Chapter 7

Karush—Kuhn—Tucker
Theory

7.1 An Introduction to Metric Regularity

Our main optimization models so far are inequality-constrained. A little
thought shows our techniques are not useful for equality-constrained prob-
lems like

inf{f(z) | h(x) = 0}.

In this section we study such problems by linearizing the feasible region
h~1(0) using the contingent cone.

Throughout this section we consider an open set U C E, a closed set
S C U, a Euclidean space Y, and a continuous map h : U — Y. The
restriction of h to S we denote h|g. The following easy result (Exercise 1)
suggests our direction.

Proposition 7.1.1 If h is Fréchet differentiable at the point x € U then
Kh—l(h(x))(x) C N(Vh(:v))

Our aim in this section is to find conditions guaranteeing equality in this
result.

Our key tool is the next result. It states that if a closed function attains
a value close to its infimum at some point then a nearby point minimizes
a slightly perturbed function.

Theorem 7.1.2 (Ekeland variational principle) Suppose the function
f:E — (00, +00] is closed and the point x € E satisfies f(x) < inf f4€ for
some real € > 0. Then for any real A > 0 there is a point v € E satisfying
the conditions
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154 7. Karush-Kuhn—-Tucker Theory

(@) llz —vll <A,
(b) f(v) < f(z), and
(¢) v is the unique minimizer of the function f(-) + (e/N)|| - —v||.

Proof. We can assume f is proper, and by assumption it is bounded
below. Since the function

FO+ 51—l

therefore has compact level sets, its set of minimizers M C E is nonempty
and compact. Choose a minimizer v for f on M. Then for points z # v in
M we know

€
f) = f(2) < f(2) + 3l =,

while for z not in M we have

€ €

fW)+ slv—zll < f(2) + 1 llz — =

A A

Part (c) follows by the triangle inequality. Since v lies in M we have
Fl2)+ —§|Iz —z|| > flv) + §nv —z|| for all z in E.
Setting z = x shows the inequalities
f) +ezinff+e> flz) = f(0) +5llo -zl

Properties (a) and (b) follow. O

As we shall see, precise calculation of the contingent cone K15y ()
requires us first to bound the distance of a point z to the set h~!(h(z)) in
terms of the function value h(z). This leads us to the notion of “metric
regularity”. In this section we present a somewhat simplified version of this
idea, which suffices for most of our purposes; we defer a more comprehensive
treatment to a later section. We say h is weakly metrically regular on S at
the point = in S if there is a real constant k such that

dsnn-1(h(z))(2) < k[|h(2) — h(z)|| for all zin S close to .

Lemma 7.1.3 Suppose 0 € S and h(0) = 0. If h is not weakly metrically
regular on S at zero then there is a sequence v, — 0 in S such that h(v,) # 0
for all v, and a strictly positive sequence 6, | 0 such that the function

RN+ 6l - —vr

is minimized on S at v,.
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Proof. By definition there is a sequence z, — 0 in S such that
dsnn-1(0)(xr) > r|h(z)|| for all 7. (7.1.4)
For each index r we apply the Ekeland principle with
f =kl +ds, e=|h(z.)|l, A=min{re,Ve}, and z =z,

to deduce the existence of a point v, in S such that

(@) llzr = v < min {rn(@)], /AT } and

(¢) v, minimizes the function

IR+ max {2, /TRG T} - =vl

on S.

Property (a) shows v, — 0, while (c) reveals the minimizing property of
vp. Finally, inequality (7.1.4) and property (a) prove h(v,) # 0. m]

We can now present a convenient condition for weak metric regularity.

Theorem 7.1.5 (Surjectivity and metric regularity) If h is strictly
differentiable at the point x in S and

Vh(z)(Ts(z)) =Y
then h is weakly metrically reqular on S at x.

Proof. Notice first h is locally Lipschitz around z (see Theorem 6.2.3).
Without loss of generality, suppose z = 0 and h(0) = 0. If h is not weakly
metrically regular on S at zero then by Lemma 7.1.3 there is a sequence
v, — 0 in S such that h(v,) # 0 for all r, and a real sequence §, | 0 such
that the function

”h()H + 5r” ) _Ur“

is minimized on S at v,. Denoting the local Lipschitz constant by L, we
deduce from the sum rule (6.1.6) and the Exact penalization proposition
(6.3.2) the condition

0 € O ([|Al)(vr) + 0r-B + LOods (vy).

Hence there are elements u, of 9,(||h||)(v,) and w, of LO,ds(v,) such that
u, + w, approaches zero.
By choosing a subsequence we can assume

Ih(ve) I~ h(vr) =y # 0
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and an exercise then shows u, — (Vh(0))*y. Since the Clarke subdifferen-
tial is closed at zero (Section 6.2, Exercise 12), we deduce

—(Vh(()))*y € Laods(O) C Ns(O).

However, by assumption there is a nonzero element p of Ts(0) such that
Vh(0)p = —y, so we arrive at the contradiction

0> (p,~(Vh(0))*y) = (VA(0)p, —y) = |ly[|* > O,
which completes the proof. o

We can now prove the main result of this section.

Theorem 7.1.6 (Liusternik) If h is strictly differentiable at the point x
and Vh(z) is surjective then the set h=(h(z)) is tangentially reqular at x

and
Kh-1(h(z))(z) = N(Vh(z)).

Proof. Assume without loss of generality that x = 0 and A(0) = 0. In
light of Proposition 7.1.1, it suffices to prove

N(Vh(O)) C Th—l(o) (0)

Fix any element p of N(Vh(0)) and consider a sequence z” — 0 in h~1(0)
and ¢, | 0in Ri;. The previous result shows A is weakly metrically regular
at zero, so there is a constant k£ such that

dp-10) (2" + trp) < kl|h(z" + t.p)]|
holds for all large r, and hence there are points 2" in Ah~1(0) satisfying
[2" +trp — 27| < kl|h(z" + D).

If we define directions p” = ¢ }(2" — z") then clearly the points z" + ¢,p"
lie in A=1(0) for large r, and since
r " +trp — 27|
lp—pr) = FEE 2
_ KlAG" + tp) — @)
< .
— E[[(VR(0))p|
= 0,

we deduce p € T},-1(0y(0). o
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Exercises and Commentary

Liusternik’s original study of tangent spaces appeared in [130]. Closely
related ideas were pursued by Graves [85] (see [65] for a good survey). The
Ekeland principle first appeared in [69], motivated by the study of infinite-
dimensional problems where techniques based on compactness might be
unavailable. As we see in this section, it is a powerful idea even in finite
dimensions; the simplified version we present here was observed in [94]. See
also Exercise 14 in Section 9.2. The inversion technique we use (Lemma
7.1.3) is based on the approach in [101]. The recognition of “metric” regu-
larity (a term perhaps best suited to nonsmooth analysis) as a central idea
began largely with Robinson; see [162, 163] for example. Many equivalences
are discussed in [5, 168].

1. Suppose h is Fréchet differentiable at the point = € S.

(a) Prove for any set D D h(S) the inclusion
Vh(z)Ks(z) C Kp(h(x)).
(b) If h is constant on S, deduce
Ks(xz) € N(Vh(x)).
(c) If h is a real function and z is a local minimizer of h on S, prove

~Vh(z) € (Ks(z))~.

2. (Lipschitz extension) Suppose the real function f has Lipschitz
constant k on the set C' C E. By considering the infimal convolution
of the functions f+d¢ and k|| - ||, prove there is a function f : E — R
with Lipschitz constant k that agrees with f on C. Prove furthermore
that if f and C are convex then f can be assumed convex.

3. * (Closure and the Ekeland principle) Given a subset S of E,
suppose the conclusion of Ekeland’s principle holds for all functions
of the form g + ds where the function g is continuous on S. Deduce
S is closed. (Hint: For any point z in cl S, let g = || - —z]||.)

4. ** Suppose h is strictly differentiable at zero and satisfies
h(0) =0, v, — 0, [lh(v,)[| "' h(vr) — y, and u, € o (|A])(vr).

Prove u, — (Vh(0))*y. Write out a shorter proof when h is continu-
ously differentiable at zero.

5. ** Interpret Exercise 27 (Conical open mapping) in Section 4.2 in
terms of metric regularity.
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6. ** (Transversality) Suppose the set V' C Y is open and the set
R C V is closed. Suppose furthermore h is strictly differentiable at
the point z in S with h(z) in R and

Vh(z)(Ts(z)) — Tr(h(z)) =Y. (7.1.7)

(a) Define the function g: U x V — Y by g(z,y) = h(z) —y. Prove
g is weakly metrically regular on S x R at the point (z, h(x)).

(b) Deduce the existence of a constant k&’ such that the inequality
d(sx R)Ng—1(g(z,h(2))) (2, Y) < K'[|R(2) — |

holds for all points (z,y) in S x R close to (z, h(z)).

(¢) Apply Proposition 6.3.2 (Exact penalization) to deduce the ex-
istence of a constant k£ such that the inequality

d(sx R)ng=1(g(e,h(x))) (2, ¥) < k(|[h(2) — Y|l + ds(z) + dr(y))

holds for all points (z,y) in U x V close to (z, h(z)).
(d) Deduce the inequality

dsrn-1(r)(2) < k(ds(z) + dr(h(2)))

holds for all points z in U close to z.

(e) Imitate the proof of Liusternik’s theorem (7.1.6) to deduce the
inclusions

Tsrn-1(r)(x) D Ts(x) N (Vh(z)) ' Tr(h(z))

and
Ksnn-1(r)(z) D Ks(z) N (Vh(z)) ' Tr(h(x)).

(f) Suppose h is the identity map, so
Ts(z) — Tr(z) = E.
If either R or S is tangentially regular at x, prove
Kprns(z) = Kr(z) N Kg(z).

(g) (Guignard) By taking polars and applying the Krein—Rutman
polar cone calculus (3.3.13) and condition (7.1.7) again, deduce

Nsnn-1(r) (%) C Ns(x) + (Vh(z))* Nr(h(z)).
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(h) If C and D are convex subsets of E satisfying 0 € core (C — D)
(or riC NriD # 0), and the point z lies in C' N D, use part (e)
to prove

TCmD(.’L') = Tc(ill) N TD(:I,’).

7. ** (Liusternik via inverse functions) We first fix E = R™. The
classical inverse function theorem states that if the map g : U — R"™
is continuously differentiable then at any point = in U at which Vg(z)
is invertible,  has an open neighbourhood V' whose image g(V) is
open, and the restricted map g|y has a continuously differentiable
inverse satisfying the condition

V(glv) ™ (g(x)) = (Vg() "

Consider now a continuously differentiable map A : U — R™, and
a point z in U with Vh(z) surjective, and fix a direction d in the
null space N(Vh(z)). Choose any (n x (n —m)) matrix D making
the matrix A = (Vh(z), D) invertible, define a function g : U — R™
by g(z) = (h(z),Dz), and for a small real § > 0 define a function
p:(—9,0) — R™ by

p(t) = g7 (g(z) + tAd).

(a) Prove p is well-defined providing § is small.
(b) Prove the following properties:
(i) p is continuously differentiable.
(ii) p(0) = .
(iii) p’(0) =d.
(iv) h(p(t)) = h(x) for all small ¢.
(¢c) Deduce that a direction d lies in N(Vh(z)) if and only if there
is a function p : (—0,0) — R"™ for some § > 0 in R satisfying
the four conditions in part (b).

(d) Deduce Kh—l(h(z)) (LL’) = N(Vh(.’t))
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7.2 The Karush—Kuhn—Tucker Theorem

The central result of optimization theory describes first order necessary
optimality conditions for the general nonlinear problem

inf{f(z) |z € S}, (7.2.1)

where, given an open set U C E, the objective function is f : U — R and
the feasible region S is described by equality and inequality constraints:

S={zeU]|g(z)<0fori=1,2,...,m, h(z)=0}. (7.2.2)

The equality constraint map h : U — Y (where Y is a Euclidean space)
and the inequality constraint functions g; : U — R (for ¢ = 1,2,...,m) are
all continuous. In this section we derive necessary conditions for the point
Z in S to be a local minimizer for the problem (7.2.1).

In outline, the approach takes three steps. We first extend Liusternik’s
theorem (7.1.6) to describe the contingent cone Kg(Z). Next we calculate
this cone’s polar cone using the Farkas lemma (2.2.7). Finally, we apply
the Contingent necessary condition (6.3.10) to derive the result.

As in our development for the inequality-constrained problem in Section
2.3, we need a regularity condition. Once again, we denote the set of indices
of the active inequality constraints by I(zZ) = {i| g;(Z) = 0}.

Assumption 7.2.3 (The Mangasarian—Fromovitz constraint qual-
ification) The active constraint functions g; (for i in I(Z)) are Fréchet
differentiable at the point T, the equality constraint map h is strictly differ-
entiable, with a surjective gradient, at T, and the set

{p e N(Vh(z)) | (Vgi(Z),p) <O fori in I(Z)} (7.2.4)
s nonempty.

Notice in particular that the set (7.2.4) is nonempty in the case where the
map h : U — R? has components h1, ha, ..., ke and the set of gradients

{Vhi(@) |7 =1,2,...,q} U{Vg(Z)|ie I(z)} (7.2.5)
is linearly independent (Exercise 1).

Theorem 7.2.6 Suppose the Mangasarian—Fromovitz constraint qualifica-
tion (7.2.3) holds. Then the contingent cone to the feasible region S defined
by equation (7.2.2) is given by

Ks(z) ={p e N(Vh(z))|(Vgi(Z),p) <0 foriin I(Z)}. (7.2.7)
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Proof. Denote the set (7.2.4) by K and the right hand side of formula
(7.2.7) by K. The inclusion

Ks( )CK

is a straightforward exercise. Furthermore, since K is nonempty, it is easy
to see K = cl K. If we can show K C Kg(&) then the result will follow
since the contingent cone is always closed.

To see K C Kg(Z), fix an element p of K. Since p lies in N(Vh(Z)),
Liusternik’s theorem (7.1.6) shows p € Kj-1(0)(Z). Hence there are se-
quences t,. | 0 in Ry} and p” — p in E satisfying h(Z + ¢,p") = 0 for all
r. Clearly T + t,.p” € U for all large r, and we claim g¢;(Z + ¢,p") < 0. For
indices ¢ not in I(Z) this follows by continuity, so we suppose ¢ € I(Z) and
gi(Z +t.p") > 0 for all r in some subsequence R of N. We then obtain the
contradiction

0= lim 2@ —0i(@) — (Vgi(@), trp")
r—oo in R tT”pT”
_ (ng (j)7 p>
Il

> 0.
The result now follows. m|
Lemma 7.2.8 Any linear maps A :E — R? and G : E — Y satisfy
{xe N(G) | Az <0} = AR +G"Y

Proof. This is an immediate application of Section 5.1, Exercise 9 (Poly-
hedral cones). a

Theorem 7.2.9 (Karush—Kuhn—Tucker conditions) Suppose T is a
local minimizer for problem (7.2.1) and the objective function f is Fréchet
differentiable at T. If the Mangasarian—Fromouvitz constraint qualification
(7.2.3) holds then there exist multipliers A; in Ry (for i in I(Z)) and p in
Y satisfying

V@) + D AiVgi(@) + V(@) = 0. (7.2.10)

i€l (z)

Proof. The Contingent necessary condition (6.3.10) shows

-Vf(&@) € Ks(z)~
= {p € N(VRh(z)) | (Vgi(z),p) <0 foriin I(z)}~

= Y R.Vg(a)+Vh@)'Y
i€l ()

using Theorem 7.2.6 and Lemma 7.2.8. a
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Exercises and Commentary

A survey of the history of these results may be found in [158]. The Mangas-
arian—Fromovitz condition originated with [133], while the Karush-Kuhn—
Tucker conditions first appeared in [111] and [117]. The idea of penalty
functions (see Exercise 11 (Quadratic penalties)) is a common technique
in optimization. The related notion of a barrier penalty is crucial for inte-
rior point methods; examples include the penalized linear and semidefinite
programs we considered in Section 4.3, Exercise 4 (Examples of duals).

1. (Linear independence implies Mangasarian—Fromovitz) If the
set of gradients (7.2.5) is linearly independent, then by considering
the equations

(Vgi(z),p) = —1 for iin I(z)
(Vh;(z),p) = 0 for j=1,2,...,4q,

prove the set (7.2.4) is nonempty.
2. Consider the proof of Theorem 7.2.6.
(a) Prove Kg(z) C K.
(b) If Kis nonempty, prove K = K.

3. (Linear constraints) If the functions g; (for ¢ in I(Z)) and h are
affine, prove the contingent cone formula (7.2.7) holds.

4. (Bounded multipliers) In Theorem 7.2.9 (Karush-Kuhn-Tucker
conditions), prove the set of multiplier vectors (A, u) satisfying equa-
tion (7.2.10) is compact.

5. (Slater condition) Suppose the set U is convex, the functions

91792,---,gm1U—->R

are convex and Fréchet differentiable, and the function h : E — Y is
affine and surjective. Suppose further there is a point £ in A~1(0)
satisfying ¢;(Z) < 0 for ¢ = 1,2,...,m. For any feasible point Z for
problem (7.2.1), prove the Mangasarian—Fromovitz constraint quali-
fication holds.

6. (Largest eigenvalue) For a matrix A in S™, use the Karush-Kuhn-
Tucker theorem to calculate

sup{zT Az | |z|| = 1, z € R"}.
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7. * (Largest singular value [100, p. 135]) Given any m X n matrix
A, consider the optimization problem

a =sup{zT Ay | |lz|* =1, |ly* = 1} (7.2.11)
and the matrix
- 0 A
| AT o0 |-

(a) If p is an eigenvalue of /T, prove —u is also.

(b) If u is a nonzero eigenvalue of Z, use a corresponding eigen-
vector to construct a feasible solution to problem (7.2.11) with
objective value pu.

(¢) Deduce o > A1 (A).

(d) Prove problem (7.2.11) has an optimal solution.

(e) Use the Karush—-Kuhn-Tucker theorem to prove any optimal
solution of problem (7.2.11) corresponds to an eigenvector of A.

(f) (Jordan [108]) Deduce a = A;(A). (This number is called the
largest singular value of A.)

8. ** (Hadamard’s inequality [88]) The matrix with columns z!, 22,
.., "™ in R™ we denote by (z!,z2,...,2"). Prove (z!,7z2,...,2")
solves the problem

inf —det(zt,22,...,2")
subject to lz¢|2 = 1 fori=1,2,...,n
zb 22, 2" € R"
if and only if the matrix (z',z2,...,2Z") has determinant equal to

one and has columns forming an orthonormal basis, and deduce the
inequality

n
det(z’,2?,...,2") <[] ="
=1

9. (Nonexistence of multipliers [77]) Define a functionsgn : R - R
by

1 ifv>0
sgn(v) =< 0 ifv=0
-1 ifv<O

and a function h : R?> — R by
h(u,v) = v — sgn(v)(u)?.

(a) Prove h is Fréchet differentiable at (0,0) with derivative (0, 1).
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11. **
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(b) Prove h is not continuous on any neighbourhood of (0, 0), and
deduce it is not strictly differentiable at (0, 0).

(¢) Prove (0,0) is optimal for the problem
inf{f(u,v) | h(u,v) = 0},
where f(u,v) = u, and yet there is no real X\ satisfying
V£(0,0) + AVA(0,0) = (0,0).

(Exercise 14 in Section 8.1 gives an approach to weakening the con-
ditions required in this section.)

* (Guignard optimality conditions [87]) Suppose the point Z is
a local minimizer for the optimization problem

inf{f(z) | h(z) € R, z € S}

where R C Y. If the functions f and h are strictly differentiable at
Z and the transversality condition

Vh(z)Ts(z) — Tr(h(Z)) =Y

holds, use Section 7.1, Exercise 6 (Transversality) to prove the opti-
mality condition

0€ Vf(Z)+ Vh(z)"Nr(h(z)) + Ns(Z).

(Quadratic penalties [136]) Take the nonlinear program (7.2.1)
in the case Y = R? and now let us assume all the functions

f7gla.921"'agm7h17h27"'7hq:U_)R

are continuously differentiable on the set U. For positive integers k
we define a function p; : U — R by

pk<x>=f(x>+k(fjgl (2))? Z 2))?).

Suppose the point Z is a local minimizer for the problem (7.2.1). Then
for some compact neighbourhood W of Z in U we know f(z) > f(Z)
for all feasible points z in W. Now define a function r : W — R. by

ri(z) = pr(z) + |lz — 2,

and for each k = 1,2, ... choose a point ¥ minimizing r on W.
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Prove 74 (z*) < f() for each k =1,2,....
Deduce
lim g (z*) =0 fori=1,2,...,m
k—o0

and
lim hj(z¥) =0 forj=1,2,...,q.
k—oo

k. Zas k— oo.

Hence show z
Calculate Vrg(z).

Deduce

—2(aF — 1) = Vf(a*) + Z/\ngz ) + Zush (z*)
=1 Jj=1
for some suitable choice of vectors A* in R and p* in RY.
By taking a convergent subsequence of the vectors
(1, X%, )71 (1, A%, %) € R x R x RY,

show from parts (c) and (e) the existence of a nonzero vector
(Ao, A, 1) in R x R x R satisfying the Fritz John conditions:
(i) Xigi(Z) =0 fori=1,2,...,m
(i) MV F(Z) + X% AiVei(®) + X1, 1 Vh,(Z) = 0.
Under the assumption of the Mangasarian—Fromovitz constraint

qualification (7.2.3), show that the Fritz John conditions in part
(f) imply the Karush-Kuhn-Tucker conditions.
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7.3 Metric Regularity and the Limiting
Subdifferential

In Section 7.1 we presented a convenient test for the weak metric regularity
of a function at a point in terms of the surjectivity of its strict derivative
there (Theorem 7.1.5). This test, while adequate for most of our purposes,
can be richly refined using the limiting subdifferential.

As before, we consider an open set U C E, a Euclidean space Y, a
closed set S C U, and a function h : U — Y which we assume throughout
this section is locally Lipschitz. We begin with the full definition of metric
regularity, strengthening the notion of Section 7.1. We say h is metrically
regular on S at the point = in S if there is a real constant k such that the
estimate

dsnn-1(y)(2) < kl[h(2) -yl

holds for all points z in .S close to  and all vectors y in Y close to h(z).
(Before we only required this to be true when y = h(z).)

Lemma 7.3.1 If h is not metrically reqular on S at x then there are se-
quences (vy) in S converging to x, (y,) in Y converging to h(zx), and (e,)
in R4y decreasing to zero such that, for each index r, we have h(v,) # y,
and the function

1A() = yrll + €rll - —v ||

is minimized on S at v.

Proof. The proof is completely analogous to that of Lemma 7.1.3: we
leave it as an exercise. |

We also need the following chain-rule-type result; we leave the proof as
an exercise.

Lemma 7.3.2 At any point x in E where h(z) # 0 we have
0a[|R() (=) = Ba(llR(z)[|~ h(z), h(-)) ().

Using this result and a very similar proof to Theorem 7.1.5, we can now
extend the surjectivity and metric regularity result.

Theorem 7.3.3 (Limiting subdifferential and regularity) If a point
z lies in S and no nonzero element w of Y satisfies the condition

0 € Ba(w, h(-))(z) + N§(z)

then h is metrically reqular on S at x.
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Proof. If h is not metrically regular, we can apply Lemma 7.3.1, so with
that notation the function

1A() =yl + €l - —vr |l

is minimized on S at v,.. By Proposition 6.3.2 (Exact penalization) we
deduce for large enough real L

0 € Ou(IR(-) = yrll + &l - —vrll + Lds () (vr)
C Oallh() = yrll(vr) + €- B + LaadS('Ur)

for all r, using the Limiting subdifferential sum rule (6.4.4). If we write
wy = ||h(v;) — yr |71 (R(v,) — yr), We obtain by Lemma 7.3.2

0 € Oo(wr, h(-))(vr) + €-B + LOyds(vy),

so there are elements u, in 0,(w., h(-))(v,) and z, in LO,dg(v,) such that
|lur + z-|| < €. The sequences (w;), (u.), and (z,) are all bounded, so by
taking subsequences we can assume w, approaches some nonzero vector w,
z, approaches some vector z, and u, approaches —z.

Now, using the sum rule again we observe

Ur € 8(1('111, h())(v'r) + 8a<wr - w, h())('UT)

for each 7. The local Lipschitz constant of the function (w, — w, h(-)) tends
to zero, so since 9, (w, h(-)) is a closed multifunction at = (by Section 6.4,
Exercise 5) we deduce

—2z € Oy (w, h(-))(x).
Similarly, since 9,dg(+) is closed at z, we see
z € LO,ds(z) C N&(x)

by Exercise 4, and this contradicts the assumption of the theorem. O

This result strengthens and generalizes the elegant test of Theorem
7.1.5, as the next result shows.

Corollary 7.3.4 (Surjectivity and metric regularity) If h is strictly
differentiable at the point x in S and

(Vh(z)*) "' (N§(x)) = {0}

or, in particular,

Vh(z)(Ts(z)) =Y

then h is metrically regular on S at x.
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Proof. Since it is easy to check for any element w of Y the function
(w, h(-)) is strictly differentiable at  with derivative Vh(z)*w, the first con-
dition implies the result by Theorem 7.3.3. On the other hand, the second
condition implies the first, since for any element w of (Vh(z)*)~'(NZ(z))
there is an element z of Ts(x) satisfying Vh(z)z = w, and now we deduce

[wl* = (w,w) = (w, Vh(z)z) = (Vh(z)*w,z) <0

using Exercise 4, so w = 0. a

As a final extension to the idea of metric regularity, consider now a
closed set D C Y containing h(z). We say h is metrically regular on S at
T with respect to D if there is a real constant k£ such that

dsnh-1(y+D)(2) < kdp(h(2) —y)

for all points z in S close to z and vectors y close to 0. Our previous
definition was the case D = {h(z)}. This condition estimates how far a
point z € S is from feasibility for the system

h(z)ey+ D, z€S8,
in terms of the constraint error dp(h(z) — y).
Corollary 7.3.5 If the point x lies in the closed set S C E with h(z) in

the closed set D C'Y, and no nonzero element w of Nj(h(x)) satisfies the
condition

0 € 8a(w, h(-))(z) + N§(x),
then h is metrically reqular on S at x with respect to D.
Proof. Define a function »: U x Y — Y by h(z,y) = h(z) —y, a set
S =S8 x D, and a point T = (z, h(z)). Since by Exercise 5 we have
N§(@) = Ng(z) x Np(h(z))
and B
Ba(w, h(-))(Z) = Ba(w, h(-))(z) x {—w}

for any element w of Y, there is no nonzero w satisfying the condition
0e aa<w7 E())(E) + Ng(f)v

s0 h is metrically regular on S at Z by Theorem 7.3.3 (Limiting subdiffer-
ential and regularity). Some straightforward manipulation now shows h is
metrically regular on S at z with respect to D. o

The case D = {h(z)} recaptures Theorem 7.3.3.

A nice application of this last result estimates the distance to a level
set under a Slater-type assumption, a typical illustration of the power of
metric regularity.
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Corollary 7.3.6 (Distance to level sets) If the function g : U — R is
locally Lipschitz around a point x in U satisfying

g(x) =0 and 0 ¢ d,9(x)
then there is a real constant k > 0 such that the estimate
dg-1(—r,)(2) < kg(2)*
holds for all points z in E close to x.

Proof. Let S C U be any closed neighbourhood of  and apply Corollary
7.3.5 with h =g and D = -Ry. O

Exercises and Commentary

In many circumstances, metric regularity is in fact equivalent to weak met-
ric regularity (see [25]). The power of the limiting subdifferential as a tool
in recognizing metric regularity was first observed by Mordukhovich [144];
there is a comprehensive discussion in [145, 168].

1. * Prove Lemma 7.3.1.
2. * Assume h(z) # 0.

(a) Prove
O-IR()ll(=) = - (in(@)]| = h(2), h(-)) ().
(b) Prove the analogous result for the limiting subdifferential. (You
may use the Limiting subdifferential sum rule (6.4.4).)

3. (Metric regularity and openness) If h is metrically regular on S
at x, prove h is open on S at x; that is, for any neighbourhood U of
x we have h(z) € int h(U N S).

4. ** (Limiting normals and distance functions) Given a point z
in E, suppose y is a nearest point to z in S.

(a) If 0 < a < 1, prove the unique nearest point to az + (1 — a)y in
S is y.

(b) For z not in S, deduce every element of 0_dg(z) has norm one.

(c) For any element w of E, prove

ds(z +w) < dg(z) +ds(y + w).

(d) Deduce 9_dg(z) C 0_ds(y).
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Now consider a point x in S.

(e) Prove ¢ is an element of 9,ds(z) if and only if there are se-
quences (z") in S approaching z, and (¢") in E approaching ¢
satisfying ¢" € _dg(z") for all r.

(f) Deduce Ry 0,ds(x) C N&(x).

(g) Suppose ¢ is an element of _dg(x). For any real ¢ > 0, ap-
ply Section 6.4, Exercise 3 (Local minimizers) and the Limiting
subdifferential sum rule to prove

@ € (||¢]] + €)0uads(x) + €B.
y taking limits, deduce
(h) By taking limits, ded
Né(z) = Ry0.ds(x).
(i) Deduce
Ng(z) = cl(conv Ng(x)),
and hence
Ts(z) = Ng(z)~.
(Hint: Use Section 6.4, Exercise 7 (Limiting and Clarke subdif-
ferentials).)
(j) Hence prove the following properties are equivalent:
(i) Ts(m) =E.
(i) Ng(z) = {0}.
(iii) z € int S.
5. (Normals to products) For closed sets S C E and D C Y and
points x in S and y in D, prove

Ngxp(®,y) = Ng(z) x Np(y).

6. * Complete the remaining details of the proof of Corollary 7.3.5.
7. Prove Corollary 7.3.6 (Distance to level sets).
8. (Limiting versus Clarke conditions) Define a set

S ={(u,v) €ER*|u<0orv<0}

and a function h : R?> — R by h(u,v) = v + v. In Corollary 7.3.4
(Surjectivity and metric regularity), prove the limiting normal cone
condition holds at the point x = 0, and yet the Clarke tangent cone
condition fails.
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9. ** (Normals to level sets) Under the hypotheses of Corollary 7.3.6
(Distance to level sets), prove

Ngfl(—R+)(x) = R+8ag(x).

(Hint: Use Exercise 4 and the Max rule (Section 6.4, Exercise 10(g).)
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7.4 Second Order Conditions

Optimality conditions can be refined using second order information; we
saw an early example in Theorem 2.1.5 (Second order conditions). Because
of the importance of curvature information for Newton-type methods in
numerical optimization, second order conditions are widely useful.

In this section we present prototypical second order conditions for con-
strained optimization. Our approach is a simple and elegant blend of con-
vex analysis and metric regularity.

Consider an open set U C E, a Euclidean space Y. Given any function
h : U — Y that is Fréchet differentiable on U, the gradient map Vh is a
function from U to the vector space L(E,Y) of all linear maps from E to
Y with the operator norm

1Al = max [[Az]| (A € L(E,Y)).

If this map Vi is itself Fréchet differentiable at the point Z in U then we
say h is twice Fréchet differentiable at Z: the gradient V2h(Z) is a linear
map from E to L(E,Y), and for any element v of E we write

(V2h(z)v)(v) = V2h(Z)(v, ).

In this case h has the following quadratic approximation at Z:
1
h(Z +v) = h(Z) + Vh(Z)v + 5v2h(:z~)(u, v) + o(||v||?) for small v.

We suppose throughout this section that the functions f : U — R and
h are twice Fréchet differentiable at Z, and that the closed convex set S
contains . We consider the nonlinear optimization problem

inf{f(z) | h(z) =0, z € S}, (7.4.1)
and we define the narrow critical cone at T by
C@)={deRy(S—7)|Vf(z)d <0, Vh(Z)d = 0}.

Theorem 7.4.2 (Second order necessary conditions) Suppose that
the point T is a local minimum for the problem (7.4.1), that the direction
d lies in the narrow critical cone C(Z), and that the condition

0 € core (VA(Z)(S — T)) (7.4.3)
holds. Then there exists a multiplier A in Y such that the Lagrangian

L(-) = f(-) + (A h(4)) (7.4.4)
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satisfies the conditions
VL(z) € —Ng(Z) (7.4.5)

and
V2L(z)(d,d) > 0. (7.4.6)

Proof. Consider first the convex program
inf{Vf(Z)z | Vh(Z)z = —V?h(Z)(d,d), z € Ry (S — )} (7.4.7)

Suppose the point z is feasible for problem (7.4.7). It is easy to check for
small real ¢ > 0 the path

42
z(t) =T +td+ 57

lies in S. Furthermore, the quadratic approximation shows this path almost
satisfies the original constraint for small ¢:

h(Z) + tVh(z)d + g(Vh(a_c)Z + V2h(Z)(d, d)) + o(t?)
= o(t?).

h(z(t))

But condition (7.4.3) implies in particular that Vh(Z)Ts(Z) = Y; in fact
these conditions are equivalent, since the only convex set whose closure is
Y is Y itself (see Section 4.1, Exercise 20(a) (Properties of the relative
interior)). So, by Theorem 7.1.5 (Surjectivity and metric regularity), h is
(weakly) metrically regular on S at Z. Hence the path above is close to
feasible for the original problem: there is a real constant k such that, for
small ¢t > 0, we have

dsnn-1(0)(2(t)) < kllh(z(®)]| = o(t?).
Thus we can perturb the path slightly to obtain a set of points
{Z(t) |t >0} c SNh™'(0)

satisfying ||Z(t) — z(t)|| = o(t?).
Since 7 is a local minimizer for the original problem (7.4.1), we know

£(2) < FG(0) = (@) + 19 1@+ 5 (9@ + V@), d) + o)

using the quadratic approximation again. Hence V f(Z)d > 0, so in fact
Vf(z)d = 0, since d lies in C(z). We deduce

Vf(z)z+ V2f(Z)(d,d) > 0.
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We have therefore shown the optimal value of the convex program (7.4.7)
is at least —V2f(7)(d, d).

For the final step in the proof, we rewrite problem (7.4.7) in Fenchel
form:

inf {((VI(@),2) + 0r, (5-2)(2)) + O(_v2n(@)a,ay (VA(E)2)} .

Since condition (7.4.3) holds, we can apply Fenchel duality (3.3.5) to deduce
there exists A € Y satisfying

—V2f(@)(d,d) < =0, (5_z)(=VRE) A = V(Z)) = 6]_voneeya,ay (V)
= —Ong(@) (~VR(Z)*'A = Vf(Z)) + (A, V*h(Z)(d, d)),

whence the result. o

Under some further conditions we can guarantee that for any multiplier
A satisfying the first order condition (7.4.5), the second order condition
(7.4.6) holds for all directions d in the narrow critical cone (see Exercises
2 and 3).

We contrast the necessary condition above with a rather elementary
second order sufficient condition. For this we use the broad critical cone at
Z:

C(z) ={d € Ks(z) | Vf(z)d <0, Vh(Z)d = 0}.

Theorem 7.4.8 (Second order sufficient condition) Suppose for each
nonzero direction d in the broad critical cone C(Z) there exist multipliers
uin Ry and A in'Y such that the Lagrangian

L(-) = uf(:) + (A ()
satisfies the conditions
VL(z) € —Ng(z) and V*L(z)(d,d) > 0.

Then for all small real § > 0 the point Z is a strict local minimizer for the
perturbed problem

inf{f(z) — 6|z — 7|2 | h(z) = 0, z € S}. (7.4.9)

Proof. Suppose there is no such 4, so there is a sequence of feasible
solutions (z,) for problem (7.4.9) converging to Z and satisfying

lim sup flar) = F(@) <0. (7.4.10)

r—oo o —Z|?
By taking a subsequence, we can assume

lim 2" _JE =d,
r—oo ||z, — Z|
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and it is easy to check the nonzero direction d lies in C(z). Hence by
assumption there exist the required multipliers y and .
From the first order condition we know

VL(Z)(z, — %) >0,
so by the quadratic approximation we deduce as 1 — oo
u(f(zr) — f(@)) = L(=r) - L(2)
> %VQE(E)(@",« — 2,2 — 7) + ol — 2|%).

Dividing by ||z, — Z||? and taking limits shows

o fn) = FE) O 1oar
liminf ————* > —-V*L(z)(d,d) > 0,
plimint K2 L) > S0 T(@)(a. 0
which contradicts inequality (7.4.10). i

Notice this result is of Fritz John type (like Theorem 2.3.6): we do not
assume the multiplier p is nonzero. Furthermore, we can easily weaken the
assumption that the set S is convex to the condition

(S —z)NeB C Ks(z) for some € > 0.

Clearly the narrow critical cone may be smaller than the broad critical
cone, even when S is convex. They are equal if S is quasipolyhedral at T:

Ks(z) =R4 (5 —2)

(as happens in particular when S is polyhedral). However, even for un-
constrained problems there is an intrinsic gap between the second order
necessary conditions and the sufficient conditions.

Exercises and Commentary

Our approach here is from [25] (see also [12]). There are higher order ana-
logues [11]. Problems of the form (7.4.11) where all the functions involved
are quadratic are called quadratic programs. Such problems are particularly
well-behaved: the optimal value is attained when finite, and in this case
the second order necessary conditions developed in Exercise 3 are also suf-
ficient (see [21]). For a straightforward exposition of the standard second
order conditions, see [132], for example.

1. (Higher order conditions) By considering the function
1
sgn(z) exp ( - ﬁ)

on R, explain why there is no necessary and sufficient nth order
optimality condition.
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* (Uniform multipliers) With the assumptions of Theorem 7.4.2
(Second order necessary conditions), suppose in addition that for all
directions d in the narrow critical cone C(z) there exists a solution z
in E to the system

Vh(z)z = —V?h(Z)(d,d) and z € span (S — 7).

By considering problem (7.4.7), prove that if the multiplier A\ satis-
fies the first order condition (7.4.5) then the second order condition
(7.4.6) holds for all d in C(Z). Observe this holds in particular if
S = E and Vh(Z) is surjective.

** (Standard second order necessary conditions) Consider the
problem

inf f(x)
subject to  gi(z) < 0 fori=1,2,...,m
hj(x) = 0 for j =1,2,...,¢ (7.4.11)
r € R™,

where all the functions are twice Fréchet differentiable at the local
minimizer Z and the set of gradients

A={Vg(@) i€ I@)} U{Vh(@) |j=12,....q)

is linearly independent (where we denote the set of indices of the
active inequality constraints by I(Z) = {i | g;(z) = 0}, as usual).
By writing this problem in the form (7.4.1) and applying Exercise 2,
prove there exist multipliers p; in Ry (for ¢ in I(Z)) and A1, Az, ..., Aq
in R such that the Lagrangian

L()=f()+ Z Nz’gi“‘Z’\th
j=1

i€1(T)
satisfies the conditions

VL(Z) =0 and V2L(z)(d,d) >0 for all d in A*.

(Narrow and broad critical cones are needed) By considering
the set
S={zeR?| |z >2%}
and the problem
inf{zy —az?|z € S}

for various values of the real parameter «, explain why the narrow
and broad critical cones cannot be interchanged in either the Second
order necessary conditions (7.4.2) or the sufficient conditions (7.4.8).
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5. (Standard second order sufficient conditions) Write down the
second order sufficient optimality conditions for the general nonlinear
program in Exercise 3.

6. * (Guignard-type conditions) Consider the problem of Section
7.2, Exercise 10,

inf{f(z) | h(z) € R, z € S},

where the set R C Y is closed and convex. By rewriting this problem
in the form (7.4.1), derive second order optimality conditions.
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