Chapter 8

Fixed Points

8.1 The Brouwer Fixed Point Theorem

Many questions in optimization and analysis reduce to solving a nonlinear
equation h(z) = 0, for some function h : E — E. Equivalently, if we define
another map f = I — h (where I is the identity map), we seek a point x in
E satisfying f(z) = z; we call z a fized point of f.

The most potent fixed point existence theorems fall into three cate-
gories: “geometric” results, devolving from the Banach contraction princi-
ple (which we state below), “order-theoretic” results (to which we briefly
return in Section 8.3), and “topological” results, for which the prototype is
the theorem of Brouwer forming the main body of this section. We begin
with Banach’s result.

Given a set C C E and a continuous self map f : C — C, we ask
whether f has a fixed point. We call f a contraction if there is a real
constant vy < 1 such that

1£(z) = F@)I < vsllz — yl| for all 2,y € C. (8.1.1)

Theorem 8.1.2 (Banach contraction) Any contraction on a closed sub-
set of E has a unique fized point.

Proof. Suppose the set C C E is closed and the function f : C — C
satisfies the contraction condition (8.1.1). We apply the Ekeland variational
principle (7.1.2) to the function

lz = f(=)]] ifzeC
zeB— { 400 otherwise
at an arbitrary point x in C, with the choice of constants

€
1—'yf'

e=|lz— f(z)]] and A=
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This shows there is a point v in C satisfying

o= F@) <llz= fFE)I+ A =)z =

for all points z # v in C. Hence v is a fixed point, since otherwise choosing
z = f(v) gives a contradiction. The uniqueness is easy. a

What if the map f is not a contraction? A very useful weakening of
the notion is the idea of a nonexpansive map, which is to say a self map f
satisfying

I1f(z) = f@)Il < lle — gl for all z,y

(see Exercise 2). A nonexpansive map on a nonempty compact set or a
nonempty closed convex set may not have a fixed point, as simple examples
like translations on R or rotations of the unit circle show. On the other
hand, a straightforward argument using the Banach contraction theorem
shows this cannot happen if the set is nonempty, compact, and convex.
However, in this case we have the following more fundamental result.

Theorem 8.1.3 (Brouwer) Any continuous self map of a nonempty com-
pact convex subset of E has a fixed point.

In this section we present an “analyst’s approach” to Brouwer’s theo-
rem. We use the two following important analytic tools concerning C')
(continuously differentiable) functions on the closed unit ball B C R™.

Theorem 8.1.4 (Stone—Weierstrass) For any continuous map f : B —
R", there is a sequence of CY) maps f, : B — R™ converging uniformly

to f.

An easy exercise shows that, in this result, if f is a self map then we can
assume each f,. is also a self map.

Theorem 8.1.5 (Change of variable) Suppose that the set W C R™ is
open and that the CY) map g : W — R" is one-to-one with Vg invertible
throughout W. Then the set g(W) is open with measure

/ | det Vg|.

We also use the elementary topological fact that the open unit ball int B
is connected; that is, it cannot be written as the disjoint union of two
nonempty open sets.

The key step in our argument is the following topological result.

Theorem 8.1.6 (Retraction) The unit sphere S is not a CV) retract of
the unit ball B; that is, there is no CY) map from B to S whose restriction
to S is the identity.
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Proof. Suppose there is such a retraction map p : B — S. For real
t in [0,1], define a self map of B by p; = tp+ (1 —t)I. As a function
of the variables x € B and ¢, the function det Vpi(z) is continuous and
hence strictly positive for small ¢. Furthermore, p; is one-to-one for small
t (Exercise 7).

If we denote the open unit ball B\ .S by U, then the change of variables
theorem above shows for small ¢ that p;(U) is open with measure

z/(t):/Udetht. (8.1.7)

On the other hand, by compactness, p;(B) is a closed subset of B, and we
also know p;(S) = S. A little manipulation now shows we can write U as
a disjoint union of two open sets:

U = (p(U)NU) U (pe(B)° N D). (8.1.8)

The first set is nonempty, since p;(0) = ¢tp(0) € U. But as we observed, U
is connected, so the second set must be empty, which shows p,(B) = B.
Thus the function v(t) defined by equation (8.1.7) equals the volume of the
unit ball B for all small t.

However, as a function of ¢ € [0, 1], v(t) is a polynomial, so it must be
constant. Since p is a retraction we know that all points x in U satisfy
lp(x)||*? = 1. Differentiating implies (Vp(z))p(z) = 0, from which we
deduce det Vp(z) = 0, since p(x) is nonzero. Thus v(1) is zero, which is a
contradiction. O

Proof of Brouwer’s theorem. Consider first a C'(!) self map f on the
unit ball B. Suppose f has no fixed point. A straightforward exercise
shows there are unique functions a : B — R4 and p : B — S satisfying
the relationship

p(x) =z + a(z)(x — f(z)) for all x in B. (8.1.9)

Geometrically, p(z) is the point where the line extending from the point
f(x) through the point z meets the unit sphere S. In fact p must then be a
CW) retraction, contradicting the retraction theorem above. Thus we have
proved that any C(1) self map of B has a fixed point.

Now suppose the function f is just continuous. The Stone—Weierstrass
theorem (8.1.4) implies there is a sequence of CY) maps f,. : B — R™
converging uniformly to f, and by Exercise 4 we can assume each f, is a
self map. Our argument above shows each f, has a fixed point z". Since B
is compact, the sequence (z”) has a subsequence converging to some point
z in B, which it is easy to see must be a fixed point of f. So any continuous
self map of B has a fixed point.
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Finally, consider a nonempty compact convex set C' C E and a contin-
uous self map g on C. Just as in our proof of Minkowski’s theorem (4.1.8),
we may as well assume C has nonempty interior. Thus there is a home-
omorphism (a continuous onto map with continuous inverse) h : C — B
(see Exercise 11). Since the function hogoh™! is a continuous self map of
B, our argument above shows this function has a fixed point = in B, and
therefore h~!(x) is a fixed point of g. O

Exercises and Commentary

Good general references on fixed point theory are [68, 174, 83]. The Ba-
nach contraction principle appeared in [7]. Brouwer proved the three-
dimensional case of his theorem in 1909 [49] and the general case in 1912
(50], with another proof by Hadamard in 1910 [89]. A nice exposition of the
Stone—Weierstrass theorem may be found in [16], for example. The Change
of variable theorem (8.1.5) we use can be found in [177]; a beautiful proof
of a simplified version, also sufficient to prove Brouwer’s theorem, appeared
in [118]. Ulam conjectured and Borsuk proved their result in 1933 [17].

1. (Banach iterates) Consider a closed subset C' C E and a contrac-
tion f : C — C with fixed point zf. Given any point zy in C, define
a sequence of points inductively by

Zry1 = f(z,) forr=0,1,....

(a) Prove lim, s 00 ||z — zs]| = 0. Since E is complete, the se-
quence (z,) converges. (Another approach first shows (z,) is
bounded.) Hence prove in fact z, approaches xf. Deduce the
Banach contraction theorem.

(b) Consider another contraction g : C — C with fixed point 9.
Use part (a) to prove the inequality

of — 9] < ®ecc 1S g

11—y

2. (Nonexpansive maps)

(a) If the n xn matrix U is orthogonal, prove the map z € R™ — Uz
is nonexpansive.

(b) If the set S C E is closed and convex then for any real A in the
interval [0, 2] prove the relazed projection

z€E— (1—-Xz+ A\Ps(x)

is nonexpansive. (Hint: Use the nearest point characterization
in Section 2.1, Exercise 8(c).)
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(c) (Browder—Kirk [51, 112]) Suppose the set C' C E is compact
and convex and the map f : C — C' is nonexpansive. Prove f
has a fixed point. (Hint: Choose an arbitrary point z in C' and
consider the contractions

z€C— (1—¢)f(z)+ex

for small real € > 0.)
(d)* In part (c), prove the fixed points form a nonempty compact
convex set.

(Non-uniform contractions)

(a) Consider a nonempty compact set C C E and a self map f on
C satisfying the condition

|f(z) — f(w)] < ||z —y]| for all distinct z,y € C.

By considering inf ||z — f(z)||, prove f has a unique fixed point.
(b) Show the result in part (a) can fail if C' is unbounded.
(¢) Prove the map z € [0,1] — ze™* satisfies the condition in part

(a).

In the Stone-Weierstrass theorem, prove that if f is a self map then
we can assume each f,. is also a self map.

Prove the interval (—1, 1) is connected. Deduce the open unit ball in
R" is connected.

In the Change of variable theorem (8.1.5), use metric regularity to
prove the set g(W) is open.

In the proof of the Retraction theorem (8.1.6), prove the map p is
Lipschitz, and deduce that the map p; is one-to-one for small t. Also
prove that if ¢ is small then det Vp; is strictly positive throughout B.

. In the proof of the Retraction theorem (8.1.6), prove the partition

(8.1.8), and deduce p:(B) = B.

. In the proof of the Retraction theorem (8.1.6), prove v(t) is a poly-

nomial in ¢.

In the proof of Brouwer’s theorem, prove the relationship (8.1.9) de-
fines a C(1) retraction p: B — S.



184

11.

12.

13.

14.
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(Convex sets homeomorphic to the ball) Suppose the compact
convex set C' C E satisfies 0 € int C. Prove that the map h: C — B
defined by
_ [ ve@lzl s e #0
h(“’”)’{o ifz=0
(where 7¢ is the gauge function we defined in Section 4.1) is a home-
omorphism.

* (A nonclosed nonconvex set with the fixed point property)
Let Z be the subset of the unit disk in R? consisting of all lines
through the origin with rational slope. Prove every continuous self
map of Z has a fixed point.

* (Change of variable and Brouwer) A very simple proof may
be found in [118] of the formula

[oove=[1

when the function f is continuous with bounded support and the
function g is differentiable, equaling the identity outside a large ball.
Prove any such g is surjective by considering an f supported outside
the range of g (which is closed). Deduce Brouwer’s theorem.

** (Brouwer and inversion) The central tool of the last chapter,
the Surjectivity and metric regularity theorem (7.1.5), considers a
function h whose strict derivative at a point satisfies a certain surjec-
tivity condition. In this exercise, which comes out of a long tradition,
we use Brouwer’s theorem to consider functions A which are merely
Fréchet differentiable. This exercise proves the following result.

Theorem 8.1.10 Consider an open set U C E, a closed convex set
S C U, and a Euclidean space Y, and suppose the continuous func-
tion h : U — Y has Fréchet derivative at the point x € S satisfying
the surjectivity condition

Vh(z)Ts(z) =Y.
Then there is a neighbourhood V of h(z), a continuous, piecewise
linear function F : Y — E, and a function g : V — Y that is Fréchet
differentiable at h(x) and satisfies (F o g)(V) C S and

h((Fog)(y)) =y forallyeV.

Proof. We can assume z = 0 and h(0) = 0.
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(a) Use Section 4.1, Exercise 20 (Properties of the relative interior)

(b)

(f)

(g)

to prove Vh(0)(R4+S) =Y.

Deduce that there exists a basis y1,¥2,...,yn of Y and points
U1, U, ..., U, and wy,ws,...,w, in S satisfying

Vh(Q)u; =y; = —Vh(Q)w; fori=1,2,...,n.

Prove the set

B, = {zn:tiy,- teR", Zn:ml < 1}
1 1

and the function F' defined by

n

F( zn: L) = 3 (6w + () Fw,)
1 1

satisfy F(B1) C S and V(ho F)(0) = I.
Deduce there exists a real € > 0 such that eBy C B; and
[yl

IA(F(y)) = yll < =5~ whenever [y < 2.

For any point v in the neighbourhood V' = (¢/2) By, prove the
map
y€eVi—v+y—h(F(y))

is a continuous self map of V.

Apply Brouwer’s theorem to deduce the existence of a fixed point
g(v) for the map in part (e). Prove Vg(0) = I, and hence
complete the proof of the result.

If x lies in the interior of S, prove F' can be assumed linear.

(Exercise 9 (Nonexistence of multipliers) in Section 7.2 suggests the
importance here of assuming h continuous.)

* (Knaster—-Kuratowski—-Mazurkiewicz principle [114]) In this
exercise we show the equivalence of Brouwer’s theorem with the fol-
lowing result.

Theorem 8.1.11 (KKM) Suppose for every point x in a nonempty
set X C E there is an associated closed subset M (z) C X. Assume
the property

conv F' C U M(x)
Tz€EF
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holds for all finite subsets FF C X. Then for any finite subset FF C X

we have
() M(x) # 0.

zeF
Hence if some subset M (x) is compact we have

() M(z) #0.

zeX

(a) Prove that the final assertion follows from the main part of the
theorem using Theorem 8.2.3 (General definition of compact-
ness).

(b) (KKM implies Brouwer) Given a continuous self map f on a
nonempty compact convex set C C E; apply the KKM theorem
to the family of sets

M(@)={yeC|{y—fly)y—2) <0} forzeC

to deduce f has a fixed point.

(c) (Brouwer implies KKM) With the hypotheses of the KKM
theorem, assume Nge p M (z) is empty for some finite set F'. Con-
sider a fixed point z of the self map

Y zer Au) (¥)
erF dM(z) (y)

and define F/ = {z € F |z ¢ M(z)}. Show z € conv F’ and
derive a contradiction.

y € conv F —

16. ** (Hairy ball theorem [140]) Let S,, denote the Euclidean sphere

{z e R"™ |||zl = 1}.

A tangent vector field on S, is a function w : S,, — R™*! satisfying
(z,w(z)) = 0 for all points z in S,,. This exercise proves the following
result.

Theorem 8.1.12 For every even n, any continuous tangent vector
field on S, must vanish somewhere.

Proof. Consider a nonvanishing continuous tangent vector field u
on S,.

(a) Prove there is a nonvanishing C) tangent vector field on S,
by using the Stone-Weierstrass theorem (8.1.4) to approximate
u by a C(!) function p and then considering the vector field

z €S, — px)— (z,p(x))x.
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(b) Deduce the existence of a positively homogeneous C M function
w: R — R™*! whose restriction to S, is a unit norm C(
tangent vector field: |jw(z)|| =1 for all z in S,.

Define a set
A={z¢€ R™H! |1 <2|z| < 3}

and use the field w in part (b) to define functions w; : R"*1 — R"*+1
for real t by

w(x) =z + tw(x).
(¢) Imitate the proof of Brouwer’s theorem to prove the measure of
the image set w;(A) is a polynomial in ¢ when ¢ is small.
(d) Prove directly the inclusion wi(A4) C V1 + 2 A.

(e) For any point y in V1 + ¢24, apply the Banach contraction the-
orem to the function z € kB — y — tw(z) (for large real k) to
deduce in fact

wi(A) =+v1+t2A for small ¢.

(f) Complete the proof by combining parts (c) and (e). ]

(g) If f is a continuous self map of S,, where n is even, prove either
f or —f has a fixed point.

(h) (Hedgehog theorem) Prove for even n that any nonvanishing
continuous vector field must be somewhere normal: |(z, f(x))| =
I f(z)]| for some z in S,.

(i) Find examples to show the Hairy ball theorem fails for all odd
n.

17. * (Borsuk—Ulam theorem) Let S,, denote the Euclidean sphere
{z € R™ |||zf| = 1}.

We state the following result without proof.

Theorem 8.1.13 (Borsuk—Ulam) For any positive integers m <
n, if the function f : S, — R is continuous then there is a point x

in Sy, satisfying f(z) = f(—zx).

(a) If m < n and the map f : S, — R™ is continuous and odd,
prove f vanishes somewhere.
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(b) Prove any odd continuous self map f on S, is surjective. (Hint:
For any point u in S,, consider the function

z€ S, f(z)— (f(z),w)u

and apply part (a).)

(¢) Prove the result in part (a) is equivalent to the following result:

Theorem 8.1.14 For positive integers m < n there is no con-
tinuous odd map from S, to Sp,.

(d) (Borsuk—Ulam implies Brouwer [178]) Let B denote the
unit ball in R™, and let S denote the boundary of B x [—1,1]:

S ={(z,t) € Bx[-11]||lz|| =1 or [t| = 1}.

(i) If the map g : S — R™ is continuous and odd, use part (a)
to prove g vanishes somewhere on S.

(ii) Consider a continuous self map f on B. By applying part
(i) to the function

(z,t) € § — (2 [t))z — tf(tx),
prove f has a fixed point.

18. ** (Generalized Riesz lemma) Consider a smooth norm ||| - ||| on
E (that is, a norm which is continuously differentiable except at the
origin) and linear subspaces U, V C E satisfying dimU > dimV = n.
Denote the unit sphere in U (in this norm) by S(U).

(a) By choosing a basis v, vs,...,v, of V and applying the Borsuk-
Ulam theorem (see Exercise 17) to the map

z € SU) = (V[ - [ll(x), vi))ie, € R,

prove there is a point z in S(U) satisfying V||| - [||(z) L V.
(b) Deduce the origin is the nearest point to = in V (in this norm).

(c) With this norm, deduce there is a unit vector in U whose dis-
tance from V is equal to one.

(d) Use the fact that any norm can be uniformly approximated ar-
bitrarily well by a smooth norm to extend the result of part (c)
to arbitrary norms.

(e) Find a simpler proof when V C U.
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19. ** (Riesz implies Borsuk) In this question we use the generalized
Riesz lemma, Exercise 18, to prove the Borsuk—Ulam result, Exercise
17(a). To this end, suppose the map f : S, — R"™ is continuous and
odd. Define functions

u;: S, - R fori=1,2,....,.n+1
v, :R" > R fori=1,2,....n

by u;(z) = x; and v;(xz) = x; for each index i. Define spaces of
continuous odd functions on S, by

U = span {uj,ug,....Upnt1}
V = span{vi o f,uao f,...,v,0 f}
E=U+V,
with norm |[|u|| = maxu(S,) (for u in E).
(a) Prove there is a function u in U satisfying ||u|| = 1 and whose

distance from V is equal to one.
(b) Prove u attains its maximum on S,, at a unique point y.

(c¢) Use the fact that for any function w in E, we have

(VI l(w)w = w(y)
to deduce f(y) =0.
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8.2 Selection and the Kakutani—Fan Fixed
Point Theorem

The Brouwer fixed point theorem in the previous section concerns functions
from a nonempty compact convex set to itself. In optimization, as we have
already seen in Section 5.4, it may be convenient to broaden our language
to consider multifunctions 2 from the set to itself and seek a fized point—a
point z satisfying x € Q(z). To begin this section we summarize some
definitions for future reference.

We consider a subset K C E, a Euclidean space Y, and a multifunction
Q: K — Y. Wesay Q is USC at a point z in K if every open set U
containing Q(z) also contains Q(z) for all points z in K close to z.

Thus a multifunction Q2 is USC if for any sequence of points (z,) ap-
proaching z, any sequence of elements v, € Q(z,) is eventually close to
Q(z). If Q is USC at every point in K we simply call it USC. On the
other hand, as in Section 5.4, we say Q2 is LSC if, for every x in K, every
neighbourhood V of any point in Q(z) intersects §2(z) for all points z in K
close to .

We refer to the sets Q(z) (z € K) as the ¢mages of 2. The multi-
function €2 is a cusco if it is USC with nonempty compact convex images.
Clearly such multifunctions are locally bounded: any point in K has a
neighbourhood whose image is bounded. Cuscos appear in several impor-
tant optimization contexts. For example, the Clarke subdifferential of a
locally Lipschitz function is a cusco (Exercise 5).

To see another important class of examples we need a further definition.
We say a multifunction ® : E — E is monotone if it satisfies the condition

(u—v,z—y) >0 whenever u € ®(z) and v € D(y).

In particular, any (not necessarily self-adjoint) positive semidefinite lin-
ear operator is monotone, as is the subdifferential of any convex function.
One multifunction contains another if the graph of the first contains the
graph of the second. We say a monotone multifunction is mazimal if the
only monotone multifunction containing it is itself. The subdifferentials
of closed proper convex functions are examples (see Exercise 16). Zorn’s
lemma (which lies outside our immediate scope) shows any monotone mul-
tifunction is contained in a maximal monotone multifunction.

Theorem 8.2.1 (Maximal monotonicity) Mazimal monotone multi-
functions are cuscos on the interiors of their domains.

Proof. See Exercise 16. a

Maximal monotone multifunctions in fact have to be single-valued gener-
ically, that is on sets which are “large” in a topological sense, specifically
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on a dense set which is a “Gs” (a countable intersection of open sets)—see
Exercise 17.

Returning to our main theme, the central result of this section extends
Brouwer’s theorem to the multifunction case.

Theorem 8.2.2 (Kakutani—Fan) If the set C C E is nonempty, compact
and convez, then any cusco Q2 : C — C has a fized point.

Before we prove this result, we outline a little more topology. A cover
of a set K C E is a collection of sets in E whose union contains K. The
cover is open if each set in the collection is open. A subcover is just a
subcollection of the sets which is also a cover. The following result, which
we state as a theorem, is in truth the definition of compactness in spaces
more general than E.

Theorem 8.2.3 (General definition of compactness) Any open cover
of a compact set in E has a finite subcover.

Given a finite open cover {O1,03,...,0,} of a set K C E, a par-
tition of unity subordinate to this cover is a set of continuous functions
D1,P2,---,Pm : K — R4 whose sum is identically equal to one and satisfy-
ing p;(xz) = 0 for all points z outside O; (for each index %).. We outline the
proof of the next result, a central topological tool, in the exercises.

Theorem 8.2.4 (Partition of unity) There is a partition of unity sub-
ordinate to any finite open cover of a compact subset of E.

Besides fixed points, the other main theme of this section is the idea
of a continuous selection of a multifunction 2 on a set K C E, by which
we mean a continuous map f on K satisfying f(z) € Q(z) for all points z
in K. The central step in our proof of the Kakutani-Fan theorem is the
following “approximate selection” theorem.

Theorem 8.2.5 (Cellina) Given any compact set K C E, suppose the
multifunction Q : K — Y is USC with nonempty conver images. Then
for any real € > 0 there is a continuous map f : K — Y which is an
“approximate selection” of ) :

dao)(z, f(x)) < e for all points x in K. (8.2.6)

Furthermore the range of f is contained in the convex hull of the range of

Q.
Proof. We can assume the norm on E x Y is given by

Iz, y)llexy = llz]le + [ylly forallzc EandyeY
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(since all norms are equivalent—see Section 4.1, Exercise 2). Now, since
Q is USC, for each point z in K there is a real §, in the interval (0,€/2)
satisfying

€

Since the sets = + (d,/2)int Bg (as the point = ranges over K) comprise an
open cover of the compact set K, there is a finite subset {x1,z2,...,Zm}
of K with the sets z; + (§;/2)int Bg comprising a finite subcover (where §;
is shorthand for d,, for each index 7).

Theorem 8.2.4 shows there is a partition of unity pi,p2,...,pm : K —
R, subordinate to this subcover. We now construct our desired approxi-
mate selection f by choosing a point y; from Q(z;) for each ¢ and defining

flz) = Zpi(ib')yi for all points z in K. (8.2.7)
i=1

Fix any point z in K and define the set I = {i|p;(z) # 0}. By definition,
x satisfies ||z — x;|| < 6;/2 for each i in I. If we choose an index j in [
maximizing d;, the triangle inequality shows ||z; — z;|| < d;, whence we
deduce the inclusions

v € Qz:) € Na; +6;Bw) C Ua;) + 5By

for all i in I. In other words, for each i in I we know dq(.,)(y:) < €/2. Since
the distance function is convex, equation (8.2.7) shows do(.,)(f(z)) < €/2.
Since we also know ||z — ;|| < €/2, this proves inequality (8.2.6). The final
claim follows immediately from equation (8.2.7). |

Proof of the Kakutani—Fan theorem. With the assumption of the
theorem, Cellina’s result above shows for each positive integer r there is a
continuous self map f, of C satisfying

1
deo) (2, fr(z)) < - for all points z in C.

By Brouwer’s theorem (8.1.3), each f, has a fixed point z" in C, which
therefore satisfies

1
dg)(z",z") < - for each r.

Since C' is compact, the sequence (z") has a convergent subsequence, and
its limit must be a fixed point of Q because Q is closed by Exercise 3(c)
(Closed versus USC). O

In the next section we describe some variational applications of the
Kakutani-Fan theorem. But we end this section with an ezact selection
theorem parallel to Cellina’s result but assuming an LSC rather than a
USC multifunction.
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Theorem 8.2.8 (Michael) Given any closed set K C E, suppose the
multifunction Q : K — Y is LSC with nonempty closed convex images.
Then given any point (Z,7) in G(Q), there is a continuous selection f of

Q satisfying f(Z) = 3.

We outline the proof in the exercises.

Exercises and Commentary

Many useful properties of cuscos are summarized in [27]. An excellent
general reference on monotone operators is [153]. The topology we use in
this section can be found in any standard text (see [67, 106], for example).
The Kakutani—Fan theorem first appeared in [109] and was extended in
[74]. Cellina’s approximate selection theorem appears, for example, in [4,
p. 84]. One example of the many uses of the Kakutani-Fan theorem is
establishing equilibria in mathematical economics. The Michael selection
theorem appeared in [137].

1. (USC and continuity) Consider a closed subset K C E and a
multifunction 2 : K — Y.

(a) Prove the multifunction

Q(z) forze K
xGEH{(Z) forz € K

is USC if and only if Q2 is USC.

(b) Prove a function f : K — Y is continuous if and only if the
multifunction z € K — {f(z)} is USC.

(c) Prove a function f : E — [—o0, +00] is lower semicontinuous at
a point z in E if and only if the multifunction whose graph is
the epigraph of f is USC at x.

2. * (Minimum norm) If the set U C E is open and the multifunction
Q:U — Y is USC, prove the function g : U — Y defined by

g(x) = inf{|ly|| |y € Qz)}
is lower semicontinuous.
3. (Closed versus USC)

(a) If the multifunction ® : E — Y is closed and the multifunction
Q:E — Y is USC at the point z in E with Q(z) compact, prove
the multifunction

ze€Er Q(2)N®(2)
is USC at .
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(b) Hence prove that any closed multifunction with compact range
is USC.

(¢) Prove any USC multifunction with closed images is closed.
(d) If a USC multifunction has compact images, prove it is locally
bounded.

4. (Composition) If the multifunctions ® and Q are USC prove their
composition z — ®(2(x)) is also.

5. * (Clarke subdifferential) If the set U C E is open and the function
f : U — R is locally Lipschitz, use Section 6.2, Exercise 12 (Closed
subdifferentials) and Exercise 3 (Closed versus USC) to prove the
Clarke subdifferential z € U +— 9, f(x) is a cusco.

6. ** (USC images of compact sets) Consider a given multifunction
Q:K-Y.

(a) Prove Q is USC if and only if for every open subset U of Y the
set {x € K |Q(z) C U} is open in K.

Now suppose K is compact and Q is USC with compact images.
Using the general definition of compactness (8.2.3), prove the range
Q(K) is compact by following the steps below.

(b) Fix an open cover {U, |y € I'} of Q(K). For each point z in K,
prove there is a finite subset I',, of I with

Qx) C U U,.

YEl:

(c) Construct an open cover of K by considering the sets

{zeK‘Q(z)c U UV}

YET

as the point = ranges over K.

(d) Hence construct a finite subcover of the original cover of Q(K).

7. * (Partitions of unity) Suppose the set K C E is compact with a
finite open cover {O1,0s,...,0,,}.

(i) Show how to construct another open cover {Vi,Va,..., Vi, } of
K satisfying clV; C O; for each index 7. (Hint: Each point z in
K lies in some set O;, so there is a real 6, > 0 with z+0,B C O;;
now take a finite subcover of {z + d,int B|x € K} and build the
sets V; from it.)
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(ii)

(iii)

For each index i, prove the function ¢; : K — [0, 1] given by

4= _dxvo,
’ dK\OI +dVL

is well-defined and continuous, with ¢; identically zero outside
the set O;.

Deduce that the set of functions p; : K — R defined by

p; = a4
;=
Zj 4a;
is a partition of unity subordinate to the cover {O1,Oa, ..., O }.

8. Prove the Kakutani—Fan theorem is also valid under the weaker as-
sumption that the images of the cusco 2 : C' — E always intersect
the set C' using Exercise 3(a) (Closed versus USC).

9. ** (Michael’s theorem) Suppose all the assumptions of Michael’s
theorem (8.2.8) hold. We consider first the case with K compact.

(a)

Fix areal € > 0. By constructing a partition of unity subordinate
to a finite subcover of the open cover of K consisting of the sets

Oy ={z € E|dg)(y) <e} foryinY,
construct a continuous function f : K — Y satisfying

do()(f(z)) < e for all points = in K.
Construct a sequence of continuous functions fy, fo,...: K =Y
satisfying
do)(fi(z)) < 27° fori=1,2,...
[firt(@) = @)l < 217 fori=1,2,...

for all points = in K. (Hint: Construct f1 by applying part (a)
with e = 1/2; then construct f;; inductively by applying part
(a) to the multifunction

z € K — Qx) N (fi(z) +27'By)

with e = 2771,

The functions f; of part (b) must converge uniformly to a con-
tinuous function f. Prove f is a continuous selection of 2.
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(d)

(e)
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Prove Michael’s theorem by applying part (¢) to the multifunc-

tion
L (Q) ifr#z
Q(“)—{{g} itz — 2.

Now extend to the general case where K is possibly unbounded
in the following steps. Define sets K,, = K N nBg for each
n = 1,2,... and apply the compact case to the multifunction
Q1 = Q|k, to obtain a continuous selection g, : K; — Y. Then
inductively find a continuous selection gn+1 : Kpy1 — Y from
the multifunction

_ [{on(@)} forzeK,
Qnya(z) = {Qg(a:)x f((ir i € Kny1\ Kn

and prove the function defined by
flz)=gn(z) forx e K,, n=1,2,...

is the required selection.

10. (Hahn-Katetov—Dowker sandwich theorem) Suppose the set
K C E is closed.

(a)

(b)

For any two lower semicontinuous functions f, g : K — R satis-
fying f > —g, prove there is a continuous function h : K — R
satisfying f > h > —g by considering the multifunction z +—
[—g(z), f(x)]. Observe the result also holds for extended-real-
valued f and g.

(Urysohn lemma) Suppose the closed set V and the open
set U satisfy V ¢ U C K. By applying part (i) to suitable
functions, prove there is a continuous function f : K — [0,1]
that is identically equal to one on V and to zero on U°.

11. (Continuous extension) Consider a closed subset K of E and a
continuous function f: K — Y. By considering the multifunction

[ {f@)} forz e K
Q(z) = {cl (conv f(K)) fgr ¢ K,

prove there is a continuous function g : E — Y satisfying g|x = f
and g(E) C cl(conv f(K)).

12. * (Generated cuscos) Suppose the multifunction 2 : K — Y is
locally bounded with nonempty images.
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(a) Among those cuscos containing €2, prove there is a unique one
with minimal graph, given by

O(x) = ﬂ clconv (2(x + €B)) for z € K.
e>0

(b) If K is nonempty, compact, and convex, Y = E, and ) satisfies
the conditions Q(K) C K and

z € ®(z) =z e Q) for x € K,

prove {2 has a fixed point.

13. * (Multifunctions containing cuscos) Suppose the multifunction
Q: K — Y is closed with nonempty convex images, and the function
f : K — Y has the property that f(x) is a point of minimum norm
in Q(z) for all points z in K. Prove {2 contains a cusco if and only if
f is locally bounded. (Hint: Use Exercise 12 (Generated cuscos) to
consider the cusco generated by f.)

14. * (Singleton points) For any subset D of Y, define
s(D)=inf{r e R| D C y + rBy for some y € Y}.
Consider an open subset U of E.

(a) If the multifunction Q : U — Y is USC with nonempty images,
prove for any real € > 0 the set

Se={z € U|s(Qz)) <€}

is open. By considering the set M,>1.51 /5, prove the set of points
in U whose image is a singleton is a Gj.

(b) Use Exercise 5 (Clarke subdifferential) to prove that the set of
points where a locally Lipschitz function f : U — R is strictly
differentiable is a Gs. If U and f are convex (or if f is regular
throughout U), use Rademacher’s theorem (in Section 6.2) to
deduce f is generically differentiable.

15. (Skew symmetry) If the matrix A € M" satisfies 0 # A = — AT,
prove the multifunction z € R™ ~— z¥ Az is maximal monotone, yet
is not the subdifferential of a convex function.

16. ** (Monotonicity) Consider a monotone multifunction ® : E — E.

(a) (Inverses) Prove ®~! is monotone.

(b) Prove ®~! is maximal if and only if ® is.
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(¢) (Applying maximality) Prove ® is maximal if and only if it
has the property

(u—wv,z—y) >0 forall (z,u) € G(®) = ve d(y).

(d) (Maximality and closedness) If ® is maximal, prove it is
closed with convex images.

(e) (Continuity and maximality) Supposing ® is everywhere
single-valued and hemicontinuous (that is, continuous on ev-
ery line in E), prove it is maximal. (Hint: Apply part (c) with
z=y+twforwinEandt¢]|0inR.)

(f) We say @ is hypermazimal if ® + AI is surjective for some real
A > 0. In this case, prove ® is maximal. (Hint: Apply part (c)
and use a solution z € E to the inclusion v+ Ay € (®+ A\I)(x).)
What if just ® is surjective?

(g) (Subdifferentials) If the function f : E — (0o, +00] is closed,
convex, and proper, prove df is maximal monotone. (Hint: For
any element ¢ of E, prove the function

z € B f(z) +|lzl* + (¢, 2)

has a minimizer, and deduce Jf is hypermaximal.)

(h) (Local boundedness) By completing the following steps, prove
® is locally bounded at any point in the core of its domain.

(i) Assume 0 € ®(0) and 0 € core D(®), define a convex func-
tion g : E — (00, +00] by

9(y) = sup{(v,y —z) |z € B, u € 2(2)}.

(ii) Prove D(®) C domg.

(iii) Deduce g is continuous at zero.

(iv) Hence show |g(y)| < 1 for all small y, and deduce the result.
(j) (Maximality and cuscos) Use parts (d) and (h), and Exercise

3 (Closed versus USC) to conclude that any maximal monotone
multifunction is a cusco on the interior of its domain.

(k) (Surjectivity and growth) If ® is surjective, prove

lim ||®(z)| = +oo.

llzll =00

(Hint: Assume the maximality of ®, and hence of ®1; deduce
®~! is a cusco on E, and now apply Exercise 6 (USC images of
compact sets).)
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** (Single-valuedness and maximal monotonicity) Consider a
maximal monotone multifunction Q2 : E — E and an open subset U
of its domain, and define the minimum norm function g : U — R as
in Exercise 2.

(a) Prove g is lower semicontinuous. An application of the Baire
category theorem now shows that any such function is generi-
cally continuous.

(b) For any point z in U at which g is continuous, prove Q(z) is a
singleton. (Hint: Prove ||-|| is constant on £2(x) by first assuming
Y,z € Qz) and ||y|| > ||z]|, and then using the condition

(w—y,z+ty—x) >0 for all small t > 0 and w € Q(z + ty)

to derive a contradiction.)

(¢) Conclude that any maximal monotone multifunction is generi-
cally single-valued.

(d) Deduce that any convex function is generically differentiable on
the interior of its domain.
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8.3 Variational Inequalities

At the very beginning of this book we considered the problem of minimizing
a differentiable function f : E — R over a convex set C C E. A necessary
optimality condition for a point zg in C' to be a local minimizer is

(Vf(zg),z —x0) >0 for all points z in C, (8.3.1)

or equivalently
0e Vf(.’L‘o) + NC(CIJO).

If the function f is convex instead of differentiable, the necessary and suf-
ficient condition for optimality (assuming a constraint qualification) is

0 € 9f(zo0) + Nc(zo),

and there are analogous nonsmooth necessary conditions.

We call problems like (8.3.1) “variational inequalities”. Let us fix a
multifunction Q : C' — E. In this section we use the fixed point theory we
have developed to study the multivalued variational inequality

VI(Q,C): Find points zg in C and yo in Q(zo) satisfying
(Yo, — xo) > 0 for all points z in C.

A more concise way to write the problem is this:
Find a point z( in C satisfying 0 € Q(zg) + Neo (o). (8.3.2)

Suppose the set C is closed, convex, and nonempty. Recall that the
projection Pc : E — C is the (continuous) map that sends points in E
to their unique nearest points in C (see Section 2.1, Exercise 8). Using
this notation we can also write the variational inequality as a fixed point
problem:

Find a fixed point of Pco (I —Q):C — C. (8.3.3)

This reformulation is useful if the multifunction 2 is single-valued, but less
so in general because the composition will often not have convex images.

A more versatile approach is to define the (multivalued) normal map-
ping Qc = (Q o Pg) + I — Pc, and repose the problem as follows:

Find a point Z in E satisfying 0 € Q¢(7). (8.3.4)

Then setting o = Po(Z) gives a solution to the original problem. Equiva-
lently, we could phrase this as follows:

Find a fixed point of (I — Q) o P : E — E. (8.3.5)
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As we shall see, this last formulation lets us immediately use the fixed point
theory of the previous section.

The basic result guaranteeing the existence of solutions to variational
inequalities is the following.

Theorem 8.3.6 (Solvability of variational inequalities) If the subset
C of E is compact, convez, and nonempty, then for any cusco Q2 : C — E
the variational inequality VI(Q2,C) has a solution.

Proof. We in fact prove Theorem 8.3.6 is equivalent to the Kakutani—Fan
fized point theorem (8.2.2).

When © is a cusco its range Q(C) is compact—we outline the proof
in Section 8.2, Exercise 6. We can easily check that the multifunction
(I — ) o Pc is also a cusco because the projection P is continuous. Since
this multifunction maps the compact convex set conv (C'—Q(C)) into itself,
the Kakutani—Fan theorem shows it has a fixed point, which, as we have
already observed, implies the solvability of VI(Q, C).

Conversely, suppose the set C C E is nonempty, compact, and convex.
For any cusco €2 : C — C, the Solvability theorem (8.3.6) implies we can
solve the variational inequality VI(I — Q,C), so there are points zy in C
and zp in Q(zo) satisfying

(xo — 20, — x9) > 0 for all points z in C.
Setting x = zg shows xg = 2g, so g is a fixed point. O

An elegant application is von Neumann’s minimax theorem, which we
proved by a Fenchel duality argument in Section 4.2, Exercise 16. Consider
Euclidean spaces Y and Z, nonempty compact convex subsets F' C Y and
G C Z, and a linear map A:Y — Z. If we define a function Q: F x G —
Y %X Z by Q(y, z) = (—A*z, Ay), then it is easy to see that a point (yo, z0)
in F' x G solves the variational inequality VI(Q, F' x G) if and only if it is
a saddlepoint:

<Z07Ay> < <Z07Ay0> < <Z7Ay0> for all ye F1 z €G.

In particular, by the Solvability of variational inequalities theorem, there
exists a saddlepoint, so

. A — . .
min max (z, Ay) = max min (z, Ay)

Many interesting variational inequalities involve a noncompact set C.
In such cases we need to impose a growth condition on the multifunction
to guarantee solvability. The following result is an example.
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Theorem 8.3.7 (Noncompact variational inequalities) If the subset
C of E is nonempty, closed, and convex, and the cusco Q2 : C — E is
coercive, that is, it satisfies the condition

liminf inf (z,Q(z) + Ne(z)) > 0, (8.3.8)

llzl| =00, zeC
then the variational inequality VI(Q2,C) has a solution.

Proof. For any large integer r, we can apply the solvability theorem (8.3.6)
to the variational inequality VI(Q2,C N rB) to find a point =, in C NrB
satisfying

(xr) + Nerrs (-771')

(zr) + Ne(zr) + Nrp(zr)

(zr) + No(zr) + Ry

(using Section 3.3, Exercise 10). Hence for all large r, the point z,. satisfies
inf (z,, Q(z,) + Nc(z,)) <O0.

This sequence of points (z,) must therefore remain bounded, by the co-
ercivity condition (8.3.8), and so z, lies in intrB for large r and hence
satisfies 0 € Q(z,) + N¢(z,), as required. o

A straightforward exercise shows in particular that the growth condition
(8.3.8) holds whenever the cusco 2 is defined by z € R™ — z7 Az for a
matrix A in S7 .

The most important example of a noncompact variational inequality
is the case when the set C is a closed convex cone S C E. In this case
VI(R2,S) becomes the multivalued complementarity problem:

Find points zo in S and yo in Q(z9) N (—S7) (8.3.9)
satisfying (zo,yo) = 0. e

As a particular example, we consider the dual pair of abstract linear pro-
grams (5.3.4) and (5.3.5):

inf{(c,z) | Az—b€e H, z € K} (8.3.10)

(where Y is a Euclidean space, the map A : E — Y is linear, the cones
H CY and K C E are closed and convex, and b and c are given elements
of Y and E respectively), and

sup{(b,¢) | A*"¢p—c€ K—, p € —H }. (8.3.11)

As usual, we denote the corresponding primal and dual optimal values by
p and d. We consider a corresponding variational inequality on the space
ExY:

VI(Q, K x (~H™)) with Q(z,¢) = (c— A*¢, Az —b).  (8.3.12)
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Theorem 8.3.13 (Linear programming and variational inequali-
ties) Any solution of the above variational inequality (8.3.12) consists of
a pair of optimal solutions for the linear programming dual pair (8.8.10)
and (8.3.11). The converse is also true, providing there is no duality gap

(p=4d).

We leave the proof as an exercise.

Notice that the linear map appearing in the above example, namely
M:E xY — E xY defined by M(z,¢) = (—A*¢, Az), is monotone. We
study monotone complementarity problems further in Exercise 7.

To end this section we return to the complementarity problem (8.3.9)
in the special case where E is R™, the cone S is R", and the multifunction
(2 is single-valued: (z) = {F(x)} for all points z in R”. In other words,
we consider the following problem:

Find a point z¢ in RY satisfying F(zo) € R and (zo, F(xq)) = 0.

The lattice operation A is defined on R™ by (zAy); = min{z;, y;} for points
z and y in R™ and each index i. With this notation we can rewrite the
above problem as the following order complementarity problem.

OCP(F): Find a point zo in R} satisfying zg A F'(z¢) = 0.

The map ¢ € R™ — 2 A F(z) € R" is sometimes amenable to fixed point
methods.

As an example, let us fix a real a > 0, a vector ¢ € R™, and an n X n
matrix P with nonnegative entries, and define the map F : R — R"
by F(z) = ax — Pz + q. Then the complementarity problem OCP(F) is
equivalent to finding a fixed point of the map ® : R™ — R" defined by

O(z) = é(O vV (Pz —q)), (8.3.14)

a problem that can be solved iteratively (see Exercise 9).

Exercises and commentary

A survey of variational inequalities and complementarity problems may be
found in [93]. The normal mapping )¢ is especially well studied when
the multifunction Q is single-valued with affine components and the set
C is polyhedral. In this case the normal mapping is piecewise affine (see
[164]). More generally, if we restrict the class of multifunctions Q we wish
to consider in the variational inequality, clearly we can correspondingly
restrict the versions of the Kakutani-Fan theorem or normal mappings we
study. Order complementarity problems are studied further in [26]. The
Nash equilibrium theorem (Exercise 10(d)), which appeared in [147], asserts
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the existence of a Pareto efficient choice for n individuals consuming from
n associated convex sets with n associated joint cost functions.

1.

Prove the equivalence of the various formulations (8.3.2), (8.3.3),
(8.3.4) and (8.3.5) with the original variational inequality VI(Q2, C).

. Use Section 8.2, Exercise 4 (Composition) to prove the multifunction

(I—-9Q)o Pe

in the proof of Theorem 8.3.6 (Solvability of variational inequalities)
is a cusco.

Consider Theorem 8.3.6 (Solvability of variational inequalities). Use
the function
1 ifz >0
z€[0,1]— ¢ @
-1 ifz=0

to prove the assumption in the theorem—that the multifunction € is
USC—cannot be weakened to §2 closed.

. * (Variational inequalities containing cuscos) Suppose the set

C C E is nonempty, compact, and convex, and consider a multifunc-
tion Q: C — E.

(a) If © contains a cusco, prove the variational inequality VI(Q, C)
has a solution.

(b) Deduce from Michael’s theorem (8.2.8) that if Q is LSC with
nonempty closed convex images then VI(Q2, C) has a solution.

Check the details of the proof of von Neumann’s minimax theorem.

Prove Theorem 8.3.13 (Linear programming and variational inequal-
ities).

(Monotone complementarity problems) Suppose the linear map
M : E — E is monotone.

(a) Prove the function z € E — (M =z, ) is convex.

For a closed convex cone S C E and a point q in E, consider the
optimization problem

inf{(Mz +q¢,z) | Mx +q€ —S~, z € S}. (8.3.15)

(b) If the condition —g € core (S~ + MS) holds, use the Fenchel
duality theorem (3.3.5) to prove problem (8.3.15) has optimal
value zero.
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(c) If the cone S is polyhedral, problem (8.3.15) is a convex “quad-
ratic program”: when the optimal value is finite, it is known that
there is no duality gap for such a problem and its (Fenchel) dual,
and that both problems attain their optimal value. Deduce that
when S is polyhedral and contains a point z with Ma+qin —S—,
there is such a point satisfying the additional complementarity
condition (Mx + ¢, z) = 0.

8. * Consider a compact convex set C C E satisfying C = —C and a
continuous function f : C — E. If f has no zeroes, prove there is
a point x on the boundary of C satisfying (f(x),z) < 0. (Hint: For
positive integers n, consider VI(f + I/n,C).)

9. (Iterative solution of OCP [26]) Consider the order complemen-
tarity problem OCP(F') for the function F' that we defined before
equation (8.3.14). A point 2° in R, is feasible if it satisfies F'(z°) > 0.

(a) Prove the map @ in equation (8.3.14) is isotone: x > y implies
®(z) > ®(y) for points x and y in R".

(b) Suppose the point z° in R is feasible. Define a sequence (") in
R” inductively by z"t! = ®(z"). Prove this sequence decreases
1 < xf for all r and <.

%

monotonically: =
(c) Prove the limit of the sequence in part (b) solves OCP(F).

(d) Define a sequence (y") in R} inductively by y°=0and y"t! =
®(y"). Prove this sequence increases monotonically.

(e) If OCP(F) has a feasible solution, prove the sequence in part
(d) converges to a limit § which solves OCP(F'). What happens
if OCP(F') has no feasible solution?

(f) Prove the limit § of part (e) is the minimal solution of OCP(F'):
any other solution z satisfies x > g.

10. * (Fan minimax inequality [74]) We call a real function g on a
convex set C C E quasiconcave if the set {z € C'|g(z) > a} is convex
for all real a.

Suppose the set C C E is nonempty, compact, and convex.
(a) If the function f : C x C — R has the properties that the
function f(-,y) is quasiconcave for all points y in C and the

function f(z,-) is lower semicontinuous for all points z in C,
prove Fan’s inequality:

minsup f(z,y) < sup f (z, 2).
Yy T T
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11.

(e)
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(Hint: Apply the KKM theorem (Section 8.1, Exercise 15) to
the family of sets

{yeC| f(z,y) < B} forzeC,

where 3 denotes the right hand side of Fan’s inequality.)

If the function F': C — E is continuous, apply Fan’s inequality
to the function f(z,y) = (F(y),y — ) to prove the variational
inequality VI(F,C) has a solution.

Deduce Fan’s inequality is equivalent to the Brouwer fixed point
theorem.

(Nash equilibrium) Define a set C = C; x Cz x ... X Cp,
where each set C; C E is nonempty, compact, and convex. For
any continuous functions f1, fo,..., fn : C — R, if each function

Ty EC@ Hfi(y17“'7xi7"'7yn)

is convex for all elements y of C, prove there is an element y of
C satisfying the inequalities

fi(y) Sfi(yl,...,xi,...,yn) for all ZT; GCi,i= 1,2,.‘.,71.

(Hint: Consider the function

F@,y) =D (i) = filyn, 205 9m)

and apply Fan’s inequality.)

(Minimax) Apply the Nash equilibrium result from part (d) in
the case n = 2 and f; = —f> to deduce the Kakutani minimax
theorem (Section 4.3, Exercise 14).

(Bolzano-Poincaré—Miranda intermediate value theorem)
Consider the box

We

J={zeR"|0<z; <1 for all i}.

call a continuous map f : J — R™ reversing if it satisfies the

condition

fi(z)fi(y) <0 whenever z; =0, y; =1, andi=1,2,...,n.

Prove any such map vanishes somewhere on J by completing the
following steps:

(a)

Observe the case n = 1 is just the classical intermediate value
theorem.
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(b) For all small real € > 0, prove the function f¢ = f 4 el satisfies
for all ¢

either ff(y) > 0 and ff(x)

2

;i =0andy; =1 = S
z; =0 and y;, = or fi(y) <0 and fi(z) 2 0.

(¢) ¢From part (b), deduce there is a function f¢, defined coordi-

natewise by ff = £ff, for some suitable choice of signs, satisfy-
ing the conditions (for each 1)
ff(z) <0 whenever z; =0 and

ff(z) > 0 whenever z; = 1.

(d) By considering the variational inequality VI(f€, J), prove there
is a point z€ in J satisfying f€(z€) = 0.
(e) Complete the proof by letting € approach zero.
12. (Coercive cuscos) Consider a multifunction Q : E — E with non-
empty images.
(a) If Q is a coercive cusco, prove it is surjective.

(b) On the other hand, if § is monotone, use Section 8.2, Exercise
16 (Monotonicity) to deduce € is hypermaximal if and only if it
is maximal. (We generalize this result in Exercise 13 (Monotone
variational inequalities).)

13. ** (Monotone variational inequalities) Consider a continuous
function G : E — E and a monotone multifunction ¢ : E — E.

(a) Given a nonempty compact convex set K C E, prove there is
point zg in K satisfying

(x — zo,y + G(xo)) >0 forallz € K, y € (x)

by completing the following steps:
(i) Assuming the result fails, show the collection of sets

{reK|{(z—z,w+G(x)) <0} forz€ K, we P(z)

is an open cover of K.

(ii) For a partition of unity p1, p,...,p, subordinate to a finite
subcover K1, Ko, ... K, corresponding to points z; € K and
w; € ®(z;) (for ¢ =1,2,...,n), prove the function

flz) = Zpi(ﬂf)zi

is a continuous self map of K.
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(iii) Prove the inequality
(f(@) — 2, 3 pi(x)wi + G(x))
= > pil@)p;(2)(z — &, wi + G(x))
i3

<0

by considering the terms in the double sum where i = j and
sums of pairs where 7 # j separately.
(iv) Deduce a contradiction with part (ii).
(b) Now assume G satisfies the growth condition

lim [G(z)]| = +00 and liminf ~2rC@)

B bV
fl]|—o00 lzl—oo [|z]|[|G(z)|]

(i) Prove there is a point z in E satisfying
(z — z0,y + G(xp)) > 0 whenever y € &(z).

(Hint: Apply part (a) with K =nB forn=1,2,....)
(ii) If ® is maximal, deduce —G(zo) € ®(z0).

(¢) Apply part (b) to prove that if ® is maximal then for any real
A > 0, the multifunction ® + AI is surjective.

(d) (Hypermaximal < maximal) Using Section 8.2, Exercise 16
(Monotonicity), deduce a monotone multifunction is maximal if
and only if it is hypermaximal.

(e) (Resolvent) If @ is maximal then for any real A\ > 0 and any
point y in E prove there is a unique point x satisfying the inclu-
sion

y € ®(x) + Az.

(f) (Maximality and surjectivity) Prove a maximal ® is surjec-

tive if and only if it satisfies the growth condition

lim inf ||®(z)| = 4oo.
llzl—o0
(Hint: The “only if” direction is Section 8.2, Exercise 16(k)
(Monotonicity); for the “if” direction, apply part (e) with A =

1/n for n =1,2,..., obtaining a sequence (z,,); if this sequence
is unbounded, apply maximal monotonicity.)

14. * (Semidefinite complementarity) Define F : S™ x 8™ — S™ by
FUV)=U+V —(U?+V?)V/2

For any function G : S® — S™, prove U € S™ solves the variational
inequality VI(G,S%) if and only if F(U,G(U)) = 0. (Hint: See
Section 5.2, Exercise 11.)
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Monotonicity via convex analysis

Many important properties of monotone multifunctions can be derived us-
ing convex analysis, without using the Brouwer fixed point theorem (8.1.3).
The following sequence of exercises illustrates the ideas. Throughout, we
consider a monotone multifunction ® : E — E. The point (u,v) € E x E
is monotonically related to ® if (x —u,y —v) > 0 whenever y € ®(z):
in other words, appending this point to the graph of & does not destroy
monotonicity. Our main aim is to prove a central case of the Debrunner-
Flor extension theorem [59]. The full theorem states that if ® has range
contained in a nonempty compact convex set C' C E, and the function
f : C — E is continuous, then there is a point ¢ € C such that the point
(f(e),c) is monotonically related to ®. For an accessible derivation of this
result from Brouwer’s theorem, see [154]: the two results are in fact equiv-
alent (see Exercise 19).

We call a convex function H : E x E — (00, +00] representative for ®
if all points z,y € E satisfy H(z,y) > (x,y), with equality if y € ®(x).
Following [79], the Fitzpatrick function Fo : Ex E — [—00,400] is defined
by

Fo(x,y) = sup{(z,v) + (u,y) — (u,v) | v € ®(u)},

while [171, 150] the convezified representative Py : E x E — [—00, 4-00] is
defined by

Po(z,y) = inf { 3 il w) \ meN, e R,
=1

m

i=1

These constructions are explored extensively in [30, 43, 172].
15. (Fitzpatrick representatives)

(a) Prove the Fitzpatrick function Fg is closed and convex.
(b) Prove Fo(z,y) = (z,y) whenever y € ®(z).
(c) Prove Fg is representative providing ® is maximal.

(d) Find an example where Fg is not representative.

16. (Convexified representatives) Consider points z € E and y €
D(x).

(a) Prove Po(z,y) < (z,y).

Now consider any points u,v € E.
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Prove P‘P(uav) > (ua y) + (.’17,1)> - <SC, y>

Deduce Po(z,y) = (z,y).

Deduce Pg(z,y) + Pa(u,v) = (u,y) + (z,v).

Prove Py (u,v) > (u,v) if (u,v) € conv G(®) and is +oo other-
wise.

Deduce that convexified representatives are indeed both convex
and representative.

Prove Pg = Fo < F3.

17. * (Monotone multifunctions with bounded range) Suppose
that the monotone multifunction & : E — E has bounded range
R(®), and let C = clconv R(®). Apply Exercise 16 to prove the
following properties.

(a)

(b)
(c)

Prove the convexity of the function f : E — [—o00, 4+00] defined
by

f(z) = nf{Ps(z,y) |y € C}.
Prove that the function g = inf,cc (-, y) is a continuous concave
minorant of f.

Apply the Sandwich theorem (Exercise 13 in Section 3.3) to
deduce the existence of an affine function « satisfying f > o > g.

Prove that the point (0, Va) is monotonically related to ®.
Prove Va € C.

Given any point z € E, show that ® is contained in a monotone
multifunction ®’ with z in its domain and R(®’) C C.

Give an alternative proof of part (f) using the Debrunner-Flor
extension theorem.

Extend part (f) to monotone multifunctions with unbounded
ranges, by assuming that the point z lies in the set int dom f —
dom §7.. Express this condition explicitly in terms of C' and the
domain of ®.

18. ** (Maximal monotone extension) Suppose the monotone mul-
tifunction ® : E — E has bounded range R(®).

(a)

(b)

Use Exercise 17 and Zorn’s lemma to prove that ® is contained
in a monotone multifunction ® with domain E and range con-
tained in clconv R(®).

Deduce that if ® is in fact maximal monotone, then its domain
is E.



8.3 Variational Inequalities 211

(c) Using Exercise 16 (Local boundedness) in Section 8.2, prove that
the multifunction ®” : E — E defined by

o' (z) = m clconv ' (z + €B)
e>0

is both monotone and a cusco.

(d) Prove that a monotone multifunction is a cusco on the interior
of its domain if and only if it is maximal monotone.

(e) Deduce that ® is contained in a maximal monotone multifunc-
tion with domain E and range contained in clconv R(®).

(f) Apply part (e) to ®~! to deduce a parallel result.

19. ** (Brouwer via Debrunner-Flor) Consider a nonempty compact
convex set D C int B and a continuous self map g : D — D. By
applying the Debrunner-Flor extension theorem in the case where
C = B, the multifunction ® is the identity map, and f = go Pp
(where Pp is the nearest point projection), prove that g has a fixed
point.

In similar fashion one may establish that the sum of two maximal
monotone multifunctions S and T is maximal assuming the condition 0 €
core (domT — dom S). One commences with the Fitzpatrick inequality
that

Fr(z,2%) + Fs(z, ~2%) > 0,

for all z,2* in E. This and many other applications of representative
functions are described in [30].
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