
Chapter 8

Fixed Points

8.1 The Brouwer Fixed Point Theorem

Many qu estions in optimizati on and ana lysis reduce to solving a nonlinear
equation h(x ) = 0, for some fun cti on h : E ---> E . Equiva lently, if we define
another map f = 1 - h (where I is t he identity map) , we seek a point x in
E satisfying f (x ) = x ; we ca ll x a fixed point of f .

The most po tent fixed point existence theorems fall into t hree cate­
gor ies: "geometric" results , devo lving from the Banach contraction princi­
ple (which we st ate below), "order-theoret ic" resul t s (to which we briefly
return in Section 8.3) , and "topological" results , for which t he prototype is
t he theo rem of Brouwer forming the main body of t his section. \Ve begin
wit h Banach 's result .

Given a set C c E and a cont inuous self map f : C ---> C , we ask
whether f has a fixed point. We call f a contraction if t here is a real
constant I f < 1 such that

Ilf (x) - f (y )11 :::; I f llx - yll for all x, y E C . (8.1.1 )

Theorem 8.1. 2 (Bana ch contraction) Any contraction on a closed sub­
set of E has a unique fixed point .

Proof. Suppose the set C C E is closed and the fun cti on f : C ---> C
sati sfies the contraction condit ion (8.1.1). We apply the Ekeland vari ational
principl e (7.1.2) to the fun cti on

z E E t---> { li z- f (z)11
+00

if z E C
otherwise

at an arb it rary point x in C , with the choice of constants

to = Ilx- f (x )1I and >. = _ to_ .
1 - I f
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180 8. Fixed Points

This shows there is a point v in C satisfying

Ilv- f( v) 11< li z- f( z)11+ (1 - ')' f )llz- vii

for all points z i= v in C . Hence v is a fixed point, since otherwise choosing
z = f (v) gives a contradiction. The uniqueness is easy. D

What if the map f is not a contraction? A very useful weakening of
the notion is the idea of a nonexpansive map, which is to say a self map f
satisfying

Ilf (x ) - f(y) 11 :::; Ilx - yll for all x , y

(see Exercise 2). A nonexpansive map on a nonempty compact set or a
nonempty closed convex set may not have a fixed po int, as simple examples
like translations on R or rotations of t he unit circle show. On t he other
hand, a straight forward argument using the Banach contraction theorem
shows this cannot happen if the set is nonempty, com pact, and convex.
However , in this case we have the following more fundamental resu lt .

Theorem 8.1.3 (Brouwe r ) Any continuous self map of a nonempty com­
pact convex subset of E has a fixed point.

In this section we present an "analyst's approach" to Brouwer 's theo­
rem. We use the two following important analytic tools concerning C(1)

(continuously differentiable) functions on the closed unit ball B e Rn .

Theorem 8 .1.4 (Stone-Weier stra ss) For any continuous map f : B --+

R " , there is a sequence of C(l) maps f r : B --+ R " converging uniformly
to f.

An easy exercise shows that , in this res ult, if f is a self map then we can
assume each l- is also a self map.

Theorem 8 .1.5 (Change of variable) Suppose that th e set W c R " is
open and that the C(1) map g : W --+ R n is one-to-one with \1g invertible
throughout W . Then the set g(W) is open with measure

fwIdet \1gl·

We also use the elementary topological fact that the open unit ball int B
is connected; t hat is, it cannot be written as the disjoint union of two
nonempty open sets .

The key step in our argum ent is the following topological result .

Theorem 8.1.6 (Retra ct ion) Th e unit sphere S is not a C(l) ret r act of
the unit ball B,. that is, there is no C(1) map from B to S whose restriction
to S is the identity.
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(8.1.7)

Proof. Suppose there is such a retraction map P : B --+ S . For real
t in [0,1], define a self map of B by Pt = tp + (1 - t)I. As a function
of the variables x E Band t , the function det VPt( x) is continuous and
hence strictly positive for small t. Furthermore, Pt is one-to-one for small
t (Exercise 7) .

If we denote the open unit ball B \ S by U , then the change of variables
theorem above shows for small t that Pt(U) is open with measure

vet) = 1det VPt .

On the other hand , by compactness , pt(B) is a closed subset of B , and we
also know Pt(S) = S . A little manipulation now shows we can write U as
a disjoint union of two open sets:

(8.1.8)

The first set is nonempty, since Pt(O) = tp(O) E U. But as we obs erved , U
is connecte d , so the second set must be empty, which shows pt(B) = B .
Thus the function vet) defined by equat ion (8.1.7) equals the volume of the
unit ball B for all small t.

However, as a function of t E [0,1]' vet) is a polynomial , so it must be
constant. Since P is a retraction we know that all points x in U satisfy
IIp(x) 11 2 = 1. Differentiating implies (Vp(x))p(x) = 0, from which we
deduce det Vp(x) = 0, since p(x) is nonzero . Thus v(l) is zero, which is a
contradiction. 0

Proof of Brouwer's theorem. Consider first a C(1) self map I on the
unit ball B . Suppose I has no fixed point. A straightforward exercise
shows there are unique fun ctions a : B ----+ R + and P : B --+ S satisfying
the relationship

p(x) = x + a(x)(x - I(x)) for all x in B . (8.1.9)

Geometrically, p(x) is the point where the line ext ending from the point
f( x) through the point x meets the unit sphere S. In fact P must then be a
C(1) retraction, contradicting the retraction theorem above. Thus we have
proved that any C(1) self map of B has a fixed point.

Now suppose the function I is just continuous. The Stone-Weierstrass
theorem (8.1.4) implies there is a sequence of C(l) maps IT : B --+ R"
converging uniformly to I , and by Exercise 4 we can assume each IT is a
self map . Our argument above shows each IT has a fixed point x", Since B
is compact, the sequence (xT

) has a subsequence converging to some point
x in B , which it is easy to see must be a fixed point of I. SOany continuous
self map of B has a fixed point.
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Finally, consider a nonempty compact convex set C c E and a contin­
uous self map 9 on C . Just as in our proof of Minkowski 's theorem (4.1.8) ,
we may as well assume C has nonempty interior. Thus t here is a home­
omorphism (a cont inuous onto map with cont inuous inverse) h : C --+ B
(see Exercise 11). Since the function h og 0 h- 1 is a cont inuous self map of
B , our argument above shows this function has a fixed point x in B , and
therefor e h - 1 (x) is a fixed point of g. 0

Exercises and Commentary

Good general references on fixed point t heory are [68, 174, 83]. The Ba­
nach cont ract ion principle appeared in [7] . Brouwer proved the three­
dimensional case of his theorem in 1909 [49] and the general case in 1912
[50], with another proof by Had amard in 1910 [89]. A nice exposit ion of t he
Stone-Weierstrass theorem may be found in [16], for example. The Chan ge
of variable theorem (8.1.5) we use can be found in [177]; a beautiful proof
of a simplified version, also sufficient to prove Brouwer 's t heore m, appeared
in [118]. Ulam conjectured and Borsuk proved their resul t in 1933 [17] .

1. (Banach iterates) Consider a closed subset C c E and a cont rac ­
tion f : C --+ C with fixed point x l. Given any point Xo in C , define
a sequen ce of points induct ively by

Xr+ l = f( x r ) for r = 0,1 , . . ..

(a) Prove limr,s->oo Il xr - xs ll = 0. Since E is complete, the se­
quence (xr ) converges. (Another approach first shows (x r ) is
bounded.) Henc e prove in fact tc; approaches xl. Deduce the
Banach cont ract ion theorem.

(b) Consider anot her cont ract ion 9 : C --+ C with fixed po int x" ,
Use par t (a) to prove the inequality

Il x i _ xg ll :::; SUPzEC Ilf(z) - g(z)ll .
1- I I

2. (Nonexpansive maps)

(a) If the n xn mat rix U is or thogonal , prove the map x E R" --+ Ux
is nonexpansive.

(b) If the set SeE is closed and convex then for any real >. in the
interval [0,2] prove the relaxed projection

x E E t---+ (1 - >.) x + >'Ps(x)

is nonexpan sive. (Hint: Use the nearest point characterizat ion
in Section 2.1, Exercise 8(c).)
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(c) (Browder-Kirk [51, 112]) Suppose the set C c E is compact
and convex and the map f : C ----> C is nonexpansive. Prove f
has a fixed point. (Hint: Choose an arbitrary point x in C and
consider the contractions

z E C f---t (1 - E) f (z ) + EX

for small real E > 0.)

(d)* In part (c) , prove the fixed points form a nonempty compact
convex set.

3. (Non-uniform contractions)

(a) Consider a nonempty compact set C c E and a self map f on
C satisfying the condition

Ilf(x) - f(y)11 < Ilx- yll for all distinct x, y E C .

By considering inf Ilx - f( x)ll, prove f has a unique fixed point .

(b) Show the result in part (a) can fail if C is unbounded.

(c) Prove the map X E [0,1] f---t x e- x satisfies the condition in part
(a) .

4. In the Stone-Weierstrass theorem , prove that if f is a self map then
we can assume each f r is also a self map.

5. Prove the interval (-1, 1) is connected . Deduce t he op en unit ball in
R" is connected.

6. In the Change of variable theorem (8.1.5) , use metric regularity to
prove the set g(W) is open.

7. In the proof of the Retraction theorem (8.1.6) , prove the map P is
Lipschitz, and deduce that the map Pt is one-to-one for small t. Also
prove that if t is small then det Vp, is strictly positive throughout B .

8. In the proof of the Retraction theorem (8.1.6) , prove the partition
(8.1.8), and deduce pt(B) = B .

9. In the proof of the Retraction theorem (8.1.6) , prove v(t) is a poly­
nomial in t.

10. In the proof of Brouwer 's theorem , prove the relationship (8.1.9) de­
fines a C(1) retraction P : B ----> S.
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11. (Convex sets homeomorphic to the b all) Suppose the compact
convex set C C E satisfies 0 E int C. Prove that the map h : C --+ B
defined by

h( ) = { /,c(X)ll x11 - 1x if x f= 0
x 0 if x = 0

(where /'0 is the gauge function we defined in Section 4.1) is a home­
omorphism.

12. * (A nonclosed nonconvex set with the fixed point property)
Let Z be the subset of the unit disk in R 2 consisting of all lines
through the origin with rational slope. Prove every continuous self
map of Z has a fixed point.

13. * (Change of varia b le and B rouwer) A very simple proof may
be found in [118] of the form ula

when the function f is cont inuous with bounded support and the
function 9 is differentiable, equaling the identity outside a large ball .
Prove any such 9 is surjective by considering an f supported outside
the range of 9 (which is closed). Deduce Brouwer's theorem.

14. ** (Bro uwer and inversion) The central tool of the last chapter,
the Surjectivity and metric regularity theorem (7.1.5), considers a
function h whose strict derivative at a point satisfies a certain surjec­
t ivity condition. In this exercise, which comes out of a long tradition,
we use Brouwer's theorem to consider functions h which are merely
Frechet differentiable. This exercise proves the following resu lt .

Theorem 8.1.10 Consider an open set U C E , a closed convex set
S C U, and a Euclidean space Y , and suppose the continuous func ­
tion h : U --+ Y has Frechet derivative at the point xES satisfying
the surjectivity condition

\lh(x)Ts(x) = Y.

Then there is a neighbourhood V of h(x), a continuous, piecewis e
lin ear function F : Y --+ E , and a function 9 : V --+ Y that is Frechet
differentiable at h(x) and satisfies (F 0 g) (V) c Sand

h((F 0 g)(y)) = y for all y E V .

Proof. We can assume x = 0 and h(O) = O.
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(a) Use Section 4. 1, Exercise 20 (P ropert ies of the relat ive interior)
to prove V'h(O )(R+S) = Y .

(b) Deduce tha t there exists a basis YI , Y2, .. . , Yn of Y and points
U I , U 2 , ... , U n and WI, W2 , .. . , W n in S sat isfying

V'h(O)Ui = Yi = - V'h(O)wi for i = 1, 2, . . . , n .

(c) Prove the set

n n

B 1 = {L tiYi I t ERn, L Itil ::; I}
I I

and the fun ction F defined by

n n

F( L tiYi) = L (ttUi + (-ti)+Wi )
I I

satisfy F (Br) c S and V'(h 0 F )(O ) = J.

(d) Deduce there exis ts a real E > 0 such that EB y C B I and

Ilh(F(y)) - yll < I I ~ II whenever lIyll ::; 2c

(e) For any poin t v in t he neighbourhood V = (Ej2)B y , prove t he
map

Y E V I---> V + Y - h(F (y))

is a continuous self map of V.

(f) Apply Brouwer 's theorem to deduce the exist ence of 11 fixed point
g(v) for the map in part (e). Prove V'g(O ) = J , and hence
complete t he proof of the resul t.

(g) If x lies in the interior of S, prove F can be assumed lin ear.

(Exercise 9 (Nonexistence of multipliers) in Section 7.2 suggest s the
importance here of assuming h continuous.)

15. * (Knaster-Kuratowski-Mazurkiewicz principle [114]) In this
exercise we show the equivalence of Brouwer 's theorem with the fol­
lowin g resul t.

Theorem 8.1.11 (KKM) Suppose fo r every point x in a nonempty
set X C E there is an associated closed subset lv/(x) C X . A ssum e
the property

conv Fe UM (x )
xE F
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holds for all finite subsets F eX. T hen for any finit e subset F C X
we have nM(x) i- 0.

xEF

Hence if some subs et M(x) is compact we have

nM(x) i- 0.
xEX

(a) Prove that t he final assertion follows from t he main part of t he
theorem using T heorem 8.2.3 (General definition of compact­
ness) .

(b) (KKM implie s Brouwer) Given a continuous self map f on a
nonempty compact convex set C C E , apply t he KKM theorem
to the family of sets

M(x) = {y Eel (y - fey) , y - x ) ::; O} for x E C

to deduce f has a fixed point .

(c) (Brouwer implies KKM) With the hypotheses of the K KM
theorem, ass ume n xEFM(x) is empty for some finite set F . Con­
sider a fixed point z of the self map

E F
2:xEF dM( x)(Y)x

y conv f--+

2:xEF dM( x)(Y)

and define F ' = {x E F I z rt M(x)} . Show z E conv F' and
derive a contradiction.

16. •• (Hairy b all theor em [140» Let Sn denote the E uclidean sphere

{x E R n+l Illxll = I} .

A tangent vector field on Sn is a function w : Sn ----+ R n+1 satisfying
(x , w( x» ) = 0 for a ll points x in Sn . This exercise proves the following
res ult.

Theorem 8 .1.12 For every even n, any con tinuous tangent vector
field on Sn must vanish somewhere.

Proof. Consider a nonvanishing continuous tangent vector field u
on s.;

(a) Prove there is a nonvanishing C(1) tangent vector field on Sn,
by using the Stone-Weierstrass theorem (8 .1.4) to approximate
u by a C(1) function p and then considering t he vector field

x E Sn f--+ p( x) - (x,p(x» )x .
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(b) Deduce the existe nce of a positively homogeneous e (1) fun ction
W : R n+l ~ R n+ 1 whose restriction to Sn is a unit norm e(l)

t angent vector field: II w(x)11 = 1 for all x in Sn.

Define a set

A = {x E R n +1 11 < 211xll < 3}

and use the field W in part (b) to define functions Wt : R n+1 ~ R n+1

for real t by

Wt( x) = x + tw(x) .

(c) Imit ate the proof of Brouwer 's theorem to prove the measure of
t he image set Wt (A) is a polynomial in t when t is small.

(d) Prove directly the inclusion wt(A ) C v'f+t2A.

(e) For any point y in v'f+t2A, apply the Banach contraction t he­
orem to the function x E kB f-7 Y - tw(x ) (for large real k) to
deduce in fact

Wt(A ) = J1+t2A for small t .

(f) Complete t he proof by combining parts (c) and (e). 0

(g) If f is a continuous self map of Sn where n is even , prove eit her
f or - f has a fixed point.

(h) (Hedgehog theorem) Prove for even n that any nonvanishing
cont inuous vector field must be somewhere normal: I(x , f( x) )1 =

Ilf(x)11for some x in Sn'

(i) Find examples to show the Hairy ball theorem fails for all odd
n.

17. * (Borsuk-Ulam theorem) Let Sn denote the Euclidean sphere

{x E R n +1 I llxll = I} .

We state t he following resul t without proof.

Theorem 8.1.13 (Borsuk-Ulam) For any positive in tegers m ::;
n , if th e funct io n f : Sn ~ R '" is continuous th en th ere is a point x
in Sn sa tisfying f( x) = fe- x) .

(a) If m ::; n and the map f : Sn ~ R '" is cont inuous and odd,
prove f vani shes somewhere.
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(b) Prove any odd cont inuous self map f on Sn is surjective. (Hint:
For any point u in Sn , consider the function

:r E Sn f---7 f(x) - (f(x) ,u)u

and apply part (a) .)

(c) Prove the result in part (a) is equivalent to the following result :

Theorem 8.1.14 For posit ive integers m < n there is no con­
tinuous odd map from Sn to Sm '

(d) (Borsuk-Ulam im p lies Brouwer [178]) Let B denote the
unit ball in R " , and let S denote the bo undary of B x [- 1, 1]:

S = {( x ,t) E B x [-1 ,1] I llxll = 1 or ItI = I}.

(i) If the map 9 : S --+ R " is continuous and odd, use part (a)
to prove g vanishes somewhere on S .

(ii) Consider a continuous self map f on B . By applying part
(i) to the function

(x , t) E S f---7 (2 - Itl)x - tf(tx) ,

prove f has a fixed point.

18. ** (Generalized Riesz lemma) Consider a smooth norm III ·111on
E (t hat is, a norm which is continuously differentiable except at the
origin) and linear subspaces U, Ve E satisfying dim U > dim V = n .
Denote the unit sp here in U (in t his norm) by S(U) .

(a) By choos ing a basis VI , V2 , . .. , V n of V and applying the Borsuk­
Ularn theorem (see Exercise 17) to the map

prove there is a point x in S(U) satisfying "V III ' 111(x) ..1 V .

(b) Deduce the origin is the nearest point to x in V (in this norm) .

(c) With this norm, deduce there is a unit vector in U whose dis­
tance from V is equal to one.

(d) V se t he fact that any norm can be uniformly approximated ar ­
bitrarily well by a smooth norm to extend the result of part (c)
to arbitrary norms.

(e) Find a simpler proof when V c U .
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19. ** (Riesz implies Borsuk) In this question we use the generalized
Riesz lemma, Exercise 18, to prove the Borsuk-Ulam result, Exercise
17(a) . To this end, suppose the map f : Sn ----+ R" is continuous and
odd. Define functions

Ui : Sn ----+ R for i = 1,2, , n + 1

Vi : R" ----+ R for i = 1,2, , n

by Ui( X) = Xi and Vi(X) = Xi for each index i. Define spaces of
continuous odd functions on Sn by

U = span{uI,u2 , . . . .un +d
V = span {VI 0 f, V2 0 l, . . . ,V n 0 f}

E=U+V,

with norm Ilull = maxu(Sn) (for uin E).

(a) Prove there is a function u in U satisfying Ilull = 1 and whose
distance from V is equal to one .

(b) Prove u attains its maximum on Sn at a unique point y .

(c) Use the fact that for any function w in E , we have

(V'II · II(u))w = w(y)

to deduce f(y) = O.
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8.2 Select ion and the Kakutani-Fan Fixed
Point Theorem

The Brouwer fixed point theorem in the previous section concerns functions
from a nonempty compact convex set to its elf. In optimization, as we have
alread y seen in Section 5.4, it may be convenient to broad en our language
to consid er multifunctions n from the set to it self and seek a fixed point-a
point x sat isfying x E n(x) . To begin this section we summarize some
definitions for future reference.

We consider a subset K c E , a Euclidean space Y , and a mul t ifun ction
n : K --7 Y. We say n is USC at a point x in K if every open set U
cont aining n(x) also contains n(z) for all points z in K close to x .

Thus a multifunction n is USC if for any sequence of points (xn ) ap­
proaching x, any sequence of elements Yn E n(x n ) is eventually close to
n(x) . If n is USC at every point in K we sim ply call it USC. On the
other hand, as in Section 5.4, we say n is LSC if, for every x in K , every
neighbourhood V of any point in n(x) intersects n(z) for all points z in K
close to x .

We refer to the sets n(x) (x E K) as the images of n. The multi­
function n is a cusco if it is USC with nonempty compact convex images.
Clearly such multifunctions are locally bounded: any point in K has a
neighbourhood whose image is bounded . Cuscos appear in several impor­
tant optimization contexts. For example, the Clarke su bdifferential of a
locally Lipschitz funct ion is a cusco (Exercise 5) .

To see anot her important class of examples we need a further definition.
We say a multifunction <I> : E --> E is monotone if it satisfies the condit ion

(u - v ,x - y) ~ 0 whenever U E <I>(x) and v E <I>(y) .

In particular, any (not necessaril y self-adjoint) positive semidefinite lin­
ear operator is monotone, as is the subdifferential of any convex function.
One multifunction contains another if the graph of the first cont ains the
graph of the second. We say a monotone mul tifunction is maximal if the
only monotone multifunction containing it is itself. The subdifferentials
of closed proper convex functions are examples (see Exercise 16) . Zorn 's
lemma (which lies outside our immediate scope) shows any monotone mul­
tifunction is cont ained in a maximal monotone multifunction.

T h eor e m 8 .2.1 (Maximal m on ot onicity ) Maximal monotone multi­
fun ctions are cuscos on the interi ors of their domains .

Proof. See Exercise 16. o

Maximal monotone mul tifunctions in fact have to be single-valued gener­
ically, that is on sets which are "large" in a topological sense, specifically
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on a dense set which is a "Go" (a countable intersection of open sets)-see
Exercise 17.

Returning to our main theme, the cent ral res ult of this section extends
Brouwer 's t heorem to the multifunction case.

Theorem 8.2.2 (Kakutani-Fan) If the set C c E is nonempty, compact
and convex, then any cusco 0 : C ----+ C has a fixed point.

Before we prove this result, we out line a lit tle more topology. A cover
of a set K c E is a collection of sets in E whose union contains K . The
cover is open if each set in the collect ion is open. A subcover is just a
subcollect ion of the sets which is also a cover. The following result , whi ch
we state as a t heorem, is in t ruth t he definition of compactness in spaces
more general t han E .

Theorem 8.2.3 (General definition of compactness) Any open cover
of a compact set in E has a finit e subcover.

Given a finit e op en cover {01 , O2 , . .. , Om } of a set K c E , a par­
tition of unity subordinate to this cover is a set of cont inuous fun ctions
PI , P2, . . . ,Pm : K ----+ R + whose sum is identically equal t o one and satisfy­
ing Pi( X) = 0 for all point s x ou tside O, (for each index i) ..We ou tline the
proof of the next result , a central to pologica l tool, in the exe rcises .

Theorem 8.2.4 (Partition of unity) Th ere is a partition of unity sub­
ordinate to any finit e open cover of a compact subset of E .

Besid es fixed points, the other main t heme of this section is the idea
of a continuous selecti on of a multifunction 0 on a set K c E , by whi ch
we mean a cont inuous map f on K satisfying f (x ) E O(x) for all points x
in K . The cent ral step in our proof of the Kakutani-Fan t heorem is the
followin g "approximate selection" theorem .

Theorem 8.2.5 (Cellina) Given any compact set K c E , suppos e the
multifunction 0 : K ----> Y is US C with nonempty convex im ages. Th en
for any real f. > 0 there is a continuous map f : K ----> Y which is an
"approximate selection" of 0 :

dC Cf !) (x , f( x)) < f. for all points x in K . (8.2.6)

Furth ermore the range of f is contained in the convex hull of the range of
O.

Proof. We can assume the norm on E x Y is given by

II(x,y)IIEXY = Il xilE + Ilylly for all x E E and y E Y
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(since all no rms are equivalent- see Section 4.1, Exercise 2). Now, since
n is USC, for each point x in K there is a real 8x in t he interval (0, E/2)
satisfying

E
n(x + 8x BE ) c n(x) + 2By .

Since the sets x + (8x /2)int BE (as t he point x ranges over K ) comprise an
open cover of the compac t set K , there is a finite subse t { Xl , X 2 , " " X m }

of K with the sets Xi + (8d2)int BE comprising a finite subcover (where 8i

is shorthand for 8x i for each index i).
Theorem 8.2.4 shows there is a partition of unity Pl ,P2, . . . ,Pm: K ~

R + subordinat e to this subcover. We now construct our desir ed approxi­
mate selection f by choosing a point Yi from n(Xi) for each i and defining

m

f( x) = I>i(X)Yi for all points x in K .
i =l

(8.2 .7)

Fix any poi nt x in K and define the set I = {i IPi (x) i= O} . By definition,
x satisfies Ilx - Xi II < 8d2 for each i in I . If we choose an ind ex j in I
maximizing 8j , the t riangle inequali ty shows Il xj - xiii < 8j , whence we
deduce the inclusions

E
Yi E n(Xi) C n(Xj + 8jBE ) c n(Xj) + 2By

for all i in I . In other words, for each i in I we know d~(xj )(Yi) ::::; E/2. Since
the dist ance function is convex, equat ion (8.2.7) shows d~(xj )(f(x)) ::::; E/2.
Since we also know Il x- Xj II < E/2, t his proves inequality (8.2.6) . T he final
claim follows immediately from equation (8.2.7). 0

Proof of the Kakutani-Fan theorem. With t he assumption of the
theorem , Cellina' s resul t above shows for each posit ive integer r there is a
cont inuous self map fT of C satisfyin g

1
dG(~)(x , fT(X)) < - for all points x in C .

r

By Brouwer 's theorem (8.1.3) , each i- has a fixed point x " in C, which
therefore sa tisfies

dG(~)(XT , z" ) < ~ for each r.
r

Since C is compact , the sequence (xT
) has a converge nt subsequence, and

its limit must be a fixed point of n because n is closed by Exercise 3(c)
(Closed versus USC). 0

In the next section we describe some vari ational applications of the
Kakutani-Fan theorem. But we end t his section with an exact selection
theorem par allel to Cellin a 's result but ass uming an LSC rather than a
USC mult ifunction.
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Theorem 8.2.8 (Michael) Given any closed set K c E , suppo se the
multifunction 0 : K -t Y is LSC with nonempty closed convex im ages.
Th en given any point (x, y) in G(O) , there is a continuous selection f of
o satisfying f( x) = y.

We ou tline t he proof in the exercises.

Exercises and Commentary

Many useful properties of cuscos are summarized in [27]. An exce llent
general reference on monotone operators is [153]. The topology we use in
t his section can be found in any standard text (see [67, 106], for example) .
The Kakutani -Fan theorem first appeared in [109] and was extended in
[74]. Cellina's approx imate select ion theorem appears , for example, in [4,
p . 84]. One example of the many uses of the Kakutani-Fan theorem is
establishing equ ilibr ia in mathematic al economics. T he Michael select ion
theorem appeared in [137].

1. (USC and continuity) Cons ider a closed subset K c E and a
multifunction 0 : K -t Y .

(a) Prove the multifun ction

X E E ~ { ~(x) for x E K
for x tf. K

is USC if and only if 0 is USC.

(b) Prove a fun ction f : K -t Y is cont inuous if and only if the
mul tifunction x E K ~ {f( x)} is USC.

(c) Prove a fun ction f : E -t [- 00, + 00] is lower semicontinuous at
a point x in E if and only if the multi fun ction whose graph is
the epigraph of f is USC at x.

2. * (Minimum norm) If t he set U c E is open and the multifunction
0 : U -t Y is USC , prove t he function g : U -t Y defined by

g( x) = inf{ll yll l y E O(x)}

is lower semicontinuous.

3. (Closed versus USC)

(a) If the multifunction <I> : E -t Y is closed and the mul tifunction
o :E -t Y is USC at the point x in E with O(x) compact , prove
the multifunction

z E E ~ O(z) n cI>( z)

is USC at x.
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(b) Hence prove that any closed multifunction with compact range
is USC.

(c) Prove any USC multifunction with closed images is closed .

(d) If a USC multifunction has compact images, prove it is locally
bounded.

4. (Composition) If the multifunctions 1> and 0 are USC prove their
composition x f--+ 1>(O(x» is also.

5. • (Clarke subdifferential) If the set U c E is open and the function
f : U --+ R is locally Lipschitz, use Section 6.2 , Exercise 12 (Closed
subdifferentials) and Exercise 3 (Closed versus USC) to prove the
Clarke subdifferential x E U f--+ oof(x) is a cusco.

6. ** (USC images of compact sets) Consider a given multifunction
0 : K --+ Y.

(a) Prove 0 is USC if and only if for every open subset U of Y the
set {x E K IO(x) c U} is open in K .

Now suppose K is compact and 0 is USC with compact images.
Using the general definition of compactness (8.2 .3), prove the range
O(K) is compact by following the steps below.

(b) Fix an open cover {Ul' I'Y E r} of O(K). For each point x in K,
prove there is a finite subset I'x of r with

(c) Construct an open cover of K by considering the sets

as the point x ranges over K .

(d) Hence construct a finite subcover of the original cover of O(K).

7. • (Partitions of unity) Suppose the set K c E is compact with a
finite open cover {01 , O2 , .. . , Om}.

(i) Show how to construct another open cover {VI, V2 , .. . , Vm } of
K satisfying cl Vi C O, for each index i. (Hint: Each point x in
K lies in some set Oi, so there is a real ri, > 0 with x+6xB c Oi;
now take a finite subcover of {x + 6xint B Ix E K} and build the
sets V; from it .)
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(ii) For each index i , prove the function qi : K -'> [0,1] given by

is well-defined and cont inuous, with qi ide nt ically zero outside
the set O«.

(iii) Deduce that the set of funct ions Pi : K -'> R + defined by

is a partition of unity subordinate to the cover {0 1 , O2 , . .. , Om} .

8. Prove the Kakutani -Fan theorem is also valid under the weaker as­
sumption t hat t he images of the cusco 0 : C -'> E always intersect
t he set C using Exercise 3(a) (Closed versus USC) .

9. ** (Michael's theorem) Suppose all the assumptions of Michael 's
theorem (8.2.8) hold. We cons ider first the case with K compact .

(a) F ix a real E > O. By construct ing a partit ion of unity subord inate
to a finite subcover of the open cover of K consisting of the sets

Oy = {x E E l dn(x)(Y) < E} for yin Y ,

cons t ruct a continuous function I : K -'> Y satisfying

dn(x)(f(x» < E for all point s x in K .

(b) Construct a sequence of continuous functions iI ,12 , . . . : K -'> Y
sat isfying

dn(X)(fi( X» < 2- i for i = 1,2 , .

IIIi+1(x) -li(x)11 < 21- i for i=1,2, .

for all po ints x in K. (Hint : Construct iI by applying part (a)
with E = 1/2; then construct I i+ 1 induct ively by applying part
(a) to the multifunction

with E = 2- i - 1 •

(c) The fun ctions Ii of part (b) must converge uniformly t o a con­
tinuous fun ct ion f. Prove I is a continuous selection of O.
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(d) Prove Michael' s theorem by applying par t (c) to the mult ifunc­
tion

if x =I- x
if x = ii ,

(e) Now extend to the general case where K is possibly unbounded
in the following steps. Define sets K n = K n nBE for each
n = 1, 2, . . . and apply the compact case to the multifunction
0 1 = OIK, to obtain a continuous selection gl : K 1 ---. Y . Then
induct ively find a continuous selection gn+1 : Kn+l ---. Y from
the mult ifunction

o (x) - { {gn(x)}
n+1 - O(x)

for x E K n

for x E K n+1 \ K n

and prove the function defined by

I(x) = gn(x) for x E K n, n = 1,2, . ..

is the required selection.

10. (Hahn-Katetov-Dowker sandwich theorem) Suppose the set
K c E is closed.

(a) For any two lower semicontinuous functions I, 9 : K ---. R satis­
fying I ~ -g, prove there is a continuous function h : K ---. R
satisfying I ~ h ~ - g by cons idering the multifunction x f--7

[-g(x),I(x) ]. Obs erve the result also holds for extended-real­
valued I and g.

(b) (Urysohn lemma) Suppose the closed set V and t he open
set U satisfy V cUe K . By applying part (i) to suitable
functions, prove there is 11 continuous function I : K ---. [0,1]
that is ident ically equal to one on V and to zero on UC.

11. (Continuous extension) Consider a closed subset K of E an d a
continuous function I : K ---. Y . By cons ider ing the multifunction

O(x) _ { {I( x)}
- cl (conv I(K))

for x E K
for x ~ K,

prove there is a continuous function 9 : E ---. Y satisfying g lK = I
and geE) c cl(conv I(K)) .

12. * (Generated cuscos) Suppose the multifunction 0 K ---. Y is
locally bound ed with nonempty images .
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(a) Among those cuscos containing 0, prove there is a unique one
with minimal graph, given by

1>(x) = nclconv (O(x + EB)) for x E K.
<>0

(b) If K is nonempty, compact, and convex, Y = E , and 0 satisfies
the conditions O(K) c K and

x E 1>(x) =} x E O(x) for x E K ,

prove 0 has a fixed point.

13. * (Multifunctions containing cuscos) Suppose the multifunction
o : K -+ Y is closed with nonempty convex images, and the funct ion
f : K -+ Y has the property that f (x) is a point of minimum norm
in O(x) for all points x in K. Prove 0 contains a cusco if and only if
f is locally bounded. (Hin t: Use Exercise 12 (Generated cuscos) to
consider the cusco generated by f .)

14. * (Singleton points) For any subset D of Y , define

s(D) = inf{r E RID c y + r Bv for some y E Y} .

Consider an open subset U of E .

(a) If the multifunction 0 : U -+ Y is USC with nonempty images,
prove for any real E > 0 the set

S< = {x E U I s(O(x )) < E}

is open. By considering the set nn>lSl /n, prove t he set of points
in U whos e image is a singleton is a Go.

(b) Use Exercise 5 (Clarke subdifferential) to prove that the set of
points where a locally Lipschitz function f : U -+ R is strictly
differentiable is aGo . If U and f are convex (or if f is regular
throughout U) , use Rademacher's theorem (in Section 6.2) to
deduce f is generically differentiable.

15. (Skew symmetry) If the matrix A E M n satisfies 0 i- A = -AT ,
prove the multifunction x ERn J--+ xT Ax is maximal monotone, yet
is not the subdifferent ial of a convex function .

16. ** (Monotonicity) Consider a monotone multifunction 1> : E -+ E.

(a) (Inverses) Prove 1> -1 is monotone.

(b) Prove 1> - 1 is maximal if and only if q> is.



198 8. Fixed Points

(c) (Applying maximality) Prove <I> is maximal if and only if it
has the property

(u - V,x - y) 2:: 0 for all (x ,u) E G(<I» =} v E <I>(y) .

(d) (Maximality and closedness) If <I> is maximal, prove it is
closed with convex images.

(e) (Continuity and maximality) Supposing <I> is everywhere
single-valued and hemicontinuous (that is, continuous on ev­
ery line in E), prove it is maximal. (Hint: Apply part (c) with
x = y + tw for w in E and t lOin R.)

(f) We say <I> is hypermaximal if <I> + AI is surjective for some real
A > O. In this case , prove <I> is maximal. (Hint: Apply part (c)
and use a solution x E E to the inclusion v + Ay E (<I> + AI) (x) .)
What if just <I> is surjective?

(g) (Subdifferentials) If the function f : E --+ (00, +00] is closed,
convex , and proper, prove of is maximal monotone. (Hint : For
any element ¢ of E , prove the function

x E E f-7 f(x) + IIxl1 2 + (¢,x)

has a minimizer, and deduce of is hypermaximal.)

(h) (Local boundedness) By completing the following steps, prove
<I> is locally bounded at any point in the core of its domain.

(i) Assume 0 E <I>(O) and 0 E coreD(<I», define a convex func­
tion g : E --+ (00, +00] by

g(y) = sup{(u,y - x) Ix E B , u E <I>(x)}.

(ii) Prove D(<I» C domg.

(iii) Deduce g is continuous at zero .

(iv) Hence show Ig(y)1 :::; 1 for all small y , and deduce the result.

(j) (Maximality and cuscos) Use parts (d) and (h), and Exercise
3 (Closed versus USC) to conclude that any maximal monotone
multifunction is a cusco on the interior of its domain.

(k) (Surjectivity and growth) If <I> is surjective, prove

lim 11<I>(x)II = +00.
Ilxll--->oo

(Hint: Assume the maximality of <I> , and hence of <I>-l ; deduce
<I>-l is a cusco on E, and now apply Exercise 6 (USC images of
compact sets).)
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17. ** (Single-valuedness and maximal monotonicity) Consider a
maximal monotone mul tifunction D : E ----> E and an op en subse t U
of it s domain, and define the minimum norm funct ion 9 : U ----> R as
in Exer cise 2.

(a) Prove 9 is lower semicont inuous . An applicat ion of t he Baire
catego ry theorem now shows that any su ch function is gene ri­
cally conti nuous .

(b) For any point x in U at which 9 is cont inuous, prove D(x) is a
singleton . (Hint : Prove 11 ·11is constant on D(x) by first ass uming
y, z E D(x) and Ilyll > Ilzll , and then using the condit ion

(w - y , x + ty - x) ~ 0 for all small t > 0 and wE D(x + ty)

to derive a cont radict ion. )

(c) Conclude t hat any maximal mo notone multifunction is generi­
cally single-valued.

(d) Deduce that any convex function is generically di fferen tiable on
the inte rior of it s domain .
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8 .3 Variational Inequalities

At the very beginning of t his book we considered the problem of minimizing
a differentiable fun ction f : E ~ R over a convex set C c E . A necessary
optimali ty condition for a point xo in C to be a local minimizer is

or equivalently

(\7f( xo), x - xo) 2: 0 for all points x in C ,

oE \7 f( xo) + Nc(xo).

(8.3.1)

If the fun ction f is convex instead of differentiab le, the necessary and suf­
ficient condit ion for optimality (assuming a constraint qualification) is

oE 8f(xo) + Nc(xo) ,

and there are analogous nonsmooth necessary condit ions.
We call problems like (8.3.1) "variat ional inequalities" . Let us fix a

mult ifunct ion D : C ~ E. In this section we use t he fixed point t heory we
have developed to study t he multivalued vari ational inequality

v I(D ,C ): Find point s Xo in C and Yo in D(xo) sa t isfying
(Yo,x - xo) 2: 0 for all points x in C .

A more concise way to wri te t he problem is this:

F ind a point Xo in C satisfying 0 E D(xo) + Nc(xo ). (8.3 .2)

Suppose t he set C is closed, convex, and nonempty. Recall that the
projection Pc : E ~ C is the (conti nuous) map t hat sends point s in E
to their unique nearest points in C (see Section 2.1 , Exercise 8) . Using
t his not ati on we can also write the vari ati on al inequality as a fixed point
problem:

Find a fixed point of Pc 0 (I - D) : C ~ C . (8.3 .3)

This reformulation is useful if the multifunction D is sing le-valued, but less
so in general because the composition will often not have convex images.

A more versatil e approach is to define t he (multivalued) normal map­
ping Dc = (D 0 Pc) + 1 - Pc , and repose t he problem as follows:

Find a point x in E sat isfying 0 E Dc(x) . (8.3.4)

Then setting Xo = Pc(x) gives a solut ion to the original problem. Equiva­
lently, we could phrase this as follows:

F ind a fixed point of (I - D) 0 Pc : E ~ E. (8.3.5)
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As we shall see , this last formulation let s us immediately use t he fixed point
theory of the previous section.

The basic result gu aranteeing the existence of solutions to variational
inequalities is the following.

Theorem 8.3.6 (Solvability of variational inequalities) If the subset
C of E is compact, convex, and nonempty, then for any cusco 0 : C ----> E
the variational in equality V 1(0 , C) has a solution.

Proof. We in fact prove Theorem 8.3.6 is equivalent to the Kakutani-Fan
fixed point theorem (8.2.2).

When 0 is a cusco it s range O(C) is compact -we ou tline t he proof
in Section 8.2, Exercise 6. We can easily check t hat the multifunction
(I - 0) 0 Pc is a lso a cusco because the projection Pc is continuous. Since
this mult ifun ction maps t he compact convex set conv (C - O(C )) into itself,
t he Kakut ani -Fan theorem shows it has a fixed point , which, as we have
already observed , implies the solvability of V 1(0, C) .

Conversely, suppose the set C c E is nonempty, compact, and convex .
For any cusco 0 : C ----> C , the Solvabili ty theorem (8.3.6) implies we can
solve the variational inequality V1(1 - 0 , C) , so t here ar e po ints Xo in C
and Zo in O(xo) satisfying

(xo - Zo, x - xo) 2: 0 for all points x in C.

Set ting x = Zo shows Xo = Zo, so Xo is a fixed point. o

An elegant application is von Neumann 's minimax t heorem, which we
proved by a Fenchel duali ty argument in Section 4.2, Exercise 16. Consider
Euclidean spaces Y and Z , nonempty compact convex subsets F eY and
G c Z , and a linear map A : Y ----> Z . If we define a function 0 : F x G ---->

Y x Z by O(y , z) = (-A*z , Ay) , then it is easy to see that a point (yo, zo)
in F x G solves the variational inequality V1(0,F x G) if and only if it is
a saddlepoint:

(zo, Ay) ::; (zo, Ayo) ::; (z, Ayo) for all y E F , z E G.

In particular , by the Solvability of variational inequali ti es theorem, there
exists a saddlepoint, so

minmax (z ,Ay) = max min (z, A y).
zE G y E F y E F z EG

Many interesting variational inequalities involve a noncompact set C .
In such cases we need to impose a growt h condit ion on the multifunction
to guarantee solvability. The following resul t is an example.
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Theorem 8.3.7 (Noncompact variational inequalities)
C of E is nonemp ty, closed, and conv ex, and the cusco D
coercive, that is, it satisfies the conditi on

If the subset
C ----> E is

(8.3.8)

(8.3.9)

(8.3.10)

liminf inf (x , D(x) + Nc(x)) > 0,
Ilxll->oo, x EC

then the vari ational inequality V I(D , C) has a solution.

Proof. For any large integer r, we can apply the solvability theorem (8.3.6)
to the variat ional inequality V I (D, C n rB ) to find a poi nt x; in C n 1'B
satisfying

o E D(xr) + Ncnrdxr )

= D(xr ) + Nc(xr ) + NrB (x r )

C D(x r) + Nc(xr ) + R +x r

(using Section 3.3, Exercise 10). Hence for all large r , the po int X r satisfies

inf (x r , D(xr) + Nc(xr )) ::; O.

This sequence of points (xr ) mus t t herefore remain bounded , by t he co­
ercivity conditi on (8.3.8) , and so X r lies in int rB for large r and hence
satisfi es 0 E D(xr) + Nc(xr ), as requi red . D

A straightforward exercise shows in par ti cul ar that the growt h condit ion
(8.3.8) holds whenever the cusco D is defined by x E R" f---+ xT A x for a
matrix A in S++.

The most important example of a noncompact var iat ional inequality
is t he case when the set C is a closed convex cone S e E . In this case
V I(D , S) becomes the multivalued complementarity problem:

F ind points Xo in S and Yo in D(xo ) n (- S-)
satisfying (xo ,Yo) = O.

As a par t icul ar example, we consider t he dual pair of abst ract linear pro­
grams (5.3.4) and (5.3.5) :

inf{ (c, z) IA z - b E H , z E K}

(where Y is a Euclidean space, t he map A : E ----> Y is linear , the cones
HeY and K C E ar e closed and convex, and b and c are given elements
of Y and E resp ectively) , and

(8.3.11)

As usual , we denote the corresponding pri mal and dual opt imal values by
p and d. We consider a corresponding variational inequality on the space
E xY:

VI(D ,K x (-H-)) with D(z ,¢) = (c-A*¢ ,Ax-b) . (8.3.12)
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Theorem 8.3.13 (Linear programming and variational inequali­
ties) Any solution of the above variational inequality {8.3.12} consists of
a pair of optim al soluti ons fo r the linear programming dual pair {8.3.1 O}
and {8.3.11}. Th e conve rse is also true, providing there is no duali ty gap
{p = d}.

We leave the proof as an exercise.
Not ice t hat the linear map appearing in the above example, namely

M : E x Y --> E x Y defined by M( z , ¢) = (-A*¢ , A z) , is monotone. We
st udy monotone complementarity problems fur ther in Exercise 7.

To end t his sect ion we return to the complementarity problem (8.3.9)
in the special case where E is R n , t he cone S is R~ , and t he multi function
o is single-valued: O(x) = {F( x)} for all points x in R~ . In other words ,
we conside r the followin g problem :

Find a point Xo in R~ satis fyin g F (xo) E R~ and (xo, F( xo) ) = O.

The lat tice operation 1\ is defined on R " by (x I\Y) i = min{x i' yd for po ints
x and y in R " and each index i . With t his notation we can rewrite t he
above problem as the following order complementarit y problem.

OCP( F) : F ind a point Xo in R~ sat isfying Xo 1\ F(xo) = O.

The map x E R " f--+ X 1\ F(x) E R " is sometimes ame nable to fixed point
methods.

As an example, let us fix a real a > 0, a vector q E R n, and an n x n
matrix P with nonnegative ent ries , and define the map F : R " --> R"
by F(x ) = ax - P x + q. Then t he complementarity problem OCP(F) is
equivalent to finding a fixed point of the map <I> : R n --> R n defined by

1
<I>(x) = - (0 V (P x - q)),

a

a problem t hat can be solved it eratively (see Exercise 9) .

Exercises and commentary

(8.3.14)

A survey of variat ional inequalities and complementarity problems may be
found in [93J. The normal mapping Oc is especially well stud ied when
the multifunction 0 is single-valued with affine components and the set
C is polyhedral. In this case the normal mapping is piecewise affine (see
[164]). Mor e generally, if we restrict the class of multifunctions 0 we wish
to cons ide r in t he variational inequality, clearly we can correspondingly
restrict t he versions of the Kakutani -Fan theorem or normal mappings we
st udy. Order complementarity problems are studied fur ther in [26J . The
Nas h equilibrium theorem (Exercise 10(d)), which appeared in [147], asse rts
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the exis te nce of a Pareto efficient choice for n individuals consuming from
n associated convex sets with n associated joint cost functions.

1. Prove the equivalence of t he vari ous formulations (8.3.2) , (8.3.3) ,
(8.3.4) and (8.3.5) with the original variational inequality V1(0" C).

2. Use Section 8.2, Exercise 4 (Composition) to prove t he mul tifunction

(1 - 0,) 0 Pc

in the proof of Theorem 8.3.6 (Solvability of vari ational inequali ti es)
is a cusco.

3. Consider Theorem 8.3.6 (Solvability of variational inequalities) . Use
the fun ction

x E [0, 1] f---7 { ~
-1

if x> 0

if x = 0

to prove the assumption in the theorem- that the multifunction 0, is
USC- cannot be weakened to 0, closed .

4. * (Variational inequalities containing cuscos) Suppose the set
C c E is nonempty, compact , and convex, and consider a mul tifunc­
t ion 0, : C ----7 E .

(a) If 0, contains a cusco, prove t he variational inequality V 1(0" C)
has a solution.

(b) Deduce from Michael 's theorem (8.2.8) that if 0, is LSC with
nonempty closed convex images then V 1(0" C) has a solution.

5. Check the details of the proof of von Neumann's minimax theorem.

6. Prove Theorem 8.3.13 (Linear programming and variational inequal­
ities) .

7. (Monotone complementarity problems) Suppose the linear map
M : E ----7 E is monotone.

(a) Prove the funct ion x E E f---7 (M x, x) is convex.

For a closed convex cone 8 c E and a point q in E , consider the
optimization problem

inf{(Mx + q,x) IM x+q E -8- , x E 8} . (8.3.15)

(b) If the condit ion -q E core (8 - + M8) holds, use t he Fenchel
duality theorem (3.3.5) to prove problem (8.3.15) has optimal
value zero .
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(c) If the cone S is po lyhedral, problem (8.3.15) is a convex "quad­
ratic program" : when the optimal value is finite , it is known that
there is no duality gap for such a problem and its (Fenchel) dual ,
and that both problems attain their optimal value . Deduce that
when S is polyhedral and contains a point x with M x +q in - S - ,
there is such a point satisfying the additional complementarity
condit ion (M x + q,x) =0.

8. * Consider a compact convex set C C E satisfying C = - C and a
continuous function f : C ---+ E. If f has no zero es, prove t here is
a point x on the boundary of C satisfying (j(x),x ) < O. (Hint: For
positive integers n, consider V I (f + 1/ n ,C).)

9. (Iterative so lut io n of OCP [26]) Consider the order complemen­
tarity problem OCP(F) for t he function F that we defined before
equation (8.3.14) . A point xOin R +. is feasible if it satisfies F(xO) 2 O.

(a) P rove the map <]} in equation (8.3.14) is isotone: x 2 y implies
<I>(x) 2 <I>(y) for points x and y in R " .

(b) Suppose the point xO in R +. is feasible. Define a sequence (x r) in
R +. inductively by x r+1 = <]}(x r ) . Prove this sequence decreases
monotonically: X~+ l ~ xi for all rand i .

(c) Prove the limit of the sequence in part (b) solves OCP(F).

(d) Define a sequence (yr) in R+. ind uctively by yO = 0 and y1'+1 =
<I>(yr). Prove this sequence increases monotonically.

(e) If OCP(F) has a feasible solut ion, prove the sequenc e in part
(d) converges to a limit y which solves OCP(F). W hat happens
if OCP(F) has no feasib le solution?

(f) Prove the limit y of part (e) is the minimal solution of OCP(F):
any ot her solution x satisfies x 2 y.

10. * (Fan minimax inequality [74]) We call a real function 9 on a
convex set C C E quasiconcave if the set {x E C Ig(x) 2 a} is convex
for all real a .

Suppose t he set C C E is nonempty, compact, and convex.

(a) If the function f : C x C ---+ R has the properties that the
function f (', y) is qu asiconcave for all points y in C and the
function f (x , .) is lower semicontinuous for all points x in C ,
prove Fan's inequality:

minsupf(x,y) ~ sup j'(zi;,») .
y x x



206 8. Fixed Points

(Hint : Apply t he KKM theorem (Section 8.1, Exercise 15) to
the family of sets

{y E C I f( x ,y)::; ,B} for x E C,

where ,B denotes the right hand side of Fan's inequality.)

(b) If the funct ion F : C ----+ E is cont inuous, apply Fan's inequality
to the function f( x , y) = (F (y), y - x) to prove the vari ational
inequality V I(F, C) has a solution .

(c) Deduce Fan 's inequali ty is equivalent to the Brouwer fixed point
t heorem.

(d) (Nash equilibrium) Define a set C = C1 X C2 X . . . X Cn,
where each set C, C E is nonempty, compact, and convex . For
any cont inuous functions [s . 12 ,. . . ,f n : C ----+ R , if each function

is convex for all elements y of C , prove there is an element y of
C satisfying the inequ ali ties

(Hint : Consider t he function

and apply Fan 's inequali ty.)

(e) (Minimax) Apply t he Nash equilibrium result from part (d) in
the case n = 2 and fl = - 12 to deduce t he Kakutani minimax
t heorem (Section 4.3, Exercise 14) .

11. (Bolzano-Poincare-Miranda intermediate value theorem)
Consider the box

J = {x E R n 10 ::; Xi ::; 1 for all i}.

We call a conti nuous map f : J ----+ R" reversing if it satisfies t he
condit ion

f i( X)fi(Y) ::; 0 whenever Xi = 0, Yi = 1, and i = 1,2 , . . . , n .

P rove any such map vanishes somewhere on J by completi ng t he
following ste ps:

(a) Observe the case n = 1 is just the classical intermediate value
theorem.
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(b) For all sm all real E > 0, prove the function r = f + eI satisfies
for all i

x. - 0 and . - 1 ::::} { either f t(y) > 0 and f iE(X) ::; 0
, - y, - or f Hy) < 0 and f iE(X) :2: o.

(c) l,From part ~) , deduce there is a function 1', defined coordi­
natewise by ft = ±fiE, for some suitable choice of signs, satisfy­
ing the condit ions (for each i)

h' (x ) ::; 0 whenever Xi = 0 and

h' (x ) > 0 whenever Xi = l.

(d ) By conside ring the variational inequality V 1(1' , .1), prove t here
is a point x E in .1 satisfying 1' (x E

) = o.
(e) Complete t he proof by letting E approach zero.

12. (Coercive cuscos) Consider a multi function n : E -7 E with non­
empty images.

(a) If n is a coercive cusco, prove it is surjective.

(b) On the other hand, if n is monotone, use Section 8.2, Exercise
16 (Monot onicity) to deduce n is hyperm aximal if and only if it
is maximal. (We generalize thi s result in Exercise 13 (Monot one
vari ational inequalit ies) .)

13. ** (Monotone variational inequalities) Consider a continuous
fun ction G : E -7 E and a monotone mul tifunction <I> : E -7 E .

(a) Given a nonempty compact convex set K c E, prove there is
point Xo in K sa t isfying

(X - Xo,Y + G(xo) ) :2: 0 for all X E K , y E <I>(x )

by completing the following st eps:

(i) Assuming t he result fails , show the collection of sets

{ X E K I (z - X, W+ G(x) ) < O} for Z E K , w E <I>(z)

is an op en cover of K .

(ii) For a partition of unity PI, P2, . . . ,Pn subordinate to a finite
subcover K I ,K 2, .. . K n corresponding to points Zi E K and
Wi E <I>(Zi) (for i = 1,2, . . . , n) , prove t he funct ion

is a continuous self map of K.
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(iii) Prove the inequ ality

(l (x ) - X,L i Pi(X)Wi + G(x) )

LPi(X)Pj( x) (Zj - X,Wi + G(x»)
i ,j

< 0

by considering the terms in the double sum where i = j and
sums of pairs where i i= j separately.

(iv) Deduce a cont rad ict ion with part (ii) .

(b) Now assume G satisfies the growt h condit ion

n IIG( )11 dr' f (x, G(x) )
IIx lt~oo x = +00 an I I~rv~~ Il xIIIIG(x)11 > O.

(i) Prove t here is a point Xo in E satisfying

(x - Xo,Y + G(xo) ) 2:: 0 whenever y E <I> (a;).

(Hint : Apply part (a) with K = nB for n = 1,2, . . . .)
(ii) If <I> is maximal, deduce -G(xo) E cI>(xo).

(c) Apply part (b) to prove t hat if <I> is max imal then for any real
A > 0, the multifunction <I> + AI is surjective.

(d) (Hypermaximal {:} maximal) Using Section 8.2, Exercise 16
(Monotonicity) , deduce a monotone mult ifunction is maximal if
and only if it is hyp ermaximal.

(e) (Resolvent) If <I> is maximal then for any real A > 0 and any
po int y in E prove there is a unique point x sat isfying the inclu­
sion

Y E <I>(x) + AX.

(f) (Maximality and surjectivity) Prove a max imal <I> is surjec­
ti ve if and only if it sat isfies the growth condit ion

lim inf 11cI>(x) II = +00.
II x 11---> 00

(Hint: The "only if" direction is Section 8.2, Exercise 16(k)
(Monotonicity) ; for the "if" dir ect ion, apply part (e) with A =

l in for n = 1,2, .. ., obtaining a sequenc e (x n ) ; if th is sequence
is unbounded, apply maximal monotonicity.)

14. * (Semidefinite complementarity) Define F : S" x S" ----7 S" by

F (U,V) = U + V - (U2 + V2)1/ 2.

For any function G : S" ----7 S" , prove U E S" solves the variational
inequality VI(G,S+-) if and only if F(U,G(U» = O. (Hint : See
Section 5.2, Exercise 11.)
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Many important properties of monotone multifunctions can be derived us­
ing convex analysis, without using the Brouwer fixed point theorem (8.1.3) .
The following sequence of exercises illustrates the ideas. Throughout , we
consider a monotone mul ti function <I> : E ~ E . The point (u,v) E E x E
is monotonically related to <I> if (x - 71, Y - v) ~ 0 whenever y E <I>(x ):
in other words, appending this point to the graph of <I> does not destroy
monotonicit y. Our main aim is to prove a cent ral case of the Debrunner­
Flor extension theorem [59]. The full theorem st ates t hat if <I> has range
contained in a nonempty compact convex set C c E , and the function
j : C ~ E is cont inuous , then t here is a po int c E C such that t he point
(f( c),c) is monotonically related to <I> . For an accessible derivation of this
resul t from Brouwer 's theorem , see [154]: the two results arc in fact equiv­
alent (see Exercise 19).

We call a convex fun ct ion H : Ex E ~ (00, +00] representative for <I>
if all points x , y E E sa tisfy H( x ,y) ~ (x , y) , with equality if y E <I>(x) .
Following [79], t he Fitzpatrick junction F it> : E x E ~ [-00, + 00] is defined
by

Fit>(x ,y) = sup{(x, v) + (u, y) - (u,v) I v E <I>(u)} ,

while [171, 150] the convexified representati ve Pit> : E x E ~ [- 00, + 00] is
defined by

Tn

Pit>(x ,y) = inf {L Ai( Xi ,Yi) 1 m E N , A E R 't ,
i = l

m

LAi(x i'Y i , l ) = (x ,y,I) , u, E <I>(xd Vi }.
i=l

These const ructions are explored extensively in [30, 43, 172].

15. (Fitzpatrick representatives)

(a ) Prove the F it zpat rick fun ct ion Fit> is closed and convex.

(b) Prove Fit>( x , y ) = (x , y) whenever y E <I>(x) .

(c) Prove Fit> is represent ative providing <I> is maximal.

(d) Find an example where Fit> is not representative.

16. (Convexified representatives) Consider points x E E and y E

<I>(:r) .

(a) Prove P it> (x , y) :::; (x , y).

Now conside r any points u, v E E.
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(b) Prove P<t>(u,v) ~ (u, y) + (x ,v)- (x, y).

(c) Deduce P<t>(x, y) = (x, y).

(d) Deduce P<t>(x ,y) + P<t>(u,v) ~ (u , y) + (x, v).

(e) Prove P<t>(u,v) ~ (u,v) if (u,v) E convG(<I» and is + 00 other­
wise.

(f) Deduce that convexified representatives are indeed both convex
and representative .

(g) Prove P; = F <t> ::::: F ,i, .

17. * (Monotone multifunctions with bounded range) Suppose
that the monotone multifunction <I> : E --+ E has bounded range
R(<I» , and let C = cl conv R(<I» . Apply Exercise 16 to prove the
followin g properties.

(a) Prove the convexity of the function f : E --+ [-00, + 00] defined
by

f( x) = inf{P<t> (x , y) lyE C} .

(b) Prove that t he function 9 = infy E c ( . , y) is a continuous concave
minorant of f .

(c) Apply the Sandwich theorem (Exercise 13 in Section 3.3) to
deduce the exist ence of an affine fun ction 0: sa t isfying f ~ 0: ~ g .

(d) Prove that the point (0, 'V0:) is monotonically related to <I> .

(e) Prove 'Vo: E C .

(f) Given any point x E E , show that <I> is cont ained in a monotone
multifun ction <I>' with x in it s domain and R( <I>') c c.

(g) Give an alternative proof of part (f) using the Debrunner-Flor
extension theorem.

(h) Extend part (f) to monotone multifunctions with unbounded
ranges, by assuming that the point x lies in t he set int dom f ­
dom be ' Express this conditi on explicitly in terms of C and t he
domain of <I>.

18. ** (Maximal monotone extension) Suppose the monotone mul­
tifunction <I> : E --+ E has bounded range R( <I» .

(a) Use Exercise 17 and Zorn 's lemma to prove that <I> is contained
in a monotone multifunction <I>' with domain E and range con­
tained in cl conv R( <I> ) .

(b) Deduce that if <I> is in fact maximal monotone, t hen it s domain
is E .
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(c) Using Exerc ise 16 (Local boundedness) in Section 8.2, prove t hat
the multifunction <P" : E ----> E defined by

<I>"(x) = ncl conv<I>'(x + lO B )
€>o

is bo th monotone and a cusco.

(d) Prove that a monotone multifunction is a cusco on the interior
of its domain if and only if it is maxim al monotone.

(e) Deduce that <I> is contained in a maximal mo notone multifun c­
tion with domain E and range contained in cl conv R( <I» .

(f) Apply part (e) to <I> -1 to deduce a par allel result.

19. ** (Brouwer via D ebrunner-Flor) Consider a nonempty compact
convex set D C int B and a cont inuous self map 9 : D ----> D. By
applying the Debrunner-Flor extension t heorem in the case where
C = B , the multifunct ion <P is the ident ity map, and f = g o PD

(wh ere PD is t he nearest point projection) , prove that 9 has a fixed
point.

In similar fashion one may establish that the sum of two maximal
monotone multifunctions S and T is maximal assuming t he condit ion 0 E

core (dom T - dom S) . One commences with the Fit zpatrick inequality
that

F T( X,x* ) + F s(x , - x* ) :::: 0,

for all x, x* in E. This and many other applicati ons of representa tive
funct ions are descr ibed in [30].
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