
Chapter 7

Karush-Kuhn-Tucker
Theory

7.1 An Introduction to Metric Regularity

Our main optimization models so far ar e inequ ality-const rained . A lit tl e
thought shows our techniques are not useful for equality-const rained prob­
lems like

inf{J(x ) Ih(x ) = O}.

In this sect ion we study such problems by linearizing the feasible region
h-1 (O) using the cont ingent cone.

T hroughout this section we consider an open set U c E , a closed set
S C U , a Euclidean space Y , and a cont inuous map h : U ---. Y . T he
rest ricti on of h to S we denote h is . T he following easy result (Exercise 1)
suggests our direction .

Proposition 7.1.1 If h is Frechet differentiable at the point x E U then

K h - l (h (x ) )(X ) c N ('Vh(x)).

Our aim in this sect ion is to find condit ions guarantee ing equality in t his
result .

Our key to ol is the next result . It states that if a closed fun ction attains
a value close to it s infimum at some point then a near by poin t minimizes
a slight ly perturbed function .

Theore m 7.1.2 (E keland var iational principle ) Suppose the function
f : E ---. (00, +00] is closed and the point x E E satisfie s f (x ) :S inf f + Efor
some real E > O. Then for any real ), > 0 there is a point vE E satisfying
the conditions
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154 7. Karush-Kuhn-Tucker Theory

(a) Ilx - vii ::::: >.,

(b) f (v ) ::::: f (x ), and

(c) v is the uni que m inim izer of the funct ion f (· ) + (E/ >.)II · -vi i·

Proof. We can assume f is prop er , and by assumption it is bounded
below. Since the function

E
f (·) + - II . - xii>.

t herefore has compact level sets, it s set of minimizer s M c E is nonempty
and compact. Choose a minimizer v for f on M. Then for points z =I=- v in
M we know

E
f( v) ::::: f( z) < f( z) + ~l l z - vii,

while for z not in M we have

E E
f (v ) + ~ ll v - xii < f (z ) + ~ll z - xii·

P art (c) follows by the t riangle inequali ty. Since v lies in M we have

E E
f (z ) + ~ lI z - xii ~ f (v ) + ~ l l v - xii for a ll z in E .

Setting z = x shows t he inequali ti es

. E
f (v ) + E ~ inf f + E ~ f (x ) ~ f (v) + ~ II v - x II ·

P roper ti es (a) and (b) follow. D

As we shall see, pr ecise calculation of t he cont ingent cone K h- ' (h(x» (X)
requires us first to bound t he distance of a point z to t he set h-1 (h(x )) in
terms of the fun ction value h (z ). T his leads us to t he noti on of "met ric
regularity" . In thi s sect ion we present a somewhat simplified ver sion of this
idea , whi ch suffices for most of our purposes; we defer a mor e comprehensive
treatment to a later section . We say h is weakly m etri call y regular on S at
the point x in S if there is a real constant k su ch t hat

dSnh- ' (h(x»(Z) ::::: k llh(z) - h(x)11 for all z in S close to x .

Lemma 7.1.3 Suppose 0 E Sand h (O ) = o. If h is not weakly m etri call y
regular on S at zero then th ere is a sequen ce V r ---. 0 in S such that h (vr ) =I=- 0
f or all r , an d a strictly posit ive sequence 6r ! 0 su ch tha t th e function

is m inimized on S at v r .
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Proof. By definition there is a sequence x r --+ 0 in S such that

For each index r we apply the Ekeland principle with

f = Ilhll + 6s, E = Ilh(xr) ll , A = minjr e, VE} , and x = X r

to deduce the ex istence of a po int u; in S such that

(a) Ilx r - vr ll :::;min {r llh(xr) II,Jllh(xr) ll} and

(c) u; minimizes the function

Il h (·)11+ max {r- 1
, J llh(xr)ll} II . - vr ll

on S .
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(7.1.4)

Property (a) shows V r --+ 0, whi le (c) reveals the minimizing property of
Vr . Finally, inequality (7.1.4) and property (a) prove h(vr ) i= o. D

We can now present a convenient condition for weak metric regularity.

Theorem 7.1.5 (Surjectivity and metric regu larity) If h is strictly
differentiable at the point x in Sand

'Vh(x)(Ts(x)) = Y

then h is weakly metrically regular on S at x.

Proof. Notice first h is locally Lipschitz around x (see Theorem 6.2.3) .
Without loss of generality, suppose x = 0 and h(O) = o. If h is not weakly
metrically regular on S at zero then by Lemma 7.1.3 there is a sequence
V r --+ 0 in S such that h( vr ) i= 0 for all r, and a real sequence 6r 10 such
that the function

Ilh(·)11+ 6r ll . - vr ll

is minimized on S at o.: Denoting the local Lipschitz constant by L, we
deduce from the sum rul e (6.1.6) and the Exact p enalization proposition
(6.3.2) the condition

Hence there are clements Ur of oo( llh ll)(vr) and W r of LOods(vr) such that
u; + ui; approaches zero.

By choosing a subsequence we can assume
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and an exercise then shows u,. -. (\7h(O))*y . Since t he Clarke subdiffere n­
tial is closed at zero (Section 6.2, Exercise 12) , we deduce

-(\7h(O))*y E Loods(O) c Ns (O).

However , by assumpt ion there is a nonzero element p of Ts(O) such that
\7h(O)p = -y, so we arrive at the cont radict ion

0 2: (p, -(\7h(O))*y) = (\7h(O)p, -y) = IIyl12> 0,

which completes the proof.

We can now prove the main result of t his section.

D

Theorem 7.1.6 (Liusternik) If h is strictly differentiable at the point x
and \7h( x ) is surj ective then the set h - 1 (h( x)) is tang entially regular at x
and

Kh - l (h (x»(X) = N (\7h(x )).

Proof. Assume without loss of gener ality t hat x = 0 and h(O) = O. In
light of Proposition 7.1.1 , it suffices to prove

Fix any eleme nt p of N (\7h(O)) and consider a sequence x" -. 0 in h- 1(O)

and t,. lOin R ++ . The previous result shows h is weakly me trically regular
at zero, so there is a constant k such that

holds for all large r , and hence there are points z" in h- 1(O) satisfying

If we define directions p" = t;:l( z" - z") then clearly the points x" + t ,.p"
lie in h - 1 (0) for lar ge r , and since

we deduce p E T h- l (O)(O).

Ilx"+ t ,.p - z" II
t ,.

< kllh(x" + t,.p) - h(x ")11
t ,.

-. kll(\7h(O ))pll

= 0,

D



7.1 An In troduction to Metric Regularity 157

Exercises and Commentary

Liusternik 's original study of tangent spaces appeared in [130J . Closely
related ideas were pursued by Graves [85] (see [65] for a good survey) . The
Ekeland principle first appe ared in [69], motivated by the st udy of infin ite­
dimensional problems where te chniques based on com pact ness might be
unavailable. As we see in t his section, it is a powerful idea even in finite
dim ensions; the simplified version we present here was obs erved in [94]. See
also Exercise 14 in Section 9.2. The inversion technique we use (Lemma
7.1.3) is based on the approach in [101J. The recognition of "met ric" regu­
larity (a term perhap s best suited to nonsmooth analys is) as a central idea
began lar gely with Robinson ; see [162, 163] for example. Many equivalences
are discussed in [5, 168J.

1. Suppose h is Frechet differentiable at t he point x ES.

(a) P rove for any set D :::) h(S) the inclusion

'lh(x)Ks( x) c KD(h(x)) .

(b) If h is constant on S, deduce

K s( x) c N ('lh(x )).

(c) If h is a real funct ion and x is a local minimizer of h on S, prove

- 'lh(x) E (Ks (x ))-.

2. (Lipschitz extension) Suppose t he real function f has Lipschitz
const ant k on t he set C c E. By considering t he infimal convolut ion
of the fun ctions f +00 and kll·ll , prove there is a function ! : E ----+ R
with Lips chitz constant k that agrees with f on C . Prove fur thermore
t hat if f and C are convex then ! can be assumed convex.

3. * (Closure and the Ekeland principle) Given a subset S of E ,
suppose t he concl usion of Ekeland 's principle holds for all functions
of t he form g + Os where the function g is cont inuous on S. Deduce
S is closed. (Hint: For any point x in cl S, let g = II . - xii .)

4. ** Suppose h is strictly differentiabl e at zero and satisfies

P rove u; ----+ ('lh(O)) *y. Write out a shorte r proof when h is continu­
ously differ entiable at zero .

5. ** Int erpret Exercise 27 (Conical op en mapping) in Section 4.2 in
terms of metric regularity.
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6. ** (Transversality) Suppose the set V C Y is open and the set
ReV is closed . Suppose furthermore h is strictly differentiable at
the point x in S with h(x) in Rand

\7h(x)(Ts(x)) - TR(h(x)) = Y . (7.1.7)

(a) Define the function g : U x V ~ Y by g(z , y) = h(z) - y. Prove
g is weakly metrically regular on S x R at the point (x, h(x)) .

(b) Deduce the existence of a constant k' such that the inequality

d(SXR)ng-1(g(x,h(x)))(Z, y) :::; k'llh(z) - yll

holds for all points (z,y) in S x R close to (x,h(x)).

(c) Apply Proposition 6.3.2 (Exact penalization) to deduce the ex­
istence of a constant k such that the inequality

d(SXR)ng-1(g(x,h(x)))(Z, y) :::; k( llh(z) - yll + ds(z) + dR(y))

holds for all points (z,y) in U x V close to (x,h(x)) .

(d) Deduce the inequality

dSnh-l(R)(Z) :::; k(ds(z) + dR(h(z)))

holds for all points z in U close to x.

(e) Imitate the proof of Liusternik's theorem (7.1.6) to deduce the
inclusions

and

(f) Suppose h is the identity map, so

Ts(x) - TR(X) = E.

If either R or S is tangentially regular at x, prove

KRns(x) = KR(x) n Ks(x).

(g) (Guignard) By taking polars and applying the Krein-Rutman
polar cone calculus (3.3.13) and condition (7.1.7) again, deduce

NSnh-l(R)(X) C Ns(x) + (\7h(x))*NR(h(x)) .



7.1 An Introduction to Metric Regularity 159

(h) If C and D are convex subsets of E satisfying a E core (C - D)
(or ri C n ri D i= 0) , and the point x lies in C n D, use part (e)
to prove

Tc nD( X) = Tc(x) n TD(x) .

7. •• (Liust ernik via inverse functions) We first fix E = R " . The
classical inverse fun ction theorem states that if the map 9 : U -+ R n

is continuously differentiable then at any point x in U at which V'g(x)
is invertible, x has an op en neighbourhood V whose image g(V) is
open, and the restricted map glv has a continuously differ entiable
inverse satisfying the condition

V' (gIV)-l (g(x)) = (V'g(X))-l .

Consider now a cont inuously differentiable map h : U -+ R m, and
a point x in U with V'h( x ) surjective, and fix a direction d in the
null space N(V'h(x)) . Choose any (n x (n - m)) matrix D making
the matrix A = (V'h(x) , D) invertible, define a function 9 : U -+ R "
by g(z) = (h(z) , Dz) , and for a small real 8 > a define a function
p : (-8,8) -+ R " by

pet) = g-l(g(X) + tAd) .

(a) Prove p is well-defined providing 8 is small.

(b) Prove the following properties:

(i) p is continuously differentiable .

(ii) pea) = x .
(iii) p'ea) = d.
(iv) h(p(t)) = hex) for all small t .

(c) Deduce that a direction d lies in N(V'h(x)) if and only if there
is a function p : (-8,8) -+ R n for some 8 > a in R satisfying
the four conditions in part (b) .

(d) Deduce K h- ' (h (x )) ( X ) = N(V'h(x)) .
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7.2 The Karush-Kuhn-Tucker Theorem

The central result of optimization t heory describes first order necessary
op timality condit ions for the general nonlinear problem

inf{f(x) IXES }, (7.2.1)

where, given an op en set U c E , t he objective fun ction is f : U ---+ R and
the feasible region S is described by equality and inequali ty constraint s:

S = { x E U Igi(X) :::; 0 for i = 1,2 , .. . , m, h(x) = O}. (7 .2.2)

The equality constraint map h : U ---+ Y (where Y is a Euclidean space)
and the inequality const raint fun ctions gi : U ---+ R (for i = 1, 2, .. . , m ) are
all continuous . In this section we derive necessary cond it ions for t he point
x in S to be a local minimizer for the problem (7.2.1) .

In outline, th e approach takes t hree steps. We first ex tend Liust ernik 's
theorem (7.1.6) to describe the cont inge nt cone K s(x) . Next we calculate
t his cone 's polar cone using the Farkas lemma (2.2 .7) . F inally, we apply
the Cont ingen t necessary condit ion (6 .3.10) to derive the result .

As in our development for the inequali ty-constrained problem in Section
2.3, we need a regulari ty condition. Once again , we deno t e the set of indices
of the ac t ive inequ ality cons traints by 1( x) = {i I gi( X) = O} .

Assumption 7.2.3 (The Mangasarian-Fromovitz constraint qual­
ification) Th e active constraint functions gi (for i in 1(x)} are Frechei
differentiable at the point ii , the equality cons train t map h is strictly differ­
entiable, with a surjective gradient , at x, an d the set

is nonempty.

{p E N (\!h (x )) I (\!gi (X),P) < 0 fo r i in 1(x)} (7.2 .4)

Notice in par ti cular that the set (7.2.4) is nonempty in t he case where the
map h : U ---+ R q has components h I , h2 , ..• , hq and the set of gradient s

(7 .2.5)

is linearly indep endent (Exercise 1).

Theorem 7.2.6 Suppose the Mangasarian -Promovitz cons train t qualifica­
tion (7.2.3) holds. Th en the contingent cone to th e f easible region S defin ed
by equation (7.2.2) is given by

K s(x) = {p E N(\!h (x )) I (\!gi (X), p) :::; 0 fo r i in 1(x)}. (7 .2.7)
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Proof. Denote the set (7.2.4) by K and the right hand side of formula
(7.2.7) by K . The inclusion

Ks(x) c K

is a straightforward exercise. Furthermore, since K is nonempty, it is easy
to see K = cl K. If we can show K c K s(x) then the result will follow
since the contingent cone is always closed .

To see K c Ks(x) , fix an element p of K. Since p lies in N( '\7h(x»,
Liusternik's theorem (7.1.6) shows p E Kh-l(O)(X). Hence there are se­
quences t; lOin R ++ and pT ---+ P in E satisfying h(x + tTpT) = 0 for all
r. Clearly x + tTpT E U for all large r, and we claim gi( X + tTpT) < O. For
indices i not in I( x) this follows by cont inuity, so we suppose i E I( x) and
gi( X+ tTpT) ~ 0 for all r in some subsequenc e R of N. We then obtain the
contradiction

o = lim
r ---+ oo in R

gi( X + tTpT) - gi(X) - ('\7gi( X), tTp" )

tT1 1pT11
> _ ('\7gi(X), p)
- Ilpll
> O.

The result now follows . o

Lemma 7.2.8 Any linear maps A : E ---+ R q and G : E ---+ Y satisfy

{x E N(G) IAx < O} - = A*R~ + G*Y.

Proof. This is an immediate application of Section 5.1, Exercise 9 (Poly­
hedral cones) . 0

Theorem 7 .2.9 (Karush-Kuhn-Tucker cond it ions) Suppos e x is a
local minimizer for problem {7.2.1} and the objective function f is Frech et
differ'entiable at X. If the Manqasarian-Fromooitz constraint qualification
{7.2.3} holds then there exist multipliers Ai in R + (for i in I( x» and {-L in
Y satisfying

'\7 f (x ) + L Ai'\7gi( x) + '\7h(x)*{-L = O.
i E/e x)

Proof. The Contingent necessary condition (6.3.10) shows

- '\7 f( x) E Ks(x) -

= {p E N('\7h(x» 1 ('\7gi(x ),p) ~ 0 for i in I(x)} -

= L R + '\7gi(x ) + '\7h(x )*Y
i E/ex)

using Theorem 7.2.6 and Lemma 7.2.8.

(7.2.10)

o
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Exercises and Commentary

A survey of the history of these results may be found in [158]. The Mangas­
arian-Fromovitz condition orig inated with [133J , whil e the Karush-Kuhn­
Tucker conditions first appeared in [111J and [117J . The idea of penalty
functions (see Exercise 11 (Quadratic penalties» is a common technique
in optimization. The related notion of a barrier penalty is crucial for inte­
rior point methods; examples include the penalized linear and semidefinite
programs we considered in Section 4.3, Exercise 4 (Examples of duals) .

1. (Linear independence implies Mangasarian-Fromovitz) If the
set of gradients (7.2.5) is linearly independent , then by considering
the equations

(\l9i (X), p) = -1 for i in I(x)

(\lhj (x ), p) =0 forj=1,2, . .. , q,

prove the set (7.2.4) is nonempty.

2. Consider the proof of Theorem 7.2.6.

(a) Prove K s( x) c K.

(b) If K is nonempty, prove K = clK.

3. (Linear constraints) If the functions 9i (for i in I (x» and hare
affine , prove the contingent cone formula (7.2.7) holds.

4. (Bounded multipliers) In Theorem 7.2.9 (Karush-Kuhn-Tucker
conditions), prove the set of multiplier vectors (A, f.L) satisfying equa­
tion (7.2.10) is compact.

5. (Slater condition) Suppose the set U is convex , the functions

91,92 , . . . , 9m : U ~ R

are convex and Frechet differentiable, and the function h : E ~ Y is
affine and surjective. Suppose further there is a point i: in h- 1(0)

satisfying 9i(i:) < 0 for i = 1,2, . . . , m . For any feasible point ii: for
problem (7.2.1) , prove the Mangasarian-Fromovitz constraint quali­
fication holds .

6. (Largest eigenvalue) For a matrix A in S" , use the Karush-Kuhu­
Tucker theorem to calculate

sup{xT Ax I llxll = 1, x ERn} .
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7. * (Largest si ngu lar value [100, p . 135)) Given any m x n matrix
A, consider the optimization problem

and the matrix

a = sup{xT Ay IIIxI1 2 = 1, IIyI1 2 = I}

~ [ 0 A]A = AT 0 .

(7.2 .11)

(a) If IL is an eigenvalue of A , prove - JL is also.

(b) If JL is a nonzero eigenvalue of A , use a corresponding eigen­
vector to construct a feasible solution to problem (7.2.11) with
objective value IL .

(c) Deduce a 2: A1(1) .

(d) Prove problem (7.2.11) has an optimal solution.

(e) Use the Karush-Kuhn-Tucker theorem to prove any optimal
solution of problem (7.2.11) corr esponds to an eigenvector of A.

(f) (Jordan [108)) Ded uce a = A1(1 ). (This number is called the
largest singular valu e of A .)

8. * * (Hadamard's inequality [88)) The matrix wit h columns X l , x 2
,

n · R " d t b (1 2 n) P ( -1 - 2 - n)• • • ,X In we eno e y x , X , • . • , x . rove X , x , .. . , X

solves the problem

inf
subject to

- det(x1 , x 2 , . .. , x n )

II x
i

l1
2

xl , x 2, . . . , .Tn
1 for i = 1,2, . . . ,n

E R n

if and only if the matrix (Xl , x2, . .. , xn ) has determinant equal to
one and has columns forming an orthonormal basis, and deduce the
inequality

n

det(xl,x2
, .. . ,xn

) < II Ilxi ll·
i = 1

9. (Nonexistence o f multipliers [77)) Define a function sgn : R -> R
by

sgn(v) = { ~
-1

and a function h : R 2 -> R by

if v > 0

if v = °
if v < °

(a) Prove h is Frechet differentiable at (0,0) with derivative (0,1) .
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(b) P rove h is not cont inuous on any neighbourhood of (0, 0) , and
deduce it is not st rictly differenti abl e at (0, 0) .

(c) P rove (0, 0) is optimal for the problem

inf{j (u , v) Ih(u ,v ) = O} ,

where f eu,v) = u, and yet there is no real A satisfying

V'f (O , 0) + AVh(O ,0) = (0, 0) .

(Exercise 14 in Secti on 8.1 gives an approach to weakening t he con­
di tions required in this section. )

10. * (Guignard optimality conditions [87]) Suppose t he point x is
a local minimizer for the optimization problem

inf{j(x) Ihex ) E R, XES }

where R c Y. If t he functions f and h are st rictly differenti able at
x and t he tran sversali ty condit ion

holds, use Section 7.1, Exercise 6 (Tr ansversality) to prove the opti­
mali ty condit ion

oE V'f( x) + V'h (x )*N R(h(x)) + Ns(x).

11. ** (Quadratic penalties [136]) Take t he nonlinear program (7.2.1)
in the case Y = R q and now let us ass ume all the fun ctions

are cont inuously differenti abl e on the set U. For positive integers k
we define a function Pk : U -+ R by

m q

Pk(X) = f(x) + k( i)gt(x) )2 + 2:)hj (x))2) .
i=l j=l

Suppose the point x is a local minimizer for the problem (7.2.1). Then
for some compact neighbourhood W of ii in U we know f (x ) 2: f (x )
for all feasibl e points x in W. Now define a fun ction Tk : W -+ R by

and for each k = 1, 2, . . . choose a point x k minimizing Tk on W .



lim gt(xk
) = 0 for i = 1,2, . .. , m

k~oo

7.2 The Karush-Kuhn-Tucker Theorem

(a) Prove rk(xk) ::; f(x) for each k = 1,2, ... .

(b) Deduce

and
lim hj(xk) = 0 forj=1 ,2, .. . ,q.
k~oo

(c) Hence show x k
--+ X as k --+ 00.

(d) Calculate \7rk(x).

(e) Deduce

m q

- 2(x k - x) = \7 f(x k) + L A~\7gi(xk) + LJ-LJ\7hj(xk)

i=l j=l

for some suitable choic e of vectors Akin R+ and J-Lk in R q.

(f) By taking a convergent subsequence of the vectors

165

show from parts (c) and (e) the existence of a nonzero vector
(AO , A, J-L) in R x R+ x Rq satisfying the Fritz John conditions:

(i) Aigi( X) = 0 for i = 1,2, .. . ,m.

(ii) Ao\7f(x) + 2::::1 Ai\7gi(X) + 2::j=l J-Lj\7hj( x) = O.

(g) Under the assumption of the Mangasarian-Fromovitz constraint
qualification (7.2.3) , show that the Fritz John conditions in part
(f) imply the Karush-Kuhn-Tucker conditions.
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7.3 Metric Regularity and the Limiting
Subdifferential

In Section 7.1 we presented a convenient t est for t he weak metric regularity
of a funct ion at a point in terms of the surjectivity of its strict derivative
there (Theorem 7.1.5). This te st , while adequate for most of our purposes,
can be richly refined usin g the limiting subdifferent ial.

As before, we consider an open set U c E , a Euclidean space Y, a
closed set S C U, and a funct ion h : U ----> Y which we ass ume throughout
thi s section is locally Lipschitz. We begin with the full definition of metric
regularity, strengthening the notion of Section 7.1. We say h is m etrically
regular on S at the point x in S if there is a real cons tant k such that the
est imate

dSn h-l(y )(z) ::; kllh( z) - yll
holds for all points z in S close to x and all vectors Y in Y close to h( x) .
(Before we only required this to be true when y = h( x) .)

Lemma 7.3.1 If h is not m etrically regular on S at x then there are se­
quences (vr) in S converging to x , (Yr) in Y converging to h( x ), and (lOr)
in R++ decreasing to zero such that, for each index r, we have h( vr ) f. Yr
and the function

Ilh(·) - Yrll + lOrll . -vr ll
is minimized on S at vr .

Proof. The proof is complete ly analogous to that of Lemma 7.1.3: we
leave it as an exercise. 0

We also need the following chain-ru le-type result; we leave the proof as
an exercise.

Lemma 7.3 .2 At any point x in E where h( x) f. 0 we have

Oallh (' ) II(x ) = oa(llh(x)II-1h(x) , h(-) )(x).

Using this result and a very similar proof to Theorem 7.1.5, we can now
exte nd the surjec t ivity and metric regul ari ty resul t .

Theorem 7.3.3 (Limiting subdifferential and regularity) If a point
x lies in S and no nonzero elem ent w of Y satisfies the condition

oE oa(w,h( ·»)(x) + Ns (x )

then h is m etrically regular on S at x .
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Proof. If h is not metrically regular , we can apply Lemma 7.3.1, so with
that notation the function

Ilh(-) - Yrll + Er ll . - vr ll

is minimize d on S at V r . By P roposit ion 6.3.2 (Exact penalization) we
deduce for large enough real L

o E oa( llh(·) - Yrll + Er ll · - vrll+ Lds(-)) (vr)
C oallh( ·) - Yrll(vr ) + ErB + LOads(vr)

for all r, using t he Limiting subdifferent ial sum rule (6.4.4) . If we wr ite
ui; = Ilh(vr ) - Yrll- 1(h(vr) - Yr) , we obtain by Lemma 7.3.2

so t here are elements U r in oa(wnh(·) )(vr) and Zr in LOads(vr) such that
Ilur + zr ll ::; froThe sequences (wr) , (ur) , and (zr) are all bounded , so by
taking subsequences we can ass ume ui; approaches some nonzero vector w ,
Zr approaches some vector z, and Ur approaches -z.

Now, using the sum rule again we observe

for each r . The local Lipschit z constant of the function (wr - W , h(·)) tends
to zero, so since oa(w, h( ·)) is a closed mul ti function at x (by Sect ion 6.4 ,
Exe rcise 5) we deduce

- Z E oa(w,h(·) )(x) .

Similarly, since oadS(-) is closed at x, we see

Z E Loads(x) c N'S (x )

by Exercise 4, and this contradicts the assumption of the t heorem. D

This result st rengt hens and generalizes the elegant test of Theorem
7.1.5, as the next resul t shows.

Corollary 7.3.4 (Surjectivity and metric regularity) If h is strictly
differentiable at th e point x in Sand

(V'h(X) *) -l(N'S (x)) = {O}

or, in particular,
V'h(x)(Ts(x )) = Y

then h is m etrically regular on S at x.
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Proof. Since it is easy to check for any element w of Y t he fun ction
(w, h( ·) ) is strictly differenti able at x with derivative \7h(x) *w, the first con­
dition implies the result by Theorem 7.3.3. On the other hand, the second
condition implies the first , since for any eleme nt w of (\7h( X)*)-l(N s(x))
there is an element z of Ts(x ) satisfying \7h(.r) z = w , and now we deduce

II wl12 = (w, w) = (w, \1h( x) z ) = (\7h(x )*w, z) ~ 0

using Exercise 4, so w = o. o

As a final ext ension to the idea of metric regularity, consider now a
closed set D eY containing hex) . We say h is m etrically regular on S at
x with respect to D if there is a real constant k such that

dSn h-' (y+D)(Z) ~ kdD(h(z) - y)

for all points z in S close to x and vectors y close to O. Our previous
definition was the case D = {hex)} . This condit ion est imates how far a
point z E S is from feasibility for the system

h(z ) E y+D, z E S ,

in terms of t he const raint error dD(h(z) - y).

Corollary 7 .3.5 If the point x lies in the closed set SeE with hex) in
the closed set DeY, and no nonzero element w of ND( h(x )) satisfies the
condition

o E Oa(w, he·))(x) + Ns (x ),

then h is metrically regular on S at x with respect to D .

Proof. Define a funct ion h : U x Y ----> Y by h(z ,y) = h(z) - y, a set
S = S x D , and a point x = (x ,h(x)) . Sinc e by Exercise 5 we have

N§(x) = Ns (x ) x N D(h(x ))

and
Oa(w, h( .))(x) = oa(w , h( ·) )(x) x {-w}

for any element w of Y , there is no nonzero w sa t isfying the condition

oE Oa(W ,h( .))(x) + N§(x) ,

so h is metrically regular on S at x by Theorem 7.3.3 (Limiting subdiffer­
ent ial and regularity) . Some straightforward manipulation now shows h is
metrically regular on S at x with resp ect to D. 0

The case D = {hex)} recaptures T heorem 7.3.3.
A nice application of t his last result estimates the dis t an ce to a level

set under a Slater-type assumption, a typi cal illustration of t he power of
metric regularity.
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Corollary 7.3 .6 (Distance to level se t s ) If the func tion 9 : U ~ R is
locally Lipschit z aroun d a point x in U satisfying

g(x ) = 0 and 0 tf- oag(x)

then there is a real constan t k > 0 such that the estimate

holds for all points z in E close to x.

Proof. Let S c Ube any closed neighbourhood of x and apply Corollary
7.3.5 with h = 9 and D = - R + . D

Exercises and Commentary

In many circumstances , me t r ic regularity is in fact equiva lent to weak met­
ric regularity (see [25]) . T he power of the limiting subdifferential as a tool
in recogni zing met ric regulari ty was first observed by Mordukhovich [144];
t here is a comprehensive discussion in [145, 168].

1. * P rove Lemma 7.3.1.

2. * Assume h(x ) =I- o.
(a) Prove

(b ) Prove the analogous resul t for t he limiting subdifferential. (You
may usc t he Limiting subdifferential sum rule (6.4 .4) .)

3. (Metric regularity and openness) If h is metrically regul ar on S
at x , prove h is open on S at x ; t ha t is, for any neighbour hood U of
x we have hex) E int h(UnS ).

4. ** (Limiting normals and distance functions) Given a point z
in E , suppose y is a near est point to z in S .

(a) If 0 ::; cx < 1, prove t he unique nearest po int t o o z + (1 - cx )y in
Sis y.

(b) For z not in S , deduce every element of 0_ ds (z ) has norm one.

(c) For any eleme nt w of E , prove

ds(z + w) ::; ds(z) + ds(Y + w).

(d) Deduce o_ds(z) c o _ ds (Y).
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Now consider a point x in S .

(e) Prove </> is an element of oadS(x) if and only if there are se­
quences (z") in S approaching x , and (</>1') in E approaching </>

satisfying </>1' E o_ds(x 1' ) for all r .

(f) Deduce R+oads(x ) C N'S(x) .

(g) Suppose </> is an element of o_os(x). For any real E > 0, ap ­
ply Section 6.4, Exercise 3 (Local minimizers) and t he Limiting
subdifferential sum rule to prove

(h) By taking limits, deduce

(i) Deduce
Ns(x) = cl (conv N'S(x)),

and hence
Ts(x) = N'S(x) -.

(Hint: Use Section 6.4, Exercise 7 (Limiting and Clarke subdif­
ferentials) .)

(j) Hence prove the following properties are equivalent:

(i) Ts(x) = E .
(ii) N'S(x) = {O} .

(iii) x E int S .

5. (Normals t o products) For closed sets Se E and De Y and
points x in Sand y in D, prove

N'SXD(X,y) = N'S(x) x ND(y) .

6. * Complet e the remaining details of the proof of Corollary 7.3.5.

7. Prove Corollary 7.3.6 (Distanc e to level sets) .

8. (Limiting versu s Clarke conditions) Define a set

S = {(u, v) E R 2 Iu :::; °or v < O}

and a function h : R 2
-+ R by h(u, v) = u + v . In Corollary 7.3.4

(Surjectivity and metric regularity) , prove the limit ing normal cone
condition holds at the point x = 0, and yet the Clarke tangent cone
condition fails.
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9. ** (Normals to level sets) Under the hypotheses of Corollary 7.3.6
(Distance to level sets), prove

(Hint: Use Exercise 4 and the Max rule (Section 6.4, Exercise 10(g) .)
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7.4 Second Order Conditions

Optimality conditions can be refined using second order information; we
saw an early example in Theorem 2.1.5 (Second order conditions) . Because
of the importance of curvature information for Newton-type methods in
numerical optimization, second order conditions are widely useful.

In this section we present prototypical second order conditions for con­
strained optimization. Our approach is a simple and elegant blend of con­
vex analysis and metric regularity.

Consider an open set U c E , a Euclidean space Y . Given any function
h : U ----t Y that is Frechet differentiable on U, the gradient map \7h is a
function from U to the vector space L(E, Y) of all linear maps from E to
Y with the operator norm

IIAII = max IIAxl1 (A E L(E, Y)) .
x EB E

If this map \7h is itself Frechet differentiable at the point x in U then we
say h is twice Frechei differentiable at x : the gradient \72h(x) is a linear
map from E to L(E, Y), and for any element v of E we write

In this case h has the following quadratic approximation at x:

1
h(x + v) = h(x) + \7h(x)v + 2\72h(x)(v, v) + o(llvI1 2

) for small v .

We suppose throughout this section that the functions f : U ----t Rand
h are twice Frechet differentiable at x, and that the closed convex set S
contains ii: We consider the nonlinear optimization problem

inf{f(x) Ih(x) = 0, X E S } ,

and we define the narrow critical cone at x by

C(x) = {d E R+(S - x) I \7 f(x)d :::; 0, \7h(x)d = O} .

(7.4.1)

Theorem 7.4.2 (Second order necessary conditions) Suppose that
the point x is a local minimum for the problem (7.4.1), that the direction
d lies in the narrow critical cone C(x), and that the condition

oE core (''Vh(x)(S - x)) (7.4 .3)

holds. Then there exists a multiplier ,X in Y such that the Lagrangian

L( ·) = f(·) + (,x, h(·)) (7.4.4)
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satisfies the conditions
V L(x ) E -Ns (x)

and

Proof. Co nsider first the convex program

inf{V f (x )z IVh(x )z = - V 2h(x )(d, d), z E R +(S - x )} .
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(7.4.5)

(7.4.6)

(7.4.7)

Su pp ose the point z is feasible for problem (7.4.7). It is easy to che ck for
small real t ~ 0 the path

t2

X (t) = ii + td + 2 z

lies in S . Furthermore, the qu adratic approximat ion shows this path almost
satisfies t he original constraint for small t :

t2

h(x (t )) = h(x ) + tVh(x )d + 2 (Vh(x )z + \]2h(x )(d, d)) + o(t2)

= o(t2
) .

Bu t condit ion (7.4.3) implies in particular t hat Vh(x )Ts (x ) = Y ; in fact
t hese condit ions are equivalent, since the only convex set whose closure is
Y is Y itself (see Sect ion 4.1 , Exercise 20(a) (Propert ies of the rela ti ve
interior) ) . So, by Theorem 7.1.5 (Surjec t ivity and met ric regul ar ity) , his
(weakly) metrically regul ar on S at X. Hence the path above is close to
feasible for the original problem : there is a real cons tant k such t hat , for
small t ~ 0, we have

dSn h- l (O) ( X ( t ) ) ~ kllh(x (t ))11= o(t2
) .

T hus we can perturb the path slightly to obtain a set of points

{x (t) It ~ O} c Sn h- 1 (0)

sat isfying Il x(t) - x( t )11= o(t2
) .

Since x is a local minimizer for the original problem (7.4.1), we know

t 2

f( x) ~ f (x (t )) = f (x ) + tV f (x )d + 2 (V f (x )z + V 2 f (x )(d, d)) + o(t2
)

using t he qu adrati c ap proximation again . Hence V f (x )d ~ 0, so in fact
V f (x )d = 0, since d lies in C( x ). We deduce

V f (x )z + V2 f (x )(d,d) ~ O.
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We have therefore shown the optimal value of the convex program (7.4 .7)
is at least -\72f(x)(d,d) .

For the final st ep in the proof, we rewrite problem (7.4.7) in Fenchel
form:

Since condit ion (7.4.3) holds , we can apply Fenchel duality (3.3.5) to deduce
there exist s ,X E Y satisfying

- \72f( x) (d , d) :::; - <5R+ (S - x ) ( - \7h(x)*,X - \7 f( x)) - <5{ -V'2h(x)(d,d)} (,X)

- <5N S (x ) ( - \7h (x )*'x - \7 f( x)) + (,X, \7 2h(x)(d, d) ),

whence the result . o

Under some further conditions we can guarantee that for any multiplier
,X satisfying the first order condition (7.4 .5) , the second order condition
(7.4 .6) holds for all directions d in the narrow cri ti cal cone (see Exercises
2 and 3) .

We contrast the necessary condition above with a rather elementary
second order sufficient condit ion . For this we use the broad critical con e at
x:

C(x) = {d E Ks(x) 1\7 f( x)d:::; 0, \7h(x)d = O} .

Theorem 7 .4 .8 (S econd or der su fficien t con d ition) Suppose for each
nonzero direction d in the broad critical cone C(x) th ere exist multipliers
11 in R+ asui ); in Y such that the Lagrangian

L(.) = fLf(-) + (,X , h(·))

satisfies the conditions

\7L(x) E - N s (x ) and \72L (x )(d , d) > O.

Th en for all small real <5 > 0 the point x is a strict local minimizer for the
perturbed problem

inf{f(x) - <5l1x - xl1 2 1h(x) = 0, XES} . (7.4.9)

Proof. Suppose there is no such <5, so there is a sequence of feasible
solutions (x1' ) for problem (7.4.9) converging to x and satisfying

. f(x 1' ) - f( x)
lim sup II _ 11 2 < O.

1' --->00 X 1' X

By t aking a subsequence, we can assume

I· X1' - X d
HfI = ,

1'---t oo Ilx1' - xi i

(7.4.10)
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and it is easy to check the nonzero directi on d lies in C( x) . Hence by
ass umpt ion t here exist t he required multipliers J1 and A.

From the first order condit ion we know

so by the qu adrati c approximat ion we deduce as r --- 00

J1 (J (Xr ) - f (x )) L (xr ) - L (x )

:2 ~V'2L(X) (Xr - X,X r - x) + o( llxr - xI1 2
) .

Divi ding by Ilxr - xl12 and taking limits shows

. . f (xr ) - f (x ) 1 2- -
J1hmmf II -112 :2 - V' L(x )(d, d» O,

r ---> oo X r - x 2

which contradicts inequ ali ty (7.4 .10). o

Notice t his resul t is of Frit z John type (like Theorem 2.3.6): we do not
assume t he multiplier J1 is nonzero . Furthermore, we can eas ily weaken t he
assumpt ion that the set 5 is convex to t he condition

(5 - x) n EB c K s(x ) for some E > O.

Clea rly t he narrow crit ica l cone may be smaller t han the broad crit ical
cone, even when 5 is convex. They are equal if S is quasipolyhedral at x:

(as happens in par ti cul ar when 5 is polyhedral). However , even for un­
const rained problems t he re is an intrinsic ga p between the second order
necessary conditions and t he sufficient condit ions.

Exercises and Commentary

Our approach here is from [25] (see also [12]). There are higher order ana­
logues [11]. Problems of the form (7.4.11) where all the functions involved
are quadratic are ca lled quadratic programs. Such problems are part icularly
well-b ehaved : the optimal value is attained when finite, and in this case
the second order necessary condit ions developed in Exercise 3 are also suf ­
fi cien t (see [21]). For a straight forward exposit ion of the st andard second
order condit ions, see [132]' for example.

1. (Higher order conditions) By considering the funct ion

sgn(x ) exp ( - :2)
on R , explain why t here is no necessary and sufficient n t h order
optimality cond it ion .
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2. * (Uniform multipliers) With t he assumpt ions of Theorem 7.4.2
(Second order necessary condit ions), suppose in addition that for all
directions d in the narrow crit ical cone O(x ) there exists a solution z
in E to the syste m

'Vh(x) z = -'V2h(x)(d,d) and z E span (8 - x).

By considering problem (7.4 .7), prove t hat if the multiplier>' sat is­
fies the first order condit ion (7.4.5) then the second order condit ion
(7.4.6) holds for all d in O(x ). Observe this holds in particular if
8 = E and 'Vh(x) is surj ective.

3. ** (Standard second order necessary conditions) Consider the
problem

inf f( x) }
subject to gi(X) ~ a for i. =: 1, 2, , m

hJ(x) - a forJ -l ,2, , q
x E Rn,

(7.4.11)

where all the fun ct ions are twice Frechet different iable at the local
minimizer x and the set of gradients

A = {'Vgi( x) li E 1(x)} U { 'Vhj (x) I j = 1,2 , . . . , q}

is linearly independent (where we denote the set of indices of the
act ive inequality constraints by 1(x) = {i I gi(X) = a}, as usual) .
By writing t his problem in the form (7.4.1) and applying Exercise 2,
prove there exist multipliers /-Ii in R + (for i in 1(x)) and >'1, >'2 , ... , >'q
in R such that t he Lagrangian

q

L(·) = f( ·) + L /-ligi +L >'jhj
iE I (x) j=1

sa t isfies the condit ions

'VL(x) = a and 'V2L(x)(d,d) :2: a for all d in Al- .

4. (Narrow and broad critical cones are needed) By considering
the set

and the problem
inf{x2 - <Xxi Ix E 8}

for var ious values of the real par ameter o, explain why the narrow
and broad crit ical cones cannot be interchan ged in eit her the Second
ord er necessary condit ions (7.4.2) or t he sufficient conditions (7.4.8).
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5. (Standard second order sufficient conditions) Write down the
second order sufficient optimality condit ions for t he genera l nonlinear
program in Exercise 3.

6. * (Guignard-type conditions) Consider the problem of Section
7.2, Exercise 10,

inf{f(x) Ih(x) E R , X ES } ,

where the set R c Y is closed and convex. By rewriting this problem
in t he form (7.4.1) , derive second order optimality condit ions.
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