-
hibition of antiapoptotic pathways, necrosis, and promotion of inflammatory
cytokine release.

Under most conditions, extensive lipid storage and synthesis, particularly
of TGs, is restricted to adipose cells, with smaller amounts being made by
liver, muscle, myelin-forming, and steroidogenic cells. Under certain condi-
tions, lipotoxicity can occur in nonadipose cells when lipid synthesis is in-
creased. For example, overexpressing acyl coenzyme A (CoA) synthase (ACS)
in cardiomyocytes can induce lipotoxic cardiomyopathy [27]. ACS increases
FA import (Figure 1), leading to lipid accumulation with apoptosis, myofiber
disorganization, interstitial fibrosis, left ventricular dysfunction, and dilated
cardiomyopathy [27]. Decreased ability to suppress lipolysis may contribute
to increased local FA concentrations and lipotoxicity. Diabetes and obesity
with insulin resistance lead to decreased ability to suppress lipolysis [28] and
are associated with lipotoxicity. Thus, increased production or release of FA
by cells can contribute to lipotoxicity.

Decreased FA β-oxidation may contribute to lipotoxicity by decreasing re-
moval of cytotoxic FA, while increased β-oxidation may raise production of
cytotoxic ROS. Impaired β-oxidation may contribute to increased intramy-
ocellular lipid in obesity and diabetes [29, 30]. Impeding β-oxidation (e.g.,
by inhibiting ACC activity; Figure 1) can increase levels of potentially lipo-
toxic nonoxidative metabolites of FAs [5]. Fatty acyl CoA accumulation might
be the main factor that leads to cardiac lipotoxicity [31]. Leptin, which in-
creases FA oxidation [32], protects against lipotoxicity in lipodystrophy [33–
35]. Thus, reduced β-oxidation may contribute to lipotoxicity. On the other
hand, increased β-oxidation can result in ROS generation and lipotoxicity,
with the impaired β-oxidation in diabetes and obesity being a compensatory
response to protect against excess ROS production [2, 36]. Increasing FA abun-
dance can itself result in increased β-oxidation, possibly through FA binding
to peroxisome proliferator activated receptors (PPARs), leading to increased
CPT-1 activity and FA oxidation that exceeds energy needs [2, 5, 37] (Fig-
ure 1). Indeed, FA oxidation is increased in hearts of obese db/db and ob/ob an-
imals [38, 39] and cardiac PPARα [13] and PPARγ coactivator-1α (PGC-1α)
[40] are increased in diabetes. ROS generation may contribute to palmitate-
induced cell death [41]. Fluorescence of an oxidant-sensitive probe is increased
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Figure 1. Fatty acid utilization pathways. Triglycerides (TGs) absorbed by the gut circulate as
chylomicrons and TGs exported by the liver as lipoproteins. Fatty acids (FAs) released by hor-
mone-sensitive lipase-catalyzed hydrolysis of TGs, circulate as complexes with albumin. TG
is hydrolyzed by lipoprotein lipase (LPL) to FA near cell surfaces. FAs diffuse across the cell
membrane and are complexed to FA binding proteins (FABP) in the cytosol. Acyl-CoA syn-
thetases (ACS) convert FA to fatty acyl-CoA (acyl CoA). Acyl CoA, in turn, can be incorpo-
rated into intracellular TGs or converted into acyl carnitine by carnitine palmitoyl transferase-1
(CPT-1) located in the outer mitochondrial membrane. CPT-1 can be inhibited by malonyl CoA,
the concentration of which is determined by a balance between synthesis from acetyl-CoA by
acetyl-CoA carboxylase (ACC) and degradation by malonyl CoA decarboxylase (MCD). Once
generated by CPT-1, acyl carnitine is transferred into mitochondria by a translocase. After con-
version back into acyl CoA by CPT-2 (located in the inner mitochondrial membrane), acyl
groups undergo β-oxidation and energy production that entails generation of reactive oxygen
species (ROS). PPARα increases ACS (resulting in increased acetyl CoA), MCD (resulting in
decreased malonyl CoA), and CPT-1 (enhancing β-oxidation).

by palmitate exposure. Palmitate-induced apoptosis can be blocked by com-
pounds that scavenge reactive intermediates. Thus, increases or decreases in
FA β-oxidation can set off events that culminate in cell death.

These findings suggest that lipotoxicity arises from a constellation of cyto-
toxic mechanisms and is not a single, unified process. This contention is un-
derscored by the observations that such diverse processes as accumulation of
peroxidized FA (as a result of increased ROS due to β-oxidation or increased
presence of lipid susceptible to peroxidation [2, 42–44]), inhibition of protein
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kinase B45 or induction or inhibition of certain protein kinase C isoforms by
FAs [46–48], and ceramide accumulation (in palmitate- but not oleate-induced
lipotoxicity [1, 27, 41, 49, 50] can be involved in cytotoxic effects of FAs.

Exogenous FAs can cause apoptosis within hours in cultured cells [51].
Palmitic acid is a particularly potent apoptosis inducer [51]. Indeed, saturated
FAs are generally more lipotoxic than unsaturated FA: excess palmitic acid is
more lipotoxic than oleic acid in a number of cell types [3, 41, 50, 52–55].
This has been attributed to generation of specific proapoptotic lipid species or
signaling molecules that may vary across cell types: ROS [41], ceramide [56],
and nitric oxide [57], decreases in phosphatidylinositol-3-kinase [54] as well
as primary effects on mitochondrial structure or function [58]. Exogenous or
endogenously generated unsaturated FAs, such as oleate, can rescue palmitate-
induced apoptosis by promoting palmitate incorporation into TGs in Chinese
hamster ovary (CHO) cells [3]. In cells in which activity of stearoyl-CoA de-
saturase 1 (SCD1), which catalyzes desaturation of palmitate, is increased, TG
accumulation after exposure to palmitate also increases. This suggests that en-
dogenously produced unsaturated FAs can promote TG accumulation. Further,
by increasing SCD1 activity, less apoptosis occurs following palmitate expo-
sure. Thus, enhancing ability to synthesize TGs can protect against develop-
ment of lipotoxicity. Unsaturated FAs reduce lipotoxicity by increasing incor-
poration of saturated FAs into TGs.

Long-chain FA can suppress Bcl2, an antiapoptotic factor, leading to in-
creased susceptibility to apoptosis in pancreatic cells [59]. Activity of ser-
ine/threonine protein phosphatase type 2C is stimulated by certain unsaturated
FAs, including oleic acid, and this enzyme dephosphorylates Bad, resulting in
increased apoptosis in human umbilical vein endothelial, rat cortical and hip-
pocampal, and human neuroblastoma SH-SY5Y cells [60, 61]. Palmitate and,
to a lesser extent, oleate can induce apoptosis in pancreatic β-cells [62]. Both
FAs induce endoplasmic reticulum stress response elements (C/EBP homol-
ogous protein, activating transcription factor-4 and -6, and immunoglobulin
heavy chain binding protein mRNAs and alternative splicing of X-box binding
protein-1), but not NFκB. Thus, FFAs can cause apoptosis by activating ER
stress responses through an NFκB- and nitric oxide-independent mechanism.
In endothelial cells, palmitate is also more effective than oleate in inducing
apoptosis, but NO synthase is increased by FA in these cells [63]. Also, ele-
vated FFAs can cause apoptosis of β-cells partly as a result of ceramide gen-
eration [50, 64]. Again, cytotoxicity of palmitate is higher than oleate under
these conditions. In CHO cells, palmitate, but not oleate, can induce apopto-
sis through the generation of ROS independently of ceramide synthesis [41].
Thus, FA can cause apoptosis in multiple cell types through diverse mecha-
nisms.
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TGs can also cause cell death, in some cases by necrosis rather than apopto-
sis. In macrophages, exposure to TGs under conditions in which no FFAs were
detectable caused cell death in a dose-dependent fashion without an increase in
caspase-3 activity [51]. Indeed, caspase-3 activity was reduced in the presence
of TGs. Cell death was associated with increased ROS generation by mito-
chondrial complex 1. Thus, although TGs induce less lipotoxicity than FFAs,
they are not completely neutral. The processes through which TGs mediate
changes in cell function and death appear to be distinct from those of FAs.

5. INHERENT PROPERTIES OF CELLS
CONTRIBUTE TO SUSCEPTIBILITY TO
LIPOTOXICITY

Different cell types vary in susceptibility to lipotoxicity (e.g., pancreatic
β-cells compared to other pancreatic cell types, or fat cells compared to hepa-
tocytes). This is compatible with the contention that susceptibility to lipotox-
icity is partly determined by inherent properties of cells. Studies of effects of
aging also support this contention. Dysfunctional cells containing lipid can ac-
cumulate with aging in various tissues such as muscle, liver, and bone marrow
[20]. Even preadipocytes isolated from animals of different ages maintained
for several cell generations under identical culture conditions become increas-
ingly susceptible to FA-induced apoptosis with increasing age [65], pointing
to a predisposition to lipotoxicity caused by inherent changes in cell function.
With aging, progenitors of a variety of mesenchymal cell types (e.g., muscle
satellite cells, osteoblasts) accumulate lipid, express some markers associated
with fat cells such as PPARγ 2 or FA binding protein 4 (aP2), and continue to
express some transcription factors and markers characteristic of their own cells
type, but do not develop into functional differentiated cells. This occurs even
when these progenitors are maintained under identical culture conditions with-
out exposure to any of the changes in circulating lipids, hormones, or paracrine
factors that may occur with aging. Although these adipocyte-like cells contain
lipid and are dysfunctional, it is not clear if they really result from lipotoxicity
or changes in transcription factor expression related to cell autonomous aging
events.

6. ASSOCIATION BETWEEN LIPIDS AND
INFLAMMATORY RESPONSES

In addition to causing cytotoxicity directly, lipids can induce immune
responses that amplify extent of tissue damage. FAs regulate macrophage
gene expression and can induce expression of inflammatory cytokines in
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macrophages [11, 66]. Given the close relationship between preadipocytes and
macrophages, and because inflammatory cytokine expression increases in obe-
sity, it would not be surprising if FAs, particularly saturated FAs, elicited in-
creased inflammatory cytokine expression in adipose tissue with an impact on
other organs.

7. MECHANISMS OF DEFENSE AGAINST
LIPOTOXICITY

Tissues employ a variety of strategies for protection from the lipotoxic ef-
fects of lipids. Lipid depletion is effective in protecting cells from lipotoxicity.
For example, lipid depletion protects pancreatic β-cells from apoptotic effects
of cytokines [67]. Depletion of intramyocellular lipid is associated with im-
proved insulin sensitivity, reduced ACC mRNA, and increased GLUT4 expres-
sion [68]. Overexpression of apolipoprotein B leads to a reduction in cardiac
TG stores and increased TG secretion [69, 70], but it is important to acknowl-
edge that lipoprotein secretion has not been demonstrated in cardiac tissue of
wild type mice [2]. Insulin can induce lipid accumulation acutely and through
up regulating SREBP-1c, which induces lipogenic enzyme expression [71].
Paradoxically, insulin resistance may protect against lipid accumulation, be-
cause excluding glucose from cells reduces glucose-derived lipogenesis. Thus,
mechanisms that can potentially defend against lipotoxicity include lipopro-
tein secretion (in cells containing microsomal TG transfer protein), FA export,
and insulin resistance.

Control of circulating lipids is another defense against lipotoxicity. While
diabetes and obesity can result in increased plasma FAs [72, 73], fasting FFAs
are not consistently increased in obese subjects [74], although marked varia-
tions in plasma FFAs occur in response to feeding and fasting. FFAs might be
elevated at night or integrated basal FFA levels may be higher in obese subjects
with the metabolic syndrome than in lean subjects, an area warranting further
study. Also, increased circulating lipoproteins and de novo lipogenesis from
glucose may predispose to lipotoxicity. However, the fact that TG content in
cell types other than adipocytes remains within a very narrow range, despite
excess caloric intake sufficient to increase fat cell TGs, is consistent with a
system of FA homeostasis to protect against lipotoxicity [75]. Normally
rats can tolerate a 60% fat diet because 96% of surplus fat is deposited in
adipocytes [42].

Although TGs can induce cell necrosis, TGs are less cytotoxic than FAs [3,
50]. While TG accumulation is an indicator of ectopic lipid deposition, storage
as TG is probably the least toxic means for sequestering surplus lipids. How-
ever, intracellular TG can become part of the problem. Intracellular TG is a
potential source of FAs in excess of oxidative needs and can contribute to an
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increase in the pool of FA CoA, a substrate and regulator of many pathways of
nonoxidative FA metabolism. Of nonadipocytes, liver and muscle have high-
est tolerance to surplus TG: liver can export surplus TG as very low density
lipoprotein (VLDL), while muscle can β-oxidize lipid. Also, fat cells present
in nonadipose tissues may actually protect those tissues from lipotoxicity by
storing or processing excess FAs locally.

Exercise is associated with protection against potentially adverse effects of
intramyocellular lipid [76]. Endurance training results in increased intramy-
ocellular lipid despite increased β-oxidation. In obesity and diabetes, increased
intramyocellular TG correlates with insulin resistance and is associated with
increased lipid peroxidation, but not in endurance-trained subjects [43]. This
suggests that endurance training increases intramyocellular antioxidant en-
zyme activity. Further, increased intramyocellular TG may be a constantly uti-
lized source of energy for ATP production in endurance-trained subjects, while
in obese subjects, intramyocellular TG may be stored but not mobilized. Thus,
intramyocellular TG accumulation does not necessarily indicate lipotoxicity.

Adiponectin and leptin can defend against cytotoxic effects of lipids.
Adiponectin protects against metabolic syndrome [77–80]. It increases AMP-
activated protein kinase (AMPK) activity and enhances FA oxidation [81].
Leptin also increases AMPK activity [82] and FA oxidation [32]. In obese,
leptin-deficient Zucker rats, adenoviral overexpression of leptin in the liver
protects from hepatic fat accumulation and hypertriglyceridemia [32]. Thus,
leptin and other factors produced by subcutaneous fat may protect against lipo-
toxicity [1]. Indeed, increased leptin or transplantation of normal fat amelio-
rates the lipotoxicity caused by lipodystrophy: leptin reduces the steatosis and
diabetes of lipodystrophy in mice and humans [33–35]. Infection with an aden-
ovirus that increases circulating leptin improves lipotoxic cardiomyopathy and
decreases blood FA and TG, elevates cardiac expression of anti-apoptotic Bcl2,
and decreases expression of proapoptotic Bax [83]. In addition to increasing
AMPK, high levels of leptin reduce lipogenic transcription factor expression
(SREBP-1C in liver and PPARγ [and ACC and FAS] in fat), increase PGC-
1α (increasing numbers of mitochondria) [42]), and prevent the FA-mediated
decline in Bcl2 [59]. Thus, the increase in leptin or other adipokines in diet-
induced obesity may protect against lipotoxicity in nonadipose tissues, al-
though resistance to effects of these adipokines may eventually develop, as
occurs with leptin.

AMPK activation decreases ACC activity, reducing malonyl CoA, result-
ing in increased CPT1 activity and β-oxidation (Figure 1). AMP kinase ac-
tivating agents (leptin [82, 84, 85], adiponectin [84], thiazolidinediones [86],
metformin [87], and 5-aminoimidazole 4-carboxamide 1-β-D-ribofuranoside
AICAR [88, 89]) decrease lipotoxicity. AMP kinase activation reduces the di-
abetes and ectopic lipid accumulation that occur in Zucker rats [89]. Thus,
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AMP kinase appears to have an important role in the lipotoxicity associated
with obesity and fat tissue dysfunction.

Despite the importance of adipokines in the genesis of some forms of
lipotoxicity, lipotoxicity can occur independently of altered adipokine levels.
Transgenic mice with muscle- or liver-specific overexpression of lipoprotein
lipase have increased muscle and liver TG content and insulin resistance be-
cause of altered insulin signaling [90]. These defects in insulin action are asso-
ciated with increases in diacylglycerol, fatty acyl CoA, and ceramides. Thus,
increased TG synthesis can cause accumulation of intracellular FA-derived
metabolites and insulin resistance through alterations in insulin signaling in-
dependently of circulating adipokines.

Exogenous or endogenously generated unsaturated FA can rescue palmitate-
induced apoptosis in CHO cells [3]. Oleate promotes palmitate incorporation
into TG and prevents increased ROS and ceramide generation resulting from
palmitate. In cells with increased stearoyl-CoA desaturase 1 (SCD1), TG ac-
cumulation is increased in the presence of palmitate, suggesting that endoge-
nously produced unsaturated FAs can promote TG accumulation. These cells
are resistant to palmitate-induced apoptosis. Thus, generation of unsaturated
FAs can protect against lipotoxicity by increasing incorporation of saturated
FAs into TGs.

Other mechanisms may also provide protection from lipotoxicity. For ex-
ample, removal of ceramide can reduce lipotoxicity. Ceramide is formed by
the condensation of palmitoyl CoA and serine, catalyzed by serine palmitoyl
transferase (SPT [91]). Reducing palmitoyl CoA and SPT decreases apopto-
sis in pancreatic islets. Caloric restriction and thiazolidinediones reduce SPT
activity and lead to protection from apoptosis [5]. Sirtuins, which promote fat
mobilization [92] and are activated by dietary flavinoids, may turn out to be
involved in protection from lipotoxicity. In pancreatic β-cells, PKB activation
can prevent apoptosis through inhibition of the proapoptotic proteins glycogen
synthase kinase-3α/β , FoxO1, and p53 [45].

8. PREADIPOCYTES AND FAT CELLS ARE MORE
RESISTANT THAN OTHER CELL TYPES TO FA

Defenses against lipotoxicity are best developed in adipose tissue. Nonadi-
pose tissues have very limited capacity to store lipids [3]. Lipotoxicity does
not seem to occur in fat tissue itself [93], at least under most conditions.
Preadipocytes, which account for 15% to 50% of the cells in fat tissue, are
resistant to levels of FAs that would destroy other cell types. 3T3-L1 cells are
resistant to 1.5 mM palmitic acid [93]. Fat cells themselves are resistant to FA.
Treatment of collagenase-isolated rat epididymal adipocytes for up to 24 hours
with 1.5 mM oleate or palmitate at an FFA: albumin ratio of 2.5:1 results in
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no significant effects on IRS-1, PI3 kinase, PKB, phosphorylated PKB,
GLUT4, insulin-stimulated glucose uptake, or basal or cAMP-stimulated lipol-
ysis or inhibition of lipolysis by insulin [93].

How do preadipocytes and fat cells protect themselves against the conse-
quences of exposure to very high concentrations of FAs? Very few data are
available about this. Possible mechanisms include the following. Fat cells
express abundant aP2 and other FA-binding proteins, which may provide
protection against high intracellular levels of FAs and their metabolites. Long-
chain FAs induce preadipocyte aP2 expression [94]. aP2 and other intracel-
lular lipid-binding proteins may also function as lipid chaperones, facilitat-
ing the movement of FA out of fat cells [95]. Fat cells likely have well
developed antiapoptotic mechanisms, because there are high local concentra-
tions of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in adi-
pose tissue that they must defend themselves against. Fat tissue turns over at
a greater rate than generally appreciated—with fat cell numbers increasing
throughout life in some fat depots [96], permitting replacement of damaged
cells. There is a large pool of fat cell progenitors that can replace damaged
adipocytes. Fat cells have highly developed machinery to esterify potentially
lipotoxic FAs into TGs. Also, β-oxidation occurs in fat cells, providing an-
other means to dispose of acyl-CoA. Further, fat cells are resistant to poten-
tially high levels of ROS resulting from FAs. Interestingly, the dicarboxylate
carrier is expressed at higher levels in adipocytes than in any other cell type
[97]. Overexpression of the mitochondrial dicarboxylate carrier leads to hyper-
polarization of the mitochondrial membrane, resulting in increased ROS for-
mation [98]. Exposure of primary rat adipocytes to hyperglycemic conditions
in vitro reduces insulin sensitivity and increases ROS levels [99]. Adipocytes
isolated from mice fed high-fat have significantly elevated ROS [100]. ROS
are increased in primary adipocytes isolated from mice exposed to nutrient
excess in vivo [98]. Further, differentiation of murine 3T3-L1 preadipocytes
into adipocytes is associated with the acquisition of apoptotic resistance ac-
companied by upregulation of cell survival genes even under conditions in
which ROS production is increased [101]. Thus, ROS in fat cells may be high
and these cells appear to have well developed mechanisms to resist ROS dam-
age.

There may be situations in which even cells in fat tissue become paradox-
ically susceptible to lipotoxicity. An example of this is the increasing suscep-
tibility of preadipocytes to apoptosis induced by FA with aging [65]. Perhaps
other disease states, such as fat redistribution and the metabolic syndrome as-
sociated with HIV protease inhibitors that interfere with adipogenesis, may
also prove to involve this hypothetical mechanism. Such processes could set
up a cycle of lipotoxicity in fat tissue (Figure 2), with FA contributing to
preadipocyte dysfunction, impeding adipogenesis with failure to store FAs as
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Figure 2. Hypothetical lipotoxicity cycle in fat tissue. Fat cells and preadipocytes presumably
have stronger defenses against lipotoxic effects of potentially high local FA concentrations and
flux than cells in other tissues. Should these defenses (including capacity to undergo adipogene-
sis, FA binding proteins, β-oxidation, mechanisms to remove reactive oxygen species, resistance
to apoptosis) fail, a cycle of reduced FA removal leading to more damage, resulting in further
reduction in capacity to remove FA could ensue. This could contribute to increased fat tissue
inflammatory cytokine generation and reduced capacity to store FA as TG, with spillover into
nonadipose tissues and other fat depots.

TGs, leading to further increases in FAs, compounding fat tissue dysfunction
and causing reduced adiponectin and leptin production and increased inflam-
matory cytokine generation.

9. SUMMARY

Lipotoxicity, defined as lipid-induced metabolic damage, occurs when net
capacity to store and utilize lipids is exceeded. In diabetes, obesity, the
metabolic syndrome, lipodystrophies, aging, and other conditions, lipotoxicity
can result in systemic dysfunction. However, lipotoxicity can be adaptive, pos-
sibly providing defense against infection and accumulation of dysfunctional
cells. Fatty acids are more lipotoxic than triglycerides, and different fatty acids
vary in extent and mechanisms of lipotoxicity. Lipotoxicity is predisposed to
by multiple factors, occurs through diverse mechanisms, and can cause cell
removal through apoptosis or necrosis. Fat cells and preadipocytes are particu-
larly resistant. Thus, lipotoxicity is not a single process and can have adaptive
as well as detrimental consequences.
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10. CONCLUSIONS

Although it is tempting to consider lipotoxicity to be a single process, this is
probably simplistic. A diversity of triggers and pathways can lead to the lipid
accumulation and cell death that are features of lipotoxicity. With respect to
triggers, increased external lipid concentrations, decreased adiponectin or lep-
tin, increased glucocorticoids, and intracellular processes, such as mitochon-
drial dysfunction with aging, may all predispose to lipotoxic cell death. None
of these processes appears to be uniformly required for intracellular lipid ac-
cumulation and then cell death to occur. With respect to pathways involved,
increases as well as decreases in FA β-oxidation, depending on cellular con-
text, have been associated with mechanisms culminating in cell death. Accu-
mulation of ceramide, which is likely important in the lipotoxicity resulting
specifically from palmitic acid exposure, is much less likely to be a key fac-
tor in the lipotoxicity resulting from oleic acid. Deficiency of adiponectin or
leptin may predispose to lipotoxicity, but lipotoxicity can occur without this,
for example, in the setting of increased lipoprotein lipase activity. Even the
mechanisms of cell death resulting from exposure to increased concentrations
of various types of lipids differ: FAs are associated with apoptosis while TGs
induce necrotic cell death. Thus, lipotoxicity is a group of processes predispos-
ing to cell death through diverse triggers and pathways. A search for a unifying
mechanism leading to cell death from lipids in all tissues is unlikely to be re-
vealing. Although description of the diverse mechanisms resulting in cell death
due to lipids is important, it is even more important to understand the tissue-
and situation-specific processes that defend against cell death in order to devise
specific therapies.

Lipotoxicity is not uniformly detrimental. It can be an adaptive process that
removes dysfunctional cells or invading organisms, provides a means for regu-
lating tissue development (e.g., osteoprogenitor function), and defends against
overshoot effects of chronically high insulin levels by contributing to insulin
resistance. The high FA levels likely present in fat tissue have been incorpo-
rated into its metabolic storage, regulatory, and immune roles. Obesity, a state
rarely found in nature, and other types of fat tissue dysfunction may subvert
these normal responses, resulting in lipotoxicity in fat and other tissues. The
metabolic syndrome might be a particularly extreme example of this.

Thus, lipotoxicity is not a single process with uniformly destructive effects.
The extent of lipotoxicity is predisposed to by multiple factors (including type
of lipid, cellular context, inflammatory cytokines, hormonal status, drugs), pro-
ceeds through diverse mechanisms, and can have beneficial as well as destruc-
tive consequences.
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