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Preface

Optimization is a rich and thriving mathematical discipline. Properties
of minimizers and maximizers of functions rely intimately on a wealth of
techniques from mathematical analysis, including tools from calculus and
its generalizations, topological notions, and more geometric ideas. The
theory underlying current computational optimization techniques grows
ever more sophisticated—duality-based algorithms, interior point methods,
and control-theoretic applications are typical examples. The powerful and
elegant language of convex analysis unifies much of this theory. Hence
our aim of writing a concise, accessible account of convex analysis and its
applications and extensions, for a broad audience.

For students of optimization and analysis, there is great benefit to blur-
ring the distinction between the two disciplines. Many important analytic
problems have illuminating optimization formulations and hence can be ap-
proached through our main variational tools: subgradients and optimality
conditions, the many guises of duality, metric regularity and so forth. More
generally, the idea of convexity is central to the transition from classical
analysis to various branches of modern analysis: from linear to nonlinear
analysis, from smooth to nonsmooth, and from the study of functions to
multifunctions. Thus, although we use certain optimization models re-
peatedly to illustrate the main results (models such as linear and semidefi-
nite programming duality and cone polarity), we constantly emphasize the
power of abstract models and notation.

Good reference works on finite-dimensional convex analysis already ex-
ist. Rockafellar’s classic Convex Analysis [167] has been indispensable and
ubiquitous since the 1970s, and a more general sequel with Wets, Varia-
tional Analysis [168], appeared recently. Hiriart—Urruty and Lemaréchal’s
Convex Analysis and Minimization Algorithms [97] is a comprehensive but
gentler introduction. Our goal is not to supplant these works, but on the
contrary to promote them, and thereby to motivate future researchers. This
book aims to make converts.

vii



viii Preface

We try to be succinct rather than systematic, avoiding becoming bogged
down in technical details. Our style is relatively informal; for example, the
text of each section creates the context for many of the result statements.
We value the varicty of independent, self-contained approaches over a sin-
gle, unified, sequential development. We hope to showcase a few memorable
principles rather than to develop the theory to its limits. We discuss no
algorithms. We point out a few important references as we go, but we make
no attempt at comprehensive historical surveys.

Optimization in infinite dimensions lies beyond our immediate scope.
This is for reasons of space and accessibility rather than history or appli-
cation: convex analysis developed historically from the calculus of vari-
ations, and has important applications in optimal control, mathematical
economics, and other areas of infinite-dimensional optimization. However,
rather like Halmos’s Finite Dimensional Vector Spaces [90], ease of ex-
tension beyond finite dimensions substantially motivates our choice of ap-
proach. Where possible, we have chosen a proof technique permitting those
readers familiar with functional analysis to discover for themselves how a
result extends. We would, in part, like this book to be an entrée for math-
ematicians to a valuable and intrinsic part of modern analysis. The final
chapter illustrates some of the challenges arising in infinite dimensions.

This book can (and does) serve as a teaching text, at roughly the level
of first year graduate students. In principle we assume no knowledge of real
analysis, although in practice we expect a certain mathematical maturity.
While the main body of the text is self-contained, each section concludes
with an often extensive set of optional exercises. These exercises fall into
three categories, marked with zero, one, or two asterisks, respectively, as
follows: examples that illustrate the ideas in the text or easy expansions
of sketched proofs; important pieces of additional theory or more testing
examples; longer, harder examples or peripheral theory.

We are grateful to the Natural Sciences and Engineering Research Coun-
cil of Canada for their support during this project. Many people have
helped improve the presentation of this material. We would like to thank all
of them, but in particular Patrick Combettes, Guillaume Haberer, Claude
Lemaréchal, Olivier Ley, Yves Lucet, Hristo Sendov, Mike Todd, Xianfu
Wang, and especially Heinz Bauschke.

JONATHAN M. BORWEIN
ADRIAN S. LEWIS

Gargnano, Italy
September 1999
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Preface to the Second Edition

Since the publication of the First Edition of this book, convex analysis
and nonlinear optimization has continued to flourish. The “interior point
revolution” in algorithms for convex optimization, fired by Nesterov and
Nemirovski’s seminal 1994 work [148], and the growing interplay between
convex optimization and engineering exemplified by Boyd and Vanden-
berghe’s recent monograph [47], have fuelled a renaissance of interest in the
fundamentals of convex analysis. At the same time, the broad success of
key monographs on general variational analysis by Clarke, Ledyaev, Stern
and Wolenski [56] and Rockafellar and Wets [168] over the last decade tes-
tify to a ripening interest in nonconvex techniques, as does the appearance
of [43].

The Second Edition both corrects a few vagaries in the original and
contains a new chapter emphasizing the rich applicability of variational
analysis to concrete examples. After a new sequence of exercises ending
Chapter 8 with a concise approach to monotone operator theory via convex
analysis, the new Chapter 9 begins with a presentation of Rademacher’s
fundamental theorem on differentiability of Lipschitz functions. The sub-
sequent sections describe the appealing geometry of proximal normals, four
approaches to the convexity of Chebyshev sets, and two rich concrete mod-
els of nonsmoothness known as “amenability” and “partial smoothness”.
As in the First Edition, we develop and illustrate the material through
extensive exercises.

Convex analysis has maintained a Canadian thread ever since Fenchel’s
original 1949 work on the subject in Volume 1 of the Canadian Journal
of Mathematics [76]. We are grateful to the continuing support of the
Canadian academic community in this project, and in particular to the
Canadian Mathematical Society, for their sponsorship of this book series,
and to the Canadian Natural Sciences and Engineering Research Council
for their support of our research endeavours.

JONATHAN M. BORWEIN
ADRIAN S. LEWIS
September 2005
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Chapter 1

Background

1.1 Euclidean Spaces

We begin by reviewing some of the fundamental algebraic, geometric and
analytic ideas we use throughout the book. Our setting, for most of
the book, is an arbitrary Euclidean space E, by which we mean a
finite-dimensional vector space over the reals R, equipped with an inner
product (-,-). We would lose no generality if we considered only the space
R” of real (column) n-vectors (with its standard inner product), but a
more abstract, coordinate-free notation is often more flexible and elegant.

We define the norm of any point z in E by ||z|| = \/{(x, z), and the unit
ball is the set

B={zcE||all <1}

Any two points z and y in E satisfy the Cauchy-Schwarz inequality
[z, u)| < [l=zllllyll-
We define the sum of two sets C' and D in E by
C+D={xz+y|lzeC, ye D}
The definition of C' — D is analogous, and for a subset A of R we define
AC={Xz|XeA, z€C}.

Given another Euclidean space Y, we can consider the Cartesian product
Euclidean space E x Y, with inner product defined by ((e,z), (f,y)) =
(e, ) + (@,).

We denote the nonnegative reals by Ry . If C is nonempty and satisfies
R.C = C we call it a cone. (Notice we require that cones contain the
origin.) Examples are the positive orthant

R” = {z € R"|each z; > 0},
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and the cone of vectors with nonincreasing components
S={zeR"|z1>22> " >an}.

The smallest cone containing a given set D C E is clearly Ry D.

The fundamental geometric idea of this book is convexity. A set C in
E is convez if the line segment joining any two points x and y in C is
contained in C: algebraically, Ax + (1 — A\)y € C whenever 0 < A < 1. An
easy exercise shows that intersections of convex sets are convex.

Given any set D C E, the linear span of D, denoted span (D), is the
smallest linear subspace containing D. It consists exactly of all linear
combinations of elements of D. Analogously, the convex hull of D, denoted
conv (D), is the smallest convex set containing D. It consists exactly of
all convex combinations of elements of D, that is to say points of the form
Yo Az, where \; € Ry and z° € D for each i, and Y \; = 1 (see
Exercise 2).

The language of elementary point-set topology is fundamental in opti-
mization. A point z lies in the interior of the set D C E (denoted int D)
if there is a real 6 > 0 satisfying  + B C D. In this case we say D is a
neighbourhood of z. For example, the interior of R is

R}, = {z € R"|each z; > 0}.

We say the point z in E is the limit of the sequence of points z!, 22, ...
in E, written 27 — z as j — oo (or limj_ 2/ = z), if |27 — z|| — 0.
The closure of D is the set of limits of sequences of points in D, written
cl D, and the boundary of D is ¢l D \ int D, written bd D. The set D is
open if D = int D, and is closed if D = cl D. Linear subspaces of E are
important examples of closed sets. Easy exercises show that D is open
exactly when its complement D€ is closed, and that arbitrary unions and
finite intersections of open sets are open. The interior of D is just the largest
open set contained in D, while cl D is the smallest closed set containing D.
Finally, a subset G of D is open in D if there is an open set U C E with
G=DnU.

Much of the beauty of convexity comes from duality ideas, interweaving
geometry and topology. The following result, which we prove a little later,
is both typical and fundamental.

Theorem 1.1.1 (Basic separation) Suppose that the set C C E is closed
and convez, and that the point y does not lie in C. Then there exist real b
and a nonzero element a of E satisfying (a,y) > b > (a,x) for all points x
in C.

Sets in E of the form {z | (a,z) = b} and {z | (a,z) < b} (for a nonzero
element a of E and real b) are called hyperplanes and closed halfspaces,
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respectively. In this language the above result states that the point y is
separated from the set C by a hyperplane. In other words, C is contained
in a certain closed halfspace whereas y is not. Thus there is a “dual”
representation of C' as the intersection of all closed halfspaces containing
it.

The set D is bounded if there is a real k satisfying kB D D, and it is
compact if it is closed and bounded. The following result is a central tool
in real analysis.

Theorem 1.1.2 (Bolzano—Weierstrass) Bounded sequences in E have
convergent subsequences.

Just as for sets, geometric and topological ideas also intermingle for the
functions we study. Given a set D in E, we call a function f : D — R
continuous (on D) if f(z*) — f(z) for any sequence 2z — z in D. In
this case it easy to check, for example, that for any real « the level set
{z € D| f(x) < a} is closed providing D is closed.

Given another Euclidean space Y, we callamap A : E — Y linearif any
points z and z in E and any reals A and p satisfy A(Az+pz) = NMAx+ pAz.
In fact any linear function from E to R has the form (a, -) for some element
a of E. Linear maps and affine functions (linear functions plus constants)
are continuous. Thus, for example, closed halfspaces are indeed closed.
A polyhedron is a finite intersection of closed halfspaces, and is therefore
both closed and convex. The adjoint of the map A above is the linear map
A* 1Y — E defined by the property

(A*y,x) = (y, Az) for all points z in E and y in Y

(whence A** = A). The null space of A is N(A) = {z € E| Az = 0}. The
inverse image of a set H C Y is the set A™'H = {z € E| Az € H} (so
for example N(A) = A71{0}). Given a subspace G of E, the orthogonal
complement of G is the subspace

Lt={yeE|(z,y)=0for all z € G},

so called because we can write E as a direct sum G @ G+. (In other words,
any element of E can be written uniquely as the sum of an element of G
and an element of G1.) Any subspace G satisfies G'+ = G. The range of
any linear map A coincides with N(A*)+

Optimization studies properties of minimizers and maximizers of func-
tions. Given a set A C R, the infimum of A (written inf A) is the greatest
lower bound on A, and the supremum (written sup A) is the least upper
bound. To ensure these are always defined, it is natural to append —oo and
400 to the real numbers, and allow their use in the usual notation for open
and closed intervals. Hence, inf ) = +o00 and sup® = —oo, and for example
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(—00, +00] denotes the interval RU{+oc0}. We try to avoid the appearance
of +00 — 0o, but when necessary we use the convention 400 — oo = +00,
so that any two sets C and D in R satisfy inf C + inf D = inf(C' + D). We
also adopt the conventions 0 - (£o0) = (+o0) -0 = 0. A (global) minimizer
of a function f: D — R is a point Z in D at which f attains its infimum

1nff inf f(D) = inf{f(x) | z € D}.

In this case we refer to T as an optimal solution of the optimization problem
inf D f
For a positive real § and a function g : (0,6) — R, we define
liminf g(¢) = 1i fg
Ainfg(t) =l inf g
and
limsup g(t) = hm sup g.
t10 00,
The limit lim|o g(¢) exists if and only if the above expressions are equal.
The question of attainment, or in other words the ezxistence of an optimal
solution for an optimization problem is typically topological. The following
result is a prototype. The proof is a standard application of the Bolzano—
Weierstrass theorem above.

Proposition 1.1.3 (Weierstrass) Suppose that the set D C E is non-
empty and closed, and that all the level sets of the continuous function
f: D — R are bounded. Then f has a global minimizer.

Just as for sets, convexity of functions will be crucial for us. Given a
convex set C' C E, we say that the function f: C — R is convex if

fAz+ (1= Ny) <Af(z)+ (1= A)f(y)

for all points z and y in C' and 0 < A < 1. The function f is strictly
convez if the inequality holds strictly whenever x and y are distinct in C
and 0 < A < 1. It is easy to see that a strictly convex function can have at
most one minimizer.

Requiring the function f to have bounded level sets is a “growth con-
dition”. Another example is the stronger condition

lim inf ———+ f(z)

izl —oo [lz]|

>0, (1.1.4)

where we define

fl) . c
minf ==~ lim f{” i zeCnNrB }

urn%o Nzl — r=too

Surprisingly, for conver functions these two growth conditions are equiva-
lent.
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Proposition 1.1.5 For a conver set C C E, a convex function f : C — R
has bounded level sets if and only if it satisfies the growth condition (1.1.4).

The proof is outlined in Exercise 10.

Exercises and Commentary

Good general references are [177] for elementary real analysis and [1] for lin-
ear algebra. Separation theorems for convex sets originate with Minkowski
[142]. The theory of the relative interior (Exercises 11, 12, and 13) is devel-
oped extensively in [167] (which is also a good reference for the recession
cone, Exercise 6).

1. Prove the intersection of an arbitrary collection of convex sets is con-

vex.

Deduce that the convex hull of a set D C E is well-defined as

the intersection of all convex sets containing D.

2. (a)

(c)

Prove that if the set C C E is convex and if
(El,.’E2,...,.'ZZm €eC, 0< A, ,..., 20 €ER,

and S_)\; = 1 then > \z® € C. Prove, furthermore, that if
f:C — R is a convex function then f(3° \;iz*) < > A f(z9).
We see later (Theorem 3.1.11) that the function — log is convex
on the strictly positive reals. Deduce, for any strictly positive
reals z!,22,...,2™, and any nonnegative reals A1, s, ..., An
with sum 1, the arithmetic-geometric mean inequality

Z)\ixi > H(a:’)*l

Prove that for any set D C E, conv D is the set of all convex
combinations of elements of D.

3. Prove that a convex set D C E has convex closure, and deduce that
cl(conv D) is the smallest closed convex set containing D.

4. (Radstrom cancellation) Suppose sets A, B,C C E satisfy

(a)

(b)

A+CCB+C.
If A and B are convex, B is closed, and C' is bounded, prove
ACB.

(Hint: Observe 2A+C =A+ (A+C)Cc2B+C.)

Show this result can fail if B is not convex.
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5. * (Strong separation) Suppose that the set C C E is closed and
convex, and that the set D C E is compact and convex.

(a)
(b)

(c)

Prove the set D — C'is closed and convex.

Deduce that if in addition D and C are disjoint then there ex-
ists a nonzero element a in E with infyep(a, z) > sup,cc(a,y)-
Interpret geometrically.

Show part (b) fails for the closed convex sets in R2,

D = {z|z1>0, z122 > 1},
C = {z|z2=0}

6. ** (Recession cones) Consider a nonempty closed convex set C C
E. We define the recession cone of C by

(a)
(b)

(c)
(d)

()

(f)

7. For any set of vectors a

0" (C)={d€E|C+RydCC}.

Prove 07 (C) is a closed convex cone.

Prove d € 07(C) if and only if z + Ryd C C for some point z
in C. Show this equivalence can fail if C is not closed.

Consider a family of closed convex sets C (v € I') with non-
empty intersection. Prove 07 (NC,) = N0*(C,).

For a unit vector u in E, prove u € 07 (C) if and only if there is
a sequence (z") in C satisfying ||z"|| — oo and ||z7|| 712" — w.
Deduce C is unbounded if and only if 07 (C) is nontrivial.

If Y is a Euclidean space, the map A : E — Y is linear, and
N(A)N0T(C) is a linear subspace, prove AC is closed. Show
this result can fail without the last assumption.

Consider another nonempty closed convex set D C E such that
0"t (C)N 0T (D) is a linear subspace. Prove C — D is closed.

1.a?,...,a™ in E, prove the function f(z) =

max;(a*, x) is convex on E.

8. Prove Proposition 1.1.3 (Weierstrass).

9. (Composing convex functions) Suppose that the set C C E is
convex and that the functions f1, fa,..., fn : C — R are convex, and
define a function f : C' — R™ with components f;. Suppose further
that f(C) is convex and that the function g : f(C) — R is convex
and isotone: any points y < z in f(C) satisfy g(y) < g(z). Prove the
composition g o f is convex.
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10. * (Convex growth conditions)

(a) Find a function with bounded level sets which does not satisfy
the growth condition (1.1.4).
(b) Prove that any function satisfying (1.1.4) has bounded level sets.

(c) Suppose the convex function f : C — R has bounded level sets
but that (1.1.4) fails. Deduce the existence of a sequence (z™)
in C with f(z™) < |jz™]||/m — +o0. For a fixed point Z in C,
derive a contradiction by considering the sequence

m
T+ —— (2™ — 7).
[l

Hence complete the proof of Proposition 1.1.5.

The relative interior

Some arguments about finite-dimensional convex sets C' simplify and lose
no generality if we assume C contains 0 and spans E. The following exer-
cises outline this idea.

11. ** (Accessibility lemma) Suppose C is a convex set in E.

(a) Prove cl1C C C + €B for any real € > 0.

(b) For sets D and F in E with D open, prove D + F is open.

(¢c) For z in intC and 0 < A < 1, prove Az + (1 — A\)clC C C.
Deduce Aint C' + (1 — A)clC C int C.

(d) Deduce int C' is convex.

(e) Deduce further that if int C' is nonempty then cl (int C') = clC.
Is convexity necessary?

12. ** (Affine sets) A set L in E is affine if the entire line through any
distinct points z and y in L lies in L: algebraically, Az + (1 —X)y € L
for any real A. The affine hull of a set D in E, denoted aff D, is
the smallest affine set containing D. An affine combination of points
z',2%,...,2™ is a point of the form > 1" \;z*, for reals \; summing
to one.

(a) Prove the intersection of an arbitrary collection of affine sets is
affine.

(b) Prove that a set is affine if and only if it is a translate of a linear
subspace.

(c) Prove aff D is the set of all affine combinations of elements of D.

(d) Prove c1 D C aff D and deduce aff D = aff (c] D).
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(e) For any point z in D, prove aff D = z+span (D —z), and deduce
the linear subspace span (D — z) is independent of z.

. ** (The relative interior) (We use Exercises 11 and 12.) The
relative interior of a convex set C' in E, denoted riC, is its interior
relative to its affine hull. In other words, a point x lies in ri C' if there
isareal d >0 with (z+d0B)NaffC c C.

(a) Find convex sets C7 C Cy with riCy ¢ riCs.

(b) Suppose dimE > 0, 0 € C and aff C = E. Prove C contains a
basis {z!,z?,...,2"} of E. Deduce (1/(n+1))> T z' € int C.
Hence deduce that any nonempty convex set in E has nonempty
relative interior.

(c) Prove that for 0 < A <1 we have AriC'+ (1 —M\)clC C riC, and
hence riC is convex with ¢l (riC) = cl C.

(d) Prove that for a point z in C, the following are equivalent:
(i) z eriC.
(ii) For any point y in C there exists a real € > 0 with z+¢(z—y)
in C.
(iii) R4 (C — z) is a linear subspace.

(e) If F is another Euclidean space and the map A : E — F is linear,
prove ri AC D AriC.
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1.2 Symmetric Matrices

Throughout most of this book our setting is an abstract Euclidean space
E. This has a number of advantages over always working in R™: the basis-
independent notation is more elegant and often clearer, and it encourages
techniques which extend beyond finite dimensions. But more concretely,
identifying E with R™ may obscure properties of a space beyond its simple
Euclidean structure. As an example, in this short section we describe a
Euclidean space which “feels” very different from R"™: the space S™ of
n X n real symmetric matrices.

The nonnegative orthant R is a cone in R™ which plays a central
role in our development. In a variety of contexts the analogous role in
S™ is played by the cone of positive semidefinite matrices, S. (We call
a matrix X in S™ positive semidefinite if x7 Xz > 0 for all vectors z in
R™, and positive definite if the inequality is strict whenever z is nonzero.)
These two cones have some important differences; in particular, R7} is a
polyhedron, whereas the cone of positive semidefinite matrices S} is not,
even for n = 2. The cones RY} and S?} are important largely because of
the orderings they induce. (The latter is sometimes called the Loewner
ordering.) For points x and y in R™ we write z < y if y — 2 € R}, and
z < yif y—x € R}, (with analogous definitions for > and >). The
cone R is a lattice cone: for any points x and y in R™ there is a point 2
satisfying

w>zandw>y & w>z.

(The point z is just the componentwise maximum of z and y.) Analogously,
for matrices X and Y in 8™ we write X <Y ifY — X € 8}, and X <Y
if Y — X lies in 8%, the set of positive definite matrices (with analogous
definitions for > and >). By contrast, it is straightforward to see S’} is not
a lattice cone (Exercise 4).

We denote the identity matrix by I. The trace of a square matrix
Z is the sum of the diagonal entries, written tr Z. It has the important
property tr (VW) = tr (WV) for any matrices V and W for which VW is
well-defined and square. We make the vector space S™ into a Euclidean
space by defining the inner product

(X,)Y) =tr(XY) for X,Y € S™.

Any matrix X in S™ has n real eigenvalues (counted by multiplicity),
which we write in nonincreasing order A1(X) > Xa(X) > ... > A (X). In
this way we define a function A : S — R"™. We also define a linear map
Diag : R™ — S™, where for a vector x in R™, Diag x is an n x n diagonal
matrix with diagonal entries z;. This map embeds R™ as a subspace of S™
and the cone R} as a subcone of 8. The determinant of a square matrix
Z is written det Z.
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We write O™ for the group of n X n orthogonal matrices (those matrices
U satisfying UTU = I). Then any matrix X in S™ has an ordered spectral
decomposition X = UT(Diag \(X))U, for some matrix U in Q™. This
shows, for example, that the function X is norm-preserving: || X|| = [|A(X)]]
for all X in S™. For any X in S, the spectral decomposition also shows
there is a unique matrix X'/2 in S% whose square is X.

The Cauchy—Schwarz inequality has an interesting refinement in S™
which is crucial for variational properties of eigenvalues, as we shall see.

Theorem 1.2.1 (Fan) Any matrices X andY in S™ satisfy the inequality
tr (XY) < M(X)TA(Y). (1.2.2)

Equality holds if and only if X and Y have a simultaneous ordered
spectral decomposition: there is a matriz U in O™ with

X = UT(Diag\(X))U and Y = UT (Diag \(Y))U. (1.2.3)

A standard result in linear algebra states that matrices X and Y have a
simultaneous (unordered) spectral decomposition if and only if they com-
mute. Notice condition (1.2.3) is a stronger property.

The special case of Fan’s inequality where both matrices are diagonal
gives the following classical inequality. For a vector x in R™, we denote
by [z] the vector with the same components permuted into nonincreasing
order. We leave the proof of this result as an exercise.

Proposition 1.2.4 (Hardy-Littlewood—Pdlya) Any vectors x and y
in R™ satisfy the inequality

'y < [2][y].

We describe a proof of Fan’s theorem in the exercises, using the above
proposition and the following classical relationship between the set I'* of
doubly stochastic matrices (square matrices with all nonnegative entries,
and each row and column summing to one) and the set P™ of permutation
matrices (square matrices with all entries zero or one, and with exactly one
entry of one in each row and in each column).

Theorem 1.2.5 (Birkhoff) Doubly stochastic matrices are conver com-
binations of permutation matrices.

We defer the proof to a later section (Section 4.1, Exercise 22).
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Exercises and Commentary

Fan’s inequality (1.2.2) appeared in [73], but is closely related to earlier
work of von Neumann [184]. The condition for equality is due to [180].
The Hardy-Littlewood—Poélya inequality may be found in [91]. Birkhoff’s
theorem [15] was in fact proved earlier by Koénig [115].

1.
2.
3.

Prove 87 is a closed convex cone with interior S , .
Explain why Si is not a polyhedron.

(S% is not strictly convex) Find nonzero matrices X and Y in S3
such that R4 X # R,Y and (X +Y)/2¢S3 .

(A nonlattice ordering) Suppose the matrix Z in S? satisfies

0 0

Wt[ 0 1

1 O]and Wt[

>~
0 0 ]@W_Z.

(a) By considering diagonal W, prove
1 a
= 1]
for some real a.

(b) By considering W = I, prove Z = I.

(¢) Derive a contradiction by considering

W”B[l 2

. (Order preservation)

(a) Prove any matrix X in S™ satisfies ()(2)1/2 = X.
(b) Find matrices X =Y in S2 such that X2 # Y2,

(c) For matrices X > Y in S%, prove X/2 = Y1/2. (Hint: Consider
the relationship

(X2 4+ Y12y, (X2 = Y2)2) = (X = V)a,a) >0,
for eigenvectors z of X1/2 — Y'1/2))

* (Square-root iteration) Suppose a matrix A in S satisfies I >
A. Prove that the iteration

1
Yo=0, Yo = §(A+Yn2) (n=0,1,2,...)

is nondecreasing (that is, Y, .1 = Y,, for all n) and converges to the
matrix I — (I — A)Y/2. (Hint: Consider diagonal matrices A.)
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10.

11.

12.

13.

1. Background

(The Fan and Cauchy—Schwarz inequalities)

(a) For any matrices X in S™ and U in O™, prove | UTXU|| = || X]|.
(b) Prove the function A is norm-preserving.
(¢) Explain why Fan’s inequality is a refinement of the Cauchy—

Schwarz inequality.

Prove the inequality tr Z + tr Z—! > 2n for all matrices Z in St .,
with equality if and only if Z = I.

. Prove the Hardy-Littlewood—Pdlya inequality (Proposition 1.2.4) di-

rectly.
Given a vector z in RY} satisfying z1x3...2, = 1, define numbers
Yk = 1/x122 ... 21 for each index k =1,2,...,n. Prove
T4+ To+ ... T, = Z—Iﬁ+y—1+...y"_1.
Y1 Y2 Yn

By applying the Hardy—Littlewood—Pdlya inequality (1.2.4) to suit-
able vectors, prove 1 + z2 + ...+ z, > n. Deduce the inequality

1 n n 1/n
L3z (1)
na 1

for any vector z in R”}.

For a fixed column vector s in R™, define a linear map A : S® — R"™
by setting AX = Xs for any matrix X in S™. Calculate the adjoint
map A*.

* (Fan’s inequality) For vectors = and y in R™ and a matrix U in
O", define

a = (Diagz, UT (Diagy)U).

(a) Prove a = 27 Zy for some doubly stochastic matrix Z.
(b) Use Birkhoff’s theorem and Proposition 1.2.4 to deduce the in-
equality o < [z]T[y].
(c) Deduce Fan’s inequality (1.2.2).
(A lower bound) Use Fan’s inequality (1.2.2) for two matrices X

and Y in S™ to prove a lower bound for tr (XY) in terms of A(X)
and A(Y).
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14. * (Level sets of perturbed log barriers)
(a) For ¢ in R4y, prove the function
te R++ — 5t—‘10gt

has compact level sets.
(b) For cin R, prove the function

n
xeR1+»—>ch—Zlogxi

i=1
has compact level sets.

(c) For C in S ,, prove the function
X eS8, — (C,X) —logdet X
has compact level sets. (Hint: Use Exercise 13.)

15. * (Theobald’s condition) Assuming Fan’s inequality (1.2.2), com-
plete the proof of Fan’s theorem (1.2.1) as follows. Suppose equality
holds in Fan’s inequality (1.2.2), and choose a spectral decomposition

X +Y =UT(Diag\(X + Y))U
for some matrix U in O™.
(a) Prove A(X)TA(X +Y) = (UT (Diag \(X))U, X +Y).
(b) Apply Fan’s inequality (1.2.2) to the two inner products
(X, X +Y) and (UT(Diag \(X))U,Y)
to deduce X = UT (Diag A\(X))U.
(c) Deduce Fan’s theorem.

16. ** (Generalizing Theobald’s condition [122]) Consider a set of
matrices X1, X2, ..., X™ in S™ satisfying the conditions

tr (X1X7) = M(XHTA(X?) for all i and j.

Generalize the argument of Exercise 15 to prove the entire set of
matrices {X1, X?,..., X™} has a simultaneous ordered spectral de-
composition.

17. ** (Singular values and von Neumann’s lemma) Let M" denote
the vector space of nxn real matrices. For a matrix A in M" we define
the singular values of A by 0;(A) = /Ni(ATA) for i = 1,2,...,n,
and hence define a map o : M"™ — R"™. (Notice zero may be a singular
value.)
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A\ 0 AT | o(A)
A0 || [-o(A4)]
(b) For any other matrix B in M", use part (a) and Fan’s inequality
(1.2.2) to prove

(a) Prove

tr (ATB) < o(A)To(B).

(c) If Alies in S, prove A(A) = o(A).

(d) By considering matrices of the form A + «I and B+ I, deduce
Fan’s inequality from von Neumann’s lemma (part (b)).



Chapter 2

Inequality Constraints

2.1 Optimality Conditions

Early in multivariate calculus we learn the significance of differentiability
in finding minimizers. In this section we begin our study of the interplay
between convexity and differentiability in optimality conditions.

For an initial example, consider the problem of minimizing a function
f:C — Ronaset CinE. Wesay apoint Z in C is a local minimizer
of f on C if f(x) > f(z) for all points = in C close to Z. The directional
derivative of a function f at Z in a direction d € E is

9

when this limit exists. When the directional derivative f/(Z;d) is actually
linear in d (that is, f/(Z;d) = (a,d) for some element a of E) then we say
fis (Gateaux) differentiable at T, with (Gdteauz) derivative V f(Z) = a. If
f is differentiable at every point in C then we simply say f is differentiable
(on C). An example we use quite extensively is the function X € S, —
logdet X. An exercise shows this function is differentiable on S, with
derivative X 1.

A convex cone which arises frequently in optimization is the normal
cone to a convex set C at a point & € C, written No(Z). This is the convex
cone of normal vectors, vectors d in E such that (d,z —Z) < 0 for all points
zin C.

Proposition 2.1.1 (First order necessary condition) Suppose that C
1s a convez set in E and that the point T is a local minimizer of the function
f:C — R. Then for any point x in C, the directional derivative, if it
exists, satisfies f'(T;x — &) > 0. In particular, if [ is differentiable at %,
then the condition —V f(Z) € N¢(Z) holds.

15
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Proof. If some point z in C satisfies f'(Z;z — Z) < 0, then all small
real t > 0 satisfy f(Z + t(x — Z)) < f(Z), but this contradicts the local
minimality of Z. O

The case of this result where C' is an open set is the canonical intro-
duction to the use of calculus in optimization: local minimizers Z must be
critical points (that is, Vf(Z) = 0). This book is largely devoted to the
study of first order necessary optimality conditions for a local minimizer of
a function subject to constraints. In that case local minimizers Z may not
lie in the interior of the set C of interest, so the normal cone N (Z) is not
simply {0}.

The next result shows that when f is convex the first order condition
above is sufficient for T to be a global minimizer of f on C.

Proposition 2.1.2 (First order sufficient condition) Suppose that the
set C C E is conver and that the function f : C — R is convex. Then
for any points T and x in C, the directional derivative f'(Z;x — T) exists
in [—o00,400). If the condition f'(Z;x — Z) > 0 holds for all x in C, or
in particular if the condition —V f(Z) € N¢c(Z) holds, then T is a global
minimizer of f on C.

Proof. A straightforward exercise using the convexity of f shows the

function
f@+tz—2)) - f(@)
t

is nondecreasing. The result then follows easily (Exercise 7). ]

te (0,1 —

In particular, any critical point of a convex function is a global minimizer.

The following useful result illustrates what the first order conditions
become for a more concrete optimization problem. The proof is outlined
in Exercise 4.

Corollary 2.1.3 (First order conditions for linear constraints) For
a convez set C C E, a function f : C — R, a linear map A : E — Y (where
Y is a Euclidean space) and a point b in Y, consider the optimization
problem

inf{f(z) |z € C, Az = b}. (2.1.4)

Suppose the point T € int C satisfies AT = b.

(a) Ifz is a local minimizer for the problem (2.1.4) and f is differentiable
at T then Vf(z) € A*Y.

(b) Conversely, if Vf(z) € A*Y and f is conver then T is a global min-
imizer for (2.1.4).
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The element y € Y satisfying Vf(Z) = A*y in the above result is called
a Lagrange multiplier. This kind of construction recurs in many different
forms in our development.

In the absence of convexity, we need second order information to tell us
more about minimizers. The following elementary result from multivariate
calculus is typical.

Theorem 2.1.5 (Second order conditions) Suppose the twice contin-
wously differentiable function f : R™ — R has a critical point T. If T is
a local minimizer then the Hessian V2 f(Z) is positive semidefinite. Con-
versely, if the Hessian is positive definite then T is a local minimizer.

(In fact for T to be a local minimizer it is sufficient for the Hessian to
be positive semidefinite locally; the function z € R +~ z* highlights the
distinction.)

To illustrate the effect of constraints on second order conditions, con-
sider the framework of Corollary 2.1.3 (First order conditions for linear
constraints) in the case E = R", and suppose Vf(Z) € A*Y and f is
twice continuously differentiable near z. If Z is a local minimizer then
yT'V2f(z)y > 0 for all vectors y in N(A). Conversely, if yTV2f(z)y > 0
for all nonzero y in N(A) then Z is a local minimizer.

We are already beginning to see the broad interplay between analytic,
geometric and topological ideas in optimization theory. A good illustration
is the separation result of Section 1.1, which we now prove.

Theorem 2.1.6 (Basic separation) Suppose that the set C C E is closed
and convez, and that the point y does not lie in C. Then there exist a real
b and a nonzero element a of E such that {a,y) > b > (a,x) for all points
zin C.

Proof. We may assume C is nonempty, and define a function f : E — R by
f(z) = ||z —yl||?/2. Now by the Weierstrass proposition (1.1.3) there exists
a minimizer T for f on C, which by the First order necessary condition
(2.1.1) satisfies —Vf(Z) =y — % € Nc(Z). Thus (y — Z,xz — Z) < 0 holds
for all points z in C. Now setting a =y — T and b = (y — T, Z) gives the
result. |

We end this section with a rather less standard result, illustrating an-
other idea which is important later, the use of “variational principles” to
treat problems where minimizers may not exist, but which nonetheless have
“approximate” critical points. This result is a precursor of a principle due
to Ekeland, which we develop in Section 7.1.

Proposition 2.1.7 If the function f : E — R is differentiable and bounded
below then there are points where f has small derivative.
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Proof. Fix any real € > 0. The function f + €|| - || has bounded level sets,
so has a global minimizer z¢ by the Weierstrass proposition (1.1.3). If the
vector d = V f(x€) satisfies ||d|| > € then, from the incquality

e fe tdt) ) 9 1w), d) = Il < —eld]]

we would have for small ¢ > 0 the contradiction

—telld] > f(z°—td) — f(z°)

= (f(z° —td) + e[|z —td]))
= (F (@) + ellzf]]) + e(ll<°[| — [l= — tdl])
—et||d]|

Y

by definition of ¢ and the triangle inequality. Hence ||V f(z¢)| < e. O

Notice that the proof relies on consideration of a nondifferentiable func-
tion, even though the result concerns derivatives.

Exercises and Commentary

The optimality conditions in this section are very standard (see for example
[132]). The simple variational principle (Proposition 2.1.7) was suggested
by [95].

1. Prove the normal cone is a closed convex cone.

2. (Examples of normal cones) For the following sets C C E, check
C is convex and compute the normal cone N¢(Z) for points Z in C:
(a) C a closed interval in R.
(b) C = B, the unit ball.
(¢) C a subspace.

(d) C a closed halfspace: {z | (a,z) < b} where 0 # a € E and
beR.

() C={zeR"|z;>0forall jeJ} (for J C {1,2,...,n}).
3. (Self-dual cones) Prove each of the following cones K satisfy the
relationship Ng(0) = —K.
(a) R}
(b) S%
(c) {fzeR" |21 >0, 22 > 23+ 23+ -+ 22}
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4. (Normals to affine sets) Given a linear map A : E — Y (where
Y is a Euclidean space) and a point b in Y, prove the normal cone
to the set {x € E | Az = b} at any point in it is A*Y. Hence deduce
Corollary 2.1.3 (First order conditions for linear constraints).

5. Prove that the differentiable function 22 + z3(1 — ;)2 has a unique
critical point in R2, which is a local minimizer, but has no global
minimizer. Can this happen on R?

6. (The Rayleigh quotient)

(a) Let the function f : R™\ {0} — R be continuous, satisfying
f(Az) = f(z) for all A > 0 in R and nonzero = in R™. Prove f
has a minimizer.

(b) Given a matrix A in S, define a function g(z) = 27 Az/||z||?
for nonzero x in R™. Prove g has a minimizer.

(c¢) Calculate Vg(z) for nonzero x.

(d) Deduce that minimizers of g must be eigenvectors, and calculate
the minimum value.

(e) Find an alternative proof of part (d) by using a spectral decom-
position of A.

(Another approach to this problem is given in Section 7.2, Exercise
6.)

7. Suppose a convex function g : [0, 1] — R satisfies g(0) = 0. Prove the
function ¢ € (0,1] — g(t)/t is nondecreasing. Hence prove that for a
convex function f : C — R and points Z,x € C C E, the quotient
(f(z+t(x—7Z)) — f(Z))/t is nondecreasing as a function of ¢ in (0, 1],
and complete the proof of Proposition 2.1.2.

8. * (Nearest points)
(a) Prove that if a function f : C — R is strictly convex then it has
at most one global minimizer on C.

(b) Prove the function f(z) = ||z —y||?/2 is strictly convex on E for
any point y in E.
(c) Suppose C is a nonempty, closed convex subset of E.

(i) If y is any point in E, prove there is a unique nearest point
(or best approzimation) Po(y) to y in C, characterized by

(y — Pe(y),z— Pc(y)) <0 forall z € C.

(ii) For any point Z in C, deduce that d € N¢(Z) holds if and
only if Z is the nearest point in C to z + d.
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(iii) Deduce, furthermore, that any points y and z in E satisfy

)

1Pe(y) = Pe(2)| < lly — =

so in particular the projection Po : E — C' is continuous.

(d) Given a nonzero element a of E, calculate the nearest point in
the subspace {z € E | (a,z) = 0} to the point y € E.

(e) (Projection on R’} and S7) Prove the nearest point in R’}
to a vector y in R™ is y*, where y;” = max{y;, 0} for each i. For
a matrix U in O™ and a vector y in R™, prove that the nearest
positive semidefinite matrix to U DiagyU is UT Diagy*U.

9. * (Coercivity) Suppose that the function f : E — R is differentiable
and satisfies the growth condition lim| ;| f()/||z|| = +oo. Prove
that the gradient map V f has range E. (Hint: Minimize the function
f(-) = {a,-) for elements a of E.)

10. (a) Prove the function f : 8%, — R defined by f(X) =tr X! is
differentiable on 87 , . (Hint: Expand the expression (X +tY)~!
as a power series.)

(b) Define a function f : 87, — R by f(X) = logdet X. Prove
Vf(I) =1. Deduce Vf(X) = X""! for any X in ST .

11. ** (Kirchhoff’s law [9, Chapter 1]) Consider a finite, undirected,
connected graph with vertex set V and edge set E. Suppose that
«a and [ in V are distinct vertices and that each edge ij in E has
an associated “resistance” r;; > 0 in R. We consider the effect of
applying a unit “potential difference” between the vertices a and .
Let Vo = V \ {a, 3}, and for “potentials” x in RY° we define the
“power” p: RY" — R by

where we set £, = 0 and 25 = 1.

(a) Prove the power function p has compact level sets.

(b) Deduce the existence of a solution to the following equations
(describing “conservation of current”):

e
j:ij€EE w
o = 0

0 foriin Vj

mgzl.
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13.

14.

15.
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(c) Prove the power function p is strictly convex.

(d) Use part (a) of Exercise 8 to show that the conservation of cur-
rent equations in part (b) have a unique solution.

** (Matrix completion [86]) For aset A C {(4,7)|1 <1 < j < n},
suppose the subspace L C S™ of matrices with (i, j)th entry of zero
for all (4,7) in A satisfies L NS, # 0. By considering the problem
(for C € S%,)

inf{(C, X) —logdet X | X € LN S} },

use Section 1.2, Exercise 14 and Corollary 2.1.3 (First order con-
ditions for linear constraints) to prove there exists a matrix X in
LNS%, with C — X~ having (4, j)th entry of zero for all (4, j) not
in A. :

** (BFGS update, cf. [80]) Given a matrix C in S}, and vectors
s and y in R™ satisfying s7y > 0, consider the problem

inf{(C, X) —logdet X | Xs =y, X € ST, }.
(a) Prove that for the problem above, the point

_ (y—ds)(y—0s)"

X =TTy =6

+dI

is feasible for small § > 0.

(b) Prove the problem has an optimal solution using Section 1.2,
Exercise 14.

(c¢) Use Corollary 2.1.3 (First order conditions for linear constraints)
to find the solution. (The solution is called the BFGS update of
C~! under the secant condition Xs = y.)

(See also [61, p. 205].)

** Suppose intervals Iy, I, ..., I, C R are nonempty and closed and
the function f : I; x Iy x ... x I, — R is differentiable and bounded
below. Use the idea of the proof of Proposition 2.1.7 to prove that
for any € > 0 there exists a point z¢ € I} X Iy X ... x I, satisfying

(=Vf(z9)); € Ni,(x5) + [~¢,¢] (1 =1,2,...,n).

* (Nearest polynomial with a given root) Consider the Eu-
clidean space of complex polynomials of degree no more than n, with
inner product

n n

n
(X Yow?) =Y s
J j=0

§=0 j=0
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Given a polynomial p in this space, calculate the nearest polynomial
with a given complex root «, and prove the distance to this polyno-
mial is (327 [o|*) 12 |p(a)).
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2.2 Theorems of the Alternative

One well-trodden route to the study of first order conditions uses a class of
results called “theorems of the alternative”, and, in particular, the Farkas
lemma (which we derive at the end of this section). Our first approach,
however, relies on a different theorem of the alternative.

Theorem 2.2.1 (Gordan) For any elements a®,al,...,a™ of E, exactly
one of the following systems has a solution:

dxat =0, > =1 0<X, M, Am€R (2.2.2)
1=0 1=0
(a,x2) <0 fori=0,1,...,m, x€BE. (2.2.3)

Geometrically, Gordan’s theorem says that the origin does not lie in the
convex hull of the set {a® a',...,a™} if and only if there is an open
halfspace {y | (y,z) < 0} containing {a®,a’,...,a™} (and hence its con-
vex hull). This is another illustration of the idea of separation (in this case
we separate the origin and the convex hull).

Theorems of the alternative like Gordan’s theorem may be proved in
a variety of ways, including separation and algorithmic approaches. We
employ a less standard technique using our earlier analytic ideas and lead-
ing to a rather unified treatment. It relies on the relationship between the

optimization problem
inf{f(z) |z € E}, (2.2.4)

where the function f is defined by
f(z) =log (Zexp(ai,w)), (2.2.5)
i=0
and the two systems (2.2.2) and (2.2.3). We return to the surprising func-

tion (2.2.5) when we discuss conjugacy in Section 3.3.
Theorem 2.2.6 The following statements are equivalent:
(i) The function defined by (2.2.5) is bounded below.

(ii) System (2.2.2) is solvable.
(#ii) System (2.2.3) is unsolvable.

Proof. The implications (ii) = (iii) = (i) are easy exercises, so it remains
to show (i) = (ii). To see this we apply Proposition 2.1.7. We deduce that

for each k = 1,2, ..., there is a point z* in E satisfying
= 1
ky|| _ k i 1
IV £ = | L e
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where the scalars

= exp(a’, z¥)
t Xeexp(an, k)
satisfy > AF = 1. Now the limit A of any convergent subsequence of the
bounded sequence (A\*) solves system (2.2.2). a

>0

The equivalence of (ii) and (iii) gives Gordan’s theorem.

We now proceed by using Gordan’s theorem to derive the Farkas lemma,
one of the cornerstones of many approaches to optimality conditions. The
proof uses the idea of the projection onto a linear subspace Y of E. Notice
first that Y becomes a Euclidean space by equipping it with the same inner
product. The projection of a point z in E onto Y, written Py, is simply
the nearest point to z in Y. This is well-defined (see Exercise 8 in Section
2.1), and is characterized by the fact that £ — Pyx is orthogonal to Y. A
standard exercise shows Py is a linear map.

Lemma 2.2.7 (Farkas) For any points a',a?,...,a™ and c in E, ezactly
one of the following systems has a solution:

m
leiai =G OS,“‘I)/JQP"’/J‘TI‘LGR (228)
=1

(a',2) <0 for i=1,2,...,m, (c,x)>0, zcBE. (2.2.9)

Proof. Again, it is immediate that if system (2.2.8) has a solution then
system (2.2.9) has no solution. Conversely, we assume (2.2.9) has no so-
lution and deduce that (2.2.8) has a solution by using induction on the
number of elements m. The result is clear for m = 0.

Suppose then that the result holds in any Euclidean space and for any
set of m — 1 elements and any element c. Define a° = —c. Applying
Gordan’s theorem (2.2.1) to the unsolvability of (2.2.9) shows there are
scalars Ao, A1,...,Am > 0 in R, not all zero, satisfying Aoc = >_7" A\ia’.
If Ao > O the proof is complete, so suppose A\g = 0 and without loss of
generality A, > 0.

Define a subspace of E by Y = {y | (™, y) = 0}, so by assumption the
system

(a’,y) <0 fori=1,2,....,m—1, {(c,y) >0, yeY,
or equivalently
(Pya',y) <0 fori=1,2,...,m—1, (Pyc,y) >0, yeY,

has no solution.
By the induction hypothesis applied to the subspace Y, there are non-
negative reals pi,ue,. .., n—1 satisfying Z:’;_ll i Pya® = Pyc, so the
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vector ¢ — E;n_l pia® is orthogonal to the subspace Y = (span (a™))L.

Thus some real pu,, satisfies

m—1
pma™ =c— Z piat. (2.2.10)
1
If y,, is nonnegative we immediately obtain a solution of (2.2.8), and if
not then we can substitute a™ = —A\>! 37" Mo’ in equation (2.2.10) to
obtain a solution. |

Just like Gordan’s theorem, the Farkas lemma has an important geomet-
ric interpretation which gives an alternative approach to its proof (Exercise
6): any point ¢ not lying in the finitely generated cone

m
C:{E:Md‘oguhm,“MmeR} (2.2.11)
1

can be separated from C by a hyperplane. If z solves system (2.2.9) then C
is contained in the closed halfspace {a | (a,x) < 0}, whereas ¢ is contained
in the complementary open halfspace. In particular, it follows that any
finitely generated cone is closed.

Exercises and Commentary

Gordan’s theorem appeared in [84], and the Farkas lemma appeared in [75].
The standard modern approach to theorems of the alternative (Exercises
7 and 8, for example) is via linear programming duality (see, for example,
[63]). The approach we take to Gordan’s theorem was suggested by Hiriart—
Urruty [95]. Schur-convexity (Exercise 9) is discussed extensively in [134].

1. Prove the implications (ii) = (iii) = (i) in Theorem 2.2.6.

2. (a) Prove the orthogonal projection Py : E — Y is a linear map.

(b) Give a direct proof of the Farkas lemma for the case m = 1.

3. Use the Basic separation theorem (2.1.6) to give another proof of
Gordan’s theorem.

4. * Deduce Gordan’s theorem from the Farkas lemma. (Hint: Consider
the elements (a‘,1) of the space E x R.)

5. * (Carathéodory’s theorem [52]) Suppose {a’ |i € I} is a finite
set of points in E. For any subset J of I, define the cone

Cy;= {Z,uiai

ieJ

OgmeR”Ueﬂ}
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(a) Prove the cone C; is the union of those cones C; for which
the set {a* | ¢ € J} is linearly independent. Furthermore, prove
directly that any such cone C} is closed.

(b) Deduce that any finitely generated cone is closed.

(c) If the point z lies in conv {a’ | i € I}, prove that in fact there
is a subset J C I of size at most 1 + dim E such that x lies in
conv{a’|i € J}. (Hint: Apply part (a) to the vectors (a¢,1) in
ExR.)

(d) Use part (c¢) to prove that if a subset of E is compact then so is
its convex hull.

6. * Give another proof of the Farkas lemma by applying the Basic
separation theorem (2.1.6) to the set defined by (2.2.11) and using
the fact that any finitely generated cone is closed.

7. ** (Ville’s theorem) With the function f defined by (2.2.5) (with
E = R"), consider the optimization problem

inf{f(z) |z > 0} (2.2.12)

and its relationship with the two systems

m m
Z)\iaizo, Z)\zzl,
=0 =0

0< Ao, A1,...,Am ER (2.2.13)

and .
(a’,2) <0 fori=0,1,...,m, z€R}. (2.2.14)
Imitate the proof of Gordan’s theorem (using Section 2.1, Exercise
14) to prove the following are equivalent:
(i) Problem (2.2.12) is bounded below.
(ii) System (2.2.13) is solvable.
(iii) System (2.2.14) is unsolvable.

Generalize by considering the problem inf{f(z)|z; >0 (j € J)}.

8. ** (Stiemke’s theorem) Consider the optimization problem (2.2.4)
and its relationship with the two systems

doAiat =0, 0< Ao, A1,..., Am €ER (2.2.15)
1=0
and
(a*,z) <0 fori=0,1,...,m, notall0, z€E. (2.2.16)

Prove the following are equivalent:



(i)
(i)
(iif)
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Problem (2.2.4) has an optimal solution.
System (2.2.15) is solvable.
System (2.2.16) is unsolvable.

Hint: Complete the following steps.

(a)
(b)
(c)

Prove (i) implies (ii) by Proposition 2.1.1.

Prove (ii) implies (iii).

If problem (2.2.4) has no optimal solution, prove that neither
does the problem

m

inf { Z exp Y;

=0

where K is the subspace {((a%,z))™, |z € E} C R™"!. Hence,
by considering a minimizing sequence for (2.2.17), deduce system
(2.2.16) is solvable.

y € K}, (2.2.17)

Generalize by considering the problem inf{f(z) |z; >0 (j € J)}.

9. ** (Schur-convexity) The dual cone of the cone RY is defined by

(a)

(b)

(Rg)+ ={yeR"|(z,y) >0 for all zin Rg}

Prove a vector y lies in (R%)* if and only if

X]:inO for j=1,2,...,n—1, Xn:yizo-
1 1

By writing Z{ [x]; = maxy(a¥, z) for some suitable set of vectors
a®, prove that the function = — ) }[z]; is convex. (Hint: Use
Section 1.1, Exercise 7.)

Deduce that the function z — [z] is (R%)™ -convez, that is:
Azl + (1 =Nyl — Pz + (1— Ayl € (RE)T for 0 <A< 1.
Use Gordan’s theorem and Proposition 1.2.4 to deduce that
for any z and y in RZ, if y — « lies in (R%)* then z lies in

conv (P"y).
A function f: RT —Ris Schur-convez if

zyeRL, y—zec (R = flz)<fy).

Prove that if f is convex, then it is Schur-convex if and only
if it is the restriction to RZ of a symmetric convex function
g : R — R (where by symmetric we mean g(z) = g(Ilz) for
any z in R™ and any permutation matrix II).
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2.3 Max-functions

This section is an elementary cxposition of the first order necessary con-
ditions for a local minimizer of a differentiable function subject to differ-
entiable inequality constraints. Throughout this section we use the term
“differentiable” in the Gateaux sense, defined in Section 2.1. Our approach,
which relies on considering the local minimizers of a maz-function

g(z) = i:(ﬁ?).(.,m{gi(x)}’ (2.3.1)

illustrates a pervasive analytic idea in optimization: nonsmoothness. Even
if the functions go, g1, ...,gm are smooth, g may not be, and hence the
gradient may no longer be a useful notion.

Proposition 2.3.2 (Directional derivatives of max-functions) Let z
be a point in the interior of a set C C E. Suppose that continuous functions
gos91,---,9m : C — R are differentiable at Z, that g is the maz-function
(2.3.1), and define the index set K = {i| g;(x) = g(x)}. Then for all
directions d in E, the directional derivative of g is given by

g'(z;d) = Igg}g{ng(f?), d)}. (2.3.3)

Proof. By continuity we can assume, without loss of generality, K =
{0,1,...,m}; those g; not attaining the maximum in (2.3.1) will not affect
g'(Z; d). Now for each i, we have the inequality

lim inf g(x + td) B g(j:) > lim gi(x + td) - gz(j) — (ng(:f),d)
tl0 t tl0 t
Suppose B B
lim sup 9@ +td) ~ 9(2) > max{(Vg;(Z),d)}.

t10 t
Then some real sequence t; | 0 and real € > 0 satisfy

9(Z + trd) — g(Z)
tk

> max{(Vg;(Z),d)} + € forallk e N

(where N denotes the sequence of natural numbers). We can now choose a
subsequence R of N and a fixed index j so that all integers k in R satisfy
9(Z + trd) = g;(Z + txd). In the limit we obtain the contradiction

(Vg;(z),d) > m?x{(Vgi(ir), d)} +e.

Hence ~ J B
Jim sup 9(Z +td) — g(7)

: < max{(Vgi(z),d)},
tl0 ’
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and the result follows. 0O

For most of this book we consider optimization problems of the form

inf f(z)
subject to  gi(xz) < 0 foriel
hj(x) = 0 forjeJ (2.3.4)
z € C,

where C is a subset of E, I and J are finite index sets, and the objective
function f and inequality and equality constraint functions g; (i € I) and
hj (j € J), respectively, are continuous from C to R. A point z in C is
feasible if it satisfies the constraints, and the set of all feasible z is called the
feasible region. If the problem has no feasible points, we call it inconsistent.
We say a feasible point Z is a local minimizer if f(z) > f(Z) for all feasible
z close to . We aim to derive first order necessary conditions for local
minimizers.

We begin in this section with the differentiable inequality constrained
problem

inf f(x)
subject to gi(z) < 0 fori=1,2,...,m (2.3.5)
xz € C

For a feasible point & we define the active set I(Z) = {i | g;(Z) = 0}. For
this problem, assuming Z € intC, we call a vector A € R a Lagrange
multiplier vector for T if Z is a critical point of the Lagrangian

L(z; M) = f(z) + Z Xigi(z)

(in other words, Vf(Z) + > A\;Vgi(Z) = 0), and complementary slackness
holds: A\; = 0 for indices ¢ not in I(Z).

Theorem 2.3.6 (Fritz John conditions) Suppose problem (2.3.5) has a
local minimizer & € int C. If the functions f,g; (i € I(Z)) are differentiable
at T then there exist Ao, \; € Ry (i € I(Z)), not all zero, satisfying

V@) + Y AV
i€l(x)
Proof. Consider the function
g(z) = max{f(z) — f(z), gi(z) |t € I[(Z)}.

Since Z is a local minimizer for the problem (2.3.5), it is a local minimizer
of the function g, so all directions d € E satisfy the inequality

§'(& d) = max{(Vf(z),d), (Vg:(z),d) | i € [(2)} > 0,
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by the First order necessary condition (2.1.1) and Proposition 2.3.2 (Direc-
tional derivatives of max-functions). Thus the system

(Vf(Z),d) <0, (Vgi(z),d) <0 forie I(T)

has no solution, and the result follows by Gordan’s theorem (2.2.1). O

One obvious disadvantage remains with the Fritz John first order condi-
tions above: if A\g = 0 then the conditions are independent of the objective
function f. To rule out this possibility we need to impose a regularity con-
dition or “constraint qualification”, an approach which is another recurring
theme. The easiest such condition in this context is simply the linear in-
dependence of the gradients of the active constraints {Vg;(Z) | € I(Z)}.
The culminating result of this section uses the following weaker condition.

Assumption 2.3.7 (The Mangasarian—Fromovitz constraint qual-
ification) There is a direction d in E satisfying (Vg;(Z),d) < 0 for all
indices 1 in the active set I(Z).

Theorem 2.3.8 (Karush—Kuhn—Tucker conditions) Suppose problem
(2.3.5) has a local minimizer T in int C. If the functions f,g; (for i €
I(z)) are differentiable at T, and if the Mangasarian—Fromovitz constraint
qualification (2.3.7) holds, then there is a Lagrange multiplier vector for Z.

Proof. By the trivial implication in Gordan’s theorem (2.2.1), the con-
straint qualification ensures A\g # 0 in the Fritz John conditions (2.3.6).
O

Exercises and Commentary

The approach to first order conditions of this section is due to [95]. The
Fritz John conditions appeared in [107]. The Karush-Kuhn-Tucker condi-
tions were first published (under a different regularity condition) in [117],
although the conditions appear earlier in an unpublished master’s thesis
[111]. The Mangasarian-Fromovitz constraint qualification appeared in
[133]. A nice collection of optimization problems involving the determi-
nant, similar to Exercise 8 (Minimum volume ellipsoid), appears in [47]
(see also [183]). The classic reference for inequalities is [91].

1. Prove by induction that if the functions gg,91,...,9m : E — R are
all continuous at the point Z then so is the max-function g(z) =

max;{g;(z)}.

2. (Failure of Karush-Kuhn-Tucker) Consider the following prob-
lem:

inf (x1 4+ 1)2 + 23

subject to —x3 + 3

<
T €

0
R2.
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(a) Sketch the feasible region and hence solve the problem.

(b) Find multipliers Ag and A satisfying the Fritz John conditions
(2.3.6).

(c) Prove there exists no Lagrange multiplier vector for the optimal
solution. Explain why not.

3. (Linear independence implies Mangasarian—Fromovitz) If the
set of vectors {a!,a?,...,a™} in E is linearly independent, prove
directly there exists a direction d in E satisfying (a*,d) < 0 for i =
1,2,...,m.

4. For each of the following problems, explain why there must exist
an optimal solution, and find it by using the Karush-Kuhn-Tucker
conditions.

(a) inf z? + 13
subject to —2z; —x2+10 < 0
—r1 < 0.
(b) inf 5x% + 613
subject to r1—4 <0
25 — 22 -3 < 0.

5. (Cauchy—Schwarz and steepest descent) For a nonzero vector y
in E, use the Karush—-Kuhn—Tucker conditions to solve the problem

inf{(y, ) | z]|* < 1}.
Deduce the Cauchy—-Schwarz inequality.

6. * (Hélder’s inequality) For real p > 1, define ¢ by p~' + ¢~ ! =1,
and for z in R™ define

ey = (3 ).

For a nonzero vector y in R™, consider the optimization problem
inf{(y,z) | |lzll; < 1}. (2.3.9)

(a) Prove <-|u|P/p = ulu|P~? for all real u.

(b) Prove reals u and v satisfy v = u|u|[P~2 if and only if u = v|v|?72.
(¢) Prove problem (2.3.9) has a nonzero optimal solution.
)

(d) Use the Karush-Kuhn-Tucker conditions to find the unique op-
timal solution.
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(e) Deduce that any vectors x and y in R™ satisfy (y,z) < ||y||q]|zlp-

(We develop another approach to this theory in Section 4.1, Exercise
11.)

7. * Consider a matrix A in S, and a real b > 0.
(a) Assuming the problem
inf{—logdet X [tr AX <b, X €S%},}

has a solution, find it.

(b) Repeat using the objective function tr X —1.

(c) Prove the problems in parts (a) and (b) have optimal solutions.
(Hint: Section 1.2, Exercise 14.)

8. ** (Minimum volume ellipsoid)

(a) For a point y in R™ and the function g : S® — R defined by
9(X) = || Xy||?, prove Vg(X) = Xyy” + yyT X for all matrices
X in S™.
(b) Consider a set {y!,y?,...,y™} C R™. Prove this set spans R"
if and only if the matrix Y, y*(y*)7 is positive definite.
Now suppose the vectors y', 32,...,y™ span R".

(c) Prove the problem

inf —logdet X
subject to || X¥!||? -1 < 0 fori=1,2,...,m
X € Sh,

has an optimal solution. (Hint: Use part (b) and Section 1.2,
Exercise 14.)

Now suppose X is an optimal solution for the problem in part (c). (In
this case the set {y € R" ||| Xy|| < 1} is a minimum volume ellipsoid
(centered at the origin) containing the vectors y*,y2,... y™.)

(d) Show the Mangasarian-Fromovitz constraint qualification holds
at X by considering the direction d = —X.

(e) Write down the Karush-Kuhn-Tucker conditions that X must
satisfy.

(f) When {y%,y2,...,y™} is the standard basis of R", the optimal
solution of the problem in part (c) is X = I. Find the corre-
sponding Lagrange multiplier vector.



Chapter 3

Fenchel Duality

3.1 Subgradients and Convex Functions

We have already seen, in the First order sufficient condition (2.1.2), one
benefit of convexity in optimization: critical points of convex functions are
global minimizers. In this section we extend the types of functions we
consider in two important ways:

(i) We do not require f to be differentiable.
(i) We allow f to take the value +oc.

Our derivation of first order conditions in Section 2.3 illustrates the
utility of considering nonsmooth functions even in the context of smooth
problems. Allowing the value 400 lets us rephrase a problem like

inf{g(x) |z € C}

as inf(g + d¢), where the indicator function d¢(z) is 0 for z in C and +oo
otherwise.
The domain of a function f: E — (0o, 400] is the set

dom f = {z € E| f(z) < +o0}.

We say f is convez if it is convex on its domain, and proper if its domain
is nonempty. We call a function g : E — [—00,+00) concave if —g is
convex, although for reasons of simplicity we will consider primarily convex
functions. If a convex function f satisfies the stronger condition

FO + py) < M(@) + pf(y) forall e,y € E, A ue Ry
we say f is sublinear. If f(Az) = Af(z) for all z in E and X in R then

f is positively homogeneous: in particular this implies f(0) = 0. (Recall

33
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the convention 0- (+o00) = 0.) If f(z +y) < f(z) + f(y) for all z and y
in E then we say f is subadditive. It is immediate that if the function f
is sublinear then —f(z) < f(—x) for all z in E. The lineality space of a
sublinear function f is the set

linf={zeE| —f(z) =f(-2)}.

The following result (whose proof is left as an exercise) shows this set is a
subspace.

Proposition 3.1.1 (Sublinearity) A function f : E — (00, 400] is sub-
linear if and only if it is positively homogeneous and subadditive. For a
sublinear function f, the lineality space lin f is the largest subspace of E on
which f is linear.

As in the First order sufficient condition (2.1.2), it is easy to check
that if the point Z lies in the domain of the convex function f then the
directional derivative f'(Z;-) is well-defined and positively homogeneous,
taking values in [—o00, +00]. The core of a set C (written core (C)) is the
set of points x in C such that for any direction d in E, x + td lies in C for
all small real ¢. This set clearly contains the interior of C, although it may
be larger (Exercise 2).

Proposition 3.1.2 (Sublinearity of the directional derivative) If the
function f : E — (0o, +00] is convex then, for any point T in core (dom f),
the directional derivative f'(Z;-) is everywhere finite and sublinear.

Proof. For d in E and nonzero ¢t in R, define

f(@+1d) — (7).
t

g9(d;t) =
By convexity we deduce, for 0 < t < s € R, the inequality
g(d; —s) < g(d; —t) < g(d;t) < g(d; s).

Since Z lies in core (dom f), for small s > 0 both g(d; —s) and g¢(d;s) are
finite, so as ¢t | 0 we have

+o00 > g(d;s) > g(d;t) | f'(z;d) > g(d; —s) > —o0. (3.1.3)
Again by convexity we have, for any directions d and e in E and real ¢ > 0,
g(d+e;t) < g(d; 2t) + g(e; 2t).

Now letting ¢ | 0 gives subadditivity of f’(;-). The positive homogeneity
is easy to check. a
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The idea of the derivative is fundamental in analysis because it allows
us to approximate a wide class of functions using linear functions. In opti-
mization we are concerned specifically with the minimization of functions,
and hence often a one-sided approzimation is sufficient. In place of the gra-
dient we therefore consider subgradients, those elements ¢ of E satisfying

(p,x — ) < f(z) — f(Z) for all points = in E. (3.1.4)

We denote the set of subgradients (called the subdifferential) by 0f(Z),
defining df(z) = 0 for Z not in dom f. The subdifferential is always a closed
convex set. We can think of 9f(Z) as the value at T of the “multifunction”
or “set-valued map” df : E — E. The importance of such maps is another
of our themes. We define its domain

domdf = {z € E|0f(z) # 0}

(Exercise 19). We say f is essentially strictly convez if it is strictly convex
on any convex subset of dom Jf.

The following very easy observation suggests the fundamental signifi-
cance of subgradients in optimization.

Proposition 3.1.5 (Subgradients at optimality) For any proper func-
tion f : E — (00, +00], the point T is a (global) minimizer of f if and only
if the condition 0 € 8f(Z) holds.

Alternatively put, minimizers of f correspond exactly to “zeroes” of J9f.

The derivative is a local property whereas the subgradient definition
(3.1.4) describes a global property. The main result of this section shows
that the set of subgradients of a convex function is usually nonempty, and
that we can describe it locally in terms of the directional derivative. We
begin with another simple exercise.

Proposition 3.1.6 (Subgradients and directional derivatives) If the
function f : E — (0o, +00] is convex and the point T lies in dom f, then
an element ¢ of E is a subgradient of f at T if and only if it satisfies

(,) < f(%;°).

The idea behind the construction of a subgradient for a function f that
we present here is rather simple. We recursively construct a decreasing
sequence of sublinear functions which, after translation, minorize f. At
each step we guarantee one extra direction of linearity. The basic step is
summarized in the following exercise.

Lemma 3.1.7 Suppose that the function p : E — (00, 400] is sublinear
and that the point % lies in core (domp). Then the function q(-) = p'(Z;-)
satisfies the conditions
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(%) q(AZ) = A\p(Z) for all real A,
(%) g <p, and
(4) ling D linp + span {Z}.

With this tool we are now ready for the main result, which gives condi-
tions guaranteeing the existence of a subgradient. Proposition 3.1.6 showed
how to identify subgradients from directional derivatives; this next result
shows how to move in the reverse direction.

Theorem 3.1.8 (Max formula) If the function f : E — (oo, +00] is
convez then any point T in core (dom f) and any direction d in E satisfy

f(z;d) = max{(¢,d) | $ € 9f(2)}. (3.1.9)
In particular, the subdifferential Of(Z) is nonempty.

Proof. In view of Proposition 3.1.6, we simply have to show that for any
fixed d in E there is a subgradient ¢ satisfying (¢,d) = f'(Z;d). Choose
a basis {ej,eq,...,e,} for E with e; = d if d is nonzero. Now define
a sequence of functions pg,p1,...,p, recursively by po(-) = f'(z;-), and
pr() = ph_q(ex;-) for k =1,2,...,n. We essentially show that p,(-) is the
required subgradient.

First note that, by Proposition 3.1.2, each py is everywhere finite and
sublinear. By part (iii) of Lemma 3.1.7 we know

linpy D linpg—1 +span{ex} for k=1,2,...,n,

SO Py, is linear. Thus there is an element ¢ of E satisfying (¢, -) = p,(-)-
Part (ii) of Lemma 3.1.7 implies p,, < pp—1 < ... < po, so certainly, by
Proposition 3.1.6, any point z in E satisfies

Pn(z —2) <po(x — z) = f'(z;2 — &) < f(z) — f(T).

Thus ¢ is a subgradient. If d is zero then we have p,(0) = 0 = f'(z;0).
Finally, if d is nonzero then by part (i) of Lemma 3.1.7 we see

Pn(d) < po(d) = po(e1) = —pp(e1; —e1) =
—pi(—e1) = —p1(—d) < —pn(—d) = pp(d),
whence p,,(d) = po(d) = f/(z;d). a

Corollary 3.1.10 (Differentiability of convex functions) Suppose the
function f : E — (00, +00] is conver and the point Z lies in core (dom f).
Then f is Gateaur differentiable at T exactly when f has a unique subgra-
dient at Z (in which case this subgradient is the derivative).



3.1 Subgradients and Convex Functions 37

We say the convex function f is essentially smooth if it is Gateaux dif-
ferentiable on dom df. (In this definition, we also require f to be “lower
semicontinuous”; we defer discussion of lower semicontinuity until we need
it, in Section 4.2.) We see later (Section 4.1, Exercise 21) that a function
is essentially smooth if and only if its subdifferential is always singleton or
empty.

The Max formula (Theorem 3.1.8) shows that convex functions typically
have subgradients. In fact this property characterizes convexity (Exercise
12). This leads to a number of important ways of recognizing convex func-
tions, one of which is the following example. Notice how a locally defined
analytic condition results in a global geometric conclusion. The proof is
outlined in the exercises.

Theorem 3.1.11 (Hessian characterization of convexity) Given an
open convex set S C R"™, suppose the continuous function f :clS — R is
twice continuously differentiable on S. Then f is convez if and only if its
Hessian matriz is positive semidefinite everywhere on S.

Exercises and Commentary

The algebraic proof of the Max formula we follow here is due to [22]. The
exercises below develop several standard characterizations of convexity—
see for example [167]. The convexity of —logdet (Exercise 21) may be
found in [99], for example. We shall see that the core and interior of a
convex set in fact coincide (Theorem 4.1.4).

1. Prove Proposition 3.1.1 (Sublinearity).

2. (Core versus interior) Consider the set in R?
D ={(z,y) |y =0or |y| > 2},
Prove 0 € core (D) \ int (D).
3. Prove the subdifferential is a closed convex set.

4. (Subgradients and normal cones) If a point Z lies in a set C C E,
prove 00¢(Z) = N¢(Z).

5. Prove the following functions z € R — f(z) are convex and calculate
of:
(a) ||
(b) OR,
(c) { —\/E ifx>0

+o00 otherwise
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(d) 0 ifx <O
1 ifz=0
+00 otherwise.

. Prove Proposition 3.1.6 (Subgradients and directional derivatives).

Prove Lemma 3.1.7.

(Subgradients of norm) Calculate 9|| - ||. Generalize your result to
an arbitrary sublinear function.

(Subgradients of maximum eigenvalue) Prove

OM(0)={Y €S |[trY = 1}.

** For any vector 4 in the cone RY, prove
9w, [-)(0) = conv (P"p)
(see Section 2.2, Exercise 9 (Schur-convexity)).

* Define a function f : R® — R by f(z1,2,...,2,) = max;{z;},
let Z=0and d = (1,1,...,1)T, and let e, = (1,1,...,1,0,...,0)T
(ending in (k — 1) zeroes). Calculate the functions p, defined in
the proof of Theorem 3.1.8 (Max formula), using Proposition 2.3.2
(Directional derivatives of max functions).

* (Recognizing convex functions) Suppose the set S C R™ is
open and convex, and consider a function f : S — R. For points
x &S, define f(z) = +o0.

(a) Prove Of(z) is nonempty for all z in S if and only if f is convex.
(Hint: For points w and v in S and real X in [0,1], use the
subgradient inequality (3.1.4) at the points Z = Au + (1 — A\)v
and z = u, v to check the definition of convexity.)

(b) Prove that if I/ C R is an open interval and g : I — R is
differentiable then g is convex if and only if ¢’ is nondecreasing
on I, and g is strictly convex if and only if ¢’ is strictly increasing
on I. Deduce that if g is twice differentiable then g is convex if
and only if ¢g” is nonnegative on I, and g is strictly convex if g”
is strictly positive on I.

(c) Deduce that if f is twice continuously differentiable on S then f
is convex if and only if its Hessian matrix is positive semidefinite
everywhere on S, and f is strictly convex if its Hessian matrix is
positive definite everywhere on S. (Hint: Apply part (b) to the
function g defined by g(t) = f(z + td) for small real ¢, points z
in S, and directions d in E.)
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(d) Find a strictly convex function f : (—1,1) — R with f”(0) = 0.

(e) Prove that a continuous function h : cI.S — R is convex if and
only if its restriction to S is convex. What about strictly convex
functions?

13. (Local convexity) Suppose the function f: R™ — R is twice con-
tinuously differentiable near 0 and V2 £(0) is positive definite. Prove
flsp is convex for some real § > 0.

14. (Examples of convex functions) As we shall see in Section 4.2,
most natural convex functions occur in pairs. The table in Section
3.3 lists many examples on R. Use Exercise 12 to prove each function
f and f* in the table is convex.

15. (Examples of convex functions) Prove the following functions of
z € R are convex:

(a) lo
(b) log (

16. * (Bregman distances [48]) For a function ¢ : E — (o0, 400]
that is strictly convex and differentiable on int (dom ¢), define the
Bregman distance dy : dom ¢ x int (dom ¢) — R by

dg(z,y) = o(x) — ¢(y) — ¢’ (y)(z — v).

a) Prove dg(x,y) > 0, with equality if and only if z = y.
[

(b) Compute dg when ¢(t) = t?/2 and when ¢ is the function p
defined in Exercise 27.

sinh ax

( - ) for a > 1.
sinh x

ea:v

e”f—l) for a > 1.

(c) Suppose ¢ is three times differentiable. Prove dy is convex if
and only if —1/¢" is convex on int (dom ¢).

(d) Extend the results above to the function
Dy : (dom¢)™ x (int (dom¢))" — R

defined by Dy(z,y) = >, do(zi, yi).

17. * (Convex functions on R?) Prove the following functions of z €
R? are convex:

(a) (x1 — 29)(logzy —logxs) ifz e R2,
0 ifz=0
+o00 otherwise.

(Hint: See Exercise 16.)
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b 2

() ﬁ ifzo >0
Z2
0 ifz=0

+00 otherwise.

. * Prove the function

| —(z122 .. .z ifx e R}
flz) = {+oc otherwise

1s convex.

(Domain of subdifferential) If the function f: R? — (oo, +0o0] is
defined by

[ max{l — /z1,|z2|} ifz1 >0
f(ml’ :1,‘2) - { +00 otherwise,

prove that f is convex but that dom df is not convex.

* (Monotonicity of gradients) Suppose that the set S C R" is
open and convex and that the function f : S — R is differentiable.
Prove f is convex if and only if

(Vf(x) = Vf(y),r—y) >0 forall z,y €S,

and f is strictly convex if and only if the above inequality holds
strictly whenever z # y. (You may use Exercise 12.)

** (The log barrier) Use Exercise 20 (Monotonicity of gradients),
Exercise 10 in Section 2.1 and Exercise 8 in Section 1.2 to prove that
the function f : 87, — R defined by f(X) = —logdet X is strictly
convex. Deduce the uniqueness of the minimum volume ellipsoid in
Section 2.3, Exercise 8, and the matrix completion in Section 2.1,
Exercise 12.

Prove the function (2.2.5) is convex on R™ by calculating its Hessian.

* If the function f : E — (00, +00] is essentially strictly convex, prove
all distinct points z and y in E satisfy df(z) N 0f(y) = 0. Deduce
that f has at most one minimizer.

(Minimizers of essentially smooth functions) Prove that any
minimizer of an essentially smooth function f must lie in core (dom f).

** (Convex matrix functions) Consider a matrix C' in S7.
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(a) For matrices X in 87 , and D in S, use a power series expansion

to prove
2

d

—tr (C(X +tD)™! > 0.

dt? H(CX +1tD) )t:O_O

(b) Deduce X € ST +— tr (CX ') is convex.

(c) Prove similarly the function X € S™ + tr (CX?) and the func-
tion X € ST — —tr (CX'/2) are convex.

26. ** (Log-convexity) Given a convex set C' C E, we say that a func-
tion f: C' — Ry is log-convez if log f(-) is convex.

(a) Prove any log-convex function is convex, using Section 1.1, Ex-
ercise 9 (Composing convex functions).

(b) If a polynomial p : R — R has all real roots, prove 1/p is log-
convex on any interval on which p is strictly positive.

(c) One version of Holder’s inequality states, for real p,q > 1 satis-
fying p~! + ¢~ ! = 1 and functions u,v : Ry — R,

/uv < (/IUIP)I/p(/lvlq)l/q

when the right hand side is well-defined. Use this to prove the
gamma function I' : R — R given by

F(w):/ t"le~tdt
0

is log-convex.

27. ** (Maximum entropy [36]) Define a convex function p : R —
(=00, +o0] by
ulogu —u ifu>0
plu)y=4¢0 ifu=0
400 ifu<O

and a convex function f : R"™ — (—o0, +00] by
fl@) =" p(x:).
=1

Suppose £ lies in the interior of R} .

(a) Prove f is strictly convex on R’ with compact level sets.

(b) Prove f'(z;& — x) = —oo for any point x on the boundary of
R%.
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(c) Suppose the map G : R® — R™ is linear with GZ = b. Prove
for any vector ¢ in R™ that the problem

inf{f(z) + (c,z) | Gz = b, z € R"}

has a unique optimal solution Z, lying in R | .
(d) Use Corollary 2.1.3 (First order conditions for linear constraints)

to prove that some vector A in R™ satisfies Vf(Z) = G*\ — ¢,
and deduce Z; = exp(G*\ — ¢);.

** (DAD problems [36]) Consider the following example of Exercise
27 (Maximum entropy). Suppose the k x k matrix A has each entry
a;; nonnegative. We say A has doubly stochastic pattern if there is
a doubly stochastic matrix with exactly the same zero entries as A.
Define a set Z = {(4,j)|a;; > 0}, and let RZ? denote the set of vectors
with components indexed by Z and RZ denote those vectors in R?
with all nonnegative components. Consider the problem

inf > (i.yez (P(@ij) — mij log aq;)
subject to Ei:(m.)ez zij =1 forj=1,2,...,k
j:(i,j)ezxij =1 fori= 1,2,...,]{)
r € RZ.

(a) Suppose A has doubly stochastic pattern. Prove there is a point
Z in the interior of R_{ which is feasible for the problem above.
Deduce that the problem has a unique optimal solution Z, and,
for some vectors A and p in R*, Z satisfies

.’ii]‘ = Q45 exp()\i +M]) for (Z,_]) € Z.

(b) Deduce that A has doubly stochastic pattern if and only if there
are diagonal matrices D; and Dy with strictly positive diagonal
entries and D; ADs doubly stochastic.

** (Relativizing the Max formula) If f : E — (00,+0o0] is a
convex function then for points Z in ri (dom f) and directions d in E,
prove the subdifferential f(Z) is nonempty and

f'(@;d) = sup{(¢,d) | € Of(2)},

with attainment when finite.
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3.2 The Value Function

In this section we describe another approach to the Karush-Kuhn-Tucker
conditions (2.3.8) in the convex case using the existence of subgradients we
established in the previous section. We consider an (inequality-constrained)
convez program

inf{f(z) | gi(z) <0 fori=1,2,...,m, z € E}, (3.2.1)

where the functions f, g1, 92, ..,9m : E — (00, +00] are convex and satisfy
P # dom f C N;domg;. Denoting the vector with components g;(x) by
g(z), the function L : E x R}* — (00, +00] defined by

L(:)) = f(2) + \"g(a), (3.2.2)

is called the Lagrangian. A feasible solution is a point x in dom f satisfying
the constraints.

We should emphasize that the term “Lagrange multiplier” has different
meanings in different contexts. In the present context we say a vector \ €
R'! is a Lagrange multiplier vector for a feasible solution Z if Z minimizes
the function L( - ;) over E and A satisfies the complementary slackness
conditions: \; = 0 whenever g;(Z) < 0.

We can often use the following principle to solve simple optimization
problems.

Proposition 3.2.3 (Lagrangian sufficient conditions) If the point T
1s feasible for the convex program (3.2.1) and there is a Lagrange multiplier
vector, then T is optimal.

The proof is immediate, and in fact does not rely on convexity.

The Karush-Kuhn—Tucker conditions (2.3.8) are a converse to the above
result when the functions f,g1,92,...,9m are convex and differentiable.
We next follow a very different, and surprising, route to this result, cir-
cumventing differentiability. We perturb the problem (3.2.1), and analyze
the resulting (optimal) value function v : R™ — [—00, +00], defined by the
equation

v(b) = inf{f(z) | g(z) < b}. (3.2.4)

We show that Lagrange multiplier vectors X correspond to subgradients of
v (Exercise 9).

Our old definition of convexity for functions does not naturally extend
to functions h : E — [—oc, +00] (due to the possible occurrence of oo —c0).
To generalize the definition we introduce the idea of the epigraph of h:

epi(h) ={(y,7) € ExR|h(y) <7}, (3.2.5)
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and we say h is a convez function if epi(h) is a convex set. An exercise
shows in this case that the domain

dom (h) = {y | h(y) < 400}

is convex, and further that the value function v defined by equation (3.2.4)
is convex. We say h is proper if dom h is nonempty and h never takes the
value —oo: if we wish to demonstrate the existence of subgradients for v
using the results in the previous section then we need to exclude —oo.

Lemma 3.2.6 If the function h : E — [—o00,+00] is conver and some
point § in core (dom h) satisfies h(§) > —oo, then h never takes the value
—00.

Proof. Suppose some point y in E satisfies h(y) = —oo. Since ¢ lies in
core (dom h), there is a real ¢ > 0 with § + ¢(§ — y) in dom (h), and hence
a real r with (§ + t(§ — y),r) in epi(h). Now for any real s, (y, s) lies in
epi (h), so we know

T+t$ 1 t
g, ———— — — (4 t"__ , . h’
(y, 1+t) 1+t(y+ (@ y)ﬂ")+—l+t(y s) € epi (h)

Letting s — —oo gives a contradiction. O

In Section 2.3 we saw that the Karush—-Kuhn-Tucker conditions needed
a regularity condition. In this approach we will apply a different condition,
known as the Slater constraint qualification, for the problem (3.2.1):

There exists £ in dom (f) with ¢;(Z) <0 fori=1,2,...,m. (3.2.7)

Theorem 3.2.8 (Lagrangian necessary conditions) Suppose that the
point T in dom (f) is optimal for the convex program (3.2.1) and that the
Slater condition (3.2.7) holds. Then there is a Lagrange multiplier vector
for T.

Proof. Defining the value function v by equation (3.2.4), certainly v(0) >
—oo, and the Slater condition shows 0 € core(domw), so in particular
Lemma 3.2.6 shows that v never takes the value —co. (An incidental con-
sequence, from Section 4.1, is the continuity of v at 0.) We now deduce the
existence of a subgradient —\ of v at 0, by the Max formula (3.1.8).

Any vector b in R7* obviously satisfies g(Z) < b, whence the inequality

f(@) =v(0) <v(b) + XTb < f(&) + ATb.

Hence, )\ lies in R7'. Furthermore, any point « in dom f clearly satisfies

f(z) = v(g(2)) = v(0) = Ag(z) = f(z) — N g(x).
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The case x = Z, using the inequalities A > 0 and g(Z) < 0, shows A\Tg(z) =
0, which yields the complementary slackness conditions. Finally, all points
z in dom f must satisfy f(x) + ATg(z) > f(z) = f(z) + AT g(z). O

In particular, if in the above result Z lies in core (dom f) and the func-
tions f, 91,92, - .., gm are differentiable at Z then

Vi) + Z AiVgi(Z) =0,
i=1

so we recapture the Karush-Kuhn-Tucker conditions (2.3.8). In fact, in
this case it is easy to see that the Slater condition is equivalent to the
Mangasarian—Fromovitz constraint qualification (Assumption 2.3.7).

Exercises and Commentary

Versions of the Lagrangian necessary conditions above appeared in [182]
and [110]; for a survey see [158]. The approach here is analogous to [81].
The Slater condition first appeared in [173].

1. Prove the Lagrangian sufficient conditions (3.2.3).

2. Use the Lagrangian sufficient conditions (3.2.3) to solve the following

problems.
(a) inf 22 + 2% — 621 — 225 + 10
subject to 2x1 +x2—2 < 0
o — 1 S 0
r € R2%
(b) inf —2z1 + 22
subject to 22 -2 < 0
o —4 S 0
r € R2
2
inf 2
(c) in T + 7
. 1
subject to —z9 + B <0
—I +IL‘% <0
T € {(1‘1,.’1)2) 1 To > 0}
3. Given strictly positive reals aj,ag,...,an,c1,cC2,...,c, and b, use the

Lagrangian sufficient conditions to solve the problem
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. For a matrix A in S, and a real b > 0, use the Lagrangian sufficient

conditions to solve the problem
inf{—logdet X [tr AX <b, X €S} }.

You may use the fact that the objective function is convex with
derivative —X ~! (see Section 3.1, Exercise 21 (The log barrier)).

. * (Mixed constraints) Consider the convex program (3.2.1) with

some additional linear constraints (a’,z) = d; for vectors a’ in E
and reals d;. By rewriting each equality as two inequalities (or other-
wise), prove a version of the Lagrangian sufficient conditions for this
problem.

. (Extended convex functions)

(a) Give an example of a convex function that takes the values 0
and —oo.

(b) Prove the value function v defined by equation (3.2.4) is convex.
(c) Prove that a function h : E — [—o00, +00] is convex if and only
if it satisfies the inequality
h(Az + (1 = N)y) < Ma(z) + (1 = Mh(y)
for any points  and y in domh (or E if h is proper) and any
real A in (0,1).

(d) Prove that if the function h : E — [—o00,+00] is convex then
dom (h) is convex.

. (Nonexistence of multiplier) For the function f : R — (00, +00]

defined by f(z) = —/z for z in R4 and +oo otherwise, show there
is no Lagrange multiplier at the optimal solution of inf{f(z) |z < 0}.

8. (Duffin’s duality gap) Consider the following problem (for real b):

inf{e”2 | ||z|| — z1 < b, = € R?}. (3.2.9)

(a) Sketch the feasible region for b > 0 and for b = 0.
(b) Plot the value function v.

(c) Show that when b = 0 there is no Lagrange multiplier for any
feasible solution. Explain why the Lagrangian necessary condi-
tions (3.2.8) do not apply.

(d) Repeat the above exercises with the objective function e*? re-
placed by ;.
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** (Karush—-Kuhn—Tucker vectors [167]) Consider the convex
program (3.2.1). Suppose the value function v given by equation
(3.2.4) is finite at 0. We say the vector A in R’} is a Karush-Kuhn-
Tucker vector if it satisfies v(0) = inf{L(x;\) |z € E}.

(a) Prove that the set of Karush-Kuhn—Tucker vectors is —0v(0).

(b) Suppose the point Z is an optimal solution of problem (3.2.1).
Prove that the set of Karush-Kuhn-Tucker vectors coincides
with the set of Lagrange multiplier vectors for Z.

(c) Prove the Slater condition ensures the existence of a Karush—
Kuhn-Tucker vector.

(d) Suppose X is a Karush-Kuhn-Tucker vector. Prove a feasible
point Z is optimal for problem (3.2.1) if and only if A is a La-
grange multiplier vector for Z.

Prove the equivalence of the Slater and Mangasarian—Fromovitz con-
ditions asserted at the end of the section.

(Normals to epigraphs) For a function f : E — (oo, +00] and a
point Z in core (dom f), calculate the normal cone Nep; £(Z, f(Z)).

* (Normals to level sets) Suppose the function f : E — (0o, +00]
is convex. If the point Z lies in core (dom f) and is not a minimizer
for f, prove that the normal cone at T to the level set

C={zcE|f(z) < f(2)}

is given by N¢(Z) = R, 9f(Z). Is the assumption Z € core (dom f)
and f(Z) > inf f necessary?

* (Subdifferential of max-function) Consider convex functions
g1,92,---,9m - E— <OO»+OO]7

and define a function g(z) = max; g;(z) for all points z in E. For a
fixed point Z in E, define the index set I = {i | g;(Z) = g(Z)} and let

c=U{o(X ng)@ |[rerL, doai=1}.
iel i€l

(a) Prove C C 9¢g(Z).
(b) Suppose 0 € 9g(Z). By considering the convex program

inf {t|g;(x)—t<0 fori=1,2,...,m},
tefglzGE{ | 9:(@) - ore m}

prove 0 € C.
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(c) Deduce 9¢(z) = C.

14. ** (Minimum volume ellipsoid) Denote the standard basis of R"
by {el,e?,...,e"} and consider the minimum volume ellipsoid prob-
lem (see Section 2.3, Exercise 8)

inf —logdet X
subject to || Xel||2—1 < 0 fori=1,2,...,n
X e st,.

Use the Lagrangian sufficient conditions (3.2.3) to prove X = [ is the
unique optimal solution. (Hint: Use Section 3.1, Exercise 21 (The log
barrier).) Deduce the following special case of Hadamard’s inequality:
Any matrix (z' z® ... z") in 8% satisfies

det(z! 2% ... z™) < ||z||l22]|.. . ="
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3.3 The Fenchel Conjugate

In the next few sections we sketch a little of the elegant and concise theory
of Fenchel conjugation, and we use it to gain a deeper understanding of the
Lagrangian necessary conditions for convex programs (3.2.8). The Fenchel
conjugate of a function h : E — [—o00,400] is the function h* : E —
[—00, +00] defined by

h*(¢) = sup{(¢, z) — h(z)}.

zeE

The function h* is convex and if the domain of h is nonempty then h* never
takes the value —oo. Clearly the conjugacy operation is order-reversing:
for functions f, g : E — [—o00, +00], the inequality f > g implies f* < g*.

Conjugate functions are ubiquitous in optimization. For example, we
have already seen the conjugate of the exponential, defined by

tlogt—t ift>0
exp*(t) =< 0 ift=0
+00 ift<0

(see Section 3.1, Exercise 27). A rather more subtle example is the function
g: E — (00, +0o0] defined, for points a°,a,...,a™ in E, by

in =1, inai = z} (3.3.1)

The conjugate is the function we used in Section 2.2 to prove various the-
orems of the alternative:

9" (y) =1+log (ZeXp (ai,y>) (3.3.2)

rxeRm+1

o) = _inf {Dexw*(@)

(see Exercise 7).

As we shall see later (Section 4.2), many important convex functions h
equal their biconjugates h**. Such functions thus occur as natural pairs,
h and h*. Table 3.1 shows some elegant examples on R, and Table 3.2
describes some simple transformations of these examples.

The following result summarizes the properties of two particularly im-
portant convex functions.

Proposition 3.3.3 (Log barriers) The functions Ib : R* — (00, +00]
and1d : S™ — (00, +00] defined by

=30 logx; ifreRY,
Ib(z) = {+oo otherwise
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0 (y=0)

f(z) =g"(z) dom f 9(y) = f*(v) domg
0 R 0 {0}
0 R, 0 R,
0 [-1,1] |yl R
0 [0,1] y* R
|z[?/p, p>1 R /e (;+5=1) R
lz[P/p, p>1 R, ly*%/a (5+3=1) R
—zP/p, 0<p<l| R, —(=9)/q G+3:=1) Ry
V1422 R —/1— 2 [-1,1]
—logz R+ —1 —log(—y) —Ryq
cosh z R ysinh ™ (y) — /1432 R
—log(cosz) (-%,%) ytan~!(y) — 3 log(1 + y?) R
log(cosh ) R ytanh™'(y) + 2 log(1 —¢?) | (=1,1)
o R glogy'y Ezzgg R,
ylogy + (1 —y)log(l — y)
log(1 + %) R { (y € (0,1)) [0, 1]
0 (y=0,1)
ylogy — (1+y)log(l +y)
—log(1 —e) R { (y>0) R,

Table 3.1: Conjugate pairs of convex functions on R.
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f=g" g=f"
f(z) 9(v)
h(az) (a#0) | h*(y/a)

h(x +b) h*(y) — by

ah(z) (a>0)| ah*(y/a)

Table 3.2: Transformed conjugates.

and
_ J —logdet X if X €8S%,
ld (X) = {+oo otherwise

are essentially smooth, and strictly convex on their domains. They satisfy
the conjugacy relations

Ib*(z) = Ib(—xz) —n for allz € R™, and
Id*(X) = 1d(—=X) —n forall X € S™.

The perturbed functions b + (c,-) and ld + (C,-) have compact level sets
for any vector c € R} | and matriz C € ST, respectively.

(See Section 3.1, Exercise 21 (The log barrier), and Section 1.2, Exercise
14 (Level sets of perturbed log barriers); the conjugacy formulas are simple
calculations.) Notice the simple relationships Ib = 1d oDiag and1d =1b oA
between these two functions.

The next elementary but important result relates conjugation with the
subgradient. The proof is an exercise.

Proposition 3.3.4 (Fenchel-Young inequality) Any points ¢ in E
and x in the domain of a function h : E — (0o, +00] satisfy the inequality

h(z) + h*(¢) = (¢, z).
Equality holds if and only if ¢ € Oh(z).

In Section 3.2 we analyzed the standard inequality-constrained convex
program by studying its optimal value under perturbations. A similar
approach works for another model for convex programming, particularly
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suited to problems with linear constraints. An interesting byproduct is a
convex analogue of the chain rule for differentiable functions,

V(f+goA)(z) =Vf(z)+ A Vg(Az)

(for a linear map A). When A is the identity map we obtain a sum rule.
In this section we fix a Euclidean space Y. We denote the set of points
where a function g : Y — [—00, +00] is finite and continuous by cont g.

Theorem 3.3.5 (Fenchel duality and convex calculus) For given
functions f : E — (00,+0] and g : Y — (00,+00] and a linear map
A:E =Y, let p,d € [—00,+00] be primal and dual values defined, respec-
tively, by the Fenchel problems

= inf {f(z) + g(A2)} (3.3.6)
= ;gg{—f*(A*cb) -9 (—=9)} (3.3.7)

These values satisfy the weak duality inequality p > d. If, furthermore,
f and g are convex and satisfy the condition

0 € core (dom g — Adom f) (3.3.8)
or the stronger condition
Adom f Ncontg # 0 (3.3.9)

then the values are equal (p = d), and the supremum in the dual problem
(3.3.7) is attained if finite.
At any point x in E, the calculus rule

A(f +goA)(z) > df(z) + A*9g(Axz) (3.3.10)

holds, with equality if f and g are convex and either condition (3.3.8) or
(3.3.9) holds.

Proof. The weak duality inequality follows immediately from the Fenchel-
Young inequality (3.3.4). To prove equality we define an optimal value
function h : Y — [—o0, +00] by

h(w) = inf {£(2) + 9(Az + u)}.

It is easy to check h is convex and domh = dom g — Adom f. If p is —o0
there is nothing to prove, while if condition (3.3.8) holds and p is finite
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then Lemma 3.2.6 and the Max formula (3.1.8) show there is a subgradient
—¢ € 0h(0). Hence we deduce, for all v in Y and z in E, the inequalities

h(u) + (¢, u)

f(x) + 9(Az +u) + (b, u)
= {f(@) —(A"¢,2)} + {9(Az + u) — (—¢, Az + u)}.

Taking the infimum over all points u, and then over all points z, gives the
inequalities

h(0) <
<

h(0) < —f*(A%¢) — g"(=¢) < d < p = h(0).

Thus ¢ attains the supremum in problem (3.3.7), and p = d. An easy
exercise shows that condition (3.3.9) implies condition (3.3.8). The proof of
the calculus rule in the second part of the theorem is a simple consequence
of the first part (Exercise 9). O

The case of the Fenchel theorem above, when the function g is simply
the indicator function of a point, gives the following particularly elegant
and useful corollary.

Corollary 3.3.11 (Fenchel duality for linear constraints) Given any
function f: E — (00, 400], any linear map A : E — Y, and any element
b of Y, the weak duality inequality

irellfa{f($) | Az = b} > sup{(b,¢) — f*(A"®)}
T PEY

holds. If f is convex and b belongs to core (Adom f) then equality holds,
and the supremum is attained when finite.

A pretty application of the Fenchel duality circle of ideas is the calcu-
lation of polar cones. The (negative) polar cone of the set K C E is the
convex cone

K ={¢p€E|(p,z) <0 forallx € K},

and the cone K~ is called the bipolar. A particularly important example
of the polar cone is the normal cone to a convex set C' C E at a point x in
C, since N¢(z) = (C — ).

We use the following two examples extensively; the proofs are simple
exercises.

Proposition 3.3.12 (Self-dual cones)

(R?)” =—-R” and (S7)” = —S~.
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The next result shows how the calculus rules above can be used to derive
geometric consequences.

Corollary 3.3.13 (Krein—Rutman polar cone calculus) Any cones
H CY and K C E and linear map A : E — Y satisfy

(KNAT'H)" D A*H™ + K.

Equality holds if H and K are conver and satisfy H — AK =Y (or in
particular AK Nint H # 0).

Proof. Rephrasing the definition of the polar cone shows that for any
cone K C E, the polar cone K~ is just 0k (0). The result now follows by
the Fenchel theorem above. O

The polarity operation arises naturally from Fenchel conjugation, since
for any cone K C E we have 0~ = dj, whence dx-- = d}. The next
result, which is an elementary application of the Basic separation theo-
rem (2.1.6), leads naturally into the development of the next chapter by
identifying K ~~ as the closed convex cone generated by K.

Theorem 3.3.14 (Bipolar cone) The bipolar cone of any nonempty set
K CE is given by K—~ = cl(conv (R K)).

For example, we deduce immediately that the normal cone Ng(z) to a
convex set C' at a point z in C, and the (convex) tangent cone to C at x
defined by T¢(z) = clR4(C — x), are polars of each other.

Exercise 20 outlines how to use these two results about cones to charac-
terize pointed cones (those closed convex cones K satisfying KN—K = {0}).

Theorem 3.3.15 (Pointed cones) If K C E is a closed conver cone,
then K is pointed if and only if there is an element y of E for which the
set

C={zeK|(z,y) =1}

is compact and generates K (that is, K = R;C).

Exercises and Commentary

The conjugation operation has been closely associated with the names
of Legendre, Moreau, and Rockafellar, as well as Fenchel; see [167, 70].
Fenchel’s original work is [76]. A good reference for properties of convex
cones is [151]; see also [20]. The log barriers of Proposition 3.3.3 play a key
role in interior point methods for linear and semidefinite programming—
see, for example, [148]. The self-duality of the positive semidefinite cone is
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due to Fejer [99]. Hahn-Banach extension (Exercise 13(e)) is a key tech-
nique in functional analysis; see, for example, [98]. Exercise 21 (Order
subgradients) is aimed at multicriteria optimization; a good reference is
[176]. Our approach may be found, for example, in [20]. The last three
functions g in Table 3.1 are respectively known as the Boltzmann-Shannon,
Fermi-Dirac, and Bose-FEinstein entropies.

1. For each of the functions f in Table 3.1, check the calculation of f*
and check f = f**.

2. (Quadratics) For all matrices A in S}, prove the function z €
R” — 27 Az/2 is convex and calculate its conjugate. Use the order-
reversing property of the conjugacy operation to prove

A=B & B '~ A"! for Aand Bin S .

3. Verity the conjugates of the log barriers b and 1d claimed in Propo-
sition 3.3.3.

4. * (Self-conjugacy) Consider functions f : E — (o0, +0oq].

(a) Prove f = f* if and only if f(z) = ||z||?/2 for all points z in E.
(b) Find two distinct functions f satisfying f(—z) = f*(x) for all
points x in E.

5. * (Support functions) The conjugate of the indicator function of
a nonempty set C C E, namely 65 : E — (00, +00], is called the
support function of C. Calculate it for the following sets:

(a) the halfspace {z | (a,z) <b} for0 #ac Eand be R

(b) the unit ball B

(0) {z € RY | 2] <1}

(d) the polytope conv {a',a?,...,a™} for given points al,a?,...,a™
inE

(e) a cone K

(f) the epigraph of a convex function f : E — (00, +]

(g) the subdifferential 0f(Z), where the function f : E — (00, +00]
is convex and the point Z lies in core (dom f)

(h) {Y €87 [trY =1}

6. Calculate the conjugate and biconjugate of the function

2

i +xzologze — g ifaxg >0
2.’)32

f(z1,22) =

0 if X1 = Ty = 0
+00 otherwise.



56

3. Fenchel Duality

7. ** (Maximum entropy example)

(a) Prove the function g defined by (3.3.1) is convex.
(b) For any point y in R™*! prove
g’ = sup {> (@ila’,y) —exp* (@) | Ym =1}
i

zeRmM+1

(c) Apply Exercise 27 in Section 3.1 to deduce the conjugacy for-
mula (3.3.2).
(d) Compute the conjugate of the function of x € R™*1!,

{Zi exp*(z;) if Y,z =1

+00 otherwise.

8. Prove the Fenchel-Young inequality.

9.

10.

* (Fenchel duality and convex calculus) Fill in the details for
the proof of Theorem 3.3.5 as follows.

(a) Prove the weak duality inequality.

(b) Prove the inclusion (3.3.10).
Now assume f and g are convex.

(c) Prove the function h defined in the proof is convex with domain

dom g — Adom f.
(d) Prove the implication (3.3.9) = (3.3.8).

Finally, assume in addition that condition (3.3.8) holds.

(e) Suppose ¢ € O(f + go A)(Z). Use the first part of the theorem
and the fact that Z is an optimal solution of the problem

Inf {(f(2) = (¢, 2)) + g(Az)}

to deduce equality in part (b).
(f) Prove points Z € E and ¢ € Y are optimal for problems (3.3.6)

and (3.3.7), respectively, if and only if they satisfy the conditions
A*¢ € 0f(Z) and —¢ € dg(AZT).

(Normals to an intersection) If the point x lies in two convex
subsets C' and D of E satisfying 0 € core (C' — D) (or in particular
CnNint D # ), use Section 3.1, Exercise 4 (Subgradients and normal
cones) to prove

NCQD(.T) = Nc(.’r) + ND(SC)
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11. * (Failure of convex calculus)

(a) Find convex functions f,g: R — (0o, +o00] with

9f(0) + 9g(0) # 0(f + 9)(0).

(Hint: Section 3.1, Exercise 5.)
(b) Find a convex function g : R? — (0c0,+00] and a linear map
A: R — R? with A*9g(0) # (g o A)(0).

12. * (Infimal convolution) If the functions f,g : E — (—o0, +0o0] are
convex, we define the infimal convolution f © g : E — [~00, +00] by

(f ©9)(y) = nf{f(z) +g(y — )}

(a) Prove f ®g is convex. (On the other hand, if g is concave prove
sois f®g.)

(b) Prove (f®g)* = f*+g*.

(c) If dom f Ncont g # 0, prove (f +g)* = f* ©® g*.

(d) Given a nonempty set C C E, define the distance function by

do(z) = inf [lz -yl

(i) Prove d% is a difference of convex functions, by observing

[l

(o =125 (1 4 50) (.

Now suppose C' is convex.

(ii) Prove d¢ is convex and df, = 6 + (.
(iii) For z in C prove ddc(xz) = BN Ne(z).
(iv) If C is closed and = & C, prove

Vdc(z) = de(z) ™ (z — Po()),

where Po(z) is the nearest point to « in C.
(v) If C is closed, prove

v (1) = 2 - Po(x)

for all points z.
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(e) Define the Lambert W -function W : Ry — R, as the inverse of

y € Ry — ye¥. Prove the conjugate of the function

2

x € Rr—>exp*(a:)+7

is the function

(W(en))?

yeR— W(e) + 5

13. * (Applications of Fenchel duality)

(a)

(b)
(c)

(d)

(e)

(Sandwich theorem) Let the functions f : E — (0o, +o0]
and g : Y — (00, +00] be convex and the map A : E — Y be
linear. Suppose f > —go A and 0 € core(domg — Adom f)
(or Adom f Ncontg # @). Prove there is an affine function
a: E — R satisfying f > a > —go A.

Interpret the Sandwich theorem geometrically in the case when
A is the identity.

(Pshenichnii-Rockafellar conditions [159]) If the convex
set C in E satisfies the condition CNcont f # () (or the condition
int CNdom f # 0), and if f is bounded below on C, use part (a)
to prove there is an affine function o < f with inf¢ f = infc .
Deduce that a point Z minimizes f on C if and only if it satisfies
0 € 0f(Z) + N ().

Apply part (c) to the following two cases:

(i) C a single point {z°} C E

(ii) C a polyhedron {z | Az < b}, where be R*" =Y
(Hahn-Banach extension) If the function f : E — R is
everywhere finite and sublinear, and for some linear subspace
L of E the function h : L — R is linear and dominated by f

(in other words f > h on L), prove there is a linear function
o : E — R, dominated by f, which agrees with h on L.

14. Fill in the details of the proof of the Krein-Rutman calculus (3.3.13).

15. * (Bipolar theorem) For any nonempty set K C E, prove the
set cl (conv (R4 K)) is the smallest closed convex cone containing K.
Deduce Theorem 3.3.14 (Bipolar cones).

16. * (Sums of closed cones)

(a)

Prove that any cones H, K C E satisfy (H + K)" =H NK~.
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(b) Deduce that if H and K are closed convex cones then they satisfy
(HNK)™ =cl(H  + K7), and prove that the closure can be
omitted under the condition K Nint H # (.

In R3, define sets

H = {z|z}+ 23 <23, 23 <0} and
K = {$|.’E2:—ZIJ3}.

(¢) Prove H and K are closed convex cones.
(d) Calculate the polar cones H—, K, and (HNK)~.

(e) Prove (1,1,1) € (HNK)~ \ (H~ + K ), and deduce that the
sum of two closed convex cones is not necessarily closed.

17. * (Subdifferential of a max-function) With the notation of Sec-
tion 3.2, Exercise 13, suppose

dom g; N ﬂ cont g; # 0
ieI\{j}

for some index j in I. Prove

a(mlax 9i)(Z) = conv U 0g:(Z).

el

18. * (Order convexity) Given a Euclidean space Y and a closed convex
cone S C Y, we write u <g v for points u and v in Y if v — u lies in

S.

(a) Identify the partial order <g in the following cases:
(i) §={0}
(ii) S=Y
(ili) Y=R" and S =R}
Given a convex set C C E, we say a function F' : C' — Y is S-convex

if it satisfies
F(Ax + pz) <g AF(z) + pF(2)

for all points z and z in E and nonnegative reals A and p satisfying
A+ p = 1. If, furthermore, C is a cone and this inequality holds for
all A and p in Ry then we say F' is S-sublinear.

(b) Identify S-convexity in the cases listed in part (a).

(¢) Prove F is S-convex if and only if the function (¢, F'(-)) is convex
for all elements ¢ of —S—.
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19.

20.

21.
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(d) Prove the following functions are S’ -convex:
(i) X €S"— X?
(i) X €87, — X!
(iii) X € 87 > —X1/2
Hint: Use Exercise 25 in Section 3.1.

(e) Prove the function X € S? — X* is not S%-convex. Hint:
Consider the matrices

4 2 d 4 0
2 1] ™9 o 8"
(Order convexity of inversion) For any matrix A in S% ., define
a function g4 : R® — R by ga(z) = 2T Az/2.
(a) Prove ¢} = qa-1.

(b) For any other matrix B in S% ,, prove 2(ga ® gg) < q(A+B)/2-
(See Exercise 12.)

(c) Deduce (A=t +B~1)/2 = ((A+ B)/2)~ .
** (Pointed cones and bases) Consider a closed convex cone K
in E. A base for K is a convex set C with 0 € c1C and K = R, C.

Using Exercise 16, prove the following properties are equivalent by
showing the implications

(@) = (0) = (¢) = (d) = (¢) = (f) = (a).

(a) K is pointed.
(b) (K~ —K~)=E.
(¢) KT— K~ =E.

(d) K~ has nonempty interior. (Here you may use the fact that K~
has nonempty relative interior—see Section 1.1, Exercise 13.)

(e) There exists a vector y in E and real € > 0 with (y,z) > €||z]|
for all points z in K.

(f) K has a bounded base.
** (Order-subgradients) This exercise uses the terminology of Ex-
ercise 18, and we assume the cone S C Y is pointed: SN —S = {0}.
An element y of Y is the S-infimum of a set D C Y (written
y = infg D) if the conditions

(i) DCy+ S and

(i) D C z+ S for some z in Y implies y € z + S
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both hold.

(a) Verify that this notion corresponds to the usual infimum when
Y =R and S =R;.

(b) Prove every subset of Y has at most one S-infimum.
(c) Prove decreasing sequences in S converge:

Tog>5T1 25T2...250

implies lim, z,, exists and equals infs(z,). (Hint: Prove first
that S N (zg — S) is compact using Section 1.1, Exercise 6 (Re-
cession cones).)

An S-subgradient of F' at a point z in C is a linear map T : E — Y
satisfying

T(z —z) <g F(z) — F(x) forall zin C.

The set of S-subgradients is denoted 9sF(z). Suppose now = €
core C. Generalize the arguments of Section 3.1 in the following steps.

(d) For any direction h in E, prove

VsF(x;h) = igf{t‘l(F(x +th)—F(z))|t>0, x +the C}

exists and, as a function of h, is S-sublinear.

(e) For any S-subgradient T € dsF(z) and direction h € E, prove
Th <g VgF(x;h).

(f) Given h in E, prove there exists T in JgF'(x) satisfying Th =
VsF(x;h). Deduce the max formula

VsF(z;h) = max{Th|T € 0sF(x)}

and, in particular, that dsF'(x) is nonempty. (You should inter-
pret the “max” in the formula.)

(g) The function F is Gdteauz differentiable at x (with derivative
the linear map VF(z) : E — Y) if

}irr(l) t~Y(F(z +th) — F(z)) = (VF(z))h
holds for all & in E. Prove this is the case if and only if JsF'(x)
is a singleton.
Now fix an element ¢ of —int (S7).
(h) Prove (¢, F())'(z;h) = (6, VsF (a3 h)).
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(i) Prove F'is Gateaux differentiable at x if and only if (¢, F(-)) is
likewise.

22. ** (Linearly constrained examples) Prove Corollary 3.3.11 (Fen-
chel duality for linear constraints). Deduce duality theorems for the
following problems.

(a) Separable problems

St
=1

where the map A : R™ — R™ is linear, b € R™, and the function
p: R — (00, 400] is convex, defined as follows:

Aa::b},

(i) (Nearest points in polyhedrons) p(t) = t2/2 with do-
main R .
(ii) (Analytic center) p(t) = —logt with domain R, .
(iii) (Maximum entropy) p = exp*.
What happens if the objective function is replaced by >, p;(z;)?
(b) The BFGS update problem in Section 2.1, Exercise 13.
(c) The DAD problem in Section 3.1, Exercise 28.
(d) Example (3.3.1).
23. * (Linear inequalities) What does Corollary 3.3.11 (Fenchel duality
for linear constraints) become if we replace the constraint Az = b by
Az € b+ K where K C Y is a convex cone? Write down the dual

problem for Section 3.2, Exercise 2, part (a), solve it, and verify the
duality theorem.

24. (Symmetric Fenchel duality) For functions f, g : E — [—o0, +00],
define the concave conjugate g. : E — [—00, +00| by

9:(6) = inf {(6,2) - g(2)}.

Prove
inf(f — g) > sup(g. — /),

with equality if f is convex, g is concave, and

0 € core (dom f — dom (—g)).
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25. ** (Divergence bounds [135])

(a) Prove the function
teR— 2(2+1t)(exp*t+1)—3(t —1)?
is convex and is minimized when ¢ = 1.
(b) For v in Ry and u in Ry, deduce the inequality

3(u—v)? <2(u+ 2v)(ulog <%) —u+ v).

Now suppose the vector p in R"  satisfies Y 7 p; = 1.

(c) If the vector ¢ € R7 satisfies Y | ¢i = 1, use the Cauchy—
Schwarz inequality to prove the inequality

n

<2?:lpi*(h> Z +2ql

1

and deduce the inequality
> rtog (%) 2 5(3 b —ad)
T i 2
(d) Hence show the inequality

n n
logn+ Y pilogp; > %(Z
1 1

1 2
e E
n

(e) Use convexity to prove the inequality

Zpi logp; < logpr.
1 1

(f) Deduce the bound

~ max p;
logn+ZP110gPi < Py
1

min p;



Chapter 4

Convex Analysis

4.1 Continuity of Convex Functions

We have already seen that linear functions are always continuous. More
generally, a remarkable feature of convex functions on E is that they must
be continuous on the interior of their domains. Part of the surprise is that
an algebraic/geometric assumption (convexity) leads to a topological con-
clusion (continuity). It is this powerful fact that guarantees the usefulness
of regularity conditions like Adom f N cont g # @ (3.3.9), which we studied
in the previous section.

Clearly an arbitrary function f is bounded above on some neighbour-
hood of any point in cont f. For convex functions the converse is also true,
and in a rather strong sense, needing the following definition. For a real
L > 0, we say that a function f : E — (00, +00] is Lipschitz (with constant
L) on a subset C of dom f if |f(z) — f(y)| < L|jz — y|| for any points =
and y in C. If f is Lipschitz on a neighbourhood of a point z then we say
that f is locally Lipschitz around z. If Y is another Euclidean space we
make analogous definitions for functions F' : E — Y, with ||F(z) — F(y)||

replacing | f(z) — f(y)|.

Theorem 4.1.1 (Local boundedness) Let f : E — (00, +00] be a con-
vex function. Then f is locally Lipschitz around a point z in its domain if
and only if it is bounded above on a neighbourhood of z.

Proof. One direction is clear, so let us without loss of generality take
z =0, f(0) =0, and suppose f < 1 on 2B; we shall deduce f is Lipschitz
on B.

Notice first the bound f > —1 on 2B, since convexity implies f(—z) >
—f(x) on 2B. Now for any distinct points « and y in B, define o = ||y — z||
and fix a point w = y + a~!(y — x), which lies in 2B. By convexity we

65
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obtain
1 o} 2c
_ < - — < — <2lly —
F) = £(2) € T f@) + T fw) = f(0) < 1 < 2y )
and the result now follows, since x and y may be interchanged. a

This result makes it easy to identify the set of points at which a convex
function on E is continuous. First we prove a key lemma.

Lemma 4.1.2 Let A be the simplex {x € R} | " z; < 1}. If the function
g: A — R is convex then it is continuous on int A.

Proof. By the above result, we just need to show g is bounded above on
A. But any point x in A satisfies

g(z) = (sze +(1-> =) ) leg +(1—->"%;)9(0)
max{g(e'), g(e®),..., g(e" ),9(0)}

(where {e',€?,...,e"} is the standard basis in R™). O

IN

Theorem 4.1.3 (Convexity and continuity) Let f : E — (0o, +00] be
a conver function. Then f is continuous (in fact locally Lipschitz) on the
interior of its domain.

Proof. We lose no generality if we restrict ourselves to the case E = R™.
For any point z in int (dom f) we can choose a neighbourhood of z in dom f
that is a scaled down, translated copy of the simplex (since the simplex is
bounded with nonempty interior). The proof of the preceding lemma now
shows f is bounded above on a neighbourhood of z, and the result follows
by Theorem 4.1.1 (Local boundedness). O

Since it is easy to see that if the convex function f is locally Lipschitz
around a point Z in int (dom f) with constant L then 8f(Z) C LB, we
can also conclude that df(Z) is a nonempty compact convex set. Further-
more, this result allows us to conclude quickly that “all norms on E are
equivalent” (see Exercise 2).

We have seen that for a convex function f, the two sets cont f and
int (dom f) are identical. By contrast, our algebraic approach to the ex-
istence of subgradients involved core (dom f). It transpires that this is
the same set. To see this we introduce the idea of the gauge function
Y¢ : E — (00, +00] associated with a nonempty set C in E:

vo(z) =inf{A € Ry |z € AC}.

It is easy to check 7¢ is sublinear (and in particular convex) when C is
convex. Notice yg = || - |
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Theorem 4.1.4 (Core and interior) The core and the interior of any
convex set in E are identical and convex.

Proof. Any convex set C C E clearly satisfies int C C coreC. If we
suppose, without loss of generality, 0 € coreC, then ~c is everywhere
finite, and hence continuous by the previous result. We claim

int C = {z|yc(z) < 1}.

To see this, observe that the right hand side is contained in C', and is open
by continuity, and hence is contained in int C'. The reverse inclusion is easy,
and we deduce int C' is convex. Finally, since 7¢(0) = 0, we see 0 € int C,
which completes the proof. O

The conjugate of the gauge function 7¢ is the indicator function of a
set C° C E defined by

C°={peE|(p,x) <1forallzeC}.

We call C° the polar set for C. Clearly it is a closed convex set containing
0, and when C is a cone it coincides with the polar cone C~. The following
result therefore generalizes the Bipolar cone theorem (3.3.14).

Theorem 4.1.5 (Bipolar set) The bipolar set of any subset C of E is
given by
C°° = cl(conv (C U{0})).

The ideas of polarity and separating hyperplanes are intimately related.
The separation-based proof of the above result (Exercise 5) is a good ex-
ample, as is the next theorem, whose proof is outlined in Exercise 6.

Theorem 4.1.6 (Supporting hyperplane) Suppose that the convex set
C C E has nonempty interior and that the point T lies on the boundary of
C. Then there is a supporting hyperplane to C at Z: there is a nonzero
element a of E satisfying (a,z) > (a,Z) for all points x in C.

(The set {z € E | (a,z — Z) = 0} is the supporting hyperplane.)

To end this section we use this result to prove a remarkable theorem
of Minkowski describing an extremal representation of finite-dimensional
compact convex sets. An extreme point of a convex set C' C E is a point z
in C' whose complement C \ {z} is convex. We denote the set of extreme
points by ext C. We start with another exercise.

Lemma 4.1.7 Given a supporting hyperplane H of a convezr set C C E,
any extreme point of C N H is also an extreme point of C.
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Our proof of Minkowski’s theorem depends on two facts: first, any
convex set that spans E and contains the origin has nonempty interior (see
Section 1.1, Exercise 13(b)); second, we can define the dimension of a set
C C E (written dim C) as the dimension of span (C — ) for any point x in
C (see Section 1.1, Exercise 12 (Affine sets)).

Theorem 4.1.8 (Minkowski) Any compact convex set C C E is the con-
vex hull of its extreme points.

Proof. Our proof is by induction on dim C; clearly the result holds when
dimC = 0. Assume the result holds for all sets of dimension less than
dim C. We will deduce it for the set C.

By translating C and redefining E, we can assume 0 € C and spanC =
E. Thus C has nonempty interior.

Given any point  in bd C, the Supporting hyperplane theorem (4.1.6)
shows C' has a supporting hyperplane H at z. By the induction hypothesis
applied to the set C N H we deduce, using Lemma, 4.1.7,

2 € conv (ext (C'N H)) C conv (ext C).

Thus we have proved bd C' C conv (ext C), so conv (bd C') C conv (ext C).
But since C' is compact it is easy to see conv (bd C) = C, and the result
now follows. ]

Exercises and Commentary

An easy introduction to convex analysis in finite dimensions is [181]. The
approach we adopt here (and in the exercises) extends easily to infinite
dimensions; see [98, 131, 153]. The Lipschitz condition was introduced
in [129]. Minkowski’s theorem first appeared in [141, 142]. The Open
mapping theorem (Exercise 9) is another fundamental tool of functional
analysis [98]. For recent references on Pareto minimization (Exercise 12),
see [44].

1. * (Points of continuity) Suppose the function f : E — (0o, +00] is
convex.

(a) Use the Local boundedness theorem (4.1.1) to prove that f is
continuous and finite at x if and only if it minorizes a function
g : E — (00, +00] which is continuous and finite at x.

(b) Suppose f is continuous at some point y in dom f. Use part
(a) to prove directly that f is continuous at any point z in
core (dom f). (Hint: Pick a point u in dom f such that z =
0y + (1 — 0)u for some real § € (0,1); now observe that the
function

z€Em 6 (f(6z + (1 —8)u) — (1 —8)f(u))
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minorizes f.)

(¢c) Prove that f is continuous at a point z in dom f if and only if
(z, f(z) + €) € int (epi f)

for some (all) real € > 0.

(d) Assuming 0 € cont f, prove f* has bounded level sets. Deduce
that the function X € 8™ — (C, X) +1d (X) has compact level
sets for any matrix C' in S% , .

(e) Assuming x € cont f, prove f(z) is a nonempty compact con-
vex set.

(Equivalent norms) A norm is a sublinear function |||-||| : E — R4
that satisfies |||z||| = ||| — z||] > O for all nonzero points z in E. By
considering the function ||| - ||| on the standard unit ball B, prove any
norm ||| - ||| is equivalent to the Euclidean norm || - ||: that is, there
are constants K > k > 0 with k||z|| < |||z||| < K||z| for all z.

(Examples of polars) Calculate the polars of the following sets:
(a) conv (BU{(1,1),(-1,—-1)}) Cc R%

2
(b) {(z,y) eR?|yz b+ =} vem).

(Polar sets and cones) Suppose the set C C E is closed, convex,
and contains 0. Prove the convex cones in E x R

clR4(C x {1}) and clR4(C° x {—1})
are mutually polar.

* (Polar sets) Suppose C is a nonempty subset of E.

For a subset D of E, prove C C D implies D° C C°.

Prove C is bounded if and only if 0 € int C°.

(g) For any closed halfspace H C E containing 0, prove H°° = H.
(h) Prove Theorem 4.1.5 (Bipolar set).

(a) Prove 7§ = d¢o.
(b) Prove C° is a closed convex set containing 0.
(c) Prove C C C°°.
(d) If C is a cone, prove C° =C~.
)
)
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6. * (Polar sets and strict separation) Fix a nonempty set C in E.

(a) For points  in int C' and ¢ in C°, prove (¢, z) < 1.
(b) Assume further that C is a convex set. Prove ¢ is sublinear.

(c) Assume in addition 0 € core C. Deduce
cdC ={z|vc(z) <1}.

(d) Finally, suppose in addition that D C E is a convex set disjoint
from the interior of C. By considering the Fenchel problem
inf{dp +~c}, prove there is a closed halfspace containing D but
disjoint from the interior of C.

7. * (Polar calculus [23]) Suppose C and D are subsets of E.
(a) Prove (CUD)° =C°nD°.

(b) If C and D are convex, prove

conv(CUD) = [J (AC+(1-MD).
A€l0,1]

(c) If C is a convex cone and the convex set D contains 0, prove

C + D Cclconv (C U D).

Now suppose the closed convex sets K and H of E both contain 0.
(d) Prove (KN H)° = clconv (K° U H®).
(e) If furthermore K is a cone, prove (K N H)® = cl (K° + H®).

8. ** (Polar calculus [23]) Suppose P is a cone in E and C is a
nonempty subset of a Euclidean space Y.

(a) Prove (P x C)° = P° x C°.
(b) If furthermore C' is compact and convex (possibly not containing
0), and K is a cone in E x Y, prove

(KN (P xC))° = (KNP xC®)).

(c) If furthermore K and P are closed and convex, use Exercise 7
to prove

(KN (P x C))° =cl(K°+ (P° x C°)).

(d) Find a counterexample to part (c) when C' is unbounded.
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9. * (Open mapping theorem) Suppose the linear map A : E —Y
is surjective.

(a) Prove any set C' C E satisfies Acore C' C core AC.

(b) Deduce A is an open map: that is, the image of any open set is
open.

(c) Prove another condition ensuring condition (3.3.8) in the Fenchel
theorem is that there is a point Z in int (dom f) with AZ in dom g
and A is surjective. Prove similarly that a sufficient condition
for Fenchel duality with linear constraints (Corollary 3.3.11) to
hold is A surjective and b € A(int (dom f)).

(d) Deduce that any cones H C Y and K C E, and any surjective
linear map A : E — Y satisfy (KNA™'H)™ = A*H™ + K,
providing H N A(int K) # 0.

10. * (Conical absorption)

(a) If the set A C E is convex, the set C C E is bounded, and
R, A = E, prove there exists a real § > 0 such that 6C C A.

Now define two sets in Si by

_ y z 2
NEHE

C={XeS|trX <1}.

lz] < y2/3} , and

(b) Prove that both A and C are closed, convex, and contain 0, and
that C is bounded.

(c) Prove R;A=8% =R, C.
(d) Prove there is no real § > 0 such that 6C C A.
11. (Holder’s inequality) This question develops an alternative ap-

proach to the theory of the p-norm || - ||, defined in Section 2.3, Ex-
ercise 6.

(a) Prove p~'||z|[b is a convex function, and deduce the set
By, =A{z|llzl, <1}

is convex.
(b) Prove the gauge function yp, (-) is exactly ||-||,, and deduce ||-||,,
is convex.

(c) Use the Fenchel-Young inequality (3.3.4) to prove that any vec-
tors ¢ and ¢ in R satisfy the inequality

pHIzlE + a7 HlE > (8, 2).
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(d) Assuming ||ul|, = ||v|lq = 1, deduce (u,v) < 1, and hence prove
that any vectors x and ¢ in R™ satisfy the inequality

(@,2) < llllqllllp-

(e) Calculate By.

12. * (Pareto minimization) We use the notation of Section 3.3, Exer-
cise 18 (Order convexity), and we assume the cone S is pointed and
has nonempty interior. Given a set D C Y, we say a point y in D is
a Pareto minimum of D (with respect to S) if

(y—D)nS={0},
and a weak minimum if
(y—D)Nint S = 0.

(a) Prove y is a Pareto (respectively weak) minimum of D if and
only if it is a Pareto (respectively weak) minimum of D + S.

(b) The map X € S — X!/2 is S"-order-preserving (Section 1.2,
Exercise 5). Use this fact to prove, for any matrix Z in S%, the
unique Pareto minimum of the set

{(X eS"| X? = 7%}
with respect to S is Z.

For a convex set C' C E and an S-convex function F : C — Y, we
say a point Z in C is a Pareto (respectively, weak) minimum of the
vector optimization problem

inf{F(z) |z € C} (4.1.9)
if F(Z) is a Pareto (respectively weak) minimum of F(C).

(c) Prove F(C)+ S is convex.

(d) (Scalarization) Suppose Z is a weak minimum of the problem
(4.1.9). By separating (F(z) — F(C) — S) and int S (using Ex-
ercise 6), prove there is a nonzero element ¢ of —S~ such that
Z solves the scalarized convex optimization problem

inf{(¢, F(z)) |z € C}.

Conversely, show any solution of this problem is a weak mini-
mum of (4.1.9).
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(Existence of extreme points) Prove any nonempty compact con-
vex set C C E has an extreme point, without using Minkowski’s
theorem, by considering the furthest point in C' from the origin.

Prove Lemma 4.1.7.
For any compact convex set C' C E, prove C' = conv (bd C).

* (A converse of Minkowski’s theorem) Suppose D is a subset
of a compact convex set C' C E satisfying cl (conv D) = C. Prove
extC C clD.

* (Extreme points) Consider a compact convex set C C E.
(a) If dim E < 2, prove the set ext C' is closed.
(b) If E is R? and C is the convex hull of the set
{(z,9,0) | 2* +9* =1} U{(1,0,1),(1,0,-1)},
prove ext C' is not closed.

* (Exposed points) A point z in a convex set C C E is called
exposed if there is an element ¢ of E such that (¢, z) > (¢, 2z) for all
points z # x in C.

(a) Prove any exposed point is an extreme point.
(b) Find a set in R? with an extreme point which is not exposed.

** (Tangency conditions) Let Y be a Euclidean space. Fix a
convex set C' in E and a point z in C.

(a) Show z € coreC if and only if T¢(z) = E. (You may use
Exercise 20(a).)

(b) For a linear map A : E — Y, prove AT¢(z) C Tac(Ax).

(¢) For another convex set D in Y and a point y in D, prove
Nexp(z,y) = Ne(x) x Np(y) and
Texp(z,y) = Te(z) x Tp(y)-

(d) Suppose the point z also lies in the convex set G C E. Prove
To(z) — To(z) € Te—c(0), and deduce

0€core(C—QG) & To(x)—Te(z) =E.

(e) Show that the condition (3.3.8) in the Fenchel theorem can be
replaced by the condition

Tdomg(Al’) - ATdomf(J?) =Y

for an arbitrary point x in dom f N A='dom g.
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20. ** (Properties of the relative interior) (We use Exercise 9 (Open
mapping theorem), as well as Section 1.1, Exercise 13.)

(a) Let D be a nonempty convex set in E. Prove D is a linear
subspace if and only if ¢l D is a linear subspace. (Hint: ri D # §.)

(b) For a point z in a convex set C C E, prove the following prop-
erties are equivalent:

(i) z eriC.
(ii) The tangent cone clR4(C — z) is a linear subspace.
(iii) The normal cone N¢(z) is a linear subspace.
(iv) y € No(z) = —y € Ne(2).
(c¢) For a convex set C C E and a linear map A : E — Y, prove
AriC D ri AC, and deduce
AriC =r1i AC.
(d) Suppose U and V are convex sets in E. Deduce

ri(U—-V)=riU—riV.

(e) Apply Section 3.1, Exercise 29 (Relativizing the Max formula)
to conclude that the condition (3.3.8) in the Fenchel theorem
(3.3.5) can be replaced by

ri (dom g) N Ari (dom f) # 0.

(f) Suppose the function f : E — (00, +o0] is bounded below on
the convex set C C E, and riC' Nri(dom f) # (. Prove there is
an affine function « < f with inf¢ f = infe a.

21. ** (Essential smoothness) For any convex function f and any point
x € bd(dom f), prove df(z) is either empty or unbounded. Deduce
that a function is essentially smooth if and only if its subdifferential
is always singleton or empty.

22. ** (Birkhoff’s theorem [15]) We use the notation of Section 1.2.
(a) Prove P = {(2;;) € I | z;; =0 or 1 for all ¢, j}.
(b) Prove P™ C ext (T'™).

(c) Suppose (z;;) € I™\ P™. Prove there exist sequences of distinct
indices i1, 42, ...,4, and ji,Jo,...,jm such that

O<zirjr,zir+1jr <1 (7":1,2,...,m)
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(where i1 = i1). For these sequences, show the matrix (z;;)
defined by

€ if (4,7) = (ir, j,) for some r
zij — zij = —¢€ if (4,§) = (ir41,Jr) for some r
0 otherwise

is doubly stochastic for all small real e. Deduce (z;;) € ext (I'").
(d) Deduce ext (I'") = P™. Hence prove Birkhoff’s theorem (1.2.5).

(e) Use Carathéodory’s theorem (Section 2.2, Exercise 5) to bound
the number of permutation matrices needed to represent a dou-
bly stochastic matrix in Birkhoff’s theorem.
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4.2 Fenchel Biconjugation

We have seen that many important convex functions h : E — (00, +00]
agree identically with their biconjugates h**. Table 3.1 in Section 3.3 lists
many one-dimensional examples, and the Bipolar cone theorem (3.3.14)
shows dx = &% for any closed convex cone K. In this section we isolate
exactly the circumstances when h = h**.

We can easily check that A** is a minorant of h (that is, h** < h
pointwise). Our specific aim in this section is to find conditions on a point
z in E guaranteeing h**(z) = h(z). This becomes the key relationship
for the study of duality in optimization. As we see in this section, the
conditions we need are both geometric and topological. This is neither
particularly surprising or stringent. Since any conjugate function must
have a closed convex epigraph, we cannot expect a function to agree with
its biconjugate unless the function itself has a closed convex epigraph. On
the other hand, this restriction is not particularly strong since, as we saw in
the previous section, convex functions automatically have strong continuity
properties.

We say the function h : E — [—o00,+00] is closed if its epigraph is a
closed set. We say h is lower semicontinuous at a point z in E if

liminf h(z") (= lim inf h(z")) > h(z)

§—00T>8

for any sequence " — z. A function h : E — [—o00, +0o0] is lower semi-
continuous if it is lower semicontinuous at every point in E; this is in fact
equivalent to h being closed, which in turn holds if and only if h has closed
level sets. Any two functions h and g satisfying h < g (in which case we
call h a minorant of g) must satisfy h* > g*, and hence h** < g**.

Theorem 4.2.1 (Fenchel biconjugation) The three properties below are
equivalent for any function h : E — (—o0, +00]:

(i) h is closed and conver.
(i) h = h**.
(i) For all points x in E,

h(z) = sup{a(z) | @ an affine minorant of h}.

Hence the conjugacy operation induces a bijection between proper closed
convex functions.

Proof. We can assume h is proper. Since conjugate functions are always
closed and convex we know property (ii) implies property (i). Also, any
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affine minorant « of h satisfies a = o** < h** < h, and hence property (iii)
implies (ii). It remains to show (i) implies (iii).

Fix a point z° in E. Assume first 2° € cl(dom k), and fix any real
r < h(z®). Since h is closed, the set {z | h(z) > r} is open, so there is an
open convex neighbourhood U of z° with h(z) > r on U. Now note that
the set dom h N cont dyy is nonempty, so we can apply the Fenchel theorem
(3.3.5) to deduce that some element ¢ of E satisfies

r < inf{h(x) + 6u(2)} = {~h"(8) — 55 (- )} (42.2)

Now define an affine function a(-) = (¢, ) + 6;;(—¢) +r. Inequality (4.2.2)
shows that a minorizes h, and by definition we know a(z°) > r. Since r
was arbitrary, (iii) follows at the point x = 2.

Suppose on the other hand z° does not lie in cl (dom k). By the Basic
separation theorem (2.1.6) there is a real b and a nonzero element a of E
satisfying

{a,2°) > b > (a,z) for all points = in dom h.

The argument in the preceding paragraph shows there is an affine minorant
a of h. But now the affine function a(-) + k({a,-) — b) is a minorant of h
for all k = 1,2,.... Evaluating these functions at = x° proves property
(iii) at 2°. The final remark follows easily. O

We immediately deduce that a closed convex function h : E — [—00, +00]
equals its biconjugate if and only if it is proper or identically +oco or —oo.

Restricting the conjugacy bijection to finite sublinear functions gives
the following result.

Corollary 4.2.3 (Support functions) Fenchel conjugacy induces a bi-
jection between everywhere-finite sublinear functions and nonempty com-
pact conver sets in E:

(a) If the set C C E is compact, convex and nonempty then the support
function 6;, is everywhere finite and sublinear.

(b) If the function h : E — R is sublinear then h* = dc, where the set
C={peE|(p,d) <h(d) for alld € E}
is nonempty, compact, and convez.
Proof. See Exercise 9. m]

Conjugacy offers a convenient way to recognize when a convex function
has bounded level sets.



78 4. Convex Analysis

Theorem 4.2.4 (Moreau—Rockafellar) A closed convex proper func-
tion on E has bounded level sets if and only if its conjugate is continuous
at 0.

Proof. By Proposition 1.1.5, a convex function f : E — (00, +o0] has
bounded level sets if and only if it satisfies the growth condition

lim inf M > 0.

llzll—oco |
Since f is closed we can check that this is equivalent to the existence of
a minorant of the form €| - || + k¥ < f(-) for some constants ¢ > 0 and k.
Taking conjugates, this is in turn equivalent to f* being bounded above

near 0, and the result then follows by Theorem 4.1.1 (Local boundedness).
a

Strict convexity is also easy to recognize via conjugacy, using the fol-
lowing result (see Exercise 19 for the proof).

Theorem 4.2.5 (Strict-smooth duality) A proper closed convex func-
tion on E is essentially strictly convez if and only if its conjugate is essen-
tially smooth.

What can we say about h** when the function h : E — [—00,+00] is
not necessarily closed? To answer this question we introduce the idea of
the closure of h, denoted cl h, defined by

epi (clh) = cl (epih). (4.2.6)

It is easy to verify that cl h is then well-defined. The definition immediately
implies clh is the largest closed function minorizing h. Clearly if h is
convex, so is clh. We leave the proof of the next simple result as an
exercise.

Proposition 4.2.7 (Lower semicontinuity and closure) If a function
f:E — [—00,+00] is convex then it is lower semicontinuous at a point x
where it is finite if and only if f(z) = (cl f)(z). In this case f is proper.

We can now answer the question we posed at the beginning of the
section.

Theorem 4.2.8 Suppose the function h : E — [—o00, +00] is convez.
(a) If h** is somewhere finite then h** = clh.

(b) For any point © where h is finite, h(x) = h**(x) if and only if h is
lower semicontinuous at x.
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Proof. Observe first that since h** is closed and minorizes h, we know
h** <clh < h. If h** is somewhere finite then A** (and hence cl h) is never
—oo by applying Proposition 4.2.7 (Lower semicontinuity and closure) to
h**. On the other hand, if A is finite and lower semicontinuous at z then
Proposition 4.2.7 shows cl h(x) is finite, and applying the proposition again
to cl h shows once more that clh is never —oo. In either case, the Fenchel
biconjugation theorem implies clh = (clh)** < A** < clh, so clh = h**.
Part (a) is now immediate, while part (b) follows by using Proposition 4.2.7
once more. O

Any proper convex function A with an affine minorant has its biconju-
gate h** somewhere finite. (In fact, because E is finite-dimensional, h** is
somewhere finite if and only if h is proper—see Exercise 25.)

Exercises and Commentary

Our approach in this section again extends easily to infinite dimensions;
see for example [70]. Our definition of a closed function is a little different
to that in [167], although they coincide for proper functions. The original
version of von Neumann’s minimax theorem (Exercise 16) had both the
sets C and D simplices. The proof was by Brouwer’s fixed point theorem
(8.1.3). The Fisher information function introduced in Exercise 24 is useful
in signal reconstruction [35]. The inequality in Exercise 20 (Logarithmic
homogeneity) is important for interior point methods [148, Prop. 2.4.1].

1. Prove that any function h : E — [—00, +00] satisfies h** < h.

2. (Lower semicontinuity and closedness) For any given function
h: E — [—00,400], prove the following properties are equivalent:

(a) h is lower semicontinuous.
(b) h has closed level sets.
(¢) his closed.

Prove that such a function has a global minimizer on any nonempty,
compact set.

3. (Pointwise maxima) If the functions f, : E — [—o0,+00] are
all convex (respectively closed) then prove the function defined by
f(z) = sup,, fy(z) is convex (respectively closed). Deduce that for
any function h : E — [—o00, +00], the conjugate function h* is closed
and convex.

4. Verify directly that any affine function equals its biconjugate.
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5. * (Midpoint convexity)

(a) A function f: E — (00, +00] is midpoint convez if it satisfies

for all z and y in E.

z+yy _ fl@)+ f(y
f( ) <T@+ 1@

2 2
Prove a closed function is convex if and only if it is midpoint
convex.

(b) Use the inequality
2(X?4+Y?) = (X+Y)? forall X and Y in S™

to prove the function Z € S% —Z%Y2 is S -convex (see Sec-
tion 3.3, Exercise 18 (Order convexity)).

6. Is the Fenchel biconjugation theorem (4.2.1) valid for arbitrary func-
tions h : E — [—00, +00]?

7. (Inverse of subdifferential) For a function A : E — (oo, +o0], if
points z and ¢ in E satisfy ¢ € Oh(z), prove z € Oh*(¢). Prove the
converse if i is closed and convex.

8. * (Closed subdifferential) If a function h : E — (00, +00] is closed,
prove the multifunction 0h is closed: that is,

or € Oh(z)), Tp — , Or — ¢ = ¢ € Oh(2).

Deduce that if A is essentially smooth and a sequence of points x, in
int (dom h) approaches a point in bd (dom h) then |VAi(z,)|| — oco.

9. * (Support functions)

(a) Prove that if the set C' C E is nonempty then 6% is a closed
sublinear function and §&" = dc1 conve- Prove that if C' is also
bounded then 4§ is everywhere finite.

(b) Prove that any sets C, D C E satisfy

d¢1p = 06 +0p and
or cup) = max(d5,07).

conv(

(c) Suppose the function h : E — (—o00, +00] is positively homoge-
neous, and define a closed convex set

C={¢€eE|(pd < h(d) Vd}.

Prove h* = dc. Prove that if A is in fact sublinear and every-
where finite then C is nonempty and compact.
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(d) Deduce Corollary 4.2.3 (Support functions).

* (Almost homogeneous functions [19]) Prove that a function
f:E — R has a representation

fz) = I?gx{(ai,m) —bi} (z€E)

for a compact set {(a’,b;) |i € I} C E x R if and only if f is convex
and satisfies supg | f — g| < oo for some sublinear function g.

* Complete the details of the proof of the Moreau-Rockafellar theo-
rem (4.2.4).

(Compact bases for cones) Consider a closed convex cone K.
Using the Moreau—Rockafellar theorem (4.2.4), show that a point x
lies in int K if and only if the set {¢ € K~ | (¢, 2) > —1} is bounded.
If the set {¢ € K~ | (¢,2) = —1} is nonempty and bounded, prove
Tz €int K.

For any function h : E — [—00,+00], prove the set cl(epih) is the
epigraph of some function.

* (Lower semicontinuity and closure) For any convex function
h:E — [—00,400] and any point z° in E, prove

1R)(z%) = 1 inf  h(z).
(AMED =4, 8"

Deduce Proposition 4.2.7.

For any point z in E and any function h : E — (—o00, +00] with a
subgradient at z, prove h is lower semicontinuous at .

* (Von Neumann’s minimax theorem [185]) Suppose Y is a
Euclidean space. Suppose that the sets C C E and D C Y are
nonempty and convex with D closed and that the map A: E — Y is
linear.

(a) By considering the Fenchel problem
Inf{dc(z) +0p(Az)}

. f ] . f !
lllc Sup <y7 x) HIELD]; :,(y’ :!>

(where the max is attained if finite), under the assumption

0 € core (dom 7, — AC). (4.2.9)
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(b) Prove property (4.2.9) holds in either of the two cases
(i) D is bounded, or
(i) A is surjective and 0 lies in int C. (Hint: Use the Open
mapping theorem, Section 4.1, Exercise 9.)
(¢) Suppose both C and D are compact. Prove

. _ . AT,
min max (y, Az) = maxmin (y, Az)

(Recovering primal solutions) Assume all the conditions for the
Fenchel theorem (3.3.5) hold, and that in addition the functions f
and g are closed.

(a) Prove that if the point ¢ € Y is an optimal dual solution then
the point z € E is optimal for the primal problem if and only if
it satisfies the two conditions Z € 0f*(A*¢) and AZ € dg*(—9).

(b) Deduce that if f* is differentiable at the point A*¢ then the only

possible primal optimal solution is Z = V f*(A*¢).
(c) ** Apply this result to the problems in Section 3.3, Exercise 22.

Calculate the support function 87, of the set C = {z € R?|z5 > x?}.
Prove the “contour” {y | 6% (y) = 1} is not closed.

* (Strict-smooth duality) Consider a proper closed convex func-
tion f : E — (00, +00].

(a) If f has Gateaux derivative y at a point x in E, prove the in-
equality
(2> f*(y) + (=2 —y)
for elements z of E distinct from y.

(b) If f is essentially smooth, prove that f* is essentially strictly
convex.

(c) Deduce the Strict-smooth duality theorem (4.2.5) using Exercise
23 in Section 3.1.

* (Logarithmic homogeneity) If the function f : E — (0o, +00]
is closed, convex, and proper, then for any real v > 0 prove the
inequality

f(z)+ f*(¢) +viog(z,—¢) > vlogry —v for all z,¢ € E

holds (where we interpret loga = —oco when a < 0) if and only f
satisfies the condition

f(tz) = f(x) —vlogt forallz € E, t € Ry .
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Hint: Consider first the case v = 1, and use the inequality

a < —1—log(—a).

* (Cofiniteness) Consider a function h : E — (00, +00]| and the
following properties:
(i) h(-) — (,-) has bounded level sets for all ¢ in E.
(i) limyz—e (2] h(z) = +oo0.
(iii) h* is everywhere finite.
Complete the following steps.

(a) Prove properties (i) and (ii) are equivalent.
(b) If h is closed, convex and proper, use the Moreau-Rockafellar
theorem (4.2.4) to prove properties (i) and (iii) are equivalent.
** (Computing closures)
(a) Prove any closed convex function g : R — (oo, +00] is continu-
ous on its domain.

(b) Consider a convex function f : E — (o0, 4+00]. For any points x
in E and y in int (dom f), prove

[ (x) = ltigl fly+t(z—vy)).

Hint: Use part (a) and the Accessibility lemma (Section 1.1,
Exercise 11).

** (Recession functions) This exercise uses Section 1.1, Exercise 6
(Recession cones). The recession function of a closed convex function
f:E — (00, 400] is defined by

for d in E,
teR 4 t

where x is any point in dom f.

(a) Prove 07 f is closed and sublinear.

(b) Prove epi (0T f) = 07 (epi f), and deduce that 0% f is indepen-
dent of the choice of the point x.

(c) For any real a > inf f, prove

0" {y € E| f(y) < a} = {de E|0"f(d) < 0}.



84 4. Convex Analysis

24. ** (Fisher information function) Let f : R — (o0,+00] be a
given function, and define a function g : R? — (00, +00] by

T

yfl—) ify>0

g(z,y) = { <y) _
400 otherwise.

(a) Prove g is convex if and only if f is convex.

(b) Suppose f is essentially strictly convex. For y and v in R
and z and » in R, prove

Il

SRS

g9z, y) + g(u,v) = gz +y,u+v) &

|8

(c) Calculate g*.

(d) Suppose f is closed, convex, and finite at 0. Using Exercises 22
and 23, prove

T .
yf(g) ify >0
97" (z,y) = 0t f(z) ify=0
400 otherwise.

(e) If f(z) = 2%/2 for all z in R, calculate g.
(f) Define a set C' = {(z,y) € R? | 22 <y < z} and a function

w

T

— i (z,y) € C\ {0}

if (z,y) =0
+o0o0 otherwise.

h(:c,y) =

SRS

Prove h is closed and convex but is not continuous relative to
its (compact) domain C. Construct another such example with
supc h finite.

25. ** (Finiteness of biconjugate) Consider a convex function h : E —
[—o0, +00].
(a) If his proper and has an affine minorant, prove h** is somewhere
finite.
(b) If h** is somewhere finite, prove h is proper.

(c) Use the fact that any proper convex function has a subgradient
(Section 3.1, Exercise 29) to deduce that A** is somewhere finite
if and only if A is proper.

(d) Deduce h** = clh for any convex function h : E — (00, +00].



4.2 Fenchel Biconjugation 85

26. ** (Self-dual cones [8]) Consider a function h : E — [—o0, 00) for
which —A is closed and sublinear, and suppose there is a point £ € E
satisfying h(Z) > 0. Define the concave polar of h as the function
ho : E — [—00,00) given by

ho(y) = inf{(z,y) | h(z) > 1}.

(a) Prove —h, is closed and sublinear, and, for real A > 0, we have
A(Ah)o = ho.

(b) Prove the closed convex cone
K, ={(z,t) e ExR||t|] < h(x)}

has polar (Kp)™ = —Kp, .
(c) Suppose the vector a € R’ satisfies ), a; = 1, and define a
function h* : R™® — [—o00,+00) by

oy = { Lt x>0

—00 otherwise.

Prove hg = h®/h*(«a), and deduce the cone
Pa = K(ha(a))Al/2ha
is self-dual: P, = —P,.
(d) Prove the cones
Q2 = {(x,t,2) € R3|t? < 2xz, x,2 >0} and
Q3 = {(z,t,2) € R¥| 2t]> < V2Tz2?, z,2 > 0}
are self-dual.
(e) Prove Q3 is isometric to S%; in other words, there is a linear map
A:R3® — S?% preserving the norm and satisfying AQ, = S?%.
27. ** (Conical open mapping [8]) Define two closed convex cones in
R3:
Q = {(z,y,2) € R¥|y? <22z, x,2 > 0}. and
S = {(w,z,y) € R*| 2|z> < V2Twy?, w,y > 0}.
These cones are self-dual by Exercise 26. Now define convex cones in
R* by
C=0xQ)+(Sx0) and D=0xR3.

(a) Prove CND = {0} x Q.



86

28.

(b)
(c)

(d)

4. Convex Analysis

Prove —C~ = (R x Q)N (S x R).

Define the projection P : R* — R? by P(w,x,y,2) = (z,¥, 2).
Prove P(C~) = —Q, or equivalently,

C +D =(CnD)".
Deduce the normal cone formula
Nenp(z) = Ne(x) + Np(x) for all z in C N D
and, by taking polars, the tangent cone formula
Tenp(x) =Te(z) NTp(z) for all z in C:N D.

Prove C~ is a closed convex pointed cone with nonempty interior
and D~ is a line, and yet there is no constant € > 0 satisfying

(C-+D7)neBcC (C"NB)+ (D™ NB).
(Hint: Prove equivalently there is no € > 0 satisfying
P(C™)neB C P(CTNB)
by considering the path {(¢2,3,¢) |t > 0} in Q.) Compare this

with the situation when C and D are subspaces, using the Open
mapping theorem (Section 4.1, Exercise 9).

Consider the path

2
u(t) = (ﬁ,tQ,tS,O) if t > 0.

Prove dc(u(t)) = 0 and dp(u(t)) = 2/+/27 for all t > 0, and yet
denp(u(t)) — +oo ast — +oo.

(Hint: Use the isometry in Exercise 26.)

** (Expected surprise [18]) An event occurs once every n days,
with probability p; on day i for i = 1,2,...,n. We seek a distribution
maximizing the average surprise caused by the event. Define the
“surprise” as minus the logarithm of the probability that the event
occurs on day 7 given that it has not occurred so far. Using Bayes
conditional probability rule, our problem is

it {S) | Sp =1},
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where we define the function S : R™ — (0o, +0o0] by

S(p) = ih(Pi,Zn:pj)y
1 j=i

=

and the function h : R? — (o0, +00] by

z log (£> ifz,y>0
h(z,y) = yro .
Y 0 ifx>0, y=0
+00 otherwise.

Prove h is closed and convex using Exercise 24 (Fisher informa-
tion function).

Hence prove S is closed and convex.
Prove the problem has an optimal solution.

By imitating Section 3.1, Exercise 27 (Maximum entropy), show
the solution p is unique and is expressed recursively by

k—1
P1 = P, ﬁk:Mk<1_Zﬁj) for k=2,3,...,n,
1

where the numbers py, are defined by the recursion
pn =1, pr_1=pre " fork=2,3,...,n.

Deduce that the components of p form an increasing sequence
and that p,_; is independent of j.

Prove p; ~ 1/n for large n.
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4.3 Lagrangian Duality

The duality between a convex function h and its Fenchel conjugate h*
which we outlined earlier is an elegant piece of theory. The real significance,
however, lies in its power to describe duality theory for convex programs,
one of the most far-reaching ideas in the study of optimization.

We return to the convex program that we studied in Section 3.2:

inf{f(z) | g(z) <0, z € E}. (4.3.1)

Here the function f and the components g1, g2, ..., gm : E — (00, +00] are
convex, and satisfy ) # dom f C NT*domg;. As before, the Lagrangian
function L : E x RT — (00, +00] is defined by L(x;\) = f(z) + AT g(z).

Notice that the Lagrangian encapsulates all the information of the pri-
mal problem (4.3.1): clearly

sup L(z; ) =

{ f(z) if z is feasible
AERT

+o0o  otherwise,

so if we denote the optimal value of (4.3.1) by p € [—o0, +o0], we could
rewrite the problem in the following form:

p=inf sup L(z; ). (4.3.2)
2€E N\eRrp

This makes it rather natural to consider an associated problem

d= sup inf L(z;\) (4.3.3)
AeR7 €E

where d € [—o00,+00] is called the dual value. Thus the dual problem
consists of maximizing over vectors A in R the dual function ®(\) =
inf; L(z; ). This dual problem is perfectly well-defined without any as-
sumptions on the functions f and g. It is an easy exercise to show the
“weak duality inequality” p > d. Notice ® is concave.

It can happen that the primal value p is strictly larger than the dual
value d (Exercise 5). In this case we say there is a duality gap. We next in-
vestigate conditions ensuring there is no duality gap. As in Section 3.2, the
chief tool in our analysis is the primal value function v : R™ — [—00, +00],
defined by

v(b) = inf{f(z) | g(x) < b}. (4.3.4)

Below we summarize the relationships among these various ideas and pieces
of notation.
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Proposition 4.3.5 (Dual optimal value)
(a) The primal optimal value p is v(0).
(b) The conjugate of the value function satisfies

. [—®() A0
vi(=A) = {+oo otherwise.

(¢) The dual optimal value d is v**(0).

Proof. Part (a) is just the definition of p. Part (b) follows from the
identities
v*(=\) = sup{-ATb—v(b) | b€ R™}
= sup{-ATb— f(z)|g(z) +2=0b, z€domf, be R™, z € RT}
= sup{-AT(g(z) +2) — f(z) |z € dom f, z € RT'}
— —int{f(z) + ATg(z) |z € dom f} +sup{~\Tz| z € RT'}
{ —®(\) ifA>0

+o00 otherwise.

Finally, we observe

d= )‘SEIE)T O\ = — /\ér%{fr —P(\) =— ,\g}if;n v* (=) = v™*(0),
so part (c) follows. |

Notice the above result does not use convexity.
The reason for our interest in the relationship between a convex function
and its biconjugate should now be clear, in light of parts (a) and (c) above.

Corollary 4.3.6 (Zero duality gap) Suppose the value of the primal
problem (4.3.1) is finite. Then the primal and dual values are equal if and
only if the value function v is lower semicontinuous at 0. In this case the
set of optimal dual solutions is —0v(0).

Proof. By the previous result, there is no duality gap exactly when the
value function satisfies v(0) = v**(0), so Theorem 4.2.8 proves the first
assertion. By part (b) of the previous result, dual optimal solutions A
are characterized by the property 0 € dv*(—\) or equivalently v*(—\) +
v**(0) = 0. But we know v(0) = v**(0), so this property is equivalent to
the condition —\ € dv(0). O

This result sheds new light on our proof of the Lagrangian necessary
conditions (3.2.8); the proof in fact demonstrates the existence of a dual
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optimal solution. We consider below two distinct approaches to proving the
absence of a duality gap. The first uses the Slater condition, as in Theorem
3.2.8, to force attainment in the dual problem. The second (dual) approach
uses compactness to force attainment in the primal problem.

Theorem 4.3.7 (Dual attainment) If the Slater condition holds for the
primal problem (4.3.1) then the primal and dual values are equal, and the
dual value is attained if finite.

Proof. If p is —oo there is nothing to prove, since we know p > d. If on
the other hand p is finite then, as in the proof of the Lagrangian necessary
conditions (3.2.8), the Slater condition forces dv(0) # (). Hence v is finite
and lower semicontinuous at 0 (Section 4.2, Exercise 15), and the result
follows by Corollary 4.3.6 (Zero duality gap). a

An indirect way of stating the Slater condition is that there is a point
% in E for which the set {\ € R} | L(#; \) > a} is compact for all real a.
The second approach uses a “dual” condition to ensure the value function
is closed.

Theorem 4.3.8 (Primal attainment) Suppose that the functions
f)glag27~--agm ‘E— (OO,+OO]

are closed and that for some real Xo > 0 and some vector \ in R, the

function ;\of + XTg has compact level sets. Then the value function v
defined by equation (4.3.4) is closed, and the infimum in this equation is
attained when finite. Consequently, if the functions f,g1,92,-..,9m are,
in addition, convez and the dual value for the problem (4.3.1) is not —oo,
then the primal and dual values p and d are equal, and the primal value is
attained when finite.

Proof. If the points (b",s,) lie in epiv for r = 1,2,... and approach
the point (b, s) then for each integer r there is a point z” in E satisfying
f(@") < s, +r~"and g(z") < b". Hence we deduce

(S\Of + 5\Tg)(xr) < ;\o(sr +r )+ N — Aos + AT,

By the compact level set assumption, the sequence (z”) has a subsequence
converging to some point Z, and since all the functions are closed, we know
f(@) < s and g(z) < b. We deduce v(b) < s, so (b,s) lies in epiv as we
required. When v(b) is finite, the same argument with (b, s,.) replaced by
(b,v(b)) for each r shows the infimum is attained.

If the functions f, g1, go, ..., gm are convex then we know (from Section
3.2) v is convex. If d is +oco then again from the inequality p > d, there is
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nothing to prove. If d (= v**(0)) is finite then Theorem 4.2.8 shows v** =
clv, and the above argument shows clv = v. Hence p = v(0) = v**(0) = d,
and the result follows. |

Notice that if either the objective function f or any one of the constraint
functions g1, g2, - - -, gm has compact level sets then the compact level set
condition in the above result holds.

Exercises and Commentary

An attractive elementary account of finite-dimensional convex duality the-
ory appears in [152]. A good reference for this kind of development in
infinite dimensions is [98]. When the value function v is lower semicontin-
uous at 0 we say the problem (4.3.1) is normal; see [167]. If dv(0) # 0
(or v(0) = —o0) the problem is called stable; see, for example, [6]). For a
straightforward account of interior point methods and the penalized linear
program in Exercise 4 (Examples of duals) see [187, p. 40]. For more on
the minimax theory in Exercise 14 see, for example, [60].

1. (Weak duality) Prove that the primal and dual values p and d
defined by equations (4.3.2) and (4.3.3) satisfy p > d.

2. Calculate the Lagrangian dual of the problem in Section 3.2, Exer-
cise 3.

3. (Slater and compactness) Prove the Slater condition holds for
problem (4.3.1) if and only if there is a point & in E for which the

level sets
{AeRY| - L(z;X) < a}

are compact for all real a.

4. (Examples of duals) Calculate the Lagrangian dual problem for the
following problems (for given vectors a',a?,...,a™, and c in R").

(a) The linear program

i tx) < b i=1,2,... .
zlergn{(c,mﬂ(a,x)_b fori=1, ,m}

(b) Another linear program

zienén{(c,m +0rn (2) [ (@', z) <b; fori=1,2,...,m}.

(c) The quadratic program (for C € S% )

. zTCx
inf
zeR™ 2

((ai,x> <b; fori:1,2,...,m}.
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(d) The separable problem

zeR™

inf {ip(xﬂ’(ai,x)gbi fori:1,2,...,m}
j=1

for a given function p : R — (00, +00].

(e) The penalized linear program
ienl{n{<c, x) +elb(z) | {at,z) <b; fori=1,2,...,m}

for real € > 0.

For given matrices Ay, Ao, ..., A,,, and C in S", calculate the dual

of the semidefinite program

i n ; < b; ) =
Xlgsf,g{tr (CX) + 6 (X) | tr (A X) < b; fori=1,2,...,m},

and the penalized semidefinite program

inf {tr(CX)+eldX|tr(A;X)<b; fori=1,2,...,m}
Xes?

for real € > 0.

. (Duffin’s duality gap, continued)

(a) For the problem considered in Section 3.2, Exercise 8, namely

inf {e® — 3 <
inf {e" | Jol] ~ 21 < 0},

calculate the dual function, and hence find the dual value.

(b) Repeat part (a) with the objective function e*2 replaced by .

. Consider the problem

inf{exp*(z1) + exp*(x2) | 21 + 220 — 1 <0, z € R?}.

Write down the Lagrangian dual problem, solve the primal and dual
problems, and verify that the optimal values are equal.

. Given a matrix C' in 8% ,, calculate

XéréfiJr{tr (CX)| —log(det X) <0}

by Lagrangian duality.
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8. * (Mixed constraints) Explain why an appropriate dual for the

problem
inf{f(z) | g(z) < 0, h(z) = 0}

for a function h : dom f — RF is

sup inf  {f(z) +A"g(x) + p"h(z)}.
AeRT, ucRk z€dom f

9. (Fenchel and Lagrangian duality) Let Y be a Euclidean space.
By suitably rewriting the primal Fenchel problem

inf {(x) + 9(4))

for given functions f : E — (00, +o0], g : Y — (00, +00], and linear
A :E — Y, interpret the dual Fenchel problem

sup{—[f*(A"¢) — g"(—¢)}

PEY
as a Lagrangian dual problem.

10. (Trust region subproblem duality [175]) Given a matrix A in
S™ and a vector b in R", consider the nonconvex problem

inf {mTAa:—f—bT:c I 2Tz —-1<0, z € R”}.

Complete the following steps to prove there is an optimal dual solu-
tion, with no duality gap.
(i) Prove the result when A is positive semidefinite.

(ii) If A is not positive definite, prove the primal optimal value does
not change if we replace the inequality in the constraint by an
equality.

(iii) By observing for any real « the equality

min {27 Az + b7z | 2Tz =1} =
—a+min{z7(A+ al)z+ b7z | 2"z = 1},
prove the general result.

11. ** If there is no duality gap, prove that dual optimal solutions are
the same as Karush-Kuhn-Tucker vectors (Section 3.2, Exercise 9).

12. * (Conjugates of compositions) Consider the composition g o f
of a nondecreasing convex function g : R — (00, +00] with a convex
function f : E — (00,+00]. We interpret g(+o00) = 400, and we
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assume there is a point £ in E satisfying f(£) € int (domg). Use
Lagrangian duality to prove the formula, for ¢ in E,

9o17°©®) = jut {or@+1r(9)},
where we interpret
Of* (%) = 6§0mf(¢)
* (A symmetric pair [28])

(a) Given real v1,72,...,7n > 0, define h: R™ — (00, +00] by

(M iteemy,
h(z) = {+oo otherwise.

By writing g(z) = exp(log g(z)) and using the composition for-
mula in Exercise 12, prove

By \ /(D) n
W (y) = —(7+1)g(7) if —yeR

400 otherwise,

where v = 3" 7.

(b) Given real oy, ag,...,a, > 0, define @ = >, a; and suppose a
real p satisfies u > a + 1. Now define a function f: R x R —
(00, +00] by

f(z,8) = ptst[Lzy ifzeRY,, se Ry
’ +00 otherwise.

Use part (a) to prove

F(y,t) = p’/_ltu Hi('—yi)_ﬂi if _yeRi-Q-? te Ry
Y 400 otherwise

for constants
1% o; (az)
v=—r""t——, = —m40————
p—(a+1) bi= —(a+1) P= H

(c) Deduce f = f**, whence f is convex.

(d) Give an alternative proof of the convexity of f by using Section
4.2, Exercise 24(a) (Fisher information function) and induction.

(e) Prove f is strictly convex.
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14. ** (Convex minimax theory) Suppose that Y is a Euclidean space,
that the sets C C Y and D C E are nonempty, and consider a
function ¥ : C' x D — R.

(a) Prove the inequality

sup inf ¢(ac y) < 1nf sup ¥(z,y).
yeDxeC CyeD

(b) We call a point (Z,7) in C x D a saddlepoint if it satisfies
P(Z,y) < Y(Z,7) <Y(x,y) forallz € C, y € D.
In this case prove

sup inf ¢¥(z,y) = ¥(Z,y) = inf sup ¢¥(z,y).
yeD T€C z€Cyep

(c) Suppose the function p, : E — (00, 00| defined by
x, ifreC
py() = {w v)

+00 otherwise

is convex, for all y in D. Prove the function h : Y — [—00, +o0]
defined by
h(z) = inf sup{y(z,y) + (z,9)}
z€CyeD

is convex.

(d) Suppose the function ¢, : Y — (00, +00] defined by

_ ‘1//(3% y) if Yy S D
4=(y) = {+oo otherwise

is closed and convex for all points x in C. Deduce

h**(0) = sup inf ¢(z,y).
yEDme

(e) Suppose that for all points y in D the function p, defined in
part (c) is closed and convex, and that for some point ¢ in D,
py has compact level sets. If h is finite at 0, prove it is lower
semicontinuous there. If the assumption in part (d) also holds,
deduce

sup inf ¥(z,y) = min sup ¥ (z, y).
yeD =€C z€C yep

(f) Suppose the functions f,g1,92,...,9s : R — (00, +0oc] are
closed and convex. Interpret the above results in the following
two cases:
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(i) C = (dom f) N (ﬂ dom gl)
D = R3
PYlu,w) = flu) + 325 wigi(u).
(ii) C = R}

D = (dom f) N (ﬂdomgz>

P(u,w) = —f(w )—Zle uigi(w).

(g) (Kakutani [109]) Suppose that the nonempty sets C C Y and
D C E are compact and convex, that the function ¢ : C x D —
R is continuous, that ¥(z,y) is convex in the variable x for all
fixed y in D, and that —¢(x,y) is convex in the variable y for
all points z in C. Deduce ¥ has a saddlepoint.



Chapter 5

Special Cases

5.1 Polyhedral Convex Sets and Functions

In our earlier section on theorems of the alternative (Section 2.2), we ob-
served that finitely generated cones are closed. Remarkably, a finite linear-
algebraic assumption leads to a topological conclusion. In this section we
pursue the consequences of this type of assumption in convex analysis.

There are two natural ways to impose a finite linear structure on the sets
and functions we consider. The first we have already seen: a “polyhedron”
(or polyhedral set) is a finite intersection of closed halfspaces in E, and we
say a function f : E — [—o00, +00] is polyhedral if its epigraph is polyhedral.
On the other hand, a polytope is the convex hull of a finite subset of E,
and we call a subset of E finitely generated if it is the sum of a polytope
and a finitely generated cone (in the sense of formula (2.2.11)). Notice we
do not yet know if a cone that is a finitely generated set in this sense is
finitely generated in the sense of (2.2.11); we return to this point later in
the section. The function f is finitely generated if its epigraph is finitely
generated. A central result of this section is that polyhedra and finitely
generated sets in fact coincide.

We begin with some easy observations collected together in the following
two results.

Proposition 5.1.1 (Polyhedral functions) Suppose that the function
f:E — [—o00,+00] is polyhedral. Then f is closed and convex and can be
decomposed in the form

f= max g; +p, (5.1.2)

where the index set I is finite (and possibly empty), the functions g; are

affine, and the set P C E is polyhedral (and possibly empty). Thus the
domain of f is polyhedral and coincides with dom Of if f is proper.

97
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Proof. Since any polyhedron is closed and convex, so is f, and the de-
composition (5.1.2) follows directly from the definition. If f is proper then
both the sets I and P are nonempty in this decomposition. At any point
z in P (= dom f) we know 0 € ddp(x), and the function max; g; certainly
has a subgradient at x since it is everywhere finite. Hence we deduce the
condition df(z) # 0. O

Proposition 5.1.3 (Finitely generated functions) Suppose the func-
tion f : E — [—o0, +0o0] is finitely generated. Then f is closed and convex
and dom f is finitely generated. Furthermore, f* is polyhedral.

Proof. Polytopes are compact and convex (by Carathéodory’s theorem
(Section 2.2, Exercise 5)), and finitely generated cones are closed and con-
vex, so finitely generated sets (and therefore functions) are closed and con-
vex (by Section 1.1, Exercise 5(a)). We leave the remainder of the proof as
an exercise. o

An easy exercise shows that a set P C E is polyhedral (respectively, finitely
generated) if and only if dp is polyhedral (respectively, finitely generated).

To prove that polyhedra and finitely generated sets in fact coincide,
we consider the two extreme special cases: first, compact sets, and second,
cones. Observe first that compact, finitely generated sets are just polytopes,
directly from the definition.

Lemma 5.1.4 Any polyhedron has at most finitely many extreme points.

Proof. Fix a finite set of affine functions {g; |7 € I} on E, and consider
the polyhedron
P={zeE|g(zx) <0foriel}

For any point z in P, the “active set” is {i € I | g;(z) = 0}. Suppose two
distinct extreme points x and y of P have the same active set. Then for
any small real € the points x + ¢(y — ) both lie in P. But this contradicts
the assumption that z is extreme. Hence different extreme points have
different active sets, and the result follows. o

This lemma together with Minkowski’s theorem (4.1.8) reveals the na-
ture of compact polyhedra.

Theorem 5.1.5 Any compact polyhedron is a polytope.
We next turn to cones.

Lemma 5.1.6 Any polyhedral cone is a finitely generated cone (in the
sense of (2.2.11)).
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Proof. Given a polyhedral cone P C E, define a subspace L = PN —P
and a pointed polyhedral cone K = P N L*. Observe the decomposition
P = K & L. By the Pointed cone theorem (3.3.15), there is an element y
of E for which the set

C={zeK|(z,y)=1}

is compact and satisfies K = R, C. Since C is polyhedral, the previous
result shows it is a polytope. Thus K is finitely generated, whence so is P.
O

Theorem 5.1.7 (Polyhedrality) A set or function is polyhedral if and
only if it is finitely generated.

Proof. For finite sets {a; |7 € I} C E and {b; | i € I} C R, consider the
polyhedron in E defined by

P={xecE]|(a;,z) <b; foriecl}.
The polyhedral cone in E x R defined by
Q={(z,r) e ExR|{a;,x) —b;r <0 foriel}

is finitely generated by the previous lemma, so there are finite subsets
{z;|j € J} and {y; |t € T} of E with

Q: {;A]($],1)+;Ht(yt,0)‘/\J S R+ fOI‘j € J, Mt € R+ fort € T}
J

We deduce
P ={z|(z1) €@}

= conv{z;|j€ J}+{Zmyy\m eRy forteT},
teT

so P is finitely generated. We have thus shown that any polyhedral set
(and hence function) is finitely generated.

Conversely, suppose the function f : E — [—00, +00] is finitely gener-
ated. Consider first the case when f is proper. By Proposition 5.1.3, f*
is polyhedral, and hence (by the above argument) finitely generated. But
f is closed and convex, by Proposition 5.1.3, so the Fenchel biconjugation
theorem (4.2.1) implies f = f**. By applying Proposition 5.1.3 once again
we see f** (and hence f) is polyhedral. We leave the improper case as an
exercise. O

Notice these two results show our two notions of a finitely generated cone
do indeed coincide.

The following collection of exercises shows that many linear-algebraic
operations preserve polyhedrality.
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Proposition 5.1.8 (Polyhedral algebra) Consider a Fuclidean space
Y and a linear map A:E - Y.

(a) If the set P C E is polyhedral then so is its image AP.
(b) If the set K C Y is polyhedral then so is its inverse image A~'K.

(¢) The sum and pointwise mazimum of finitely many polyhedral func-
tions are polyhedral.

(d) If the function g : Y — [—00,+00] is polyhedral then so is the com-
posite function go A.

(e) If the function q : E x Y — [—o00,400] is polyhedral then so is the
function h: Y — [—o00, +00] defined by h(u) = inf,cg q(z, u).

Corollary 5.1.9 (Polyhedral Fenchel duality) All the conclusions of
the Fenchel duality theorem (3.3.5) remain valid if the regularity condi-
tion (3.3.8) is replaced by the assumption that the functions f and g are
polyhedral with dom g N Adom f nonempty.

Proof. We follow the original proof, simply observing that the value func-
tion A defined in the proof is polyhedral by the Polyhedral algebra propo-
sition above. Thus, when the optimal value is finite, h has a subgradient
at 0. O

We conclude this section with a result emphasizing the power of Fenchel
duality for convex problems with linear constraints.

Corollary 5.1.10 (Mixed Fenchel duality) All the conclusions of the
Fenchel duality theorem (8.8.5) remain valid if the regularity condition
(3.3.8) is replaced by the assumption that domg N Acont f is nonempty
and the function g is polyhedral.

Proof. Assume without loss of generality the primal optimal value

p= nf{f(@) +g(An)} = _inf_ [f(c)+r|g(Av) <7}
is finite. By assumption there is a feasible point for the problem on the
right at which the objective function is continuous, so there is an affine
function « : E x R — R minorizing the function (z,7) — f(z) + r such
that

p= meé{lfeR{a(xa ) | g(Az) <}

(see Section 3.3, Exercise 13(c)). Clearly « has the form a(z,r) = B(z) +7
for some affine minorant 3 of f, so

p= inf {B(z) + g(Az)}.
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Now we apply polyhedral Fenchel duality (Corollary 5.1.9) to deduce the
existence of an element ¢ of Y such that

p=—0"(A") —g"(=¢) < —f(A%¢) —g"(-¢) <p

(using the weak duality inequality), and the duality result follows. The
calculus rules follow as before. m|

It is interesting to compare this result with the version of Fenchel dual-
ity using the Open mapping theorem (Section 4.1, Exercise 9), where the
assumption that g is polyhedral is replaced by surjectivity of A.

Exercises and Commentary

Our approach in this section is analogous to [181]. The key idea, Theorem
5.1.7 (Polyhedrality), is due to Minkowski [141] and Weyl [186]. A nice
development of geometric programming (see Exercise 13) appears in [152].

1. Prove directly from the definition that any polyhedral function has a
decomposition of the form (5.1.2).

2. Fill in the details for the proof of the Finitely generated functions
proposition (5.1.3).

3. Use Proposition 4.2.7 (Lower semicontinuity and closure) to show
that if a finitely generated function f is not proper then it has the

form
4o ifzxgK
f(“’)_{—oo ifz e K

for some finitely generated set K.

4. Prove a set K C E is polyhedral (respectively, finitely generated) if
and only if 6 is polyhedral (respectively, finitely generated). Do not
use the Polyhedrality theorem (5.1.7).

5. Complete the proof of the Polyhedrality theorem (5.1.7) for improper
functions using Exercise 3.

6. (Tangents to polyhedra) Prove the tangent cone to a polyhedron
P at a point z in P is given by Tp(z) = R4 (P — x).

7. * (Polyhedral algebra) Prove Proposition 5.1.8 using the following
steps.

(i) Prove parts (a)—(d).
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10.

11.

12.

13.

5. Special Cases

(ii) In the notation of part (e), consider the natural projection
Pryr:EXYXR—Y xR.
Prove the inclusions
Py r(epiq) Cepih C cl(Pyxr(epiq)).

(iii) Deduce part (e).

If the function f : E — (00, +00] is polyhedral, prove the subdiffer-
ential of f at a point z in dom f is a nonempty polyhedron and is
bounded if and only if  lies in int (dom f).

. (Polyhedral cones) For any polyhedral cones H C Y and K C E

and any linear map A : E — Y, prove the relation
(KNA™'H)" = A*H + K~
using convex calculus.

Apply the Mixed Fenchel duality corollary (5.1.10) to the problem
inf{f(z) | Az < b}, for a linear map A : E — R™ and a point b in
R™.

* (Generalized Fenchel duality) Consider convex functions
hhhg,...,hm E— (OO,+OO]

with N;cont h; nonempty. By applying the Mixed Fenchel duality
corollary (5.1.10) to the problem

{Zhi(ﬂvi)‘xi:xforizl,Z,...,m},
i=1

inf
z,xl,z2,...,zm€cE

prove

inf S hu(z) = — inf { PILHCY

z€EE “
1

¢1a¢27"~a¢m€E1 ZQSZ:O}

** (Relativizing Mixed Fenchel duality) In the Mixed Fenchel
duality corollary (5.1.10), prove the condition dom g N Acont f #
can be replaced by dom g N Ari(dom f) # 0.

** (Geometric programming) Consider the constrained geometric
program

inf {ho(z) | hs(z) < 1fori=1,2,...,m},

zeE
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where each function h; is a sum of functions of the form

z€E— clog(zn:exp(aj,x))

Jj=1

for real ¢ > 0 and elements al,a?,...,a™ of E. Write down the
Lagrangian dual problem and simplify it using Exercise 11 and the
form of the conjugate of each h; given by (3.3.1). State a duality
theorem.
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5.2 Functions of Eigenvalues

Fenchel conjugacy gives a concise and beautiful avenue to many eigenvalue
inequalities in classical matrix analysis. In this section we outline this
approach.

The two cones R’} and S} appear repeatedly in applications, as do their
corresponding logarithmic barriers Ib and 1d, which we defined in Section
3.3. We can relate the vector and matrix examples, using the notation of
Section 1.2, through the identities

dsn =0rr oA and 1d =1b oA (5.2.1)

We see in this section that these identities fall into a broader pattern.
Recall the function [-] : R™ — R™ rearranges components into nonin-
creasing order. We say a function f on R"™ is symmetric if f(z) = f([z])
for all vectors x in R™; in other words, permuting components does not
change the function value. We call a symmetric function of the eigenvalues
of a symmetric matrix a spectral function. The following formula is crucial.

Theorem 5.2.2 (Spectral conjugacy) If f : R™ — [—o0, +00] is a sym-
metric function, it satisfies the formula

(foX)"=f"oA

Proof. By Fan’s inequality (1.2.2) any matrix Y in S™ satisfies the in-
equalities

(feX)"(Y) = sup {tr (XY) — f(A(X))}

Xesn

s;p{)\(X)T)\(Y) — f(MX))}
sup {z"A(Y) — f(z)}

zeR™

FMY)).

On the other hand, fixing a spectral decomposition ¥ = UT (Diag \(Y))U
for some matrix U in O™ leads to the reverse inequality

FFAY)) = sup {&"AY) - f(2)}

zeR™
— sup{tr (Diag 2)UYUT) - f(2)}

IN

IN

Il

= sup{tr (U (Diagz)UY) — f(N(UTDiagzU))}
sup {tr (XY) — f(AMX))}

Xesn

= (fo ) (Y),

(AN
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which completes the proof. O

This formula, for example, makes it very easy to calculate 1d * (see the Log

barriers proposition (3.3.3)) and to check the self-duality of the cone S%.
Once we can compute conjugates easily, we can also recognize closed

convex functions easily using the Fenchel biconjugation theorem (4.2.1).

Corollary 5.2.3 (Davis) Suppose the function f : R® — (00,+00] is
symmetric. Then the “spectral function” f o X is closed and convez if and
only if f is closed and convez.

We deduce immediately that the logarithmic barrier 1d is closed and con-
vex, as well as the function X — tr(X~!) on 8%, for example.

Identifying subgradients is also easy using the conjugacy formula and
the Fenchel-Young inequality (3.3.4).

Corollary 5.2.4 (Spectral subgradients) If f : R® — (00, +00] is a
symmetric function, then for any two matrices X and'Y in S™, the follow-
ing properties are equivalent:

(i) Y € 8(f o \)(X).

(i7) X and Y have a simultaneous ordered spectral decomposition and

satisfy A(Y) € 0f(A(X)).

(iii) X = UT(Diagz)U and Y = UT (Diagy)U for some matriz U in O™
and vectors x and y in R™ satisfying y € 0f(x).

Proof. Notice the inequalities
(foN(X) + (foX)" (V) = FMX)) + [*(A(Y)) 2 A(X)TAY) = tr (XY).

The condition Y € 9(fo\)(X) is equivalent to equality between the left and
right hand sides (and hence throughout), and the equivalence of properties
(i) and (ii) follows using Fan’s inequality (1.2.1). For the remainder of the
proof, see Exercise 9. O

Corollary 5.2.5 (Spectral differentiability) Suppose that the function
f: R™ — (o00,+00] is symmetric, closed, and conver. Then f o X is
differentiable at a matriz X in S™ if and only if f is differentiable at A(X).

Proof. If 9(f o M\)(X) is a singleton, so is f(A(X)), by the Spectral
subgradients corollary above. Conversely, suppose 9 f(A(X)) consists only
of the vector y € R™. Using Exercise 9(b), we see the components of y
are nonincreasing, so by the same corollary, 9(f o A\)(X) is the nonempty
convex set

{UT (Diagy)U | U € O™, UTDiag (\(X))U = X}.
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But every element of this set has the same norm (namely ||y||), so the set
must be a singleton. O

Notice that the proof in fact shows that when f is differentiable at A(X)
we have the formula

V(f o A(X) = UT(Diag VF(ANX)))U (5.2.6)

for any matrix U in O satistying UT (Diag A\(X))U = X.

The pattern of these results is clear: many analytic and geometric prop-
erties of the matrix function f o A parallel the corresponding properties of
the underlying function f. The following exercise is another example.

Corollary 5.2.7 Suppose the function f : R™ — (0o, +0o0] is symmetric,
closed, and convex. Then fol is essentially strictly convex (respectively, es-
sentially smooth) if and only if f is essentially strictly convex (respectively,
essentially smooth).

For example, the logarithmic barrier 1d is both essentially smooth and
essentially strictly convex.

Exercises and Commentary

Our approach in this section follows [120]. The Davis theorem (5.2.3) ap-
peared in [58] (without the closure assumption). Many convexity properties
of eigenvalues like Exercise 4 (Examples of convex spectral functions) can
be found in [99] or [10], for example. Surveys of eigenvalue optimization
appear in [128, 127].

1. Prove the identities (5.2.1).

2. Use the Spectral conjugacy theorem (5.2.2) to calculate 1d * and 5§1.

3. Prove the Davis characterization (Corollary 5.2.3) using the Fenchel
biconjugation theorem (4.2.1).

4. (Examples of convex spectral functions) Use the Davis char-
acterization (Corollary 5.2.3) to prove the following functions of a
matrix X € S™ are closed and convex:

(a) 1d (X).
(b) tr (XP), for any nonnegative even integer p.

(c) —tr(X2) if X e S7
400 otherwise.
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(d) tr(X~P) if X €St
+00 otherwise
for any nonnegative integer p.
(e) tr (XY/2)~1 if X € ST
+00 otherwise.
(f) —(det X))/ if X € ST
+o00 otherwise.

Deduce from the sublinearity of the function in part (f) the property
0XX=<Y=0<detX <detY
for matrices X and Y in S™.
5. Calculate the conjugate of each of the functions in Exercise 4.

6. Use formula (5.2.6) to calculate the gradients of the functions in Ex-
ercise 4.

7. For a matrix A in S, and a real b > 0, use the Lagrangian sufficient
conditions (3.2.3) to solve the problem

inf{f(X)|tr (AX) <b, X € S"},
where f is one of the functions in Exercise 4.

8. * (Orthogonal invariance) A function h : S — (00, +00] is or-
thogonally invariant if all matrices X in S™ and U in O™ satisfy the
relation A(UTXU) = h(X); in other words, orthogonal similarity
transformations do not change the value of h.

(a) Prove h is orthogonally invariant if and only if there is a sym-
metric function f: R"™ — (oo, +oo] with A = fo A

(b) Prove that an orthogonally invariant function h is closed and
convex if and only if h o Diag is closed and convex.

9. * Suppose the function f: R™ — (—o0, +00] is symmetric.

(a) Prove f* is symmetric.

(b) If vectors z and y in R™ satisfy y € 0f(x), prove [y] € df([z])
using Proposition 1.2.4.

(c) Finish the proof of the Spectral subgradients corollary (5.2.4).
(d) Deduce d(foN)(X) =0 & 9f(AX)) =0.
(e) Prove Corollary 5.2.7.
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10. * (Fillmore—Williams [78]) Suppose the set C' C R" is symmetric:
that is, PC = C holds for all permutation matrices P. Prove the set

AHC)={X eS"|\MX) e C}
is closed and convex if and only if C' is closed and convex.
11. ** (Semidefinite complementarity) Suppose matrices X and Y
lie in S%.
(a) If tr (XY) = 0, prove —Y € 9dsn (X).
(b) Hence prove the following properties are equivalent:
(i) tr (XY) =0.
(ii) XY = 0.
(iii) XY +YX =0.
(c) Using Exercise 5 in Section 1.2, prove for any matrices U and V/
in S™
U+ VHYV2=U4+V < UV =0andtr(UV)=0.
12. ** (Eigenvalue sums) Consider a vector x in R%.
(a) Prove the function uT A(-) is sublinear using Section 2.2, Exercise

9 (Schur-convexity).

(b) Deduce the map X is (—R%)™-sublinear. (See Section 3.3, Ex-
ercise 18 (Order convexity).)

(c) Use Section 3.1, Exercise 10 to prove
H(UTN)(0) = A~ (conv (P"w)),

13. ** (Davis theorem) Suppose the function f : R® — [—o00, +00] is
symmetric (but not necessarily closed). Use Exercise 12 (Eigenvalue
sums) and Section 2.2, Exercise 9(d) (Schur-convexity) to prove that
f o Ais convex if and only if f is convex.

14. * (DC functions) We call a real function f on a convex set C C E
a DC function if it can be written as the difference of two real convex
functions on C.

(a) Prove the set of DC functions is a vector space.
(b) If f is a DC function, prove it is locally Lipschitz on int C.

(c) Prove Ay is a DC function on S™ for all k, and deduce it is locally
Lipschitz.
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5.3 Duality for Linear and Semidefinite
Programming

Linear programming (LP) is the study of optimization problems involv-
ing a linear objective function subject to linear constraints. This simple
optimization model has proved enormously powerful in both theory and
practice, so we devote this section to deriving linear programming duality
theory from our convex-analytic perspective. We contrast this theory with
the corresponding results for semidefinite programming (SDP), a class of
matrix optimization problems analogous to linear programs but involving
the positive semidefinite cone.

Linear programs are inherently polyhedral, so our main development
follows directly from the polyhedrality section (Section 5.1). But to be-
gin, we sketch an alternative development directly from the Farkas lemma
(2.2.7). Given vectors a',a?,...,a™, and ¢ in R® and a vector b in R™,
consider the primal linear program

inf (¢, z)
subject to {(a®,z) —b; < 0 fori=1,2,...,m (5.3.1)
z € R"

Denote the primal optimal value by p € [—00,+00]. In the Lagrangian
duality framework (Section 4.3), the dual problem is

sup{ -7y ( iuiai =—c, B E RT} (5.3.2)
i=1

with dual optimal value d € [—o00,+00]. From Section 4.3 we know the
weak duality inequality p > d. If the primal problem (5.3.1) satisfies the
Slater condition then the Dual attainment theorem (4.3.7) shows p = d
with dual attainment when the values are finite. However, as we shall see,
the Slater condition is superfluous here.

Suppose the primal value p is finite. Then it is easy to see that the
“homogenized” system of inequalities in R"*1,

(a*,x) —b;z < 0 fori=1,2,...,m
—2z < 0 and (5.3.3)
(—c,z) + pz >

has no solution. Applying the Farkas lemma (2.2.7) to this system, we
deduce there is a vector i in R’} and a scalar § in R satisfying

Zﬂi(ai’ _bi) + /6(07 _1) = (—c,p).
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Thus f is a feasible solution for the dual problem (5.3.2) with objective
value at least p. The weak duality inequality now implies j is optimal and
p = d. We needed no Slater condition; the assumption of a finite primal
optimal value alone implies zero duality gap and dual attainment.

We can be more systematic using our polyhedral theory. Suppose that
Y is a Euclidean space, that the map A : E — Y is linear, and consider
cones H C Y and K C E. For given elements ¢ of E and b of Y, consider
the primal abstract linear program

inf{{(c,z) | Ax—be H, z € K}. (5.3.4)

As usual, denote the optimal value by p. We can write this problem in
Fenchel form (3.3.6) if we define functions f on E and g on Y by f(z) =
(c,z)+ 0k (z) and g(y) = dg(y —b). Then the Fenchel dual problem (3.3.7)
is

sup{(b,¢) | A"p—ce€e K, p€ —H} (5.3.5)
with dual optimal value d. If we now apply the Fenchel duality theorem
(3.3.5) in turn to problem (5.3.4), and then to problem (5.3.5) (using the
Bipolar cone theorem (3.3.14)), we obtain the following general result.

Corollary 5.3.6 (Cone programming duality) Suppose the cones H
and K in problem (5.8.4) are converz.

(a) If any of the conditions
(i) beint(AK — H),
(it) be AK —int H, or
(i17) b € A(int K) — H, and either H is polyhedral or A is surjective

hold then there is no duality gap (p = d) and the dual optimal value
d is attained if finite.

(b) Suppose H and K are also closed. If any of the conditions
(i) —ceint(A*H™ + K7),
(4) —c€ A*H™ +int K—, or
(#)) —c € A*(int H™) + K, and either K is polyhedral or A* is
surjective

hold then there is no duality gap and the primal optimal value p is
attained if finite.

In both parts (a) and (b), the sufficiency of condition (iii) follows by ap-
plying the Mixed Fenchel duality corollary (5.1.10), or the Open mapping
theorem (Section 4.1, Exercise 9). In the fully polyhedral case we obtain
the following result.
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Corollary 5.3.7 (Linear programming duality) Suppose the cones H
and K in the dual pair of problems (5.3.4) and (5.8.5) are polyhedral. If
either problem has finite optimal value then there is no duality gap and both
problems have optimal solutions.

Proof. We apply the Polyhedral Fenchel duality corollary (5.1.9) to each
problem in turn. O

Our earlier result for the linear program (5.3.1) is clearly just a special case
of this corollary.

Linear programming has an interesting matrix analogue. Given matri-
ces A1, Az,...,Am, and C in S} and a vector b in R™, consider the primal
semidefinite program

inf tr (CX)
subject to  tr (4;X) b; fori=1,2,...,m (5.3.8)

This is a special case of the abstract linear program (5.3.4), so the dual
problem is

sup {b7¢ | C =Y gidi €81, s e R™Y, (5.3.9)
i=1
since (S%)” = —S%, by the Self-dual cones proposition (3.3.12), and we

obtain the following duality theorem from the general result above.

Corollary 5.3.10 (Semidefinite programming duality) If the primal
problem (5.3.8) has a positive definite feasible solution, there is no duality
gap and the dual optimal value is attained when finite. On the other hand,
if there is a vector ¢ in R™ with C — )", $; A; positive definite then once
again there is no duality gap and the primal optimal value is attained when
finite.

Unlike linear programming, we need a condition stronger than mere
consistency to guarantee no duality gap. For example, if we consider the
primal semidefinite program (5.3.8) with

0 1 10
nAZ,m—l,C*[l O},Al—[o 0],andb—0,

the primal optimal value is 0 (and is attained), whereas the dual problem
(5.3.9) is inconsistent.
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Exercises and Commentary

The importance of linear programming duality was first emphasized by
Dantzig [57] and that of semidefinite duality by Nesterov and Nemirovskii
[148]. A good general reference for linear programming is [53]. A straight-
forward exposition of the central path (see Exercise 10) may be found in
[187]. Semidefinite programming has wide application in control theory
[46].

1. Check the form of the dual problem for the linear program (5.3.1).

2. If the optimal value of problem (5.3.1) is finite, prove system (5.3.3)
has no solution.

3. (Linear programming duality gap) Give an example of a linear
program of the form (5.3.1) which is inconsistent (p = +00) with the
dual problem (5.3.2) also inconsistent (d = —o0).

4. Check the form of the dual problem for the abstract linear program
(5.3.4).

5. Fill in the details of the proof of the Cone programming duality corol-
lary (5.3.6). In particular, when the cones H and K are closed, show
how to interpret problem (5.3.4) as the dual of problem (5.3.5).

6. Fill in the details of the proof of the linear programming duality
corollary (5.3.7).

7. (Complementary slackness) Suppose we know the optimal values
of problems (5.3.4) and (5.3.5) are equal and the dual value is at-
tained. Prove a feasible solution x for problem (5.3.4) is optimal if
and only if there is a feasible solution ¢ for the dual problem (5.3.5)
satisfying the conditions

(Ar —b,¢) =0 = (z,A*¢ —¢).

8. (Semidefinite programming duality) Prove Corollary 5.3.10.

9. (Semidefinite programming duality gap) Check the details of
the example after Corollary 5.3.10.

10. ** (Central path) Consider the dual pair of linear programs (5.3.1)
and (5.3.2). Define a linear map A : R® — R™ by (Az); = (a%)Tz
for each index i. Make the following assumptions:

(i) There is a vector z in R™ satisfying b — Az € R .
(ii) There is a feasible solution y in R7*, for problem (5.3.2).
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(iii) The set {a',a?,...,a™} is linearly independent.
Now consider the “penalized” problem (for real € > 0)
inf {cTz + €elb (b — Az)}. (5.3.11)
z€R™

(a) Write this problem as a Fenchel problem (3.3.6), and show the
dual problem is

m
sup { =67 p—elb (i) — k(e) | > pia’ = —¢, pe R} (53.12)
i=1
for some function £ : Ry — R.

(b) Prove that both problems (5.3.11) and (5.3.12) have optimal
solutions, with equal optimal values.

(c) By complementary slackness (Section 3.3, Exercise 9(f)), prove
problems (5.3.11) and (5.3.12) have unique optimal solutions
z¢ € R™ and p¢ € R™, characterized as the unique solution of
the system

m

-
E piaw = —c
=1

pi(bi — (a*)"'x)
b—Ax > 0, and
uweRT, ze€R".

Il

e for each 7

(d) Calculate cT'z¢ + b7 pe.

(e) Deduce that, as e decreases to 0, the feasible solution z°¢ ap-
proaches optimality in problem (5.3.1) and ¢ approaches opti-
mality in problem (5.3.2).

11. ** (Semidefinite central path) Imitate the development of Exer-
cise 10 for the semidefinite programs (5.3.8) and (5.3.9).

12. ** (Relativizing cone programming duality) Prove other condi-
tions guaranteeing part (a) of Corollary 5.3.6 are

(i) be AriK) —riH or
(ii) b€ A(riK) — H and H polyhedral.

(Hint: Use Section 4.1, Exercise 20, and Section 5.1, Exercise 12.)
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5.4 Convex Process Duality

In this section we introduce the idea of a “closed convex process”. These
are set-valued maps whose graphs are closed convex cones. As such, they
provide a powerful unifying formulation for the study of linear maps, convex
cones, and linear programming. The exercises show the elegance of this
approach in a range of applications.

Throughout this section we fix a Euclidean space Y. For clarity, we
denote the closed unit balls in E and Y by Bg and By, respectively. A
multifunction (or set-valued map) ® : E — Y is a map from E to the set
of subsets of Y. The domain of ® is the set

D(®) = {z € E| &(z) # 0}

We say ® has nonempty images if its domain is E. For any subset C' of
E we write ®(C) for the image Uzcc®(z), and the range of ® is the set
R(®) = ®(E). We say ® is surjective if its range is Y. The graph of ® is
the set

G(®) ={(z,y) e ExY |y € ®(a)},

and we define the inverse multifunction ®~! : Y — E by the relationship
r€d® y) e yec®x) forrin EandyinY.

A multifunction is convez, or closed, or polyhedral if its graph is likewise.
A process is a multifunction whose graph is a cone. For example, we can
interpret linear maps as closed convex processes in the obvious way.

Closure is one example of a variety of continuity properties of multi-
functions we study in this section. We say the multifunction ® is LSC at
a point (zg,y) in its graph if, for all neighbourhoods V' of y, the image
®(x) intersects V for all points « close to zo. (In particular, o must lie in
int (D(®)).) Equivalently, for any sequence of points (x,) approaching xg
there is a sequence of points y, € ®(x,) approaching y. If, for z¢ in the
domain, this property holds for all points y in ®(zg), we say @ is LSC at
Zg. (The notation comes from “lower semicontinuous”, a name we avoid
in this context because of incompatibility with the single-valued case; see
Exercise 5.)

On the other hand, we say ® is open at a point (x, yo) in its graph if, for
all neighbourhoods U of z, the point yg lies in int (®(U)). (In particular,
Yo must lie in int (R(®)).) Equivalently, for any sequence of points (yn)
approaching yo there is a sequence of points (z,) approaching x such that
yYn € ®(z,) for all n. If, for yo in the range, this property holds for all
points x in ®~1(yp), we say ® is open at yo. These properties are inverse
to each other in the following sense.
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Proposition 5.4.1 (Openness and lower semicontinuity) Any multi-
function ® : E — Y is LSC at a point (z,y) in its graph if and only if ®~!
is open at (y,x).

We leave the proof as an exercise.
For convex multifunctions, openness at a point in the graph has strong
global implications: the following result is another exercise.

Proposition 5.4.2 If a convexr multifunction is open at some point in its
graph then it is open throughout the interior of its range.

In particular, a convex process ® : E — Y is open at (0,0) € E x Y if
and only if it is open at 0 € Y; we just say ® is open at zero (or, dually,
®~1is LSC at zero).

There is a natural duality for convex processes that generalizes the
adjoint operation for linear maps. For a convex process ® : E — Y, we
define the adjoint process ®* : Y — E by

G(®") ={(u,v) | (v,—p) € G(®)" }.
Then an easy consequence of the Bipolar cone theorem (3.3.14) is
G(9™) = —-G(?),

providing ® is closed. (We could define a “lower” adjoint by the relationship
o, () = —P*(—p), in which case (®*), = ®.)

The language of adjoint processes is elegant and concise for many vari-
ational problems involving cones. A good example is the cone program
(5.3.4). We can write this problem as

Inf {{c,z) | b € ¥(2)},

where U is the closed convex process defined by

Ar — H ifze K
V(z) = {@ otherwise (54.3)

for points c in E, bin Y, and closed convex cones H CY and K C E. An
easy calculation shows the adjoint process is

* _ A'u+ K- ifpe H-
¥l = {@ otherwise, (5.4.4)

so we can write the dual problem (5.3.5) as

sup{(b, n) | —c € ¥ (—p)}. (5.4.5)
HEY
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Furthermore, the constraint qualifications in the Cone programming duality
corollary (5.3.6) become simply b € int R(¥) and —c € int R(T*).

In Section 1.1 we mentioned the fundamental linear-algebraic fact that
the null space of any linear map A and the range of its adjoint satisfy the

relationship
(A71(0))” = R(A"). (5.4.6)

Our next step is to generalize this to processes. We begin with an easy
lemma.

Lemma 5.4.7 Any convex process ® : E — Y and subset C of Y satisfy
*(C°) C (271(C))°.

Equality in this relationship requires more structure.

Theorem 5.4.8 (Adjoint process duality) Let ® : E — Y be a conver
process, and suppose the set C CY is convex with R(®) N C nonempty.

(a) FEither of the assumptions

(4) the multifunction z € E — ®(z) — C is open at zero (or, in
particular, int C' contains zero), or

(it) @ and C are polyhedral

implies

(@7H(0))° = 2*(C°).
(b) On the other hand, if C is compact and ® is closed then

(@71(C))° = cl(2*(C°)).

Proof. Suppose assumption (i) holds in part (a). For a fixed element ¢
of (#71(C))°, we can check that the “value function” v : Y — [—00, +00]
defined for elements y of Y by

v(y) = inf {~{¢,z) |y € &(z) - C} (5.4.9)

is convex. The assumption ¢ € (®7!(C))° is equivalent to v(0) > —1,
while the openness assumption implies 0 € core (domv). Thus v is proper
by Lemma 3.2.6, and so the Max formula (3.1.8) shows v has a subgradient
—A €Y at 0. A simple calculation now shows A € C° and ¢ € ®*(N),
which, together with Lemma 5.4.7, proves the result.

If ® and C are polyhedral, the Polyhedral algebra proposition (5.1.8)
shows v is also polyhedral, so again has a subgradient, and our argument
proceeds as before.
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Turning to part (b), we can rewrite ¢ € (®71(C))° as
(¢,0) € (G(®) N (E x C))°
and apply the polarity formula in Section 4.1, Exercise 8 to deduce
(¢,0) € cl(G(®)™ + (0 x C°)).

Hence there are sequences (¢, —p,) in G(®)~ and p, in C° with ¢,, ap-
proaching ¢ and p, — p, approaching 0. We deduce

¢n € ®*(pn) C 27(C° + €nBy),

where the real sequence €, = ||u, — pn|| approaches 0. Since C' is bounded
we know int (C°) contains 0 (by Section 4.1, Exercise 5), and the result
follows using the positive homogeneity of ®*. O

The null space/range formula (5.4.6) thus generalizes to a closed convex
process :

(@71(0))° = cl(R(®")),
and the closure is not required if ® is open at zero.

We are mainly interested in using these polarity formulae to relate two
“norms” for a convex process ® : E — Y. The “lower norm”

|®]]; = inf{r €e Ry; | ®(x) NrBy # 0, Vz € Bg}

quantifies ® being LSC at zero; it is easy to check that ® is LSC at zero if
and only if its lower norm is finite. The “upper norm”

[®]l, = inf{r € Ry, | ®(Bg) C rBy}

quantifies a form of “upper semicontinuity” (see Section 8.2). Clearly ®
is bounded (that is, bounded sets have bounded images) if and only if its
upper norm is finite. Both norms generalize the norm of a linear map
A:E — Y, defined by

Al = sup{[|Az|| | [l=|| < 1}.
Theorem 5.4.10 (Norm duality) Any closed conver process ® satisfies
@Ml = 27 |-

Proof. For any real r > ||®|; we know Bg C ® 1(rBy) by definition.
Taking polars implies Bg D r~1®*(By), by the Adjoint process duality
theorem (5.4.8), whence ||®*|, <.

Conversely, ||®*|l, < r implies ®*(By) C rBg. Taking polars and
applying the Adjoint process duality theorem again followed by the Bipolar
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set theorem (4.1.5) shows Bg C r(cl(®7!(By))). But since By is compact
we can check ®1(By) is closed, and the result follows. m|

The values of the upper and lower norms of course depend on the spaces
E and Y. Our proof of the Norm duality theorem above shows that it
remains valid when Bg and By denote unit balls for arbitrary norms (see
Section 4.1, Exercise 2), providing we replace them by their polars B, and
B% in the definition of ||®*|,.

The next result is an immediate consequence of the Norm duality the-
orem.

Corollary 5.4.11 A closed convex process is LSC' at zero if and only if its
adjoint is bounded.

We are now ready to prove the main result of this section.

Theorem 5.4.12 (Open mapping) The following properties of a closed
convex process Y are equivalent:

(i) @ is open at zero.
(i) (®*)~! is bounded.
(iir) @ 1is surjective.

Proof. The equivalence of parts (i) and (ii) is just Corollary 5.4.11 (after
taking inverses and observing the identity G((®*)~!) = —G((®~!)*). Part
(i) clearly implies part (iii), so it remains to prove the converse. But if ®
is surjective then we know

Y = | ®(nBg) = | n®(Bg),
n=1 n=1

so zero lies in the core, and hence the interior, of the convex set ®(Bg).
Thus @ is open at zero. O

Taking inverses gives the following equivalent result.

Theorem 5.4.13 (Closed graph) The following properties of a closed
convez process ® are equivalent:

(i) @ is LSC at zero.
(it) @* is bounded.

(iit) @ has nonempty images.
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Exercises and Commentary

A classic reference for multifunctions is [13], and [113] is a good com-
pendium which includes applications in mathematical economics. Convex
processes were introduced by Rockafellar [166, 167]. The power of normed
convex processes was highlighted by Robinson [161, 162]. Our development
here follows [23, 24]. The importance of the “distance to inconsistency”
(Exercise 21) was first made clear in [160]. For broad extensions, see [66].

1.

10.

11.

(Inverse multifunctions) For any multifunction ® : E — Y, prove
(a) R(®~1) = D(®).
(b) G(@71) ={(y,2) € Y x E|(z,y) € G(®)}.

(Convex images) Prove the image of a convex set under a convex
multifunction is convex.

For any proper closed convex function f : E — (o0, +0o0], prove

a(f*)=(f)~

Prove Proposition 5.4.1 (Openness and lower semicontinuity).

. (LSC and lower semicontinuity) For a function f : E — [—o00, o],

suppose f is finite at a point z € E.
(a) Prove f is continuous at z if and only if the multifunction
teR— (1)

is open at (f(z), 2).
(b) Prove f is lower semicontinuous at z if and only if the multi-
function whose graph is epi (—f) is LSC at (z, f(2)).

* Prove Proposition 5.4.2. (Hint: See Section 4.1, Exercise 1(b).)

(Biconjugation) Prove any closed convex process ® satisfies

G(®*) = —G(®).

Check the adjoint formula (5.4.4).
Prove Lemma 5.4.7.
Prove the value function (5.4.9) is convex.

* Write a complete proof of the Adjoint process duality theorem
(5.4.8).
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12

13
14

15.

16.

17.

5. Special Cases

. If the multifunction ® : E — Y is closed and the set C C Y is
compact, prove ®~1(C) is closed.

. Prove G((®*)7!) = —G((®~1)*) for any closed convex process P.

. (Linear maps) Consider a linear map A : E — Y, and define a
multifunction ® : E —Y by ®(z) = { Az} for all points z in E.

(a) Prove ® is a closed convex process.

(b) Prove ®* is the closed convex process y € Y — {A*y}.

(c) Prove [|®]; = [|®]. = || A]l.

(d) Prove A is an open map (that is, A maps open sets to open sets)
if and only if ® is open throughout Y.

(e) Hence deduce the Open mapping theorem for linear maps (Sec-
tion 4.1, Exercise 9) as a special case of Theorem 5.4.12.

(f) For any closed convex process §2: E — Y, prove
Q+A)" =Q" + A",

* (Normal cones) A closed convex cone K C E is generating if it
satisfies K — K = E. For a point z in E, the order interval [0, z]k is
the set KN (z— K). We say K is normal if there is a real ¢ > 0 such
that

y € [0,z]x = [lyll < cllz]l.

(a) Prove the multifunction ® : E — E defined by ®(z) = [0, z]x is
a closed convex process.

(b) Calculate (®*)~1.

(¢) (Krein—Grossberg) Deduce K is normal if and only if K~ is
generating.

(d) Use Section 3.3, Exercise 20 (Pointed cones) to deduce K is
normal if and only if it is pointed.

(Inverse boundedness) By considering the convex process (5.4.3),
demonstrate the following equivalence for any linear map A : E —'Y
and closed cones K C Eand H C Y:

AK -H=Y & {ye H |A"y € Bg— K™} is bounded.

** (Localization [24]) Given a closed convex process @ : E — Y and
a point b in Y, define the “homogenized” process ¥ : ExR — Y xR
by

[ (@(x)—tb) x t—Ry) ift>0
\D(w’t)_{(b if t <0.
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Prove the following statements are equivalent:
(i) @ is open at b.
(ii) b lies in core (R(®)).
(iii) The set
{peY|2"(n) N Bg # 0 and (u,b) <1}

is bounded.

(f) If R(®) has nonempty core, use a separation argument to prove
the statements in part (e) are equivalent to

{ne (@*)71(0) | (i, b) <0} = {0}.

18. ** (Cone duality) By applying part (e) of Exercise 17 to example
(5.4.3) with A =0 and K = E, deduce that a point b lies in the core
of the closed convex cone H C Y if and only if the set

{peH™| —(ub) <1}

is bounded. Hence, give another proof that a closed convex cone has
a bounded base if and only if its polar has nonempty interior (Section
3.3, Exercise 20).

19. ** (Order epigraphs)

(a) Suppose C C E is a convex cone, S C Y is a closed convex cone,
and F : C — Y is an S-sublinear function (Section 3.3, Exercise
18 (Order convexity)). Prove the multifunction ® : E — Y
defined by
_JF(@)+ S ifzxeC
®(z) = { 0 otherwise,

is a convex process, with adjoint

() = {gm,F(-))(O) ifpe -5

otherwise.

(b) Use Section 5.2, Exercise 12 to prove the adjoint of the closed
convex process

XeS"— AX) - (Rg)_
is the closed convex process with domain RY defined by

p— A" (conv (P"p)).
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20. ** (Condition number [123]) Consider any closed convex process
®:E —Y and a linear map G: E - Y.

(a) If |G|~ > ||®7!||, prove the process (® + G)~! is bounded.

(b) If |G[|7! > [|®@!||;, use part (a) to prove the process ® + G is
surjective.

(c) Suppose ® is surjective and the point y lies on the boundary of
the set ®(Bg). By considering a supporting hyperplane, prove
there is a rank-one linear map G : E — Y defined by

Gz = <l% $>y

for some element p of E such that ® + G is not surjective.
(d) Deduce

min{[|G|| | ® + G not surjective} = [|®~1||;,
where the minimum is attained by a rank-one map when finite.

21. ** (Distance to inconsistency [123]) Consider a given linear map
A:E — Y and an element b of Y. Suppose the space E x R has the
norm ||(z,t)[| = ||z]| + [¢|.

(a) Prove the linear map
(z,t) e ExRw— Az —tb
has norm ||A]| V ||b|l.
Now consider closed convex cones P C E and @ C Y, and systems

(S) b—Az € Q, z € P and
(S2) z+th— Az € Q, z € P, teRy, |z|+]t < 1.

Let I denote the set of pairs (A, b) such that system (S) is inconsis-
tent, and let Iy denote the set of (A,b) such that the process

Az —tb+Q ifzxzeP, teR;
(@,t) EEX R~ { 0 if otherwise
is not surjective.

(b) Prove I = cll.

(c) By applying Exercise 20 (Condition number), prove the distance
of (A,b) from I is given by the formula

dr(A,b) = inf{||z|| | (S:) inconsistent}.



Chapter 6

Nonsmooth Optimization

6.1 Generalized Derivatives

From the perspective of optimization, the subdifferential f(-) of a con-
vex function f has many of the useful properties of the derivative. Some
examples: it gives the necessary optimality condition 0 € 0f(z) when the
point z is a (local) minimizer (Proposition 3.1.5); it reduces to {V f(z)}
when f is differentiable at z (Corollary 3.1.10); and it often satisfies certain
calculus rules such as 9(f + g)(z) = 0f(x) + 9g(x) (Theorem 3.3.5). For a
variety of reasons, if the function f is not convex, the subdifferential 0 f(-)
is not a particularly helpful idea. This makes it very tempting to look for
definitions of the subdifferential for a nonconvex function. In this section
we outline some examples; the most appropriate choice often depends on
context.

For a convex function f : E — (0o, +o00] with z in dom f, we can
characterize the subdifferential via the directional derivative: ¢ € 9f(x)
if and only if (¢,-) < f'(z;-) (Proposition 3.1.6). A natural approach is
therefore to generalize the directional derivative. Henceforth in this section
we make the simplifying assumption that the real function f (a real-valued
function defined on some subset of E) is locally Lipschitz around the point
z in E.

Partly motivated by the development of optimality conditions, a simple
first try is the Dini directional derivative:

fz+1th) - f(z)
- :

~ (B — lim inf
f(z;h) hrﬁén

A disadvantage of this idea is that f~(z;-) is not usually sublinear (consider
for example f = —| - | on R), so we could not expect an analogue of the
Max formula (3.1.9). With this in mind, we introduce the Clarke directional

123
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derivative,

fly+th) — f(y)

f°(xz;h) = limsup

y—z, t]0 t
t —
— inf sup fly+th) - f(y)
6>0 ||y —z||<8, 0<t<s t

and the Michel-Penot directional derivative,

th + tu) — t
f¢(x; h) = sup lim sup f(z +th + tu) — f(z + tu) .
we€E  t]0 t
Proposition 6.1.1 If the real function f has Lipschitz constant K around

the point x in E then the Clarke and Michel-Penot directional derivatives
fo(z;-) and f°(z;-) are sublinear and satisfy

(@) < fo(a0) < foas) < K| - .

Proof. The positive homogeneity and upper bound are straightforward,
so let us prove subadditivity in the Clarke case. For any sequences " — x
in E and ¢, | 0 in R, and any real € > 0, we have

fl@™ +t-(u+v)) — fla" + tru)
tr

< fol@sv) + e

and
f(xr + tru) - f('rr)
tr

for all large r. Adding and letting r approach oo shows

< fowsu) +e

fo@5u 4+ v) < fO(z5u) + (25 0) + 26,

and the result follows. We leave the Michel-Penot case as an exercise. The
inequalities are straightforward. a

Using our knowledge of support functions (Corollary 4.2.3), we can now
define the Clarke subdifferential

Oof(z)={p € E|(p,h) < f(x;h) for all h € E}

and the Dini and Michel-Penot subdifferentials 8_ f(x) and 9, f(z) analo-
gously. Elements of the respective subdifferentials are called subgradients.
We leave the proof of the following result as an exercise.

Corollary 6.1.2 (Nonsmooth max formulae) If the real function f
has Lipschitz constant K around the point x in E then the Clarke and
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Michel-Penot subdifferentials 0o f(z) and O,f(x) are nonempty, compact,
and convex, and satisfy

O_f(z) C Oof(x) C Oof(z) C KB.

Furthermore, the Clarke and Michel-Penot directional derivatives are the
support functions of the corresponding subdifferentials:

f°(@; h) = max{(¢,h) | ¢ € 0o f(x)} (6.1.3)

and
f¢(@;h) = max{(¢, h) | ¢ € 05 f(z)} (6.1.4)

for any direction h in E.

Notice the Dini subdifferential is also compact and convex, but may be
empty.

Clearly if the point z is a local minimizer of f then any direction h in
E satisfies f~(x;h) > 0, and hence the necessary optimality conditions

0€0_f(x) COof(x) COof(x)

hold. If g is another real function which is locally Lipschitz around z then
we would not typically expect 9,(f + g)(z) = o f(z) + dog(x) (consider
f=—-g=1]]onRatz =0, for example). On the other hand, if we
are interested in an optimality condition like 0 € 9,(f + g)(z), it is the
sum rule 8o (f + g)(z) C Oof(x) + Dog(zx) that really matters. (A good
example we see later is Corollary 6.3.9.) We address this in the next result,
along with an analogue of the formula for the convex subdifferential of a
max-function in Section 3.3, Exercise 17. We write f V g for the function

z — max{f(z),g(x)}.

Theorem 6.1.5 (Nonsmooth calculus) If the real functions f and g
are locally Lipschitz around the point x in E, then the Clarke subdifferential

satisfies
9o (f +9)(@) C 0o f(x) + Dog(x) (6.1.6)

and

05(f V g)(x) C conv (0o f(z) U dog(x)). (6.1.7)
Analogous results hold for the Michel-Penot subdifferential.

Proof. The Clarke directional derivative satisfies
(f +9)°(x;-) < f2(zs0) + 9°(x5),

since limsup is a sublinear function. Using the Max formula (6.1.3) we
deduce

03, (F+9) (@) < 08, f(x)+800(x)



126 6. Nonsmooth Optimization

and taking conjugates now gives the result using the Fenchel biconjugation
theorem (4.2.1) and the fact that both sides of inclusion (6.1.6) are compact
and convex.

To see inclusion (6.1.7), fix a direction h in E and choose sequences
2" — 2 in E and ¢, | 0 in R satisfying

(fVg)a” +t-h) - (fVg)(a")

- (£V 9)°(ash).

Without loss of generality, suppose (f V g)(z” + t-h) = f(z" + t,.h) for all
r in some subsequence R of N, and now note

f&" +teh) — f(z7)

f°(z;h) > limsup

r—oo, TER tr
T+t-h)—(fV r
> limsup (fvg)a" +th)— (fVg)(a")
r—oo, TER tr

= (fVg)°(z:h).
We deduce (fVg)°(x;-) < f°(x;-) V g°(x;-), which, using the Max formula
(6.1.3), we can rewrite as
03, (sva)(@) = 0,1(x) V 95,g(x) = Oeonv(@s f(x)U0g(x))

using Exercise 9(b) (Support functions) in Section 4.2. Now the Fenchel
biconjugation theorem again completes the proof. The Michel-Penot case
is analogous. O

We now have the tools to derive a nonsmooth necessary optimality
condition.

Theorem 6.1.8 (Nonsmooth necessary condition) Suppose the point
Z 15 a local minimizer for the problem

inf{f(z) | gi(x) <0 (i € )}, (6.1.9)

where the real functions f and g; (for i in finite index set I) are locally
Lipschitz around z. Let I(Z) = {i|gi(Z) = 0} be the active set. Then there
exist real Ao, \; > 0 for i in I(Z), not all zero, satisfying

0 Moo f(7) + D XiBogi(®). (6.1.10)

icI(z)
If, furthermore, some direction d in E satisfies
92(Z;d) <0 for all i in I(T) (6.1.11)

then we can assume \g = 1.



6.1 Generalized Derivatives 127

Proof. Imitating the approach of Section 2.3, we note that = is a local
minimizer of the function

z — max{f(z) — f(z), gi(z) for i € I(Z)}.
We deduce

0 € do(max{f — f(Z), g; for i € I(Z)})(T)
C conv (&)f(i') U U Gogi(a_:)>

icl(z)

by inclusion (6.1.7).
If condition (6.1.11) holds and )y is zero in condition (6.1.10), we obtain
the contradiction

0 <max{(g.d)|de 3 Noa@)} = 3 Ngt@d) <o.

i€1(Z) i€l(Z)

Thus \g is strictly positive, and hence without loss of generality equals one.
O

Condition (6.1.10) is a Fritz John type condition analogous to Theorem
2.3.6. Assumption (6.1.11) is a Mangasarian-Fromovitz type constraint
qualification like Assumption 2.3.7, and the conclusion is a Karush—Kuhn—
Tucker condition analogous to Theorem 2.3.8. We used the Michel-Penot
subdifferential in the above argument because it is in general smaller than
the Clarke subdifferential, and hence provides stronger necessary condi-
tions. By contrast to our approach here, the developments in Section 2.3
and Section 3.2 do not assume the local Lipschitz condition around the
optimal point Z.

Exercises and Commentary

Dini derivatives were first used in [64]. The Clarke subdifferential appeared
in [54]. A good reference is [55]. The Michel-Penot subdifferential was
introduced in [138, 139]. A good general reference for this material is [5].

1. (Examples of nonsmooth derivatives) For the following func-
tions f : R — R defined for each point z in R by

(a) f(z) = l|zl,
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3" if 3" < x < 2(3™) for any integer n
(d) f(z) =< 2z -3 if 2(3") <z < 3**! for any integer n
0 ifz <0,

compute the Dini, Michel-Penot and Clarke directional derivatives
and subdifferentials at x = 0.

(Continuity of Dini derivative) For a point z in E, prove the
function f~(z;-) is Lipschitz if f is locally Lipschitz around z.

Complete the proof of Proposition 6.1.1.

(Surjective Dini subdifferential) Suppose the continuous function
f : E — R satisfies the growth condition

flx)
leileo izl O

For any element ¢ of E, prove there is a point x in E with ¢ in
0_ f(x).

Prove Corollary 6.1.2 (Nonsmooth max formulae) using Corollary
4.2.3 (Support functions).

(Failure of Dini calculus) Show that the inclusion
O-(f +9)(z) C O-f(z) + 0-g(z)
can fail for locally Lipschitz functions f and g.

* Complete the details of the proof of the Nonsmooth calculus theo-
rem (6.1.5).

* Prove the following results:
(a) fo(z;—h) = (=f)°(z; h).
(b) (Af)°(z;h) = Af°(z;h) for 0 < X\ € R.
() Oo(Af)(z) = AOof(z) for all A in R.
Derive similar results for the Michel-Penot version.

. * (Mean value theorem [119])

(a) Suppose the function f : E — R is locally Lipschitz. For any
points x and y in E, prove there is a real ¢ in (0,1) satisfying

f(@) = Fy) € @ =y, 0o f(tz + (1 = t)y)).

(Hint: Consider a local minimizer or maximizer of the function
g :[0,1] — R defined by g(t) = f(tz + (1 — t)y).)
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(b) (Monotonicity and convexity) If the set C in E is open and
convex and the function f : C' — R is locally Lipschitz, prove f
is convex if and only if it satisfies

(z—y,¢—1) =20 forallz,y € C, ¢ € & f(z), and ¢ € Io f(y).

(¢) If 0, f(y) C kB for all points y near x, prove f has local Lipschitz
constant k about .

Prove similar results for the Clarke case.

* (Max-functions) Consider a compact set 7' C R™ and a continu-
ous function g : ExT — R. For each element t of 7" define a function
g+ : E = R by g:(x) = g(z,t) and suppose, for all ¢, that this function
is locally Lipschitz around the point z. Define G : E — R by

G(x) = max{g(z,t) |t € T}
and let T, be the set {t € T | g(z,t) = G(z)}. Prove the inclusion
0.G(z) Ccl (conv U {lim¢" | 2" — 2z, t, = t, ¢" € Dogy.. (zr)})
teT,

Specialize to the case where T is finite, and to the case where Vg;(x)
is a continuous function of (z,t).

** (Order statistics [125]) Calculate the Dini, the Michel-Penot,
and the Clarke directional derivatives and subdifferentials of the func-
tion

z € R" — [z]g.
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6.2 Regularity and Strict Differentiability

We have outlined in Section 2.3 and Section 3.2 two very distinct versions
of the necessary optimality conditions in constrained optimization. The
first, culminating in the Karush-Kuhn—Tucker conditions (2.3.8), relied on
Gateaux differentiability, while the second, leading to the Lagrangian nec-
essary conditions (3.2.8), used convexity. A primary aim of the nonsmooth
theory of this chapter is to unify these types of results; in this section we
show how this is possible.

A principal feature of the Michel-Penot subdifferential is that it coin-
cides with the Gateaux derivative when this exists.

Proposition 6.2.1 (Unique Michel-Penot subgradient) A real func-
tion f which is locally Lipschitz around the point x in E has a unique
Michel-Penot subgradient ¢ at z if and only if ¢ is the Gateaux derivative

Vf(x).

Proof. If f has a unique Michel-Penot subgradient ¢ at x, then all direc-
tions A in E satisfy

fle+th+tu) — f(z+ tu)

f°(z; h) = sup limsup = (¢, h).
we€E  t|0 t
The cases h = w with u = 0 and h = —w with © = w show
t10 t t10 t

so we deduce f'(z,w) = (¢, w) as required.
Conversely, if f has Gateaux derivative ¢ at z then any directions h
and u in E satisfy

flx+th+tu) — f(z + tu)

lim sup
t10 t
< monp LEFHAE W)~ F@) ) — f(2)
t10 t t10 t

= f(@h+u) = f(z;u)
(6, h+u) —(p,u) = ($,h) = f'(z;h) < fo(x3h).

Now taking the supremum over u shows f°(z;h) = (¢, h) for all h, as we
claimed. O

Thus, for example, the Fritz John condition (6.1.10) reduces to Theorem
2.3.6 in the differentiable case (under the extra, locally Lipschitz assump-
tion).
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The above result shows that when f is Gateaux differentiable at the
point x, the Dini and Michel-Penot directional derivatives coincide. If
they also equal the Clarke directional derivative then we say f is regular
at . Thus a real function f, locally Lipschitz around z, is regular at x
exactly when the ordinary directional derivative f'(x;-) exists and equals
the Clarke directional derivative f°(z;-).

One of the reasons we are interested in regularity is that when the two
functions f and g are regular at x, the nonsmooth calculus rules (6.1.6)
and (6.1.7) hold with equality (assuming f(z) = g(«) in the latter). The
proof is a straightforward exercise.

We know that a convex function is locally Lipschitz around any point
in the interior of its domain (Theorem 4.1.3). In fact such functions are
also regular at such points: consequently our various subdifferentials are
all generalizations of the convex subdifferential.

Theorem 6.2.2 (Regularity of convex functions) Suppose the func-
tion f : E — (00, +00| is convex. If the point x lies in int (dom f) then
f is reqular at x, and hence the convex, Dini, Michel-Penot and Clarke
subdifferentials all coincide:

0o f(x) = 0o f(z) = 0_ f(z) = Of (2).

Proof. Fix a direction A in E and choose a real § > 0. Denoting the local
Lipschitz constant by K, we know

th) —
fo (-’17§ h) = lim sup sup f(y + ) f(y)
€l0 |jy—z||<es O<t<e t
—lim sy LYFTN SO
el |ly—z|<es €
lim flz +eh) — f(x)
610 €
= f'(z;h) + 2K,

< +2K9

using the convexity of f. We deduce
fo(@sh) < f'(ash) = f(zsh) < fo(zih) < fo(z3h),

and the result follows. O

Thus, for example, the Karush-Kuhn—Tucker type condition that we ob-
tained at the end of Section 6.1 reduces exactly to the Lagrangian necessary
conditions (3.2.8), written in the form 0 € 0f(Z) + -, (z) Ai09:(Z), as-
suming the convex functions f and g; (for indices ¢ in I(Z)) are continuous
at the optimal solution Z.
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By analogy with Proposition 6.2.1 (Unique Michel-Penot subgradient),
we might ask when the Clarke subdifferential of a function f at a point «
is a singleton {¢}? Clearly in this case f must be regular with Gateaux
derivative V f(z) = ¢, although Gateaux differentiability is not enough, as
the example z?sin(1/x) shows (Exercise 1 in Section 6.1). To answer the
question we need a stronger notion of differentiability.

For future reference we introduce three gradually stronger conditions
for an arbitrary real function f. We say an element ¢ of E is the Fréchet
derivative of f at x if it satisfies

fly) —f@) = ($y—=)

lim =0,
y—z, yET ly — =l

and we say ¢ is the strict derivative of f at x if it satisfies

fy) = f(z) = (y = 2)

=0.
Y2, y#z lly — z||

In either case, it is easy to see V f(z) is ¢. For locally Lipschitz functions on
E, a straightforward exercise shows Gateaux and Fréchet differentiability
coincide, but notice that the function z?sin(1/z) is not strictly differen-
tiable at zero. Finally, if f is Gateaux differentiable close to x with gradient
map V f(-) continuous then we say f is continuously differentiable around
z. In the case E = R™ we see in elementary calculus that this is equivalent
to the partial derivatives of f being continuous around x. We make analo-
gous definitions of Gateaux, Fréchet, strict and continuous differentiability
for a function F : E — Y (where Y is another Euclidean space). The
derivative V f(z) is in this case a linear map from E to Y.

The following result clarifies the idea of a strict derivative and suggests
its connection with the Clarke directional derivative; we leave the proof as
another exercise.

Theorem 6.2.3 (Strict differentiability) A real function f has strict
derivative ¢ at a point x in E if and only if it is locally Lipschitz around x

with L
i LW th) — fy)
y—z, t|0 t

for all directions h in E. In particular this holds if f is continuously dif-
ferentiable around x with V f(z) = ¢.

We can now answer our question about the Clarke subdifferential.

Theorem 6.2.4 (Unique Clarke subgradient) A real function f which
is locally Lipschitz around the point x in E has a unique Clarke subgradient
¢ at z if and only if ¢ is the strict derivative of f at x. In this case f is
regular at x.
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Proof. One direction is clear, so let us assume 0, f(z) = {¢}. Then we
deduce

limint JOE) —S@W) o Ftth) —th) — f(y + th)
y—e, t0 t y—z, t]0 t
= —f°(z;—h) = (¢,h) = f°(z;h)
— limsup LY~ f()
y—z, t|0 t

9

and the result now follows using Theorem 6.2.3 (Strict differentiability).
O

The Clarke subdifferential has a remarkable alternative description, of-
ten more convenient for computation. It is a reasonably straightforward
measure-theoretic consequence of Rademacher’s theorem (9.1.2), which
states that locally Lipschitz functions are almost everywhere differentiable.

Theorem 6.2.5 (Intrinsic Clarke subdifferential) Suppose that the
real function f is locally Lipschitz around the point x in E and that the set
S C E has measure zero. Then the Clarke subdifferential of f at x is

05 f(z) = conv {lipr(xT) |z" -z, 2" & S}.

Exercises and Commentary

Again, references for this material are [55, 138, 139, 5]. A nice proof of
Theorem 6.2.5 (Intrinsic Clarke subdifferential) appears in [14]. For some
related ideas applied to distance functions, see [33]. Rademacher’s theorem
can be found in [71], for example. See also Section 9.1. For more details
on the functions of eigenvalues appearing in Exercise 15, see [121, 124].

1. Which of the functions in Section 6.1, Exercise 1 are regular at zero?

2. (Regularity and nonsmooth calculus) If the functions f and g
are regular at the point z, prove that the nonsmooth calculus rules
(6.1.6) and (6.1.7) hold with equality (assuming f(z) = g(x) in the
latter) and that the resulting functions are also regular at x.

3. Show by a direct calculation that the function x € R — z?sin(1/x)
is not strictly differentiable at the point = 0.

4. Prove the special case of the Lagrangian necessary conditions we
claim after Theorem 6.2.2.

5. * Prove that the notions of Gateaux and Fréchet differentiability co-
incide for locally Lipschitz real functions.
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Without using Theorem 6.2.4, prove that a unique Clarke subgradient
implies regularity.

* Prove the Strict differentiability theorem (6.2.3).

. Write out a complete proof of the unique Clarke subgradient theorem

(6.2.4).

. (Mixed sum rules) Suppose that the real function f is locally

Lipschitz around the point z in E and that the function g : E —
(—00, +] is convex with z in int (dom g). Prove:

(a) Oo(f +g)(z) = Vf(x) + dg(x) if f is Gateaux differentiable at
z.
(b) Oo(f + g)(z) = Vf(x)+ dg(x) if f is strictly differentiable at .

(Types of differentiability) Consider the function f : R? — R,
defined for (z,y) # 0 by

a,b

- rY
fz,y) pr—

with f(0) =0, in the five cases:

(i) a=2,b=3,p=2, and q = 4.
(i) a=1,b=3,p=2, and q = 4.
(ili) a=2,b=4,p=4, and ¢ = 8.
(iv) a=1,b=2,p=2,and g = 2.
(v) a=1,b=2,p=2,and q = 4.

In each case determine if f is continuous, Gateaux, Fréchet, or con-
tinuously differentiable at zero.

Construct a function f : R — R which is strictly differentiable at
zero but not continuously differentiable around zero.

* (Closed subdifferentials)

(a) Suppose the function f : E — (0o, +00] is convex, and the point
z lies in int (dom f). Prove the convex subdifferential df(-) is
closed at z; in other words, 2" — x and ¢" — ¢ in E with ¢” in
Of(z") implies ¢ € df(x). (See Exercise 8 in Section 4.2.)

(b) Suppose the real function f is locally Lipschitz around the point
z in E.
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(i) For any direction h in E, prove the Clarke directional deriva-
tive has the property that —f°(+; h) is lower semicontinuous
at x.
(ii) Deduce the Clarke subdifferential is closed at x.
(iii) Deduce further the inclusion C in the Intrinsic Clarke sub-
differential theorem (6.2.5).

(c) Show that the Dini and Michel-Penot subdifferentials are not
necessarily closed.

13. * (Dense Dini subgradients) Suppose the real function f is locally
Lipschitz around the point z in E. By considering the closest point
in epi f to the point (z, f(z) —¢) (for a small real § > 0), prove there
are Dini subgradients at points arbitrarily close to z.

14. ** (Regularity of order statistics [125]) At which points is the
function
z € R" — [z]

regular? (See Section 6.1, Exercise 11.)
15. ** (Subdifferentials of eigenvalues) Define a function 74 : R* —
R by vk (z) = Zle [x]; for k =1,2,...,n. (See Section 2.2, Exercise
9 (Schur-convexity).)
(a) For any point z in RY satisfying zx > @k41, prove Vye(z) =
lec e’ (where €' is the ith standard unit vector in R™).

Now define a function o : S™ — R by o = Z’f Ai.

(b) Prove o =y 0 A.
(¢) Deduce oy is convex and hence locally Lipschitz.
(d) Deduce A is locally Lipschitz.

(e) If the matrix X in S™ satisfies Agx(X) > Ag+1(X), prove oy is
Gateaux differentiable at X and calculate the derivative. (Hint:
Use formula (5.2.6).)

(f) If the matrix X in S™ satisfies Ap—1(X) > Ae(X) > Ap1(X),
prove
VAr(X) = uu®
for any unit vector u in R satisfying A\g(X)u = Xwu.

(g) Using the Intrinsic Clarke subdifferential theorem (6.2.5), de-
duce the formula

oM (X) = conv {un” | Xu = \p(X)u, ||ul| =1}.
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(h) (Isotonicity of \) Using the Mean value theorem (Section 6.1,
Exercise 9), deduce for any matrices X and Y in S™

Xr=Y = MX)>AY).
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6.3 Tangent Cones

We simplified our brief outline of some of the fundamental ideas of nons-
mooth analysis by restricting attention to locally Lipschitz functions. By
contrast, the convex analysis we have developed lets us study the optimiza-
tion problem inf{f(z) |z € S} via the function f + dg, even though the
indicator function dg is not locally Lipschitz on the boundary of the set S.
The following simple but very important idea circumvents this difficulty.
We define the distance function to the nonempty set S C E by

ds(x) = nf{|ly — 2| | y € S} (6.3.1)

(see Section 3.3, Exercise 12 (Infimal convolution).) We can easily check
that dg has Lipschitz constant equal to one on E, and is convex if and only
if S has convex closure.

Proposition 6.3.2 (Exact penalization) For a point x in a set S C E,
suppose the real function f is locally Lipschitz around x. If x is a local
minimizer of f on S then for real L sufficiently large, x is a local minimizer
Of f + Lds

Proof. Suppose the Lipschitz constant is no larger than L. Fix a point z
close to z. Clearly dg(z) is the infimum of ||z — y|| over points y close to x
in S, and such points satisfy

f(2) + Lds(2) 2 fy) + L(ds(2) — llz —yll) = f(z) + L(ds(2) = ||z =yl

The result follows by taking the supremum over y. O

With the assumptions of the previous proposition, we know that any
direction h in E satisfies

0 < (f + Lds)°(z;h) < f°(z;h) + Ldg(x; h),

and hence the Clarke directional derivative satisfies f°(x; h) > 0 whenever

h lies in the set
Ts(x) = {h|dg(z;h) =0}. (6.3.3)

Since d%(z;-) is finite and sublinear (and an easy exercise shows it is non-
negative) it follows that Ts(z) is a closed convex cone. We call it the Clarke
tangent cone.

Tangent cones are “conical” approximations to sets in an analogous
way to directional derivatives being sublinear approximations to functions.
Different directional derivatives give rise to different tangent cones. For
example, the Dini directional derivative leads to the cone

Ks(2) = {h| dg (x:h) =0}, (6.3.4)
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a (nonconvex) closed cone containing Ts(z) called the contingent cone. If
the set S is convex then we can use the ordinary directional derivative to

define the cone
Ty(z) = {h | di(a; h) = 0}, (6.3.5)

which again will be a closed convex cone called the (convez) tangent cone.
We can use the same notation as the Clarke cone because finite convex
functions are regular at every point (Theorem 6.2.2). We also show below
that our notation agrees in the convex case with that of Section 3.3.

Our definitions of the Clarke and contingent cones do not reveal that
these cones are topological objects, independent of the choice of norm. The
following are more intrinsic descriptions. We leave the proofs as exercises.

Theorem 6.3.6 (Tangent cones) Suppose the point x lies in a set S
in E.

(a) The contingent cone Kg(x) consists of those vectors h in E for which
there are sequences t, | 0 in R and h™ — h in E such that x + t.h"
lies in S for all r.

(b) The Clarke tangent cone Ts(x) consists of those vectors h in E such
that for any sequences t. | 0 in R and " — x in S, there is a
sequence h™ — h in E such that " + t,.h" lies in S for all r.

Intuitively, the contingent cone Kg(x) consists of limits of directions to
points near x in S, while the Clarke tangent cone Tg(x) “stabilizes” this
tangency idea by allowing perturbations of the base point z.

We call the set S tangentially reqular at the point x € S if the contin-
gent and Clarke tangent cones coincide (which clearly holds if the distance
function dg is regular at x). The convex case is an example.

Corollary 6.3.7 (Convex tangent cone) If the point x lies in the con-
vex set C C E, then C is tangentially reqular at x with

Te(z) = Ke(z) = clR4 (C — ).

Proof. The regularity follows from Theorem 6.2.2 (Regularity of convex
functions). The identity K¢(z) = clR4(C — z) follows easily from the
contingent cone characterization in Theorem 6.3.6. O

Our very first optimality result (Proposition 2.1.1) required the condi-
tion —V f(z) € N¢(x) if the point z is a local minimizer of a differentiable
function f on a convex set C C E. If the function f : E — (00, 400] is
convex and continuous at z € C, then in fact a necessary and sufficient
condition for global minimality is

0 € 9(f +dc)(z) = df(z) + Ne(z),
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using the sum formula in Theorem 3.3.5. This suggests transforming the
result of our earlier discussion in this section into an analogous form. We
use the following idea.

Theorem 6.3.8 For a point x in a set S C E, the Clarke normal cone,
defined by Ng(z) = Ts(z) ™, is cl (R4 0ods(z)).

Proof. By the Bipolar cone theorem (3.3.14), we need only show that
(0ods(z))™ = Ts(z), and this follows from the Max formula (6.1.3). ]

Notice that our notation for the normal cone is again consistent with the
convex case we discussed in Section 3.3.

Corollary 6.3.9 (Nonsmooth necessary conditions) For a point x in
a set S C E, suppose the real function f is locally Lipschitz around x. Any
local minimizer x of f on S must satisfy the condition

0 € dsf(x) + Ns(z).

Proof. For large real L, the point z is a local minimizer of f + Ldg by
the Exact penalization proposition (6.3.2), so it satisfies

0 € Oo(f + Lds)(z) C Osf(z) + LOods(z) C 0o f(x) + Ns(z),

using the nonsmooth sum rule (6.1.6). a

In particular in the above result, if f is Gateaux differentiable at z
then —V f(z) € Ng(z), and when S is convex we recover the first order
necessary condition (2.1.1). However, we can obtain a more useful, and
indeed, fundamental, geometric necessary condition by using the contingent
cone.

Proposition 6.3.10 (Contingent necessary condition) If a point x
is a local minimizer of the real function f on the set S C E, and if f is
Fréchet differentiable at x, then the condition

-V f(z) € Ks(z)~
must hold.

Proof. If the condition fails then there is a direction h in Kg(z) which
satisfies (Vf(z),h) < 0. By Theorem 6.3.6 (Tangent cones) there are
sequences ¢, | 0 in R and ™ — h in E satisfying z + ¢,.A" in S for all 7.
But then, since we know

@R — (@) — (V@) th7)

li
s A

=0,
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we deduce f(x +t.h") < f(z) for all large r, contradicting the local mini-
mality of x. ]

Precisely because of this result, our aim in the next chapter will be to
identify concrete circumstances where we can calculate the contingent cone
Ks(z).

Exercises and Commentary

Our philosophy in this section is guided by [55]. The contingent cone was
introduced by Bouligand [45]. Scalarization (see Exercise 12) is a central
tool in vector (or multicriteria) optimization [104]. For the background to
Exercise 13 (Boundary properties), see [39, 40, 41].

1. (Exact penalization) For a set U C E, suppose that the function
f : U — R has Lipschitz constant L', and that the set S C U is
closed. For any real L > L', if the point  minimizes f + Ldg on U,
prove x € S.

2. (Distance function) For any nonempty set S C E, prove the dis-
tance function dg has Lipschitz constant equal to one on E, and it is
convex if and only if clS is convex.

3. (Examples of tangent cones) For the following sets S C R?, cal-
culate T's(0) and Kg(0):

(a) {(z,y)]y > 2%}
(b) {(z,y)| = >0 ory > 0}.
(c) {(z,y)|z=0ory=0}.

(d) {r(cosG,sinO) 0<r<i, %SHS %T}

4. * (Topology of contingent cone) Prove that the contingent cone is
closed, and derive the topological description given in Theorem 6.3.6.

5. * (Topology of Clarke cone) Suppose the point z lies in the set

S CE.
(a) Prove dZ(z;-) > 0.
(b) Prove
dg(z;h) =  limsup ds(y +th) .
y—zx in S, t]0 t

(c) Deduce the topological description of Ts(x) given in Theorem
6.3.6.
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* (Intrinsic tangent cones) Prove directly from the intrinsic de-
scription of the Clarke and contingent cones (Theorem 6.3.6) that the
Clarke cone is convex and the contingent cone is closed.

Write a complete proof of the Convex tangent cone corollary (6.3.7).

(Isotonicity) Suppose x € U C V C E. Prove Ky (z) C Ky (z), but
give an example where Ty (z) ¢ Tv (z).

(Products) Let Y be a Euclidean space. Suppose z € U C E and
yeV CY. Prove Tyxv(z,y) = Tu(xz) x Ty (y), but give an example
where Ky xv (z,y) # Ku(x) x Ky (y)-

(Tangents to graphs) Suppose the function F : E — Y is Fréchet
differentiable at the point z in E. Prove

K(;(F) (.7,‘, F(a:)) = G(VF)

* (Graphs of Lipschitz functions) Given a Euclidean space Y,
suppose the function F' : E — Y is locally Lipschitz around the point
z in E.

(a) For elements p of E and v of Y, prove
(1, —v) € (Kar)(z,F(2))° & ped(v,F())(z)
(b) In the case Y = R, deduce
pedF@) & (1) € (Ko (e F(2)

** (Proper Pareto minimization) We return to the notation of
Section 4.1, Exercise 12 (Pareto minimization), but dropping the as-
sumption that the cone S has nonempty interior. Recall that S is
pointed, and hence has a compact base by Section 3.3, Exercise 20.
We say the point y in D is a proper Pareto minimum (with respect to
S) if it satisfies

and the point T in C' is a proper Pareto minimum of the vector opti-

mization problem
inf{F(z) |z € C} (6.3.11)

if F(Z) is a proper Pareto minimum of F(C).

(a) If D is a polyhedron, use Section 5.1, Exercise 6 to prove any
Pareto minimum is proper. Show this can fail for a general
convex set D.
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(b) For any point y in D, prove

Kpys(y) = cl(Kp(y) + 95).

(¢) (Scalarization) Suppose Z is as above. By separating the cone
—Kpcy+s(F(Z)) from a compact base for S, prove there is an

element ¢ of —int S~ such that T solves the convex problem

inf{(¢, F(z)) |z € C}.

Conversely, show any solution of this problem is a proper Pareto

minimum of the original problem (6.3.11).

** (Boundary properties) For points z and y in E, define the line

segments
[z,y =z +[0,1](y —2), (2,y) =2+ (0,1)(y — ).
Suppose the set S C E is nonempty and closed. Define a subset
starS = {x € S| [z,y] C S for all y in S}.

(a) Prove S is convex if and only if star S = S.
(b) For all points x in S, prove star S C (Ts(z) + ).

The pseudotangent cone to S at a point x in S is
Ps(z) = cl(conv Kg(x)).

We say z is a proper point of S if Pg(x) # E.

(c) If S is convex, prove the boundary points of S coincide with the

proper points.

(d) Prove the proper points of S are dense in the boundary of S.

We say S is pseudoconvez at x if Ps(z) D S — x.

(e) Prove any convex set is pseudoconvex at every element.

(f) (Nonconvex separation) Given points z in S and y in E
satisfying [z,y] ¢ S and any real € > 0, prove there exists a

point z in S such that

Y& Ps(z) +2z and [z —z| <y —=z| +e

(Complete the following steps: Fix a real ¢ in (0, €) and a point
w in (x,y) such that the ball w+ B is disjoint from S. For each

real ¢, define a point z; = w + t(r — w) and a real

7 =sup{t € [0,1] | SN (z¢ + 6B) = 0}.
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Now pick any point z in SN (2, + dB) and deduce the result
from the properties

{ueE|(u,z—2,;) >0} and

(y—ar,2—27).)

(g) Explain why the nonconvex separation principle in part (f) gen-
eralizes the Basic separation theorem (2.1.6).

(h) Deduce Nzes(Ps(z) + x) C star S.
(i) Deduce

m (Ps(z) +x) =star S = m (Ts(z) + x)

zeS z€S

(and hence star S is closed). Verify this formula for the set in
Exercise 3(d).

(j) Prove a set is convex if and only if it is pseudoconvex at every
element.

(k) If star S is nonempty, prove its recession cone (see Section 1.1,
Exercise 6) is given by

(] Ps(z) =0*(star §) = [ Ts ().

z€S eSS

14. (Pseudoconvexity and sufficiency) Given a set S C E and a real
function f which is Gateaux differentiable at a point x in S, we say
f is pseudoconvez at x on S if

(Vf(x),y—x)>0,yeS = [f(y) > f(z).

(a) Suppose S is convex, the function g : S — R is convex, the
function h : S — R is concave, and both g and h are Fréchet
differentiable at the point z in S. Prove the function g/h is
pseudoconvex at x.

(b) If the contingent necessary condition —V f(z) € Kg(z)~ holds
and f and S are pseudoconvex at x, prove x is a global minimizer
of f on S (see Exercise 13).

(c) If the point z is a local minimizer of the convex function f on
the set S, prove z minimizes f on z + Ps(x) (see Exercise 13).

15. (No ideal tangent cone exists) Consider a convex set Qg () de-
fined for sets S C R? and points z in S and satisfying the properties

(i) (isotonicity) z € R C S = Qgr(z) C Qs(z).
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(ii) (convex tangents) = € closed convex S = Qg(z) = Ts(z).
Deduce Q{(u,v) |2 or v:O}(O) = R2.

16. ** (Distance function [32]) We can define the distance function
(6.3.1) with respect to any norm || - ||. Providing the norm is con-
tinuously differentiable away from zero, prove that for any nonempty
closed set S and any point x outside S, we have

(=ds)°(z;) = (=ds)® (23 ).
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6.4 The Limiting Subdifferential

In this chapter we have seen a variety of subdifferentials. As we have
observed, the smaller the subdifferential, the stronger the necessary opti-
mality conditions we obtain by using it. On the other hand, the smallest
of our subdifferentials, the Dini subdifferential, is in some sense too small.
It may be empty, it is not a closed multifunction, and it may not always
satisfy a sum rule:

- (f +9)(z) £ 0_f(x) + 0-g(x)

in general. In this section we show how to enlarge it somewhat to construct
what is, in many senses, the smallest adequate closed subdifferential.

Consider for the moment a real function f that is locally Lipschitz
around the point z in E. Using a construction analogous to the Intrin-
sic Clarke subdifferential theorem (6.2.5), we can construct a nonempty
subdifferential incorporating the local information from the Dini subdif-
ferential. Specifically, we define the limiting subdifferential by closing the
graph of the Dini subdifferential:

Duf (2) = {lim ¢" | 2" — 7, ¢" € _f(a")}.

(Recall 0_f(z) is nonempty at points z arbitrarily close to = by Section
6.2, Exercise 13.) We sketch some of the properties of the limiting subd-
ifferential in the exercises. In particular, it is nonempty and compact, it
coincides with df(z) when f is convex and continuous at the point x, and
any local minimizer = of f must satisfy 0 € 9,f(x). Often the limiting
subdifferential is not convex; in fact its convex hull is exactly the Clarke
subdifferential. A harder fact is that if the real function g is also locally
Lipschitz around z then a sum rule holds:

Oa(f + 9)(x) C 0af(x) + Oag(x).

We prove a more general version of this rule below.

We first extend our definitions beyond locally Lipschitz functions. As
in the convex case, the additional possibilities of studying extended-real-
valued functions are very powerful. For a function f : E — [—o0, +00] that
is finite at the point x € E, we define the Dini directional derivative of f
at z in the direction v € E by

§ (i) = fyngat B E,

and the Dini subdifferential of f at x is the set

O_f(z) ={p € E|(¢,v) < f(z;v) for all v in E}.
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If f(x) is infinite we define O_ f(z) = (). These definitions agree with our
previous notions by Section 6.1, Exercise 2 (Continuity of Dini derivative).
For real § > 0, we define a subset of E by

U(f,2,0) ={z € E||z—z| <4, |f(z) - f(z)| <}

The limiting subdifferential of f at x is the set

0af(x) = () A (0-F(U(f,2,0))).

6>0

Thus an element ¢ of E belongs to d, f(x) if and only if there is a sequence
of points (z”) in E approaching z with f(z") approaching f(z), and a
sequence of Dini subgradients ¢” € 0_ f(z") approaching ¢.

The case of an indicator function is particularly important. Recall that
if the set C C E is convex and the point z lies in C then ddc(z) = No(z).
By analogy, we define the limiting normal cone to a set S C E at a point
z in E by

Ng(x) = 0,05(x).

We first prove an “inexact” or “fuzzy” sum rule: point and subgradients
are all allowed to move a little. Since such rules are central to modern
nonsmooth analysis, we give the proof in detail.

Theorem 6.4.1 (Fuzzy sum rule) If the functions

f17f27~--7fn:E_‘> [_‘OO,+OO]

are lower semicontinuous near the point z € E then the inclusion

ak(zfz) ) COB+ 30 fiUfe2,0))

holds for any real § > 0.

Proof. Assume without loss of generality that z = 0 and f;(0) = 0 for each
1. We assume zero belongs to the left hand side of our desired inclusion
and deduce it belongs to the right hand side, or, in other words,

5BmZa fi(U(f:,0,8)) # 0. (6.4.2)

(The general case follows by adding a linear function to f;.)

Since 0 € 0 (3, fi)(0), Exercise 3 shows zero is a strict local minimizer
of the function g = 4| - || + Y, fi. Choose a real € from the interval (0, §)
such that

1
0#x€eB = g(z)>0and f;(z) > —— for each ¢
n
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(using the lower semicontinuity of each f;). Define a sequence of functions
pr: Bt — [—00, +00] by

pr(w,21,- o @) = Sllaoll + 3 (@) + e — o)

for r =1,2,..., and for each r choose a minimizer (zj,z7,...,z],) of p, on
(eB)"*1. Since p,(0,0,...,0) =0, we deduce

pr(zg, 2ty ... 2;) <0 (6.4.3)

for each r.
Our choice of € implies ), fi(z]) > —1, so

-
Sllzoll + 5 D llaf —apll? < pr(agoat,..a) +1<1
7

for each r. Hence, for each index i the sequence (z]) is bounded, so there
is a subsequence S of N such that lim,cg x] exists for each ¢. The above
inequality also shows this limit must be independent of i; call the limit Z,
and note it lies in eB.

From inequality (6.4.3) we see 6||zg|[+ >, fi(z]) < 0 for all 7, and using
lower semicontinuity shows

g9(z) = 8||z| +§:fi(:f) <0,

so our choice of € implies T = 0. We have thus shown

limz; =0 for each 7.
res

Inequality (6.4.3) implies >, fi(x]) < 0 for all r, and since

limeisnf fi(zi) > fi(0) =0 for each

by lower semicontinuity, we deduce

lim fi(27) =0
for each 1.

Fix an index r in S large enough to ensure |z{|| < €, ||zf|| < € and
|fi(zT)] < 6 for each ¢ = 1,2,...,n. For this r, the function p, has a
local minimum at (xf, x7,...,z}), so its Dini directional derivative in every
direction (vg,v1,...,vn) € E™t! is nonnegative. Define vectors

¢i =r(xg—zj) fori=1,2,...,n.
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Then for any nonzero ¢, setting v; = 0 for all j # i shows
f (@) = {¢s,v;) >0 for all v; in E,

whence
¢i € 0_fi(z]) fori=1,2,...,n.

On the other hand, setting v; = 0 for all nonzero 7 shows
Sllvoll + (3°; ¢isvo) > 0 for all vy in E,
whence ), ¢; € 6B, and the desired relationship (6.4.2) now follows. O

It is not difficult to construct examples where the above result fails if
0 = 0 (Exercise 4). In fact there are also examples where

Ou(f1 + f2)(2) € Oafi(2) + Oafa(z).

In general the following result is the best we can expect.

Theorem 6.4.4 (Limiting subdifferential sum rule) If one of the
functions f,g : E — [—00,+00] is locally Lipschitz and the other is lower
semicontinuous near the point z in E then

Ou(f +9)(2) C 0uf(2) + Dag(2).

Proof. For any element ¢ of 9,(f + g)(z) there is a sequence of points
(2") approaching z in E with (f + g)(2") approaching (f + ¢)(z), and a
sequence of Dini subgradients ¢" € _(f + g)(z") approaching ¢. By the
Fuzzy sum rule (6.4.1), there exist points w” and y" in E satisfying

llw" =271, lly" = 2"1l, 1f(w") = f(z")], lg(y") — g(2")] < %

and elements u" of O_ f(w") and p” of O_g(y") satisfying

i+~ &l <
foreach r=1,2,....

Now since f is locally Lipschitz, the sequence (1) is bounded, so it has
a subsequence converging to some element u of 8f,(z). The corresponding
subsequence of (p") converges to an element p of 9,9(z), and since these
elements satisfy u + p = ¢, the result follows. O
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Exercises and Commentary

The limiting subdifferential was first studied by Mordukhovich in [143],
followed by joint work with Kruger in [116], and by work of Ioffe [102, 103].
For a very complete development see [168]. A comprehensive survey of the
infinite-dimensional literature (including some background to Exercise 11
(Viscosity subderivatives)) may be found in [42]. Somewhat surprisingly,
on the real line the limiting and Clarke subdifferentials may only differ at
countably many points, and at these points the limiting subdifferential is
the union of two (possibly degenerate) intervals [31].

1. For the functions in Section 6.1, Exercise 1, compute the limiting
subdifferential d, f(0) in each case.

2. Prove that the convex, Dini, and limiting subdifferential all coincide
for convex functions.

3. (Local minimizers) Consider a function f : E — [—o00, +00] which
is finite at the point z € E.
(a) If z is a local minimizer, prove 0 € 0_ f(x).

(b) If 0 € O_ f(x), prove for any real 6 > 0 that z is a strict local
minimizer of the function f(-) + 4| - —z||.

=~

. (Failure of sum rule) Construct two lower semicontinuous func-
tions f,g : R — [—00,+00] satisfying d,f(0) = 0,9(0) = 0 and
9a(f +9)(0) # 0.

5. If the real function f is continuous at x, prove the multifunction O, f
is closed at z (see Section 6.2, Exercise 12 (Closed subdifferentials)).

6. Prove a limiting subdifferential sum rule for a finite number of lower
semicontinuous functions, with all but one being locally Lipschitz.

~J

. * (Limiting and Clarke subdifferentials) Suppose the real func-
tion f is locally Lipschitz around the point = in E.

(a) Use the fact that the Clarke subdifferential is a closed multi-
function to show 9, f(z) C do f(z).

(b) Deduce from the Intrinsic Clarke subdifferential theorem (6.2.5)
the property 9, f(z) = conv 0, f(x).

(c) Prove 0, f(z) = {¢} if and only if ¢ is the strict derivative of f
at .

8. * (Topology of limiting subdifferential) Suppose the real func-
tion f is locally Lipschitz around the point x € E.
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(a) Prove 9,f(z) is compact.

(b) Use the Fuzzy sum rule (6.4.1) to prove d_ f(z) is nonempty at
points z in E arbitrarily close to z (c.f. Section 6.2, Exercise 13).

(c) Deduce 0, f(x) is nonempty.

9. * (Tangents to graphs) Consider a point z in a set S C E, and a
direction v in E.

(a) Prove 65 (z;v) = 0k g(z)(v)-
(b) Deduce 9_ds(z) = (Ks(2))°.

Now consider a Euclidean space Y, a function F : E — Y which is
locally Lipschitz around the point x in E, and elements y of E and
vofY.

(c) Use Section 6.3, Exercise 11 (Graphs of Lipschitz functions) to
prove

(1, —v) € 0_dg(r)(z, F(z)) & peo_(v,F())(x).
(d) Deduce
(1, —v) € Ng(py (2, F(2)) & p€ 0alv, F(-)) ().
(e) If Y = R, deduce
(1, ~1) € Nopy (2, F(2)) & p€ 0.F(z).
(e) If F is strictly differentiable at x, deduce
N (2, F(z)) = G(=(VF(2))").

10. ** (Composition) Given a Euclidean space Y and two functions,
F:E—Yand f:Y — [—00,+], define a function p: E XY —
[—00, +o0] by p(z,y) = f(y) for points z in E and y in Y.

(a) Prove dap(z,y) = {0} x af(y).
(b) Prove d_(f o F)(x) x {0} C 0_(p + dc(r))(z, F(x)).
(c) Deduce 0,(f o F)(z) x {0} C da(p + dc(F))(m, F(x)).

Now suppose F is continuous near a point z in E and f is locally
Lipschitz around F(z).

(d) Use the Limiting subdifferential sum rule (6.4.4) to deduce

9a(f o F)(2) x {0} € ({0} x Ouf(F(2))) + Ni(r (2, F(2))-
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(e) (Composition rule) If F' is strictly differentiable at z, use
Exercise 9 (Tangents to graphs) to deduce

9a(f o F)(2) C (VF(2))"0af(2).
Derive the corresponding formula for the Clarke subdifferential
using Exercise 7(b).
(f) (Mean value theorem) If f is locally Lipschitz on Y then for

any points v and v in Y, prove there is a point z in the line
segment (u,v) such that

fw) = f(v) € (9af(2) U=0u(=f)(2), u —v).
(Hint: Consider the functions t — +f(v + t(u — v)).)

(g) (Max rule) Consider two real functions g and h which are
locally Lipschitz around z and satisfy g(z) = h(z). Using the
functions

z € Ew F(z) = (9(z),h(z)) € R?

and
(u,v) € R? — f(u,v) = max{u,v} € R

in part (d), apply Exercise 9 to prove
BalgVh)(z) C | Galyg+ (1 —7)h)(2).
v€[0,1]

Derive the corresponding formula for the Clarke subdifferential,
using Exercise 7(b)

(h) Use the Max rule in part (g) to strengthen the Nonsmooth nec-
essary condition (6.1.8) for inequality-constrained optimization.

11. * (Viscosity subderivatives) Consider a real function f which is
locally Lipschitz around zero and satisfies f(0) = 0 and 0 € d_ f(0).
Define a function p: Ry — R by

p(r) = min{f(z) | ||z|| = r}.
(a) Prove p is locally Lipschitz around zero.
(b) Prove p=(0;1) > 0.
(¢) Prove the function v = min{0, p} is locally Lipschitz and satisfies
f(@) >~(||z]]) forall z in E

and
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(d) Consider a real function g which is locally Lipschitz around a

point x € E. If ¢ is any element of d_g(z) then prove ¢ is

a viscosity subderivative of g: there is a real function h which

is locally Lipschitz around z, minorizes g near x, and satisfies

h(z) = g(x) and has Fréchet derivative Vh(z) = ¢. Prove the
converse is also true.

(e)** Prove the function h in part (d) can be assumed continuously
differentiable near z.

12. ** (Order statistic [125]) Consider the function z € R™ — [z]
(for some index k =1,2,...,n).
(a) Calculate 0_[-]x(0).
(b) Hence calculate d_[]x(z) at an arbitrary point z in R™.

(c) Hence calculate 0[]k ().



Chapter 7

Karush—Kuhn—Tucker
Theory

7.1 An Introduction to Metric Regularity

Our main optimization models so far are inequality-constrained. A little
thought shows our techniques are not useful for equality-constrained prob-
lems like

inf{f(z) | h(x) = 0}.

In this section we study such problems by linearizing the feasible region
h~1(0) using the contingent cone.

Throughout this section we consider an open set U C E, a closed set
S C U, a Euclidean space Y, and a continuous map h : U — Y. The
restriction of h to S we denote h|g. The following easy result (Exercise 1)
suggests our direction.

Proposition 7.1.1 If h is Fréchet differentiable at the point x € U then
Kh—l(h(x))(x) C N(Vh(:v))

Our aim in this section is to find conditions guaranteeing equality in this
result.

Our key tool is the next result. It states that if a closed function attains
a value close to its infimum at some point then a nearby point minimizes
a slightly perturbed function.

Theorem 7.1.2 (Ekeland variational principle) Suppose the function
f:E — (00, +00] is closed and the point x € E satisfies f(x) < inf f4€ for
some real € > 0. Then for any real A > 0 there is a point v € E satisfying
the conditions

153



154 7. Karush-Kuhn—-Tucker Theory

(@) llz —vll <A,
(b) f(v) < f(z), and
(¢) v is the unique minimizer of the function f(-) + (e/N)|| - —v||.

Proof. We can assume f is proper, and by assumption it is bounded
below. Since the function

FO+ 51—l

therefore has compact level sets, its set of minimizers M C E is nonempty
and compact. Choose a minimizer v for f on M. Then for points z # v in
M we know

€
f) = f(2) < f(2) + 3l =,

while for z not in M we have

€ €

fW)+ slv—zll < f(2) + 1 llz — =

A A

Part (c) follows by the triangle inequality. Since v lies in M we have
Fl2)+ —§|Iz —z|| > flv) + §nv —z|| for all z in E.
Setting z = x shows the inequalities
f) +ezinff+e> flz) = f(0) +5llo -zl

Properties (a) and (b) follow. O

As we shall see, precise calculation of the contingent cone K15y ()
requires us first to bound the distance of a point z to the set h~!(h(z)) in
terms of the function value h(z). This leads us to the notion of “metric
regularity”. In this section we present a somewhat simplified version of this
idea, which suffices for most of our purposes; we defer a more comprehensive
treatment to a later section. We say h is weakly metrically regular on S at
the point = in S if there is a real constant k such that

dsnn-1(h(z))(2) < k[|h(2) — h(z)|| for all zin S close to .

Lemma 7.1.3 Suppose 0 € S and h(0) = 0. If h is not weakly metrically
regular on S at zero then there is a sequence v, — 0 in S such that h(v,) # 0
for all v, and a strictly positive sequence 6, | 0 such that the function

RN+ 6l - —vr

is minimized on S at v,.
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Proof. By definition there is a sequence z, — 0 in S such that
dsnn-1(0)(xr) > r|h(z)|| for all 7. (7.1.4)
For each index r we apply the Ekeland principle with
f =kl +ds, e=|h(z.)|l, A=min{re,Ve}, and z =z,

to deduce the existence of a point v, in S such that

(@) llzr = v < min {rn(@)], /AT } and

(¢) v, minimizes the function

IR+ max {2, /TRG T} - =vl

on S.

Property (a) shows v, — 0, while (c) reveals the minimizing property of
vp. Finally, inequality (7.1.4) and property (a) prove h(v,) # 0. m]

We can now present a convenient condition for weak metric regularity.

Theorem 7.1.5 (Surjectivity and metric regularity) If h is strictly
differentiable at the point x in S and

Vh(z)(Ts(z)) =Y
then h is weakly metrically reqular on S at x.

Proof. Notice first h is locally Lipschitz around z (see Theorem 6.2.3).
Without loss of generality, suppose z = 0 and h(0) = 0. If h is not weakly
metrically regular on S at zero then by Lemma 7.1.3 there is a sequence
v, — 0 in S such that h(v,) # 0 for all r, and a real sequence §, | 0 such
that the function

”h()H + 5r” ) _Ur“

is minimized on S at v,. Denoting the local Lipschitz constant by L, we
deduce from the sum rule (6.1.6) and the Exact penalization proposition
(6.3.2) the condition

0 € O ([|Al)(vr) + 0r-B + LOods (vy).

Hence there are elements u, of 9,(||h||)(v,) and w, of LO,ds(v,) such that
u, + w, approaches zero.
By choosing a subsequence we can assume

Ih(ve) I~ h(vr) =y # 0
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and an exercise then shows u, — (Vh(0))*y. Since the Clarke subdifferen-
tial is closed at zero (Section 6.2, Exercise 12), we deduce

—(Vh(()))*y € Laods(O) C Ns(O).

However, by assumption there is a nonzero element p of Ts(0) such that
Vh(0)p = —y, so we arrive at the contradiction

0> (p,~(Vh(0))*y) = (VA(0)p, —y) = |ly[|* > O,
which completes the proof. o

We can now prove the main result of this section.

Theorem 7.1.6 (Liusternik) If h is strictly differentiable at the point x
and Vh(z) is surjective then the set h=(h(z)) is tangentially reqular at x

and
Kh-1(h(z))(z) = N(Vh(z)).

Proof. Assume without loss of generality that x = 0 and A(0) = 0. In
light of Proposition 7.1.1, it suffices to prove

N(Vh(O)) C Th—l(o) (0)

Fix any element p of N(Vh(0)) and consider a sequence z” — 0 in h~1(0)
and ¢, | 0in Ri;. The previous result shows A is weakly metrically regular
at zero, so there is a constant k£ such that

dp-10) (2" + trp) < kl|h(z" + t.p)]|
holds for all large r, and hence there are points 2" in Ah~1(0) satisfying
[2" +trp — 27| < kl|h(z" + D).

If we define directions p” = ¢ }(2" — z") then clearly the points z" + ¢,p"
lie in A=1(0) for large r, and since
r " +trp — 27|
lp—pr) = FEE 2
_ KlAG" + tp) — @)
< .
— E[[(VR(0))p|
= 0,

we deduce p € T},-1(0y(0). o
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Exercises and Commentary

Liusternik’s original study of tangent spaces appeared in [130]. Closely
related ideas were pursued by Graves [85] (see [65] for a good survey). The
Ekeland principle first appeared in [69], motivated by the study of infinite-
dimensional problems where techniques based on compactness might be
unavailable. As we see in this section, it is a powerful idea even in finite
dimensions; the simplified version we present here was observed in [94]. See
also Exercise 14 in Section 9.2. The inversion technique we use (Lemma
7.1.3) is based on the approach in [101]. The recognition of “metric” regu-
larity (a term perhaps best suited to nonsmooth analysis) as a central idea
began largely with Robinson; see [162, 163] for example. Many equivalences
are discussed in [5, 168].

1. Suppose h is Fréchet differentiable at the point = € S.

(a) Prove for any set D D h(S) the inclusion
Vh(z)Ks(z) C Kp(h(x)).
(b) If h is constant on S, deduce
Ks(xz) € N(Vh(x)).
(c) If h is a real function and z is a local minimizer of h on S, prove

~Vh(z) € (Ks(z))~.

2. (Lipschitz extension) Suppose the real function f has Lipschitz
constant k on the set C' C E. By considering the infimal convolution
of the functions f+d¢ and k|| - ||, prove there is a function f : E — R
with Lipschitz constant k that agrees with f on C. Prove furthermore
that if f and C are convex then f can be assumed convex.

3. * (Closure and the Ekeland principle) Given a subset S of E,
suppose the conclusion of Ekeland’s principle holds for all functions
of the form g + ds where the function g is continuous on S. Deduce
S is closed. (Hint: For any point z in cl S, let g = || - —z]||.)

4. ** Suppose h is strictly differentiable at zero and satisfies
h(0) =0, v, — 0, [lh(v,)[| "' h(vr) — y, and u, € o (|A])(vr).

Prove u, — (Vh(0))*y. Write out a shorter proof when h is continu-
ously differentiable at zero.

5. ** Interpret Exercise 27 (Conical open mapping) in Section 4.2 in
terms of metric regularity.
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6. ** (Transversality) Suppose the set V' C Y is open and the set
R C V is closed. Suppose furthermore h is strictly differentiable at
the point z in S with h(z) in R and

Vh(z)(Ts(z)) — Tr(h(z)) =Y. (7.1.7)

(a) Define the function g: U x V — Y by g(z,y) = h(z) —y. Prove
g is weakly metrically regular on S x R at the point (z, h(x)).

(b) Deduce the existence of a constant k&’ such that the inequality
d(sx R)Ng—1(g(z,h(2))) (2, Y) < K'[|R(2) — |

holds for all points (z,y) in S x R close to (z, h(z)).

(¢) Apply Proposition 6.3.2 (Exact penalization) to deduce the ex-
istence of a constant k£ such that the inequality

d(sx R)ng=1(g(e,h(x))) (2, ¥) < k(|[h(2) — Y|l + ds(z) + dr(y))

holds for all points (z,y) in U x V close to (z, h(z)).
(d) Deduce the inequality

dsrn-1(r)(2) < k(ds(z) + dr(h(2)))

holds for all points z in U close to z.

(e) Imitate the proof of Liusternik’s theorem (7.1.6) to deduce the
inclusions

Tsrn-1(r)(x) D Ts(x) N (Vh(z)) ' Tr(h(z))

and
Ksnn-1(r)(z) D Ks(z) N (Vh(z)) ' Tr(h(x)).

(f) Suppose h is the identity map, so
Ts(z) — Tr(z) = E.
If either R or S is tangentially regular at x, prove
Kprns(z) = Kr(z) N Kg(z).

(g) (Guignard) By taking polars and applying the Krein—Rutman
polar cone calculus (3.3.13) and condition (7.1.7) again, deduce

Nsnn-1(r) (%) C Ns(x) + (Vh(z))* Nr(h(z)).
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(h) If C and D are convex subsets of E satisfying 0 € core (C — D)
(or riC NriD # 0), and the point z lies in C' N D, use part (e)
to prove

TCmD(.’L') = Tc(ill) N TD(:I,’).

7. ** (Liusternik via inverse functions) We first fix E = R™. The
classical inverse function theorem states that if the map g : U — R"™
is continuously differentiable then at any point = in U at which Vg(z)
is invertible,  has an open neighbourhood V' whose image g(V) is
open, and the restricted map g|y has a continuously differentiable
inverse satisfying the condition

V(glv) ™ (g(x)) = (Vg() "

Consider now a continuously differentiable map A : U — R™, and
a point z in U with Vh(z) surjective, and fix a direction d in the
null space N(Vh(z)). Choose any (n x (n —m)) matrix D making
the matrix A = (Vh(z), D) invertible, define a function g : U — R™
by g(z) = (h(z),Dz), and for a small real § > 0 define a function
p:(—9,0) — R™ by

p(t) = g7 (g(z) + tAd).

(a) Prove p is well-defined providing § is small.
(b) Prove the following properties:
(i) p is continuously differentiable.
(ii) p(0) = .
(iii) p’(0) =d.
(iv) h(p(t)) = h(x) for all small ¢.
(¢c) Deduce that a direction d lies in N(Vh(z)) if and only if there
is a function p : (—0,0) — R"™ for some § > 0 in R satisfying
the four conditions in part (b).

(d) Deduce Kh—l(h(z)) (LL’) = N(Vh(.’t))
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7.2 The Karush—Kuhn—Tucker Theorem

The central result of optimization theory describes first order necessary
optimality conditions for the general nonlinear problem

inf{f(z) |z € S}, (7.2.1)

where, given an open set U C E, the objective function is f : U — R and
the feasible region S is described by equality and inequality constraints:

S={zeU]|g(z)<0fori=1,2,...,m, h(z)=0}. (7.2.2)

The equality constraint map h : U — Y (where Y is a Euclidean space)
and the inequality constraint functions g; : U — R (for ¢ = 1,2,...,m) are
all continuous. In this section we derive necessary conditions for the point
Z in S to be a local minimizer for the problem (7.2.1).

In outline, the approach takes three steps. We first extend Liusternik’s
theorem (7.1.6) to describe the contingent cone Kg(Z). Next we calculate
this cone’s polar cone using the Farkas lemma (2.2.7). Finally, we apply
the Contingent necessary condition (6.3.10) to derive the result.

As in our development for the inequality-constrained problem in Section
2.3, we need a regularity condition. Once again, we denote the set of indices
of the active inequality constraints by I(zZ) = {i| g;(Z) = 0}.

Assumption 7.2.3 (The Mangasarian—Fromovitz constraint qual-
ification) The active constraint functions g; (for i in I(Z)) are Fréchet
differentiable at the point T, the equality constraint map h is strictly differ-
entiable, with a surjective gradient, at T, and the set

{p e N(Vh(z)) | (Vgi(Z),p) <O fori in I(Z)} (7.2.4)
s nonempty.

Notice in particular that the set (7.2.4) is nonempty in the case where the
map h : U — R? has components h1, ha, ..., ke and the set of gradients

{Vhi(@) |7 =1,2,...,q} U{Vg(Z)|ie I(z)} (7.2.5)
is linearly independent (Exercise 1).

Theorem 7.2.6 Suppose the Mangasarian—Fromovitz constraint qualifica-
tion (7.2.3) holds. Then the contingent cone to the feasible region S defined
by equation (7.2.2) is given by

Ks(z) ={p e N(Vh(z))|(Vgi(Z),p) <0 foriin I(Z)}. (7.2.7)
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Proof. Denote the set (7.2.4) by K and the right hand side of formula
(7.2.7) by K. The inclusion

Ks( )CK

is a straightforward exercise. Furthermore, since K is nonempty, it is easy
to see K = cl K. If we can show K C Kg(&) then the result will follow
since the contingent cone is always closed.

To see K C Kg(Z), fix an element p of K. Since p lies in N(Vh(Z)),
Liusternik’s theorem (7.1.6) shows p € Kj-1(0)(Z). Hence there are se-
quences t,. | 0 in Ry} and p” — p in E satisfying h(Z + ¢,p") = 0 for all
r. Clearly T + t,.p” € U for all large r, and we claim g¢;(Z + ¢,p") < 0. For
indices ¢ not in I(Z) this follows by continuity, so we suppose ¢ € I(Z) and
gi(Z +t.p") > 0 for all r in some subsequence R of N. We then obtain the
contradiction

0= lim 2@ —0i(@) — (Vgi(@), trp")
r—oo in R tT”pT”
_ (ng (j)7 p>
Il

> 0.
The result now follows. m|
Lemma 7.2.8 Any linear maps A :E — R? and G : E — Y satisfy
{xe N(G) | Az <0} = AR +G"Y

Proof. This is an immediate application of Section 5.1, Exercise 9 (Poly-
hedral cones). a

Theorem 7.2.9 (Karush—Kuhn—Tucker conditions) Suppose T is a
local minimizer for problem (7.2.1) and the objective function f is Fréchet
differentiable at T. If the Mangasarian—Fromouvitz constraint qualification
(7.2.3) holds then there exist multipliers A; in Ry (for i in I(Z)) and p in
Y satisfying

V@) + D AiVgi(@) + V(@) = 0. (7.2.10)

i€l (z)

Proof. The Contingent necessary condition (6.3.10) shows

-Vf(&@) € Ks(z)~
= {p € N(VRh(z)) | (Vgi(z),p) <0 foriin I(z)}~

= Y R.Vg(a)+Vh@)'Y
i€l ()

using Theorem 7.2.6 and Lemma 7.2.8. a
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Exercises and Commentary

A survey of the history of these results may be found in [158]. The Mangas-
arian—Fromovitz condition originated with [133], while the Karush-Kuhn—
Tucker conditions first appeared in [111] and [117]. The idea of penalty
functions (see Exercise 11 (Quadratic penalties)) is a common technique
in optimization. The related notion of a barrier penalty is crucial for inte-
rior point methods; examples include the penalized linear and semidefinite
programs we considered in Section 4.3, Exercise 4 (Examples of duals).

1. (Linear independence implies Mangasarian—Fromovitz) If the
set of gradients (7.2.5) is linearly independent, then by considering
the equations

(Vgi(z),p) = —1 for iin I(z)
(Vh;(z),p) = 0 for j=1,2,...,4q,

prove the set (7.2.4) is nonempty.
2. Consider the proof of Theorem 7.2.6.
(a) Prove Kg(z) C K.
(b) If Kis nonempty, prove K = K.

3. (Linear constraints) If the functions g; (for ¢ in I(Z)) and h are
affine, prove the contingent cone formula (7.2.7) holds.

4. (Bounded multipliers) In Theorem 7.2.9 (Karush-Kuhn-Tucker
conditions), prove the set of multiplier vectors (A, u) satisfying equa-
tion (7.2.10) is compact.

5. (Slater condition) Suppose the set U is convex, the functions

91792,---,gm1U—->R

are convex and Fréchet differentiable, and the function h : E — Y is
affine and surjective. Suppose further there is a point £ in A~1(0)
satisfying ¢;(Z) < 0 for ¢ = 1,2,...,m. For any feasible point Z for
problem (7.2.1), prove the Mangasarian—Fromovitz constraint quali-
fication holds.

6. (Largest eigenvalue) For a matrix A in S™, use the Karush-Kuhn-
Tucker theorem to calculate

sup{zT Az | |z|| = 1, z € R"}.
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7. * (Largest singular value [100, p. 135]) Given any m X n matrix
A, consider the optimization problem

a =sup{zT Ay | |lz|* =1, |ly* = 1} (7.2.11)
and the matrix
- 0 A
| AT o0 |-

(a) If p is an eigenvalue of /T, prove —u is also.

(b) If u is a nonzero eigenvalue of Z, use a corresponding eigen-
vector to construct a feasible solution to problem (7.2.11) with
objective value pu.

(¢) Deduce o > A1 (A).

(d) Prove problem (7.2.11) has an optimal solution.

(e) Use the Karush—-Kuhn-Tucker theorem to prove any optimal
solution of problem (7.2.11) corresponds to an eigenvector of A.

(f) (Jordan [108]) Deduce a = A;(A). (This number is called the
largest singular value of A.)

8. ** (Hadamard’s inequality [88]) The matrix with columns z!, 22,
.., "™ in R™ we denote by (z!,z2,...,2"). Prove (z!,7z2,...,2")
solves the problem

inf —det(zt,22,...,2")
subject to lz¢|2 = 1 fori=1,2,...,n
zb 22, 2" € R"
if and only if the matrix (z',z2,...,2Z") has determinant equal to

one and has columns forming an orthonormal basis, and deduce the
inequality

n
det(z’,2?,...,2") <[] ="
=1

9. (Nonexistence of multipliers [77]) Define a functionsgn : R - R
by

1 ifv>0
sgn(v) =< 0 ifv=0
-1 ifv<O

and a function h : R?> — R by
h(u,v) = v — sgn(v)(u)?.

(a) Prove h is Fréchet differentiable at (0,0) with derivative (0, 1).
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(b) Prove h is not continuous on any neighbourhood of (0, 0), and
deduce it is not strictly differentiable at (0, 0).

(¢) Prove (0,0) is optimal for the problem
inf{f(u,v) | h(u,v) = 0},
where f(u,v) = u, and yet there is no real X\ satisfying
V£(0,0) + AVA(0,0) = (0,0).

(Exercise 14 in Section 8.1 gives an approach to weakening the con-
ditions required in this section.)

* (Guignard optimality conditions [87]) Suppose the point Z is
a local minimizer for the optimization problem

inf{f(z) | h(z) € R, z € S}

where R C Y. If the functions f and h are strictly differentiable at
Z and the transversality condition

Vh(z)Ts(z) — Tr(h(Z)) =Y

holds, use Section 7.1, Exercise 6 (Transversality) to prove the opti-
mality condition

0€ Vf(Z)+ Vh(z)"Nr(h(z)) + Ns(Z).

(Quadratic penalties [136]) Take the nonlinear program (7.2.1)
in the case Y = R? and now let us assume all the functions

f7gla.921"'agm7h17h27"'7hq:U_)R

are continuously differentiable on the set U. For positive integers k
we define a function p; : U — R by

pk<x>=f(x>+k(fjgl (2))? Z 2))?).

Suppose the point Z is a local minimizer for the problem (7.2.1). Then
for some compact neighbourhood W of Z in U we know f(z) > f(Z)
for all feasible points z in W. Now define a function r : W — R. by

ri(z) = pr(z) + |lz — 2,

and for each k = 1,2, ... choose a point ¥ minimizing r on W.
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Prove 74 (z*) < f() for each k =1,2,....
Deduce
lim g (z*) =0 fori=1,2,...,m
k—o0

and
lim hj(z¥) =0 forj=1,2,...,q.
k—oo

k. Zas k— oo.

Hence show z
Calculate Vrg(z).

Deduce

—2(aF — 1) = Vf(a*) + Z/\ngz ) + Zush (z*)
=1 Jj=1
for some suitable choice of vectors A* in R and p* in RY.
By taking a convergent subsequence of the vectors
(1, X%, )71 (1, A%, %) € R x R x RY,

show from parts (c) and (e) the existence of a nonzero vector
(Ao, A, 1) in R x R x R satisfying the Fritz John conditions:
(i) Xigi(Z) =0 fori=1,2,...,m
(i) MV F(Z) + X% AiVei(®) + X1, 1 Vh,(Z) = 0.
Under the assumption of the Mangasarian—Fromovitz constraint

qualification (7.2.3), show that the Fritz John conditions in part
(f) imply the Karush-Kuhn-Tucker conditions.
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7.3 Metric Regularity and the Limiting
Subdifferential

In Section 7.1 we presented a convenient test for the weak metric regularity
of a function at a point in terms of the surjectivity of its strict derivative
there (Theorem 7.1.5). This test, while adequate for most of our purposes,
can be richly refined using the limiting subdifferential.

As before, we consider an open set U C E, a Euclidean space Y, a
closed set S C U, and a function h : U — Y which we assume throughout
this section is locally Lipschitz. We begin with the full definition of metric
regularity, strengthening the notion of Section 7.1. We say h is metrically
regular on S at the point = in S if there is a real constant k such that the
estimate

dsnn-1(y)(2) < kl[h(2) -yl

holds for all points z in .S close to  and all vectors y in Y close to h(z).
(Before we only required this to be true when y = h(z).)

Lemma 7.3.1 If h is not metrically reqular on S at x then there are se-
quences (vy) in S converging to x, (y,) in Y converging to h(zx), and (e,)
in R4y decreasing to zero such that, for each index r, we have h(v,) # y,
and the function

1A() = yrll + €rll - —v ||

is minimized on S at v.

Proof. The proof is completely analogous to that of Lemma 7.1.3: we
leave it as an exercise. |

We also need the following chain-rule-type result; we leave the proof as
an exercise.

Lemma 7.3.2 At any point x in E where h(z) # 0 we have
0a[|R() (=) = Ba(llR(z)[|~ h(z), h(-)) ().

Using this result and a very similar proof to Theorem 7.1.5, we can now
extend the surjectivity and metric regularity result.

Theorem 7.3.3 (Limiting subdifferential and regularity) If a point
z lies in S and no nonzero element w of Y satisfies the condition

0 € Ba(w, h(-))(z) + N§(z)

then h is metrically reqular on S at x.
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Proof. If h is not metrically regular, we can apply Lemma 7.3.1, so with
that notation the function

1A() =yl + €l - —vr |l

is minimized on S at v,.. By Proposition 6.3.2 (Exact penalization) we
deduce for large enough real L

0 € Ou(IR(-) = yrll + &l - —vrll + Lds () (vr)
C Oallh() = yrll(vr) + €- B + LaadS('Ur)

for all r, using the Limiting subdifferential sum rule (6.4.4). If we write
wy = ||h(v;) — yr |71 (R(v,) — yr), We obtain by Lemma 7.3.2

0 € Oo(wr, h(-))(vr) + €-B + LOyds(vy),

so there are elements u, in 0,(w., h(-))(v,) and z, in LO,dg(v,) such that
|lur + z-|| < €. The sequences (w;), (u.), and (z,) are all bounded, so by
taking subsequences we can assume w, approaches some nonzero vector w,
z, approaches some vector z, and u, approaches —z.

Now, using the sum rule again we observe

Ur € 8(1('111, h())(v'r) + 8a<wr - w, h())('UT)

for each 7. The local Lipschitz constant of the function (w, — w, h(-)) tends
to zero, so since 9, (w, h(-)) is a closed multifunction at = (by Section 6.4,
Exercise 5) we deduce

—2z € Oy (w, h(-))(x).
Similarly, since 9,dg(+) is closed at z, we see
z € LO,ds(z) C N&(x)

by Exercise 4, and this contradicts the assumption of the theorem. O

This result strengthens and generalizes the elegant test of Theorem
7.1.5, as the next result shows.

Corollary 7.3.4 (Surjectivity and metric regularity) If h is strictly
differentiable at the point x in S and

(Vh(z)*) "' (N§(x)) = {0}

or, in particular,

Vh(z)(Ts(z)) =Y

then h is metrically regular on S at x.
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Proof. Since it is easy to check for any element w of Y the function
(w, h(-)) is strictly differentiable at  with derivative Vh(z)*w, the first con-
dition implies the result by Theorem 7.3.3. On the other hand, the second
condition implies the first, since for any element w of (Vh(z)*)~'(NZ(z))
there is an element z of Ts(x) satisfying Vh(z)z = w, and now we deduce

[wl* = (w,w) = (w, Vh(z)z) = (Vh(z)*w,z) <0

using Exercise 4, so w = 0. a

As a final extension to the idea of metric regularity, consider now a
closed set D C Y containing h(z). We say h is metrically regular on S at
T with respect to D if there is a real constant k£ such that

dsnh-1(y+D)(2) < kdp(h(2) —y)

for all points z in S close to z and vectors y close to 0. Our previous
definition was the case D = {h(z)}. This condition estimates how far a
point z € S is from feasibility for the system

h(z)ey+ D, z€S8,
in terms of the constraint error dp(h(z) — y).
Corollary 7.3.5 If the point x lies in the closed set S C E with h(z) in

the closed set D C'Y, and no nonzero element w of Nj(h(x)) satisfies the
condition

0 € 8a(w, h(-))(z) + N§(x),
then h is metrically reqular on S at x with respect to D.
Proof. Define a function »: U x Y — Y by h(z,y) = h(z) —y, a set
S =S8 x D, and a point T = (z, h(z)). Since by Exercise 5 we have
N§(@) = Ng(z) x Np(h(z))
and B
Ba(w, h(-))(Z) = Ba(w, h(-))(z) x {—w}

for any element w of Y, there is no nonzero w satisfying the condition
0e aa<w7 E())(E) + Ng(f)v

s0 h is metrically regular on S at Z by Theorem 7.3.3 (Limiting subdiffer-
ential and regularity). Some straightforward manipulation now shows h is
metrically regular on S at z with respect to D. o

The case D = {h(z)} recaptures Theorem 7.3.3.

A nice application of this last result estimates the distance to a level
set under a Slater-type assumption, a typical illustration of the power of
metric regularity.
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Corollary 7.3.6 (Distance to level sets) If the function g : U — R is
locally Lipschitz around a point x in U satisfying

g(x) =0 and 0 ¢ d,9(x)
then there is a real constant k > 0 such that the estimate
dg-1(—r,)(2) < kg(2)*
holds for all points z in E close to x.

Proof. Let S C U be any closed neighbourhood of  and apply Corollary
7.3.5 with h =g and D = -Ry. O

Exercises and Commentary

In many circumstances, metric regularity is in fact equivalent to weak met-
ric regularity (see [25]). The power of the limiting subdifferential as a tool
in recognizing metric regularity was first observed by Mordukhovich [144];
there is a comprehensive discussion in [145, 168].

1. * Prove Lemma 7.3.1.
2. * Assume h(z) # 0.

(a) Prove
O-IR()ll(=) = - (in(@)]| = h(2), h(-)) ().
(b) Prove the analogous result for the limiting subdifferential. (You
may use the Limiting subdifferential sum rule (6.4.4).)

3. (Metric regularity and openness) If h is metrically regular on S
at x, prove h is open on S at x; that is, for any neighbourhood U of
x we have h(z) € int h(U N S).

4. ** (Limiting normals and distance functions) Given a point z
in E, suppose y is a nearest point to z in S.

(a) If 0 < a < 1, prove the unique nearest point to az + (1 — a)y in
S is y.

(b) For z not in S, deduce every element of 0_dg(z) has norm one.

(c) For any element w of E, prove

ds(z +w) < dg(z) +ds(y + w).

(d) Deduce 9_dg(z) C 0_ds(y).
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Now consider a point x in S.

(e) Prove ¢ is an element of 9,ds(z) if and only if there are se-
quences (z") in S approaching z, and (¢") in E approaching ¢
satisfying ¢" € _dg(z") for all r.

(f) Deduce Ry 0,ds(x) C N&(x).

(g) Suppose ¢ is an element of _dg(x). For any real ¢ > 0, ap-
ply Section 6.4, Exercise 3 (Local minimizers) and the Limiting
subdifferential sum rule to prove

@ € (||¢]] + €)0uads(x) + €B.
y taking limits, deduce
(h) By taking limits, ded
Né(z) = Ry0.ds(x).
(i) Deduce
Ng(z) = cl(conv Ng(x)),
and hence
Ts(z) = Ng(z)~.
(Hint: Use Section 6.4, Exercise 7 (Limiting and Clarke subdif-
ferentials).)
(j) Hence prove the following properties are equivalent:
(i) Ts(m) =E.
(i) Ng(z) = {0}.
(iii) z € int S.
5. (Normals to products) For closed sets S C E and D C Y and
points x in S and y in D, prove

Ngxp(®,y) = Ng(z) x Np(y).

6. * Complete the remaining details of the proof of Corollary 7.3.5.
7. Prove Corollary 7.3.6 (Distance to level sets).
8. (Limiting versus Clarke conditions) Define a set

S ={(u,v) €ER*|u<0orv<0}

and a function h : R?> — R by h(u,v) = v + v. In Corollary 7.3.4
(Surjectivity and metric regularity), prove the limiting normal cone
condition holds at the point x = 0, and yet the Clarke tangent cone
condition fails.
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9. ** (Normals to level sets) Under the hypotheses of Corollary 7.3.6
(Distance to level sets), prove

Ngfl(—R+)(x) = R+8ag(x).

(Hint: Use Exercise 4 and the Max rule (Section 6.4, Exercise 10(g).)
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7.4 Second Order Conditions

Optimality conditions can be refined using second order information; we
saw an early example in Theorem 2.1.5 (Second order conditions). Because
of the importance of curvature information for Newton-type methods in
numerical optimization, second order conditions are widely useful.

In this section we present prototypical second order conditions for con-
strained optimization. Our approach is a simple and elegant blend of con-
vex analysis and metric regularity.

Consider an open set U C E, a Euclidean space Y. Given any function
h : U — Y that is Fréchet differentiable on U, the gradient map Vh is a
function from U to the vector space L(E,Y) of all linear maps from E to
Y with the operator norm

1Al = max [[Az]| (A € L(E,Y)).

If this map Vi is itself Fréchet differentiable at the point Z in U then we
say h is twice Fréchet differentiable at Z: the gradient V2h(Z) is a linear
map from E to L(E,Y), and for any element v of E we write

(V2h(z)v)(v) = V2h(Z)(v, ).

In this case h has the following quadratic approximation at Z:
1
h(Z +v) = h(Z) + Vh(Z)v + 5v2h(:z~)(u, v) + o(||v||?) for small v.

We suppose throughout this section that the functions f : U — R and
h are twice Fréchet differentiable at Z, and that the closed convex set S
contains . We consider the nonlinear optimization problem

inf{f(z) | h(z) =0, z € S}, (7.4.1)
and we define the narrow critical cone at T by
C@)={deRy(S—7)|Vf(z)d <0, Vh(Z)d = 0}.

Theorem 7.4.2 (Second order necessary conditions) Suppose that
the point T is a local minimum for the problem (7.4.1), that the direction
d lies in the narrow critical cone C(Z), and that the condition

0 € core (VA(Z)(S — T)) (7.4.3)
holds. Then there exists a multiplier A in Y such that the Lagrangian

L(-) = f(-) + (A h(4)) (7.4.4)
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satisfies the conditions
VL(z) € —Ng(Z) (7.4.5)

and
V2L(z)(d,d) > 0. (7.4.6)

Proof. Consider first the convex program
inf{Vf(Z)z | Vh(Z)z = —V?h(Z)(d,d), z € Ry (S — )} (7.4.7)

Suppose the point z is feasible for problem (7.4.7). It is easy to check for
small real ¢ > 0 the path

42
z(t) =T +td+ 57

lies in S. Furthermore, the quadratic approximation shows this path almost
satisfies the original constraint for small ¢:

h(Z) + tVh(z)d + g(Vh(a_c)Z + V2h(Z)(d, d)) + o(t?)
= o(t?).

h(z(t))

But condition (7.4.3) implies in particular that Vh(Z)Ts(Z) = Y; in fact
these conditions are equivalent, since the only convex set whose closure is
Y is Y itself (see Section 4.1, Exercise 20(a) (Properties of the relative
interior)). So, by Theorem 7.1.5 (Surjectivity and metric regularity), h is
(weakly) metrically regular on S at Z. Hence the path above is close to
feasible for the original problem: there is a real constant k such that, for
small ¢t > 0, we have

dsnn-1(0)(2(t)) < kllh(z(®)]| = o(t?).
Thus we can perturb the path slightly to obtain a set of points
{Z(t) |t >0} c SNh™'(0)

satisfying ||Z(t) — z(t)|| = o(t?).
Since 7 is a local minimizer for the original problem (7.4.1), we know

£(2) < FG(0) = (@) + 19 1@+ 5 (9@ + V@), d) + o)

using the quadratic approximation again. Hence V f(Z)d > 0, so in fact
Vf(z)d = 0, since d lies in C(z). We deduce

Vf(z)z+ V2f(Z)(d,d) > 0.
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We have therefore shown the optimal value of the convex program (7.4.7)
is at least —V2f(7)(d, d).

For the final step in the proof, we rewrite problem (7.4.7) in Fenchel
form:

inf {((VI(@),2) + 0r, (5-2)(2)) + O(_v2n(@)a,ay (VA(E)2)} .

Since condition (7.4.3) holds, we can apply Fenchel duality (3.3.5) to deduce
there exists A € Y satisfying

—V2f(@)(d,d) < =0, (5_z)(=VRE) A = V(Z)) = 6]_voneeya,ay (V)
= —Ong(@) (~VR(Z)*'A = Vf(Z)) + (A, V*h(Z)(d, d)),

whence the result. o

Under some further conditions we can guarantee that for any multiplier
A satisfying the first order condition (7.4.5), the second order condition
(7.4.6) holds for all directions d in the narrow critical cone (see Exercises
2 and 3).

We contrast the necessary condition above with a rather elementary
second order sufficient condition. For this we use the broad critical cone at
Z:

C(z) ={d € Ks(z) | Vf(z)d <0, Vh(Z)d = 0}.

Theorem 7.4.8 (Second order sufficient condition) Suppose for each
nonzero direction d in the broad critical cone C(Z) there exist multipliers
uin Ry and A in'Y such that the Lagrangian

L(-) = uf(:) + (A ()
satisfies the conditions
VL(z) € —Ng(z) and V*L(z)(d,d) > 0.

Then for all small real § > 0 the point Z is a strict local minimizer for the
perturbed problem

inf{f(z) — 6|z — 7|2 | h(z) = 0, z € S}. (7.4.9)

Proof. Suppose there is no such 4, so there is a sequence of feasible
solutions (z,) for problem (7.4.9) converging to Z and satisfying

lim sup flar) = F(@) <0. (7.4.10)

r—oo o —Z|?
By taking a subsequence, we can assume

lim 2" _JE =d,
r—oo ||z, — Z|



7.4 Second Order Conditions 175

and it is easy to check the nonzero direction d lies in C(z). Hence by
assumption there exist the required multipliers y and .
From the first order condition we know

VL(Z)(z, — %) >0,
so by the quadratic approximation we deduce as 1 — oo
u(f(zr) — f(@)) = L(=r) - L(2)
> %VQE(E)(@",« — 2,2 — 7) + ol — 2|%).

Dividing by ||z, — Z||? and taking limits shows

o fn) = FE) O 1oar
liminf ————* > —-V*L(z)(d,d) > 0,
plimint K2 L) > S0 T(@)(a. 0
which contradicts inequality (7.4.10). i

Notice this result is of Fritz John type (like Theorem 2.3.6): we do not
assume the multiplier p is nonzero. Furthermore, we can easily weaken the
assumption that the set S is convex to the condition

(S —z)NeB C Ks(z) for some € > 0.

Clearly the narrow critical cone may be smaller than the broad critical
cone, even when S is convex. They are equal if S is quasipolyhedral at T:

Ks(z) =R4 (5 —2)

(as happens in particular when S is polyhedral). However, even for un-
constrained problems there is an intrinsic gap between the second order
necessary conditions and the sufficient conditions.

Exercises and Commentary

Our approach here is from [25] (see also [12]). There are higher order ana-
logues [11]. Problems of the form (7.4.11) where all the functions involved
are quadratic are called quadratic programs. Such problems are particularly
well-behaved: the optimal value is attained when finite, and in this case
the second order necessary conditions developed in Exercise 3 are also suf-
ficient (see [21]). For a straightforward exposition of the standard second
order conditions, see [132], for example.

1. (Higher order conditions) By considering the function
1
sgn(z) exp ( - ﬁ)

on R, explain why there is no necessary and sufficient nth order
optimality condition.
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* (Uniform multipliers) With the assumptions of Theorem 7.4.2
(Second order necessary conditions), suppose in addition that for all
directions d in the narrow critical cone C(z) there exists a solution z
in E to the system

Vh(z)z = —V?h(Z)(d,d) and z € span (S — 7).

By considering problem (7.4.7), prove that if the multiplier A\ satis-
fies the first order condition (7.4.5) then the second order condition
(7.4.6) holds for all d in C(Z). Observe this holds in particular if
S = E and Vh(Z) is surjective.

** (Standard second order necessary conditions) Consider the
problem

inf f(x)
subject to  gi(z) < 0 fori=1,2,...,m
hj(x) = 0 for j =1,2,...,¢ (7.4.11)
r € R™,

where all the functions are twice Fréchet differentiable at the local
minimizer Z and the set of gradients

A={Vg(@) i€ I@)} U{Vh(@) |j=12,....q)

is linearly independent (where we denote the set of indices of the
active inequality constraints by I(Z) = {i | g;(z) = 0}, as usual).
By writing this problem in the form (7.4.1) and applying Exercise 2,
prove there exist multipliers p; in Ry (for ¢ in I(Z)) and A1, Az, ..., Aq
in R such that the Lagrangian

L()=f()+ Z Nz’gi“‘Z’\th
j=1

i€1(T)
satisfies the conditions

VL(Z) =0 and V2L(z)(d,d) >0 for all d in A*.

(Narrow and broad critical cones are needed) By considering
the set
S={zeR?| |z >2%}
and the problem
inf{zy —az?|z € S}

for various values of the real parameter «, explain why the narrow
and broad critical cones cannot be interchanged in either the Second
order necessary conditions (7.4.2) or the sufficient conditions (7.4.8).
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5. (Standard second order sufficient conditions) Write down the
second order sufficient optimality conditions for the general nonlinear
program in Exercise 3.

6. * (Guignard-type conditions) Consider the problem of Section
7.2, Exercise 10,

inf{f(z) | h(z) € R, z € S},

where the set R C Y is closed and convex. By rewriting this problem
in the form (7.4.1), derive second order optimality conditions.



Chapter 8

Fixed Points

8.1 The Brouwer Fixed Point Theorem

Many questions in optimization and analysis reduce to solving a nonlinear
equation h(z) = 0, for some function h : E — E. Equivalently, if we define
another map f = I — h (where I is the identity map), we seek a point x in
E satisfying f(z) = z; we call z a fized point of f.

The most potent fixed point existence theorems fall into three cate-
gories: “geometric” results, devolving from the Banach contraction princi-
ple (which we state below), “order-theoretic” results (to which we briefly
return in Section 8.3), and “topological” results, for which the prototype is
the theorem of Brouwer forming the main body of this section. We begin
with Banach’s result.

Given a set C C E and a continuous self map f : C — C, we ask
whether f has a fixed point. We call f a contraction if there is a real
constant vy < 1 such that

1£(z) = F@)I < vsllz — yl| for all 2,y € C. (8.1.1)

Theorem 8.1.2 (Banach contraction) Any contraction on a closed sub-
set of E has a unique fized point.

Proof. Suppose the set C C E is closed and the function f : C — C
satisfies the contraction condition (8.1.1). We apply the Ekeland variational
principle (7.1.2) to the function

lz = f(=)]] ifzeC
zeB— { 400 otherwise
at an arbitrary point x in C, with the choice of constants

€
1—'yf'

e=|lz— f(z)]] and A=

179
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This shows there is a point v in C satisfying

o= F@) <llz= fFE)I+ A =)z =

for all points z # v in C. Hence v is a fixed point, since otherwise choosing
z = f(v) gives a contradiction. The uniqueness is easy. a

What if the map f is not a contraction? A very useful weakening of
the notion is the idea of a nonexpansive map, which is to say a self map f
satisfying

I1f(z) = f@)Il < lle — gl for all z,y

(see Exercise 2). A nonexpansive map on a nonempty compact set or a
nonempty closed convex set may not have a fixed point, as simple examples
like translations on R or rotations of the unit circle show. On the other
hand, a straightforward argument using the Banach contraction theorem
shows this cannot happen if the set is nonempty, compact, and convex.
However, in this case we have the following more fundamental result.

Theorem 8.1.3 (Brouwer) Any continuous self map of a nonempty com-
pact convex subset of E has a fixed point.

In this section we present an “analyst’s approach” to Brouwer’s theo-
rem. We use the two following important analytic tools concerning C')
(continuously differentiable) functions on the closed unit ball B C R™.

Theorem 8.1.4 (Stone—Weierstrass) For any continuous map f : B —
R", there is a sequence of CY) maps f, : B — R™ converging uniformly

to f.

An easy exercise shows that, in this result, if f is a self map then we can
assume each f,. is also a self map.

Theorem 8.1.5 (Change of variable) Suppose that the set W C R™ is
open and that the CY) map g : W — R" is one-to-one with Vg invertible
throughout W. Then the set g(W) is open with measure

/ | det Vg|.

We also use the elementary topological fact that the open unit ball int B
is connected; that is, it cannot be written as the disjoint union of two
nonempty open sets.

The key step in our argument is the following topological result.

Theorem 8.1.6 (Retraction) The unit sphere S is not a CV) retract of
the unit ball B; that is, there is no CY) map from B to S whose restriction
to S is the identity.
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Proof. Suppose there is such a retraction map p : B — S. For real
t in [0,1], define a self map of B by p; = tp+ (1 —t)I. As a function
of the variables x € B and ¢, the function det Vpi(z) is continuous and
hence strictly positive for small ¢. Furthermore, p; is one-to-one for small
t (Exercise 7).

If we denote the open unit ball B\ .S by U, then the change of variables
theorem above shows for small ¢ that p;(U) is open with measure

z/(t):/Udetht. (8.1.7)

On the other hand, by compactness, p;(B) is a closed subset of B, and we
also know p;(S) = S. A little manipulation now shows we can write U as
a disjoint union of two open sets:

U = (p(U)NU) U (pe(B)° N D). (8.1.8)

The first set is nonempty, since p;(0) = ¢tp(0) € U. But as we observed, U
is connected, so the second set must be empty, which shows p,(B) = B.
Thus the function v(t) defined by equation (8.1.7) equals the volume of the
unit ball B for all small t.

However, as a function of ¢ € [0, 1], v(t) is a polynomial, so it must be
constant. Since p is a retraction we know that all points x in U satisfy
lp(x)||*? = 1. Differentiating implies (Vp(z))p(z) = 0, from which we
deduce det Vp(z) = 0, since p(x) is nonzero. Thus v(1) is zero, which is a
contradiction. O

Proof of Brouwer’s theorem. Consider first a C'(!) self map f on the
unit ball B. Suppose f has no fixed point. A straightforward exercise
shows there are unique functions a : B — R4 and p : B — S satisfying
the relationship

p(x) =z + a(z)(x — f(z)) for all x in B. (8.1.9)

Geometrically, p(z) is the point where the line extending from the point
f(x) through the point z meets the unit sphere S. In fact p must then be a
CW) retraction, contradicting the retraction theorem above. Thus we have
proved that any C(1) self map of B has a fixed point.

Now suppose the function f is just continuous. The Stone—Weierstrass
theorem (8.1.4) implies there is a sequence of CY) maps f,. : B — R™
converging uniformly to f, and by Exercise 4 we can assume each f, is a
self map. Our argument above shows each f, has a fixed point z". Since B
is compact, the sequence (z”) has a subsequence converging to some point
z in B, which it is easy to see must be a fixed point of f. So any continuous
self map of B has a fixed point.
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Finally, consider a nonempty compact convex set C' C E and a contin-
uous self map g on C. Just as in our proof of Minkowski’s theorem (4.1.8),
we may as well assume C has nonempty interior. Thus there is a home-
omorphism (a continuous onto map with continuous inverse) h : C — B
(see Exercise 11). Since the function hogoh™! is a continuous self map of
B, our argument above shows this function has a fixed point = in B, and
therefore h~!(x) is a fixed point of g. O

Exercises and Commentary

Good general references on fixed point theory are [68, 174, 83]. The Ba-
nach contraction principle appeared in [7]. Brouwer proved the three-
dimensional case of his theorem in 1909 [49] and the general case in 1912
(50], with another proof by Hadamard in 1910 [89]. A nice exposition of the
Stone—Weierstrass theorem may be found in [16], for example. The Change
of variable theorem (8.1.5) we use can be found in [177]; a beautiful proof
of a simplified version, also sufficient to prove Brouwer’s theorem, appeared
in [118]. Ulam conjectured and Borsuk proved their result in 1933 [17].

1. (Banach iterates) Consider a closed subset C' C E and a contrac-
tion f : C — C with fixed point zf. Given any point zy in C, define
a sequence of points inductively by

Zry1 = f(z,) forr=0,1,....

(a) Prove lim, s 00 ||z — zs]| = 0. Since E is complete, the se-
quence (z,) converges. (Another approach first shows (z,) is
bounded.) Hence prove in fact z, approaches xf. Deduce the
Banach contraction theorem.

(b) Consider another contraction g : C — C with fixed point 9.
Use part (a) to prove the inequality

of — 9] < ®ecc 1S g

11—y

2. (Nonexpansive maps)

(a) If the n xn matrix U is orthogonal, prove the map z € R™ — Uz
is nonexpansive.

(b) If the set S C E is closed and convex then for any real A in the
interval [0, 2] prove the relazed projection

z€E— (1—-Xz+ A\Ps(x)

is nonexpansive. (Hint: Use the nearest point characterization
in Section 2.1, Exercise 8(c).)
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(c) (Browder—Kirk [51, 112]) Suppose the set C' C E is compact
and convex and the map f : C — C' is nonexpansive. Prove f
has a fixed point. (Hint: Choose an arbitrary point z in C' and
consider the contractions

z€C— (1—¢)f(z)+ex

for small real € > 0.)
(d)* In part (c), prove the fixed points form a nonempty compact
convex set.

(Non-uniform contractions)

(a) Consider a nonempty compact set C C E and a self map f on
C satisfying the condition

|f(z) — f(w)] < ||z —y]| for all distinct z,y € C.

By considering inf ||z — f(z)||, prove f has a unique fixed point.
(b) Show the result in part (a) can fail if C' is unbounded.
(¢) Prove the map z € [0,1] — ze™* satisfies the condition in part

(a).

In the Stone-Weierstrass theorem, prove that if f is a self map then
we can assume each f,. is also a self map.

Prove the interval (—1, 1) is connected. Deduce the open unit ball in
R" is connected.

In the Change of variable theorem (8.1.5), use metric regularity to
prove the set g(W) is open.

In the proof of the Retraction theorem (8.1.6), prove the map p is
Lipschitz, and deduce that the map p; is one-to-one for small t. Also
prove that if ¢ is small then det Vp; is strictly positive throughout B.

. In the proof of the Retraction theorem (8.1.6), prove the partition

(8.1.8), and deduce p:(B) = B.

. In the proof of the Retraction theorem (8.1.6), prove v(t) is a poly-

nomial in ¢.

In the proof of Brouwer’s theorem, prove the relationship (8.1.9) de-
fines a C(1) retraction p: B — S.
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12.

13.
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(Convex sets homeomorphic to the ball) Suppose the compact
convex set C' C E satisfies 0 € int C. Prove that the map h: C — B
defined by
_ [ ve@lzl s e #0
h(“’”)’{o ifz=0
(where 7¢ is the gauge function we defined in Section 4.1) is a home-
omorphism.

* (A nonclosed nonconvex set with the fixed point property)
Let Z be the subset of the unit disk in R? consisting of all lines
through the origin with rational slope. Prove every continuous self
map of Z has a fixed point.

* (Change of variable and Brouwer) A very simple proof may
be found in [118] of the formula

[oove=[1

when the function f is continuous with bounded support and the
function g is differentiable, equaling the identity outside a large ball.
Prove any such g is surjective by considering an f supported outside
the range of g (which is closed). Deduce Brouwer’s theorem.

** (Brouwer and inversion) The central tool of the last chapter,
the Surjectivity and metric regularity theorem (7.1.5), considers a
function h whose strict derivative at a point satisfies a certain surjec-
tivity condition. In this exercise, which comes out of a long tradition,
we use Brouwer’s theorem to consider functions A which are merely
Fréchet differentiable. This exercise proves the following result.

Theorem 8.1.10 Consider an open set U C E, a closed convex set
S C U, and a Euclidean space Y, and suppose the continuous func-
tion h : U — Y has Fréchet derivative at the point x € S satisfying
the surjectivity condition

Vh(z)Ts(z) =Y.
Then there is a neighbourhood V of h(z), a continuous, piecewise
linear function F : Y — E, and a function g : V — Y that is Fréchet
differentiable at h(x) and satisfies (F o g)(V) C S and

h((Fog)(y)) =y forallyeV.

Proof. We can assume z = 0 and h(0) = 0.
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(a) Use Section 4.1, Exercise 20 (Properties of the relative interior)

(b)

(f)

(g)

to prove Vh(0)(R4+S) =Y.

Deduce that there exists a basis y1,¥2,...,yn of Y and points
U1, U, ..., U, and wy,ws,...,w, in S satisfying

Vh(Q)u; =y; = —Vh(Q)w; fori=1,2,...,n.

Prove the set

B, = {zn:tiy,- teR", Zn:ml < 1}
1 1

and the function F' defined by

n

F( zn: L) = 3 (6w + () Fw,)
1 1

satisfy F(B1) C S and V(ho F)(0) = I.
Deduce there exists a real € > 0 such that eBy C B; and
[yl

IA(F(y)) = yll < =5~ whenever [y < 2.

For any point v in the neighbourhood V' = (¢/2) By, prove the
map
y€eVi—v+y—h(F(y))

is a continuous self map of V.

Apply Brouwer’s theorem to deduce the existence of a fixed point
g(v) for the map in part (e). Prove Vg(0) = I, and hence
complete the proof of the result.

If x lies in the interior of S, prove F' can be assumed linear.

(Exercise 9 (Nonexistence of multipliers) in Section 7.2 suggests the
importance here of assuming h continuous.)

* (Knaster—-Kuratowski—-Mazurkiewicz principle [114]) In this
exercise we show the equivalence of Brouwer’s theorem with the fol-
lowing result.

Theorem 8.1.11 (KKM) Suppose for every point x in a nonempty
set X C E there is an associated closed subset M (z) C X. Assume
the property

conv F' C U M(x)
Tz€EF
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holds for all finite subsets FF C X. Then for any finite subset FF C X

we have
() M(x) # 0.

zeF
Hence if some subset M (x) is compact we have

() M(z) #0.

zeX

(a) Prove that the final assertion follows from the main part of the
theorem using Theorem 8.2.3 (General definition of compact-
ness).

(b) (KKM implies Brouwer) Given a continuous self map f on a
nonempty compact convex set C C E; apply the KKM theorem
to the family of sets

M(@)={yeC|{y—fly)y—2) <0} forzeC

to deduce f has a fixed point.

(c) (Brouwer implies KKM) With the hypotheses of the KKM
theorem, assume Nge p M (z) is empty for some finite set F'. Con-
sider a fixed point z of the self map

Y zer Au) (¥)
erF dM(z) (y)

and define F/ = {z € F |z ¢ M(z)}. Show z € conv F’ and
derive a contradiction.

y € conv F —

16. ** (Hairy ball theorem [140]) Let S,, denote the Euclidean sphere

{z e R"™ |||zl = 1}.

A tangent vector field on S, is a function w : S,, — R™*! satisfying
(z,w(z)) = 0 for all points z in S,,. This exercise proves the following
result.

Theorem 8.1.12 For every even n, any continuous tangent vector
field on S, must vanish somewhere.

Proof. Consider a nonvanishing continuous tangent vector field u
on S,.

(a) Prove there is a nonvanishing C) tangent vector field on S,
by using the Stone-Weierstrass theorem (8.1.4) to approximate
u by a C(!) function p and then considering the vector field

z €S, — px)— (z,p(x))x.
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(b) Deduce the existence of a positively homogeneous C M function
w: R — R™*! whose restriction to S, is a unit norm C(
tangent vector field: |jw(z)|| =1 for all z in S,.

Define a set
A={z¢€ R™H! |1 <2|z| < 3}

and use the field w in part (b) to define functions w; : R"*1 — R"*+1
for real t by

w(x) =z + tw(x).
(¢) Imitate the proof of Brouwer’s theorem to prove the measure of
the image set w;(A) is a polynomial in ¢ when ¢ is small.
(d) Prove directly the inclusion wi(A4) C V1 + 2 A.

(e) For any point y in V1 + ¢24, apply the Banach contraction the-
orem to the function z € kB — y — tw(z) (for large real k) to
deduce in fact

wi(A) =+v1+t2A for small ¢.

(f) Complete the proof by combining parts (c) and (e). ]

(g) If f is a continuous self map of S,, where n is even, prove either
f or —f has a fixed point.

(h) (Hedgehog theorem) Prove for even n that any nonvanishing
continuous vector field must be somewhere normal: |(z, f(x))| =
I f(z)]| for some z in S,.

(i) Find examples to show the Hairy ball theorem fails for all odd
n.

17. * (Borsuk—Ulam theorem) Let S,, denote the Euclidean sphere
{z € R™ |||zf| = 1}.

We state the following result without proof.

Theorem 8.1.13 (Borsuk—Ulam) For any positive integers m <
n, if the function f : S, — R is continuous then there is a point x

in Sy, satisfying f(z) = f(—zx).

(a) If m < n and the map f : S, — R™ is continuous and odd,
prove f vanishes somewhere.
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(b) Prove any odd continuous self map f on S, is surjective. (Hint:
For any point u in S,, consider the function

z€ S, f(z)— (f(z),w)u

and apply part (a).)

(¢) Prove the result in part (a) is equivalent to the following result:

Theorem 8.1.14 For positive integers m < n there is no con-
tinuous odd map from S, to Sp,.

(d) (Borsuk—Ulam implies Brouwer [178]) Let B denote the
unit ball in R™, and let S denote the boundary of B x [—1,1]:

S ={(z,t) € Bx[-11]||lz|| =1 or [t| = 1}.

(i) If the map g : S — R™ is continuous and odd, use part (a)
to prove g vanishes somewhere on S.

(ii) Consider a continuous self map f on B. By applying part
(i) to the function

(z,t) € § — (2 [t))z — tf(tx),
prove f has a fixed point.

18. ** (Generalized Riesz lemma) Consider a smooth norm ||| - ||| on
E (that is, a norm which is continuously differentiable except at the
origin) and linear subspaces U, V C E satisfying dimU > dimV = n.
Denote the unit sphere in U (in this norm) by S(U).

(a) By choosing a basis v, vs,...,v, of V and applying the Borsuk-
Ulam theorem (see Exercise 17) to the map

z € SU) = (V[ - [ll(x), vi))ie, € R,

prove there is a point z in S(U) satisfying V||| - [||(z) L V.
(b) Deduce the origin is the nearest point to = in V (in this norm).

(c) With this norm, deduce there is a unit vector in U whose dis-
tance from V is equal to one.

(d) Use the fact that any norm can be uniformly approximated ar-
bitrarily well by a smooth norm to extend the result of part (c)
to arbitrary norms.

(e) Find a simpler proof when V C U.
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19. ** (Riesz implies Borsuk) In this question we use the generalized
Riesz lemma, Exercise 18, to prove the Borsuk—Ulam result, Exercise
17(a). To this end, suppose the map f : S, — R"™ is continuous and
odd. Define functions

u;: S, - R fori=1,2,....,.n+1
v, :R" > R fori=1,2,....n

by u;(z) = x; and v;(xz) = x; for each index i. Define spaces of
continuous odd functions on S, by

U = span {uj,ug,....Upnt1}
V = span{vi o f,uao f,...,v,0 f}
E=U+V,
with norm |[|u|| = maxu(S,) (for u in E).
(a) Prove there is a function u in U satisfying ||u|| = 1 and whose

distance from V is equal to one.
(b) Prove u attains its maximum on S,, at a unique point y.

(c¢) Use the fact that for any function w in E, we have

(VI l(w)w = w(y)
to deduce f(y) =0.
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8.2 Selection and the Kakutani—Fan Fixed
Point Theorem

The Brouwer fixed point theorem in the previous section concerns functions
from a nonempty compact convex set to itself. In optimization, as we have
already seen in Section 5.4, it may be convenient to broaden our language
to consider multifunctions 2 from the set to itself and seek a fized point—a
point z satisfying x € Q(z). To begin this section we summarize some
definitions for future reference.

We consider a subset K C E, a Euclidean space Y, and a multifunction
Q: K — Y. Wesay Q is USC at a point z in K if every open set U
containing Q(z) also contains Q(z) for all points z in K close to z.

Thus a multifunction Q2 is USC if for any sequence of points (z,) ap-
proaching z, any sequence of elements v, € Q(z,) is eventually close to
Q(z). If Q is USC at every point in K we simply call it USC. On the
other hand, as in Section 5.4, we say Q2 is LSC if, for every x in K, every
neighbourhood V of any point in Q(z) intersects §2(z) for all points z in K
close to .

We refer to the sets Q(z) (z € K) as the ¢mages of 2. The multi-
function €2 is a cusco if it is USC with nonempty compact convex images.
Clearly such multifunctions are locally bounded: any point in K has a
neighbourhood whose image is bounded. Cuscos appear in several impor-
tant optimization contexts. For example, the Clarke subdifferential of a
locally Lipschitz function is a cusco (Exercise 5).

To see another important class of examples we need a further definition.
We say a multifunction ® : E — E is monotone if it satisfies the condition

(u—v,z—y) >0 whenever u € ®(z) and v € D(y).

In particular, any (not necessarily self-adjoint) positive semidefinite lin-
ear operator is monotone, as is the subdifferential of any convex function.
One multifunction contains another if the graph of the first contains the
graph of the second. We say a monotone multifunction is mazimal if the
only monotone multifunction containing it is itself. The subdifferentials
of closed proper convex functions are examples (see Exercise 16). Zorn’s
lemma (which lies outside our immediate scope) shows any monotone mul-
tifunction is contained in a maximal monotone multifunction.

Theorem 8.2.1 (Maximal monotonicity) Mazimal monotone multi-
functions are cuscos on the interiors of their domains.

Proof. See Exercise 16. a

Maximal monotone multifunctions in fact have to be single-valued gener-
ically, that is on sets which are “large” in a topological sense, specifically
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on a dense set which is a “Gs” (a countable intersection of open sets)—see
Exercise 17.

Returning to our main theme, the central result of this section extends
Brouwer’s theorem to the multifunction case.

Theorem 8.2.2 (Kakutani—Fan) If the set C C E is nonempty, compact
and convez, then any cusco Q2 : C — C has a fized point.

Before we prove this result, we outline a little more topology. A cover
of a set K C E is a collection of sets in E whose union contains K. The
cover is open if each set in the collection is open. A subcover is just a
subcollection of the sets which is also a cover. The following result, which
we state as a theorem, is in truth the definition of compactness in spaces
more general than E.

Theorem 8.2.3 (General definition of compactness) Any open cover
of a compact set in E has a finite subcover.

Given a finite open cover {O1,03,...,0,} of a set K C E, a par-
tition of unity subordinate to this cover is a set of continuous functions
D1,P2,---,Pm : K — R4 whose sum is identically equal to one and satisfy-
ing p;(xz) = 0 for all points z outside O; (for each index %).. We outline the
proof of the next result, a central topological tool, in the exercises.

Theorem 8.2.4 (Partition of unity) There is a partition of unity sub-
ordinate to any finite open cover of a compact subset of E.

Besides fixed points, the other main theme of this section is the idea
of a continuous selection of a multifunction 2 on a set K C E, by which
we mean a continuous map f on K satisfying f(z) € Q(z) for all points z
in K. The central step in our proof of the Kakutani-Fan theorem is the
following “approximate selection” theorem.

Theorem 8.2.5 (Cellina) Given any compact set K C E, suppose the
multifunction Q : K — Y is USC with nonempty conver images. Then
for any real € > 0 there is a continuous map f : K — Y which is an
“approximate selection” of ) :

dao)(z, f(x)) < e for all points x in K. (8.2.6)

Furthermore the range of f is contained in the convex hull of the range of

Q.
Proof. We can assume the norm on E x Y is given by

Iz, y)llexy = llz]le + [ylly forallzc EandyeY
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(since all norms are equivalent—see Section 4.1, Exercise 2). Now, since
Q is USC, for each point z in K there is a real §, in the interval (0,€/2)
satisfying

€

Since the sets = + (d,/2)int Bg (as the point = ranges over K) comprise an
open cover of the compact set K, there is a finite subset {x1,z2,...,Zm}
of K with the sets z; + (§;/2)int Bg comprising a finite subcover (where §;
is shorthand for d,, for each index 7).

Theorem 8.2.4 shows there is a partition of unity pi,p2,...,pm : K —
R, subordinate to this subcover. We now construct our desired approxi-
mate selection f by choosing a point y; from Q(z;) for each ¢ and defining

flz) = Zpi(ib')yi for all points z in K. (8.2.7)
i=1

Fix any point z in K and define the set I = {i|p;(z) # 0}. By definition,
x satisfies ||z — x;|| < 6;/2 for each i in I. If we choose an index j in [
maximizing d;, the triangle inequality shows ||z; — z;|| < d;, whence we
deduce the inclusions

v € Qz:) € Na; +6;Bw) C Ua;) + 5By

for all i in I. In other words, for each i in I we know dq(.,)(y:) < €/2. Since
the distance function is convex, equation (8.2.7) shows do(.,)(f(z)) < €/2.
Since we also know ||z — ;|| < €/2, this proves inequality (8.2.6). The final
claim follows immediately from equation (8.2.7). |

Proof of the Kakutani—Fan theorem. With the assumption of the
theorem, Cellina’s result above shows for each positive integer r there is a
continuous self map f, of C satisfying

1
deo) (2, fr(z)) < - for all points z in C.

By Brouwer’s theorem (8.1.3), each f, has a fixed point z" in C, which
therefore satisfies

1
dg)(z",z") < - for each r.

Since C' is compact, the sequence (z") has a convergent subsequence, and
its limit must be a fixed point of Q because Q is closed by Exercise 3(c)
(Closed versus USC). O

In the next section we describe some variational applications of the
Kakutani-Fan theorem. But we end this section with an ezact selection
theorem parallel to Cellina’s result but assuming an LSC rather than a
USC multifunction.
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Theorem 8.2.8 (Michael) Given any closed set K C E, suppose the
multifunction Q : K — Y is LSC with nonempty closed convex images.
Then given any point (Z,7) in G(Q), there is a continuous selection f of

Q satisfying f(Z) = 3.

We outline the proof in the exercises.

Exercises and Commentary

Many useful properties of cuscos are summarized in [27]. An excellent
general reference on monotone operators is [153]. The topology we use in
this section can be found in any standard text (see [67, 106], for example).
The Kakutani—Fan theorem first appeared in [109] and was extended in
[74]. Cellina’s approximate selection theorem appears, for example, in [4,
p. 84]. One example of the many uses of the Kakutani-Fan theorem is
establishing equilibria in mathematical economics. The Michael selection
theorem appeared in [137].

1. (USC and continuity) Consider a closed subset K C E and a
multifunction 2 : K — Y.

(a) Prove the multifunction

Q(z) forze K
xGEH{(Z) forz € K

is USC if and only if Q2 is USC.

(b) Prove a function f : K — Y is continuous if and only if the
multifunction z € K — {f(z)} is USC.

(c) Prove a function f : E — [—o0, +00] is lower semicontinuous at
a point z in E if and only if the multifunction whose graph is
the epigraph of f is USC at x.

2. * (Minimum norm) If the set U C E is open and the multifunction
Q:U — Y is USC, prove the function g : U — Y defined by

g(x) = inf{|ly|| |y € Qz)}
is lower semicontinuous.
3. (Closed versus USC)

(a) If the multifunction ® : E — Y is closed and the multifunction
Q:E — Y is USC at the point z in E with Q(z) compact, prove
the multifunction

ze€Er Q(2)N®(2)
is USC at .
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(b) Hence prove that any closed multifunction with compact range
is USC.

(¢) Prove any USC multifunction with closed images is closed.
(d) If a USC multifunction has compact images, prove it is locally
bounded.

4. (Composition) If the multifunctions ® and Q are USC prove their
composition z — ®(2(x)) is also.

5. * (Clarke subdifferential) If the set U C E is open and the function
f : U — R is locally Lipschitz, use Section 6.2, Exercise 12 (Closed
subdifferentials) and Exercise 3 (Closed versus USC) to prove the
Clarke subdifferential z € U +— 9, f(x) is a cusco.

6. ** (USC images of compact sets) Consider a given multifunction
Q:K-Y.

(a) Prove Q is USC if and only if for every open subset U of Y the
set {x € K |Q(z) C U} is open in K.

Now suppose K is compact and Q is USC with compact images.
Using the general definition of compactness (8.2.3), prove the range
Q(K) is compact by following the steps below.

(b) Fix an open cover {U, |y € I'} of Q(K). For each point z in K,
prove there is a finite subset I',, of I with

Qx) C U U,.

YEl:

(c) Construct an open cover of K by considering the sets

{zeK‘Q(z)c U UV}

YET

as the point = ranges over K.

(d) Hence construct a finite subcover of the original cover of Q(K).

7. * (Partitions of unity) Suppose the set K C E is compact with a
finite open cover {O1,0s,...,0,,}.

(i) Show how to construct another open cover {Vi,Va,..., Vi, } of
K satisfying clV; C O; for each index 7. (Hint: Each point z in
K lies in some set O;, so there is a real 6, > 0 with z+0,B C O;;
now take a finite subcover of {z + d,int B|x € K} and build the
sets V; from it.)
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(ii)

(iii)

For each index i, prove the function ¢; : K — [0, 1] given by

4= _dxvo,
’ dK\OI +dVL

is well-defined and continuous, with ¢; identically zero outside
the set O;.

Deduce that the set of functions p; : K — R defined by

p; = a4
;=
Zj 4a;
is a partition of unity subordinate to the cover {O1,Oa, ..., O }.

8. Prove the Kakutani—Fan theorem is also valid under the weaker as-
sumption that the images of the cusco 2 : C' — E always intersect
the set C' using Exercise 3(a) (Closed versus USC).

9. ** (Michael’s theorem) Suppose all the assumptions of Michael’s
theorem (8.2.8) hold. We consider first the case with K compact.

(a)

Fix areal € > 0. By constructing a partition of unity subordinate
to a finite subcover of the open cover of K consisting of the sets

Oy ={z € E|dg)(y) <e} foryinY,
construct a continuous function f : K — Y satisfying

do()(f(z)) < e for all points = in K.
Construct a sequence of continuous functions fy, fo,...: K =Y
satisfying
do)(fi(z)) < 27° fori=1,2,...
[firt(@) = @)l < 217 fori=1,2,...

for all points = in K. (Hint: Construct f1 by applying part (a)
with e = 1/2; then construct f;; inductively by applying part
(a) to the multifunction

z € K — Qx) N (fi(z) +27'By)

with e = 2771,

The functions f; of part (b) must converge uniformly to a con-
tinuous function f. Prove f is a continuous selection of 2.
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(d)

(e)
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Prove Michael’s theorem by applying part (¢) to the multifunc-

tion
L (Q) ifr#z
Q(“)—{{g} itz — 2.

Now extend to the general case where K is possibly unbounded
in the following steps. Define sets K,, = K N nBg for each
n = 1,2,... and apply the compact case to the multifunction
Q1 = Q|k, to obtain a continuous selection g, : K; — Y. Then
inductively find a continuous selection gn+1 : Kpy1 — Y from
the multifunction

_ [{on(@)} forzeK,
Qnya(z) = {Qg(a:)x f((ir i € Kny1\ Kn

and prove the function defined by
flz)=gn(z) forx e K,, n=1,2,...

is the required selection.

10. (Hahn-Katetov—Dowker sandwich theorem) Suppose the set
K C E is closed.

(a)

(b)

For any two lower semicontinuous functions f, g : K — R satis-
fying f > —g, prove there is a continuous function h : K — R
satisfying f > h > —g by considering the multifunction z +—
[—g(z), f(x)]. Observe the result also holds for extended-real-
valued f and g.

(Urysohn lemma) Suppose the closed set V and the open
set U satisfy V ¢ U C K. By applying part (i) to suitable
functions, prove there is a continuous function f : K — [0,1]
that is identically equal to one on V and to zero on U°.

11. (Continuous extension) Consider a closed subset K of E and a
continuous function f: K — Y. By considering the multifunction

[ {f@)} forz e K
Q(z) = {cl (conv f(K)) fgr ¢ K,

prove there is a continuous function g : E — Y satisfying g|x = f
and g(E) C cl(conv f(K)).

12. * (Generated cuscos) Suppose the multifunction 2 : K — Y is
locally bounded with nonempty images.
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(a) Among those cuscos containing €2, prove there is a unique one
with minimal graph, given by

O(x) = ﬂ clconv (2(x + €B)) for z € K.
e>0

(b) If K is nonempty, compact, and convex, Y = E, and ) satisfies
the conditions Q(K) C K and

z € ®(z) =z e Q) for x € K,

prove {2 has a fixed point.

13. * (Multifunctions containing cuscos) Suppose the multifunction
Q: K — Y is closed with nonempty convex images, and the function
f : K — Y has the property that f(x) is a point of minimum norm
in Q(z) for all points z in K. Prove {2 contains a cusco if and only if
f is locally bounded. (Hint: Use Exercise 12 (Generated cuscos) to
consider the cusco generated by f.)

14. * (Singleton points) For any subset D of Y, define
s(D)=inf{r e R| D C y + rBy for some y € Y}.
Consider an open subset U of E.

(a) If the multifunction Q : U — Y is USC with nonempty images,
prove for any real € > 0 the set

Se={z € U|s(Qz)) <€}

is open. By considering the set M,>1.51 /5, prove the set of points
in U whose image is a singleton is a Gj.

(b) Use Exercise 5 (Clarke subdifferential) to prove that the set of
points where a locally Lipschitz function f : U — R is strictly
differentiable is a Gs. If U and f are convex (or if f is regular
throughout U), use Rademacher’s theorem (in Section 6.2) to
deduce f is generically differentiable.

15. (Skew symmetry) If the matrix A € M" satisfies 0 # A = — AT,
prove the multifunction z € R™ ~— z¥ Az is maximal monotone, yet
is not the subdifferential of a convex function.

16. ** (Monotonicity) Consider a monotone multifunction ® : E — E.

(a) (Inverses) Prove ®~! is monotone.

(b) Prove ®~! is maximal if and only if ® is.
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(¢) (Applying maximality) Prove ® is maximal if and only if it
has the property

(u—wv,z—y) >0 forall (z,u) € G(®) = ve d(y).

(d) (Maximality and closedness) If ® is maximal, prove it is
closed with convex images.

(e) (Continuity and maximality) Supposing ® is everywhere
single-valued and hemicontinuous (that is, continuous on ev-
ery line in E), prove it is maximal. (Hint: Apply part (c) with
z=y+twforwinEandt¢]|0inR.)

(f) We say @ is hypermazimal if ® + AI is surjective for some real
A > 0. In this case, prove ® is maximal. (Hint: Apply part (c)
and use a solution z € E to the inclusion v+ Ay € (®+ A\I)(x).)
What if just ® is surjective?

(g) (Subdifferentials) If the function f : E — (0o, +00] is closed,
convex, and proper, prove df is maximal monotone. (Hint: For
any element ¢ of E, prove the function

z € B f(z) +|lzl* + (¢, 2)

has a minimizer, and deduce Jf is hypermaximal.)

(h) (Local boundedness) By completing the following steps, prove
® is locally bounded at any point in the core of its domain.

(i) Assume 0 € ®(0) and 0 € core D(®), define a convex func-
tion g : E — (00, +00] by

9(y) = sup{(v,y —z) |z € B, u € 2(2)}.

(ii) Prove D(®) C domg.

(iii) Deduce g is continuous at zero.

(iv) Hence show |g(y)| < 1 for all small y, and deduce the result.
(j) (Maximality and cuscos) Use parts (d) and (h), and Exercise

3 (Closed versus USC) to conclude that any maximal monotone
multifunction is a cusco on the interior of its domain.

(k) (Surjectivity and growth) If ® is surjective, prove

lim ||®(z)| = +oo.

llzll =00

(Hint: Assume the maximality of ®, and hence of ®1; deduce
®~! is a cusco on E, and now apply Exercise 6 (USC images of
compact sets).)
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** (Single-valuedness and maximal monotonicity) Consider a
maximal monotone multifunction Q2 : E — E and an open subset U
of its domain, and define the minimum norm function g : U — R as
in Exercise 2.

(a) Prove g is lower semicontinuous. An application of the Baire
category theorem now shows that any such function is generi-
cally continuous.

(b) For any point z in U at which g is continuous, prove Q(z) is a
singleton. (Hint: Prove ||-|| is constant on £2(x) by first assuming
Y,z € Qz) and ||y|| > ||z]|, and then using the condition

(w—y,z+ty—x) >0 for all small t > 0 and w € Q(z + ty)

to derive a contradiction.)

(¢) Conclude that any maximal monotone multifunction is generi-
cally single-valued.

(d) Deduce that any convex function is generically differentiable on
the interior of its domain.
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8.3 Variational Inequalities

At the very beginning of this book we considered the problem of minimizing
a differentiable function f : E — R over a convex set C C E. A necessary
optimality condition for a point zg in C' to be a local minimizer is

(Vf(zg),z —x0) >0 for all points z in C, (8.3.1)

or equivalently
0e Vf(.’L‘o) + NC(CIJO).

If the function f is convex instead of differentiable, the necessary and suf-
ficient condition for optimality (assuming a constraint qualification) is

0 € 9f(zo0) + Nc(zo),

and there are analogous nonsmooth necessary conditions.

We call problems like (8.3.1) “variational inequalities”. Let us fix a
multifunction Q : C' — E. In this section we use the fixed point theory we
have developed to study the multivalued variational inequality

VI(Q,C): Find points zg in C and yo in Q(zo) satisfying
(Yo, — xo) > 0 for all points z in C.

A more concise way to write the problem is this:
Find a point z( in C satisfying 0 € Q(zg) + Neo (o). (8.3.2)

Suppose the set C is closed, convex, and nonempty. Recall that the
projection Pc : E — C is the (continuous) map that sends points in E
to their unique nearest points in C (see Section 2.1, Exercise 8). Using
this notation we can also write the variational inequality as a fixed point
problem:

Find a fixed point of Pco (I —Q):C — C. (8.3.3)

This reformulation is useful if the multifunction 2 is single-valued, but less
so in general because the composition will often not have convex images.

A more versatile approach is to define the (multivalued) normal map-
ping Qc = (Q o Pg) + I — Pc, and repose the problem as follows:

Find a point Z in E satisfying 0 € Q¢(7). (8.3.4)

Then setting o = Po(Z) gives a solution to the original problem. Equiva-
lently, we could phrase this as follows:

Find a fixed point of (I — Q) o P : E — E. (8.3.5)
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As we shall see, this last formulation lets us immediately use the fixed point
theory of the previous section.

The basic result guaranteeing the existence of solutions to variational
inequalities is the following.

Theorem 8.3.6 (Solvability of variational inequalities) If the subset
C of E is compact, convez, and nonempty, then for any cusco Q2 : C — E
the variational inequality VI(Q2,C) has a solution.

Proof. We in fact prove Theorem 8.3.6 is equivalent to the Kakutani—Fan
fized point theorem (8.2.2).

When © is a cusco its range Q(C) is compact—we outline the proof
in Section 8.2, Exercise 6. We can easily check that the multifunction
(I — ) o Pc is also a cusco because the projection P is continuous. Since
this multifunction maps the compact convex set conv (C'—Q(C)) into itself,
the Kakutani—Fan theorem shows it has a fixed point, which, as we have
already observed, implies the solvability of VI(Q, C).

Conversely, suppose the set C C E is nonempty, compact, and convex.
For any cusco €2 : C — C, the Solvability theorem (8.3.6) implies we can
solve the variational inequality VI(I — Q,C), so there are points zy in C
and zp in Q(zo) satisfying

(xo — 20, — x9) > 0 for all points z in C.
Setting x = zg shows xg = 2g, so g is a fixed point. O

An elegant application is von Neumann’s minimax theorem, which we
proved by a Fenchel duality argument in Section 4.2, Exercise 16. Consider
Euclidean spaces Y and Z, nonempty compact convex subsets F' C Y and
G C Z, and a linear map A:Y — Z. If we define a function Q: F x G —
Y %X Z by Q(y, z) = (—A*z, Ay), then it is easy to see that a point (yo, z0)
in F' x G solves the variational inequality VI(Q, F' x G) if and only if it is
a saddlepoint:

<Z07Ay> < <Z07Ay0> < <Z7Ay0> for all ye F1 z €G.

In particular, by the Solvability of variational inequalities theorem, there
exists a saddlepoint, so

. A — . .
min max (z, Ay) = max min (z, Ay)

Many interesting variational inequalities involve a noncompact set C.
In such cases we need to impose a growth condition on the multifunction
to guarantee solvability. The following result is an example.
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Theorem 8.3.7 (Noncompact variational inequalities) If the subset
C of E is nonempty, closed, and convex, and the cusco Q2 : C — E is
coercive, that is, it satisfies the condition

liminf inf (z,Q(z) + Ne(z)) > 0, (8.3.8)

llzl| =00, zeC
then the variational inequality VI(Q2,C) has a solution.

Proof. For any large integer r, we can apply the solvability theorem (8.3.6)
to the variational inequality VI(Q2,C N rB) to find a point =, in C NrB
satisfying

(xr) + Nerrs (-771')

(zr) + Ne(zr) + Nrp(zr)

(zr) + No(zr) + Ry

(using Section 3.3, Exercise 10). Hence for all large r, the point z,. satisfies
inf (z,, Q(z,) + Nc(z,)) <O0.

This sequence of points (z,) must therefore remain bounded, by the co-
ercivity condition (8.3.8), and so z, lies in intrB for large r and hence
satisfies 0 € Q(z,) + N¢(z,), as required. o

A straightforward exercise shows in particular that the growth condition
(8.3.8) holds whenever the cusco 2 is defined by z € R™ — z7 Az for a
matrix A in S7 .

The most important example of a noncompact variational inequality
is the case when the set C is a closed convex cone S C E. In this case
VI(R2,S) becomes the multivalued complementarity problem:

Find points zo in S and yo in Q(z9) N (—S7) (8.3.9)
satisfying (zo,yo) = 0. e

As a particular example, we consider the dual pair of abstract linear pro-
grams (5.3.4) and (5.3.5):

inf{(c,z) | Az—b€e H, z € K} (8.3.10)

(where Y is a Euclidean space, the map A : E — Y is linear, the cones
H CY and K C E are closed and convex, and b and c are given elements
of Y and E respectively), and

sup{(b,¢) | A*"¢p—c€ K—, p € —H }. (8.3.11)

As usual, we denote the corresponding primal and dual optimal values by
p and d. We consider a corresponding variational inequality on the space
ExY:

VI(Q, K x (~H™)) with Q(z,¢) = (c— A*¢, Az —b).  (8.3.12)
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Theorem 8.3.13 (Linear programming and variational inequali-
ties) Any solution of the above variational inequality (8.3.12) consists of
a pair of optimal solutions for the linear programming dual pair (8.8.10)
and (8.3.11). The converse is also true, providing there is no duality gap

(p=4d).

We leave the proof as an exercise.

Notice that the linear map appearing in the above example, namely
M:E xY — E xY defined by M(z,¢) = (—A*¢, Az), is monotone. We
study monotone complementarity problems further in Exercise 7.

To end this section we return to the complementarity problem (8.3.9)
in the special case where E is R™, the cone S is R", and the multifunction
(2 is single-valued: (z) = {F(x)} for all points z in R”. In other words,
we consider the following problem:

Find a point z¢ in RY satisfying F(zo) € R and (zo, F(xq)) = 0.

The lattice operation A is defined on R™ by (zAy); = min{z;, y;} for points
z and y in R™ and each index i. With this notation we can rewrite the
above problem as the following order complementarity problem.

OCP(F): Find a point zo in R} satisfying zg A F'(z¢) = 0.

The map ¢ € R™ — 2 A F(z) € R" is sometimes amenable to fixed point
methods.

As an example, let us fix a real a > 0, a vector ¢ € R™, and an n X n
matrix P with nonnegative entries, and define the map F : R — R"
by F(z) = ax — Pz + q. Then the complementarity problem OCP(F) is
equivalent to finding a fixed point of the map ® : R™ — R" defined by

O(z) = é(O vV (Pz —q)), (8.3.14)

a problem that can be solved iteratively (see Exercise 9).

Exercises and commentary

A survey of variational inequalities and complementarity problems may be
found in [93]. The normal mapping )¢ is especially well studied when
the multifunction Q is single-valued with affine components and the set
C is polyhedral. In this case the normal mapping is piecewise affine (see
[164]). More generally, if we restrict the class of multifunctions Q we wish
to consider in the variational inequality, clearly we can correspondingly
restrict the versions of the Kakutani-Fan theorem or normal mappings we
study. Order complementarity problems are studied further in [26]. The
Nash equilibrium theorem (Exercise 10(d)), which appeared in [147], asserts
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the existence of a Pareto efficient choice for n individuals consuming from
n associated convex sets with n associated joint cost functions.

1.

Prove the equivalence of the various formulations (8.3.2), (8.3.3),
(8.3.4) and (8.3.5) with the original variational inequality VI(Q2, C).

. Use Section 8.2, Exercise 4 (Composition) to prove the multifunction

(I—-9Q)o Pe

in the proof of Theorem 8.3.6 (Solvability of variational inequalities)
is a cusco.

Consider Theorem 8.3.6 (Solvability of variational inequalities). Use
the function
1 ifz >0
z€[0,1]— ¢ @
-1 ifz=0

to prove the assumption in the theorem—that the multifunction € is
USC—cannot be weakened to §2 closed.

. * (Variational inequalities containing cuscos) Suppose the set

C C E is nonempty, compact, and convex, and consider a multifunc-
tion Q: C — E.

(a) If © contains a cusco, prove the variational inequality VI(Q, C)
has a solution.

(b) Deduce from Michael’s theorem (8.2.8) that if Q is LSC with
nonempty closed convex images then VI(Q2, C) has a solution.

Check the details of the proof of von Neumann’s minimax theorem.

Prove Theorem 8.3.13 (Linear programming and variational inequal-
ities).

(Monotone complementarity problems) Suppose the linear map
M : E — E is monotone.

(a) Prove the function z € E — (M =z, ) is convex.

For a closed convex cone S C E and a point q in E, consider the
optimization problem

inf{(Mz +q¢,z) | Mx +q€ —S~, z € S}. (8.3.15)

(b) If the condition —g € core (S~ + MS) holds, use the Fenchel
duality theorem (3.3.5) to prove problem (8.3.15) has optimal
value zero.
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(c) If the cone S is polyhedral, problem (8.3.15) is a convex “quad-
ratic program”: when the optimal value is finite, it is known that
there is no duality gap for such a problem and its (Fenchel) dual,
and that both problems attain their optimal value. Deduce that
when S is polyhedral and contains a point z with Ma+qin —S—,
there is such a point satisfying the additional complementarity
condition (Mx + ¢, z) = 0.

8. * Consider a compact convex set C C E satisfying C = —C and a
continuous function f : C — E. If f has no zeroes, prove there is
a point x on the boundary of C satisfying (f(x),z) < 0. (Hint: For
positive integers n, consider VI(f + I/n,C).)

9. (Iterative solution of OCP [26]) Consider the order complemen-
tarity problem OCP(F') for the function F' that we defined before
equation (8.3.14). A point 2° in R, is feasible if it satisfies F'(z°) > 0.

(a) Prove the map @ in equation (8.3.14) is isotone: x > y implies
®(z) > ®(y) for points x and y in R".

(b) Suppose the point z° in R is feasible. Define a sequence (") in
R” inductively by z"t! = ®(z"). Prove this sequence decreases
1 < xf for all r and <.

%

monotonically: =
(c) Prove the limit of the sequence in part (b) solves OCP(F).

(d) Define a sequence (y") in R} inductively by y°=0and y"t! =
®(y"). Prove this sequence increases monotonically.

(e) If OCP(F) has a feasible solution, prove the sequence in part
(d) converges to a limit § which solves OCP(F'). What happens
if OCP(F') has no feasible solution?

(f) Prove the limit § of part (e) is the minimal solution of OCP(F'):
any other solution z satisfies x > g.

10. * (Fan minimax inequality [74]) We call a real function g on a
convex set C C E quasiconcave if the set {z € C'|g(z) > a} is convex
for all real a.

Suppose the set C C E is nonempty, compact, and convex.
(a) If the function f : C x C — R has the properties that the
function f(-,y) is quasiconcave for all points y in C and the

function f(z,-) is lower semicontinuous for all points z in C,
prove Fan’s inequality:

minsup f(z,y) < sup f (z, 2).
Yy T T
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11.

(e)
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(Hint: Apply the KKM theorem (Section 8.1, Exercise 15) to
the family of sets

{yeC| f(z,y) < B} forzeC,

where 3 denotes the right hand side of Fan’s inequality.)

If the function F': C — E is continuous, apply Fan’s inequality
to the function f(z,y) = (F(y),y — ) to prove the variational
inequality VI(F,C) has a solution.

Deduce Fan’s inequality is equivalent to the Brouwer fixed point
theorem.

(Nash equilibrium) Define a set C = C; x Cz x ... X Cp,
where each set C; C E is nonempty, compact, and convex. For
any continuous functions f1, fo,..., fn : C — R, if each function

Ty EC@ Hfi(y17“'7xi7"'7yn)

is convex for all elements y of C, prove there is an element y of
C satisfying the inequalities

fi(y) Sfi(yl,...,xi,...,yn) for all ZT; GCi,i= 1,2,.‘.,71.

(Hint: Consider the function

F@,y) =D (i) = filyn, 205 9m)

and apply Fan’s inequality.)

(Minimax) Apply the Nash equilibrium result from part (d) in
the case n = 2 and f; = —f> to deduce the Kakutani minimax
theorem (Section 4.3, Exercise 14).

(Bolzano-Poincaré—Miranda intermediate value theorem)
Consider the box

We

J={zeR"|0<z; <1 for all i}.

call a continuous map f : J — R™ reversing if it satisfies the

condition

fi(z)fi(y) <0 whenever z; =0, y; =1, andi=1,2,...,n.

Prove any such map vanishes somewhere on J by completing the
following steps:

(a)

Observe the case n = 1 is just the classical intermediate value
theorem.
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(b) For all small real € > 0, prove the function f¢ = f 4 el satisfies
for all ¢

either ff(y) > 0 and ff(x)

2

;i =0andy; =1 = S
z; =0 and y;, = or fi(y) <0 and fi(z) 2 0.

(¢) ¢From part (b), deduce there is a function f¢, defined coordi-

natewise by ff = £ff, for some suitable choice of signs, satisfy-
ing the conditions (for each 1)
ff(z) <0 whenever z; =0 and

ff(z) > 0 whenever z; = 1.

(d) By considering the variational inequality VI(f€, J), prove there
is a point z€ in J satisfying f€(z€) = 0.
(e) Complete the proof by letting € approach zero.
12. (Coercive cuscos) Consider a multifunction Q : E — E with non-
empty images.
(a) If Q is a coercive cusco, prove it is surjective.

(b) On the other hand, if § is monotone, use Section 8.2, Exercise
16 (Monotonicity) to deduce € is hypermaximal if and only if it
is maximal. (We generalize this result in Exercise 13 (Monotone
variational inequalities).)

13. ** (Monotone variational inequalities) Consider a continuous
function G : E — E and a monotone multifunction ¢ : E — E.

(a) Given a nonempty compact convex set K C E, prove there is
point zg in K satisfying

(x — zo,y + G(xo)) >0 forallz € K, y € (x)

by completing the following steps:
(i) Assuming the result fails, show the collection of sets

{reK|{(z—z,w+G(x)) <0} forz€ K, we P(z)

is an open cover of K.

(ii) For a partition of unity p1, p,...,p, subordinate to a finite
subcover K1, Ko, ... K, corresponding to points z; € K and
w; € ®(z;) (for ¢ =1,2,...,n), prove the function

flz) = Zpi(ﬂf)zi

is a continuous self map of K.
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(iii) Prove the inequality
(f(@) — 2, 3 pi(x)wi + G(x))
= > pil@)p;(2)(z — &, wi + G(x))
i3

<0

by considering the terms in the double sum where i = j and
sums of pairs where 7 # j separately.
(iv) Deduce a contradiction with part (ii).
(b) Now assume G satisfies the growth condition

lim [G(z)]| = +00 and liminf ~2rC@)

B bV
fl]|—o00 lzl—oo [|z]|[|G(z)|]

(i) Prove there is a point z in E satisfying
(z — z0,y + G(xp)) > 0 whenever y € &(z).

(Hint: Apply part (a) with K =nB forn=1,2,....)
(ii) If ® is maximal, deduce —G(zo) € ®(z0).

(¢) Apply part (b) to prove that if ® is maximal then for any real
A > 0, the multifunction ® + AI is surjective.

(d) (Hypermaximal < maximal) Using Section 8.2, Exercise 16
(Monotonicity), deduce a monotone multifunction is maximal if
and only if it is hypermaximal.

(e) (Resolvent) If @ is maximal then for any real A\ > 0 and any
point y in E prove there is a unique point x satisfying the inclu-
sion

y € ®(x) + Az.

(f) (Maximality and surjectivity) Prove a maximal ® is surjec-

tive if and only if it satisfies the growth condition

lim inf ||®(z)| = 4oo.
llzl—o0
(Hint: The “only if” direction is Section 8.2, Exercise 16(k)
(Monotonicity); for the “if” direction, apply part (e) with A =

1/n for n =1,2,..., obtaining a sequence (z,,); if this sequence
is unbounded, apply maximal monotonicity.)

14. * (Semidefinite complementarity) Define F : S™ x 8™ — S™ by
FUV)=U+V —(U?+V?)V/2

For any function G : S® — S™, prove U € S™ solves the variational
inequality VI(G,S%) if and only if F(U,G(U)) = 0. (Hint: See
Section 5.2, Exercise 11.)
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Monotonicity via convex analysis

Many important properties of monotone multifunctions can be derived us-
ing convex analysis, without using the Brouwer fixed point theorem (8.1.3).
The following sequence of exercises illustrates the ideas. Throughout, we
consider a monotone multifunction ® : E — E. The point (u,v) € E x E
is monotonically related to ® if (x —u,y —v) > 0 whenever y € ®(z):
in other words, appending this point to the graph of & does not destroy
monotonicity. Our main aim is to prove a central case of the Debrunner-
Flor extension theorem [59]. The full theorem states that if ® has range
contained in a nonempty compact convex set C' C E, and the function
f : C — E is continuous, then there is a point ¢ € C such that the point
(f(e),c) is monotonically related to ®. For an accessible derivation of this
result from Brouwer’s theorem, see [154]: the two results are in fact equiv-
alent (see Exercise 19).

We call a convex function H : E x E — (00, +00] representative for ®
if all points z,y € E satisfy H(z,y) > (x,y), with equality if y € ®(x).
Following [79], the Fitzpatrick function Fo : Ex E — [—00,400] is defined
by

Fo(x,y) = sup{(z,v) + (u,y) — (u,v) | v € ®(u)},

while [171, 150] the convezified representative Py : E x E — [—00, 4-00] is
defined by

Po(z,y) = inf { 3 il w) \ meN, e R,
=1

m

i=1

These constructions are explored extensively in [30, 43, 172].
15. (Fitzpatrick representatives)

(a) Prove the Fitzpatrick function Fg is closed and convex.
(b) Prove Fo(z,y) = (z,y) whenever y € ®(z).
(c) Prove Fg is representative providing ® is maximal.

(d) Find an example where Fg is not representative.

16. (Convexified representatives) Consider points z € E and y €
D(x).

(a) Prove Po(z,y) < (z,y).

Now consider any points u,v € E.
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Prove P‘P(uav) > (ua y) + (.’17,1)> - <SC, y>

Deduce Po(z,y) = (z,y).

Deduce Pg(z,y) + Pa(u,v) = (u,y) + (z,v).

Prove Py (u,v) > (u,v) if (u,v) € conv G(®) and is +oo other-
wise.

Deduce that convexified representatives are indeed both convex
and representative.

Prove Pg = Fo < F3.

17. * (Monotone multifunctions with bounded range) Suppose
that the monotone multifunction & : E — E has bounded range
R(®), and let C = clconv R(®). Apply Exercise 16 to prove the
following properties.

(a)

(b)
(c)

Prove the convexity of the function f : E — [—o00, 4+00] defined
by

f(z) = nf{Ps(z,y) |y € C}.
Prove that the function g = inf,cc (-, y) is a continuous concave
minorant of f.

Apply the Sandwich theorem (Exercise 13 in Section 3.3) to
deduce the existence of an affine function « satisfying f > o > g.

Prove that the point (0, Va) is monotonically related to ®.
Prove Va € C.

Given any point z € E, show that ® is contained in a monotone
multifunction ®’ with z in its domain and R(®’) C C.

Give an alternative proof of part (f) using the Debrunner-Flor
extension theorem.

Extend part (f) to monotone multifunctions with unbounded
ranges, by assuming that the point z lies in the set int dom f —
dom §7.. Express this condition explicitly in terms of C' and the
domain of ®.

18. ** (Maximal monotone extension) Suppose the monotone mul-
tifunction ® : E — E has bounded range R(®).

(a)

(b)

Use Exercise 17 and Zorn’s lemma to prove that ® is contained
in a monotone multifunction ® with domain E and range con-
tained in clconv R(®).

Deduce that if ® is in fact maximal monotone, then its domain
is E.
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(c) Using Exercise 16 (Local boundedness) in Section 8.2, prove that
the multifunction ®” : E — E defined by

o' (z) = m clconv ' (z + €B)
e>0

is both monotone and a cusco.

(d) Prove that a monotone multifunction is a cusco on the interior
of its domain if and only if it is maximal monotone.

(e) Deduce that ® is contained in a maximal monotone multifunc-
tion with domain E and range contained in clconv R(®).

(f) Apply part (e) to ®~! to deduce a parallel result.

19. ** (Brouwer via Debrunner-Flor) Consider a nonempty compact
convex set D C int B and a continuous self map g : D — D. By
applying the Debrunner-Flor extension theorem in the case where
C = B, the multifunction ® is the identity map, and f = go Pp
(where Pp is the nearest point projection), prove that g has a fixed
point.

In similar fashion one may establish that the sum of two maximal
monotone multifunctions S and T is maximal assuming the condition 0 €
core (domT — dom S). One commences with the Fitzpatrick inequality
that

Fr(z,2%) + Fs(z, ~2%) > 0,

for all z,2* in E. This and many other applications of representative
functions are described in [30].



Chapter 9

More Nonsmooth
Structure

9.1 Rademacher’s Theorem

We mentioned Rademacher’s fundamental theorem on the differentiability
of Lipschitz functions in the context of the Intrinsic Clarke subdifferential
formula (Theorem 6.2.5):

0 f(z) = conv {lign V") |z" -z, 2" € Q}, (9.1.1)

valid whenever the function f : E — R is locally Lipschitz around the
point € E and the set Q C E has measure zero. We prove Rademacher’s
theorem in this section, taking a slight diversion into some basic measure
theory.

Theorem 9.1.2 (Rademacher) Any locally Lipschitz map between Euc-
lidean spaces is Fréchet differentiable almost everywhere.

Proof. Without loss of generality (Exercise 1), we can consider a locally
Lipschitz function f : R®™ — R. In fact, we may as well further suppose
that f has Lipschitz constant L throughout R"™, by Exercise 2 in Section
7.1.

Fix a direction A in R™. For any t # 0, the function g; defined on R™
by
[z +1th) — f(z)

t

is continuous, and takes values in the interval I = L|hl||[-1,1], by the
Lipschitz property. Hence, for £ = 1,2,..., the function py : R®* — I

gt(x) =

213
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defined by
pr(z) = sup gi(x)
o<|t|< 1/k
is lower semicontinuous and therefore Borel measurable. Consequently, the
upper Dini derivative D,“: f:R™ — I defined by

Dy f(x) = limsup g, () = inf pr(z)

is measurable, being the infimum of a sequence of measurable functions.
Similarly, the lower Dini derivative D, f : R™ — I defined by

Dy, f(z) = lim inf g, («)

is also measurable.

The subset of R™ where f is not differentiable along the direction A,

namely

An ={z € R" | Dy f(z) < Dy f(2)},
is therefore also measurable. Given any point x € R", the function ¢ —
f(x + th) is absolutely continuous (being Lipschitz), so the fundamental
theorem of calculus implies this function is differentiable (or equivalently,
x +th ¢ Ap) almost everywhere on R.

Consider the nonnegative measurable function ¢ : R™ x R — R defined
by ¢(z,t) = 6, (z+th). By our observation above, for any fixed z € R™ we
know fR ¢(x,t)dt = 0. Denoting Lebesgue measure on R™ by u, Fubini’s
theorem shows

Oz/"('/Rqﬁ(x,t)dt)d,u:/R(/anﬁ(:c,t)du)dtz/Ru(Ah)dt

so the set A, has measure zero. Consequently, we can define a measurable
function Dy f : R™ — R having the property Dy, f = D,J{f = D, f almost
everywhere.

Denote the standard basis vectors in R™ by ej, ea, ..., e,. The function
G :R™ — R™ with components defined almost everywhere by

of
Gi=D.,f= 9.1.3
K3 1f 6.’[1 ( )
for each ¢ = 1,2,...,n is the only possible candidate for the derivative of

f. Indeed, if f (or —f) is regular at x, then it is easy to check that G(z)
is the Fréchet derivative of f at z (Exercise 2). The general case needs a
little more work.

Consider any continuously differentiable function ¢ : R™ — R that is
zero except on a bounded set. For our fixed direction A, if ¢t # 0 we have

Y(z —th) — P(z)
t

/ a@) @) dp= | f() .
Rn R~
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As t — 0, the bounded convergence theorem applies, since both f and
are Lipschitz, so

/ Dy f(x) () dp = — / £(z) (Vo(z), h) dp
R” R

Setting h = e; in the above equation, multiplying by h;, and adding over
i=1,2,...,n, yields

/n (h, G(z)) ¥(x) dp = — - f(@) (Vi(z), h) du = - Dy f(z) ¥ (z) dp.
Since 1 was arbitrary, we deduce Dy f = (h,G) almost everywhere.

Now extend the basis ey, es, ..., e, to a dense sequence of unit vectors
{hi} in the unit sphere S,,_; C R™. Define the set A C R"™ to consist of
those points where each function Dy, f is defined and equals (hy, G). Our
argument above shows A° has measure zero. We aim to show, at each point
x € A, that f has Fréchet derivative G(z).

Fix any € > 0. For any t # 0, define a function r; : R® — R by

flz+th) - f(z)
t

re(h) = — (G(a), ).

It is easy to check that r; has Lipschitz constant 2L. Furthermore, for each
k=1,2,..., there exists §; > 0 such that

|re(hi)| < g whenever 0 < |t| < Jj.

Since the sphere S,,_; is compact, there is an integer M such that

S ICU(hk+— )

If we define § = min{d;, da,...,0p} > 0, we then have
[re(hi)| < % whenever 0 < |t| < 0, k=1,2..., M.

Finally, consider any unit vector h. For some positive integer £k < M
we know ||h — hi|| < €/4L, so whenever 0 < |t| < § we have

[re(R)] < Iru(h) = re(hi)] + Ire(he)] <217 + 5 = €.

Hence G(z) is the Fréchet derivative of f at z, as we claimed. O

An analogous argument using Fubini’s theorem now proves the subdiffer-
ential formula (9.1.1)—see Exercise 3.
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Exercises and Commentary

A basic reference for the measure theory and the version of the fundamental
theorem of calculus we use in this section is [170]. Rademacher’s theorem
is also proved in [71]. Various implications of the insensitivity of Clarke’s
formula (9.1.1) to sets of measures zero are explored in [18]. In the same
light, the generalized Jacobian of Exercise 4 is investigated in [72].

1. Assuming Rademacher’s theorem with range R, prove the general
version.

2. * (Rademacher’s theorem for regular functions) Suppose the
function f : R® — R is locally Lipschitz around the point = €
R™. Suppose the vector G(z) is well-defined by equation (9.1.3). By
observing

0= f"(z;e;) + [ (2;—€;) = f(w5€5) + fO (a5 —e;)

and using the sublinearity of f°(z;-), deduce G(z) is the Fréchet
derivative of f at x.

3. ** (Intrinsic Clarke subdifferential formula) Derive formula
(9.1.1) as follows.

(a) Using Rademacher’s theorem (9.1.2), show we can assume that
the function f is differentiable everywhere outside the set Q.

(b) Recall the one-sided inclusion following from the fact that the
Clarke subdifferential is a closed multifunction (Exercise 12 in
Section 6.2)

(c) For any vector v € E and any point z € E, use Fubini’s theorem
to show that the set {t € R |z +tv € Q} has measure zero, and
deduce

f(z+t'u)—f(z):/0 (Vf(z+ sv),v)ds.

(d) If formula (9.1.1) fails, show there exists v € E such that

fo(z;v) > limsup (Vf(w),v).

w—zT, WEQ

Use part (c) to deduce a contradiction.

4. ** (Generalized Jacobian) Consider a locally Lipschitz map be-
tween Euclidean spaces h: E — Y and a set Q C E of measure zero
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outside of which h is everywhere Gateaux differentiable. By analogy
with formula (9.1.1) for the Clarke subdifferential, we call

Ogh(z) = conv {liln Vh(z")|z" — z, 2" & Q},

the Clarke generalized Jacobian of h at the point z € E.

(a) Prove that the set Jy(z) = dgh(x) is independent of the choice
of Q.

(b) (Mean value theorem) For any points a,b € E, prove
h(a) — h(b) C conv Ji[a,b](a — b).

(¢) (Chain rule) If the function g : Y — R is locally Lipschitz,
prove the formula

0s(g o h)(z) C Jn(x)*0sg(h(x)).

(d) Propose a definition for the generalized Hessian of a continuously
differentiable function f : E — R.
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9.2 Proximal Normals and Chebyshev Sets

We introduced the Clarke normal cone in Section 6.3 (Tangent Cones), via
the Clarke subdifferential. An appealing alternative approach begins with
a more geometric notion of a normal vector. We call a vector y € E a
proximal normal to a set S C E at a point x € S if, for some t > 0, the
nearest point to « + ty in S is z. The set of all such vectors is called the
prozimal normal cone, which we denote N&(x).

The proximal normal cone, which may not be convex, is contained in
the Clarke normal cone (Exercise 3). The containment may be strict, but
we can reconstruct the Clarke normal cone from proximal normals using
the following result.

Theorem 9.2.1 (Proximal normal formula) For any closed set S C E
and any point x € S, we have

Ngs(z) = convq limy, |y € N&(z,), 2, €S, =, = T ;.
I s

One route to this result uses Rademacher’s theorem (Exercise 7). In this
section we take a more direct approach.
The Clarke normal cone to a set S C E at a point z € S is

Ns(z) = cl (R4 dods(z)),
by Theorem 6.3.8, where
=i f —
ds(z) = inf |12 ~ 2]

is the distance function. Notice the following elementary but important
result that we use repeatedly in this section (Exercise 4(a) in Section 7.3).

Proposition 9.2.2 (Projections) IfZ is a nearest point in the set S C E
to the point x € E, then T is the unique nearest point in S to each point
on the half-open line segment [T, z).

To derive the proximal normal formula from the subdifferential formula
(9.1.1), we can make use of some striking differentiability properties of
distance functions, summarized in the next result.

Theorem 9.2.3 (Differentiability of distance functions) Consider a
nonempty closed set S C E and a point x € S. Then the following proper-
ties are equivalent:

(i) the Dini subdifferential 0_dg(z) is nonempty;

(ii) @ has a unique nearest point T in S;
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(iii) the distance function dg is Fréchet differentiable at x.

In this case,
r—

Vds(z) = ezl

€ N&(z) C Ns(z).
The proof is outlined in Exercises 4 and 6.

For our alternate proof of the proximal normal formula without re-
course to Rademacher’s theorem, we return to an idea we introduced in
Section 8.2. A cusco is a USC multifunction with nonempty compact con-
vex images. In particular, the Clarke subdifferential of a locally Lipschitz
function on an open set is a cusco (Exercise 5 in Section 8.2).

Suppose U C E is an open set, Y is a Euclidean space, and ® : U — Y
is a cusco. We call ® minimal if its graph is minimal (with respect to
set inclusion) among graphs of cuscos from U to Y. For example, the
subdifferential of a continuous convex function is a minimal cusco (Exercise
8). We next use this fact to prove that Clarke subdifferentials of distance
functions are also minimal cuscos.

Theorem 9.2.4 (Distance subdifferentials are minimal) Outside a
nonempty closed set S C E, the distance function dgs can be expressed
locally as the difference between a smooth convex function and a continuous
convex function. Consequently, the Clarke subdifferential O,ds : E — E is
a minimal cusco.

Proof. Consider any closed ball T disjoint from S. For any point y in S,
it is easy to check that the Fréchet derivative of the function z — ||z — y||
is Lipschitz on T'. Suppose the Lipschitz constant is 2L. It follows that the
function z +— L||z||?> — ||z — y|| is convex on T (see Exercise 9). Since the
function A : T — R defined by

h(z) = L||z|?* — ds(z) = sup{L]jz|* - l= -y}
y€eS

is convex, we obtain the desired expression dg = L|| - ||? — h.
To prove minimality, consider any cusco ® : E — E satisfying ®(z) C
0.ds(x) for all points z in E. Notice that for any point « € intT we have

0ods(z) = —0o(—ds)(z) = Oh(z) — Lzx.

Since h is convex on int T', the subdifferential dh is a minimal cusco on this
set, and hence so is Jodg. Consequently, ® must agree with d.ds on int 7T,
and hence throughout S¢, since T was arbitrary.

On the set int S, the function dg is identically zero. Hence for all points
z in int S we have O.ds = {0} and therefore also ®(z) = {0}. We also
deduce 0 € ®(z) for all x € cl(int ).
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Now consider a point z € bd S. The Mean value theorem (Exercise 9
in Section 6.1) shows

Oods(z) = conv{O,limyT
T

y" € 0odg(z"), 2" — x, " & S}

= conV{O,limyT y €e®(z"), 2" -z, 2" & S},

T
where 0 can be omitted from the convex hull unless x € cl(int.S) (see
Exercise 10). But the final set is contained in ®(z), so the result now
follows. a

The Proximal normal formula (Theorem 9.2.1), follows rather quickly from
this result (and indeed can be strengthened), using the fact that Clarke
subgradients of the distance function are proximal normals (Exercise 11).

We end this section with another elegant illustration of the geometry
of nearest points. We call a set S C E a Chebyshev set if every point in
has a unique nearest point Ps(z) in S. Any nonempty closed convex set
is a Chebyshev set (Exercise 8 in Section 2.1). Much less obvious is the
converse, stated in the following result.

Theorem 9.2.5 (Convexity of Chebyshev sets) A subset of a Fuclid-
ean space is a Chebyshev set if and only if it is nonempty, closed and convez.

Proof. Consider a Chebyshev set S C E. Clearly S is nonempty and
closed, and it is easy to verify that the projection Ps : E — E is continuous.
To prove S is convex, we first introduce another new notion. We call S a
sun if, for each point z € E, every point on the ray Ps(z) + R4 (z — Ps(z))
has nearest point Pg(z). We begin by proving that the following properties
are equivalent (see Exercise 13):

(i) S is convex;
(ii) S is a sun;
(iii) Ps is nonexpansive.
So, we need to show that S is a sun.
Suppose S is not a sun, so there is a point z ¢ S with nearest point
Pg(z) = Z such that the ray L = 7 + R (x — %) strictly contains
{z € L| Ps(z) = z}.

Hence by Proposition 9.2.2 (Projections) and the continuity of Pg, the
above set is nontrivial closed line segment [Z, zo] containing z.

Choose a radius € > 0 so that the ball 2o + eB is disjoint from S. The
continuous self map of this ball

o — Ps(z)

Z—Tyg+e————
llzo — Ps(2)|l
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has a fixed point by Brouwer’s theorem (8.1.3). We then quickly derive a
contradiction to the definition of the point zg. |

Exercises and Commentary

Proximal normals provide an alternative comprehensive approach to non-
smooth analysis: a good reference is [56]. Our use of the minimality of
distance subdifferentials here is modelled on [38]. Theorem 9.2.5 (Convex-
ity of Chebyshev sets) is sometimes called the “Motzkin-Bunt theorem”.
Our discussion closely follows [62]. In the exercises, we outline three nons-
mooth proofs. The first (Exercises 14, 15, 16) is a variational proof follow-
ing [82]. The second (Exercises 17, 18, 19) follows [96], and uses Fenchel
conjugacy. The third argument (Exercises 20 and 21) is due to Asplund [2].
It is the most purely geometric, first deriving an interesting dual result on
furthest points, and then proceeding via inversion in the unit sphere. As-
plund extended the argument to Hilbert space, where it remains unknown
whether a norm-closed Chebyshev set must be convex. Asplund showed
that, in seeking a nonconvex Chebyshev set, we can restrict attention to
“Klee caverns”: complements of closed bounded convex sets.

1. Consider a closed set S C E and a point = € S.

(a) Show that the proximal normal cone N5 (z) may not be convex.
(b) Prove z € int S = NE&(z) = {0}.
(c) Is the converse to part (b) true?
(d) Prove the set {z € S|NE(z) # {0}} is dense in the boundary of
S.
2. (Projections) Prove Proposition 9.2.2.

3. (Proximal normals are normals) Consider a set S C E. Suppose
the unit vector y € E is a proximal normal to S at the point = € S.

(a) Use Proposition 9.2.2 (Projections) to prove dg(x;y) = 1.

(b) Use the Lipschitz property of the distance function to prove
aods(ﬂ?) C B.

(c) Deduce y € dods(x).

(d) Deduce that any proximal normal lies in the Clarke normal cone.

4. * (Unique nearest points) Consider a closed set S C E and a point
z outside S with unique nearest point Z in S. Complete the following

steps to prove
T

T7T 9 dg(z).

[l — |
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(a) Assuming the result fails, prove there exists a direction h € E
such that
dg(z;h) < (|lz — 2|~ (z — 2), h).

(b) Consider a sequence ¢, | 0 such that

ds(m + trh) — ds(m)

T — dg (w3 h)

and suppose each point z + t.h has a nearest point s, in S.
Prove s, — T.

(¢) Use the fact that the gradient of the norm at the point z — s, is
a subgradient to deduce a contradiction.

5. (Nearest points and Clarke subgradients) Cousider a closed set
S C E and a point x outside S with a nearest point Z in S. Use

Exercise 4 to prove
r—I
— € Jods(x).

[l — ]

6. * (Differentiability of distance functions) Consider a nonempty
closed set S C E.

(a) For any points z, z € E, observe the identity
d%(2) — d(z) = 2ds(x)(ds(z) — ds(2)) + (ds(z) — ds(z))*.
(b) Use the Lipschitz property of the distance function to deduce

2ds(z)0_ds(z) C O_d%(z).

Now suppose y € d_dg(z).
(c) If Z is any nearest point to x in S, use part (b) to prove T =
x — dg(z)y, so T is in fact the unique nearest point.
(d) Prove —2dg(z)y € 0_(—d%)(z).
(e) Deduce d% is Fréchet differentiable at .
Assume x ¢ S.

(f) Deduce ds is Fréchet differentiable at z.
(g) Use Exercises 3 and 4 to complete the proof of Theorem 9.2.3.
7. * (Proximal normal formula via Rademacher) Prove Theorem

9.2.1 using the subdifferential formula (9.1.1) and Theorem 9.2.3 (Dif-
ferentiability of distance functions).
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(Minimality of convex subdifferentials) If the open set U C E
is convex and the function f : U — R is convex, use the Max formula
(Theorem 3.1.8) to prove that the subdifferential Jf is a minimal
Ccusco.

(Smoothness and DC functions) Suppose the set C C E is open
and convex, and the Fréchet derivative of the function g : C — R has
Lipschitz constant 2L on C. Deduce that the function L|| - ||2 — g is
convex on C.

** (Subdifferentials at minimizers) Consider a locally Lipschitz
function f : E — R, and a point = in f~1(0). Prove

Oof(x) = conv{O, limy"

Y€ af(@), 7" —a, f(a7) >0},

where 0 can be omitted from the convex hull if int f=1(0) = 0.

** (Proximal normals and the Clarke subdifferential) Consider
a closed set S C E and a point z in S Use Exercises 3 and 5 and the
minimality of the subdifferential d.dg : E — E to prove

Oods(x) = conv{O,limyr y e NE(z™), Iyl =1, 2" -z, 2" € S}.

Deduce the Proximal normal formula (Theorem 9.2.1). Assuming
x € bd S, prove the following stronger version. Consider any dense
subset @ of S¢, and suppose P : Q — S maps each point in @ to a
nearest point in S. Prove

" — P(z")

Oodg(z) = conv{O, li£n T = Pl

" —ux, 2" EQ},

and derive a stronger version of the Proximal normal formula.

(Continuity of the projection) Consider a Chebyshev set S. Prove
directly from the definition that the projection Pg is continuous.

* (Suns) Complete the details in the proof of Theorem 9.2.5 (Con-
vexity of Chebyshev sets) as follows.

(a) Prove (iii) = (i).
(b) Prove (i) = (ii).

(c) Denoting the line segment between points y,z € E by [y, 2],
prove property (ii) implies

Ps(xz) = Py, ps(z))(z) forallz e E, z€ S. (9.2.6)
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14.

15.

16.
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(d) Prove (9.2.6) = (iii).

(e) Fill in the remaining details of the proof.

** (Basic Ekeland variational principle [43]) Prove the following
version of the Ekeland variation principle (Theorem 7.1.2). Suppose
the function f : E — (00, +00] is closed and the point = € E satisfies
f(z) < inf f + € for some real ¢ > 0. Then for any real A > 0 there is
a point v € E satisfying the conditions

(a) [lz — vl <A,
(b) f(v)+ (¢/M]lx —v|| < f(), and
(¢) v minimizes the function f(-) + (¢/A)| - —v|.

* (Approximately convex sets) Consider a closed set C C E. We
call C' approzimately convez if, for any closed ball D C E disjoint from
C, there exists a closed ball D’ > D disjoint from C with arbitrarily
large radius.

(a) If C is convex, prove it is approximately convex.
(b) Suppose C is approximately convex but not convex.

(i) Prove there exist points a,b € C and a closed ball D cen-
tered at the point ¢ = (a + b)/2 and disjoint from C.

(ii) Prove there exists a sequence of points z1, g, ... € E such
that the balls B, = z, + rB are disjoint from C and satisfy
DcCB,CByyyforallr=1,2,....

(iii) Prove the set H = cl U, B, is closed and convex, and its
interior is disjoint from C but contains c.

(iv) Suppose the unit vector u lies in the polar set H°. By
considering the quantity (u, ||z, — z|~*(z, — z)) as r — oo,
prove H° must be a ray.

(v) Deduce a contradiction.

(¢) Conclude that a closed set is convex if and only if it is approxi-
mately convex.

** (Chebyshev sets and approximate convexity) Consider a
Chebyshev set C C E, and a ball z + 8B disjoint from C.

(a) Use Theorem 9.2.3 (Differentiability of distance functions) to
prove
—d
lim sup ————dC(v) c(z)

=1.
voz flv—2
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(b) Consider any real a > d¢(z). Fix reals o € (0,1) and p satisfy-

ing

lc(w)<p<a_ﬁ.

By applying the Basic Ekeland variational principle (Exercise
14) to the function —d¢ + 04,8, prove there exists a point
v € E satisfying the conditions

do(z) +ollz—v| < do(v)
de(z) —ollz—v|| < de(v) forall z € x+ pB.

Use part (a) to deduce ||z —v|| = p, and hence x+ 8B C v+ aB.

(¢) Conclude that C' is approximately convex, and hence convex by
Exercise 15.

(d) Extend this argument to an arbitrary norm on E.

17. ** (Smoothness and biconjugacy) Consider a function f : E —
(00, +00] that is closed and bounded below and satisfies the condition

i@ _
llzli—oo ||
Consider also a point z € dom f.

(a) Using Carathéodory’s theorem (Section 2.2, Exercise 5), prove
there exist points x1, zs, ...,z € Eand real A1, Ag,..., A, >0
satisfying

(b) Use the Fenchel-Young inequality (Proposition 3.3.4) to prove

o(f)(@) =)o@,

Suppose furthermore that the conjugate f* is everywhere differen-
tiable.

(¢) If z € ri(dom(f**)), prove x; = x for each i.

(d) Deduce ri(epi(f**)) C epi(f).
(e) Use the fact that f is closed to deduce f = f**, so f is convex.

18. * (Chebyshev sets and differentiability) Use Theorem 9.2.3 (Dif-
ferentiability of distance functions) to prove that a closed set S C E is
a Chebyshev set if and only if the function d% is Fréchet differentiable
throughout E.
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19. * (Chebyshev convexity via conjugacy) For any nonempty closed
set S C E, prove

(II : |l22+ 5s>* _ - ||22— d3

Deduce, using Exercises 17 and 18, that Chebyshev sets are convex.

20. ** (Unique furthest points) Consider a set S C E, and define a
function rg : E — [—o00, +00] by

rs(z) = sup ||z — y||.
y€eS

Any point y attaining the above supremum is called a furthest point
in S to the point z € E.

(a) Prove that the function (r% — || - ||?)/2 is the conjugate of the
function
gs = s —|- ||2'
2

(b) Prove that the function r% is strictly convex on its domain.

Now suppose each point € E has a unique nearest point gg(z) in
S.

(c) Prove that the function gs is continuous.

We consider two alternative proofs that a set has the unique furthest
point property if and only if it is a singleton.

(d) (i) Use Section 6.1 , Exercise 10 (Max-functions) to show that
the function r%/2 has Clarke subdifferential the singleton
{z — ¢gs(z)} at any point z € E, and hence is everywhere
differentiable.

(ii) Use Exercise 17 (Smoothness and biconjugacy) to deduce
that the function gg is convex, and hence that S is a single-
ton.

(e) Alternatively, suppose S is not a singleton. Denote the unique
minimizer of the function rg by y. By investigating the conti-
nuity of the function gg on the line segment [y, gs(y)], derive a
contradiction without using part (d).

21. ** (Chebyshev convexity via inversion) The map ¢ : E\ {0} — E
defined by (z) = ||z|| 2z is called the inversion in the unit sphere.

(a) If D C E is a ball with 0 € bd D, prove ¢(D\ {0}) is a halfspace
disjoint from 0.
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(b) For any point z € E and radius § > ||z||, prove
1
U(z+6B)\{0}) = m{y €E: |y +z| >4}

Prove that any Chebyshev set C C E must be convex as follows.

Without loss of generality, suppose 0 ¢ C but 0 € cl (convC). Con-
sider any point z € E.

(c) Prove the quantity
p=1inf{6§ >0|C C z+ éB}
satisfies p > ||z||.
(d) Let z denote the unique nearest point in C' to the point
-z
p? — =l

Use part (b) to prove that ¢z is the unique furthest point in .C
to x.

(e) Use Exercise 20 to derive a contradiction.
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9.3 Amenable Sets and Prox-Regularity

In the previous section we saw that nonempty closed convex subsets S of
the Euclidean space E are characterized by the attractive global property
that every point in E has a unique nearest point in S. The corresponding
local property is also a useful tool: we begin with a condition guaranteeing
this property.

We call the closed set S proz-regular at a point Z in S if there exists
a constant p > 0 such that all distinct points z,z’ € S near T and small
vectors v € Ng(z) satisfy the inequality

(v,2' —z) < plla’ — =] (9.3.1)

Geometrically, this condition states that the ball centered at the point
T+ 511—)1) containing the point  on its boundary has interior disjoint from

Proposition 9.3.2 (Prox-regularity and projections) If a closed set
S C E is proz-reqular at a point T € S, then each point in E close to T has
a unique nearest point in S.

Proof. If the result fails, then there exist sequences of points u, — Z in
E and z, # 7. in S such that both z, and /. are nearest points in S to u,.
Clearly we have x,, — Z and z. — Z, and Exercise 3 in Section 9.1 implies
0 # u, — z, € Ns(z,). Applying inequality (9.3.1), there exist constants
€, p > 0 such that

o —
e @ =) < plle — e
fur =1

for all large 7. However, the fact that ||u, — z,| = ||u, — || easily implies
/ Loy 2
(uT—wT?xr—xT‘>:§”xr_$T‘|| s

contradicting the preceding inequality. O

In this section we study an important class of structured prox-regular
sets. Our key tool is the chain rule we outlined in Section 7.1 (Exercise 6
(Transversality)).

We proceed by filling in the details of the chain rule. Throughout this
section we consider a Euclidean space Y, open sets U C E and V C Y,
closed sets S C U and R C V, and a continuous map h : U — Y. Our aim
is to calculate the tangent cone to the set SN h~'(R): the first step is an
easy inclusion for the contingent cone, generalizing Proposition 7.1.1.
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Proposition 9.3.3 Suppose the function h is Fréchet differentiable at the
point x € SN h~1(R). Then

Ksnn-1(r)(2) C Ks(z) N (Vh(2)) ™ Kr(h(z)).

To obtain an inclusion in the opposite direction, we need the transver-
sality condition
Vh(z)(Ts(z)) — Tr(h(z)) =Y. (9.3.4)

Theorem 9.3.5 (Chain rule for sets) If the function h is strictly dif-
ferentiable at the point x € S N h™Y(R), and the transversality condition
(9.3.4) holds, then

Tson-1(m)(@) D Ts(2) N (Vh(z)) " Ta(h()) (9.3.6)
Nson-1(ry (@) C Ns(x) + (Vh(z))*Nr(h(z)). (9.3.7)

If furthermore the sets S and R are tangentially regular at the points x
and h(x) respectively then the set S N h~1(R) is tangentially regular at z,
and

Tsrn-1(r)(z) = Ts(z) N (Vh(z)) ' Tr(h(z))
Nsnn-1(ry(x) = Ns(z) + (Vh(z))*Nr(h(z))-

Proof. The function g : U x V — Y, defined by g(z,y) = h(z) — y, is
strictly differentiable at the point (z,h(z)), with derivative (Vh(x),—I)
(where I denotes the identity map). Section 6.3, Exercise 9 (Products)
shows Tsxr(z, h(z)) = Ts(xz) x Tr(h(z)), so the transversality condition
says Vg(z,h(z))Tsxr(z,h(z)) =Y.

We can now apply Theorem 7.1.5 (Surjectivity and metric regularity)
to deduce that the function g is weakly metrically regular on the set S x R
at the point (z, h(z)): in other words, there is a constant &’ such that

d(sxr)ng-1(0)(2,y) < K'[|h(z) — |

for all points (z,y) € S x R close to (z,h(x)). Thus the locally Lipschitz
function
(2,y) = K|h(z) =yl — dsxr)ng-1(0) (2, ¥)

has a local minimizer on S X R at (x, h(z)), so by Proposition 6.3.2 (Exact
penalization), there is a constant L > 0 such that (z,h(x)) is an uncon-
strained local minimizer of the function

(z,y) — K|h(z) —yll — dsxryng-1(0)(2,y) + Ldsxr(2,9)-

Since dsx r(z,y) < ds(z) + dr(y), if we set k = max{k’, L}, we obtain the
inequalities

dsnn-1(r)(2) < d(sxRr)ng-1(0)(2, h(2)) < k(ds(2) + dr(h(2))), (9.3.8)
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for all z € U close to x.

Now consider a vector p € Ts(z) N (Vh(z)) 'Tr(h(x)), and sequences
" — xin SNA™Y(R) and t, | 0. According to Theorem 6.3.6 (Tangent
cones), to prove inclusion (9.3.6) we need to find vectors p” — p satisfying
z" +t.p" € SNh7I(R) for all . To this end, note that the inequalities
(9.3.8) show

dsnn-1(r) (2" + trp) < k(ds(z” +t,.p) + dr(h(z" + t-p))),
so there exist points 27 € SN h™!(R) such that
4" + tp — 2l < K(ds(a" + p) + dr(h(a” + t,9))).
We now claim the vectors p, = ¢ 1(2" — z") satisfy our desired properties.
Clearly, " + t,.p” € SN h™'(R), by definition, and

T 1 T 1 T 1 T
lp=p"ll = ~lle” +trp — 2| < k(t—ds(m +1rp) + —dr(h(z” + trp)))-

Since p € Ts(x), we know t,1ds(z" + t,p) — 0. On the other hand, by
strict differentiability,

h(zr + t;p) = h(z,) + t.Vh(z)p + o(t,)

as r — 00, SO

Laph(a” +1,0)) = Ldlh(a) + 1, Vh()p) + )

r 128

The first term on the right approaches zero, since Vh(z)p € Tr(h(z)) by
assumption, so we have proved p, — p as desired.

We have thus proved inclusion (9.3.6). The Krein—Rutman polar cone
calculus (3.3.13) and the transversality condition imply

(Ts(@) N (VA() " Tr(h(z)) = Ns(2) + (Vh(z))* Na(h(z)),

so we immediately obtain inclusion (9.3.7). With the extra tangential reg-
ularity assumptions, Proposition 9.3.3 implies

Tsrn-1(r) (%) C Ksan-1(r)(z) C Ks(z) N (Vh(z)) ' Kr(h(z))
= Ts(z) N (Vh(z)) ' Tr(k(z)) C Tson-1(r) (),

so the final claims now follow. O

Inverse images of convex sets under smooth mappings are particularly
common examples of nonsmooth nonconvex sets. We call a set Q C E
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amenable at a point T € @ if there exists an open neighbourhood U of
Z, a Euclidean space Y, a closed convex set R C Y, and a continuously
differentiable map h : U — Y, such that

QNU =h"'(R), (9.3.9)
and furthermore, the transversality condition
Ng(h(®)) N N((Vh(z))") = {0} (9.3.10)

holds. If furthermore we can choose h to be twice continuously differentiable
at Z, then we call Q fully amenable at Z. It is easy to check that if the
condition (9.3.10) holds, then it also holds with the point Z replaced by
any nearby point in Q.

The following straightforward exercise using the preceding chain rule
shows that amenable sets are well-behaved.

Corollary 9.3.11 (Amenable sets) If the set Q C E is amenable at the
point T € Q, then Q is tangentially reqular at T. Furthermore, given the
representation (9.3.9), we have

To(z) = Vh(z)'Tr(h(z))
Ng(z) = Vh(Z)*Nr(h(T)).

With the extra assumption of full amenability, we arrive, as promised,
at a broad class of prox-regular sets.

Theorem 9.3.12 (Amenability and prox-regularity) If a set Q@ C E
is fully amenable at a point T € Q, then Q is proz-regular at .

Proof. Suppose we have the representation (9.3.9), where the function A is
twice continuously differentiable, and suppose the transversality condition
(9.3.10) holds. If prox-regularity fails, then there exist sequences of points
xr # x,. approaching Z in @, and vectors v, € No(z,) approaching 0, such
that

(U, x!. — ) > 7|2l — =2 (9.3.13)

As we observed above, the condition (9.3.10) implies
Nr(h(zr)) N N((Vh(zr))") = {0}

for all large . Hence Corollary 9.3.11 (Amenable sets) implies there exist
vectors Y, € Nr(h(z,)) such that v, = (Vh(z,))*y,, for each large r.

We next observe that the vectors y, approach 0. Indeed, if this were
not the case, we could find a subsequence for which |y,|| > € for some
€ > 0 and with |ly.|| "'y, — u for some unit vector u. Since the normal
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cone Ngi(-) is a closed multifunction (Section 4.2, Exercise 8), we deduce
u € Ngr(h(Z)). On the other hand, as 7 — oo in the subsequence,

(Vh(m)*(nylr—nyr) - (m)m 0,

so u € N(Vh(z)*), contradicting the transversality condition (9.3.10).
Returning to our proof, for all large r we have by Taylor’s theorem,

0 > (ynh(}) - h(e,))
= (e, Vhle)(@, — o)) + (e, 5 V7h() (& — 27— 22) ),

for some point z, between z, and z!.. For large r, inequality (9.3.13)
shows that the first term on the right hand side is bigger than r||z’. — z,||?,
which is eventually larger than minus the second term. This contradiction
completes the proof. O

Exercises and Commentary

Prox-regularity as a tool for nonsmooth analysis was introduced in [156].
Its relationship with the differentiability of the distance function is studied
in [157]. Amenability is surveyed in [155].

1. Prove Proposition 9.3.3.

2. (Persistence of amenability) Prove that if a set ) is amenable at
a point T € @, then it is amenable at every nearby point in Q.

3. * Use the chain rule for sets, Theorem 9.3.5, and Section 3.3, Exercise
16 (Sums of closed cones), to prove Corollary 9.3.11 (Amenable sets).

4. (Amenability and Mangasarian-Fromowitz) Compare Corol-
lary 9.3.11 (Amenable sets) with the formula for the contingent cone
to a feasible region satisfying the Mangasarian-Fromowitz constraint
qualification (Theorem 7.2.6).
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9.4 Partly Smooth Sets

Having solved an optimization problem, we often wish to study the sensi-
tivity of the solution to small changes in the problem. Such “sensitivity
analysis” often depends on a judicious blend of smooth and nonsmooth
analysis. In this section we consider a class of sets particularly well struc-
tured for such analysis.

We begin by formalizing the idea of a smooth surface in E. We call a
set M C E a manifold of codimension m around a point T € M if there is
a neighbourhood V of Z and a twice continuously differentiable (C?)) map
F : V — R™ with surjective derivative VF(Z) such that points € V lie
in M if and only if F(z) = 0. A set M is simply a manifold (of codimension
m ) if this condition holds for all points £ € M.

The set in R? defined by the inequality z > |z| +y? has a sharp “ridge”
described by the manifold M of points satisfying the equations z = 0 and
z = y2. Minimizing the linear function (x,y,z) — 2 over this set gives
the optimal solution (0,0,0), and minimizing any nearby linear function
gives a nearby optimal solution lying on M. We isolate this kind of stable
structure of the solution in the following definition.

We call a closed set S C E partly smooth relative to a manifold M C
S if, for all points x € M, the set S is tangentially regular at x with
Nuy(z) = Ng(x) — Ng(z), and furthermore, for any normal y € Ng(x)
and sequence of points z, € M approaching z, there exists a sequence
of normals y,. € Ng(z,) approaching y. A simple example is the positive
orthant.

Proposition 9.4.1 (Partly smooth orthant) The positive orthant R}
is partly smooth relative to each manifold

{xeRﬁ‘l{Hwi:O}l:k}
(fork=0,1,2,...,n).

A face of a polyhedron is its intersection with a supporting hyperplane.
The result above shows that the positive orthant is partly smooth relative
to the relative interior of any face: not surprisingly, this property holds for
any polyhedron.

An analogous, less obvious result concerns the semidefinite cone: we
state it without proof.

Theorem 9.4.2 (Partial smoothness of S) The semidefinite cone S™;
is partly smooth relative to each manifold {X € S™ | rankX = k} (for
k=0,1,2,...,n).

The following easy result describes another basic example.
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Proposition 9.4.3 (Partial smoothness and cones) Any closed con-
vex cone K C E is partly smooth relative to K N (—K).

By building on the chain rule for sets (Theorem 9.3.5), more complex ex-
amples follow from the building blocks above. We leave the following result
as an exercise.

Theorem 9.4.4 (Partly smooth chain rule) Given a Euclidean space
Y and a map h: E — Y that is continuously differentiable around a point
z € E, suppose the closed set R C'Y is partly smooth relative to a manifold
M containing h(x). Assuming the transversality condition

Vh(@)E - T (h(z)) = Y,

then for some open neighbourhood U of x, the set h=*(M)NU is a manifold,
relative to which the set h='(R) is partly smooth.

An easy consequence is the partial smoothness of inequality-constrained
sets, assuming a typical constraint qualification.

Corollary 9.4.5 (Inequalities and partial smoothness) Given maps
gi : E — R (for i in some finite index set I) that are continuously differ-
entiable around a point

zeS={z€E|g(x) <0 (iel)}
define the active index set at € E by
I(z) ={ieI|gi(z) =0},

and suppose the set of active gradients {Vg;(Z)|i € I(Z)} is linearly inde-
pendent. Then for some open neighbourhood U of T, the set

{zeU|I(z) = I(z)}
is a manifold, relative to which S is partly smooth.

Our aim is sensitivity analysis and sufficient optimality conditions for
problems with partly smooth feasible regions. To accomplish this, we com-
bine a variety of conditions familiar in optimization theory: a smooth sec-
ond order condition like that of Theorem 2.1.5; the partial smoothness
condition we introduced above; a kind of “strict complementarity condi-
tion”; the prox-regularity condition we discussed in the previous section.

Given a set S C E that is partly smooth relative to a manifold M C
S, we call a point Z € M strongly critical for the minimization problem
infg <E, ) if

—Cc €riNg(Z) (9.4.6)
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and ~ B
liminf (2T =2 (9.4.7)
=z in M ||z — T2

We can write this latter condition rather more constructively as follows.
According to our definition, there exists a neighbourhood V' C E of Z and
C®@ functions h; : V. — R (for i = 1,2,...,m) such that the gradients

Vh;(Z) are linear independent and
MAV ={zeV|hiz)=0Vi.

The condition (9.4.6) together with partial smoothness of S implies the
existence of scalars \; satisfying —¢ = 3, \;Vh;(Z). In fact, by linear
independence, these \; are unique. Now an exercise shows that the second
order condition (9.4.7) is equivalent to the condition

0£de{Vhi(z)|i=1,2,...,m}* = zm:,\]v%,-(z)(d, d) > 0. (9.4.8)
=1

Theorem 9.4.9 (Strong critical points) Suppose the closed set S C E
is partly smooth relative to the manifold M C E. If the point T € M
is strongly critical for the problem infg (C,-), then for all vectors ¢ € E
close to ¢ the problem infg (c,-) has a strong critical point x(c) € M whose
dependence on c is continuously differentiable, and satisfying x(¢) = . If
S is also proz-reqular at Z, then for all ¢ close to € the point xz(c) is a strict
local minimizer for infg (c,-).

Proof. Describe the manifold M as in the previous paragraph, and con-
sider the system of equations in variables z € E and A € R™,

hi(z) = 0 (i=1,2,...,m)

i=1

Using the positive definiteness condition (9.4.8), the inverse function the-
orem shows the existence of a solution (z(c), A\(c)) for ¢ close to ¢, whose
dependence on c is continuously differentiable, and satisfying z(¢) = z.
An exercise shows that, providing c¢ is close to ¢, any nonzero vector d
orthogonal to each vector Vh;(z(c)) satisfies

m

> Xi(0)V2hi(x(c))(d, d) > 0.

=1

To complete the proof that the point z(c) is strongly critical, we just
need to check —c € ri Ng(z(c)), for all vectors ¢ close to ¢. Recall that
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the subspace spanned by the cone Ng(z(c)) is Na(z(c)), and c lies in this
subspace by the definition of z(c).

By way of contradiction, suppose there is a sequence of vectors ¢, — ¢ in
E satisfying —c, € ri Ng(z(c,)) for each r. Hence we can separate —c, from
Ng(z(cr)) in the subspace Ny (z(c,)), so some unit vector z, € Nas(z(cy))
satisfies inf (2, Ng(z(c;)) +¢-) > 0. By taking a subsequence, we can
suppose z, approaches a unit vector Z, which must lie in Nps(Z).

Now consider any vector § € Ng(Z). By partial smoothness, there are
vectors y, € Ng(z(c,)) approaching §. Since (z,,yr + c¢,) > 0, we deduce
(2,5 +¢) > 0. We have thus shown that the unit vector Zz separates the
vector —¢ from the cone Ng(Z) in its span, Ny (Z), contradicting the fact
that —¢ € ri Ng(Z).

Now suppose the set S is prox-regular at Z (and hence also at any
nearby point in S). Clearly it suffices to prove the strict local minimizer
property just for the point Z. By prox-regularity, there is a constant p > 0
such that all distinct points x,2’ € S near Z and small vectors v € Ng(z)
satisfy

(v,2' —z) < plla’ — z||?.

On the other hand, by the second order condition (9.4.7), there is a constant
6> 0 such that all points 2"/ € M near T satisfy the inequality

(e,z" — z) > do|jz" — Z|2. (9.4.10)

We claim that this inequality in fact holds for all " € S near 7.
If the claim fails, there is a sequence z]. — Z in S satisfying the inequal-
ity
(€ 2y — ) < 8|lz; — 2%,
for all . Since manifolds are prox-regular (Exercise 9), for all large r the
point x]. has a unique nearest point =, in M. Inequality (9.4.10) implies
x, # .., so after taking a subsequence, we can suppose the unit vectors

-z
Zp = T———— € Np(ar)
lz;. — z||

approach a unit vector zZ. Notice

@z —2)— (e —2) _ |2 —3)° - ||z — 2|2

<é

C,2p) =
(€ 2r) AN AT

Letting 7 — oo shows the inequality
(¢,z) <0. (9.4.11)

Since x, — Z, we know Z lies in the subspace Ny (Z), which is the span
of the cone Ng(Z), so by condition (9.4.6), there exists a scalar A > 0 such
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that —¢ + Az € Ng(Z). Hence, by partial smoothness, there exist vectors
vr € Ng(z,) approaching —¢+ Az. By prox-regularity, there exists a scalar
Kk > 0 such that

(kvr, @) — ) < p”zlr - 371"“2

for all 7, so (v, 2,-) < pllzl. — x,||/k. Letting r — oo shows the inequality
(—¢+ Az, z) <0, contradicting inequality (9.4.11). O

Exercises and Commentary

The material in this section is taken from [126, 92].

1. Prove Proposition 9.4.1 (Partly smooth orthant).

2. * Prove that any polyhedron is partly smooth relative to the relative
interior of any face.

3. Prove Proposition 9.4.3 (Partly smooth cones).

4. Identify all the manifolds relative to which the second-order cone
epi (] - ||) is partly smooth.

5. * Prove Theorem 9.4.4 (Partly smooth chain rule).

6. * (Strict complementarity) Prove Corollary 9.4.5 (Inequalities and
partial smoothness). With the assumptions of this result, prove that
the strict complementarity condition (9.4.6) holds if and only if there
exist Lagrange multipliers \; > 0 (for ¢ € I(Z)) such that Z is a
critical point of the Lagrangian defined by

L(z) = (¢,z) + Z Aigi(z).

i€l(z)

7. * (Constructive second order condition) Verify the claim before
Theorem 9.4.9 that the two second order conditions (9.4.7) and (9.4.8)
are equivalent.

8. * Complete the details of the proof of Theorem 9.4.9 (Strong critical
points).

9. * (Prox-regularity of manifolds) If the set M C E is a manifold
around the point Z € M, prove M is prox-regular at Z.
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10. * (Necessity of prox-regularity) Partition R? into four disjoint

sets,
S {(z,y) |y <0}
S2 = {@y)]0<y<22”}
S3 = {(z,9)]0<22% <y <4z?}
Se = {(z,y)|42® <y},
and define a function f : R? — R by
22—y on S;
) ot + 222y —y2 on S
fl@y) = 3z% —y on S3
Yy — 522 on Sy.

(i
(ii
(iii) Prove that the set epi f is partly smooth at zero relative to each
of the manifolds

~—

Prove that f is everywhere locally Lipschitz.

~

Prove that f is everywhere regular.

M = {(@,y,2)]y=0, z=a2},
My = {(@9,7)|y=42% z=—z7}.

(iv) Prove that zero is a strong critical point relative to M; for the
problem of minimizing the function (z,y, z) — z over epi f, but
is not a local minimizer.

(v) Is epi f prox-regular at zero?



Chapter 10

Postscript: Infinite Versus
Finite Dimensions

10.1 Introduction

We have chosen to finish this book by indicating many of the ways in
which finite dimensionality has played a critical role in the previous chap-
ters. While our list is far from complete it should help illuminate the
places in which care is appropriate when “generalizing”. Many of our main
results (on subgradients, variational principles, open mappings, Fenchel
duality, metric regularity) immediately generalize to at least reflexive Ba-
nach spaces. When they do not, it is principally because the compactness
properties and support properties of convex sets have become significantly
more subtle. There are also significantly many properties that characterize
Hilbert space. The most striking is perhaps the deep result that a Banach
space X is (isomorphic to) Hilbert space if and only if every closed vector
subspace is complemented in X. Especially with respect to best approxi-
mation properties, it is Hilbert space that best captures the properties of
Euclidean space.

Since this chapter will be primarily helpful to those with some knowl-
edge of Banach space functional analysis, we make use of a fair amount of
standard terminology without giving details. In the exercises more specific
cases are considered.

Throughout, X is a real Banach space with continuous dual space X*
and f : X — (0o, +00] is usually convex and proper (somewhere finite). If
f is everywhere finite and lower semicontinuous then f is continuous—since
a Banach space is barreled, as it is a Baire space (see Exercise 1). This is
one of the few significant analytic properties which hold in a large class of
incomplete normed spaces. By contrast, it is known that completeness is

239
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characterized by the nonemptiness or maximality of subdifferentials on a
normed space. For example, on every incomplete normed space there is a
closed convex function with an empty subdifferential, and a closed convex
set with no support points.

The convex subdifferential at a point x where f is finite is defined by

Of(z) ={z* € X*|{(z*,h) < f(x + h) — f(z) forall he X}.

In what follows, sets are usually closed and convex and B(X) denotes
the closed unit ball: B(X) = {z | ||z|| < 1}. In general our notation
and terminology are consistent with the Banach space literature. We will
interchangeably write (z*,h) or z*(h) depending whether functional or
vectorial ideas are first in our minds.

A point z* of a convex set C' is a (proper) support point of C if there
exists a linear continuous functional ¢ with

d(x*) =0 =sup ¢ > inf ¢.
C c

Then ¢ is said to be a (nontrivial) supporting functional and H = ¢~ (o)
is a supporting hyperplane. In the case when C = B(X), ¢ is said to be
norm-attaining. )

We complete the preliminaries by recalling some derivative notions. Let
[ denote a bornology, that is, a family of bounded and centrally symmetric
subsets of X, closed under positive scalar multiplication and finite unions,
and whose union is X. We write z* € 9° f(z) if for all sets B in 3 and real
€ > 0, there exists real § > 0 such that

(z*,h) < flo+ t}? — /@) +e¢e forallt € (0,9) and h € B.

It is useful to identify the following bornologies:

points «— Gateaux (G)
(norm) compacts < Hadamard (H)
weak compacts < weak Hadamard (W H)
bounded « Fréchet (F).

Then 8% f(z) = 9°f(z) for any locally Lipschitz f, while 87 f(z) =
OWH f(z) when X is a reflexive space. With this language we may de-
fine the (-derivative of f at x by

{VPf(@)} = 0% f(z) N —0°(—f)(x)

so that
{Vﬁf(a:)} = 0P f(x) for concave f.
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For convex functions there is a subtle interplay between these notions.
For example, a convex function that is weak Hadamard differentiable at a
point of X is Fréchet differentiable at that point if ¢; (IN) ¢ X. For general
Lipschitz mappings the situation is much simpler. For example, on every
nonreflexive but smooth Banach space there is a distance function that is
everywhere weak Hadamard differentiable but not Fréchet differentiable at
some point. Hence the situation on ¢y(IN) differs entirely for convex and
distance functions.

10.2 Finite Dimensionality

We begin with a compendium of standard and relatively easy results whose
proofs may be pieced together from many sources. Sometimes the separable
version of these results is simpler.

Theorem 10.2.1 (Closure, continuity, and compactness) The fol-
lowing statements are equivalent:

(i) X is finite-dimensional.

(i7) Every vector subspace of X is closed.
(iit) Every linear map taking values in X has closed range.
(iv) Every linear functional on X is continuous.

(v) Ewvery convez function f: X — R is continuous.

(vi) The closed unit ball in X is (pre-)compact.

)
(vig) For each nonempty closed set C in X and for each x in X, the dis-
tance

do(z) = inf{llz —yll |y € C}

is attained.
(viii) The weak and norm topologies coincide on X.

(iz) The weak-star and norm topologies coincide on X*.

Turning from continuity to tangency properties of convex sets we have
the following result.

Theorem 10.2.2 (Support and separation) The following statements
are equivalent:

(%) X is finite-dimensional.
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(45) Whenever a lower semicontinuous conver f : X — (o0o0,+o0] has a
unique subgradient at x then f is Gateaur differentiable at x.

(#i) X 1is separable and every (closed) convex set in X has a supporting
hyperplane at each boundary point.

(iv) Every (closed) convex set in X has nonempty relative interior.

(v) ANR =0, A closed and conver, R a ray (or line) = A and R are
separated by a closed hyperplane.

It is conjectured but not proven that the property described in part (iii) of
the above result holds in all nonseparable Banach spaces X.

In essence these two results say “don’t trust finite-dimensionally derived
intuitions”. In Exercise 6 we present a nonconvex tangency characteriza-

tion.
By comparison, the following is a much harder and less well known set

of results.
Theorem 10.2.3 The following statements are equivalent:

(i) X is finite-dimensional.

(i9) Weak-star and norm convergence agree for sequences in X*.
(#5) Ewery continuous convezr f: X — R is bounded on bounded sets.

(iv) For every continuous conver f : X — R, the subdifferential Of is
bounded on bounded sets.

(v) For every continuous convex f : X — R, any point of Gateauz dif-
ferentiability is a point of Fréchet differentiability.

Proof sketch. (i) = (iii) or (v) is clear; (iii) = (iv) is easy.

To see (v) = (ii) and (iii) = (ii) we proceed as follows. Consider
sequences (z}) in X* and (a,) in R satisfying ||z}|| = 1 and 0 < «, | 0.
Define

£(@) = sup (&}, 3) — an}.
nclN
Then f is convex and continuous and satisfies

w*

Gateaux differentiable at 0 < z) —

and
Fréchet differentiable at 0 < ||z} ||« — O.

Thus (v) = (ii).
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Now consider the function

f@) =3 enl(@h,2)),

where ¢, (t) = n(|t| — (1/2))". Then f is
finite (continuous) < i, % 0,

and is
bounded on bounded sets < ||z} |« — O.

Thus (iii) = (ii). a

Note that the sequential coincidence of weak and norm topologies char-
acterizes the so called Schur spaces (such as ¢; (IN)), while the sequential co-
incidence of weak and weak-star topologies characterizes the Grothendieck
spaces (reflexive spaces and nonreflexive spaces such as £, (IN)).

The last four statements of the previous theorem are equivalent in the
strong sense that they are easily interderived while no “easy proof” is
known of (ii) = (i). (This is the Josephson—Nissenzweig theorem, first
established in 1975.) For example, (ii) = (iii) follows from the next result.

Proposition 10.2.4 Suppose that f : X — R is continuous and conver
and that (z,,) is bounded while f(x,) — co. Then

* *

w

x
x, € 0f(xn) = +—= —0
(B

Thus each such function yields a Josephson—Nissenzweig sequence of unit
vectors w*-convergent to zero.

Theorem 10.2.3 highlights the somewhat disconcerting fact that even
innocent-seeming examples of convex functions inevitably involve deeper
questions about the structure of Banach spaces. The following are some
examples.

(i) In co(IN) with the supremum norm || - ||, one may find an equivalent
norm ball Bo(X) so that the sum By (X) + Bo(X) is open. This
is certainly not possible in a reflexive space, where closed bounded
convex sets are weakly compact.

(ii) A Banach space X is reflexive if and only if each continuous linear
functional is norm-attaining, that is, achieves its norm on the unit
ball in X. (This is the celebrated theorem of James.) In consequence,
in each nonreflexive space there is a closed hyperplane H such that
for no point z outside H is dy(x) attained.
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(iii) In most nonseparable spaces there exist closed convex sets C' each of
whose points is a proper support point. This is certainly not possible
in a separable space, wherein quasi relative interior points must exist.

10.3 Counterexamples and Exercises

1. (Absorbing sets) A convex set C satisfying X = U{tC |t > 0} is
said to be absorbing (and zero is said to be in the core of C).

(a)

(b)

A normed space is said to be barreled if every closed convex ab-
sorbing subset C' has zero in its interior. Use the Baire category
theorem to show that Banach spaces are barreled. (There are
normed spaces which are barreled but in which the Baire cat-
egory theorem fails, and there are Baire normed spaces which
are not complete: appropriate dense hyperplanes and countable
codimension subspaces will do the job.)

Let f be proper lower semicontinuous and convex. Suppose that
zero lies in the core of the domain of f. By considering the set

C={zeX|f(z) <1},

deduce that f is continuous at zero.

Show that an infinite-dimensional Banach space cannot be writ-
ten as a countable union of finite-dimensional subspaces, and so
cannot have a countable but infinite vector space basis.

Let X =¢3(N) and let C = {z € X | |z,| < 27"}. Show
X £ JtC |t >0} but X =cl | J{tC |t >0}

Let X = ¢,(N) for 1 < p < co. Let
C={zeX]||z, <47},

and let
D={ze X |z,=2"" t>0}.

Show C N D = {0}, and so
Tenp(0) = {0}

but
Tc(0) NTp(0) = D.

(In general, we need to require something like 0 € core(C — D),
which fails in this example—see also Section 7.1, Exercise 6(h).)
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Show that every (separable) infinite-dimensional Banach space
X contains a proper vector subspace Y with ¢l (Y) = X. Thus
show that in every such space there is a nonclosed convex set
with empty interior whose closure has interior.

2. (Unique subgradients)

(a)
(b)

Show that in any Banach space, a lower semicontinuous convex
function is continuous at any point of Gateaux differentiability.

Let f be the indicator function of the nonnegative cone in £,(IN)
for 1 < p < oo. Let z* have strictly positive coordinates. Then
prove zero is the unique element of df(z*) but f is not contin-
uous at z*.

Let X = L]0, 1] with Lebesgue measure. Consider the negative
Boltzmann-Shannon entropy:

B(x) :/0 z(t) log x(t) dt

for z(t) > 0 almost everywhere and B(x) = +oo otherwise.
Show B is convex, nowhere continuous (but lower semicontinu-
ous), and has a unique subgradient when = > 0 almost every-
where, namely 1 + log z(t).

3. (Norm-attaining functionals)

(a)
(b)

Find a non-norm-attaining functional in ¢g(N), in 4o, (IN), and
in 51 (N)

Consider the unit ball of ¢;(IN) as a set C' in ¢3(N). Show that
C is closed and bounded and has empty interior. Determine the
support points of C.

4. (Support points)

(a)

(b)

Let X be separable and let C C X be closed, bounded, and
convex. Let {x,|n € N} be dense in C. Let z* = >° | 27"z,
Then any linear continuous functional f with f(z*) = sups f
must be constant on C' and so x* is not a proper support point
of C.

Show that every point of the nonnegative cone in the space ¢1 (R)
is a support point.

5. (Sums of closed cones)

(a)

Let X = £3(N). Construct two closed convex cones (subspaces)
S and T such that SNT = {0} while S~ +T~ # ¢3(N). Deduce
that the sum of closed subspaces may be dense.
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(b) Let X = ¢3(N). Construct two continuous linear operators map-
ping X to itself such that each has dense range but their ranges
intersect only at zero. (This is easier if one uses the Fourier
identification of Ly with #5.)

6. (Epigraphical and tangential regularity)

(a) Let C be a closed subset of a finite-dimensional space. Show
that

de (05 h) = dg(0)(h)
for all h € X. Show also that d¢ is regular at x € C if and only
if C is regular at x.

b) In every infinite-dimensional space X there is necessarily a se-
Yy
quence of unit vectors (u,,) such that inf{||u, —un|||n # m} > 0.
Consider the set

C= {4*”(u0+iun) ‘nzO,l,Q,...}U{O}.

Show the following results:
(i) Tc(0) = Kc(0) = 0.
(ii) For all h € X,

1Al = de(0;h) = die (o) (h)
> dg(0;h) 2 =(=d)&(0;h) = —[Al].

(iii) dOC(O; ug) = ch(()) (ug) > da(O;UO).

(iv) (=d)g(05up) > (—d)5(0;uo).

Conclude that C is regular at zero, but that neither dc nor —d¢
is regular at zero.

(c) Establish that X is finite-dimensional if and only if regularity of
sets coincides with regularity defined via distance functions.

7. (Polyhedrality) There is one particularly striking example where
finite-dimensional results “lift” well to the infinite-dimensional set-
ting. A set in a Banach space is a polyhedron if it is the intersection
of a finite number of halfspaces. The definition of a polytope is un-
changed since its span is finite-dimensional.

(a) Observe that polyhedra and polytopes coincide if and only if X
is finite-dimensional.

(b) Show that a set is a polyhedron if and only if it is the sum of a
finite-dimensional polyhedron and a closed finite-codimensional
subspace of X.
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So each polyhedron really “lives” in a finite-dimensional quotient
space. In essence, this is why convex problems subject to a finite
number of linear inequality constraints are so tractable. By contrast,
note that Theorem 10.2.2(v) shows that even a ray may cause diffi-
culties when the other set is not polyhedral.

8. (Semicontinuity of separable functions on ¢,) Let functions
vi : R — [0, +00] be given for i € N. Let the function F be defined
on X =/, for 1 <p < oo by

F(z) = Z%’(%’)‘

Relatedly, suppose the function ¢ : R — (o0,+00] is given, and
consider the function

(a)
(b)

Fol@) = 3 (@),

Show that F' is convex and lower semicontinuous on X if and
only if each ; is convex and lower semicontinuous on R.

Suppose 0 € dom F,. Show that F, is convex and lower semi-
continuous on X if and only if

(i) ¢ is convex and lower semicontinuous on R, and

(ii) infr ¢ = 0= (0).

Thus, for ¢ = exp* we have F,, is a natural convex function
which is not lower semicontinuous.

9. (Sums of subspaces)

(a)

(b)

Let M and N be closed subspaces of X. Show that M + N is
closed when N is finite-dimensional. (Hint: First consider the
case when M NN = {0}.)
Let X = £, for 1 < p < co. Define closed subspaces M and N
by
M ={z|x2, =0} and N ={z|x2, =2 "z2n_1}.
Show that M + N is not closed. Observe that the same result
obtains if M is replaced by the cone
K ={x|z2p, =0, w21 > 0}.
(Hint: Denote the unit vectors by (u,). Let
" = Z ugk—1 and y" =z" + Z 2 R o
k<n k<n

Then z™ € M, y® € N, but 2™ —y® € M + N converges to
Zk<002k“2k ¢ M+ N.)
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(c) Relatedly, let X := ¢ and denote the unit vectors by (un).
Suppose (o) is a sequence of positive real numbers with 1 >
a, > 0 and «, — 1 sufficiently fast. Set

€n = U2n—1, fn = Qpl2n—1 + V 1- a%u2n-
Consider the subspaces
M, = clspan{ej,es,...} and My = clspan{fi, fo,...}.

(i) Show M; N M, = {0} and that the sum M;j- + M is dense
in X but not closed.
(ii) Dually, show that Mj- N Mz = {0} and that the sum M; +
M, is dense in X but not closed.
(iii) Find two continuous linear operators on X, 71, and 1> such
that both have dense range but R(T1)NR(T2) = {0}. (Such
subspaces are called disjoint operator ranges.)

10.4 Notes on Previous Chapters

Chapter 1: Background

In infinite-dimensional spaces, the separation theorem is known as the ge-
ometric version of the Hahn-Banach theorem and is one of the basic prin-
ciples of functional analysis (for example, see [179] or [169]).

The Bolzano—Weierstrass theorem requires some assumption on the
space to hold. One of its main applications can be stated as follows: any
lower semicontinuous real-valued function on a countably compact space
(a space for which every countable open cover has a finite subcover) is
bounded below and assumes its minimum [169].

Exercise 13 in Section 1.1 (The relative interior) does not extend to
the infinite-dimensional setting. As a simple counterexample, consider the
nullspace H of a discontinuous linear functional. It is dense (and so not
closed), convex, and nonempty but has empty relative interior. To over-
come that difficulty, new definitions were given to classify sets that are big
enough in some sense (compactly epi-Lipschitz sets, epi-Lipschitz-like sets,

..). All these definitions agree in finite dimensions. Another approach
considers the “quasi relative interior” (see [34]).

Chapter 2: Inequality Constraints

First order necessary conditions hold in general spaces [105, 131]. However,
one has to be careful about nearest point properties (Section 2.1, Exercise
8). We have existence and unicity of the nearest point to a closed convex
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set in a Hilbert space or for weakly compact convex sets in a strictly convex
norm, but no longer without any assumptions. Often it is possible to deal
with approximations by using density results such as the Bishop—Phelps
theorem, which states: the set of continuous linear functionals that attain
their norm on the unit ball in a Banach space is norm dense in the dual
[153, 82].

Chapter 3: Fenchel Duality

The main results (Fenchel duality, Lagrange multiplier theorem) still hold
in a very general setting [105, 131]. Properties of convex functions defined
on Banach spaces are investigated in [153, 82]. Note that many properties
of cones coincide in finite dimensions, while one has to be more careful in
the infinite-dimensional setting (see [29]).

Chapter 4: Convex Analysis

Convexity in general linear spaces is studied in [98].

In infinite dimensions, Minkowski’s theorem requires some assumption
on the space since there may be bounded closed convex sets that do not
have supporting hyperplanes (indeed, James’ theorem states that a Banach
space is reflexive if and only if every continuous linear functional achieves its
maximum on the closed unit ball). Here is a generalization of Minkowski’s
theorem: Any weakly compact (respectively, closed bounded) convex subset
of a Banach space (respectively, Banach space with the Radon—-Nikodym
property) is the closed convex hull of its strongly exposed points [63].

The Open mapping theorem extends to general Banach spaces (for ex-
ample, see [179]). Similarly, the Moreau-Rockafellar theorem holds in gen-
eral spaces [146, 165]. Furthermore, Lagrangian duality, which is equivalent
to Fenchel duality, can be established in great generality [131, 105].

Chapter 5: Special Cases

The theory of linear operators is well-developed in infinite dimensions. See
[149] for spectral theory in Banach algebras and [188] on compact opera-
tors. Many of the eigenvalue results have extensions for compact selfadjoint
operators [37].

As we saw, closed convex processes are natural generalizations of linear
mappings; in Banach space they admit open mapping, closed graph, and
uniform boundedness theorems (see [5], and also [3] for applications to
differential inclusions).
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Chapter 6: Nonsmooth Optimization

All the calculus rules and the mean value theorem extend. Note however
that Hadamard and Fréchet derivatives are no longer equal (see [55] and
also this chapter). Density theorems extend (see [153]).

Various subdifferentials have been defined in infinite dimensions. See
the recent survey [42] for how calculus rules and main properties are proved,
as well as for some applications.

Chapter 7: Karush—-Kuhn—Tucker Theory

Ekeland’s variational principle holds in complete metric spaces (see [3]). It
has numerous applications. For example, it is used in [153] to obtain the
Brgnsted—Rockafellar theorem, which in turn implies the Bishop—Phelps
theorem (see also [82]).

The idea of a variational principle is to consider a point where the
function is almost minimized and show it is the minimum of a slightly per-
turbed function. In Ekeland’s variational principle, the perturbed function
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