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Preface

Optimization is a rich and t hriving mathemati cal discipline. P roperties
of minimizers and maximizers of functions rely inti mately on a wealth of
techniques from mathem at ical analysis, including tools from ca lculus and
its generalizat ions, t opological no tions, and mor e geometric ideas. T he
theory underlying current computational op timization techniques grows
ever more sophisticated-duali ty-based algor ithms, interior point methods,
and cont rol-theoretic applicati ons are typi cal examples. The powerful and
elegant language of convex analysis unifies much of this theory. Hence
our aim of writing a concis e, accessible account of convex analys is and its
applicat ions and exte ns ions , for a broad audience .

For stude nts of op timization and an alysis , there is great benefit to blur
ring the distinction between the two disciplines. Many important analytic
problems have illuminating optimization formulations and hence can be ap
proached through our main variat ion al tools: subgradients and optimality
condit ions, the many guises of duality, metric regul arity and so for th. More
generally, t he idea of convexi ty is central to the transition from classical
analysis to various branches of modern analysis: fro m linear to nonlinear
analysis , from smoot h to nonsmooth, and from the study of functions to
mul tifunction s. Thus, although we use cert ain optimization models re
peatedly to illustrate the main results (models such as linear and semidefi
nite programming du ali ty and cone pol arity) , we constant ly emphasize the
power of abstract models and notation.

Good refer ence works on finit e-dimensional convex analysis already ex
ist . Rockafellar's classic Convex Analysis [167] has been indispensable and
ubiquitous since the 1970s, and a more general sequel with Wets, Varia
tional Analysis [168], appeared recently. Hiriart- Urruty and Lemar ech al 's
Convex Analysis and Minimization Algorithms [97] is a comprehensive but
gentler introduction. Our goal is not to supplant these works, but on the
cont rary to promote them , and thereby to motivate future resear chers. This
book aims to make converts.

vii



viii Preface

We t ry to be succinct rather than systematic, avoid ing becoming bogged
down in technical details. Our style is relatively informal ; for exam ple, t he
text of each sect ion creates the context for many of t he resul t statements.
We value the variety of independent , self-contained approaches over a sin
gle, unified , sequent ial developm ent. We hope to showcase a few memorabl e
principles rat her t ha n to develop the t heory to it s limi ts . We discuss no
algorit hms. We point out a few import an t references as we go, bu t we make
no attempt at comprehensive historical surveys.

Op timization in infini te dim ensions lies beyond our immediate scope .
This is for reasons of space and accessibility rather t han history or appli
cation: convex analysis develop ed historically from t he calculus of vari
at ions, and has important applications in optimal control, mathematical
economics, and other ar eas of infinite-dimensional opt imizat ion. However,
rather like Halmos's Finite Dim ensional Vector Spaces [90], ease of ex
tens ion beyond finit e dimensions subst ant ially motivates our choice of ap
proach. Where possible, we have chosen a proof technique permitting those
read ers familiar with functional analysis to disc over for themse lves how a
result extends . We would, in part , like this book to be an entree for math
ematicians to a valu abl e and intrinsic part of modern analysis. The final
chapter illustrat es some of the cha llenges arising in infini te dimensions.

This book can (and does) serve as a teaching text, at roughly the level
of first year graduate st ude nts. In principle we ass ume no knowledge of real
analysis , although in practi ce we expect a certain mathem atical maturity.
While t he main body of the text is self-contained, each section concludes
wit h an often extensive set of optional exercises . These exercises fall into
three categories, marked wit h zero, one, or two asterisks, respectively, as
follows: examples t hat illustrate the ideas in t he text or easy expansions
of sketched proofs; importan t pieces of additional theory or more testing
examples; longer , harder examples or peripheral t heory.

We are grate ful to the Natural Sciences and Engin eering Research Coun
cil of Canada for their suppo rt during this project. Many people have
helped improve the presentati on of this material. We would like to thank all
of them, bu t in particular Patrick Combet tes, Guillaume Haberer , Claude
Lernarechal, Olivier Ley, Yves Lucet, Hristo Sendov , Mike Todd, Xianfu
Wan g, and especially Heinz Bauschke.

JONATH AN M. BORWEIN

ADRIAN S. LEWIS

Gar gnano, Italy
Sept emb er 1999



Preface

Preface to the Second Edition

ix

Since the publication of the First Edition of t his book, convex analysis
and nonlinear optimization has continued to flourish . The "interior point
revolution" in algorithms for convex optimization, fired by Nesterov and
Nemirovski's seminal 1994 work [148], and the growing interplay between
convex optimization and engineering exemplified by Boyd and Vanden
berg he 's recent monograph [47] , have fuelled a renaissance of interest in t he
fundamentals of convex analysis. At the same time, the broad success of
key monographs on general vari ational analysis by Clar ke, Ledyaev, Stern
and Wolenski [56] and Rockafellar and Wets [168] over the last decade tes
tify to a ripening interest in nonconvex techniques, as does the ap pearance
of [43].

The Second Edition both corrects a few vagaries in the original and
contains a new chapter emphasizing the rich applicability of variational
analysis to concrete examples. After a new sequence of exercises ending
Chapter 8 with a concise approach to monotone operator theory via convex
analysis, the new Chapter 9 begins with a presentation of Rademacher 's
fundamental theorem on differentiability of Lipschitz functions. The sub
sequent sections describe the appealing geometry of proximal normals, four
approaches to the convexity of Chebyshev sets, and two rich concrete mo d
els of nonsmoothness known as "amenability" and "partial smoothness".
As in the First Edition, we develop and illus trate the material through
extensive exercises.

Convex analysis has maintained a Canadian thread ever since Fenchel's
or iginal 1949 work on the subject in Volume 1 of the Canadian Journal
of Mathematics [76]. We are grateful to t he continuing support of t he
Canadian academic community in this project , and in particular to the
Canadian Mathematical Society, for their sponsorship of this book series,
an d to the Canadian Natural Sciences and Engineering Research Council
for their support of our research endeavours.

JONATHAN M. BORWEIN

ADRIAN S . LEWIS

September 2005
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Chapter 1

Background

1.1 Euclidean Spaces

We begin by reviewing some of the fundamental algebraic, geometric and
analytic ideas we use throughout the book. Our set t in g , for m ost o f
the book, is a n a r b itrary Euclidean sp ace E , by which we mean a
finit e-dimensional vector space over the reals R , equipped with an inner
product (., -). We would lose no generality if we considered on ly t he space
R " of rea l (column) n-vectors (with its standard inner product) , but a
more abstract, coordinate-free notation is often more flexible and elegant .

We define the norm of any point x in E by Ilxll = V (x , x ), and the unit
ball is the set

B = {x E E I llxll < I} .

Any two points x and y in E satisfy the Cauchy-Schwarz inequality

l(x,y)l :s: IIxlllly ll ·
We define the sum of two sets C and D in E by

C + D = {x + y Ix E C, Y ED}.

The defin ition of C - D is analogous , an d for a subset A of R we define

AC = {Ax IA E A, x E C}.

Given another Euclidean space Y , we can consider the Cartesian product
Euclidean space E x Y , with inner product defined by ((e, x) , (f, y)) =

(e, f) + (x ,y) .
We denote t he nonnegative reals by R +. If C is nonempty and satisfies

R +C = C we call it a cone. (Notice we require that cones contain t he
origin.) Examples ar e t he positive orthant

R~ = {x E R n Ieach Xi;:::: O},

1



2 1. Background

and the cone of vectors with nonincreasing components

R~ = {x ERn IXl 2': X 2 2': . .. 2': x n } .

The smallest cone containing a given set D eE is clearly R +D.
The fundamental geomet ric idea of this book is convexity. A set C in

E is convex if the line segment joining any two points x and y in C is
contained in C : algebraically, AX + (1 - A)Y E C whenever 0 S A S 1. An
easy exerc ise shows t hat intersecti ons of convex sets are convex.

Given any set DeE, the lin ear span of D , denoted span (D) , is the
smallest linear subspace containing D . It consis ts exact ly of all linear
combinations of elements of D . Analogously, the convex hull of D , denoted
conv (D) , is t he smallest convex set cont aining D. It consists exactly of
all convex combinations of elements of D , that is to say points of the form
2:::1 AiXi , where Ai E R + and Xi E D for each i, and 2: Ai = 1 (see
Exercise 2) .

The language of elementary point-set topology is fundament al in opti
mization. A point x lies in the in terior of the set D eE (denote d int D)
if there is a real Ii > 0 satisfying x + liB c D . In t his case we say D is a
n eighbourhood of x . For example, the interior of R +. is

R+.+ = {x ERn Ieach Xi > O} .

We say the point x in E is the limit of t he sequence of points Xl, x 2 , . . .

in E, written x j ---+ x as j ---+ 00 (or limj-> oo x j = x ), if Ilxj - xii ---+ O.
The closure of D is the set of limi ts of sequences of points in D , written
cl D , and the boundary of D is cl D \ int D , written bd D . The set D is
open if D = int D , and is closed if D = cl D . Linear subspaces of E are
important examples of closed sets. Easy exercises show that D is open
exactly when its complement DC is closed , and that arbit rary unions and
finite intersections of op en set s are op en. T he inter ior of D is just t he largest
open set contained in D , while cl D is t he sm allest closed set cont aining D .
Finally, a subset G of D is open in D if there is an open set U C E with
G=DnU.

Much of the beau ty of convexity comes from dual it y ideas , interweaving
geometry and top ology. The following result , which we prove a lit tl e later ,
is both typical and fundamental.

Theorem 1.1.1 (Basic separation) Suppose that the set C C E is closed
and convex, and that the poin t y does not lie in C. Th en there exis t real b
and a nonzero eleme nt a of E satisfying (a, y) > b 2': (a, x) for all points x
in C .

Sets in E of the form {x I (a, x) = b} and {x I (a, x) S b} (for a nonzero
element a of E and real b) are called hyperplanes and closed halfspaces,



1.1 Euclidean Spaces 3

respectively. In this language the above result states that the point y is
separated from the set C by a hyperplane. In other words, C is contained
in a certain closed halfspace whereas y is not . Thus there is a "dual"
representation of C as the intersection of all closed halfspaces containing
it .

The set D is bounded if there is a real k satisfying kB :J D , and it is
compact if it is closed and bounded. The following result is a central tool
in real analysis.

Theorem 1.1.2 (Bolzano-Weierstrass) Bounded sequences in E have
convergent subs equences.

Just as for sets, geometric and topological ideas also intermingle for the
functions we study. Given a set D in E , we call a function f : D ---> R
continuous (on D) if f(x i ) ----+ f(x) for any sequence .yi ---> x in D. In
this case it easy to check , for example, that for any real ex the level set
{x E D I f (x) ::::; ex} is closed providing D is closed .

Given another Euclidean space Y, we call a map A: E ----+ Y linear if any
points x and z in E and any reals A and J-l satisfy A(AX+J-lz) = AAx +J-lAz.
In fact any linear function from E to R has the form (a, ') for some element
a of E. Linear maps and affine functions (linear functions plus constants)
are continuous. Thus, for example, closed halfspaces are indeed closed.
A polyhedron is a finite intersection of closed halfspaces, and is therefore
both closed and convex. The adjoint of the map A above is the linear map
A * : Y ---> E defined by the property

(A*y, x) = (y, Ax) for all points x in E and y in Y

(whence A** = A). The null space of A is N(A) = { x EEl Ax = O}. The
inverse image of a set HeY is the set A-IH = {x EEl Ax E H} (so
for example N(A) = A-I{O}) . Given a subspace G of E , the orthogonal
complement of G is the subspace

GJ. = {y EEl (x ,y) = 0 for all x E G},

so called because we can write E as a direct sum G EB GJ. . (In other words,
any element of E can be written uniquely as the sum of an element of G
and an element of GJ..) Any subspace G satisfies GJ. J. = G . The range of
any linear map A coincides with N(A*)J..

Optimization studies properties of minimizers and maximizers of func
tions. Given a set A c R , the infimum of A (written inf A) is the greatest
lower bound on A, and the supremum (written sup A) is the least upper
bound. To ensure these are always defined, it is natural to append -00 and
+00 to the real numbers, and allow their use in the usual notation for open
and closed intervals. Hence, inf0 = +00 and sup0 = -00, and for example
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(-00, + 00] deno tes the interval RU {+oo}. We try to avoid the appearance
of + 00 - 00, but when necessary we use t he convention + 00 - 00 = + 00,
so that any two sets C and D in R satisfy inf C + inf D = inf(C + D) . We
also adopt t he convent ions 0 . (± oo) = (±oo) . 0 = O. A (global) min imizer
of a funct ion f : D --> R is a point x in D at which f at tains its infimum

inf f = inf f (D) = inf{f(x) IX E D }.
D

In t his case we refer to x as an optimal solution of t he opt imization problem
infD t

For a positive real 8 and a function g : (0,8) --> R , we define

lim inf g(t) = lim inf g
tlO tlO (O ,t )

and
lim supg(t) = lim sup g.

tl O t l O (O,t)

The limit lim tLO g(t ) exist s if and onl y if the above expressions are equal.
The question of attainment, or in other words the existence of an optimal

solution for an opt imizat ion problem is ty pically topological. The following
resul t is a prototyp e. T he proof is a standard applicat ion of the Bolzano
Weierstrass theorem above.

Proposition 1.1.3 (Weierstrass) Suppose that the set DeE is non
empty and closed, and that all the level sets of th e con tinuous function
f : D --> R are bounded. Then f has a global m in imizer.

Just as for sets , convexity of fun cti ons will be crucial for us . Given a
convex set C c E , we say that the fun ction f : C --> R is convex if

f(>.x + (1 - ).)y) ::::; ).f(x) + (1 - ).)f(y)

for all points x and y in C and 0 ::::; >. ::::; 1. The function f is strictly
convex if the inequality holds strictly whenever x and y are distinct in C
and 0 < ). < 1. It is easy to see that a strictl y convex fun ction can have at
most one minimizer .

Requiring t he function f to have bounded level set s is a "growt h con
dition". Another example is the stronger condit ion

1· . f f (x ) 0
im 1Il -II-II > ,IIxll-->oo x

where we defin e

1· . f f( x) l' . f {f(X) I C Be}
im m -II-II = im In -II-II x E n r .Ilxll->oo x T -++OO x

(1.1.4)

Surprisingly, for convex fun ctions t hese two growth condit ions are equiva
lent .
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Proposition 1.1.5 FOT a convex set C c E , a convex function f : C -> R
has bounded level sets if and only if it satisfie s the growth condition (i .i .4).

The proof is outlined in Exercise 10.

Exercises and Commentary

Good general references are [l77Jfor elementary real analysis and [1Jfor lin
ear algebra. Separation theorems for convex sets origi nate with Minkowski
[142]. The t heory of the relative interior (Exercises 11, 12, and 13) is devel
oped extensively in [167] (which is also a good reference for the recession
cone, Exercise 6) .

1. Prove t he intersect ion of an arbitrary collection of convex sets is con
vex. Deduce that t he convex hull of a set D c E is well-defined as
the int ersect ion of all convex sets containing D .

2. (a) Prove that if the set C c E is convex and if

and 2:: Ai = 1 then 2:: AiXi E C . Prove , fur thermore, t hat if
f : C -> R is a convex function t hen f (2:: AiXi ) :S 2:: A;j(Xi).

(b) We see later (T heo rem 3.1.11 ) that the fun ction - log is convex
on the strictly positive reals. Deduce, for any st rictly positive
reals X l, x 2, ... , x m, and any nonnegative reals A l ' A2, .. . , Am
with sum 1, the arithmetic-geometri c mean inequality

L AiXi ~ II (x i ).\i.
i

(c) Prove that for any set D c E , conv D is the set of all convex
combinations of elements of D .

3. Prove t hat a convex set D c E has convex closure, and deduce that
cl (conv D) is the smallest closed convex set containing D.

4. (Radstrom cancellation) Suppose sets A, B, C c E satisfy

A+C c B + C.

(a) If A and B are convex, B is closed, and C is bounded, prove

A cB.

(Hint: Observe 2A + C = A + (A + C ) c 2B + C.)

(b) Show this result can fail if B is not convex .



6 1. Background

5. * (Strong separation) Suppose t hat the set C c E is closed and
convex, and that the set D e E is compact and convex.

(a ) P rove the set D - C is closed and convex.

(b) Deduce that if in addition D an d C are d isjoint then there ex
ists a nonzero element a in E wit h infxED (a , x ) > SupYEC (a ,y).
Int erpret geom etrically.

(c) Show par t (b) fails for the closed convex sets in R Z ,

D {x IXl > 0, XIXZ 2: I },

C {x IXz = O} .

6. ** (Recession cones) Consider a nonempty closed convex set C c
E . We define the recessio n cone of C by

(a) P rove O+ (C ) is a closed convex cone.

(b) P rove dE O+(C) if and only if x + R + d c C for some point x
in C . Show this equivalence can fail if C is not closed .

(c) Consider a fam ily of closed convex sets C; b E f) wit h non
em pty intersection. P rove 0+ (nc -y ) = no+(c -y ).

(d) For a uni t vector u in E , prove u E 0+ (C) if and only if there is
a sequence (z") in C sat isfying IlxT11 ---+ 00 and IIxTIl - lxT

---+ u.
Deduce C is un bounded if and only if 0+ (C) is nontriv ial.

(e) If Y is a Euclidean space, t he map A : E ---+ Y is linear , and
N(A) n O+ (C ) is a linear subspace, prove AC is closed. Show
this resul t can fail wit hout t he las t assumption.

(f) Consider another nonemp ty closed convex set De E such t hat
O+(C ) n O+ (D ) is a linear subspace. P rove C - D is closed.

7. For any set of vectors aI, aZ, ... , am in E , prove t he function j(x) =
maxi (ai ,x) is convex on E .

8. Prove P roposit ion 1.1.3 (Weierstrass) .

9. (Composing convex functions) Suppose t hat the set C C E is
convex and t hat the funct ions fr ,fz,. .. , j n : C ---+ R are convex , and
define a function j : C ---+ R " wit h components Ji. Suppose further
that j (C) is convex and that t he fun cti on g : j (C) ---+ R is convex
and isotone: any points y :s: z in j (C ) satisfy g(y) :s: g(z) . P rove the
composit ion g 0 j is convex.
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10. • (Convex growth conditions)

(a) Find a function with bounded level set s which do es not satisfy
the growth condition (1.1.4).

(b) Prove that any function satisfying (1.1.4) has bounded level sets.

(c) Suppose the convex function f : C ----7 R has bounded level sets
but that (1.1.4) fails . Deduce the existence of a sequence (x11t

)

in C with f(x 11t
) ::::; Ilx11tll/m

----7 +00. For a fixed point x in C ,
derive a contradiction by considering the sequence

m
x + Ilx11t11 (x

11t

- x).

Hence complete the proof of Proposition 1.1.5.

The relative interior

Some arguments about finite-dimensional convex sets C simplify and lose
no generality if we assume C contains 0 and spans E. The following exer
cises outline this idea.

11. •• (Accessibility lemma) Suppose C is a convex set in E.

(a) Prove clC C C + EB for any real E > O.

(b) For sets D and F in E with D open, prove D + F is op en .

(c) For x in int C and 0 < A ::::; 1, prove AX + (1 - A)clC c C .
Deduce AintC + (1 - A)clC c intC.

(d) Deduce int C is convex.

(e) Deduce further that if int Cis nonempty then cl (int C) = cl C .
Is convexity necessary?

12. •• (Affine sets) A set L in E is affine if the entire line through any
distinct points x and y in L lies in L: algebraically, AX+(1- A)Y E L
for any real A. The affin e hull of a set D in E , denoted aff D , is
the smallest affine set containing D . An affine combination of points
x l, x 2, . . . , x m is a point of the form I:~ AiXi, for reals Ai summing
to one.

(a) Prove the intersection of an arbitrary collection of affine sets is
affine.

(b) Prove that a set is affine if and only if it is a translate of a linear
subspace.

(c) Prove aff D is the set of all affine combinations of elements of D.

(d) Prove clD C affD and deduce affD = aff(clD) .
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(e) For any point x in D , prove aff D = x +span (D - x) , and deduce
t he linear subspace span (D - x ) is indep endent of x .

13. ** (The r elative interior) (We usc Exercises 11 and 12.) T he
relative int erior of a convex set C in E , denoted ri C , is its interior
relative to its affine hull. In other words, a point x lies in ri C if there
is a real J > 0 with (x+JB) naff C c C .

(a) Find convex sets C1 C C2 with ri C1 rt ri C2 .

(b) Suppose dim E > 0, 0 E C and aff C = E. Prove C contains a
basis { X

1
, X

2
, . . . , x n

} ofE. Deduce (l /(n+1)2=~ xi E intC.
Hence deduce that any non empty convex set in E has nonempty
relative interior.

(c) P rove that for 0 < >. ~ 1 we have Ari C + (1- >')c1 C C ri C , and
hence ri C is convex with c1 (ri C) = c1 C .

(d) Prove that for a point x in C, the followin g are equivalent :

(i) x Eri C .

(ii) For any po int y in C there exists a real E > 0 with X+E(X- y )
in C .

(iii) R + (C - x ) is a linear subspace.

(e) If F is anot her Euclidean space and the map A : E --+ F is linear,
prove ri AC ::J Ari C .
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1.2 Symmetric Matrices

9

Throughout mos t of this book our setting is an abst ract Euclidean space
E. This has a number of advantages over always working in R " : the basis
independe nt notation is more elegant and often clearer , and it encourages
techniques which extend beyond finit e dimensions. But more concrete ly,
identifying E with R n may obscure properties of a space beyond its simple
Euclidean st ructur e. As an example, in this short section we describe a
Euclidean space which "feels" very different from R " : the space S" of
n x n real symmetric matrices.

The nonnegative or thant R +. is a cone in R" which plays a central
role in our development . In a variety of contexts the analogous role in
S" is played by the cone of positive semidefinite matrices , S+. . (We call
a matrix X in s- positive semidefinit e if xT X x 2 0 for all vectors x in
R n, and positive definit e if the inequality is st rict whenever x is nonzero.)
These two cones have some important differences; in particular , R +. is a
polyhedron, whereas the cone of positive semidefinite matrices S +. is not ,
even for n = 2. The cones R +. and S+. are import ant lar gely because of
t he orderings they induce. (The latter is somet imes called the Loeumer
ordering.) For point s x and y in R n we write x ::; y if Y - x E R+., and
x < y if Y - x E R +.+ (with an alogous definitions for 2 and» . The
cone R +. is a lattice cone : for any points x and y in R n there is a point z
sat isfying

w 2 x and w 2 y ¢} w 2 z .

(The point z is just t he component wise maximum of x and y.) Analogously,
for matrices X and Y in S" we write X :::S Y if Y - X ES+' , and X --< Y
if Y - X lies in S+.+ , t he set of positive definite matrices (with analogous
definitions for ~ and >-) . By contras t , it is st raight forward t o see S+. is not
a lattice cone (Exerci se 4) .

We denote the identity mat rix by I. The trace of a square matrix
Z is the sum of t he diagonal entries, written tr Z . It has the important
property tr (VW) = tr (WV) for any matrices V and W for which VW is
well-defined and square. We make the vector space S" into a Euclidean
space by defining the inner product

(X ,Y ) = tr (XY) for X ,Y E S" .

Any matrix X in S" has ti real eigenvalues (counted by mul tiplicity) ,
which we write in nonincreasing order Al(X) 2 A2(X) 2 . .. 2 An(X) . In
t his way we define a fun ction A : S" -7 R ". We also define a linear map
Diag : R" -7 S" , where for a vector x in R " , Diag x is an n x n diagonal
matrix with diagonal entries Xi ' This map emb eds R " as a subspace of S"
and the cone R +. as a subcone of S+.. The determinant of a square matrix
Z is written det Z.
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We write onfor the group of n x n orthogonal matrices (those matrices
U satisfyin g UTU = I) . Then any mat rix X in S" has an ordered spectral
decomposition X = UT (Diag A(X ))U , for some matrix U in on. T his
shows , for example, that the fun ction Ais norm-preserving : IIXII = IIA(X)II
for all X in S" . For any X in Sf-, the sp ectral decomposition also shows
there is a unique matrix X 1/ 2 in Sf- whose square is X.

The Cauchy- Schwarz inequality has an interesting refinement in S"
which is crucial for var iat iona l properties of eigenvalues, as we shall see .

Theorem 1.2.1 (Fan) Any matrices X an d Y in S" sa tisfy the inequalit y

tr(XY) < A(X)T A(Y) . (1.2 .2)

Equality holds if and only if X and Y have a simultaneous ordered
spectral decomposition: there is a matrix U in on with

X = UT (Diag A(X))U and Y = UT (Diag A(Y) )U. (1.2 .3)

A standard result in linear algebra states that matrices X and Y have a
simult aneous (uno rdered) spectral decomposition if and only if they com
mute. Not ice condition (1.2.3) is a stronger property.

The specia l case of Fan 's inequality where both matrices are diagonal
gives t he following classical inequ ality. For a vector x in R n, we denote
by [x] the vector with the same components permuted into nonincreasing
order. We leave the proof of this result as an exercise .

Proposition 1.2.4 (Hardy-Littlewood-P6Iya) A ny vectors x and y
in R n satisf y the inequality

We describe a proof of Fan 's theorem in t he exercises, using the above
proposition and the following classical relationship between the set T'" of
donbly st ochastic matrices (squ are matrices with all nonnegative entries ,
an d each row and column summing to one) and t he set P" of permutation
matrices (square matrices with all ent r ies zero or one, an d with exactly one
ent ry of one in each row and in each column).

Theorem 1.2.5 (Birkhoff) Doubly stochastic matrices are convex com
binations of permutation matrices.

We defer the proof to a later section (Section 4.1, Exercise 22) .
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Exercises and Commentary

Fan's inequality (1.2.2) appeared in [73], but is closely related to earlier
work of von Neumann [184]. The condit ion for equality is due to [180].
The Hardy-Littlewood-Polya inequality may be found in [91]. Birkhoff's
theorem [15] was in fact proved earlier by Konig [115].

1. Prove Sf- is a closed convex cone with interior S+-+.

2. Explain why S~ is not a polyhedron.

3. (st is not strictly convex) Find non zero matrices X and Y in s t
such that R+X =I- R +Y and (X + Y) /2 (j s t + .

4. (A nonlattice ordering) Suppose the matrix Z in S2 satisfies

W t [~ ~] and W t [~ ~] {:} W t Z.

(a) By considering diagonal W , prove

Z=[~ ~]
for some real a.

(b) By considering W = 1, prove Z = 1.

(c) Derive a contradiction by considering

W=~[2 1]
3 1 2

5. (Order preservation)

(a) Prove any matrix X in S" satisfies (X2)1/2 t X .

(b) Find matrices X t Y in S~ such that X 2 't y 2
.

(c) For matrices X t Y in Sf- , prove X 1/ 2 t y 1/ 2. (Hint: Consider
the relationship

( X 1/ 2 + y 1/2)X, (X 1/ 2 - y 1/2)X) = ( X - Y) x, x) :::: 0,

for eigenvectors x of X 1/ 2 _ y 1/ 2.)

6. * (Square-root iteration) Suppose a matrix A in Sf- satisfies 1 t
A. Prove that the iteration

is nondecreasing (that is, Yn +1 t ~! for all n) and converges to the
matrix 1 - (1 - A)1/2. (Hint : Consider diagonal matrices A .)
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7. (The Fan and Cauchy-Schwarz inequalities)

(a) For any matrices X in S" and U in on, prove IjUTX UII = IIXII.
(b) P rove the funct ion A is norm-preserving.

(c) Explain why Fan 's inequality is a refinement of the Cauchy
Schwar z inequali ty.

8. Prove t he inequality tr Z + t r Z- l 2: 2n for all matrices Z in S+'+ ,
with equality if and only if Z = I .

9. Prove the Hardy-Littlewood- Polya inequality (P roposit ion 1.2.4) di
rectly.

10. Given a vector x in R+. satisfyin g XIX 2 X n = 1, define numbers
Yk = I / XI X 2 •• . X k for each index k = 1,2, , n. P rove

Yn YI Yn- l
Xl + X2 + ...+ X n = - + - + ... --.

YI Y2 Yn

By applying the Hardy-Littlewood-Polya inequality (1.2.4) to suit 
able vectors, prove Xl + X2 + ...+ X n 2: n . Deduce t he inequ ality

1 n (rrn z,.)li n-I>i 2:
n I I

for any vector z in R+'.

11. For a fixed column vector s in R " , define a linear map A : S" -t R n

by set t ing AX = X s for any matrix X in S". Calculate the adjoint
map A* .

12. * (Fan's inequality) For vectors X and Y in R" and a matrix U in
on, define

0: = (Diagx, UT (Diag y) U) .

(a) Prove 0: = xT Z y for some doubly stochast ic matrix Z .

(b) Use Birkhoff's theorem and Proposition 1.2.4 t o deduce the in
equality 0: :::; [X]T[y].

(c) Deduce Fan 's inequali ty (1.2.2) .

13. (A lower bound) Use Fan 's inequality (1.2 .2) for two matrices X
and Y in S" to prove a lower bound for tr (XY) in terms of A(X)
and A(Y) .
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14. * (Level sets of perturbed log barriers)

(a) For (j in R++ , prove the function

t E R ++ 1-7 8t - log t

has compact level sets.

(b) For c in R++, prove the function

n

X E R++ 1-7 cT
X - L log Xi

i= l

13

has compact level sets.

(C) For C in S++ , prove the function

X E S++ 1-7 (C, X) -log det X

has compact level sets. (Hint: Use Exercise 13.)

15. * (Theobald's condition) Assuming Fan 's inequality (1.2.2) , com
plete the proof of Fan's theorem (1.2 .1) as follows. Suppose equality
holds in Fan's inequality (1.2.2), and choose a spectral decomposition

X + Y = UT(DiagA(X + Y))U

for some matrix U in on.
(a) Prove A(X)TA(X + Y) = (UT(DiagA(X))U,X + Y) .

(b) Apply Fan's inequality (1.2.2) to the two inner products

(X,X + Y ) and (UT(DiagA(X))U, Y)

to deduce X = UT(DiagA(X))U.

(c) Deduce Fan's theorem.

16. ** (Generalizing Theobald's condition [122]) Consider a set of
matrices Xl, X 2 , •• . ,x m in S" satisfying the conditions

Generalize the argument of Exercise 15 to prove the entire set of
matrices {Xl , X 2 , . . . ,xm} has a simultaneous ordered spectral de
composition.

17. ** (Singular values and von Neumann's lemma) Let M" denote
the vector space of n x n real matrices. For a matrix A in M" we define
the singular values of A by O"i(A) = VAi(ATA) for i = 1,2, .. . , n ,
and hence define a map 0" : M" ----t R n . (Notice zero may be a singular
value.)
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(a) Prove

.\ [AO AO
T]

= [ o-(A) ]
[-o-(A)]

(b) For any other matrix B in M" , use part (a) and Fan's inequality
(1.2 .2) to prove

tr (AT B) < o-(A)To-(B).

(c) If A lies in S+, prove .\(A) = o-(A).

(d) By considering matrices of the form A + eel and B + (31, deduce
Fan's inequality from von Neumann's lemma (part (b)).



Chapter 2

Inequality Constraints

2.1 Optimality Conditions

Early in multivariate ca lculus we learn t he significance of differenti ability
in finding minimizers . In t his sect ion we begin our study of the interplay
between convexity and differenti ability in optima lity cond it ions.

For an ini ti al example, consider t he problem of minimizing a fun ct ion
f : C -+ R on a set C in E. We say a point x in C is a local m in im izer
of f on C if f (x ) :::: f (x ) for all points x in C close to x. The directional
derivat ive of a function f at x in a direct ion dE E is

f ' (x . d) = lim f( x + td) - f (x )
, t i D t '

when t his limit ex ists . When the directional derivati ve f' (x ;d) is actually
linear in d (t hat is , 1' (x ;d) = (a, d) for some element a of E ) t hen we say
f is (Gateaux) differentiable at x , with (Gateaux) derivat ive \7 f (x ) = a. If
f is differenti able at every point in C then we simply say f is differenti able
(on C). An example we use quite extensively is the fun cti on X E S++ f---t

log det X . An exercise shows this fun ction is differenti able on S++ with
derivative X - I .

A convex cone which arises frequently in opt im izat ion is the normal
cone to a convex set C at a point x E C , writ ten Nc(x). This is the convex
cone of normal vectors, vect ors d in E such that (d, x - x) ::; 0 for all points
x in C .

Proposition 2.1.1 (First order necessary conditio n) Suppose that C
is a convex set in E an d that the poin t x is a local minimizer of the fu nction
f : C -+ R . Th en f or any point x in C, the directional derivative, if i t
exis ts, satisfies f' (x ;x - x) :::: O. In particular, if f is differentiable at ii ,
then the conditi on - \7 f (x ) E Nc(x ) holds.

15
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Proof. If some point x in C satisfies f' (x ;x - x) < 0, then all small
real t > 0 satisfy f( x + t (x - x )) < f (x ), but this contradicts the local
minirnali ty of ii: 0

The case of t his result where C is an open set is t he canonical intro
duction to t he use of calculus in optimiza t ion: local minimizers x must be
critical points (that is, '\l f( x) = 0). This book is largely devoted to the
study of first order necessary op timality condit ions for a local minimizer of
a fun ction subject to constraints. In that case local minimi zer s x may no t
lie in the interior of the set C of interest, so the normal cone Nc (x ) is no t
simply {O}.

The next resul t shows that when f is convex the first order condition
above is sufficie nt for x to be a global minimizer of f on C.

Proposition 2.1.2 (First order sufficient condition) Suppose that the
set C c E is convex and that the function f : C -> R is convex. Th en
for any points x and x in C , the directional derivative f'( x ;x - x ) exis ts
in [-00,+(0). If the condition f' (x ;x - x ) ::::: 0 holds fo r all x in C, or
in particular if the condition - '\l f( x) E Nc(x) holds, then x is a global
minimizer of f on C.

Proof. A straight forward exercise using the convexity of f shows the
fun ction

t E (0,1] f----t f( x + t (x - x )) - f( x)
t

is nondecreasing. The result t hen follows easily (Exercise 7) . o

In part icular, any critical point of a convex func t ion is a global minimizer.
The following useful result illustrates what the first order condit ions

become for a more conc rete optimization problem. The proof is outlined
in Exercise 4.

Corollary 2.1.3 (First order conditions for linear constraints) For
a convex set C C E , a function f : C -> R , a linear map A : E -> Y {where
Y is a Euclidean space} and a point b in Y , consider the optim ization
problem

in f{f( x) Ix E C, A x = b}.

Suppose the point x E int C satisfies A x = b.

(2.1.4)

(a) If ii is a local mi nimizer fo r the problem {2.1 .4} and f is different iable
at x then '\If(x) E A*Y .

(b) Conversely, if'\lf(x) E A *Y and f is convex then ii: is a global min
imizer fo r {2.1.4}.
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The element y E Y satisfying V'f(x) = A*y in the above result is ca lled
a Lagrang e multipli er. This kind of construction recur s in many different
forms in our development .

In the absence of convexity, we need second order information to tell us
more about minimizers. The following elementary result from multivariate
calculus is typical.

Theorem 2 .1.5 (Second order con d it ions) Suppose the twice contin
uously differentiable function f : R " ----+ R has a critical point X. If ii: is
a local minimizer then the Hessian V'2f( x) is positive semidefinite. Con
versely, if the Hessian is positive definite then x is a local minimizer.

(In fact for x to be a local minimizer it is sufficient for the Hessian to
be positive semidefinite locally ; the function x E R f-+ x 4 highlights t he
distinction.)

To illustrate the effect of constraints on second order conditions, con 
sider the framework of Corollary 2.1.3 (First order conditions for linear
constraints) in the case E = R " , and suppose V'f( x) E A "Y and f is
twice continuously differentiable near x. If x is a local minimizer then
yT V' 2 f( x)y ~ 0 for all vectors y in N(A). Conversely, if yT V' 2 f( x)y > 0
for all nonzero y in N (A) then x is a local minimizer.

We ar e already beginning to see the broad interplay between analyt ic,
geometric and topological ideas in optimization theory. A good illustration
is the separation result of Section 1.1, which we now prove.

Theorem 2.1.6 (Basic sep a r a t io n ) Suppos e that the set C c E is closed
and convex, and that the point y does not lie in C. Th en there exist a real
b and a nonzero element a of E such that (a, y) > b ~ (a , x) for all points
x in C.

P roof. We may assume C is nonempty, and define a function f : E ----+ R by
f(x) = Ilx- yl12 / 2. Now by the Weierstrass proposition (1.1.3) there exists
a minimizer x for f on C , which by the First order necessary condition
(2.1.1) satisfies -V' f( x) = y - x E Nc(x). Thus (y - x , x - x ) ::::; 0 holds
for all points x in C . Now setting a = y - x and b = (y - ii , x ) gives t he
result . 0

We end this section with a rather less standard result, illustrating an
ot her idea which is important later , the use of "var iat ional principles" to
treat problems where minimizers may not exist, but which nonetheless have
"approximate" critical points. This result is a precursor of a principle due
to Ekeland, which we develop in Section 7.1.

Proposition 2 .1.7 If the function f : E ----+ R is differentiable and bounded
below then there are points where f has small derivative.
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Proof. Fix any real 10 > O. The function f + 1011 · II has bounded level sets,
so has a global minimizer x € by the Weierstrass proposition (1.1.3). If the
vector d = \7 f(x€) satisfies Ildll > f then , from the inequality

lin; f( x€ - td; - f(x €) = -(\7f(x €), d) = -lldl1 2 < -flldll ,

we would have for small t > 0 the contradiction

-tflldll > f(x € - td) - f(x €)

(f(x€ - td) + fllx€- tdll)

- (f(x €) + fllx €ll) + f(llx€II-lIx€- tdll)

> -Etlldll

by definition of x € and the triangle inequality. Hence 11\7 f(x €) II :::; f . D

Notice that the proof relies on consideration of a nondifferentiable func
tion, even though the result concerns derivatives.

Exercises and Commentary

The optimality conditions in this section are very standard (see for example
[132]). The simple variational principle (Proposition 2.1.7) was suggested
by [95] .

1. Prove the normal cone is a closed convex cone.

2. (Examples of normal cones) For the following se ts C c E , check
C is convex and compute the normal cone Nc(x) for points x in C:

(a) C a closed interval in R.

(b) C = B , the unit ball .

(c) C a subspace.

(d) C a closed halfspace: {x I (a , x l :::; b} where 0 =I- a E E and
bE R.

(e) C = {x ERn Ix j ;:: 0 for all j E J} (for J C {I , 2, . . . , n} ).

3. (Self-dual cones) Prove each of the following cones K satisfy the
relationship NK(O) = -K.

(a) R+
(b) S+

(c) {xERnl x 1 ;::0, xr;:: x~ +x~ + ·· · + x;,}
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4. (Normals to a ffine sets) Given a linear map A : E ----? Y (where
Y is a Euclidean space) and a point b in Y , prove the normal cone
to t he set {x E E l A x = b} at any point in it is A*Y. Hence deduce
Corollary 2.1.3 (First order conditions for linear constraints).

5. Prove that the differentiable function xi + x~ (1- Xl)3 has a unique
critical point in R 2, which is a local minimizer, but has no global
minimizer . Can this happen on R ?

6. (The R ayle igh quot ient )

(a) Let the function f : R " \ {O} ----? R be continuo us , satisfying
f(>'x) = f(x) for all >. > 0 in R and nonzero x in R ". Prove f
has a minimizer.

(b) Given a matrix A in S" , define a function g(x) = xTAx /llxl 12

for nonzero x in R " . Prove 9 has a minimizer.

(c) Calculate "V9(x) for nonzero x.

(d) Deduce that minimizers of 9 must be eigenvectors, and calculate
the minimum value.

(e) Find an alternative proof of part (d) by using a spectral decom
position of A .

(Another approach to this problem is given in Section 7.2, Exercise
6.)

7. Suppose a convex function 9 : [0,1] ----? R satisfies g(O) = O. Prove the
function t E (0,1] t----+ g(t) /t is nondecreasing. Hence prove that for a
convex function f : C ----? R and points X, x E C c E , the quotient
(J( x + t(x - x)) - f( x)) /t is nondecreasing as a function oft in (0,1],
and complete the proof of Proposition 2.1.2.

8. * (Neare st p oints)

(a) Prove that if a function f : C ----? R is strict ly convex then it has
at most one global minimizer on C .

(b) Prove the function f( x) = Ilx- y l12 /2 is st r ict ly convex on E for
any point y in E .

(c) Suppose C is a nonempty, closed convex subset of E .

(i) If y is any point in E , prove there is a unique nearest point
(or best appro ximation) Pc(y) to yin C, characterized by

(y - Pc(y) , x - Pc(y)) S; 0 for a ll x E C.

(ii) For any point x in C , deduce that d E Nc(x) ho lds if and
only if x is the nearest point in C to x + d.
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(iii) Deduce, furthermore, that any points Y and z in E sati sfy

IlPdy) - Pc(z) II ::::: Ily - zl l,

so in particular t he projection Pc : E ---+ C is cont inuous.

(d) Given a non zero element a of E , ca lculate the nearest point in
the subspace {x EEl (a,x) = O} to the point y E E .

(e) (Projection on R+. and S+.) Prove the nearest point in R+.
to a vector y in R " is y+, where yt = max{Yi , O} for each i , For
a matrix U in onand a vector Y in R " , prove that the nearest
positive semidefinite matrix to UT Diag yU is UT Diag y+U.

9. * (Coercivity) Suppose that the fun ction f : E ---+ R is differentiable
and satisfies the growth condition limllxll-+oo f(x) /ll xll = +00. Prove
that the gradient map V'f has range E . (Hint : Minimize the fun ction
f( ·) - (a,·) for elements a of E.)

10. (a) Prove the function f : S +.+ ---+ R defined by f(X) = tr X - I is
differentiable on S+'+ . (Hint : Expand the express ion (X+ty)- I
as a power series.)

(b) Define a funct ion f : S+.+ ---+ R by f(X) = logdetX. Prove
V'f(I) = I . Deduce V'f(X ) = X -I for any X in S +.+ .

11. ** (Kirchhoff's law [9, Chapter 1]) Consider a finit e, undirected,
connec te d graph with vertex set V and edge set E. Suppose t hat
a and (3 in V are distinct vertices and that each edge ij in E has
an assoc iate d "resistance" r ij > 0 in R . We consider the effect of
applying a unit "potent ial di fference" between t he vertices a and (3 .
Let Va = V \ {a ,(3}, and for "pote nt ials" x in R Va we define the
"p ower" p : R Va ---+ R by

where we set Xc>: = 0 and x{3 = 1.

(a) Prove the power function p has compact level sets .

(b) Deduce the existe nce of a solution to the following equations
(describing "conservat ion of curre nt" ):

j : ijEE

o for i in Va

Xc>: 0
x{3 1.
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(c) Prove the power function p is strictly convex .

(d) Use part (a) of Exercise 8 to show that the conservation of cur
rent equations in part (b) have a unique solution.

12. ** (Matrix com p le t ion [86]) For a set ~ C {(i ,j) 11 :::; i :::; j :::; n} ,
suppose the subspace L C S" of matrices with (i , j)th entry of zero
for all (i, j) in ~ satisfies L n S+- + =I- 0. By considering the problem
(for C E S+-+)

inf{ (C , X) -log det X I X E L n S+-+},

use Section 1.2 , Exercise 14 and Corollary 2.1.3 (First order con
ditions for linear const raints) to prove there exists a matrix X in
L n S+- + with C - X-I having (i,j)th entry of zero for all (i ,j) not
in ~ .

13. ** (BFGS update , cf; [80]) Given a matrix C in S+-+ and vectors
sand y in R " satisfying sTy> 0, consider the problem

inf{ (C,X) -logdetX IXs = Y, X E S+-+}.

(a) Prove t hat for the problem above, the point

X = (y -8s)(y-8sf' + 81
ST(y - 8s)

is feasible for small 8 > O.

(b) Prove the problem has an optimal solut ion us ing Section 1.2 ,
Exercise 14.

(c) Use Corollary 2.1.3 (First order condit ions for linear constraints)
to find the solution. (The solution is called the BFGS update of
C- 1 under the secant condition Xs = y.)

(See also [61, p. 205J.)

14. ** Suppose intervals h ,l z , , In C R are non empty and closed and
t he function f : h x I 2 X x In ---+ R is differentiable and bounded
be low. Use t he idea of the proof of Proposition 2.1.7 to prove that
for any 10 > °there exists a point X€ E I[ X I 2 X ••• x In satisfying

(- \If(x €))j E Nlj(xj) + [- 10 , 10] (j = 1,2, .. . ,n) .

15. * (Nearest p olynomial with a given root) Consider the Eu
clidean space of complex polynomials of degree no more than n, with
inner product

n n n

( L XjZ
j,

L Yj z j ) = L XjYj .
j=O j=O j=O
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Given a polynomial p in this space, calculate the nearest polynomial
with a given complex root a, and prove the distance to this polyno
mial is ("L?=o 111'1 2j ) (- 1/ 2) lp (a ) l·



2.2 Theorems of the Alternative

2.2 Theorems of the Alternative

23

One well-t rodden route to the study of first order condit ions uses a class of
results called "t heorems of the alte rnative", and, in particular, the Farkas
lemma (which we derive at the end of this section) . Our first approach ,
however, relies on a different theorem of the alternative.

Theorem 2.2.1 (Gordan) Forany elementsaO , a1
, • . • ,am ofE, exac tly

one of the following systems has a solution:

m m

L ).ia i = 0, L).i = 1, 0 ::; ).0 , ). 1 ," · , ).m E R
i= O i=O

(ai , x) < 0 for i = 0, 1, . . . ,m, x E E .

(2 .2 .2)

(2.2 .3)

Geometrically, Go rd an 's t heo rem says that the origin does not lie in the
convex hull of t he set {aO , aI, .. . , arT! } if and only if there is an open
halfsp ace {y I (y, x ) < O} containing {aO , a I , .. . , am} (and hence it s con
vex hull) . This is another illustration of t he idea of separatio n (in t his case
we separate the origin and the convex hull) .

Theorems of t he alternative like Gordan 's theorem may be proved in
a vari ety of ways , including separation and algorithmic approaches . We
employ a less standard technique using our earlier analytic ideas and lead
ing to a rather unified t reatm ent . It relies on the rela tionship between the
optimization problem

inf{f(x) I x E E},

where t he funct ion f is defined by

m

f( x) = log (L: exp(ai , x )) ,
i= O

(2.2.4)

(2 .2 .5)

and the two syst ems (2.2.2) and (2.2.3) . We return to t he surprising func
ti on (2.2 .5) when we dis cuss conjugacy in Section 3.3.

Theorem 2.2.6 Th e follo wing stateme nts are equiv alent:

(i) Th e fun ction defin ed by (2.2.5) is bounded below.

(ii) Sy st em (2.2.2) is solvable.

(iii) Syst em (2.2.3) is un solvable.

Proof. The implications (ii) => (iii) => (i) ar e easy exercises, so it remains
to show (i) => (ii) . To see this we apply Proposition 2.1.7. We deduce t hat
for each k = 1,2, ... , t here is a point x k in E sat isfying
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where the scalars
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(
. k

Ak = exp a" x) > 0
t "m exp (c" x k )

Ur=O '

satisfy 2:=;:0Af = 1. Now the limit A of any converge nt subsequence of the
bounded sequence (Ak ) solves system (2.2.2) . 0

The equivalence of (ii) and (iii) gives Gordan's theorem .
We now proceed by using Gordan's theorem to derive the Farkas lemma,

one of the corne rst ones of many approaches to op timality conditions. The
proof uses the idea of the projection onto a linear subspace Y of E. Notice
first that Y becomes a Euclidean space by equipping it with the same inner
product. The projection of a point x in E onto Y , written Pyx , is simply
the nearest point to x in Y. This is well-d efined (see Exercise 8 in Section
2.1) , and is characterized by the fact that x - PyX is orthogonal to Y . A
standard exercise shows Py is a linear map.

Lemma 2.2.7 (Farkas) For any points a1 , a2 , . .. .o)" and c in E , exactly
one of the follow ing syst ems has a solut ion:

m

LILiai = c, O :::;/-l1 ,/-l2, . . . ,!1m ER
i = l

(ai ,x) :::; 0 for i = 1,2, . .. , m, (c, x) > 0, x E E .

(2.2.8)

(2.2.9)

Proof. Again, it is immediate that if system (2.2.8) has a solution t hen
system (2.2.9) has no solution. Conversely, we assume (2.2 .9) has no so
lution and deduce that (2.2.8) has a solution by using induction on the
number of elements m . The result is clear for m = O.

Suppose then that the result holds in any Euclidean space and for any
set of m - 1 clements and any element c. Define aO = - c. Applying
Gordan 's theorem (2.2.1) to the unsolvability of (2.2.9) shows there ar e
scalars AO' A1 , . . . , Am ~ 0 in R , not all zero, satisfying AOC = 2:=~ Aiai.
If AO > 0 the proof is complete, so suppose AO = 0 an d without loss of
genera lity Am > O.

Define a subspace of E by Y = {y I (am, y) = O} , so by assumption the
system

(ai , y ) :::; O fori =1 ,2, . . . , m - 1, (c, y) > 0, yEY,

or equivalently

(Py ai , y):::; O for i =1 ,2, ... , m - 1, (Py c, y) > 0, yEY,

has no solution.
By the induction hypothesis applied to the subspace Y , t here are non

negative reals /-l1,/-l2 , . . . ,/-lm-1 sat isfying 2:=;:~ 1 /-l iPyai = Py c, so the
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vector c - L~- l J.Liai is orthogonal to t he subspace Y
Thus some real J.Lm satisfies
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(2.2.10)

If J.Lm is nonnegative we immediat ely obtain a solution of (2.2.8), and if
not then we can subst it ute am = -A;;/ L~- l Aiai in equat ion (2.2.10) to
obtain a solut ion . 0

J ust like Gordan 's theorem , the Farkas lemma has an important geom et 
ric interpretation which gives an alte rnat ive approach to its proof (Exercis e
6) : any point c not lying in the fini tely gen erated cone

m

C= {LJ.Liai 10::; J.Ll , J.L2, . . . , J.Lm E R}
1

(2.2. 11)

can be separate d from C by a hyp erplan e. If x solves system (2.2.9) t he n C
is cont ained in the closed halfspace {a I (a,x) ::; O} , whereas c is cont a ined
in the complementary ope n hal fspace. In particular, it follows t hat any
finitely generate d cone is closed .

Exercises and Commentary

Gord an's t heorem appeared in [84], and the Farkas lemma appeared in [75].
The standard mod ern approach to theorems of the alte rnative (Exe rcises
7 and 8, for example) is via linear pro gramming dua lity (see , for exam ple,
[53]). The approach we take to Gordan 's theorem was suggested by Hiri art 
Urruty [95]. Schur-convexi ty (Exe rcise 9) is discussed extens ively in [134].

1. P rove t he implicat ions (ii) =} (iii) =} (i) in Theorem 2.2.6.

2. (a) Prove t he orthogonal projection Py : E --> Y is a linear map.

(b) Give a direct proof of the Far kas lemma for the case m = l.

3. Use the Basic sep aration theorem (2.1.6) to give anot he r proof of
Gordan's theorem.

4. * Deduce Gordan 's theorem from the Farkas lem ma. (Hint : Consider
t he elements (ai , 1) of t he space E x R .)

5. * (Carathecdorys theorem [52]) Supp ose {a i l i E I} is a finit e
set of points in E . For any subset J of I , define the cone

CJ = {L J.L iai
1 0 ::; J.L i E R , (i E J)}.

i E J
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(a) Prove the cone OJ is the union of those cones OJ for which
the set {ai liE J} is linearly independent . Furthermore, prove
directly th at any such cone OJ is closed .

(b) Deduce that any finitely generated cone is closed.

(c) If the point x lies in conv {ai i i E I}, prove that in fact there
is a subset J c I of size at most 1 + dim E such that x lies in
conv {ai liE J}. (Hint: Apply part (a) to the vectors (ai , 1) in
Ex R.)

(d) Use part (c) to prove that if a subset of E is compact then so is
its convex hull.

6. * Give another proof of the Farkas lemma by applying the Basic
separation theorem (2.1.6) to the set defined by (2.2 .11) and using
the fact that any finit ely generated cone is closed.

7. ** (Ville's theorem) With the function f defined by (2.2.5) (with
E = R n), consider the optimization problem

inf{f(x) Ix;:::: O}

and its relationship with the two systems

(2.2.12)

and

m

LAiai;:::: 0,
i =O

m

(2.2.13)

(ai, x ) < 0 for i = 0,1 , . . . , m , x E R+.. (2.2.14)

Imitate the proof of Gordan's theorem (using Section 2.1, Exercise
14) to prove the following are equivalent:

(i) Problem (2.2.12) is bounded below.

(ii) System (2.2.13) is solvable.

(iii) System (2.2.14) is unsolvable.

Generalize by considering the problem inf{f(x) IXj ;:::: 0 (j E J)}.

8. ** (Stiemke's theorem) Consider the optimization problem (2.2.4)
and its relationship with the two systems

m

L Aiai = 0, 0 < AO , AI, . . . ,Am E R
i =O

and

(ai , x) ::::: 0 for i = 0,1 , .. . ,m, not all 0, x E E.

Prove the following are equivalent:

(2.2.15)

(2.2.16)
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(i) Problem (2.2.4) has an optimal solution .

(ii) Syst em (2.2.15) is solvable.

(iii) System (2.2.16) is un solvabl e.

Hint : Complete the following steps .

(a) Prove (i) implies (ii) by Propositi on 2.1.1.

(b) Prove (ii) implies (iii) .

(c) If problem (2.2.4) has no opt imal solution, prove that neither
does the problem

m

inf { L exp Yi lY EK} ,
i =O

(2 .2.17)

where K is the subspace {( (ai ,x))~o I x E E} c Rm+l . Hence,
by considering a minimizing sequence for (2.2.17), deduce system
(2.2 .16) is solvable.

Generalize by considering the problem inf{f(x ) IX j 2:: 0 (j E J)} .

9. *. (Schur-convexity) The dual cone of the cone R~ is defin ed by

(R~ ) + = {y E R " I (x , y) 2:: 0 for all x in R~ }.

(a) Prove a vector Y lies in (R~)+ if and only if

j

L Yi 2:: 0 for j = 1,2, . .. , n - 1,
1

(b) By wr iting I:{[xli = maxk(ak, x) for some suitable set of vectors

ak , prove t hat t he function x f--t I:{[Xli is convex. (Hint: Use
Section 1.1, Exercise 7.)

(c) Deduce that the function x f--t [x l is (R~)+ -convex, that is:

>'[xl + (1 - >. )[y] - [>':1: + (1 - >.)y] E (R~) + for 0 ::::; >. ::::; 1.

(d) Use Gordan 's theorem and Proposition 1.2.4 to deduce that
for any x and y in R~, if Y - x lies in (R~)+ then x lies in
conv (pny ) . - -

(e) A fun ction f : R~ ---+ R is Schur-convex if

x , y E R~ , y - x E (R~t =;. f( x ) ::::; f ey)·

Prove t hat if f is convex, t hen it is Schur-convex if and only
if it is t he restriction to R~ of a symm etric convex function
9 : R " ---+ R (where by symmetric we mean g(x ) = g(II x ) for
any x in R " and any permutation matrix IT).
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2.3 Max-functions

This section is an eleme nt ary exposit ion of the first order necessary con
ditions for a loca l minimizer of a d ifferentiable function subject to differ
ent iable inequality const ra ints. Throughout this section we use the term
"different iable" in the Gateaux sens e, defined in Section 2.1. Our approach,
which relies on consider ing the local minimizers of a max-function

g(x) =. max {gi( X)} ,
t= O, l, . .. ,m

(2.3 .1)

illustrat es a pervasive analytic idea in optimization: nonsmoothness. Eve n
if t he functions go, gl , . .. , gm are smooth , 9 may not be, and hence the
gradient may no longer be a useful not ion .

Proposition 2.3.2 (Directional derivatives of max-functions) Let x
be a point in the interior of a set C c E . Suppose that continuous func tions
go,gl, . . . , gm : C ----t R are differentiable at ii , that 9 is the max-function
(2.3.1) , and define the ind ex set K = {i I gi(X) = g(x)}. Then for all
directions d in E , the directional derivative of 9 is given by

g' (x; d) = max{ (V'gi(x) , d)}.
iE K

(2.3 .3)

Proof. By continuity we can assume, without loss of generality, K =
{O, 1, ... , m} ; those gi not attaining t he maximum in (2.3.1 ) will not affect
g' (x ;d). Now for each i , we have the inequality

I· . f g(x + td) - g(x) > I' gi(X + td) - gi( X) - (" .(- ) d)
1m III _ 1m - v g, x, .

t lO t tlO t

Suppose

lim sup g(x + td) - g(x) > max{(V'gi(X), d)} .
t lO t ,

Then some real sequence tk 10 and real e > 0 satisfy

=-g(-,---X_+_ tk_d=--) --=-g--,--(x...:...) ~ max{(V'gi(x ), d)} + f for all kE N
tk '

(where N denotes the sequence of natural numbers) . We can now choose a
subsequence R of N and a fixed index j so t hat all integers k in R satisfy
g( x + tkd) = gj( x + tkd). In the limit we obtain t he contradiction

Hence
. g(x + td) - g(x)

hm sup ::; max{(V'gi (X), d)} ,
t iO t ,
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D

(2 .3.5)

For most of this book we consider optimization problems of t he form

inf f( x) }
subject to gi( X) ~ 0 for i E I

hj(x) = 0 for j E J (2.3.4)
x E C,

where C is a subset of E , I and J are finit e index sets , and the objectiv e
fu n ct ion f and inequality and equ ality constrai n t fun ct ions gi (i E 1) and
h j (j E J) , respectively, ar e cont inuous from C to R . A point x in C is
f easibl e if it satisfies the const raints, and the set of all feasible x is ca lled the
f easible region. If t he problem has no feasible points, we call it inconsisten t.
We say a feasible point x is a local m inimizer if f( x) ;:: f( x) for all feasible
x close to X. We aim to derive first order necessary condit ions for local
minimizers .

We begin in this section with the different iable inequality const rained
problem

inf f(x) }
subject to gi(X) ~ 0 for i = 1,2, . .. , m

x E C.

For a feasibl e point x we define the active se t I(x) = {i I gi( X) = O} . For
this problem , assuming x E int C , we call a vector A E R + a Lagrange
multiplier vector for x if x is a cr it ical point of the Lagrangian

m

L(x; A) = f( x) +L Aigi( X)
i= l

(in other words, 'Vf(x) + LAi'Vgi( X) = 0), and com plementary slackness
holds: Ai = 0 for indices i not in I(x) .

Theorem 2.3.6 (Fritz John conditions) Suppose problem (2.3.5) has a
local minimizer x E intC. If th e functions f,gi (i E I(x)) are differentiable
at x th en th ere exist AO , Ai E R + (i E I(x)), not all ze ro, satisfying

Ao'Vf(x) + L Ai'Vgi( X) = 0.
iE J(x)

Proof. Consider the fun ction

g( x) = m ax{f(x) - f( x ), gi(X) liE I(x)} .

Since x is a local minimizer for the problem (2.3.5) , it is a local minimizer
of the fun ction g , so all directions dEE satisfy the inequality

g'(x ;d) = m ax{ ('Vf(x) ,d) , ('Vgi (x ), d) liE I( x)} ;:: 0 ,
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by t he F irs t order necessary condition (2.1.1) and Prop osit ion 2.3.2 (Direc
tional deri vatives of max-fun ct ions). Thus t he system

(\7 f (x ), d) < 0, (\7Yi (x ), d) < 0 for i E I (x )

has no solution, and the result follows by Gord an 's theo rem (2.2.1). D

One obvious disadvantage remains wit h t he Fri tz John first order condi
t ions above: if >'0= 0 t hen the condit ions are indep endent of the objective
funct ion f . To rul e out this possibili ty we need to impose a regu larity con
di t ion or "const raint qualification" , an approach which is anot her recur r ing
t heme. T he easiest such condit ion in t his context is simply the linear in
depen dence of the gradients of the act ive constraints {\7g i(x) liE I (x )} .
The culminat ing resul t of this section uses the following weaker condit ion.

Assumption 2.3.7 (The Mangasarian-Fromovitz constraint qual
ification) There is a direction d in E satisfying (\7gi(x) , d) < 0 fo r all
indices i in the active set I (x) .

Theorem 2.3.8 (Karush-Kuhn-Tucker conditions) Suppose pro blem
(2.3.5) has a local m in im izer x in int C. If the functions i .s. (f or i E

I (x ») are different iable at x, and if the Mangasaria n -From ovitz constrain t
qualification (2.3.7) holds, then there is a Lagrange multiplier vector f or ii :

Proof. By t he t riv ial implicati on in Gordan 's t heorem (2.2.1), the con
straint qualification ensures >'0 =1= 0 in the Fri t z Joh n condit ions (2.3.6) .

D

Exercises and Commentary

T he approach to first order condit ions of t his section is due to [95J. The
Fr itz Joh n condit ions appeared in [107]. T he Karush- Kuhn- Tu cker condi
t ions were first published (under a different regul ari ty condit ion) in [117],
alt hough t he condit ions app ear earl ier in an unpublished master 's t hesis
[l 11J . T he Mangasari an-Fromovitz const raint qualification appeared in
[133J. A nice collection of optimization problems involving t he determi
nant , similar to Exercise 8 (Minimum volume ellipsoid ), appears in [47]
(see also [183]) . The classic reference for inequ alities is [91].

1. P rove by induct ion that if the fun ctions go , Yl, . . . , gm : E -+ R are
all cont inuous at the point x then so is the max-funct ion g(x) =
max, {gi (xn·

2. (Failure of K arush-Kuhn-Tucker) Consider the following prob
lem :

inf
subject to

(Xl + 1)2 + x~

- xy+ x~ < 0
x E R 2 .
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(a) Sketch the feasi ble region and hence solve the problem.

(b) Find mu ltipliers AO and A satisfying the Fritz John conditions
(2.3 .6) .

(c) Prove there exists no Lagrange multiplier vector for the optimal
solution. Explain why not .

3. (Line a r inde p endence implies Mangasarian-Fromov itz) If the
set of vectors {ai , a2 , ... , am} in E is linearly independent , prove
directly there exists a direction d in E satisfying (ai , d) < 0 for i =
1,2, .. . ,m.

4. For each of the following problems , explain why there must exist
an optimal solution, and find it by using the Karush-Kuhn-Tucker
conditions.

(a)

(b)

inf xI + X~
subject to -2Xl - X2 + 10 < 0

- X l < O.

inf 5xI + 6x~
subject to Xl - 4 < 0

25 - xI - x~ < o.

5. (Cauchy-Schwarz a n d steepest descent ) For a nonzero vector y
in E , use the Karush-Kuhn-Tucker conditions to so lve the problem

inf{ (y, X) I IIx I1 2
::; I}.

Deduce the Cauchy-Schwarz inequality.

6. * (H o lder's inequality) For real p > 1, define q by p-l + «:' = 1,
and for X in R n define

For a nonzero vector y in R ", consider the optimization problem

inf{ (y , x)l llxll~::; I} . (2 .3.9)

(a) Prove l~ lu lP /p= u lu lp -
2 for all real tz.

(b) Prove reals u and v satisfy v = ulu lp -
2 if and only if u = v lvI Q-

2 .

(c) Prove problem (2.3.9) has a nonzero optimal so lution.

(d) Use the Karush-Kuhn-Tucker conditions to find the unique op
timal solution.
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(e) Deduce that any vect ors x and y in R " satisfy (y, x) ::; II Yll qll x ll p .

(We develop anot her approach to t his t heory in Section 4.1, Exercise
11.)

7. * Consider a matrix A in S++ and a real b » O.

(a) Assuming the problem

inf{- log det X I t r A X < b, X E S~+}

has a solut ion, find it .

(b) Repeat using the obj ective func tion tr X -I.

(c) Prove the problems in parts (a) and (b) have optimal solutions.
(Hint: Section 1.2, Exercise 14.)

8. ** (Minimum volume ellipsoid)

(a) For a point y in R " and the function g : S" ----> R defined by
g(X ) = IIXyIl2 , prove 'Vg(X) = XyyT + yyT X for all matrices
X in s- .

(b) Consider a set {y1, y2, . . . , yrn} eRn. Prove t his set spans R n
if and only if the matrix L i yi(yi)T is positi ve defini te.

Now suppose t he vectors yl , y2, .. . , yrn span R ".

(c) Prove the problem

-logdetX
II X y i 112- 1 < 0 for i=I ,2 , .. . , m

X E S++

has an optimal solution. (Hint: Use par t (b) and Section 1.2,
Exercise 14.)

Now suppose X is an optimal solut ion for the problem in part (c). (In
this case the set {y E R " IIIX yll ::; I} is a minimum volume ellipsoid
(centered at the origin) containing the vectors yl , y2, .. . , yrn .)

(d) Show the Mangasari an-Fromovitz cons t raint qu alification holds
at X by considering the direction d = - X.

(e) Wri te down t he Karu sh-Kuhn-Tucker condit ions that X must
sat isfy.

(f) When {yl , y2, . . . , yrn } is the st andard basis of R n, the opt imal
solution of t he probl em in part (c) is X = I . Find the corre
sponding Lagran ge mult iplier vector.



Chapter 3

Fenchel Duality

3.1 Subgradients and Convex Functions

We have already seen , in t he F irst order sufficient condit ion (2 .1.2) , one
benefit of convex ity in optimization : crit ical points of convex fun ctions are
global minimizers. In t his sect ion we extend the typ es of fun ctions we
consider in two im portant ways:

(i) We do not require f to be differentiabl e.

(ii) We allow f to t ake t he value +00 .

Our derivation of first order conditions in Section 2.3 illustrates the
utility of conside ring nonsmooth functions even in the context of smooth
problems. Allowing the value + 00 lets us rephrase a problem like

inf{g(x) Ix E C}

as inf(g + 80) , where the indicator fun ction 8c(x ) is 0 for x in C and +00
otherwise.

The domain of a fun ction f : E --+ (00, + ooJ is the set

dom f = {x E E l f (x ) < + oo}.

We say f is convex if it is convex on its domain , and proper if its domain
is nonempty. We call a function g : E --+ [-00, + 00) concave if - g is
convex, although for reasons of simplicity we will cons ide r primarily convex
functions. If a convex function f satisfies the st ronger condit ion

f(>..x + J.LY) ~ >"f(x) + J.Lf(y) for all x , y E E , >.. , J.L E R +

we say f is sublinear. If f (>.. x) = >"f(x) for all x in E and >.. in R + then
f is positively homogeneous: in par ticular this implies f(O) = o. (Recall

33
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the convention O· (+ 00) = 0.) If f (x + y) s f( x) + f(y) for all x and y
in E then we say f is subadditive. It is immediate that if t he function f
is sublinear then - f( x) S f( - x) for all x in E. The lineality space of a
sublinear fun ction f is the set

lin f = {x E E l - f (x) = f (- x )} .

The following result (whose pro of is left as an exercise) shows this set is a
subspace .

Proposition 3 .1.1 (Sublinearity) A function f : E -+ (00, + 00] is sub
lin ear if and only if it is positively homogen eous and subadditive . For a
sublinear junction f, the lin eality space lin f is th e largest su bspace oj E on
which f is linear.

As in the First order sufficient condition (2.1.2), it is easy to check
that if t he point x lies in the domain of t he convex function f then t he
directional derivative f'( x ;·) is well-d efined and positively homogeneous,
t aking values in [-00, + ooJ. The core of a set C (wr itten core (C)) is the
set of points x in C such that for any direct ion d in E, x + td lies in C for
all sm all real t . Thi s set clearly contains the interior of C, alt hough it may
be larger (Exercise 2) .

Proposition 3.1.2 (Sublinearity of the directional derivative) lj the
junc ti on f : E -+ (00, + ooJ is convex then , [or any point x in core (dom!) ,
th e direct ional derivative I' (x ; .) is everywhere fin ite and sublin ear.

Proof. For d in E and nonzero t in R , define

g(d;t) = f( x + td) - j(x) .
t

By convexity we deduce, for 0 < t ss E R , t he inequality

g(d; -s) S g(d; - t) S g(d;t) S g(d; s ).

Since x lies in core (domf) , for small s > 0 both g(d;-s) and g(d;s) are
finite, so as t l Owe have

+00 > g(d ;s) ~ g(d; t) 11'(x ;d) ~ g(d;-s) > - 00. (3.1.3)

Again by convexity we have, for any directions d and e in E and real t > 0,

g(d + e; t) S g(d;2t) + g( c;2t) .

Now letting t 10 gives subaddit ivity of f ' (x; .). The positive homogeneity
is easy to check. D
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The idea of t he derivative is fundamental in analysis because it allows
us to approximate a wide class of funct ions using lin ear fun ctions. In opti
mization we are concerned specifically wit h the minimization of funct ions,
and hence often a one-sid ed approximation is sufficient. In place of the gra
dient we t herefore cons ider subgmdients, those elements ¢ of E satisfying

(¢, x - x) ::; f( x ) - f( x ) for all points x in E . (3 .1.4)

We denote the set of subgradients (called the subdiffe rential) by of(x) ,
defining of(x) = 0 for x not in dom f. The subdifferen tial is always a closed
convex set. We can think of of(x) as the value at x of the "mult ifunct ion"
or "set-valued map " of : E ----; E. The importance of such maps is another
of our themes . We define its domain

domof = {x E E l of(x) :f: 0}

(Exercise 19). We say f is essentially strictly convex if it is strict ly convex
on any convex subset of domof .

The following very easy observation suggests the fundamental signifi
cance of subgradient s in opt imiz ation.

Proposition 3.1.5 (Subgradients a t optimality ) For any proper func
tion f : E ----; (00, + 00], the point x is a (global) min imizer of f if and only
if the conditi on 0 E of(x) holds.

Alt ernatively put , minimizers of f correspond exactly to "zeroes" of o f .
T he derivative is a local property whereas the subgradient definition

(3.1.4) descr ibes a global property. The main result of t his section shows
t hat the set of subgradi ents of a convex funct ion is usually nonempty, and
that we can describe it locally in te rms of the dir ectional derivative. We
begin with another simple exercise.

Proposition 3.1.6 (Subgradient s and directional derivatives) If the
function f : E ----; (00, +ooJ is convex and the point x lies in dom f, then
an eleme nt ¢ of E is a subgmdi ent of f at x if and only if it satisfies
(¢, .) ::; f'( x; .) .

T he idea behind t he const ru ct ion of a subgradient for a function f that
we present here is rather simple. We recursively const ruct a decreasing
sequ ence of sublinear functions which, aft er transla t ion, minorize f. At
each ste p we guarantee on e ext ra dir ection of linearity. The basic step is
summarized in the following exercise.

Lemma 3.1.7 Suppo se that the function p : E ----; (00, + ooJ is sublinear
and that the point x lies in core (dom p). Then the function q( .) = p' (x; .)
satisfies the conditions
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(i) q()..x) = Ap(X) fo r all real ).. ,

(ii) q :::; p , and

(iii) lin q => lin p + span {x}.

With t his tool we are now ready for the main result , which gives condi
tions guaranteeing the existe nce of a subgradi ent . Proposition 3.1.6 showed
how t o identify subgradients from directional derivatives; t his next result
shows how to move in the reverse direction.

Theorem 3 .1.8 (Max formula) If the function f : E ----., (00, + 00] is
convex then an y point x in core (dom f) and any direct ion d in E satisf y

f'( x ;d) = max{ (4), d) 14> E of(x)} .

In particular, the subdifferenti al of(x) is non empty.

(3.1.9)

Proof. In view of Proposition 3.1.6, we simply have to show that for any
fixed d in E t here is a subgradient 4> satisfying (4), d) = f'( x ;d). Choose
a basis {el ' ez, ... , en } for E with el = d if d is nonzero . Now define
a sequence of functions PO ,PI , ,Pn recursively by PoO = f'( x ; -), and
Pk( ') = P~- I (ek ; ') for k = 1,2 , , n . We essent ially show that PnO is the
required subgradient.

First note that , by P roposition 3.1.2, each Pk is everywhere finite and
sublinear. By part (iii) of Lemma 3.1.7 we know

linpk => linpk- I + span {ek} for k = 1,2, . . . ,n,

so Pn is linear. Thus there is an element 4> of E sa ti sfying (4), ,) = PnO.
Part (ii) of Lemma 3.1.7 implies Pn :::; Pn-I :::; . . . :::; Po, so certainly, by

Proposition 3.1.6, any point x in E sa t isfies

Pn( x - x ) :::; Po(x - x ) = f'( x ;x - x ) :::; f( x) - f( x) .

Thus 4> is a subgradient. If d is zero t hen we have Pn(O) = 0 = f'( x ;0) .
Finally, if d is nonzero then by part (i) of Lemma 3.1.7 we see

Pn(d) :::; Po(d) = po(ed = -p~ (e l ; - el) =
-PI (-ed = - PI (-d) :::; -Pn( -d) = Pn(d) ,

whence Pn(d) = Po(d) = f'( x ;d). D

Corollary 3.1.10 (Differentiability of convex functions) Suppose th e
function f : E ----., «(X),+ 00] is convex and th e point x lies in core (dom f).
Then f is Gateaux differentiabl e at x exac tly when f has a uniqu e subgra
dient at x (in which case th is subgradient is th e deri va tive) .
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Ixl
i5R +

{
- ,fi if x 2: 0
+00 otherwise

We say the convex function f is essentially smooth if it is Gateaux dif
ferentiable on dom of. (In this definit ion , we also require f to be "lower
semicontinuous"; we defer disc uss ion of lower semicontinuity until we need
it , in Section 4.2 .) We see later (Section 4.1, Exercise 21) that a function
is essentially smooth if and only if its subdifferential is always singleton or
empty.

T he Max formula (Theorem 3.1.8) shows that convex functions typically
have subgradients. In fact this property charact erizes convexity (Exercise
12) . This leads to a number of important ways of recognizing convex func
tions, one of which is the following example. Notice how a locally defined
analytic condition results in a global geometric conclusion. T he proof is
outlined in the exercises.

Theorem 3.1.11 (Hessian characterization of convexity) Given an
open convex set S c R " , suppose the continuous function f : cl S --+ R is
twice continuously differentiable on S. Th en f is convex if and only if its
Hessian matrix is positive semidefinite everywhere on S.

Exercises and Commentary

T he algebraic proof of the Max formu la we follow here is due to [22]. T he
exercises below develop several standard characterizations of convexity
see for example [167]. The convexity of - log det (Exercise 21) may be
found in [99] , for example. We shall see that the core and interior of a
convex set in fact coincide (Theorem 4.1.4) .

1. Prove Proposition 3.1.1 (Sublinearity) .

2. (Core versus int erior) Consider the set in R 2

D = {(x ,y) Iy = 0 or lyl 2: x 2
} .

Prove 0 E core (D) \ int (D).

3. Prove the subdifferential is a closed convex set.

4. (Subgradients and normal cones) If a point x lies in a set C c E ,
prove oi5c(x) = Nc(x).

5. Prove the following functions x E R t-+ f( x) are convex and calc ulate
of:

(a)

(b)

(c)
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{

o if x <O
1 if x = °
+00 ot herwise.

6. Prove Proposition 3.1.6 (Subgrad ients and direction al derivatives) .

7. Prove Lemma 3.1.7.

8. (Subgradients of norm) Calculate 811·11. Generalize your result to
an arbitrary sublinear func t ion .

9. (Subgradients of maximum eigenvalue) Prove

OA1(0) = {Y E S+ I trY = I} .

10. ** For any vector f1 in the cone R~ , prove

(see Section 2.2, Exercise 9 (Schur-convexi ty)).

11. * Define a function f : R " --+ R by f( X1 , X2, .. . , x n ) = maxj{x j} ,
let x = °and d = (1,1, . .. ,1)T, and let e k = (1,1 , .. . , I, O, .. . ,O)T
(ending in (k - 1) zeroes). Calcul ate the functions Pk defined in
the proof of Theorem 3.1.8 (Max formula) , using P roposition 2.3.2
(Direct ional derivatives of max functions) .

12. * (Recognizing convex functions) Suppose t he set S c R " is
op en and convex, and consider a fun ction f : S --+ R. For points
x rf- S, define f( x) = +00.

(a) Prove of (x) is non empty for all x in S if and only if f is convex.
(Hint : For points U and v in S and real A in [0, 1], use the
subgradient inequality (3.1.4) at the points x = AU+ (1 - A)v
and x = U, v to check t he definition of convexity. )

(b) Prove that if I c R is an op en interval and 9 : I --+ R is
differentiable then 9 is convex if and onl y if g' is nondecreasing
on I , and 9 is st rict ly convex if and only if g' is st rictly increasing
on I . Deduce that if 9 is twi ce d ifferentiable then 9 is convex if
and only if o" is nonnegative on I , and 9 is strictly convex if s"
is st r ict ly positive on I .

(c) Deduce that if f is twice cont inuo usly differentiable on S then f
is convex if and only if its Hess ian matrix is positive semidefinite
everyw here on S, and f is st rict ly convex if it s Hessian matrix is
positive definite everywhere on S . (Hint : Apply par t (b) to the
funct ion 9 defined by get) = f( x + td) for small real t , points x
in S , and direct ions d in E .)
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(d) Find a strict ly convex funct ion 1 : (- 1,1 ) ---. R with 1"(0) = O.

(e) Prove that a cont inuous function h : cl S ---. R is convex if and
only if it s restriction to S is convex. What about strict ly convex
functions?

for a :::: 1.

for a :::: 1.(a)

(b)

13. (Lo ca l convexity ) Suppose the function 1 : R " ---. R is twice con
t inuously differenti able near 0 and \721(0) is pos it ive definit e. Prove
1 18B is convex for some rea l b > O.

14. (Examples of convex functions) As we shall see in Section 4. 2,
most natural convex functions occur in pairs. The table in Section
3.3 lists many examples on R. Use Exercise 12 t o prove each func t ion
1 and 1* in t he table is convex.

15. (Examples of convex functions) P rove the following functions of
x E R are convex :

I ( Sinh aX)
og . hsin x

log (ea X

- 1)
eX - 1

16. * (Bregman distances (48)) For a function ¢ : E ---. (00, +00]
that is st rict ly convex and different iable on int (do m ¢), define the
Bregman distance d<t> : dom ¢ x int (dom ¢) --> R by

d<t> (x , y) = ¢(x) - ¢( y) - ¢'( y)(x - y ).

(a) Prove d<t> (x , y ) :::: 0, wit h equality if and only if x = y.

(b) Compute d<t> when ¢ (t ) = t 2 /2 and when ¢ is the funct ion p
defined in Exer cise 27 .

(c) Suppose ¢ is t hree t imes different iab le. P rove d<t> is convex if
and only if -1 /¢" is convex on int (dom ¢ ).

(d ) Extend the results above to the function

D <t> : (dom e]" x (int (dom o j )" ---. R

defined by D <t>(x, y ) = L i d<t> (Xi ' Yi) '

17. * (Convex functions on R 2) Prove the following fun cti ons of x E
R 2 are convex:

(a)

{
bXl - X2)(lOg Xl - log x2)

+ 00

(Hint : See Exerci se 16.)

if x E R~+

if x = 0
otherwise.
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(b)

18. * Prove the function

{

xi
X2

o
+00

if X 2 > 0

if x = 0
otherwise.

is convex.

if x E R+.
otherwise

19. (Domain of subdifferential) If the fun ction f: R 2~ (00, +00] is
defined by

f( ) - {max{1 - JXl,IX 21}
Xl , X 2 - +00

if Xl :::: 0
otherwise,

prove that f is convex but that dom f)f is not convex.

20. * (Monotonicity of gradients) Suppose that the set 5 c R " is
op en and convex and that the fun ction f : 5 ~ R is differentiabl e.
Prove f is convex if and only if

(\1 f( x) - \1 fey) , X - y) :::: 0 for all x , y E 5,

and f is st rict ly convex if and only if the above inequality holds
st rict ly whenever X #- y. (You may use Exercise 12.)

21. ** (The log barrier) Use Exercise 20 (Monotonicity of grad ients),
Exercise 10 in Section 2.1 and Exercise 8 in Section 1.2 to prove that
the fun ction f : S+.+ ---7 R defined by f(X) = -log det X is str ictly
convex . Deduce the uniqueness of the minimum volume ellipsoid in
Section 2.3, Exercise 8, and the matrix complet ion in Sect ion 2.1,
Exercise 12.

22. Prove the function (2.2.5) is convex on R " by calculat ing its Hessian .

23. * If the fun ction f : E ---7 (00, +00] is essentially st rict ly convex , prove
all distinct points X and y in E satisfy f)f( x) n f)f(y) = 0. Deduce
that f has at most one minimizer .

24. (Minimizers of essentially smooth functions) Prove that any
minimizer of an essent ially smooth fun ction f must lie in core (dom J) .

25. ** (Convex matrix functions) Consider a matrix C in S+. .
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(a) For matrices X in S+. + and D in S" , use a power series expansion
to prove

d
2

Idt 2 t r(C(X + tD)-l) t=o:2: o.

(b) Deduce XE S+'+ f-t tr (CX - 1
) is convex.

(c) Prove similarly the function X E S" t---+ tr (CX 2 ) and the func
tion XE S+' t---+ -tr (CX 1/ 2 ) are convex.

26. ** (Log-convexit y) Given a convex set C c E , we say that a func
tion f : C ----t R ++ is log-conv ex if log f(-) is convex.

(a) Prove any log-convex function is convex, using Section 1.1 , Ex
ercise 9 (Composing convex fun ctions) .

(b) If a polynomial p : R ----t R has all real roots, prove l ip is log
convex on any interval on which p is strictly positive.

(c) One version of Holder's in equality states, for real p,q > 1 satis
fying »: ' + «: ' = 1 and functions u , v : R + ----t R ,

Juv ~ (JlulP ) l /p (J Ivlq ) l /q

when the right hand side is well-defined. Use this to prove the
gamma function T : R ----t R given by

is log-convex.

27. ** (Maximum e nt r o py [36]) Define a convex function p R ----t
(-00, +00] by

{

u log u - u if u > 0
p(u) = 0 if u = 0

+ 00 if u < 0

and a convex fun ction f : R " ----t (-00, +00] by

n

f( x) = I:>(x;).
;=1

Suppose X lies in the interior of R +. .

(a) Prove f is strictly convex on R +. with compact level sets.

(b) Prove f' (Xix - x) = - 00 for any point x on the boundary of
R +. .
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(c) Suppose the map G : R" ---> R ?' is linear with Gx = b. Prove
for any vector c in R n that the problem

inf { f (x ) + (c,x) IGx = b, x E R"}

has a unique optimal solut ion X, lying in R~+ .

(d) Use Coroll ary 2.1.3 (First order condit ions for linear const raints)
to prove that some vector A in R '" sa t isfies V'f( x) = G*A - c,
and deduce Xi = exp(G* A - ck

28. ** (DAD problems [36]) Consider the following example of Exercise
27 (Maximum entropy) . Suppose the k x k matrix A has each ent ry
aij nonnegative. We say A has doubly stochastic pattern if there is
a doubly stochast ic matrix with exac t ly the same zero ent ries as A.
Define a set Z = {(i , j) Iaij > a}, and let R Z denote the set of vectors
with components indexed by Z and R~ denote those vectors in R Z

with all nonnegative components. Consider t he problem

inf
subjec t to

L:(i ,j) EZ(P(Xi j) - Xi j IOgai j)

L:i :(i ,j )EZ Xi j = 1 for j = 1,2 , , k

L:j :(i ,j) EZ Xi j = 1 for i = 1,2, , k
x E R Z

.

(a) Suppose A has doubly stochast ic pattern. Prove there is a point
x in the interior of R~ whi ch is feasible for the problem above.
Deduce that the problem has a unique op timal solution X, and,
for some vectors A and f..l in R k , x sati sfies

(b) Deduce that A has doubly stochastic pattern if and only if t here
are diagonal matrices D 1 and D 2 with strictly positive diagonal
entries and D 1AD2 doubly stochastic.

29. ** (Relativizing the Max formula) If f : E ---> (00, + 00] is a
convex function then for poi nt s x in ri (dom f) and directions d in E ,
prove t he subdifferent ial af(x) is nonempty and

f'( x ;d) = sup{ (¢ ,d) I¢ E af(x)} ,

wit h attainment when finite .
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In t his section we describe another approach to the Karush-Kuhn-Tucker
condit ions (2.3.8) in the convex case using t he existence of subgradients we
established in the previous section. We consider an (inequali ty-cons trai ned)
convex program

inf{j(x) Igi (X) :s; 0 for i = 1,2, .. . , m, x E E }, (3.2.1)

where the func tions [ , g1, g2, .. . , gTTl : E -+ (00,+00] are convex and satisfy
o =1= domf C n idomgi ' Denoting the vector with compo nents gi( X) by
g(x) , the function L : E x R + -+ (00,+ooJ defined by

L(x; A) = f( x) + ATg(x), (3.2 .2)

is called the Lagrangian. A f easible solution is a point x in dom f satisfying
the cons t raints.

We should emphasize t hat the term "Lagrange mul tiplier" has different
mean ings in different contexts. In the present contex t we say a vector 5. E

R + is a Lagrange multipl ier vector for a feasible solution x if x minimizes
t he fun ction L( . ; 5.) over E and 5. satisfies the complementary slackness
condit ions: 5.i = 0 whenever gi(X) < O.

We can ofte n use the following pr inciple to solve sim ple optimization
problems.

Propositio n 3.2.3 (Lagrangian su fficien t cond itions) If the poin t ii:
is f easible fo r th e convex program (3.2.1) and there is a Lagrange multip lier
vector, th en x is optim al.

The proof is immediate, and in fact does not rely on convex ity.
The Karush-Kuhn-Tucker condit ions (2.3.8) are a converse to the above

resul t when the functions f , g1, g2, ... , 9TTl ar e convex and differentiable.
We next follow a very different , and surprising, route to this result , cir
cumvent ing differentiability. We perturb the problem (3.2.1), and analyze
the resulting (optimal) value fun ction v : R TTl -+ [-00, + 00], defined by the
equat ion

v(b) = inf{j(x) Ig(x) :s; b}. (3.2.4)

We show that Lagran ge mu ltiplier vectors 5. corr esp ond to subgradients of
v (Exerc ise 9).

Our old definition of convexity for func tions does not naturally extend
to functions h : E -+ [-00, +ooJ (due to the possible occurrence of 00- (0).
To generalize the defini tion we introduce t he idea of t he epigraph of h :

epi(h) = {(y , r ) E E x R Ih(y ) :S; r} , (3.2.5)
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and we say h is a convex function if epi (h) is a convex set. An exercise
shows in t his case that t he domain

dom (h ) = { y Ih (y ) < +oo }

is convex, an d fur ther t hat the value function v defined by equation (3.2.4)
is convex. We say h is proper if dom h is nonempty and h never takes t he
value - 00 : if we wish to demonstrate the existence of subgradients for v
using t he results in the previous section then we need to exclude -00.

Lemma 3.2.6 If the function h : E -+ [-00, +00] is convex and some
point fj in core (dom h) satisfies h (fj) > - 00, th en h never takes the value
-00 .

Proof. Suppose some point y in E satisfies h(y) = - 00. Since fj lies in
core (dom h) , there is a real t > 0 with fj + t(fj - y) in dom (h) , and hence
a real r with (fj + t( fj - y ), r) in epi (h) . Now for any real s, (y , s ) lies in
epi (h) , so we know

( fj, T
1
: t: ) = l:t (f; + t (fj -y),r)+ l: t (y , s ) E epi (h ) ,

Let ting s -+ - 00 gives a contradict ion. o

In Section 2.3 we saw t hat the Karush-Kuhn-Tucker conditions needed
a regularity conditio n. In t his app roach we will apply a different cond it ion ,
known as the Slater constraint qualification , for t he problem (3.2.1):

There exists x in dom (I) with gi(X) < 0 for i = 1,2, . . . , m. (3.2.7)

Theorem 3.2.8 (Lagrangian necessary conditions) Suppose that the
point x in dom (I ) is opt imal for the convex program (3.2.1) and that the
S later conditi on (3.2.7) holds. Th en there is a Lagrange m ultiplier vector
f or ii .

Proof. Defining the value functi on v by equation (3.2 .4) , certainly v (O) >
-00, and the Slater condition shows 0 E core (dom v ), so in particular
Lemma 3.2.6 shows that v never takes the value - 00. (An incidental con
sequence, from Section 4.1, is the cont inuity of vat 0.) We now deduce the
exis tence of a subgradient - Xof vat 0, by t he Max formula (3.(8).

Any vector bin R + obviously satisfies g(x) ::; b, whence the inequality

f (x ) = v(O) < v( b) + XTb ::; f (x ) + XTb.

Hence, X lies in R +. Furthermore, any point x in dom f clearly satisfies

f (x ) ~ v(g(x)) ~ v (O) - XTg(x) = f (x ) - XTg(x ).



3.2 T he Value Function 45

The case x = X, using the inequalities ;x. ;:::: 0 and g(x) :::; 0, shows ;x.Tg(x) =
0, which yields the complementary slackness conditions. Finally, all points
x in dom f must satisfy f(x) +;x.Tg(x) ;:::: f(x) = f( x) + ;x.Tg(x) . 0

In particular, if in the above result x lies in core (dom f) and the func
tions f, gl, g2, . . . , gTn are differentiable at x then

rn

v f(x) + L ;x.i'Vgi (x ) = 0,
i=l

so we recapture t he Karush-Kuhn-Tucker conditions (2.3 .8). In fact , in
this case it is easy to see that the Slater condition is equivalent to the
Mangasarian-Fromovitz constraint qualification (Assumption 2.3.7) .

Exercises and Commentary

Versions of the Lagrangian necessary conditions above appeared in [182]
and [110]; for a survey see [158] . The approach here is analogous to [81].
T he Slater condition first appeared in [173].

1. Prove t he Lagrangian sufficient condit ions (3.2 .3).

2. Use the Lagrangian sufficient conditions (3.2.3) to solve the following
problems.

(a) inf
subject to

xi + x~ - 6XI - 2X2 + 10
2XI + X2 - 2 :::; 0

X2 - 1 :::; 0
x E R 2 .

(b)

(c) inf

inf - 2XI + X2
subject to xi - X2 < 0

X2 -4 < 0
x E R2 .

2
Xl +

X2

subject to
1

- X2 +"2 < 0

- Xl + x~ < 0
x E {(Xl , X2) I X2 > O} .

3. Given strictly positive reals aI, a2, .. . ,an , CI , C2, . . . ,Cn and b, use the
Lagrangian sufficient conditions to solve the problem

n n

inf { L ~i. I L aixi < b, X E R~+ } .
i=l ' i=l
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4. For a mat rix A in S++ and a real b > 0, use t he Lagrangian sufficient
conditions to solve the problem

inf{-log det X Itr AX < b, X E S++ }.

You may use the fact that the objecti ve fun ction is convex with
derivati ve -X- 1 (see Sect ion 3.1 , Exer cise 21 (T he log ba rrier)) .

5. * (Mixed constraints) Conside r the convex program (3.2.1) with
some addit ional linear constraints (aj , x) = dj for vect ors aj in E
and reals dj . By rewri ting each equality as two inequ aliti es (or other
wise) , prove a version of the Lagrangian sufficient condit ions for this
problem.

6. (Extended convex functions)

(a) Give an example of a convex function that takes t he values 0
an d - 00.

(b) Prove t he value functi on v defined by equation (3.2.4) is convex .

(c) Prove that a function h : E -+ [-00, +00] is convex if and only
if it satisfies t he inequa lity

h(AX+ (1 - A)Y) ::::: Ah(x ) + (1 - A)h(y)

for any points x and y in dom h (or E if h is prop er) and any
real A in (0, 1).

(d) Prove that if the function h : E -+ [-00, +00] is convex t hen
dom (h) is convex .

7. (Nonexistence of multiplier) For the functi on f : R -+ (00, + 00]
defined by f (x) = -..jx for x in R + and +00 ot herwise, show t here
is no Lagrange mul tiplier at the optimal solut ion of inf{J(x ) Ix ::::: O}.

8. (Duffin's duality gap) Consider the following problem (for real b):

(3.2.9)

(a ) Sketch the feasible region for b > 0 and for b = O.

(b) Plot the value function v.

(c) Show that when b = 0 there is no Lagr an ge mul ti plier for any
feasible solution. Explain why the Lagrangian necessary condi
t ions (3.2.8) do not apply.

(d) Rep eat the above exercises wit h the objective function eX 2 re
placed by X2 .
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9. ** (Kar ush - K u h n- Thcker vectors [167]) Consider the convex
program (3.2.1). Suppose the value function v given by equation
(3.2.4) is finit e at O. We say the vector .\ in WI: is a Karush-Kuhn
Tucker vector if it satisfies v(O) = inf{L(x ;.\) I x E E }.

(a) Prove that t he set of Karush-Kuhn -Tucker vectors is -ov(O) .

(b) Suppose the point x is an optimal solution of problem (3.2.1) .
Prove that the set of Karush-Kuhn-Tucker vectors coincides
with the set of Lagrange multiplier vectors for X.

(c) Prove the Slater condition ensures the existence of a Karush
Kuhn-Tucker vector.

(d) Suppose .\ is a Karush-Kuhn-Tucker vector. Prove a feasible
point x is optimal for problem (3.2.1) if and only if:\ is a La
grange mu ltiplier vector for x.

10. Prove the equivalence of the Slater and Mangasarian-Fromovitz con
ditions asserted at the end of t he section.

11. (Normals to e p igrap hs) For a function f : E ~ (00,+00] and a
point x in core (domf), calculate the normal cone Nepif(x,f(x» .

12. * (Normals t o level sets) Suppose the function f : E ~ (00, +00]
is convex. If the point x lies in core (dom f) and is not a minimizer
for I , prove that the normal cone at x to the level set

C = {x E El f(x) ::; f( x)}

is given by Nc(x) = R +of (x ). Is the assumption x E core (dom f)
and f(x) > inf f necessary?

13. * (Subdiffe r ential of m ax-function) Consider convex fun ctions

gl,g2 , ' " ,gm : E ~ (00,+00],

and define a function g(x) = maxi gi( X) for all points x in E . For a
fixed point x in E , define the index set 1 = {i Igi( X) = g(x)} and let

C= U {O ( LAi9i)(x) I AE R~, L Ai = I}.
iE I i EI

(a) Prove C c og(x) .

(b) Suppose 0 E og(x) . By considering the convex program

inf {t Igi(x) - t ::; 0 for i = 1, 2, . . . , m} ,
t ER , x EE

prove 0 E C .
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(c) Deduce ag(x) = c.

inf
subject to

14. ** (Minimum volume ellipsoid) Denote t he standard basis of R "
by {e1 , e2 , ••. , en} and consid er the minimum volume ellipsoid prob
lem (see Section 2.3, Exercise 8)

- log det X
IIXei

11
2-1 < 0 fori=1,2, .. . , n

X E S++.

Use the Lagrangian sufficient conditions (3.2.3) to prove X = I is the
unique opt imal solution. (Hint: Use Section 3.1, Exercise 21 (The log
barrier) .) Deduce the following sp ecial case of Hadamard's in equality:
Any matrix (Xl x 2 . .• x n

) in S++ satisfies
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In the next few sections we sketch a little of the elegant and concise t heory
of Fenchel conjugation, and we use it to ga in a deeper understanding of the
Lagrangian necessary conditions for convex pro grams (3.2.8) . The Fenchel
conjugate of a function h ; E ----> [-00, +00] is the function h* ; E ---->

[-00, +00] defined by

h*(¢) = sup{(¢ , x ) - h( x)} .
xEE

The fun ction h* is convex and if the domain of his nonempty then h* never
t akes the value - 00. Clearly the conjugacy operation is order-reversing;
for fun ctions j ,g ; E ----> [-00, + 00]' the inequality j ::::: g implies 1* ::; g*.

Conjugate functions are ubiquitous in optimization. For example, we
have already seen the conjugate of the exponent ial, defined by

{

t log t - t if t > 0
exp * (t) = 0 if t = 0

+ 00 if t < 0

(see Section 3.1, Exercise 27) . A rather more subtle example is the fun ction
g : E ----> (00, + 00] defined , for point s aD, a1 , . • • ,am in E, by

(3.3.1)

The conjugat e is the function we used in Section 2.2 to prove various the
orems of the alternative:

g*(y) = 1 + log (L exp (ai, y)) (3.3.2)

(see Exercise 7).
As we shall see later (Section 4.2), many important convex functions h

equal their biconjugates h** . Such functions thus occur as natural pairs,
h and h*. Table 3.1 shows some elegant examples on R , and Table 3.2
describes some simple t ransformat ions of these examples.

The following result summarizes the properties of two particularly im
port an t convex fun ctions.

Proposition 3.3.3 (Log barriers) The function s lb R" ----> (00, + 00]
and ld : S" ----> (00, + 00] defin ed by

lb (x) = { - L: 7=1Iog x i
+ 00

if x E R+-+
otherwis e
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I domg ~g(y) = f*(y)~ f(x) = g*(x) I domf ~

0 R 0 {O}

0 R + 0 - R+

0 [- l , lJ Iyl R

0 [O, l J y+ R

IxlP jp, p>l R \ylqjq (i + i = 1) R

Ix lPj p, p>l R + Iy+lq jq (i + i = 1) R

-xP[p, O<p <l R + -(-y)q jq (1 + 1 = 1) - R ++P q

,/1 + x 2 R - J17 [-l,lJ

- log x R ++ - l -log(- y) -R++

cosh x R ysinh-1(y) -~ R

- log(cos x) ( -~ ,~) ytan- 1(y) - ~ log(1 + y2) R

log(cosh x) R ytanh-1(y) + ~ log(l _ y2) (-1 ,1)

eX R { ~log y - y (y > 0)
R +(y = 0)

{
y logy + (1- y) log (l - y)

log(l + e") R (y E (0,1) ) [O, l J
0 (y=O ,l)

{
ylogy - (1 + y) log(l + y)

-log(l - e" ) R (y > 0) R +
0 (y = 0)

Table 3.1: Conjugate pairs of convex functions on R .
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f = g* 9 = 1*

f( x) g(y)

h(ax) (a -=1= 0) h*(yla)

hex + b) h*(y) - by

ah(x) (a > 0) ah* (Yla)

Table 3.2: Transformed conjugates.
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and
Id(X) = { -IOgdetX

+00
if X ES+-+
otherwise

are essentially smooth, and strictly convex on their domains. Th ey satisf y
the conjugacy relations

lb *(x) = lb(-x) - n for all x E Rn, and

ld *(X ) = ld (-X) - n for all X E S" .

Th e pert urbed func ti ons lb + (c,·) and ld + (0 , ·) have compact level sets
for any vector c E R +-+ and matrix C E S +- + ' respectiv ely.

(See Section 3.1 , Exercise 21 (The log barrier), and Section 1.2, Exercise
14 (Level sets of perturbed log barriers) ; the conjugacy formulas are simple
calculations. ) Notice the simple relationships lb = ld 0 Diag and ld = lb 0 A
between these two fun ct ions.

The nex t eleme ntary but important result relates conjugation with t he
subgradient. The proof is an exerc ise.

Proposition 3.3.4 (Fenchel-Young inequality) Any points ¢ in E
and x in the domain of a [un ction h : E ----t (00, +00] sat isfy the inequality

hex) + h*(¢) 2: (¢, x) .

Equality holds if and only if ¢ E 8 h(x ).

In Section 3.2 we analyzed the standard inequ ali ty-constrained convex
program by studying it s op timal value under perturbations. A simila r
approach works for another model for convex programming, particularly
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suited to problems with linear constraints. An interesting byproduct is a
convex analogue of the chain rul e for differentiable fun ctions,

\J(J + 9 0 A)(x) = \J f (x ) + A*\Jg(Ax)

(for a linear map A). When A is the identity map we obtain a sum rule.
In t his section we fix a Euclidean space Y . We denote the set of points

where a function 9 : Y ---+ [-00, + 00] is finite and conti nuous by contg.

Theorem 3.3.5 (Fenchel duality and convex calculus) For given
functions f : E ---+ (00, +00] and 9 : Y ---+ (00, +00] and a lin ear map
A : E ---+ Y , let p,dE [-00, +00] be primal and dual values defin ed, respec
tively, by the Fenchel problems

p = inf {f (x) + g(Axn
xEE

d = sup {- j*(A* ¢) - g*(- ¢n.
<!>EY

(3.3.6)

(3.3.7)

These values satisfy the weak duality in equality p 2:: d. If, furthermore,
f and 9 are convex and satisf y the conditi on

a E core (domg - Adorn f)

or the strong er condition

Adorn f n cont 9 =I- 0

(3.3.8)

(3.3.9)

then the values are equal {p = d}, and the suprem um in the dual problem
{3.3.7} is atta ined if fin it e.

At any point x in E, the calculus rule

8(J + 9 0 A)(x) =:> 8f(x) + A*8g(Ax) (3.3.10)

holds, with equality if f and 9 are convex and either condition {3.3.8} or
{3.3.9} holds.

Proof. The weak duality inequ ali ty follows immediately from the Fenchel
Young inequal ity (3.3.4) . To prove equality we define an optimal value
fun ction h : Y ---+ [-00, + 00] by

h(u) = inf{f(x) + g(Ax + un .
xEE

It is easy to check h is convex and dom h = dom 9 - Adorn f. If p is - 00
there is nothing to prove, while if condit ion (3.3.8) holds and p is finite
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t hen Lemma 3.2.6 and the Max formula (3.1.8) show t here is a subgradient
- ¢> E 8h(O) . Hence we deduce, for all u in Y and x in E, t he inequaliti es

h(O) < h(u) + (¢> , u)

< f( x) + g(Ax + u) + (¢>, u )

= {f(x) - (A *¢> , x) } + {g(Ax + u) - (-¢>,A x + un .

Taking the infimum over all points u , and then over all points x, gives the
inequalities

h(O) ::; - j*(A* ¢» - g*(-¢» ::; d ::; p = h(O) .

Thus ¢> attains the supremum in problem (3.3.7), and p = d. An easy
exercise shows that condit ion (3.3.9) implies condit ion (3.3.8) . The proof of
t he calculus rule in the second part of the theorem is a simple consequence
of the first part (Exercise 9). D

T he case of the Fenchel theorem above, when the fun ction 9 is simply
the indicator fun ction of a point , gives the following part icularly elegant
and useful corollary.

Corollary 3.3.11 (Fenchel duality for linear constraints) Given any
fu nct ion f : E --+ (00, +00]' any lin ear map A : E --+ Y , and an y element
b of Y , th e weak duality inequality

inf {f( x) IA x = b} 2:: sup {(b,¢» - j* (A*¢>)}
xEE ¢EY

holds. If f is convex and b belongs to core (Adorn 1) th en equality holds,
and the supremum is att ained when finit e.

A pretty application of the Fenchel du ali ty circle of ideas is the calcu
latio n of polar cones. The (negative) polar cone of t he set K c E is the
convex cone

K - = {¢> EEl (¢>,x) ::; 0 for all x E K} ,

and the cone K -- is called the bipolar. A parti cularly important example
of the polar cone is the normal cone to a convex set 0 C E at a point x in
0 , since Nc(x) = (0 - x )- .

We use the following two examples exte nsively ; the proofs are simple
exercises .

Proposition 3.3.12 (Self-dual cones)
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The next resul t shows how the calc ulus rules above can be used to derive
geometric consequences .

Corollary 3.3.13 (Krein-Rutman polar cone calculus) Any cones
H eY and K c E and linear map A : E ----t Y satisfy

Equality holds if H and K are convex and satisfy H - A K
particular AK n int H i= (/)) .

Y (or in

Proof. Rephrasing the definiti on of the polar cone shows that for any
cone K c E , the polar cone K - is just 8<5K(0) . The resul t now follows by
the Fenchel theorem above. 0

The polarity op eration arises naturally from Fenchel conjugation, since
for any cone K c E we have <5K - = 15K, whence <5K - - = 15K, T he next
result, which is an elementary application of the Basic separation theo
rem (2.1.6) , leads naturally into the development of the next chapter by
identifying K-- as the closed convex cone generated by K .

Theorem 3.3.14 (Bipolar cone) The bipolar cone of any non empty set
K c E is given by K - - = cl (conv (R +K)).

For example, we deduce immediately that the normal cone Nc(x) to a
convex set C at a point x in C , an d the (convex) tang ent cone to C at x
defined by Tc(x ) = cl R +(C - x ), are polars of each ot her.

Exer cise 20 outlines how to use these two results about cones to charac
te rize point ed cones (t hose closed convex cones K satisfying K n- K = {O}).

Theorem 3.3.15 (Pointed cones) If K c E is a closed convex cone,
then K is pointed if and only if there is an element y of E for which the
set

C = { x E K I (x , y) = 1}

is compact and generates K (that is, K = R + C).

Exercises and Commentary

The conj ugation operation has been closely associated wit h the names
of Legendre, Moreau, and Rockafellar , as well as Fenchel ; see [167, 70].
Fenchel's original work is [76]. A good refere nce for properties of convex
cones is [151]; see also [20] . T he log barriers of Prop osit ion 3.3.3 playa key
role in interior point methods for linear an d semidefin ite programming
see, for example, [148]. The self-duality of the positi ve semidefinite cone is
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due to Fejer [99]. Hahn-Banach extension (Exercise 13(e)) is a key tech
nique in functional analysis ; see, for example, [98]. Exercise 21 (O rder
subgradients) is aimed at multicriteria optimization; a good reference is
[176]. Our approach may be found , for example, in [20]. The last three
functions 9 in Table 3.1 are respectively known as the Boltzmann-Shannon,
Fermi-Dirac, and Bose-Einstein entropies.

1. For each of the functions f in Table 3.1, check t he calculation of 1*
and check f = 1**.

2. (Quadr atics) For all matrices A in S+'+ , prove the function x E

R " f-t xT Ax/2 is convex and calculate it s conj ugate. Use the order
reversing property of the conjugacy operation to prove

A?-- B q tr :» A-I for A and Bin S" .- - ++

3. Verify the conj ugates of the log barriers lb and ld claimed in Propo
sition 3.3 .3.

4. * (S elf-conjuga cy) Consider functions f : E ----> (co , +<Xl] .

(a) Prove f = 1* if and only if f( x) = Ilx112 / 2 for all points x in E.

(b) Find two distinct functions f satisfying f (- x ) = 1*(x) for all
points :1; in E .

5. * (Support functions) The conjugate of the indicator function of
a nonempty set C c E , namely 60 : E -; (00, +00]' is called the
support function of C . Calculate it for the following sets:

(a) the halfspace {x I (a,x) ::::: b} for 0 i=- a E E and b E R

(b) the unit ball B

(c) {x E R +. Illxll < 1}
(d) the polytope conv {aI, a2 , . . . ,am} for given points aI , a2 , .. . , am

in E

(e) a cone K

(f) the epigraph of a convex function f : E ----> (00, +00]

(g) the subdifferential 8f(x) , where the function f : E -; (00, +00]
is convex and the point x lies in core (dom 1)

(h) {Y E S+. I tr Y = 1}

6. Calculate the conjugate and biconjugate of the function

{

xi + X 2 log X2 - X2 if X2 > 0
2X2

f(Xl,X2) =
o if Xl = X2 = 0
+00 otherwise.
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7. ** (Maximum entropy example)

(a ) Prove t he function 9 defined by (3.3.1) is convex.

(b) For any point y in R rn+ l , prove

(c) Apply Exe rcise 27 in Section 3.1 to deduce the conj ugacy for
mul a (3.3.2).

(d) Compute the conjugate of the fun cti on ofx E R m+ l ,

if I:i Xi = 1
otherwise.

8. P rove the Fenchel- Young inequali ty.

9. * (Fenchel duality and convex calculus) Fill in t he details for
t he proof of Theorem 3.3.5 as follows.

(a) P rove the weak du ality inequ ali ty.

(b) Prove the inclusion (3.3.10) .

Now ass ume f and 9 are convex.

(c) Prove the function h defined in the proof is convex with domain
domg - Adomf.

(d) Prove the implication (3.3 .9) :::} (3.3 .8) .

Fi nally, assume in addit ion that condit ion (3.3.8) ho lds.

(e) Suppose ¢ E a(l + 9 0 A)(x) . Use t he first part of t he theore m
and the fact that x is an optimal solution of the problem

inf { (I (x ) - (¢,x)) + g(Ax)}
xE E

to deduce equa lity in part (b).

(f) Prove points x E E and ¢ E Yare optimal for problems (3.3.6)
and (3.3.7), respecti vely, if and only if t hey satisfy t he condi t ions
A*¢ E af(x) and - ¢ E ag(Ax) .

10. (Normals to an intersection) If the point X lies in two convex
subsets C and D of E satisfying 0 E core (C - D ) (or in parti cul ar
Cn int D =1= 0), use Section 3.1, Exercise 4 (Subgradients and normal
cones) to prove

NcnD(x) = Nc(x) + ND(x) .
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11. * (Failure of convex calculus)

(a) Find convex functions t, 9 : R ----t (00, +00] with

8f(0) + og(O) -1= o(J +g)(O).
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(Hint: Section 3.1, Exercise 5.)

(b) F ind a convex function 9 : R 2
----t (00, +00] and a linear map

A : R ----t R 2 with A*og(O) -1= o(g 0 A)(O) .

12. * (Infimal convolution) If the functions l, 9 : E ----t (-00, + 00] are
convex, we define the infim al convolution f 0) 9 : E ----t [- 00, +00] by

(J 8 g)(y) = inf{f(x) + g(y - x)} .
x

(a) Prove f 8 9 is convex . (On the other hand, if 9 is concave prove
so is f 8 g.)

(b) Prove (J 8 g)* = f* + g*.

(c) If domf n cont g -1= 0, prove (J + g)* = f* 8 g* .

(d) Given a nonempty set C c E , define the distan ce funct ion by

dc(x) = inf Il x-yll .
y Ee

(i) Prove db is a difference of convex functions, by observing

(dc(x))2 = Il x~ 1 2 - (if- +oe) ( x) .

Now suppose C is convex .

(ii) Prove de is convex and dc = 08 + 0c'
(iii) For x in C prove odc(x) = B n Nc(x) .

(iv) If C is closed and x rt c , prove

where Pe(x) is the near est point to x in C.

(v) If C is closed, prove

for all points x .
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(e) Define the Lambert W -function W : R + --> R + as the inverse of
y E R + f---> ye Y . P rove t he conjugate of t he fun ct ion

2X
x E R f-7 exp*(x) + 2"

is the functi on

13. * (Applications of Fenchel duality)

(a) (Sandwich theorem) Let the functions f : E --> (00, + 00]
and g : Y --> (00, + 00] be convex and t he map A : E --> Y be
linear. Suppose f ;::: - g 0 A and 0 E core (domg - Adorn J)
(or Adorn f n cont g =I 0). P rove the re is an affine function
a: E --> R sa t isfying f ;::: a ;::: - g 0 A .

(b) Interpret the Sandwich theorem geometrically in t he case when
A is the identi ty.

(c) (Pshenichnii-Rockafellar conditions [159]) If the convex
set C in E satisfies the condit ion Cncont f =I 0 (or t he condit ion
int endom f =I 0), and if f is bound ed below on C, use part (a)
to prove there is an affine fun cti on a S; f with infe f = inf e a .
Deduce that a point x minimizes f on C if and only if it satisfies
o E 8f( x ) + Nc(x) .

(d) Apply part (c) to the following two cases:

(i) C a single point {xO } C E

(ii) C a polyh edron {x IAx S; b} , where b E R n = Y

(e) (Hahn-Banach extension) If the function f : E --> R is
everywhere finite and sublinear, and for some linear subspace
L of E t he funct ion h : L --> R is linear and dom inated by f
(in ot her words f ;::: h on L) , prove t here is a linear funct ion
a : E -+ R , dominated by i , which agrees with h on L.

14. Fill in the details of t he proof of t he Krein- Rut man calculus (3.3.13).

15. * (Bipolar theorem) For any nonempty set K C E , prove the
set cl (conv (R +K» is the smallest closed convex cone containing K.
Deduce Theorem 3.3.14 (Bipo lar cones).

16. * (Sums of closed cones)

(a) Prove that any cones H ,K c E satisfy (H + K )- = H - n K - .
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(b) Deduce that if H and K are closed convex cones then they sat isfy
(H n K) - = cl (H- + K-) , and prove that the closure can be
omitted under the conditi on K n int H =J 0.

In R 3 , define sets

H = {x Ixi + x~ :::; x5 , X 3 :::; O} and

K = {x I X2 = - X 3} .

(c) Prove H and K are closed convex cones.

(d) Calculate t he polar cones H - , K -, and (H n K) - .

(e) Prove (1,1 ,1) E (H n K) - \ (H- + K-) , and deduce that the
sum of two closed convex cones is not necessarily closed.

17. * (Subdifferential of a max-function) With the not ation of Sec
tion 3.2, Exercise 13, suppose

dom c, n n cont e, =J 0
iE I\ { j}

for some index j in I . Prove

18. * (Order convexity) Given a Euclidean space Y and a closed convex
cone S C Y , we wri te u :::;5 v for points u and v in Y if v - u lies in
S .

(a) Identify t he partial order :::;5 in the following cases:

(i) S = {O}
(ii) S = Y

(iii) Y = R " and S = R +

Given a convex set C c E , we say a fun cti on F : C ----> Y is S- convex
if it sa t isfies

for all po ints x and z in E and nonnegative reals A and Jt sa t isfying
A + J.1 = 1. If, furthermore, C is a cone and this inequali ty holds for
all A and J.1 in R + then we say F is S-sublinear.

(b) Identify S-convexity in t he cases listed in part (a) .

(c) Prove F is S- convex if and only if t he func t ion (¢>, F( ·) ) is convex
for all elements ¢> of -S- .
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(d) Prove t he following fun ctions are S+'-convex:

(i) X E sn f--' X 2

(ii) X E S +' + f--' X - I

(iii) XE S+' f--' _X I / 2

Hint : Use Exercise 25 in Section 3.1.

(e) Prove the func tion X E S2 f--' X 4 is not S~-convex. Hint:
Consider the matrices

[~ ~ ] and [ ~ ~ ].

19. (Order convexity of inversion) For any matrix A in S+.+ , define
a funct ion qA : R " --+ R by qA(X) = xT Ax/2.

(a) Prove q'A = qA-l.

(b ) For any other matrix B in S+.+ , prove 2(qA 0 qB) ::; q(A+B)/2'
(See Exercise 12.)

(c) Deduce (A - I +B-I)/2 ~ « A+ B)/2)- I.

20. ** (P o int ed co nes a n d b a ses) Consider a closed convex cone K
in E . A base for K is a convex set C with 0 (j. cl C and K = R +C .
Using Exercise 16, prove the following properties are equivalent by
showing the implications

(a) =* (b) =* (c) =* (d) =* (e) =* (f) =* (a).

(a ) K is pointed.

(b) cl (K- - K- ) = E.

(c) K - - K - = E .

(d ) K - has non empty interior. (Here you may use the fact that K
has nonempty relative interior- see Section 1.1, Ex ercise 13.)

(e) There exists a vector y in E and real E> 0 with (y,x) ::::: Ellxll
for all points x in K.

(f) K has a bounded bas e.

21. ** (O r der-s u bgrad ients) This exercise uses the terminology of Ex
ercise 18, and we assume the cone 5 c Y is pointed: 5 n - 5 = {O}.
An element y of Y is the 5-infimum of a set D eY (writ ten
y = infs D ) if t he condit ions

(i) D ey + 5 and

(ii) Dc z + 5 for some z in Y implies y E z + 5
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(a) Verify t hat this notion correspo nds to the usu al infimum when
Y = R and S = R + .

(b) Prove every subset of Y has at most one S-infimum.

(c) Prove decreasing sequences in S converge:

Xo "?- s X l "?-s x2 . . . "?-s 0

implies lim n X n exists and equals inf s (x n) . (Hint : Prove firs t
t hat S n (xo - S) is compact using Section 1.1 , Exe rcise 6 (Re
cession cones).)

An S-subgradient of F at a point X in C is a linear map T : E --+ Y
sati sfying

T (z - x) '5:. s F (z) - F(x) for all z in C.

The set of S- subgradi ents is denot ed osF(x). Suppose now x E

core C. Generali ze the arguments of Section 3.1 in t he following steps.

(d) For any directi on h in E , prove

v sF(x ; h) = inf{t - I (F (x + th) - F(x)) I t> 0, x + t h E C }
s

exists and , as a function of h, is S-sublin ear.

(e) For any S-subgradient T E os F (x) and direction h E E , prove
Th '5:. s v sF(x ;h).

(f) Given h in E , prove there exists T in osF(x) satisfying Th =
V sF(x ; h). Deduce the max formula

VsF (x; h) = max{Th IT E osF(x)}

and, in particular , that os F (x ) is nonempty. (You should inter
pret the "max" in the formula.)

(g) The fun ction F is Giiteaux differentiable at x (with der ivative
the linear map VF(x ) : E --+ Y) if

lim C I (F (x +th) - F (x )) = (vF(x)) h
t ->O

holds for all h in E . Prove t his is the case if and only if os F(x)
is a sing leton.

Now fix an element ¢ of - int (S- ).

(h ) Prove (¢, F (.))/(x ; h) = (¢, v sF(x ; h)).
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(i) Prove F is Gateaux differenti able at x if and only if (¢, F (·)) is
likewise.

22. ** (Linearly constrained examples) Prove Coro lla ry 3.3 .11 (Fen
chel duality for linear constraints) . Deduce duality t heorems for the
following problems.

(a) Separable problems

n

inf {L P(xi ) IAx = b},
i= l

where the map A : R n -t R m is linear, b E R m, and the funct ion
P : R -t (00, + 00] is convex, defined as follows:

(i) (Nearest points in polyhedrons) pet) = t2 /2 with do-
main R + .

(ii) (Analytic center) pet) = -log t with dom ain R ++ .

(iii) (Maximum ent r opy ) p = exp*.

W hat happens if the objec t ive funct ion is repl aced by L i Pi( Xi) ?

(b) T he BFGS update problem in Section 2.1, Exercise 13.

(c) T he DAD problem in Sect ion 3.1, Exerci se 28.

(d) Examp le (3.3.1).

23. * (Linear inequalities) What does Corollary 3.3.11 (Fenchel du ality
for linear constraints) become if we replace the constraint Ax = b by
Ax E b + K where K eY is a convex cone? Writ e down t he dual
problem for Sect ion 3.2, Exercise 2, part (a) , solve it , and ver ify the
du ali ty theorem .

24. (Symmetric Fenchel duality) For functions j ,9 : E -t [- 00, +00]'
define the concave conj ugate g* : E -t [- 00, + 00] by

g*( ¢) = inf { (¢ , x ) - g(x)}.
xEE

P rove

inf (J - g) ::::: sup(p, - 1*),

wit h equality if j is convex, 9 is concave, an d

oE core (dam j - dam (- g)).
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25. ** (Divergence bounds [135])

(a) Prove the fun ction

t E R f----' 2(2 + t) (exp * t + 1) - 3(t - 1)2

is convex and is minimized when t = 1.

(b) For v in R ++ and u in R + , deduce t he inequality

Now suppose t he vector P in R +-+ sa t isfies L~ Pi = 1.
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(c) If the vector q E R +- + satisfies L~ qi = 1, use the Cauchy
Schwarz inequality to prove the inequality

(~ I ._ ·1)2 < 3~ (Pi - qi) 2
L P, q, - L + 2 '

1 1 Pi qi

and deduce the inequality

n p . 1 n 2

L Pi log ( ~) ~ 2( L IPi - qi I) .
1 q, 1

(d) Hence show the inequ ality

(e) Use convexity to prove the inequ ality

n n

LPi log Pi ::; log LP; '
1 1

(f) Deduce the bound

n
'" max Pilog n + L Pi log Pi ::; - .-- - 1.

1 mm p,



Chapter 4

Convex Analysis

4.1 Continuity of Convex Functions

We have already seen that linear functions are always continuous . More
generally, a rem arkable feature of convex functions on E is t hat t hey must
be continuous on the inter ior of t heir domain s. Part of t he surprise is that
an algebraic/geom etric ass umpt ion (convexi ty) leads to a topolog ical con
clusion (continuity) . It is this powerful fact that guarantees the usefulness
of regularity conditions like Adom f n cont g f:- 0 (3.3.9) , which we studied
in t he previous sect ion .

Clearly an arbi t rary function f is bounded above on some neighbour
hood of any point in cont f. For convex fun ctions the converse is also true,
and in a rather strong sense, needing the following definition. For a real
L ~ 0, we say that a fun ction f : E --+ (00, +00] is Lipschitz (with constant
L) on a subset C of dom f if If (x ) - f (y )1 :::; Lllx - yll for any points x
and y in C. If f is Lipschitz on a neighbourhood of a point z then we say
that f is locally Lipschitz around z. If Y is another Euclidean space we
make analogous definitions for fun ctions F : E --+ Y , with IIF(x) - F(y)11
replacing If (x ) - f(y) l·

Theorem 4.1.1 (Local boundedness) Let f : E --+ (00, +00] be a con
vex fun ction. Th en f is locally Lipschitz around a point z in its domain if
and only if it is bounded above on a neighbourhood of z .

Proof. One direction is clear, so let us without loss of generality t ake
z = 0, f(O) = 0, and suppose f :::; 1 on 2B; we shall deduce f is Lipschitz
on B .

Notice first the bound f ~ -I on 2B , since convexity implies f(-x) ~

- f( x) on 2B. Now for any dis ti nct points x and y in B , define a = Ily - xii
and fix a point w = y + a - 1 (y - x ), which lies in 2B. By convexity we
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obtain

4. Convex Analysis

1 a 2a
f(y ) - f( x) ::; 1 + a f (x ) + 1 + a f (w ) - f( x) ::; 1 + a ::; 211y - xii,

and t he result now follows, since :r and y may be interchanged. 0

This resul t makes it easy to identify the set of points at which a convex
fun cti on on E is cont inuous. F irst we prove a key lemma.

Lemma 4.1.2 Let 6. be the simplex {x E R +. II > i < I}. If the func ti on
g : 6. -+ R is convex then it is con tinuous on int 6. .

Proof. By the ab ove result , we just need to show g is bounded above on
6. . But any point x in 6. sat isfies

n n

g( x) = g( L Xiei + (1- 2:> i)O) ::; L xi g(Ci ) + (1 - L Xi )g(O)
1 1

::; max{g(c1 ), g(e2
) , ... , g( en) , g( O)}

(where {e", e2 , . . . , en } is t he standard basis in R " }. o

Theorem 4.1.3 (Convexity and continuity) Let f : E -+ (00, + 00] be
a convex function . Th en f is con tinuous (in fact locally L ipschitz) on the
inte ri or of its domain.

Proof. We lose no generality if we restrict ourselves to the case E = R.".
For any point x in int (dom f) we can choose a neighbourhood of x in dom f
that is a scaled down , t ranslate d copy of t he simplex (since the simplex is
bounded with nonempty interior). The proof of t he preceding lemma now
shows f is bounded above on a neighbourhood of x , and t he resul t follows
by Theorem 4.1.1 (Local boundedness). 0

Since it is easy to see that if the convex fun ction f is locally Lipschi tz
around a point ii: in int (domJ) with constant L t hen 8f(x ) c LB, we
can also conclude that 8f(x) is a nonempty compact convex set. Further
more, this result allows us to conclude quickly that "all norms on E are
equivalent" (see Exercise 2).

We have seen that for a convex fun ction I, the two set s cont f and
int (dom J) are identical. By cont rast , our algebraic approach to the ex
ist ence of subgradients involved core (dom J) . It transpires that this is
t he same set. To see t his we int roduce t he idea of t he gauge funct io n
"tc : E -+ (00, +00] associated wit h a nonempty set C in E:

, c(x ) = inf'[X E R+ Ix E .xC} .

It is easy to check ,Cis sublinear (and in par t icul ar convex) when C is
convex. Notice ryj; = II . II·
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Theorem 4.1.4 (Core and interior) The core and the interior of any
convex set in E are identical and convex.

Proof. Any convex set C c E clearly satisfies int C C core C . If we
sup pose, without loss of generality, 0 E core C , then "tc is everywhere
finite , and hence continuous by the previous resu lt . We claim

int C = {x hC(x) < I}.

To see this, observe that t he right hand side is contained in C , and is ope n
by continuity, and hence is contained in int C. The reverse inclusion is easy,
and we deduce int C is convex . Fi nally, since "fc(0) = 0, we see 0 E int C ,
which completes the proof. 0

The conj ugate of the gauge function "fc is the indicator function of a
set C o C E defined by

C o = {c/J E E l (c/J ,x) ::; 1 for all x E C }.

We call C o the polar set for C. Clearly it is a closed convex set containing
0, and when C is a cone -it coincides wit h the polar cone C - . The following
result therefore generalizes the Bipolar cone theorem (3.3.14).

Theorem 4.1.5 (Bipolar set) The bipolar set of any subset C of E is
given by

C oo = cl (conv (C U {O}».

The ideas of polarity and separating hyperplanes are intimately relat ed .
The separation-based proof of the above result (Exercise 5) is a good ex
ample, as is the next t heorem, whose proof is outlined in Exercise 6.

Theorem 4.1. 6 (Supporting hyperplane) Suppos e that the convex set
C C E has nonempty interior and that the point x lies on the bourulars] of
C . Then there is a supporting hyperplane to C at x: there is a nonzero
element a of E satisfying (a , x ) ;::: (a ,x ) for all points x in C .

(The set {x E E l (a,x - x) = O} is the supporting hyperplane.)

To end this section we use this result to prove a remarkable theorem
of Minkowski describing an extremal representation of finite-d imensional
compact convex sets. An extreme point of a convex set C C E is a point x
in C whose complement C \ {x} is convex. We denote the set of extreme
points by ext C . We start with another exercise.

Lemma 4 .1.7 Given a supporting hyperplane H of a convex set C C E ,
any extreme point of C n H is also an extreme point of C.
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Our proof of Minkowski 's theorem dep ends on two facts: first , any
convex set that spans E and contains the origin has nonempty interior (see
Section 1.1, Exercise 13(b)); second, we can define t he dim ension of a set
C c E (written dim C ) as the dimension of span (C - x ) for any point x in
C (see Section 1.1, Exercise 12 (Affine sets)) .

Theorem 4.1.8 (Minkowski) Any compact convex set C c E is the con
vex hull of its extreme poin ts.

Proof. Our pro of is by induction on dim C; clearly t he resul t holds when
dim C = O. Assume the resul t holds for all sets of dimension less t han
dim C. We will dedu ce it for t he set C.

By t ranslat ing C and redefining E , we can ass ume 0 E C and span C =
E. Thus C has nonempty interior.

Given any point x in bdC, the Supporting hyp erplane theorem (4.1.6)
shows C has a supporting hyperplan e H at x. By the induction hypothesis
applied to the set C n H we deduce, using Lemma 4.1.7,

x E conv (ext (C n H )) c conv (ext C).

Thus we have proved bd C c conv (ext C), so conv (bd C) c conv (ext C) .
But since C is compact it is easy to see conv (bd C) = C , and the result
now follows. D

Exercises and Commentary

An easy introduction to convex analysis in finite dimensions is [181]. The
approach we adopt here (and in the exercises) extends easily to infinite
dimensions; see [98, 131, 153]. The Lipschi tz condit ion was introduced
in (129]. Minkowski 's theorem first appeared in (141, 142]. The Open
mapping t heorem (Exe rcise 9) is another fundamental tool of functional
analysis [98J. For recent references on Pareto minimization (Exercise 12),
see (44] .

1. * (Points of continuity) Suppose t he function f : E ----> (00, +00] is
convex.

(a) Use the Local boundedness theorem (4.1.1) to prove that f is
cont inuous and finit e at x if and onl y if it minorizes a function
g: E ----+ (00, +00] which is continuo us and finite at x.

(b) Suppose f is conti nuous at some point y in dom f . Use par t
(a) to prove directly that f is continuo us at any point z in
core (dam f). (Hint : Pi ck a point u in dam f such t hat z =
8y + (1 - 8)u for some real 8 E (0, 1); now ob serve that the
function

x E E 1-+ 8- 1(j (8x + (1 - 8)u ) - (1 - 8)f (u ))
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minorizes f .)

(c) Prove that f is continuous at a point x in dom f if and on ly if

(x, f(x) + E) E int (epi f)

for some (all) real E > o.
(d) Assuming 0 E cont i, prove f* has bounded level sets. Deduce

that the function X E S" f-> (C, X ) + ld (X) has compact level
sets for any matrix C in S++ .

(e) Assuming x E cont f , prove [)f (x) is a nonempty compact con
vex set.

2. (Equivalent norms) A norm is a sublinear function 111 ·111 : E ----t R +
that satisfies Illxlll = III - xi II > 0 for all nonzero points x in E . By
considering the function III .Ilion the standard unit ball B , prove any
norm III . III is equivalent to the Euclidean norm II . II : that is, there
are constants K ;::: k > 0 with kllxll :::; Il lxl ll :::; K llxll for all x .

3. (Examples of polars) Calculate the polars of the following sets:

(a) conv (B U {(I , 1), (-1 , -I)}) C R 2
•

(b) {(x,Y) E R 21Y ;::: b + ~2 } (b E R ).

4. (P o lar sets a n d cones) Suppose the set C c E is closed, convex,
and contains O. Prove the convex cones in E x R

are mutually po lar.

5. * (Polar sets) Suppose C is a nonempty subset of E .

(a) Prove '"'Ie = 80 0 .

(b) Prove C o is a closed convex set containing O.

(c) Prove C c C oo.

(d) If C is a cone, prove Co = C - .

(e) For a subset D of E , prove C c D implies DOc Co.

(f) Prove C is bounded if and only if 0 E int Co.

(g) For any closed halfspace H c E containing 0, prove H O O = H .

(h) Prove Theorem 4.1.5 (Bipolar set) .
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6. * (Polar sets and st r ic t sep a r ation ) F ix a nonempty set C in E .

(a) For points x in int C and </> in Co, prove (</> , x) < 1.

(b) Assume fur ther that C is a convex set . P rove ,Cis sublinear.

(c) Assume in addition 0 E core C . Deduce

clC = {x I ic(X):::: 1}.

(d) Finally, suppose in addit ion that D e E is a convex set disjoint
from the interior of C . By conside ring t he Fenchel problem
inf{JD +"to } , prove there is a closed hal fspace containing D but
disjoint from t he interior of C .

7. * (Polar calculus [23]) Sup pose C and D are subse ts of E .

(a) Prove (C U D )O= Co n D O.

(b) If C and D are convex, prove

conv (C U D) = U (AC + (1 - A)D ).
AE [O, l ]

(c) If C is a convex cone and the convex set D contains 0, prove

C + D c cl conv (C U D ).

Now suppose the closed convex sets K and H of E both contain O.

(d) Prove (K n H )O= cl conv (K OU H O).

(e) If furthermore K is a cone, prove (K n H )O= cl (K O+ H O).

8. ** (Polar calculus [23]) Suppose P is a cone in E and C is a
nonempty subset of a Euclidean space Y.

(a ) Prove (P x C )O= P" X Co.

(b) Iffurthermore C is compact an d convex (possib ly not containing
0) , and K is a cone in E x Y , prove

(c) If furtherm ore K and P are closed and convex, use Exercise 7
to prove

(d) Find a counterexample to part (c) when C is unbounded .
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9. * (Open mapping theorem) Suppose the linear map A : E -+ Y
is surject ive.

(a) Prove any set C c E satisfies Acore C C core AC.

(b) Deduce A is an open map: that is, the image of any open set is
open.

(c) Prove another condition ensuring condition (3.3.8) in the Fenchel
theorem is t hat there is a point x in int (dom f) with Ax in dom 9
and A is surjective. Prove sim ilarly that a sufficient condition
for Fenchel duality with linear constraints (Corollary 3.3 .11) to
hold is A surjective an d b E AUnt (dom f)) .

(d) Deduce that any cones H e Y and K C E , and any surjective
linear map A : E -+ Y satisfy (K n A- IH) - = A*H - + K -,
providing H n A(int K) # 0.

10. * (Conical absorption)

(a) If the set Ac E is convex, t he set C C E is bounded, and
R +A = E , prove there exists a real b > 0 such that bC C A .

Now define two sets in S~ by

A = { [ ; ~ ] E S~ 1 1:1: 1 S y2/3 }, and

C = {X E S~ I tr X S I}.

(b) Prove that both A and C are closed, convex, and contain 0, and
that C is bounded.

(c) Prove R +A = S~ = R +C .

(d) Prove there is no real b > 0 such that bC C A.

11. (Holder ' s inequality) T his question develops an alternative ap
proach to t he theory of the p-norm II . 111' defined in Section 2.3, Ex
ercise 6.

(a) Prove p-I l lxl l~ is a convex function , and deduce t he set

s; = {x Illxllp s I}

is convex.

(b) Prove the gauge funct ion IBp ( .) is exactly 11,111" and deduce 11· 111'
is convex .

(c) Use the Fenchel-Young inequality (3.3.4) to prove that any vec
tors x and ¢ in R " satisfy the inequality
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(d) Assuming Ilulip = Il vll q = 1, deduce (u, v) ::; 1, and hence prove
that any vectors x and ¢ in R n sat isfy the inequality

(e) Calculat e B~ .

12. * (Pareto minimization) We use the notation of Section 3.3, Exer
cise 18 (Order convexity ), and we assume t he cone 8 is pointed and
has nonempty int erior. Given a set DeY, we say a point y in D is
a Pareto minimum of D (with respect to 8) if

(y - D) n 8 = {a} ,

and a weak minimum if

(y - D) n int 8 = 0.

(a) Prove y is a Par eto (respectively weak) minimum of D if and
only if it is a Par eto (resp ectively weak) minimum of D + 8 .

(b) The map X E S+ f---+ X 1/ 2 is S+-order-preserving (Section 1.2 ,
Exercise 5). Use this fact to prove, for any matrix Z in S+ , t he
un ique P areto minimum of the set

with respect to S+ is Z .

For a convex set C c E and an 8-convex fun ct ion F : C ---> Y , we
say a point x in C is a Pareto (respectively, weak) minimum of the
vector optimization problem

inf{F(x) I x E C} (4.1.9)

if F(x) is a Pareto (respectively weak) minimum of F(C) .

(c) P rove F(C) + 8 is convex.

(d) (Scalarization) Suppose x is a weak minimum of the problem
(4.1.9). By separat ing (F(x) - F(C) - 8) and int8 (using Ex
erc ise 6) , prove there is a nonzero element ¢ of -8- such that
x solves the scalarized convex optimization problem

inf{ (¢ ,F(x) ) Ix E C}.

Conversely, show any solut ion of this problem is a weak mini
mum of (4.1.9) .
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13. (Existence of extreme points) Prove any nonempty compact con
vex set C c E has an ext reme point , without using Minkowski 's
theorem , by considering the furthest point in C from the origin .

14. Prove Lemma 4.1.7 .

15. For any compact convex set C c E, prove C = conv (bd C).

16. * (A converse of Minkowski's theorem) Suppose D is a subset
of a compact convex set C c E satisfying cl (conv D) = C . Prove
ext C C clD.

17. * (Extreme points) Consider a compact convex set C c E .

(a ) If dim E S 2, prove the set ext C is closed .

(b ) If E is R 3 and C is the convex hull of t he set

{( x ,Y, 0) Ix2 + y 2 = I} U {(I , 0,1) , (1,0, -I)},

prove ext C is not closed .

18. * (Exposed points) A point x in a convex set C c E is ca lled
exposed if t here is an element r/J of E such that (r/J ,x) > (r/J ,z) for all
points z =I- x in C .

(a) Prove any exposed point is an ext reme point .

(b) Find a set in R 2 with an ext reme point which is not exposed .

19. ** (Tangency conditions) Let Y be a Euclidean space . Fix a
convex set C in E and a point x in C .

(a) Show x E coreC if and only if Tc(x) = E . (You may use
Exercise 20(a).)

(b) For a linear map A : E -t Y, prove ATc(x ) C TAc(Ax).

(c) For another convex set D in Y and a poi nt y in D , prove

NCxD (X, y) = Nc(x ) X N D(y ) and

TCxD (X, y) = Tc(x ) X TD(y ).

(d) Suppose the point x also lies in the convex set G eE. Prove
Tc(x) - Tc(x) c Tc -c(O), and deduce

oE core (C - G) {=} Tc(x) - Tc(x) = E.

(e) Show t hat the condit ion (3.3.8) in t he Fenchel theorem can be
repl aced by the condi t ion

Tdomg(Ax) - A Tdomj(x) = Y

for an arbi trary point x in dom f n A- I dom g.
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20. ** (Properties of the relative interior) (We use Exercise 9 (Open
mapping theorem) , as well as Sect ion 1.1 , Exerci se 13.)

(a) Let D be a non empty convex set in E . Prove D is a linear
subspace if and only if cl D is a linear subspace. (Hint : ri D i- 0.)

(b) For a point x in a convex set C C E, prove the following prop-
ertie s are equivalent:

(i) x E ri C .
(ii) The tangent cone clR+(C - x) is a linear subspace.

(iii) The normal cone N c(x) is a linear subs pace.

(iv) Y E Nc(x ) =} -y E Nc(x ).

(c) For a convex set C c E and a linear map A : E --+ Y, prove
Ari C :J ri AC , and deduce

AriC = riAC.

(d) Suppose U and V are convex sets in E. Deduce

ri (U - V) = ri U - ri V.

(e) Apply Section 3.1, Exercise 29 (Relativizing the Max formula)
to conclude that the conditi on (3.3.8) in t he Fen chel theorem
(3.3.5) can be replaced by

ri (dom g) n Ari (dom J) i- 0.

(f) Suppose the fun ct ion f : E --+ (00, + 00] is bounded below on
the convex set C c E , and ri C n ri (dom f) i- 0. Prove there is
an affine fun ction lX ::; f with infe f = infe o .

21. ** (Essential smoothness) For any convex fun ction f and any point
x E bd(domJ) , prove 8f(x) is eit her empty or unbounded. Ded uce
that a fun ction is essent ially smooth if and only if its subdifferential
is always singlet on or empty.

22. ** (Birkhoff's theorem [15]) We use the notation of Section 1.2.

(a) Prove p n = {( Zi j ) E r - IZi j = 0 or 1 for all i , ] }.

(b) Prove p n C ext (rn ) .

(c) Suppose ( Zi j) E I'" \ P " . Prove there exist sequences of distinct
indices i I, i2, . . . , im and ] 1,]2, . . . .i-; such that

0 < Zirjr' zir+dr < 1 (r = 1,2, . . . ,rn )
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(where im +1 = id . For these sequences, show the matrix ( z~j)

defined by

{

E if (i ,j) = (in jr) for some r
Z~j - Zij = - E if (i ,j) = (ir+l,jr) for some r

a otherwise

is doubly stochastic for all small real E. Deduce ( Zij) tf. ext (T"}.

(d) Deduce ext (rn ) = P " . Hence prove Birkhoff's theorem (1.2 .5).

(e) Use Caratheodory's theorem (Section 2.2, Exercise 5) to bound
the number of permutation matrices needed to represent a dou
bly stochastic matrix in Birkhoff's theorem.
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4.2 Fenchel Biconjugation

We have seen that many important convex functions li : E -t (00, + 00]
agree ident ically with their biconjugates h**. Table 3.1 in Sect ion 3.3 list s
many one-d imensional examples, and the Bipolar cone theorem (3.3.14)
shows <5K = <5K for any closed convex cone K . In t his section we isolate
exact ly the circumstances when h = h**.

We can eas ily check t hat h** is a minorant of h (t hat is, h** ::; h
pointwise). Our spec ific aim in t his sect ion is to find condit ions on a point
x in E guarantee ing h**(x ) = h(x ). T his becomes the key relationship
for the st udy of du ali ty in opt imiza t ion. As we see in t his section, the
condit ions we need are both geomet ric and topological. This is neit her
particularly surprising or stringent. Since any conjugate function must
have a closed convex epigraph, we cannot expect a functi on to agree with
it s biconjugate unless t he fun ct ion it self has a closed convex epigraph. On
the ot her hand , this rest rict ion is not particularly strong since, as we saw in
the previous section, convex functions automatically have strong cont inuity
prop er t ies.

We say t he funct ion h : E -t [- 00, + 00] is closed if its epigraph is a
closed set. We say h is lower semico ntinuous at a point x in E if

for any seque nce x" -t x . A functi on h : E -t [-00, +00] is lower semi
continuous if it is lower semico nt inuous at every point in E ; this is in fact
equivalent to h being closed , which in turn holds if and on ly if h has closed
level sets. Any two fun cti ons h and g satisfying h ::; g (in which case we
call h a min orant of g) must satisfy h* ~ g*, and hence h** ::; g**.

Theorem 4 .2.1 (Fenchel biconjugation) Th e three propert ies below are
equivalent for any fun ction h : E -t (-00, + 00]:

(i) h is closed and convex.

(ii) h =h**.

(iii) For all points x in E ,

h( x ) = sup{a(x) Ia an affine min orant of h} .

Hence the conjugacy operation in duces a bij ection between proper closed
convex functions.

Proof. We can assume h is proper. Since conjugate fun cti ons are always
closed and convex we know property (ii) implies property (i) . Also, any
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affine minorant ex of h satisfies ex = o"" ::::: h** ::::: h, and hence property (iii)
implies (ii) . It remains to show (i) implies (iii).

Fix a point X O in E . Assume first X O E cl (dom h) , and fix any real
r < h(xO) . Since h is closed, the set {x Ih( x) > r } is op en , so there is an
op en convex neighbourhood U of X O with h( x) > r on U. Now note that
the set dom h n cont 8u is non empty, so we can apply the Fenchel theorem
(3.3.5) to deduce that some element cP of E satisfies

r ::::: inf{h(x) + 8u (x )} = { -h*(<p) - 8u(- <p)} .
x

(4.2.2)

Now define an affine fun ction ex(·) = (cP , ·) +8u(- <p ) +1'. Inequality (4.2.2)
shows t hat ex minorizes h, and by definition we know ex(xO) :::: r . Since r
was arbit rary, (iii) follows at the point x = z".

Suppose on the other hand xOdoes not lie in cl (dom h) . By the Basic
separation theor em (2 .1.6) there is a real b and a nonzero element a of E
sati sfying

(a, x O) > b:::: (a, x) for all points x in dom h.

The argument in t he preceding paragraph shows there is an affine minorant
ex of h. But now the affine function o{) + k« (a, ' ) - b) is a minorant of h
for all k = 1,2 , . . . . Evaluating these functions at x = x O proves property
(iii) at x O. The final remark follows easily. 0

We immediate ly deduce that a closed convex funct ion h : E ---+ [-00, + 00]
equals its biconjugat e if and only if it is proper or identically + 00 or - 00.

Restricting the conjugacy bijection to finite sublinear functions gives
the following result .

Corollary 4.2.3 (Support functions) Fench el conjugacy induces a bi
j ecti on betw een everywhere-fini te sublin ear functions and nonempty com
pact convex sets in E:

(a) If th e set C c E is compact, convex and nonempty then th e support
function 8e is everywhere finit e and sublin ear.

(b) If the function h : E ---+ R is sublinear then h * = 8e , where the set

C = { <p E E l (<p , d) < h(d) for all dEE}

is nonempty, compact, and convex.

Proof. See Exercise 9. o

Conjugacy offers a convenient way to recognize when a convex funct ion
has bounded level sets.
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Theorem 4.2.4 (Moreau-Rockafellar) A closed convex proper func 
tion on E has bounded level sets if and only if it s conjugate is continuous
at O.

Proof. By Proposition 1.1.5, a convex fun ction f : E --+ (00, +00] has
bounded level sets if and only if it sa t isfies t he growt h condition

1· . f f( x) 0
im m -II-II > .Ilxll->oo x

Since f is closed we can check that this is equivalent to the existence of
a minorant of the form Ell , II + k ::; fn for some constants E> 0 and k.
Taking conjugates, this is in turn equivalent to f* being bounded above
near 0, and the result then follows by Theorem 4.1.1 (Local boundedness) .

o

Strict convexity is also easy to recognize via conjugacy, using the fol
lowing resul t (see Exercise 19 for the proof) .

Theorem 4.2.5 (Strict-smooth duality) A proper closed convex func
tion on E is essentially strictly convex if and only if its conjugate is essen
tially sm ooth.

What can we say about h** when the fun ction h : E --+ [-00,+ 00] is
not necessarily closed? To answer t his qu estion we introduce the idea of
the closure of h , denoted cl h , defined by

epi (cl h) = cl (epi h). (4.2.6)

It is easy to verify that cl h is then well-d efined . The definition immediately
implies cl h is the largest closed function minorizing h . Clearly if h is
convex, so is cl h. We leave the proof of the next simple result as an
exercise.

Proposition 4.2.7 (Lower semicontinuity and closure) If a fun ction
f: E --+ [-00, +00] is convex then it is lower sem icontinuous at a point x
where it is finit e if and only if f( x) = (clJ)( x) . In this case f is proper.

We can now ans wer the question we posed at the beginning of the
secti on .

Theorem 4.2.8 Suppose the fun ction h : E --+ [-00, + 00] is convex.

(a) If h** is somewhere finit e then h** = cl h .

(b) For any point x where h is finite , h( x ) = h** (x) if and only if h is
lower sem icont inuous at x.
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Proof. Observe first that since h: is closed and minori zes h , we know
n: :::; cl h :::; h. If h" is somewhere finite then h" (and hence cl h) is never
- 00 by applying Proposition 4.2.7 (Lower semicont inuity and closure) to
tr ». On the ot he r hand, if h is finite and lower semi continuous at x t hen
P roposition 4.2.7 shows cl h (x ) is finit e, and applying the proposition again
to cl h shows once more that cl h is never - 00 . In either case, the Fenchel
biconjugation theorem implies clh = (clh) " :::; h" :::; clh , so clh = h".
Part (a) is now immediate, while par t (b) follows by using Proposition 4.2.7
once more. 0

Any proper convex fun ction h with an affine minorant has its biconju
gate h" somewhere fini te. (In fact , because E is finit e-dimensional, It" is
somewhere finite if and only if It is proper-see Exercise 25.)

Exercises and Commentary

Our approac h in t his section again extends eas ily t o infinite dimensions;
see for example [70] . Our definition of a closed funct ion is a little different
to that in [167], alt houg h t hey coincide for proper funct ion s. The ori ginal
version of von Neumann 's minimax theorem (Exercise 16) had bo th t he
sets C and D simplices . The proof was by Brouwer 's fixed point theor em
(8.1.3) . The Fish er informat ion fun ction introduced in Exe rcise 24 is useful
in signal reconstruction [35]. The inequali ty in Exercise 20 (Logarithmic
homogeneity) is import ant for interior point methods [148, Prop. 2.4.]] .

1. Prove that any function h : E ----+ [-00, +00] satisfies h" :::; h .

2. (Lower semicontinuity and closedness) For any given fun ction
h : E ----+ [-00, + 00]' prove t he following properties are equivalent:

(a) h is lower semicontinuous.

(b) h has closed level sets.

(c) h is closed.

Prove t hat such a funct ion has a global minimizer on any nonem pty,
compact set .

3. (Pointwise maxima) If the functions f 'Y : E ----+ [-00, + 00] are
all convex (respectively closed) then prove the fun ction defined by
f( x) = SUPf f 'Y( x) is convex (respectively closed) . Deduce t hat for
any fun ction h : E ----+ [-00, + 00]' the conjugate fun ction h' is closed
and convex.

4. Verify directly t hat any affine function equ als it s biconjugate.
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5. * (Midpoint convexity)

(a) A function f : E -+ (00, +00] is midpoint convex if it satisfies

f(X; Y) S f(X); fey) for all x and Yin E.

Prove a closed function is convex if and only if it is midpoint
convex .

(b) Use the inequality

2(X2+ y2) t: (X + y)2 for all X and Y in S"

to prove the function Z E S+. t-+ _Zl/2 is S+.-convex (see Sec
tion 3.3, Exercise 18 (Order convexity» .

6. Is the Fenchel biconjugation theorem (4.2 .1) valid for arbitrary func
tions h : E -+ [-00, +00]7

7. (Inverse of subdifferential) For a function h : E -+ (00, +00]' if
points x and ¢ in E satisfy ¢ E 8h(x), prove x E 8h*(¢) . Prove the
converse if h is closed and convex.

8. * (Closed subdifferential) If a function h : E -+ (00, +00] is closed,
prove the multifunction 8h is closed: that is,

Deduce that if h is essentially smooth and a sequence of points x; in
int (dom h) approaches a point in bd (dom h) then II V'h( x r ) II -+ 00.

9. * (Support functions)

(a) Prove that if the set C c E is nonempty then 00 is a closed
sublinear function and 0(;* = Ocl convC> Prove that if C is also
bounded then 80 is everywhere finite .

(b) Prove that any sets C, DeE satisfy

80+D = 80 + 8'0 and

8~onv(CuD) = max(8(; , 8'0).

(c) Suppose the function h : E -+ (-00, +00] is positively homoge
neous, and define a closed convex set

C = {¢ EEl (¢,d) s h(d) 'v'd}.

Prove h* = 8c . Prove that if h is in fact sublinear and every
where finite then C is nonempty and compact .
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(d) Deduce Corollary 4.2.3 (Support functions) .

10. * (Almost homogeneous functions [19]) Prove that a funct ion
f : E --+ R has a representation

f(x) = max{ (ai, x) - bd (x E E)
2E I

for a compact set {(ai , bi) l i E I} c E x R if and onl y if f is convex
and sa t isfies SUPE If - gl < 00 for some sublinear fun ction g .

11. * Complete the det ails of the proof of the Moreau- Rockafellar t heo
rem (4.2.4) .

12. (Compact bases for cones) Consider a closed convex cone K.
Using the Moreau -Rockafellar theorem (4.2.4) , show t hat a point x
lies in int K if and onl y if t he set {4> E K- 1 (4), x) ;::: -I} is bounded.
If the set {4> E K - I (4), x) = - I } is nonempty and bounded , prove
x E intK.

13. For any func tion h : E --+ [-00, + 00]' prove t he set cl (epi h) is the
epigraph of some fun ction.

14. * (Lower semicontinuity and closure) For any convex fun ction
h : E --+ [-00, + 00] and any point X O in E , prove

(clh)(xO) = lim inf h(x).
010 Ilx-xoll::;o

Deduce P roposition 4.2.7.

15. For any po int x in E and any function h : E --+ (-00, + 00] with a
subgradient at .1:, prove h is lower semicont inuous at x .

16. * (Von Neumann's minimax theorem [185]) Suppose Y is a
Euclidean space. Suppose that the sets C c E and DeY are
nonempty and convex with D closed and that t he map A : E --+ Y is
linear .

(a) By considering the Fenchcl problem

inf {oc(x) + oi)(Ax)}
xEE

prove
inf sup (y, Ax) = max inf (y, Ax)

x EC y E D yE D xEC

(where the max is attained if finite ), under the assumption

oE core (domoi) - AC) . (4.2.9)
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(b) Prove proper ty (4.2.9) holds in eit her of the two cases

(i) D is bounded , or
(ii ) A is surjective and 0 lies in int C . (Hint: Use the Open

mapping t heorem, Secti on 4.1, Exe rcise 9.)

(c) Suppose both C an d D are compact . Prove

min max (y, Ax ) = max min (y, Ax).
xEC y ED y E D x EC

17. (Recovering primal solutions) Assume all the condit ions for the
Fenchel theorem (3.3.5) hold, and that in addit ion t he functions f
and g are closed .

(a) Prove that if the point ¢ E Y is an optimal dual solution then
the point x E E is optimal for the primal problem if and only if
it satisfies the two condit ions x E 8i' (A *¢) and Ax E 8g* (- ¢).

(b) Deduce that if j* is differentiabl e at the point A *¢ then the only
possible primal optimal solution is x = \lj* (A*¢).

(c) ** Apply t his resul t to the problems in Section 3.3, Exercise 22.

18. Calculate the support function be of the set C = {x E R 2 1X2 2': xi}.
P rove t he "contour" {y Ibe (y) = I} is not closed.

19. * (Strict-smooth duality) Conside r a proper closed convex fun c
t ion f : E ----> (00, +ooJ.

(a) If f has Giiteaux derivative y at a point x in E , prove the in
equality

j*( z) > j*(y) + (x , z - y)

for elements z of E distinct from y.

(b) If f is essent ially smooth, prove that r is essentially st rict ly
convex.

(c) Deduce the Strict-smooth duality theorem (4.2. 5) using Exercise
23 in Section 3.1.

20. * (Logarithmic homogeneity) If the fun cti on f : E ----> (00, +00]
is closed , convex, and proper , then for any real u > 0 prove the
inequality

f (x ) + j*(¢) + v log (x, -¢) 2': vlogv - v for all x, ¢ E E

holds (where we interpret log 0: = -00 when 0: ::; 0) if and only f
satisfies the condit ion

f (tx ) = f (x ) - vlogt for all x E E , t E R ++ .
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Hint: Consider first t he case l/ = 1, and use the inequality

a :::; -l -log(-a) .
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21. * (Cofiniteness) Consider a fun ction h : E ----7 (00 , +00] and the
following properties :

(i) hC) - (¢, .) has bounded level sets for all ¢ in E.

(ii) lim ll xll---> oo Il xll - 1h(x) = +00 .

(iii) h* is everywhere finit e.

Complet e t he following steps.

(a) Prove properties (i) and (ii) are equivalent .

(b) If h is closed, convex and proper , use the Moreau-Rockafellar
theorem (4.2.4) to prove properti es (i) and (iii) are equivalent .

22. ** (Computing closures)

(a) Prove any closed convex fun ction 9 : R ----7 (00, + 00] is conti nu
ous on its domain.

(b) Consider a convex function f : E ----7 (00, +00] . For any points x
in E and y in int (dom f) , prove

j**(x) = W'? f(y + t( x - y)) .

Hint: Use part (a) and the Accessibility lemma (Section 1.1 ,
Exerci se 11).

23. ** (Recession functions) This exe rcise uses Section 1.1 , Exercise 6
(Recession con es) . The recession function of a closed convex function
f : E ----7 (00, + 00] is defined by

0+f (d) = sup f( x + td) - f( x) for d in E ,
tE R ++ t

where x is any point in dom f .

(a) Prove 0+f is closed and sublinear.

(b) Prove epi(O+f) = O+(epif) , and deduce that O+f is indepen
dent of the choice of the point x .

(c) For any real a > inf f , prove

0+{y EEl f( y) < a} = {d E E l 0+ f(d) < O} .
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24. ** (Fisher information function) Let f : R -+ (00, + 00J be a
given function, an d define a function 9 : R 2 -+ (00, +ooJ by

g(x , y) = {Yf(;)
+00

if Y > 0

otherwise.

(a) Prove 9 is convex if and only if f is convex.

(b) Suppose f is essentially strictly convex. For y and v in R ++
and x and u in R , prove

x u
g(x,y)+g(u,v)=g(x+y,u +v) {::}

Y v

(c) Calculate g* .

(d) Suppose f is closed , convex , an d finite at O. Using Exercises 22
and 23, prove

{

y f (~) if y > 0

g**(x, y) = 0+ f rx ) if y = 0

+00 otherwise.

(e) If f(x) = x 2 / 2 for all x in R , calculate g.

(f) Define a set C = {(x ,y) E R 2 j x 2 ::; y::; x} and a function

{

x3

h(x,y) = ~2

+00

if (x , y) E C \ {O}

if (x, y) = 0
otherwise .

Prove h is closed and convex but is not continuous relative to
its (compact ) domain C . Construct another such example wit h
sUPe h finite .

25. ** (Finiteness of biconjugate) Consider a convex funct ion h : E -+

[- 00,+00].

(a) If h is proper and has an affine minorant, prove h** is somewhere
finite.

(b) If h ** is somewhere finite , prove h is proper.

(c) Use the fact t hat any proper convex function has a subgradient
(Section 3.1, Exercise 29) to deduce that h** is somewhere finite
if and only if h is proper.

(d) Deduce h** = cl h for any convex function h : E -+ (00, +00] .
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26. ** (Self-dual cones [8]) Consider a funct ion h : E -> [- 00, (0 ) for
which -h is closed and sublinear, and suppose there is a point x E E
satisfying h(x) > O. Define the concave polar of h as the fun ction
ho : E -> [- 00, (0 ) given by

ho(y) = inf{ (x ,y) I h(x) ~ I} .

(a) Prove - b: is closed and sublincar, and, for real A > 0, we have
A(Ah)o = li.;

(b) P rove the closed convex cone

Ki, = {(x , t) E E x R Iitl ::; h(x)}

has polar (Kh) - = - K ho '

(c) Suppose t he vector a E R +- + sat isfies I:i ai = 1, and define a
fun ction hex : R " -> [-00, + (0) by

if x 2: 0
otherwise.

P rove h~ = hex j hex (a ), and dedu ce t he cone

is self-dual: P;; = - Pex .

(d) P rove the cones

Q2 {( x , t , z ) E R3 1t 2 ::; 2x z , x , z 2: O} and

Q3 {( x ,t , z) E R 3 121 t1 3 ::; m x z2, :r,z 2: O}

are self-dual.

(e) Prove Q2 is iso me tric to S~ ; in other words, there is a linear map
A : R 3 -> S~ preserv ing the norm and satisfying AQ2 = S~ .

27. ** (Conical open mapping [8]) Define two closed convex cones in
R 3 :

Q = {( x ,y, z) E R 3
1 y2 :::; 2x z , X,Z 2: O} . and

5 = {( w , x ,y) E R 3 121xl3 :::; m w y 2, W, ]J 2: O} .

These cones are self-dual by Exercise 26. Now define convex cones in
R 4 by

C = (0 X Q) + (5 x 0) and D = 0 X R 3
.

(a) Prove e nD = {O} x Q.
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(b ) Prove -C- = (R x Q) n (8 x R ).

(c) Define t he projection P : R 4 ----> R 3 by P (w ,x, y , z) = (x , y , z).
Prove P (C- ) = - Q, or equivalently,

(d) Deduce th e norm al cone formula

NcnD(X) = Nc(x) + N D(X) for all x in C n D

and, by taking polars, t he tangent cone formula

Tc nD(x) = Tc(x) n lD(x) for all x in Cn D.

(e) Prove C- is a closed convex pointed cone with non empty interior
and D- is a line, and yet there is no constant E > 0 satisfying

(C- + D- ) nEB c (C- n B) + (D - n B ).

(Hint : Prove equivalently there is no E > 0 satisfying

P(C- ) nEB c P (C- n B )

by considering the path {(t2 , t3 , t ) I t ~ O} in Q.) Compare t his
wit h the sit uation when C and D ar e subspaces, using the Op en
mapping theorem (Section 4.1, Exercise 9).

(f) Conside r the path

(
2 2 3 )u(t) = m , t ,t ,O if t ~ O.

Prove dc (u(t )) = 0 and dD(u (t )) = 21m for all t ~ 0, and yet

dc nD(U(t)) ----> +00 as t ----> +00.

(Hint: Use the isometry in Exercise 26.)

28. ** (Expected surprise [18]) An event occurs on ce every n days ,
with probability Pi on day i for i = 1,2, . .. , n . We seek a distribution
maximizing the average surprise ca used by the event. Define the
"sur prise" as minus the logari thm of the prob ability that t he event
occurs on day i given that it has not occurred so far. Using Bayes
condit iona l probabili ty rul e, our problem is
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where we define the function S : R" ----+ (00,+00] by

n n

S(p) = Lh(Pi,I>j),
i=I j=i

and the function h : R 2 ----+ (00, +00] by
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{

X log (;)
h( x,y) = 0

+00

if x,y > 0

if x;::: 0, y = 0
otherwise.

(a) Prove h is closed and convex using Exercise 24 (Fisher informa-
tion function) .

(b) Hence prove S is closed and convex.

(c) Prove the problem has an optimal solution.

(d) By imitating Section 3.1, Exercise 27 (Maximum ent ropy), show
the solution P is unique and is expressed recursively by

k-I

PI = PI, Pk = Pk (1 - LPj) for k = 2,3, . .. , n ,
I

where the numbers Pk are defined by the recursion

Pn = 1, Pk -I = /Lke -I" k for k = 2,3 , ... ,n.

(e) Deduce that the components of P form an increasing sequence
and that Pn-j is independent of j.

(f) Prove PI rv l in for large n.
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4.3 Lagrangian Duality

The duality between a convex func tion h and its Fcnchel conjugate h*
which we outlined earlier is an elegant piece of theory. The real significance,
however, lies in its power to describe duality theory for convex pro gram s,
one of the most far-reaching ideas in the study of optimization.

We return to the convex program that we studied in Section 3.2:

inf{f(x ) Ig( x) :::::: 0, x E E} . (4.3.1)

Here the function f and the components gl , g2, .. . , gm : E -. (00, +00] are
convex , and sat isfy 0 of- dom f c nrdom gi. As before, the Lagrangian
funct ion L : E x R + -. (00,+ooJ is defined by L(x;A) = f(x) + ATg( x) .

Not ice that the Lagrangian encapsulates all the information of the pri
mal problem (4.3.1) : clearly

sup L(x ;'x) = { f( x)
AERm + 00

+

if x is feas ible
otherwise,

so if we denote the optimal value of (4.3.1) by p E [-00,+00]' we could
rewrite the problem in the following form :

p = inf sup L(x; A).
xE E AER~;-'

This makes it rather natural to cons ide r an associated problem

d = sup inf L(x ;'x)
AEW;' xEE

(4.3.2)

(4.3.3)

where d E [-00, +ooJ is called the dual value. Thus the dual problem
consists of maximi zing over vectors ,X in R + the dual fun ction <I>(A) =
inf, L(x ; A) . This dual problem is perfectly well-defined without any as
sumptions on the functions f and g . It is an easy exercise to show the
"weak duality inequality" P :2: d. Not ice <I> is concave.

It can happen that the primal value p is strictly larger than the dual
value d (Exer cise 5). In this case we say ther e is a duality gap. We next in
vestigate condit ions ensur ing there is no duality gap . As in Section 3.2 , the
chief tool in our an alysis is the prim al value func tion v : R'" -. [-00, +00]'
defined by

v(b) = inf{f(x) Ig( x) :::::: b} . (4.3.4)

Below we sum marize the relationships among these various ideas and pieces
of not ation .
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Proposition 4.3.5 (Dual optimal value)

(a) Th e primal optimal value p is v(O).

(b) Th e conjugate of the value fun ction satisfies
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V*(- A) = { -<1>(A)
+00

if A 2': 0
otherwise.

(c) The dual optimal value dis v** (O).

Proof. Par t (a) is just the definition of p. Par t (b) follows from the
identities

v*(-A) = sup] -ATb - v (b) Ib ERm}

= SUp{-ATb- f( x)lg(x) + z =b, x E dom f , bERm, ZE R~ }

= sup] _AT (g(x) + z ) - f( x) I X E dom [ , z E R~}

- inf{.f(x) + ATg(x) IX E dom j' ] + sup ] _AT Z I z E R~ }

{
- <1> (A) if A 2': 0

- +00 otherwise.

F inally, we observe

d = sup <1>(A) = - inf -<1>(A) = - inf v*(- A) = v** (O),
AER+ AEW;' AER+

so part (c) follows. o

Not ice the above resul t do es not use convexity.
T he reason for our interest in the relationship between a convex fun ction

and its biconjugate should now be clear , in light of parts (a) and (c) above.

Corollary 4 .3.6 (Zero duality gap) Suppose the value of the primal
problem (4.3.1) is fin it e. Then the primal and dual values are equal if and
only if the value fun ction v is lower semicontinuous at O. In this case the
set of optim al dual solutions is - 8v(0) .

Proof. By the previous result, t here is no duality gap exactly when the
value fun ction satisfies v (O) = v** (0) , so Theorem 4.2.8 proves t he first
assertion . By part (b) of the previous result, du al op timal solut ions A
ar e characte rized by the property 0 E 8V*(-A) or equiva lent ly v*(-A) +
v** (0) = O. Bu t we know v (O) = v** (0) , so this property is equivalent to
the condit ion -A E 8v(0). 0

This result sh eds new light on our proof of the Lagrangian necessar y
condit ions (3.2.8); the proof in fac t demonstrates t he ex iste nce of a dual
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optimal solution. We consider below two distinc t approaches to proving the
absence of a duality gap . The first uses the Slat er condition, as in Theorem
3.2.8, to force at tainment in the dual problem. The second (dual) approach
uses compact ness to force at tainment in the primal problem.

Theorem 4 .3.7 (Dual attainment) If the Slat er conditi on holds fo r the
primal probl em (4.3.1) then the primal and dual valu es are equal, and the
dual value is attained if finit e.

Proof. If p is - 00 there is nothing to prove, since we know p :::: d. If on
the other hand p is finit e then, as in the proof of the Lagrangian necessary
condit ions (3.2 .8), the Slater condition forces 8v(0) =I=- 0. Hence v is finite
and lower semicont inuous at 0 (Section 4.2, Exerci se 15) , and the result
follows by Corollary 4.3.6 (Zero duality gap). 0

An indirect way of st at ing the Slater condit ion is that there is a point
x in E for whi ch the set {A E R + I L( x ;.\) :::: o:} is compact for all real 0: .

T he second approach uses a "dual" condit ion to ensure the value funct ion
is closed .

Theorem 4.3.8 (Primal attainment) Suppose that the functions

are closed and that fo r some real '\0 :::: a and some vector ,\ in R+ , the

f unc ti on ,\of + ,\Tg has compact level sets . Th en th e value function v
defin ed by equation (4.3.4) is closed, and th e infim um in this equat ion is
attained when fin it e. Consequently, if the functions I, gl , g2, . . . , gm are,
in addition, convex and the dual value fo r th e problem (4.3.1) is not - 00,

then th e primal and dual values p and d are equal, and the primal value is
attained when fin it e.

Proof. If the points (br, sr ) lie in epi v for r = 1,2, . .. and approach
the point (b, s ) then for each integer r there is a po int x" in E satisfyin g
f( x r ) ::; s; + r- 1 and g(x r ) ::; b" , Hence we deduce

By the compact level set assumption, the sequence (z ") has a subsequence
converging to some point X, and since all t he fun cti ons are closed , we know
f( x) ::; sand g(x) ::; b. We deduce v (b) ::; s , so (b, s ) lies in epi v as we
required. When v (b) is finite, the same argume nt with (br , Sr ) repl aced by
(b, v (b)) for each r shows the infimum is at tained. .

If t he fun ctions f ,gl ,g2, .. . , gm are convex t hen we know (from Section
3.2) v is convex . If d is + 00 then again from the inequ ality p :::: d, there is
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nothing to prove. If d (= v** (O» is finite then Theorem 4.2 .8 shows v** =
cl v, and the above argument shows cl v = v. Hence p = v(O) = v** (O) = d,
and the result follows. 0

Notice that if either the objective function f or anyone of the constraint
functions gl , g2, ... , gm has compact level sets then the compact level set
condition in the above result holds.

Exercises a n d Commentary

An attractive elementary account of finit e-dimensional convex duali ty the
ory appears in [152] . A good reference for this kind of development in
infinite dimensions is [98] . When the value function v is lower semicontin
uous at 0 we say the problem (4.3.1) is normal; see [167]. If 8v(0) =j:. 0
(or v(O) = - (0 ) the problem is called stable; see, for example, [6]). For a
straightforward account of interior point met hods and the penalized linear
program in Exercise 4 (Examples of duals) see [187, p . 40]. For more on
the minimax theory in Exercise 14 see, for example, [60] .

1. (Weak duality) Prove that the primal and dual values p and d
defined by equations (4.3.2) and (4.3.3) satisfy p 2: d.

2. Calculate the Lagrangian dual of the problem in Section 3.2, Exer
cise 3.

3. (Slater a n d com pact ness) Prove the Slater condition holds for
problem (4.3.1) if and on ly if there is a point x in E for which the
level sets

P E R~ I - L(x;),,) ::; a}

are compact for all real a .

4. (Examples of duals) Calculate the Lagrangian dual problem for the
following problems (for given vectors al, a2 , . . . .a'" ; and c in R " ).

(a) T he linear program

inf { (c,x) I (ai ,x) ::; b, for i = 1,2, .. . , m }.
x ERn

(b) Another linear program

inf {(c,x ) + bRn (x) I (ai , x) ::; b, for i = 1,2, .. . , m} .
xE Rn +

(c) The quadratic program (for C E S++)

. f { XTCX I( i ) b J.' ' . }III - - a , x ::; i lor z = 1,2, . . . , m .
x E R n 2
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(d) The separ abl e problem

n

x~M:n {I>(Xj) I (ai,x) < b; for i = 1, 2, .. . ,m}
j=l

for a given functi on p : R ----t (00, + 00].

(e) The penalized lin ear- proqram

inf { (c,x) +db(x) I (ai ,x)::; b, for i = 1,2, . . . ,m}
xERn

for real E > O.

For given mat rices A I , A2 , .. . , Am' and G in S", calculate the dual
of the semi defini te proqram

inf {tr (GX) + bsn (X) Itr (A iX) ::; b, for i = 1,2, .. . , m},
X ES '!- +

and the penalized semidefini te proqram

inf {tr (GX) + ddX I t r (AiX) ::; bi for i = 1,2, . . . , m}
X ES '!-

for real E> O.

5. (Duffin 's duality gap, continued)

(a) For the problem considered in Sect ion 3.2, Exercise 8, namely

ca lculate the dual fun ction , and hence find t he dual value .

(b) Rep eat part (a) with the objective function eX 2 replaced by X 2 .

6. Consider the problem

Write down the Lagrangian du al problem , solve the primal and dual
problems, and verify t ha t the optimal values are equal.

7. Given a matrix G in S++' calculate

inf {tr(GX) I -log(detX) ::; O}
X ES,!-+

by Lagrangian duality.
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8. * (Mixed constraints) Explain why an appropriate dual for the
problem

inf{f(x) Ig(x) ::; 0, h(x) = O}

for a funct ion h : dom f -+ R k is

sup inf {f(x) + ).7g(x) + p7h(x)}.
AER+ , IL ERk xEdom f

9. (Fenchel and Lagrangian duality) Let Y be a Euclide an space.
By suitably rewr it ing the primal Fenchel problem

inf {f(x) + g(A x)}
xEE

for given fun ctions f : E -+ (00, + 00]' 9 : Y -+ (00, +00]' and linear
A : E -+ Y , interpret t he dual Fenchel problem

sup ] - j*(A*¢) - g*( - ¢)}
<!>E Y

as a Lagrangian dual problem .

10. (Trust region subproblem duality [175]) Given a matrix A in
S" and a vector b in R n , consider the nonconvex problem

inf {xT Ax + bT
X IxTx- I::; 0, x E Rn }.

Complet e the following steps to prove there is an optimal dual solu
t ion, with no duality gap.

(i) Prove t he result when A is positi ve semidefinite.

(ii) If A is not positive defini t e, prove t he primal opt imal value does
not change if we rep lace the inequality in the constraint by an
equality.

(iii) By observing for any real a the equality

min {xTAx + bT
X IxT

X = I} =

-a + min {xT (A + a I)x+ bTx IxTx = 1},

prove the general result.

11. ** If there is no duality gap, prove that dual optimal solutions are
the same as Karush-Kuhn-Tucker vectors (Sect ion 3.2, Exercise 9) .

12. * (Conjugates of compositions) Consider t he composition go f
of a nondecreasing convex fun ct ion 9 : R -+ (00, + 00] with a convex
function f : E -+ (00, + 00]. We interpret g(+00) = + 00, and we



94 4. Convex Analysis

assume there is a point :i; in E satisfying f (:i;) E int (dom g). Use
Lagrangian duality to prove the form ula, for ¢ in E ,

(g 0 f)*(¢) = inf { g*(t ) + tf" (:£)},
tE R + t

where we interpret

°1*(t)= 6domf (¢).

13. ** (A sym m et ric pair [28])

(a) Given real 1'1 ,1'2, .. . ,I'n > 0, define h : R " ---. (00 , + 00] by

{ TIn - I i
h(x) = i=l X i

+ 00
if X E R +.+
otherwise.

By writing g(x) = exp(log g(x)) and using the composition for
mula in Exercise 12, prove

h*( ) = {-(')' + l) IT ( -Yi)'d h+
l
) if - Y E R +.

Y i=l 1',
+00 otherwise,

where I' = L iI'i ·

(b) Given real aI, a2, .. . , an > 0, define a = L ia i and suppose a
real Jl satisfies Jl > a + 1. Now define a function f : R " x R ---.
(00, +00] by

{
Jl-l sit TI .x:- Q i

f(x ,s) = + 00 "

Use part (a) to prove

for constants

if x E R +. +, s E R +
otherwise.

if - Y E R +.+, t E R+
otherwise

(c) Deduce f = 1**, whence f is convex.

(d) Give an alternative proof of the convexity of f by using Section
4.2, Exercise 24(a) (Fisher information function) and induction.

(e) Prove f is strictly convex.



4.3 Lagrangian Duali ty 95

14. ** (Convex minimax theory) Suppose that Y is a Euclidean space,
that the sets C C Y and DeE are nonempty, and cons ide r a
function 1jJ : C x D ---+ R .

(a) Prove the inequali ty

sup inf 1jJ(x, y) :::; inf sup 1jJ (x, V) .
y ED x EC xE C y E D

(b) We call a point (x ,y) in C x D a saddlepoint if it sat isfies

1jJ (x, y) < 1jJ (x ,y) < 1jJ(x, y) for all x E C, Y ED.

In this case prove

sup inf 1jJ (x, y) = 'ljJ (x, y) = inf sup 1jJ (x ,V).
y E D xEC xEC yED

(c) Suppose the function Py : E ---+ (00, +00] defined by

,(x) ={ 'ljJ (:r , y) if x E ?
Pu +00 otherwise

is convex, for all y in D . Prove the fun ction h : Y ---+ [-00, + 00]
defined by

h(z) = inf sup {1jJ (x ,y) + (z, y)}
x EC yE D

is convex.

(d) Suppose the fun cti on qx : Y ---+ (00, + 00] defined by

{
- 1jJ(x, y) if Y E D

qx(Y) = +00 otherwise

is closed and convex for all points x in C. Deduce

h**(O) = sup inf 1jJ(x, V).
y EDXEC

(e) Suppose that for all points y in D t he fun ction Pv defined in
part (c) is closed and convex, and that for some point f) in D ,
Pg has compact level set s. If h is finite at 0, prove it is lower
semicontinuous there. If t he assumption in part (d) also holds ,
ded uce

sup inf 'ljJ (x, y) = min sup 1jJ (x ,V).
y E D xEC x EC YE D

(f) Suppose the fun ctions 1 ,91 ,92, . . . , 98 : R t ---+ (00,+00] are
closed and convex . Interpret the above results in the followin g
two cases:
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s

C = (domf) n (n dom gi)

D = R + i=l

'ljJ (u,w) = f(u) + 2::=1Wigi(U) .

(ii) C = R t
s

D = (dom!) n (n domgi )
i=l

'ljJ(u, w) = -f(w) - 2::=1uigi(W).

(g) (Kakutani [109]) Suppose that t he nonempty sets C C Y and
D eE are compact and convex, that the function 'ljJ : C x D ---+

R is continuous, that 'ljJ (x ,y) is convex in t he variable x for all
fixed y in D , and that - 'ljJ(x , y) is convex in the variable y for
all points x in C . Deduce 'ljJ has a saddlepoint .



Chapter 5

Special Cases

5.1 Polyhedral Convex Sets and Functions

In our earlier section on t heorems of t he alte rnative (Section 2.2) , we ob
served that finitely generated cones are closed . Remarkably, a finit e linear 
algebraic assumption leads to a topological conclusion . In this sect ion we
pursue the consequences of this type of assumption in convex analysis.

There are two natural ways to impose a finite linear st ructure on t he set s
and functions we conside r. The first we have already seen : a "polyhedron"
(or polyh edral set) is a finite int ersection of closed hal fspaces in E , and we
say a fun ction f : E --> [-00, + 00] is polyhedral if its epigraph is polyhedral.
On the other hand, a polytope is the convex hull of a finite subset of E ,
and we call a subset of E fin itely generated if it is the sum of a polyt ope
and a finit ely generated cone (in the sense of formula (2.2.11)) . Not ice we
do not yet know if a cone that is a finit ely generated set in t his sense is
finit ely generat ed in the sense of (2.2.11) ; we return to this point later in
the section. The fun ction f is finit ely generated if it s epigraph is finit ely
generated . A central res ult of thi s sect ion is that polyhedra and finit ely
generated sets in fact coincide .

We begin with some easy observations collected together in the following
two results.

Proposition 5.l.1 (Polyhedral functions) Suppo se that the function
f : E --> [-00,+ 00] is polyh edral. Th en f is closed and convex and can be
decomposed in th e form

f = maxgi + 6p ,
iEI

(5.1.2)

where the index set I is fin it e (and possibly empty) , the functions gi are
affin e, and the set P eE is polyhedral (and possibly empty). Thus the
doma in of f is polyhedral and coincides with dom 8 f if f is proper.

97
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Proof. Since any polyhedron is closed and convex , so is i , and the de
composition (5.1.2) follows directly from the definition. If f is proper then
both the sets I and Pare nonempty in this decomposition . At any point
x in P (= dom f) we know 0 E 001> (x) , and the function max, gi certainly
has a subgradient at x since it is everywhere finite. Hence we deduce the
condit ion of(x) i- 0. D

Proposition 5. 1. 3 (Finitely genera ted functions) Suppose the func
tion f : E ----+ [- 00,+ 00] is finitely generated. Th en f is closed and convex
and dom f is finitely generated. Furthermore, 1* is polyhedral.

P r oof. Polytopes are compact and convex (by Caratheodory's theorem
(Section 2.2, Exercise 5)), and finit ely generated cones are closed and con
vex, so finitely generated sets (and therefore functions) are closed and con
vex (by Section 1.1, Exercise 5(a)) . We leave the remainder of the proof as
an exercise. D

An easy exercise shows that a set Pe E is polyhedral (respectively, finitely
generated) if and only if op is polyhedral (respectively, finit ely generated) .

To prove that polyhedra and finitely generated sets in fact coincide,
we cons ider the two extreme special cases: first , compact sets, and second,
cones. Observe first that compact , finit ely gen erated sets are just polytopes,
directly from the defin ition.

Lemma 5.1.4 Any polyhedron has at most finitely many extreme points.

Proof. Fix a finite set of affine functions {gi l i E I} on E , and consider
the polyhedron

P = { x E E lYi (x) :::; 0 for i E I}.

For any point x in P , the "act ive set" is {i E I I gi (x) = O}. Suppose two
distinct extreme points x and y of P have the same active set. Then for
any small real E the points x ± E(y - x ) both lie in P . But this contradicts
the assumption that x is ext reme. Hence differ ent extreme points have
different active sets, and t he result follows. D

This lemma together wit h Minkowski 's t heorem (4.1.8) reveals the na
ture of compact polyhedra.

Theorem 5.1.5 Any compact polyhedron is a polytope.

We next turn to cones .

Lemma 5.1.6 Any polyhedral cone is a finite ly gen erated cone (in the
sense of (2. 2.11)).
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Proof. Given a polyhedral cone Pe E , define a subspace L = P n - P
and a pointed polyhedral cone K = P n L.L . Observe t he decomposition
P = K EB L. By the Pointed cone t heorem (3.3.15), there is an element y
of E for which the set

C = {x E K I (x, y) = I}

is compact and satisfies K = R + C . Since C is po lyhedral, the previous
result shows it is a polytope. Thus K is finit ely generated, whence so is P .

o

Theorem 5.1.7 (Polyhedrality) A set or junction is polyhedral if and
only ij it is finitely generated.

Proof. For finit e sets {ai l i E I} c E and {bi l i E I} c R , consider the
polyhedron in E defined by

P = { x E E l (ai , X) :s: b, for i E I} .

The polyhedral cone in E x R defined by

Q = {( x,r) E E x R I (ai ' x) - bir:S: 0 for i E I}

is finitely generated by the previous lemma, so there are finite subsets
{Xj I j E J} and {Yt I t E T} of E with

Q = {L Aj(Xj , 1) +L /-It(Yt , 0) IA j E R + for j E J, /-It E R + for t E T}.
j EJ t ET

We deduce

P= {x l(x,l)EQ}

= conv {Xj I j E J} + {L /-ltYy I /-It E R + for t E T},
t ET

so P is finitely generated . We have thus shown tha t any polyhedral set
(and hence fun ction) is finitely generated .

Conversely, suppose the function f : E -+ [-00, + 00] is finit ely gener
ated. Consider first the case when f is proper. By Proposition 5.1.3 , f*
is polyh edral, and hence (by the above argument) finitely generated . But
f is closed and convex, by Proposition 5.1.3 , so the Fenchel biconjugation
theorem (4.2.1) implies f = f** . By applying Proposition 5.1.3 once again
we see f* * (and hence J) is polyhedral. We leave the improper case as an
exercise. 0

Notice these two results show our two notions of a finitely generated cone
do indeed coincide.

The following collection of exercises shows that many linear-algebraic
operations preserve polyhedrality.
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Proposit io n 5.1.8 (Polyhedral algebra) Consider a Euclidean space
Y and a lin ear map A : E ~ Y.

(a) If the set PeE is polyhedral then so is its image AP.

(b) If the set KeY is polyhedral then so is its in verse image A-IK.

(c) Th e sum and pointwise maximum of fin it ely many polyhedral func-
tions are polyhedral.

(d) If the function 9 : Y ~ [-00 , + 00] is polyhedral then so is the com
posite fun ction g oA.

(e) If the fun ction q : E x Y ~ [- 00 , +00] is polyhedral then so is the
function h : Y ~ [-00, +00] defin ed by h(u) = infx EE q(x, u) .

Corollary 5 .1 .9 (Polyhedral Fenchel duality) All the conclusions of
the Fenchel duality theorem {3.3.5} rem ain valid if the regularity condi 
tion {3.3.8} is replaced by the assumption that the fun ctions f and 9 are
polyhedral with dom 9 n Adorn f nonempty.

Proof. We follow the original proof, simply observing that the value func
tion h defined in the proof is polyhedral by t he Polyhedral algebra propo
sition above. Thus, when the optimal value is finite, h has a subgradient
at O. 0

We conclude this sect ion with a result emphasizing the power of Fenchel
duality for convex problems with linear constraints.

C orolla r y 5.1.10 (Mixed Fenchel d uality) All the conclusions of the
Fenchel dual ity theorem {3.3.5} remain valid if the regularity condition
{3.3.8} is replaced by the assumption that domg n Acont f is nonempty
and the function 9 is polyhedral.

P ro o f. Assume without loss of generality the primal optimal value

p = inf {I(x) + g(Ax)} = inf {I(x) + r Ig(Ax) :::; r}
xEE x EE , r ER

is finite. By assumption there is a feasible point for the problem on the
right at which the objective function is continuous, so there is an affine
function a : E x R ~ R minorizing the function (x , r) f-+ f(x) + r such
that

p = inf {a(x ,r) Ig(Ax) < r}
XEE , r ER

(see Section 3.3, Exercise 13(c)). Clearly a has the form a(x, r) = (3(x) +r
for some affine rninorant (3 of I , so

p = inf {(3(x) + g(Ax)} .
xEE
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Now we apply polyhedral Fenchel du ality (Coroll ary 5.1.9) to deduce the
existence of an element </J of Y such that

p = - (3*(A*</J) - g*( - </J) ~ - J*(A* </J) - g*( - </J) ~ p

(using the weak duality inequality) , and the du ality result follows. The
calculus rules follow as before. 0

It is interesting to compare this resul t with the version of Fenchel dual
ity using t he Op en mapping theorem (Sect ion 4.1, Exerci se 9) , where the
assumption that 9 is polyhedral is replaced by surject ivity of A.

Exercises and Commentary

Our approach in t his section is analogous to [181]. T he key idea, Theorem
5.1.7 (Polyhedrality) , is due to Minkowski [141] and Weyl [186]. A nice
development of geom et ric programming (see Exercise 13) appears in [152].

1. Prove directl y from the definition t hat any polyhedral function has a
decomposition of the form (5.1.2) .

2. Fill in the details for the proof of the Finitely generated fun ctions
proposition (5.1.3) .

3. Use P rop osit ion 4.2.7 (Lower semicont inuity and closure) to show
t hat if a finitely generated fun ction f is not proper then it has the
form

f( x) = {+_oooo if x ¢ K
if x E K

for some finitely generated set K .

4. Prove a set K c E is polyhedral (respectively, finit ely gene rated ) if
and only if 6K is polyhedral (respectively, finit ely generated) . Do not
use the Polyhedrali ty theorem (5.1.7) .

5. Complete the proof of the Polyhedrality theorem (5.1.7) for improper
fun ctions using Exercise 3.

6. (Tangents to polyhedra) Prove the tangent cone t o a polyhedron
P at a point x in P is given by Tp(x) = R +(P - x ).

7. * (Polyhedral algebra) Prove Proposition 5.1.8 using t he following
steps .

(i) Prove parts (a)-(d) .
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(ii) In the notati on of par t (e) , cons ide r t he natural projection

Pv xR : E x Y x R ---> Y x R .

Prove the inclusions

PY xR (epi q) c epi h e cl (PYxR(epi q)).

(iii) Deduce par t (e) .

8. If t he function f : E ---> (00, +00] is polyhedral , prove the subdiffer
ent ial of f at a point x in dom f is a nonempty polyhedron and is
bounded if and only if x lies in int (dom 1) .

9. (Polyhedral cones) For any polyhedral cones H eY and K c E
and any linear map A : E ---> Y, prove the relation

usin g convex calculus.

10. Apply the Mixed Fenchel duality corollary (5.1.10) to the problem
inf{j(x ) I Ax ::::: b}, for a linear map A : E ---> R m and a point b in
R m.

11. * (Generalized Fenchel duality) Consider convex fun cti ons

with nicont hi nonempty. By applying the Mixed Fenchel duali ty
corollary (5.1.10) to the problem

prove

1~~ :L hi( x) = - inf {:L h7(¢i) I¢ 1, ¢2, . . . , ¢m E E , :L¢i = o}.
i i i

12. ** (Relativizing Mixed Fenchel duality) In the Mixed Fenchel
duality corollary (5.1.10), prove the condit ion dom g n Acont f =I- 0
can be replaced by dom 9 n Ari (do m 1) =I- 0.

13. ** (Geometric programming) Consider t he constrained geometric
program

inf {ho(x) Ihi (x ) ::::: 1 for i = 1,2, . . . , m} ,
x EE



5.1 Polyhedral Convex Set s and Functions

where each function hi is a sum of functions of the form

n

X E E f---7 clog (L exp (aj
, x) )

j = l

103

for real c > 0 and elements a1 , a2 , .. . . o" of E . Write down the
Lagrangian dual problem and simplify it using Exerci se 11 and the
form of the conjugate of each hi given by (3.3.1) . State a duality
theorem .
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5.2 Functions of Eigenvalues

Fenchel conjugacy gives a concise and beautiful avenue to many eigenvalue
inequalities in classical matrix analysis . In this section we outline this
approach.

The two cones R f- and Sf- appear repeated ly in applications, as do their
corresponding logarit hmic barriers lb and ld , which we defined in Section
3.3. We can relate the vector and matrix examples, using the notation of
Section 1.2, through the identities

bSn = bRn 0 '\ and ld = lb 0 ,\ .
+ +

(5.2.1)

We see in this section that these ident it ies fall into a broader pattern.
Recall the function [.J : R " ----> R " rearranges components into nonin

creasing order. We say a function f on R " is symmetric if f(x) = f( [x])
for all vectors x in R " ; in other words, permuting components does not
change the function value . We call a symmetric funct ion of the eigenvalues
of a symmetric matrix a spectral function. The following formula is crucial.

Theorem 5.2.2 (Spectral conjugacy) If f : R " ----> [- 00, +00] is a sym
metric fun ction , it satisfi es the formula

(J 0 X)" = J* 0,\.

Proof. By Fan's inequality (1.2 .2) any matrix Y in S" satisfies the in
equalities

(J 0 '\)*(Y) = sup {tr (XY) - f( '\(X))}
X ES'"

s; sup{ '\(Xf'\(Y) - f( '\(X))}
X

s; sup {xT,\(y) - f( x)}
xE Rn

= J*(,\(Y)) .

On the other hand, fixing a spectral decomposition Y = UT (Diag '\ (Y ))U
for some matrix U in on leads to the reverse inequality

J*(,\(Y)) = sup {xT,\(y) - f(x)}
x ERn

= sup{tr «Diagx)UYUT) - f(x)}
x

= sup{tr (UT(Diagx)UY) - f( '\(UTDiagxU))}
x

s; sup {tr (XY) - f('\(X))}
X ES n

= (J 0 '\)*(Y),
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which completes the proof.

105

o

This formula, for example, makes it very easy to calculate ld * (see the Log
barriers proposition (3.3.3)) and to check t he self-duality of the cone S+'.

Once we can compute conjugates easily, we can also recognize closed
convex functions eas ily using the Fenchel biconjugation t heorem (4.2.1).

Corollary 5.2.3 (Davis) Suppose the function f : R " -+ (00, +00] is
sym metric. Then th e "spectral fun ction" f 0 ), is clos ed and convex if and
on ly if f is closed and convex.

We deduce immediately that the logari thmic barrier ld is closed an d con
vex, as well as the function X t--4 t r (X - 1

) on S+'+ , for example.
Identifying subgradients is also easy using t he conjugacy form ula and

the Fenchel- Young inequality (3.3.4).

Corollary 5.2.4 (Spectral su b gra d ie n t s ) If f : R " -+ (00, +00] is a

sym metric function, th en for any two matrices X and Y in S" , the fo llow
ing prop erties are equivalen t:

(i) Y E a(f 0 >')(X) .

(ii) X and Y have a simultaneous ordered spectral decomposit ion and
sati sf y )'(Y) E aj(), (X )) .

(iii) X = UT(Diag x )U and Y = UT( Diag y)U for some matrix U in o n
and vec tors x and y in R n satisf ying yEaf (x) .

Proof. Notice the inequalit ies

(f 0 >' )(X ) + (f 0 >')*(Y ) = f(),(X )) + j* (>'(Y)) 2 >'(X )T >' (Y ) ~ tr (XY).

The condit ion Y E a(fo>. )(X ) is equivalent to equality between the left and
right hand sides (and henc e throughout) , and the equivalence of properties
(i) and (ii) follows using Fan's inequality (1.2.1). For the remainder of the
proof, see Exercise 9. 0

Corollary 5.2.5 (Spectral differentiability) Suppose that the functi on
f : R " -+ (00, +00] is sym metric, closed, and convex . Th en f 0 >. is
differentiable at a matrix X in S" if and on ly if f is differentiable at >' (X ) .

Proof. If a(f 0 )')(X) is a singleton, so is af(>.(X)) , by t he Spectral
subgradients corollary above. Converse ly, suppose af(>.(X)) consists only
of t he vector y E Rn. Using Exercise 9(b) , we see t he components of y
are non increasing, so by the sam e corollary, a(f 0 >')(X ) is the nonempty
convex set

{UT (Diagy )U IU E on , UT Diag( ),(X)) U = X}.
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But every element of this set has the same norm (namely IIYII) , so the set
must be a singleton. 0

Notice that the proof in fact shows that when j is differentiable at A(X )
we have the formu la

\l(j 0 A)(X) = UT (Diag \l j(A(X)))U (5.2 .6)

for any matrix U in o n sat isfying UT(DiagA(X))U = X .
The pattern of t hese results is clear: many analytic and geometric prop

erties of the matrix function j 0 A parallel the corresponding properties of
the underlying function j . The following exer cise is another example.

Corollary 5.2.7 Suppose the function j : R " ----+ (00, + 00] is symmetric,
closed, and convex. Then fO A is essentially strictly convex (respectively, es
sentially smooth) if and only if j is essentially strictly convex (respectively,
essentially smooth) .

For example, the logarithmic barrier ld is both essentially smooth and
essentially strictly convex.

Exercises and Commentary

Our approach in this section follows [120]. The Davis theorem (5.2.3) ap
peared in [58] (without t he closure assumpt ion). Many convexity properties
of eigenvalues like Exercise 4 (Examples of convex spectral functions) can
be found in [99] or [10], for example. Surveys of eigenvalue optimization
appear in [128, 127].

1. Prove t he identiti es (5.2.1) .

2. Use the Spectral conjugacy theorem (5.2.2) to calculate ld * and 6Sn .
+

3. Prove the Davis characterization (Corollary 5.2.3) using the Fenchel
biconjugation theorem (4.2.1) .

4. (Examples of co nvex spect ral functions) Use the Dav is char
acterization (Corollary 5.2.3) to prove the following functions of a
matrix X E S" are closed and convex:

tr (XP) , for any nonnegative even integer p .

{
-tr (X 1

/
2

) if XES+'
+00 otherwise.

(a) Id (X ).

(b)

(c)



(d)

(e)

(f)

5.2 Functions of Eigenvalues

{
tr (X-P) if X E S++
+00 otherwise

for any nonnegative integer p.

{
tr (X 1/ 2 ) - 1 if X E S++
+00 otherwise.

{
-(detX)l/n if X E S+
+00 otherwise.
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Deduce from the sublinearity of the function in part (f) the property

o :::S X :::S Y :=::;, 0 ::; det X <det Y

for matrices X and Y in S" .

5. Calculate the conjugate of each of the functions in Exercise 4.

6. Use formula (5.2.6) to calculate the gradients of the functions in Ex
ercise 4.

7. For a matrix A in S++ and a real b > 0, use the Lagrangian sufficient
conditions (3.2 .3) to solve the problem

inf{f(X) I tr (AX) < b, X E s-j,

where j is one of the functions in Exercise 4.

8. * (Orthogonal invariance) A function h : S" ----7 (00, +00] is or
thogonally invariant if all matrices X in S" and U in on satisfy the
relation h(UT XU) = h(X) ; in other words, orthogonal similarity
transformations do not change the value of h.

(a) Prove h is orthogonally invariant if and only if there is a sym
metric function j : R" ----7 (00, +00] with h = j 0 >..

(b) Prove that an orthogonally invariant function h is closed and
convex if and only if h 0 Diag is closed and convex.

9. * Suppose the function j : R" ----7 (-00, +00] is symmetric.

(a) Prove 1* is symmetric.

(b) If vectors x and y in R" satisfy y E 8j(x) , prove [V] E 8j([x])
using Proposition 1.2.4.

(c) Finish the proof of the Spectral subgradients corollary (5.2.4).

(d) Deduce 8U 0 >')(X) = 0 ¢:? 8j(>'(X)) = 0.
(e) Prove Corollary 5.2.7.
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10. * (Fillmore-Williams [78]) Suppose the set CeRn is symmetric:
that is , PC = C holds for all permutation matrices P . Prove the set

A-l(C) = {X E s- IA(X) E C}

is closed and convex if and only if C is closed and convex.

11. ** (Semidefinite complementarity) Suppose matrices X and Y
lie in S+..

(a) If tr (XY) = 0, prove -Y E 8<5s n (X).
+

(b) Hence prove the following properties are equivalent:

(i) tr (XY) = o.
(ii) XY = o.

(iii) XY + YX = o.
(c) Using Exercise 5 in Section 1.2 , prove for any matrices U and V

in sn

(U 2 + V2)1/ 2 = U + V {:} U,V C 0 and tr(UV) = o.

12. ** (Eigenvalue sums) Consider a vector p, in R~ .

(a) Prove the function p,TA(·) is sublinear using Section 2.2, Exercise
9 (Schur-convexity) .

(b) Deduce the map A is (-R~)- -sublinear. (See Section 3.3, Ex
ercise 18 (Order convexityj.]

(c) Use Section 3.1, Exercise 10 to prove

13. ** (Davis theorem) Suppose the function f : R" ---* [-00, +00] is
symmetric (but not necessarily closed). Use Exercise 12 (Eigenvalue
sums) and Section 2.2, Exercise 9(d) (Schur-convexity) to prove that
f 0 A is convex if and only if f is convex.

14. * (DC functions) We call a real function f on a convex set C c E
a DC function if it can be written as the difference of two real convex
functions on C.

(a) Prove the set of DC functions is a vector space.

(b) If f is a DC function, prove it is locally Lipschitz on int C .

(c) Prove Ak is a DC function on S" for all k, and deduce it is locally
Lipschitz.
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5.3 Duality for Linear and Semidefinite
Programming

Lin ear programming (LP) is the st udy of optimization problems involv
ing a linear objective fun ction subjec t to linear constraints . This simple
opt imization model has proved enormously powerful in both t heory and
practice, so we devot e this section to deriving linear programming duality
theory from our convex-analyt ic perspective. We cont rast this theory with
the corresponding results for semidefin it e programming (SDP), a class of
matrix optimization problems analogous to linear programs but involving
the positive semidefin ite cone.

Linear programs are inherently polyhedral , so our main development
follows directly from the polyhedrality sect ion (Section 5.1). But to be
gin , we sket ch an alternative development dir ectly from the Farkas lemma
(2.2.7) . Given vect ors a1,a2 , . .. , am

, and c in R " and a vector b in R Tn ,
consider t he primal lin ear program

inf
subject to

(c,x) }
(ai, x) - b, :::; 0 for i = 1,2 , ... , m

x E Rn.
(5.3.1)

Denote t he primal optimal value by p E [-00, +00]. In the Lagran gian
duality framework (Section 4.3) , the dual problem is

m

sup { - bT fL I L fLiai = - c, JL E R~ }
i= l

(5.3.2)

with du al op timal value d E [- 00, + 00]. From Section 4.3 we know the
weak duality inequality p 2:: d. If the primal problem (5.3.1) satisfies the
Slater condition t hen the Dual attainment theorem (4.3.7) shows p = d
with du al at tainment when t he values are finite. However, as we shall see,
the Slater conditi on is superfluous here.

Suppose the primal value p is finit e. Then it is easy to see that the
"homogenized" syst em of inequa lities in R n+l ,

(ai, x) - bi Z :::; 0 for i = 1,2 , .. . , m }
- z :::; 0 and

(-c,x) + pz > 0, xE Rn, z E R
(5.3.3)

has no solution. Applying the Farkas lemma (2.2.7) to this system, we
deduc e there is a vector fl in R + and a scalar 13 in R + sat isfyin g

m

L fli(ai , -bi) + 13(0, -1) = (- c,p) .
i = l
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Thus Jl is a feasible solution for the dual problem (5.3.2) with objective
value at least p. The weak duality inequality now implies Jl is optimal and
p = d. We needed no Slater condit ion; the assumption of a finite primal
optimal value alone implies zero duality gap and dual attainment .

We can be more systematic using our polyhedral theory. Suppose that
Y is a Euclidean space, that the map A : E ~ Y is linear, and consider
cones HeY and K c E . For given element s c of E and b of Y , consider
the primal abstract linear program

inf{ (c, x ) IA x - b E H, x E K} . (5.3.4)

As usual, denote the optimal value by p. We can write this problem in
Fenchel form (3.3.6) if we define functions f on E and 9 on Y by f(x) =

(c, x) +OK(X) and g(y) = oH(y-b) . Then the Fenchel dual problem (3.3.7)
IS

(5.3 .5)

with dual optimal value d. If we now apply the Fenchel du ality theorem
(3.3 .5) in turn to problem (5.3.4) , and then to problem (5.3.5) (using .the
Bipolar cone theorem (3.3.14)), we obtain the followin g general result .

Corollary 5.3.6 (Cone programming duality) Suppose the cones H
and K in problem {5.3.4} are convex.

(a) If any of the conditions

(i) bE int (AK - H),

(ii) bEAK - intH, or

(iii) bE A(int K) - H, and either H is polyhedral or A is surjective

hold then there is no duality gap {p = d} and the dual optimal value
d is attained if finit e.

(b) Suppose Hand K are also closed. If any of the conditions

(i) - c E int (A *H- + K -),

(ii) -cEA*H-+intK- , or

(i ii) - c E A * (int H-) + K - , and either K is polyhedral or A * is
surjectiv e

hold then there is no duality gap and the primal optimal value p is
attained if finit e.

In both parts (a) and (b) , the sufficiency of condition (iii) follows by ap
plying the Mixed Fenchel duality corollary (5.1.10) , or the Open mapping
theorem (Section 4.1, Exercise 9) . In the fully polyhedral case we obtain
the following result .
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Corollary 5.3.7 (Linear programming duality) Suppose the cones H
and K in the dual pair of problems {5.3.4} and {5.3.5} are polyhedral. If
either problem has finit e optimal value then there is no duality gap and both
problems have optimal solutions.

Proof. We apply the Polyhedral Fenchel duality corollary (5.1.9) to each
problem in turn. 0

Our earli er resul t for the linear program (5.3.1) is clearly just a special case
of this corollary.

Linear programming has an interestin g matrix analogue . Given matri
ces AI , A 2 , .. . , Am ' and C in St- and a vector b in R '" , consider the primal
semidefinite program

inf
subject to

tr (CX) }
tr(AiX) = bi for i=I,2, . . . , m

X ESt-.
(5.3.8)

This is a special case of t he abs tract linear program (5.3.4) , so t he dual
problem is

m

sup { bT ¢ I C - L ¢i Ai E St-, ¢ E R m
} ,

i=1

(5.3.9)

since (S t-)- = -St-, by the Self-dual cones proposition (3.3.12) , and we
ob tain the following duality theorem from the gener al result above.

Corollary 5.3.10 (Semidefinite programming duality) If the primal
problem {5.3.8} has a posit ive definite f easible soluti on, there is no duality
gap and the dual optimal value is att ained when finit e. On the oth er hand,
if there is a vector ¢ in R m with C - L i ¢i Ai positive definite then once
again there is no duality gap and the primal optimal value is attain ed when
fin it e.

Unlike linear programming, we need a condit ion stronger than mere
cons istency to guarantee no du ality gap . For example, if we consider the
primal semidefinite program (5.3.8) with

the primal optimal value is 0 (and is attained), whereas t he dual problem
(5.3.9) is inconsistent.
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Exercises and Commentary

The importance of linear programming duality was first emphasized by
Dantzig [57] and that of semidefinite duality by Nesterov and Nemirovskii
[148]. A good general reference for linear programming is [53]. A straight
forward exposition of the central path (see Exercise 10) may be found in
[187]. Semidefinite programming has wide application in control theory
[46].

1. Check t he form of the dual problem for the linear program (5.3.1).

2. If t he optimal value of problem (5.3.1) is finite , prove system (5.3.3)
has no solution.

3. (Linear programming duality ga p ) Give an example of a linear
program of the form (5.3.1) which is inconsistent (p = + (0 ) wit h the
dual problem (5.3.2) also inconsistent (d = -(0) .

4. Check the form of the dual problem for the abstract linear program
(5.3.4) .

5. Fill in the details of the proof of t he Cone programming duality coro l
lary (5.3.6) . In particular, when the cones Hand K are closed, show
how to int erpret problem (5.3.4) as the dual of problem (5.3.5).

6. Fill in the details of the proof of the linear programming duality
corollary (5.3.7).

7. (Complementary slackn ess) Sup pose we know the optimal values
of problems (5.3.4) and (5.3.5) are equal and the dual value is at
tained. Prove a feasible solution x for problem (5.3.4) is optimal if
and only if there is a feasible solution ¢ for the dual problem (5.3.5)
satisfying the conditions

(Ax - b,¢) = 0 = (x , A*¢ - c).

8. (Semidefinite programming duality) Prove Corollary 5.3.10.

9. (Semidefinite programming duality ga p) Check the details of
t he example after Corollary 5.3.10.

10. ** (Central path) Consider the dual pair of linear programs (5.3.1)
and (5.3.2) . Define a linear map A : R " -+ R 1n by (Ax)i = (ai)Tx
for each index i . Make the following assumptions:

(i) T here is a vector x in R " satisfying b - Ax E R~+ .

(ii) There is a feasible solution JL in R~t\ for problem (5.3.2).
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(iii) T he set {a I
, a2

, • . . , am } is linearly independent.

Now consider the "penalized" problem (for real f. > 0)

(5.3.11)

(a) Write this problem as a Fenchel pro blem (3.3. 6) , and show the
dual problem is

m

sup { - bT /1- db (/1) - k(f. ) I L /1iai = - c, /1 E R~} (5.3.12)
i= l

for some funct ion k : R + ---> R .

(b) Prove that both problems (5.3.11) and (5.3.12) have opt imal
solutions, with equal opt imal values.

(c) By complementary slackness (Sect ion 3.3, Exercise 9(f)), prove
problems (5.3.11) and (5.3.12) have unique optimal solutions
x " E Rn an d /1' E R m, characte rized as t he uni qu e solution of
t he system

m

L /1iai - c
i = l

/1i (bi - (aif x) f. for each i

b - A x > 0, and

/1 E R~' , x E Rn.

(d ) Calculate cT x ' + bT /1' .

(e) Deduce that, as f. decreases to 0, the feasible solut ion x" ap
proaches optimality in problem (5.3.1) and /1' approaches opt i
mality in problem (5.3.2).

11. •• (S emidefinite central path) Imi tate the development of Exer
cise 10 for t he semidefinite programs (5.3.8) and (5.3.9) .

12. •• (Relativizing cone programming duality) P rove ot her condi
tio ns guaranteeing part (a ) of Corollary 5.3.6 are

(i) b E A(riK) - ri H or

(ii) b E A(ri K ) - H and H polyhedral.

(Hint: Use Section 4.1, Exercise 20, and Sect ion 5.1, Exercise 12.)
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5.4 Convex Process Duality

In this section we introduce the idea of a "closed convex process". These
are set-valued maps whose graphs are closed convex cones. As such, they
provide a powerful unifying formulation for the study of linear maps, convex
cones, and linear programming. The exercises show the elegance of this
approach in a range of applications.

Throughout this section we fix a Euclidean space Y . For clarity, we
denote the closed unit balls in E and Y by BE and By , respectively. A
multifumctiori (or set-valued map) <I> : E ~ Y is a map from E to the set
of subsets of Y . The domain of <I> is the set

D(<I» = {x EEl <I>(x) -I- 0}.

We say <I> has nonempty images if its domain is E. For any subset C of
E we write <I> (C) for the image UxEc<I>(x) , and the range of <I> is the set
R( <I» = <I>(E). We say <I> is surjective if its range is Y. The graph of <I> is
the set

G(<I» = {(x, y) E E x Y lyE <I> (x)} ,

and we define the inverse multifunction <I> -1 : Y ~ E by the relationship

x E <I>-l(y) {:} Y E <I>(x) for x in E and y in Y.

A multifunction is convex, or closed, or polyhedral if its graph is likewise.
A process is a multifunction whose graph is a cone. For example, we can
interpret linear maps as closed convex processes in the obvious way.

Closure is one example of a variety of continuity properties of multi
functions we study in this section. We say the multifunction <I> is LSC at
a point (xo , y) in its graph if, for all neighbourhoods V of y, the image
<I> (x) intersects V for all points x close to xo. (In particular, Xo must lie in
int (D(<I»).) Equivalently, for any sequence of points (xn ) approaching Xo
there is a sequence of points Yn E <I>(xn) approaching y. If, for Xo in the
domain, this property holds for all points y in <I>(xo), we say <I> is LSC at
xo. (The notation comes from "lower semicontinuous" , a name we avoid
in this context because of incompatibility with the single-valued case; see
Exercise 5.)

On the other hand, we say <I> is open at a point (x , Yo) in its graph if, for
all neighbourhoods U of x, the point Yo lies in int (<I>(U)) . (In particular,
Yo must lie in int (R(<I»).) Equivalently, for any sequence of points (Yn)
approaching Yo there is a sequence of points (z.,) approaching x such that
Yn E <I>(xn) for all n . If, for Yo in the range, this property holds for all
points x in <I>-l(Yo), we say <I> is open at Yo. These properties are inverse
to each other in the following sense.
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Proposition 5.4.1 (Openness a n d lowe r sem icon t inu ity) Any multi
function ell : E ----? Y is LSC at a point (x ,y) in its graph if and only if ell-I
is open at (y ,x ).

We leave the proof as an exercise.
For convex multifunctions, openness at a poi nt in the gr aph has strong

global implicat ions: the following result is another exe rcise.

Proposition 5.4.2 If a convex mu ltifunction is open at some point in its
graph then it is open throughout the interior of its range.

In particular, a convex process ell : E ----? Y is open at (0,0) E E x Y if
and only if it is open at 0 E Y ; we just say ell is open at zero (or , dually,
ell-I is LSC at zero).

T here is a natural duality for convex processes that generalizes the
adjoint operation for linear maps. For a convex process ell : E ----? Y , we
define the adjoint process ell* : Y ----? E by

Then an easy consequence of t he Bipolar cone theorem (3.3 .14) is

G(ell**) = - G(ell ),

providing ell is closed. (We could define a "lower" adjoint by the re lationship
ell*(fL) = - ell * (-fL) , in whic h case (ip*)* = ell .)

The language of adjoint processes is elegant and concise for many vari
ational problems involving cones. A good example is the cone program
(5.3.4) . We can write this problem as

inf { (c,Xl Ib E '!J(x)} ,
x EE

where '!J is the closed convex process defined by

'!J (x) = { Ax - H if x E ~o otherwise
(5.4 .3)

for points c in E , bin Y , and closed convex cones He Y and K c E . An
easy calculation shows the adjoint process is

if fL E H
ot herwise ,

(5.4.4)

so we can write t he d ual problem (5.3.5) as

sup{ (b ,fLl I - c E '!J*(-j-L)} .
/-LEY

(5.4 .5)
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Furthermore, the const raint qualifications in the Cone programming duali ty
coroll ary (5.3.6) become simply b E int R(IlI) and - c E int R(IlI*) .

In Section 1.1 we mentioned the fundamental linear-algebraic fact that
the null space of any linear map A and the range of its adjoint satisfy the
relationship

(5.4.6 )

Our next st ep is to generalize this to processes . We begin with an easy
lemma.

Lemma 5.4.7 Any convex process <I> : E -+ Y and subset C of Y satisf y
<I>*(CO) C (<I> -1(C))0.

Equality in this relationship requires more structure.

Theorem 5.4.8 (Adjoint process duality) Let <I> : E -+ Y be a convex
process, and suppose the set C C Y is convex with R( <I» n C nonempty.

(a) Eith er' of the assumptions

(i) the multifunction x E E f---+ <I>(x) - C is open at zero (or , in
particular, int C contains zero), or

(ii) <I> and C are polyhedral

implies

(b) On the other hand, if C is compact and <I> is closed then

Proof. Suppose assumption (i) holds in part (a) . For a fixed element ¢
of (<I>-1(C))0, we can check that the "value function" v: Y -+ [- 00,+00]
defined for elements y of Y by

v (y ) = inf {- (¢,x) ly E <I>(x) - C}
xEE

(5.4 .9)

is convex . The assumpt ion ¢ E (<I>-1(C))0 is equivalent to v(O) :2: -1 ,
whil e the openness assumpt ion implies 0 E core (dom v) . Thus v is proper
by Lemma 3.2 .6, and so the Max formula (3.1.8) shows v has a subgradient
- A E Y at O. A simple calculation now shows A E Co and ¢ E <I>* (A),
which, together with Lemma 5.4.7, proves the result .

If <I> and C are polyhedral , the Polyhedral algebra proposition (5.1.8)
shows v is also polyhedral , so again has a subgradient, and our argument
proceeds as before.
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TUrning to part (b) , we can rewri te ¢ E (<I> -1 (C))° as

(¢ ,O) E (G(<I» n (E x CW

and apply the polarity formula in Section 4.1, Exercise 8 to deduce

(1),0) E cl (G(<I» - + (0 x Co» .

117

Hence there are seque nces (¢n , - Pn) in G(<I»- and I-Ln in Co with ¢n ap
proaching ¢ and I-Ln - Pn approaching O. We deduce

where the real sequence En = III-Ln - Pnll approaches O. Since C is bounded
we know int (CO) contains 0 (by Section 4.1, Exercise 5) , and the res ult
follows using the positive homogeneity of <I>*. D

T he null space/range formula (5.4.6) thus generalizes to a closed convex
process <I>:

and the closure is not required if <I> is open at zero.
We are mainly interested in using these polarity formulae to relate two

"norms" for a convex process <I> : E ---+ Y . The "lower norm"

qu antifies <I> bein g LSC at zero; it is easy to check t hat <I> is LSC at zero if
and only if its lower norm is finite. The "upper norm"

qu antifies a form of "upper semicont inuity" (see Section 8.2). Clearly <I>
is bounded (that is , bounded sets have bounded images) if and only if its
upper norm is finite. Both norms generalize the norm of a linear map
A : E ---+ Y , defined by

IIAII = sup{ IIAxlllll xll ::; I} .

Theorem 5.4.10 (Norm duality) Any closed convex process <I> satisfie s

11<I>lll = 11<I>*lIu.

Proof. For any real r > 11<I>lll we know BE C <I>-1(r By) by definition.
Taking polars implies BE ::J r - 1<I>*(By) , by the Adjoint pro cess duality
theorem (5.4.8) , whence II <I> * Il u < T.

Conversely, 11<I>*llu < T implies <I>*(By) C TB E. Taking pol ars and
applying t he Adjoint process duality theorem again followed by the Bipolar
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set theorem (4.1.5) shows BE C r(cl (<fI - 1(By ») . But since By is compact
we can check <fI - 1 (By) is closed , and the result follows. 0

The values of the upper and lower norms of cour se depend on the spaces
E and Y . Our proof of the Norm duality theore m above shows that it
remains valid when BE and By denote unit balls for arbit rary norms (see
Section 4.1 , Exercise 2) , providing we repl ace them by t heir polars BE and
By in t he definition of II <fI * IIu-

The next resul t is an immediate consequence of t he Norm du ality t he
orem .

Corollary 5.4.11 A closed convex process is LSC at zero if and only if it s
adjoint is bounded.

We are now ready to prove the main result of this sect ion.

Theorem 5.4.12 (Open mapping) The follo wing propert ies of a closed
convex process <fI are equivalent:

(i) <fI is open at zero.

(ii) (<fI *) -1 is bounded.

(iii) <fI is surjective.

Proof. The equivalence of par ts (i) and (ii) is just Corollary 5.4 .11 (after
t aking inverses and observing the identity G((<fI*)-1) = -G((<fI - 1)*). Par t
(i) clearly implies part (iii) , so it remains to prove the converse. But if <fI
is surj ective then we know

00 00

y = U<fI(nBE) = Un<fl(BE) ,
n = 1 n=1

so zero lies in the core, and hence the int erior , of the convex set <fI(BE).
T hus <fI is open at zero . 0

Taking inverses gives t he following equivalent result .

Theorem 5.4.13 (Closed graph) Th e foll owing propert ies of a closed
convex process <fI are equivalent:

(i) <fI is LSC at zero.

(ii) <fI * is bounded.

(ii i) <fI has nonempty images.
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Exercises and Comm ent ary

A classic reference for multifunctions is [13], and [113J is a good com
pendium which includes applications in mathematical eco nomics. Convex
processes were introduced by Rockafellar [166, 167]. The power of normed
convex processes was highli ghted by Robinson [161, 162J. Our development
here follows [23, 24J. The import ance of the "distance to inconsist enc y"
(Exe rc ise 21) was first made clear in [160J. For broad extens ions, see [66J.

1. (Inverse multifunctions ) For any mu ltifunction <I> : E -> Y , prove

(a) R(<I>-l) = D(<I» .

(b) G(<I>-I) = {(y ,x) E Y x E I (x ,y) E G(<I>)} .

2. (Convex images) Prove the image of a convex set under a convex
multifunction is convex .

3. For any proper closed convex function j E -+ (00, +00]' prove
a(J*) = (aJ) -I.

4. Prove Proposition 5.4.1 (Openness and lower semicont inuity) .

5. (L SC a n d lowe r semicontinuity) For a functi on j : E -> [- 00, 00],
suppose j is finite at a point z E E .

(a) Prove j is continuous at z if and only if t he mult ifunction

is op en at (J (z ), z ).

(b) Prove j is lower semico ntinuous at z if and only if the multi
function whose graph is epi (- J) is LSC at (z , j( z )).

6. * Prove Proposition 5.4 .2. (Hint : See Section 4.1, Exercise l(b) .)

7. (Biconjugation) Prove any closed convex process <I> satisfies

G(<I>**) = - G(<I» .

8. Check the adjoint formula (5.4.4) .

9. Prove Lemma 5.4 .7.

10. Prove the value fun ction (5.4.9) is convex.

11. * Write a complete proof of the Adjoint process du ality theorem
(5.4 .8) .
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12. If the multifunction <I> : E --t Y is closed and the set C C Y is
compact , prove <I> -l(C) is closed .

13. Prove G«<I>*) -l) = -G«<I>-l )*) for any closed convex pro cess <I> .

14. (Linear maps) Consider a linear map A : E --t Y , and define a
multifunction <I> : E --t Y by <I> (x ) = {Ax} for all points x in E .

(a) Prove <I> is a closed convex process.

(b) Prove <I>* is the closed convex pro cess y E Y f--* {A*y}.

(c) P rove ll<I>11 1= ll<I>llu = Il AII ·
(d) Prove A is an open map (that is, A maps op en sets to ope n set s)

if and only if <I> is open t hroughout Y .

(e) Hence deduce the Open mapping t heorem for linear maps (Sec
tion 4.1, Exercise 9) as a special case of Theorem 5.4.12.

(f) For any closed convex process D : E --t Y , prove

(D + A) * = D* + A*.

15. * (Normal cones) A closed convex cone K c E is generating if it
satisfies K - K = E . For a point x in E , the order in terval [0 , x ]K is
the set K n (x - K) . We say K is normal if t here is a real c > 0 such
that

Y E [0, X]K =? Ilyll :::; cllxll ·
(a) Prove the multifunction <I>: E --t E defined by <I>(x ) = [O , X]K is

a closed convex pro cess.

(b) Calculate (<I> *) -1 .

(c) (Krein-Grossberg) Deduce K is normal if and only if K - is
generat ing .

(d) Use Section 3.3, Exercise 20 (Pointed cones ) to deduce K is
normal if and only if it is pointed .

16. (Inverse boundedness) By considering the convex process (5.4 .3) ,
demonstrate the following equivalence for any linear map A : E --t Y
and closed cones K c E and HeY:

AK - H = Y {::} {y E H - I A*y E BE - K-} is bounded .

17. ** (Localization [24]) Given a closed convex process <I> : E --t Y and
a point b in Y , define the "homogenized" process 1II : E x R --t Y x R
by

llJ(x , t) = { ~<I>(x) - tb) x (t - R +) if t ~ 0
if t < O.
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(a) Prove \}f is a closed convex process.

(b) Prove \}f is surjective if and only if b lies in core (R( iI») .

(c) Prove \}f is op en at zero if and only if iI> is open at b.

(d) Calculate \}f* .

(e) Prove the followin g st atements are equivalent:

(i) iI> is op en at b.
(ii) b lies in core (R(iI») .

(iii) T he set

{JL E Y I iI> *(JL) n BE =J: V' and (/-l ,b) < 1}
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is bounded .

(f) If R( iI» has nonempty core, use a separ ation argume nt to prove
the statements in part (e) are equivalent to

{JL E (iI>*) -1(0) I (JL, b) ::; O} = {O}.

18. ** (Cone duality) By applying part (e) of Exercise 17 to example
(5.4.3) with A = 0 and K = E , deduce that a point b lies in the core
of the closed convex cone H eY if and only if the set

is bounded. Hence, give another proof tha t a closed convex cone has
a bounded base if and only if its polar has nonempty interior (Sect ion
3.3, Exercise 20) .

19. ** (Order epigraphs)

(a) Suppose C c E is a convex cone, S C Y is a closed convex cone,
and F : C --> Y is an S-sublinear function (Section 3.3, Exercise
18 (Order convexi ty)) . Prove the multifunction iI> : E --> Y
defined by

iI> (x ) = { F (x) + S if x E C?
V' otherwise,

is a convex process, with adjoint

iI> *( ) = {a (JL ,F( ·))(O) if JL E -S-
JL V' otherwise.

(b) Use Section 5.2, Exercise 12 to prove the adjoint of the closed
convex pro cess

is the closed convex pro cess with domain R~ defined by

JL f---+ ,\ - 1(conv (pnJL)) .
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20. ** (Condition number [123]) Consider any closed convex process
<.P : E ---. Y and a linear map G : E ~ Y .

(a) If II GII - 1 > 11<'p - 11Iu, prove the process (<.p + G) - l is bounded .

(b) If IIG II- 1 > 11<I> - 1 111, use part (a) to prove the process <I> + G is
surjective.

(c) Suppose <I> is surj ective and t he point y lies on the boundar y of
the set <I>(BE ) . By consider ing a supporting hyp erplane, prove
t here is a rank-one linear map G : E ~ Y defined by

Gx = (JI, x) y

for some element JI of E such that <I> + G is not surjective.

(d) Deduce

min{ IIG II I <I> + G not surjective} = 11<I> - 11111
,

where the minimum is attained by a rank-one map when finite.

21. ** (Distance to inconsistency [123]) Conside r a given linear map
A : E ---. Y and an element b of Y . Suppose t he space E x R has the
norm II(x , t)11 = Il xll + Itl ·

(a) P rove t he linear map

(x , t ) E E x R 1-* A x - tb

has norm IIAII V Ilb ll .

Now consider closed convex cones Pe E and Q c Y , and systems

(8) b - A x E Q, x E P and
(8z ) z + tb - A x E Q, x E P, t E R +, Ilxll + ItI :::; 1.

Let I denote the set of pairs (A , b) such that syst em (8) is inconsis
tent , and let 10 denote the set of (A , b) such t hat the pro cess

(x , t) E E x R 1-* {AX-0t b + Q if x E P , t E R +
if ot herwise

is not surjective.

(b) Prove I = clIo .

(c) By applying Exercise 20 (Condition number) , prove the dist an ce
of (A, b) from I is given by the formula

dI(A ,b) = inf{ll zlll (8 z ) inconsi st ent} .



Chapter 6

N onsmooth Optimization

6.1 Generalized Derivatives

From the persp ect ive of optimization, the subdifferential 8 f (.) of a con
vex fun ct ion f has many of t he useful prop erti es of t he der ivative . Some
examples : it gives the necessary optimality condition 0 E 8f(x) when the
po int x is a (local) minimizer (Proposition 3.1.5); it red uces to { V'f (x )}
when f is differen ti able a t x (Corollary 3.1.10); and it often satisfies certain
calculus rules such as 8U + g)(x) = 8f(x) + 8g (x) (T heorem 3.3.5). For a
vari et y of reasons, if the funct ion f is not convex, the subd ifferent ia l 8 f( ·)
is not a par ti cul arly helpful idea. T his makes it very te mpt ing to look for
defin it ions of t he subdifferential for a nonconvex fun ction. In t his section
we outline some examples ; the most appr opriate choice oft en de pe nds on
context .

For a convex function f : E --+ (00, + 00] with x in dom f 1 we can
characterize t he subd iffere nt ial via the directional derivative: <P E 8 f( x)
if and only if (<p , .) ::::; f' (x ; ·) (Propos it ion 3.1.6) . A natural approach is
t here fore to generalize the directional deriva tive. Henceforth in t his sec t ion
we make the simplifying ass umption that t he real function f (a real-valued
functi on defined on some subset of E ) is locally Lipschitz around the point
x in E.

P ar tl y moti vated by t he development of optimality conditions , a simple
first try is t he Dini directional derivat ive:

r ; J) I· . f f (x + th)-f(x )x; ~ = im m
t! D t

A disadvantage of t his idea is th at f- (x ;· ) is not usually sublincar (consi der
for example f = - I . 1on R ), so we cou ld not expect an analogue of the
Max formula (3.1.9) . W ith this in mind , we introduce the Clarke directional

123
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derivative,

6, Nonsmoot h Optimization

f O( I) l' f( y+th)-f(y)
x; ~ = rrn sup

y -> x , qo t

= inf sup f(y + th) - f(y )
0>0 Il y -xl l ~o , O< t < o t

and the Michei-Penot directional derivative,

f O( I) n f( x+th+tu)-f(x+tu)
x; ~ = sup im sup

u EE t i O t

Proposition 6.1.1 If the real fun ction f has Lipschitz cons tant K around
the point x in E then the Clarke and Mi chel-Penot directional derivatives
r(x ; ·) and r(x ;·) are sublinear and satisfy

Proof. The p ositive homogeneity and upper bound are straightforward,
so let us prove subaddit ivity in t he Clarke case. For any sequences x" ----+ x
in E and t; lOin R , and any real E > 0, we have

and
f( x r + t ru) - f( x r) f O( ).::......:.----'-----'--------"--'----'- < z ; u + E

t; -

for all large r . Add ing and let ting r approach 00 shows

r (x ;u + v ) ::::; r (x; u ) + r(x ;v) + 2E,

and t he result follows. We leave t he Michel-Penot case as an exercise. The
inequalities are straightforward. D

Using our knowledge of support functions (Corollary 4. 2.3) , we can now
define the Clarke subdiffere nt ial

Oof(x) = {¢ EEl (¢, h)::::; r (x; h) for all h E E}

and the Dini and Michel-Penot subdifferentials o-f(x) and oof(x) analo
gously. Elements of the resp ective sub differenti als are called subgradients.
We leave t he proof of the following result as an exercise.

Corollary 6.1.2 (Nonsmooth max formulae) If the real function f
has Lips chit z constant K around the point x in E then the Clarke and
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Michel-Peno t subdiffere ntials oof(x) and oof (x ) are nonempty, compact,
and convex, and satisfy

o-f(x) C oof(x) C oof(x) C KB .

Furthermore, th e Clarke and Mi chel-Penot directional derivatives are th e
support f un ctions of th e corresponding subdiffere ntials:

r ex; h) = max{ (¢>, h ) I¢> E oof(x)}

and
rex ;h) = max{ (¢>, h ) I¢> E oof (x )}

for any direction h in E.

(6.1.3)

(6.1.4)

Not ice the Dini subdifferent ial is also compact and convex, but may be
empty.

Clea rly if the po int x is a local minimizer of f then any direct ion h in
E satisfies t: (x ; h) ~ 0, and hence the necessar y optimality conditi ons

oE o-f(x) C oof(x) C oof(x)

hold. If 9 is anot her real function which is locally Lipschitz around x then
we would no t ty pically expect ooU + g)( x) = oof(x) + oog(x) (consider
f = -g = I . I on R at x = 0, for example) . On t he other hand, if we
are interested in an optimality condition like 0 E ooU + g)(x ), it is the
sum rul e ooU + g)( x ) C oof(x) + oog(x) t hat really matters. (A good
example we see later is Corollary 6.3.9.) We address this in t he next result ,
along with an analogue of the formul a for the convex subdifferential of a
max-function in Section 3.3, Exercise 17. We write f V 9 for the function
x t-+ max{f(x) , g(x)} .

Theorem 6.1.5 (Nonsmooth calculus) If the real fu nctions f and 9
are locally Lips chitz around the point x in E , then th e Clarke subdifferential
satisfies

OoU + g)( x) C oof(x) + oog(x)

and
OoU V g)( x) C conv (oof(x) U oog(x)) .

Analogous results hold for the Mi chel-Penot subdifferential.

Proof. The Clarke di rectional derivative satis fies

(6.1.6)

(6.1.7)

since limsup is a sublinear function. Using the Max formula (6.1.3) we
deduce

0* < 0*ooU+g)(x) - oof(x)+oog(x )
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and taking conj ugates now gives t he result using t he Fen chel biconjugation
t heo rem (4.2.1) and t he fact that both sides of inclu sion (6 .1.6) are compact
and convex.

To see inclusion (6 .1.7), fix a d irection h in E and choose sequences
z " -; x in E and t.; ! 0 in R satisfying

Wi t hout loss of genera lity, suppose (J V g )(x r + t rh ) = f (x r + t rh ) for all
r in some subsequence R of N , and now note

f O( h) > li f (x
r + t rh ) - f (x

r
)x ; _ Hfl sup

r~oo , r E R t;

I
. (J V g)(Xr + t rh) - (J V g)( Xr)

> rm sup
- r~oo , r E R tr

= (J Vg )O(x ;h ).

We deduce (J V g) O(x; ·) ::s r(x; ·) V gO(x ; .) , wh ich , using the Max formula
(6.1.3), we can rewrite as

8* < 8* V 8* - 8*ao(fv g)( x ) - a o/(x) a og (x) - conv(ao/ (x )uoog (x ))

using Exercise 9(b ) (Support fun ct ions) in Section 4.2. Now t he Fenchel
biconj ugation theorem again completes the proof. The Michel- Perrot case
is analogous . D

We now have the tools to deri ve a nonsmoot h necessary optimality
condit ion.

Theorem 6.1.8 (Nonsmooth necessary condition) Suppose the point
x is a local m in imizer [or the prob lem

inf{ j(x) Igi( X) ::S 0 (i E I) }, (6.1.9)

whe re th e real junctions f and gi (for i in finit e in dex se t I ) are locally
Lipschitz around x . Let I (x ) = {i Igi( X) = O} be th e activ e se t. Then th ere
exist real >'0, >'i ::::: 0 [or i in I (x ), no t all ze ro, satisf ying

oE >'ooof(x ) + L >'J )ogi (X).
i E / ex)

If, f urthermore, some direction d in E satisfies

g7(x ;d) < 0 f or all i in I (x )

then we can assum e >'0 = 1.

(6.1.10)

(6.1.11)
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Proof. Imitating the approach of Section 2.3, we no te that x is a local
minimizer of the fun ction

X 1--+ max{f(x) - f( x) , gi(X) for i E I(x)}.

We deduce

o E oo(max{f - f( x) , gi for i E I (x)} )(x)

cconv ( oof(x ) U U 009i(X))
iE /e x)

by inclusion (6.1.7) .
If cond it ion (6.1.11) holds and >'0 is zero in conditi on (6.1.10), we obtain

the contradiction

o< max { (¢, d) I¢ E L >'iOo9i(X)} = L >'ig?(X;d) < O.
i E/e x) i E I(x)

Thus >'0 is st rict ly positive, and hen ce without loss of generality equals one.
o

Condition (6.1.10) is a Fri t z John typ e condit ion analogous to Theorem
2.3.6 . Assumption (6.1.11) is a Mangasarian-Fromovitz type constraint
qualification like Assumption 2.3.7, and the conclusion is a Karush-Kuhn
Tucker condition analogous to Theorem 2.3.8. We used the Michel-Penot
subdifferent ia l in t he above argument because it is in general smaller than
the Clarke subdifferentia l, and hence provides stronger necessary cond i
tions. By cont rast to our approach here, the developments in Section 2.3
and Section 3.2 do no t ass ume the local Lipschitz condit ion around t he
optimal point X.

Exercises and Commentary

Dini derivatives were first used in [64] . The Clarke subdifferenti al appeared
in [54]. A good reference is [55] . The Michel-Penot subdifferential was
introduced in [138, 139]. A good general reference for this materi al is [5] .

1. (Examples of nonsmooth derivatives) For the following fun c
tions f : R --* R defined for each point x in R by

(a) f( x) = [z] ,

(b) f( x) = -lxi ,

(c) f( x) = { ~2 sin(x -
1

) if x =1= 0
if x = 0,
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{

3n
(d) f (x) = ~x_3n+l

if 3n ::; x ::; 2(3n ) for any integer n
if 2(3n ) ::; x ::; 3n +1 for any int eger n
if x ::; 0,

compute t he Dini, Michel- Penot and Clarke directional derivatives
and su bdifferentials a t x = o.

2. (Continuity of Dini derivative) For a point x in E , prove t he
function r:(x ; .) is Lipschitz if f is locally Lipschi tz around x .

3. Complete the proof of P roposition 6.1.1.

4. (Surjective Dini subdifferential) Suppose the continuous function
f : E ---+ R satisfies the growth condit ion

lim f( x) = + 00.
Ilxll- co II xll

For any element ¢ of E , prove t here is a point x in E with ¢ in
ELf( x).

5. P rove Corollary 6.1.2 (Nonsmooth max formulae) using Corolla ry
4.2.3 (Support functions).

6. (Failure of Dini calculus) Show t hat the inclusion

o-u + g)(x ) C o-f(x) + o_g (x)

can fail for locally Lipschitz funct ions f and g.

7. * Complete the details of the proof of t he Nonsmooth calculus t heo
rem (6.1.5).

8. * P rove t he following results :

(a) r(x; - h) = (-f) °(x; h) .

(b) (Af) °(X;h) = Ar (X;h) for 0 ::; A E R.

(c) oo(Af)( X) = Aoof(x ) for all A in R.

Derive simil ar resul ts for the Michel-Perrot version.

9. * (Mean value theorem [119])

(a) Suppose t he function f : E ---+ R is locally Lipschitz. For any
poin ts x and y in E , prove t here is a real t in (0,1) satisfying

f (x ) - f(y) E (x - y , oof( tx + (1 - t)y) ).

(Hint: Consider a local minimizer or maxi mizer of the function
g: [0, 1] ---+ R defined by g(t) = fUx + (1 - t )y ).)
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(b) (Monotonicity and convexity ) If the set C in E is open and
convex and the function f : C -7 R is locally Lipschitz, prove f
is convex if and only if it satisfies

(x-y, ¢- 'ljJ ) :::: 0 for all x,y E C, ¢ E oof(x) , and 'IjJ E oof(y) .

(c) If oof(y) c kB for all points y near x , prove f has local Lipschitz
constant k about x .

Prove sim ilar results for the Clarke case .

10. * (Max-functions) Consider a compact set Te Rn and a continu
ous function g : E x T -7 R. For each element t of T define a funct ion
gt : E -7 R by gt(x) = g(x, t) and suppose, for all t , that this function
is locally Lipschitz around the point z. Define G: E -7 R by

G(x) = max{g(x , t) It E T}

and let T; be t he set {t E T I g(z, t) = G(z)} . Prove t he inclusion

ooG(z) c cl (conv U{lim ¢{ Izr -7 Z , i.; -7 t , ¢r E oogdzrn ) .
ier ;

Sp ecialize to the case where T is finite, and to the case where \Jgt(x )
is a continuous function of (x, t) .

11. ** (Order stat istics [125]) Calculate the Dini, the Michel-Penot,
and the Clarke directional derivatives and sub differentials of the func 
tion
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6.2 Regularity and Strict Differentiability

We have outlined in Section 2.3 and Section 3.2 two very dis t inct versions
of t he necessary optimality conditions in constrained optimiz ation . The
first , culminating in the Karush-Kuhn-Tucker condit ions (2.3.8) , relied on
Gateaux differenti abili ty, while the second, leading to the Lagrangian nec
essary condit ions (3.2.8) , used convexi ty. A primary aim of the nonsmooth
theory of this chapter is to unify these ty pes of results; in this sect ion we
show how t his is possible.

A princip al feature of the Michel-Penot subdifferenti al is that it coin
cides with the Gateaux derivative when t his exist s .

Proposition 6.2.1 (Unique Michel-Penot subgradient) A real func
tion f which is locally Lipschitz around th e point x in E has a un ique
Michel-Penot subgradient ¢ at x if and only if ¢ is the Gateaux derivative
\l f( x).

Proof. If f has a unique Michel-Penot subgradient ¢ at x, then all direc
tions h in E satisfy

f O( h) li f( x + th + tu) - f( x + tu) (A.. I )Xi = sup Im sup = ,/-" ~ .
uE E tI D t

The cases h = w with u = 0 and h = -w with u = w show

1· f( x + tw ) - f( x) (A.. ) li . f f( x + tw) - f( x)im sup ::; ,/-" w ::; im m ,
t ID t tiD t

so we deduce f' (x , w) = (¢, w) as required .
Conversely, if f has Gateaux derivative ¢ at x then any directions h

and u in E satisfy

1
. f( x + th + tu) - f( x + tu)
im sup

t I D t

< 1
· f( x + t (h + u)) - f( x) l' . f f( x + tu) - f( x)
1msup - Imm

ti D t tI D t

f'( x ;h + u) - f'( x ;u)

(¢ , h +u) - (¢, u) = (¢, h) = f'( x ;h) ::; r(x ;h) .

Now taking the supremum over u shows jO(x; h) = (¢, h ) for all h , as we
claimed . D

Thus, for example, t he Fritz John condit ion (6.1.10) reduces t o Theorem
2.3.6 in the differentiable case (under t he ext ra, locally Lipschitz assump
tion) .
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The above result shows that when f is Gftt eaux differ entiable at the
point x , t he Dini and Michel-Perrot directional deriva tives coinci de. If
they also equal t he Cla rke direction al deri vative then we say f is regular
at x . T hus a rea l function I , locally Lipschitz around x, is regular at x
exactly when t he ordinary direction al deri vative l'(x ; .) exists and equals
the Clarke directional derivative r ex; .).

One of t he reas ons we are interested in regularity is t hat wh en t he two
functions f and g are regular at x, the nonsmooth calcu lus rules (6.1.6)
and (6.1.7) hold with equality (assuming f(x) = g(x) in t he lat t er) . The
proof is a straightforward exercise.

We know t hat a convex functi on is locally Lipschitz a rou nd any point
in t he interior of it s domain (Theorem 4.1.3) . In fact such functions are
also regular at such points: consequently our various subdi fferentials are
all generalizations of the convex subdifferential.

Theorem 6 .2 .2 (Regularity of convex functions) Suppose th e fun c
tion f : E --+ (00, + 00] is convex. If the point x lies in int (dom J) then
f is regular at x, and hen ce the convex, Din i, Mich el-Penot and Clarke
subdifferen tials all coincide:

Oof (x ) = oof(x ) = a-f(x) = o f (x).

Proof. Fix a dire ction h in E and choose a real 8 > o. Denoting t he local
Lipschitz cons tant by K , we know

r ex; h) 1
. fe y + th) - fey)

= im sup sup
d O Ily-xll::; ' o O<t<, t

1
. fey + Eh) - f ey )
im sup
d O Ily- xll::; ' o E

< lim f( ·x + Eh) - f( x) + 2Ko
- e j O E

= j'(x ;h) + 2Ko,

using t he convexity of f. We deduce

rex; h ) < j' (x ; h ) = f -(x ;h ) < r ex ;h) ~ rex; h) ,

and the result follows. D

Thus, for example, t he K arush-Kuhn- Tucker type cond it ion that we ob
tained at t he end of Section 6.1 reduces exact ly to t he Lagrangian necess ary
condit ions (3 .2.8) , wri t ten in the form 0 E af(x) + L iEI(x) Aiagi( X) , as
suming t he convex fun ctions f and gi (for indices i in I (x)) are cont inuous
at t he optimal solut ion ii:
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By analogy with Proposition 6.2.1 (Unique Michel-Penot subgradient ),
we might ask when the Clarke subdifferent ial of a fun ction f at a point x
is a singleton {¢}? Clearl y in this case f mus t be regul ar with Gat eaux
derivative \7 f( x) = ¢, although Gateaux differenti ability is not enough, as
the example x2 sin(1 / x) shows (Exercise 1 in Section 6.1) . To answer the
question we need a stronger notion of differentiability.

For future reference we introduce three gradually st ronge r conditions
for an arbit rary real function f . We say an element ¢ of E is the Frechei
derivative of f at x if it satisfies

lim f(y) - f( x) - (¢ , y - x) = 0
y~x , y#x Ily - z ] '

an d we say ¢ is the stri ct deriva tive of f at x if it satisfies

lim f(y) - f( z) - (¢ , y - z) = 0
y , z~x , y#z Ilv - z ] .

In eit her case, it is easy to see \7 f( x) is ¢ . For locally Lipschitz functions on
E , a straightforward exercise shows Gateaux and Frechet differenti ability
coincide, but noti ce that the function x 2 sin (1/x) is not strictly differen
ti able at zero. Finally, if f is Gateaux differentiable close to x with gradi ent
map \7 f (.) continuous then we say f is continuously differentiable around
x . In the case E = R " we see in elementary calculus that t his is equivalent
to t he partial derivat ives of f being cont inuous around x . We make analo
gous definitions of Gateaux, Frechet, strict and continuous differentiability
for a fun ction F : E ---. Y (where Y is another E uclidean space). The
derivative \7 f( x) is in this case a linear map from E to Y .

The following result clarifies t he idea of a strict derivative and suggests
its connection with the Clarke dir ectional derivative; we leave the proof as
anot he r exerc ise.

Theorem 6.2.3 (Strict differentiability) A real function f has strict
derivative ¢ at a point x in E if and only if it is locally Lipschitz around x
'With

lim f(y + t h ) - f(y) = (¢, h )
y~x, t!O t

fo r all directions h in E . In partic ular th is holds if f is continuously dif
f erentiabl e around x 'With \7 f( x) = ¢ .

We can now answer our question about the Clarke subdifferenti al.

Theorem 6.2.4 (Unique Clarke subgradient) A real funct ion f 'Which
is locally Lipschitz around the point x in E has a uniqu e Clarke subgradient
¢ at x if and only if ¢ is the strict deri vative of f at x . In this case f is
regular at x.
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Proof. One direction is clear, so let us assume Gof (x) = {¢>} . Then we
deduce

1
· . f fey + th) - fey)
irn III

y ---> x , flO t
1
. f((y + th) - th) - fey + th)

- lmsup
y--->x , t LO t

-r(x; -h) = (¢> ,h) = r(x;h)

1
. fey + th) - fey)
1m sup ,

y --->x , t LO t

and the result now follows using Theorem 6.2.3 (Strict differ entiability) .
o

The Clarke subdifferential has a remarkable alternative description, of
ten more convenient for computation. It is a reasonably straightforward
measure-theoretic consequenc e of Rademacher's theorem (9.1.2) , which
states that locally Lipschitz functions are almost everywhere differentiable.

Theor em 6 .2 .5 (Intrinsic C la r ke su b d ifferen t ia l) Suppose that the
real function f is locally Lipschitz around the point x in E and that the set
Se E has measure zero. Th en the Clark e subdifferential of f at x is

E x ercises a n d Commentary

Again, references for this material are [55, 138, 139, 5]. A nice proof of
Theorem 6.2.5 (Intrinsic Clarke subdifferential) appears in [14]. For some
related ideas applied to distance functions, see [33]. Rad emacher 's theorem
can be found in [71], for example. See also Section 9.1. For more details
on the functions of eigenvalues appearing in Exercise 15, see [121, 124].

1. Which of the functions in Section 6.1, Exercise 1 are regular at zero?

2. (Regularity a nd nonsmooth ca lc u lus) If the functions f and 9
are regular at the point x , prove that the nonsmooth calculus ru les
(6.1.6) and (6.1.7) hold with equality (assuming f( x) = g(x) in the
latter) and that t he resulting functions are also regular at x .

3. Show by a direct calculation that the function x E R f---+ x 2 sin(1 jx)
is not strictly differentiable at the point x = O.

4. Prove the special case of the Lagrangian necessary conditions we
claim after Theorem 6.2.2.

5. * Prove t hat the notions of Gateaux and Frechet differentiability co
incide for locally Lipschitz real functions.
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6. Without using Theorem 6.2.4 , prove t hat a unique Clarke subgrad ient
implies regu larity.

7. • Prove the Strict differen tiability theore m (6.2.3).

8. Wri te ou t a complete pr oof of t he unique Clarke subgradient theorem
(6.2.4) .

9. (Mix ed su m rules ) Suppose that the real fun ction f is locally
Lipschitz around t he point x in E and that the fun cti on 9 : E --+

(- 00,+00] is convex with x in int(domg). Prove:

(a) oo(f + g)(x) = "V f( x) + og( x) if f is Gateaux differentiable at
x .

(b) oo(f +g)(x) = "V f( x) + og(x) if f is strictly differentiable at x.

10. (Type s of differentiability) Consider the fun ction f : R 2 --+ R ,
defined for (x ,y) =I- 0 by

with f (O ) = 0, in the five cases:

(i) a = 2, b = 3, p = 2, and q = 4.

(ii) a = 1, b = 3, p = 2, and q = 4.

(iii) a = 2, b = 4, p = 4, and q = 8.

(iv) a = 1, b = 2, p = 2, and q = 2.

(v) a = 1, b = 2, p = 2, and q = 4.

In each case determine if f is continuous, Gateaux, Fr echet , or con
t inuously different iable at zero.

11. Construct a function f : R --+ R wh ich is strictly differentiable at
zero but not continuously differentiable around zero.

12. • (Closed su b diffe r e n t ials )

(a ) Suppose the function f : E --+ (00, + 00] is convex, and the point
x lies in int (dom 1) . Prove the convex subdifferential of(-) is
closed at x; in other words , x" --+ x and <pr --+ ¢ in E with ¢r in
of(x r

) implies ¢ E o f (x) . (See Exercise 8 in Section 4.2.)

(b) Suppose the real fun ction f is locally Lipschitz around t he point
x in E.
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(i) For any direction h in E , prove the Clarke direct ional deri va
t ive has t he proper ty that - r(·; h) is lower semicontinuous
at x .

(ii) Deduce the Clarke sub differenti al is closed at x .

(iii) Deduce fur ther the inclusion C in the Int rin sic Clarke sub
differenti al t heorem (6.2.5) .

(c) Show t hat the Dini and Michel- Pe rrot subdifferentials are not
necessa rily closed.

13. * (Dense Dini subgradients) Suppose the real function f is locall y
Lipschi tz around the point x in E. By considering t he closest point
in epi f to the point (x, f (x) - 6) (for a small real 6 > 0), prove there
are Dini subgradients at points arbitrarily close to x .

14. ** (Regularity of order statistics [125]) At which point s is the
fun ction

x E R " t-+ [X]k

regular? (See Section 6.1, Exercise 11.)

15. ** (Subdifferentials of eigenvalues) Define a function "Ik : R " --t

R by "Ik(X) = L~=l [X] i for k = 1, 2, . .. , n o (See Section 2.2, Exercise
9 (Schur -convexity). )

(a ) For any point x in R > sat isfying x k > Xk+1 , prove V'"Ik(x )

L~ ei (where ei is the-i th standard unit vector in R n) .

Now define a function O"k : S" --t R by O"k = L~ /\.
(b) P rove O"k = "Ik 0 A.

(c) Deduce O"k is convex and hence locally Lip schitz.

(d) Deduce Ak is locally Lipschitz.

(e) If the matrix X in s- sa t isfies AdX) > Ak+l (X ), prove o» is
Gateaux differentiable at X and calculate t he derivative. (Hint:
Use formula (5.2.6) .)

(f) If the matrix X in sn sa t isfies Ak-l (X ) > Ak(X ) > Ak+l(X) ,
prove

V'Ak(X ) = uuT

for any uni t vector u in R " sat isfying Ak(X )U = X u .

(g) Using the Intrinsic Clar ke subdifferentia l theorem (6.2.5) , de
duce t he formula

OoAdX ) = conv {uuT IX u = Ak(X )U, Ilull = I}.
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(h) (Isotonicity of >') Using the Mean value theorem (Section 6.1,
Exercise 9), deduce for any matrices X and Y in S"

X ~ Y '* >'(X) ~ >'(Y).
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We simplified our brief outline of some of t he fundamental ideas of nons
mooth analysis by restricting at tent ion to locally Lipschitz functions. By
cont rast , t he convex analysis we have developed lets us study the optimiza
tion problem inf{f(x) I x ES} via the function f + iSs, even though the
indicator function iSs is not locally Lipschitz on the boundary of the set S .
The following simple but very important idea circumvents this difficulty.
We define the distance function to the nonempty set Se E by

ds(x ) = inf{ lly - x ii i yES} (6.3.1)

(see Section 3.3, Exercise 12 (Infimal convolution) .) We can easily check
that ds has Lipschitz constant equa l to one on E , and is convex if and only
if S has convex closure.

Proposition 6. 3 .2 (Ex a ct p enalization) For a point x in a se t Se E,
suppose the real function f is locally Lipschitz around x. If x is a local
minimizer of f on S th en for real L suffic iently large, x is a local minimizer
off+Lds.

Proof. Suppose t he Lipschitz constant is no larger t han L . Fix a point z
close to x . Clearly ds(z) is the infimu m of liz- yll over points y close to x
in S, and such points satisfy

fe z) + Lds(z) ~ f(y) + L(ds(z) - liz- yll) ~ f(x) + L(ds(z) - li z- yll) ·

The result follows by taking the supremum over y . o

With the assumptions of the previous proposition, we know that any
direction h in E satisfies

0::; (f + Ldst(x ;h) < rex; h ) + Ld"s(x;h ),

and hence the Clarke directional derivative satisfies r(x; h) ~ 0 whenever
h lies in the set

Ts(x) = {h Id"s( x ;h) = O}. (6.3.3)

Since d'S (x ; .) is finite and sublinear (and an easy exercise shows it is non
negative) it follows t hat Ts( x) is a closed convex cone. We call it the Clarke
tangent cone.

Tangent cones are "conical" approximations to sets in an analogo us
way to directional derivatives being sublinear approximations to functions .
Different directional derivatives give rise to different tangent cones. For
example, t he Din i direct ional derivative lead s to the cone

K s(x) = {h Ids(x ;h ) = O} , (6.3.4)
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a (nonconvex) closed cone containing Ts (x) called the contingent cone. If
the set S is convex then we can use the ordinary directional derivat ive to
define t he cone

Ts(x) = {h Id~(x ; h) = O} , (6.3.5)

which again will be a closed convex cone called t he (convex) tangent cone.
We can use t he same not ation as the Clarke cone because finite convex
func tions are regular at every point (Theorem 6.2.2) . We also show below
t hat our notation agrees in the convex case with that of Section 3.3.

Our definitions of the Clarke and contingent cones do not reveal that
these cones are topological object s, indep endent of t he cho ice of norm. The
following are more intrinsic descriptions. We leave t he proofs as exercises.

Theorem 6.3.6 (Tangent cones) Suppose the point x lies in a set S
in E.

(a) Th e contingent cone K s(x) consis ts of those vectors h in E for which
there are sequences t; l Oin Rand h" ----> h in E such that x + trhr

lies in S for all r .

(b) Th e Clarke tangent cone Ts(x) consists of those vectors h in E such
that for any sequences i; lO in Rand x" ----> x in S , there is a
sequence It" ----> h in E such that x r + trhr lies in S for' all r .

In tuitively, the cont ingent cone K s(x) consists of limi ts of dir ections to
points near x in S , while the Clarke t an gent cone Ts(x) "st abilizes" thi s
t angency idea by allowing perturbations of t he base point x .

We call t he set S tangentially regular at t he point xE S if the cont in
gent and Clarke tangent cones coincide (which clearly holds if the dist ance
fun ction ds is regular at x ). The convex case is an example.

Corollary 6.3.7 (Convex tangent cone) If the point x lies in the con
vex set C c E, then C is tangentially regular at x with

Tc(x) = K c(x) = clR+(C - x ).

Proof. The regulari ty follows from Theorem 6.2.2 (Regularity of convex
fun ctions) . The identity K c(x) = clR+(C - x ) follows easily from the
contingent cone characte rizat ion in Theorem 6.3.6. 0

Our very first optimality result (Proposition 2.1.1) required t he condi
tion - V'f (x) ENe (x) if the point x is a local minimizer of a differentiable
function f on a convex set C c E. If the function f : E ----> (00, +00] is
convex and continuous at x E C, then in fact a necessary and sufficient
condit ion for global minimality is

oE 8U + oc)(x) = 8f(x) + Nc( x ),
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using the sum formula in Theorem 3.3.5. This suggests transforming the
result of our earlie r discussion in t his sect ion into an analogous form. We
use the following idea .

Theorem 6.3.8 For a point x in a set Se E , the Clarke normal cone,
defined by Ns (x ) = Ts(x) - , is cl (R+8ods(x») .

Proof. By the Bipolar cone theorem (3.3.14), we need onl y show that
(8ods(x»- = Ts(x) , and this follows from t he Max formula (6.1.3). D

Not ice that our not ation for t he normal cone is again consistent with the
convex case we discussed in Section 3.3.

Corollary 6.3.9 (Nonsmooth necessary conditions) For a point x in
a set SeE, suppose the real function f is locally Lips chit z around x . Any
local min imizer x of f on S must sati sfy the condition

oE 80f(x ) + Ns (x ).

Proof. For large real L, t he point x is a local minimizer of f + Lds by
t he Exact penalization proposition (6.3.2) , so it sa t isfies

oE 80 U + Lds)(x) c 80f(x ) + L80ds(x) c 80f(x) + N s (x ),

using the non smooth sum rul e (6.1.6) . D

In particular in the above result , if f is Gat eaux differentiab le at x
t hen -\7f(x) E Ns (x ), and when S is convex we recover t he first order
necessary condit ion (2.1.1). However , we can obtain a more useful , and
indeed , fundamental , geome tric necessar y condition by using the contingent
cone.

Proposition 6.3.10 (Contingent necessary condition) If a point x
is a local minimizer of the real fun ction f on the set S eE, and if f is
Frechet differentiable at x , then the condition

- \7 f( x) E K s(x) -

must hold .

Proof. If the condit ion fails then there is a direct ion h in K s(x) which
satisfies (\7 f( x) , h ) < O. By Theorem 6.3.6 (Tangent cones ) there ar e
sequences tr lO in R and hr

----? h in E satisfying x + t rhr in S for all r .
But then , since we know
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1f 71f }-<e<- .4 - - 4

we deduce f(x + trhr) < f(x) for all large r , contradicting the local mini
mality of x . D

Precisely because of this resu lt , our aim in the next chapter will be to
identify concrete circumstances where we can calculate the cont ingent cone
Ks(x) .

Exercises and Commentary

Our phi losophy in this sect ion is guided by [55]. The contingent cone was
introduced by Bouligand [45]. Scalarization (see Exercise 12) is a central
tool in vector (or multicriteria) optimization [104]. For the background to
Exercise 13 (Bo undary properties) , see [39, 40, 41] .

1. (E x a ct p enalization) For a set U c E , suppose that the funct ion
f : U ---4 R has Lipschitz constant L', and that the set S C U is
closed. For any real L > L', if the point x minimizes f + Lds on U,
prove xES.

2. (Distance function) For any nonempty set Se E , prove t he dis
tance function ds has Lipschitz constant equal to one on E , and it is
convex if and only if cl S is convex.

3. (Examples of t angent cones) For the following sets S c R 2 , cal-
cu late Ts(O) and K s(O):

(a) {(x,y) Iy ~ x3 } .

(b) {(x,y) I x ~ 0 or y ~ O} .

(c) {(x , y) I x = 0 or y = O} .

(d) { r (cos B, sin B) I0 ~ r ~ 1,

4. * (Topology of cont ingent cone) Prove that the contingent cone is
closed, and der ive the topological description given in Theorem 6.3.6 .

5. * (Topology of Clarke cone) Suppose t he point x lies in the set
Se E.

(a) Prove d'S(x;·) ~ O.

(b) Prove

d"s(x ;h) = lim sup
y --->x in S , t!O

ds(Y + th)
t

(c) Deduce the topological description of Ts(x) given in Theorem
6.3.6.
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6. * (Intrinsic tangent cones) P rove directly from the int rinsic de
scription of the Clarke and cont ingent cones (Theorem 6.3.6) that the
Clarke cone is convex and the contingent cone is closed .

7. Write a complete proof of the Convex t angent cone corollary (6.3.7) .

8. (Isotonicity) Suppose x E U e V e E. Prove K u(x) c Kv(x) , but
give an example where Tu(x) et Tv(x) .

9. (Products) Let Y be a Euclidean space. Suppose x E U c E and
y E Ve Y . Prove Tu xv(x , y) = Tu(x) x Tv (Y), but give an example
where K uxv(x ,y) -I- K u(x) x Kv(Y) ·

10. (Tangents to graphs) Suppose the function F : E ---+ Y is Frechet
differentiable at the point x in E . Prove

K C(F)(x ,F (x )) = G('VF) .

11. * (Graphs of Lipschitz functions) Given a Euclidean space Y ,
suppose the fun ction F : E ---+ Y is locally Lipschitz around the point
x in E.

(a) For elements JL of E and v of Y, prove

(JL , -v) E (KC(F)(x ,F(x)) t <=} JL E a_ (v,F(·))( x) .

(b) In t he case Y = R , deduce

JL E cL F (x ) <=} (JL , -1) E (KC(F)(X,F(x) t

12. ** (Proper Pareto minimization) We return to the notation of
Section 4.1, Exercise 12 (P areto minimization) , but dropping the as
sumption that the cone S has nonempty interior. Recall that S is
pointed , and hence has a compact base by Section 3.3, Exercise 20.
We say the point y in D is a proper Pareto minimum (with respect to
S) if it sa t isfies

-KD(Y) n S = {O} ,

and the point x in C is a proper Pareto minimum of t he vector opt i
mization problem

inf{F(x ) Ix E C}

if F(x) is a proper Pareto minimum of F (C).

(6.3.11)

(a) If D is a polyhedron, use Section 5.1, Exercise 6 to prove any
Pareto minimum is proper. Show this can fail for a general
convex set D .
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(b) For any point y in D , prove

KD+S(Y) = cl (KD(y) + S) .

(c) (Scalarization) Suppose x is as ab ove. By separating the cone
-KF(c )+s(F(x)) from a compact base for S, prove there is an
element ¢ of -int S - such that x solves the convex problem

inf{ (¢, F( x) ) Ix E C} .

Conversely, show any solution of this problem is a proper Par eto
minimum of the original problem (6.3.11) .

13. ** (Boundary properties) For po ints x and y in E , define the lin e
segments

[x , y] = x + [0, l](y - x ), (x , y) = x + (0, l)(y - x ).

Suppose the set S eE is nonempty and closed. Define a subset

star S = { x E S I [x ,y] c S for all y in S}.

(a) Prove S is convex if and only if star S = S .

(b) For all points x in S, prove star S C (Ts(x) +x).

The pseudotangent cone to S at a point x in S is

Ps(x) = cl (conv Ks(x)) .

We say x is a proper point of S if Ps(x) =1= E.

(c) If S is convex, prove the boundary points of S coincide with the
proper points.

(d) Prove the proper points of S are dense in t he boundary of S .

We say Sis ps eudoconvex at x if Ps(x ) :::> S - x .

(e) Prove any convex set is pseudoconvex at every element.

(f) (Nonconvex separation) Given points x in S and y in E
satisfying [x,y] ct. S and any real E > 0, prove there exists a
point z in S such that

y (j. Ps(z) + z and li z- xii:::; Ily - z] + E.

(Complete the following steps: F ix a real <5 in (0, E) and a point
111 in (x,y) such that the ball 111 +<5B is disjoint from S. For each
real t , define a point Xt = 111 + t( x - 111) and a real

T = sup{t E [0,1] I Sn (Xt + <5B) = 0}.
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Now pick any point z in S n (z., + tSB) and deduce the res ult
from the properties

PS(x) C {u E E l (u,z - xT ) 2: O} and

o > (y - X n Z - x T ) . )

(g) Explain why the nonconvex separation principle in part (f) gen
eralizes the Basic separation theorem (2.1.6) .

(h) Deduce nxEs(Ps(x) + x) C star S.

(i) Deduce

n(Ps(x) + x) = star S = n(Ts(x) + x )
xES xES

(and hence star S is closed). Verify thi s formula for the set in
Exercise 3(d) .

(j) Prove a set is convex if and only if it is pseudoconvex at every
eleme nt .

(k) If star S is nonempty, prove its recession cone (see Section 1.1,
Exercise 6) is given by

nPs(x) = 0+ (star S) = nTs(x) .
xE S xE S

14. (Pseudoco nvexit y a n d sufficiency ) Given a set Se E and a real
function j whic h is Gateaux different iable at a point x in S, we say
j is pseudoconvex at x on S if

(\7j(x), y - x) 2: 0, yES =? j(y) 2: j(x) .

(a) Suppose S is convex, the function g : S ----> R + is convex, the
function h : S ----> R ++ is concave, and both g and hare Frechet
differentiable at the point x in S. Prove the function g/h is
pseudoconvex at x.

(b) If the contingent necessary condition - \7 j (x) E K s (x) - holds
and j and S ar e pse udoconvex at x , prove x is a glob al minimizer
of j on S (see Exercise 13) .

(c) If the point x is a local minimizer of the convex function j on
the set S, prove x minimizes j on x + Ps(x) (see Exercise 13).

15. (No ideal t angent cone ex ists) Consider a convex set Qs(x) de
fined for sets S C R 2 and points x in S and satisfying the properties

(i) (i sotonicit y) x ERe S =? QR(X) C Qs(x) .
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(ii) (convex tangents) x E closed convex S,* Qs(x) = Ts(x) .

Deduce Q{(lL,V) 111 or v=O} (0) = R 2
•

16. ** (Distance function [32]) We can define t he dist ance function
(6.3.1) with respect to any norm II . II . Providing the norm is con
tinuously differentiable away from zero , prove that for any non empty
closed set S and any point x outside S , we have

(-ds t(x ; ·) = (-dst(x ; .).
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In t his chap te r we have seen a variety of subdifferent ials. As we have
observed, the smaller the subdifferent ial, t he st ronger the necessary opt i
mali ty cond it ions we ob tain by using it. On the other hand, the smallest
of our subdifferenti a ls , t he Dini subdifferential , is in some sense too small.
It may be empty, it is no t a closed multifunction , and it may not always
satisfy a sum rule:

fL (J + g )(x ) ct 8- f(x) + 8_g(x )

in general. In this section we show how to enlarge it somewhat to const ruct
what is, in many senses , the smallest adequate closed subd ifferential.

Consider for the moment a real fun ction f that is locally Lipschit z
around the point x in E. Using a const ruct ion analogous to t he In t rin
sic Clarke subdifferent ial theor em (6.2.5), we can const ruct a nonempty
subdiffere nt ia l incorporat ing the local informati on from t he Dini subdif
ferenti al. Sp ecifically, we define the limit in g subdifferentia l by closing the
graph of the Din i subd ifferent ial:

(Recall 8- f( z) is non empty at points z arbit rarily close to x by Sect ion
6.2, Exercise 13.) We sketch some of t he proper ties of the limiting subd
ifferenti a l in the exe rc ises . In parti cular , it is nonempty and compact, it
coincides wit h 8f(x ) when f is convex and cont inuous at the point x , and
any local minimizer x of f must sat isfy a E 8a f(x) . Often the limi ting
subdifferential is not convex; in fact its convex hull is exactly the Clarke
subdifferentia l. A hard er fact is that if the real fun ction 9 is also locally
Lipschitz around x t hen a sum ru le holds:

8a (J + g )(x ) C 8af (x ) + 8ag (x) .

We prove a more gener al version of this rule below.
We firs t extend our definiti ons beyond locally Lipschitz functi ons. As

in the convex case, t he addit iona l possibiliti es of st udying extended-real
valued funct ions are very powerfu l. For a fun ction f : E ----> [- 00, +ooJ that
is finit e a t t he point x E E , we define the Dini direct ional derivative of f
at x in t he di recti on vE E by

r : ) 1· · f f (x + tu) - f( x )Xi v = im III
tlO , u~v t

and t he Dini su bdifferen tial of f at x is the set

8 - f(x) = {¢ E El (¢ ,v) ::; f - (x ;v ) for all v in E } .
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If f (x ) is infinite we define a-f(x ) = 0. These defini tions agree with our
previous notions by Section 6.1, Exercise 2 (Continuity of Dini derivative).

For real 8 > 0, we define a subset of E by

U(f,x,8) = {z E El liz - xII < 8, If(z) - f (x )/ < 8}.

The limit ing subdifferential of f at x is the set

aaf(x ) = ncl (a-f(U(f, x, 8))).
8> 0

T hus an element ¢ of E belongs to aaf (x) if and on ly if there is a sequence
of points (x T

) in E approaching x with f (x T
) approaching f(x ), and a

sequence of Dini subgradients ¢T E a_f(xT) approaching ¢ .
T he case of an indi cat or function is particularly import ant. Recall that

if the set C c E is convex and the point x lies in C t hen a80 (x) = No (x) .
By analogy, we define the i'imit ing normal cone to a set Se E at a point
x in E by

'vVe first prove an "inexact" or "fuzzy" sum rule: point and subgradients
are all a llowed to move a lit tle. Since such rules are centra l to modern
nonsmooth analysis, we give the proof in det ail.

Theorem 6.4.1 (Fuzzy sum rule) If the functions

!I ,h,.. . .I« : E----7 [-00, +00]

are lower semiconti nuous near the point z E E then the in clusion

a_ ( "Lfi) (Z) c 8B + "L a- f i(U(!i, z ,8)).
i i

holds for any real 8 > O.

Proof. Assume without loss of generality that z = 0 and f i(O) = 0 for each
i , We ass ume zero belongs to t he left hand side of our desired inclus ion
and deduce it belongs to t he right hand side, or, in other words,

(6.4 .2)

(The gen eral case follows by adding a linear function to fl ')
Since 0 E a_ (L iJi )(O) , Exercise 3 shows zero is a str ict local minimizer

of the function g = 811 . II + Lik Choose a real E from the interval (0,8)
such that

1o=I- x E EB ~ g(x ) > 0 and Ji(x ) 2: - - for each i
n
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(using the lower semicontinuity of each fi) ' Define a sequence of functions
Pr : En+1 -+ [-00, +00] by

Pr(XO ,XI , . . . , x n ) = <5ll xoll + L (Ji(Xi) + ~llxi - xo11 2
)

i

for r = 1,2 , .. 0' and for each r choose a minimizer (xo, xL . .. ,x~ ) of Pr on
(EB)n+l. Since Pr(O, 0, . . . , 0) = 0, we deduce

(6.4.3)

for each r .
Our choice of E implies L i f i(Xi) ;::: -1, so

<5 ll xoll + ~ L Ilxr - xol12 ~ Pr(Xo,x~ , . 0 " x~) + 1 ~ 1
i

for each r , Hence, for each index i the sequence (xi) is bounded , so there
is a subsequence S of N such that limrE s xr exists for each i, The above
inequality also shows this limit must be independent of i ; call the limit X,
and note it lies in EB.

From inequality (6.4 .3) we see <5l lxo ll+L i fi(xi) ~ °for all r, and using
lower semicontinuity shows

so our choice of E implies x = 0. We have thus shown

lim xr = ° for each i .
rES

Inequality (6.4.3) implies L i f i(Xi) ~ 0 for all r , and since

liminf f i(xD ;::: fi(O) = ° for each i
rES

by lower semicontinuity, we deduce

lim j;(xD = °rES

for each i .
Fix an index r in S large enough to ensur e IIxoll < E, Ilxr ll < E and

Ifi(Xi) I < <5 for each i = 1,2, ... , n . For this r, the function Pr has a
local minimum at (xo ,x~, 0 • • , x~ ), so its Dini directional derivative in every
direction (vo , VI , . .. , vn ) E E n + I is nonnegative. Define vectors

4Ji = r(xo - xD for i = 1,2, . '0 ' n.
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Then for any nonzero i, set t ing Vj = 0 for all j i- i shows

whence

¢i E iL fi (xD for i = 1,2, ... , n .

On the other hand, set t ing Vi = 0 for all nonzero i shows

15ll voll + (2:i ¢i , vo) ;::: 0 for all Vo in E ,

whence 2:i <Pi E 15B, and the desired relat ionship (6.4.2) now follows. 0

It is not difficult to const ruct examples where the above result fails if
8 = 0 (Exercise 4) . In fact there are also examples where

In general the following result is the best we can expect.

Theorem 6.4.4 (Limiting subdifferential sum rule) If one of the
fun ctions ! ,g : E -7 [-00, + 00] is locally Lipschitz and the other is lower
semicontinuous near the point z in E then

OaU + g)( z) C oaf( z) + oag(z) .

Proof. For any element ¢ of oaU + g)(z ) there is a sequence of points
(Z1') approaching z in E with U + g)( Z1') approaching U + g)( z) , and a
sequence of Dini subgradi ents ¢ 1' E o-U + g)( Z1') approaching ¢ . By the
Fuzzy sum rule (6.4.1) , there exist points ui" and y1' in E sa t isfying

and eleme nt s J11' of o-f(w T
) and p" of o_g(y1') sat isfying

for each r = 1,2, . . . .
Now since ! is locally Lipschitz, the sequence (J1T) is bounded, so it has

a subsequence converging to some eleme nt J1 of o!a(z). The corresp onding
subsequen ce of (p1') converges to an eleme nt p of oag(Z) , and since t hese
elements sa tisfy J1 + P = ¢, the resul t follows. 0
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Exercises and Commentary

The lim iting subd ifferentia l was first studied by Mordukhovich in [143],
followed by join t work with Kruger in [116], and by work of Ioffe [102, 103].
For a very complete development see [168]. A comprehensive sur vey of the
infinite-di mensional lit era ture (incl uding some background to Ex erc ise 11
(Viscosity subde r ivatives)) may be found in [42]. Somewhat surprising ly,
on the real line the limiting and Clarke subdifferentials may only differ at
countably many points , and at t hese points the limi ting subdifferen ti al is
t he union of two (possib ly degenerate) intervals [31].

1. For the fun ctions in Secti on 6.1 , Ex ercise 1, compute the limiting
subdifferential 8a l(D) in each case .

2. Prove that the convex, Dini , and limiting subdifferen ti al all coincide
for convex functions .

3. (Local minimizers) Cons ider a fun cti on f : E --+ [-00, +00] which
is finit e at t he point x E E.

(a) If x is a local minimizer , prove 0 E 8- f(x) .

(b) If 0 E 8-f(x) , prove for any rea l 0 > 0 t hat x is a strict local
minimi zer of t he fun cti on fC) + oil· -xi i·

4. (Failure of sum rule) Constru ct two lower semicontinuous fun c
tions f ,g : R --+ [-00, + 00] satisfying 8af(D) = 8ag (D ) = 0 and
8a (J + g)(O) i= 0.

5. If t he real fun ct ion f is continuous at x , prove the mult ifun cti on 8a f
is closed at x (see Section 6.2, Exercise 12 (Closed subdifferentialsj} .

6. P rove a limiting subdifferent ial sum rule for a fini t e number of lower
semicontinuous fun cti ons, wit h all but one be ing locall y Lipschi tz.

7. * (Limiting and Clarke subdifferentials) Suppose the real fun c
tion f is locally Lipschi t z around the point x in E .

(a ) Use the fact t hat the Clarke subdifferen t ial is a closed multi
fun ction to show &af(x) c 8o f (x) .

(b) Deduce from the Intrinsic Clarke subdifferential t heo rem (6.2.5)
t he property 8o f( x) = conv8af( x) .

(c) Prove 8af(x) = {¢} if and only if if> is t he strict de rivative of f
at x .

8. * (Topology of limiting subdifferential) Suppose the real func
t ion f is locally Lipschi t z around the point x E E .
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(a) Prove 8af(x) is compact .

(b) Use the Fuzzy sum rul e (6.4.1) to prove 8-f(z) is nonempty at
points Z in E arbitrarily close to x (c.f. Section 6.2, Exercise 13) .

(c) Deduce 8a f (x ) is nonempty.

9. * (Tangents to graphs) Consider a point z in a set S eE, and a
direction v in E .

(a) Prove bs(Z;V) = bKs(z)(v) ,

(b) Deduce 8_bs(z) = (Ks(z» o.

Now consider a Euclidean space Y , a fun ction F : E --+ Y which is
locally Lipschitz around t he point x in E , and elements 11 of E and
v ofY.

(c) Use Section 6.3, Exercise 11 (Graphs of Lips chitz fun ctions) t o
prove

(d) Deduce

(11 , -v) E NC(F) (x , F( x» {:} 11 E 8a (v , F( ·»)(x) .

(e) If Y = R , deduce

(e) If F is st rict ly differentiable at x , deduce

NC(F)(x , F( x» = G( -(\7F( x» *).

10. ** (Composition) Given a Euclidean space Y and two functions,
F : E --+ Y and f : Y --+ [- 00, + 00]' define a func t ion p : E x Y --+

[-00, + 00] by p(x , y) = f(y) for points x in E and y in Y .

(a) Prove 8aP(x , y) = {O} x 8a f (y ).

(b) Prove 8_U 0 F) (x) x {O} c 8_(p + bC(F»(X, F( x» .

(c) Deduce 8aU 0 F)( x) x {O} C 8a(p + bC(F»(X, F (x».

Now suppose F is cont inuous near a point Z in E and f is locally
Lipschitz around F( z) .

(d) Use the Limiting subdifferential sum rule (6.4 .4) to deduce

8a U 0 F)( z) x {O} c ({O} x 8af(F(z») + NC(F)(Z, F( z» .



6.4 The Limi ting Subdifferent ial 151

(e) (Composition rule) If F is st rict ly differentiable at z, use
Exercise 9 (Tangents to graphs) to deduce

Oa(J 0 F )(z ) C (\7F( z» *oaf( z) .

Derive the corresponding formul a for the Clarke subdifferential
using Exercise 7(b) .

(f) (Mean value theorem) If f is locally Lipschitz on Y t hen for
any points u and v in Y, pro ve there is a point z in the line
segme nt (u, v ) such that

feu) - f( v) E (oaf(z ) U -Da(- J)( z), u - v).

(Hint: Consider t he functions t f---> ±f(v + t(u - v» .)

(g) (Max rule) Consider two real functions g and h which are
locally Lips chitz around z and sa t isfy g(z) = h(z). Using the
functions

x E E f---> F (x ) = (g(x ), hex»~ E R 2

and
(u , v) E R 2

f---> f(u ,v) = max{u,v} E R

in part (d) , apply Exe rcise 9 to prove

Oa(g V h)( z) c U oa("(g + (1 - "( )h)(z ).
/' E [O, l ]

Derive the corr esponding formul a for the Clarke su bdifferent ial,
using Exercise 7(b)

(h) Use the Max rule in part (g) to st rengthen the Nonsmooth nec
essary conditi on (6.1.8) for inequa lity-constrained optimization.

11. * (Viscosity subderivatives) Consider a real fun ction f which is
locally Lipschitz around zero and satisfies f(O) = 0 and 0 E o-f(O).
Define a fun ction p : R + -7 R by

per) = min{f(x) Il lxl l = r }.

(a) Prove p is locally Lips chitz around zero.

(b) Prove p-(O;1) ;:::: O.

(c) Prove the function "( = min {O, p} is locally Lips chitz and sa t isfies

f( x) ;:::: "(I lx lD for all x in E

and
lim , et) = o.
t I0 t
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(d) Consider a real function g which is locally Lipschitz around a
point x E E . If ¢ is any element of fLg(x) then prove ¢ is
a viscosity subderivative of g: there is a real function h which
is locally Lipschitz around x, minorizes g near x , and satisfies
h(x) = g(x) and has Frechet derivative Vh(x) = ¢. Prove the
converse is also true.

(e) ** Prove the function h in part (d) can be assumed continuously
differentiable near x.

12. ** (Order statistic [125]) Consider the function x E R" f---+ [X]k
(for some index k = 1,2, . . . , n) .

(a) Calculate (L[·]k(O).

(b) Hence calculate (L[']k(X) at an arbitrary point x in R" .

(c) Hence calculate Oa[·]k(X).



Chapter 7

Karush-Kuhn-Tucker
Theory

7.1 An Introduction to Metric Regularity

Our main optimization models so far ar e inequ ality-const rained . A lit tl e
thought shows our techniques are not useful for equality-const rained prob
lems like

inf{J(x ) Ih(x ) = O}.

In this sect ion we study such problems by linearizing the feasible region
h-1 (O) using the cont ingent cone.

T hroughout this section we consider an open set U c E , a closed set
S C U , a Euclidean space Y , and a cont inuous map h : U ---. Y . T he
rest ricti on of h to S we denote h is . T he following easy result (Exercise 1)
suggests our direction .

Proposition 7.1.1 If h is Frechet differentiable at the point x E U then

K h - l (h (x ) )(X ) c N ('Vh(x)).

Our aim in this sect ion is to find condit ions guarantee ing equality in t his
result .

Our key to ol is the next result . It states that if a closed fun ction attains
a value close to it s infimum at some point then a near by poin t minimizes
a slight ly perturbed function .

Theore m 7.1.2 (E keland var iational principle ) Suppose the function
f : E ---. (00, +00] is closed and the point x E E satisfie s f (x ) :S inf f + Efor
some real E > O. Then for any real ), > 0 there is a point vE E satisfying
the conditions

153
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(a) Ilx - vii ::::: >.,

(b) f (v ) ::::: f (x ), and

(c) v is the uni que m inim izer of the funct ion f (· ) + (E/ >.)II · -vi i·

Proof. We can assume f is prop er , and by assumption it is bounded
below. Since the function

E
f (·) + - II . - xii>.

t herefore has compact level sets, it s set of minimizer s M c E is nonempty
and compact. Choose a minimizer v for f on M. Then for points z =I=- v in
M we know

E
f( v) ::::: f( z) < f( z) + ~l l z - vii,

while for z not in M we have

E E
f (v ) + ~ ll v - xii < f (z ) + ~ll z - xii·

P art (c) follows by the t riangle inequali ty. Since v lies in M we have

E E
f (z ) + ~ lI z - xii ~ f (v ) + ~ l l v - xii for a ll z in E .

Setting z = x shows t he inequali ti es

. E
f (v ) + E ~ inf f + E ~ f (x ) ~ f (v) + ~ II v - x II ·

P roper ti es (a) and (b) follow. D

As we shall see, pr ecise calculation of t he cont ingent cone K h- ' (h(x» (X)
requires us first to bound t he distance of a point z to t he set h-1 (h(x )) in
terms of the fun ction value h (z ). T his leads us to t he noti on of "met ric
regularity" . In thi s sect ion we present a somewhat simplified ver sion of this
idea , whi ch suffices for most of our purposes; we defer a mor e comprehensive
treatment to a later section . We say h is weakly m etri call y regular on S at
the point x in S if there is a real constant k su ch t hat

dSnh- ' (h(x»(Z) ::::: k llh(z) - h(x)11 for all z in S close to x .

Lemma 7.1.3 Suppose 0 E Sand h (O ) = o. If h is not weakly m etri call y
regular on S at zero then th ere is a sequen ce V r ---. 0 in S such that h (vr ) =I=- 0
f or all r , an d a strictly posit ive sequence 6r ! 0 su ch tha t th e function

is m inimized on S at v r .
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Proof. By definition there is a sequence x r --+ 0 in S such that

For each index r we apply the Ekeland principle with

f = Ilhll + 6s, E = Ilh(xr) ll , A = minjr e, VE} , and x = X r

to deduce the ex istence of a po int u; in S such that

(a) Ilx r - vr ll :::;min {r llh(xr) II,Jllh(xr) ll} and

(c) u; minimizes the function

Il h (·)11+ max {r- 1
, J llh(xr)ll} II . - vr ll

on S .
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(7.1.4)

Property (a) shows V r --+ 0, whi le (c) reveals the minimizing property of
Vr . Finally, inequality (7.1.4) and property (a) prove h(vr ) i= o. D

We can now present a convenient condition for weak metric regularity.

Theorem 7.1.5 (Surjectivity and metric regu larity) If h is strictly
differentiable at the point x in Sand

'Vh(x)(Ts(x)) = Y

then h is weakly metrically regular on S at x.

Proof. Notice first h is locally Lipschitz around x (see Theorem 6.2.3) .
Without loss of generality, suppose x = 0 and h(O) = o. If h is not weakly
metrically regular on S at zero then by Lemma 7.1.3 there is a sequence
V r --+ 0 in S such that h( vr ) i= 0 for all r, and a real sequence 6r 10 such
that the function

Ilh(·)11+ 6r ll . - vr ll

is minimized on S at o.: Denoting the local Lipschitz constant by L, we
deduce from the sum rul e (6.1.6) and the Exact p enalization proposition
(6.3.2) the condition

Hence there are clements Ur of oo( llh ll)(vr) and W r of LOods(vr) such that
u; + ui; approaches zero.

By choosing a subsequence we can assume
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and an exercise then shows u,. -. (\7h(O))*y . Since t he Clarke subdiffere n
tial is closed at zero (Section 6.2, Exercise 12) , we deduce

-(\7h(O))*y E Loods(O) c Ns (O).

However , by assumpt ion there is a nonzero element p of Ts(O) such that
\7h(O)p = -y, so we arrive at the cont radict ion

0 2: (p, -(\7h(O))*y) = (\7h(O)p, -y) = IIyl12> 0,

which completes the proof.

We can now prove the main result of t his section.

D

Theorem 7.1.6 (Liusternik) If h is strictly differentiable at the point x
and \7h( x ) is surj ective then the set h - 1 (h( x)) is tang entially regular at x
and

Kh - l (h (x»(X) = N (\7h(x )).

Proof. Assume without loss of gener ality t hat x = 0 and h(O) = O. In
light of Proposition 7.1.1 , it suffices to prove

Fix any eleme nt p of N (\7h(O)) and consider a sequence x" -. 0 in h- 1(O)

and t,. lOin R ++ . The previous result shows h is weakly me trically regular
at zero, so there is a constant k such that

holds for all large r , and hence there are points z" in h- 1(O) satisfying

If we define directions p" = t;:l( z" - z") then clearly the points x" + t ,.p"
lie in h - 1 (0) for lar ge r , and since

we deduce p E T h- l (O)(O).

Ilx"+ t ,.p - z" II
t ,.

< kllh(x" + t,.p) - h(x ")11
t ,.

-. kll(\7h(O ))pll

= 0,

D
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Exercises and Commentary

Liusternik 's original study of tangent spaces appeared in [130J . Closely
related ideas were pursued by Graves [85] (see [65] for a good survey) . The
Ekeland principle first appe ared in [69], motivated by the st udy of infin ite
dimensional problems where te chniques based on com pact ness might be
unavailable. As we see in t his section, it is a powerful idea even in finite
dim ensions; the simplified version we present here was obs erved in [94]. See
also Exercise 14 in Section 9.2. The inversion technique we use (Lemma
7.1.3) is based on the approach in [101J. The recognition of "met ric" regu
larity (a term perhap s best suited to nonsmooth analys is) as a central idea
began lar gely with Robinson ; see [162, 163] for example. Many equivalences
are discussed in [5, 168J.

1. Suppose h is Frechet differentiable at t he point x ES.

(a) P rove for any set D :::) h(S) the inclusion

'lh(x)Ks( x) c KD(h(x)) .

(b) If h is constant on S, deduce

K s( x) c N ('lh(x )).

(c) If h is a real funct ion and x is a local minimizer of h on S, prove

- 'lh(x) E (Ks (x ))-.

2. (Lipschitz extension) Suppose t he real function f has Lipschitz
const ant k on t he set C c E. By considering t he infimal convolut ion
of the fun ctions f +00 and kll·ll , prove there is a function ! : E ----+ R
with Lips chitz constant k that agrees with f on C . Prove fur thermore
t hat if f and C are convex then ! can be assumed convex.

3. * (Closure and the Ekeland principle) Given a subset S of E ,
suppose t he concl usion of Ekeland 's principle holds for all functions
of t he form g + Os where the function g is cont inuous on S. Deduce
S is closed. (Hint: For any point x in cl S, let g = II . - xii .)

4. ** Suppose h is strictly differentiabl e at zero and satisfies

P rove u; ----+ ('lh(O)) *y. Write out a shorte r proof when h is continu
ously differ entiable at zero .

5. ** Int erpret Exercise 27 (Conical op en mapping) in Section 4.2 in
terms of metric regularity.
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6. ** (Transversality) Suppose the set V C Y is open and the set
ReV is closed . Suppose furthermore h is strictly differentiable at
the point x in S with h(x) in Rand

\7h(x)(Ts(x)) - TR(h(x)) = Y . (7.1.7)

(a) Define the function g : U x V ~ Y by g(z , y) = h(z) - y. Prove
g is weakly metrically regular on S x R at the point (x, h(x)) .

(b) Deduce the existence of a constant k' such that the inequality

d(SXR)ng-1(g(x,h(x)))(Z, y) :::; k'llh(z) - yll

holds for all points (z,y) in S x R close to (x,h(x)).

(c) Apply Proposition 6.3.2 (Exact penalization) to deduce the ex
istence of a constant k such that the inequality

d(SXR)ng-1(g(x,h(x)))(Z, y) :::; k( llh(z) - yll + ds(z) + dR(y))

holds for all points (z,y) in U x V close to (x,h(x)) .

(d) Deduce the inequality

dSnh-l(R)(Z) :::; k(ds(z) + dR(h(z)))

holds for all points z in U close to x.

(e) Imitate the proof of Liusternik's theorem (7.1.6) to deduce the
inclusions

and

(f) Suppose h is the identity map, so

Ts(x) - TR(X) = E.

If either R or S is tangentially regular at x, prove

KRns(x) = KR(x) n Ks(x).

(g) (Guignard) By taking polars and applying the Krein-Rutman
polar cone calculus (3.3.13) and condition (7.1.7) again, deduce

NSnh-l(R)(X) C Ns(x) + (\7h(x))*NR(h(x)) .
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(h) If C and D are convex subsets of E satisfying a E core (C - D)
(or ri C n ri D i= 0) , and the point x lies in C n D, use part (e)
to prove

Tc nD( X) = Tc(x) n TD(x) .

7. •• (Liust ernik via inverse functions) We first fix E = R " . The
classical inverse fun ction theorem states that if the map 9 : U -+ R n

is continuously differentiable then at any point x in U at which V'g(x)
is invertible, x has an op en neighbourhood V whose image g(V) is
open, and the restricted map glv has a continuously differ entiable
inverse satisfying the condition

V' (gIV)-l (g(x)) = (V'g(X))-l .

Consider now a cont inuously differentiable map h : U -+ R m, and
a point x in U with V'h( x ) surjective, and fix a direction d in the
null space N(V'h(x)) . Choose any (n x (n - m)) matrix D making
the matrix A = (V'h(x) , D) invertible, define a function 9 : U -+ R "
by g(z) = (h(z) , Dz) , and for a small real 8 > a define a function
p : (-8,8) -+ R " by

pet) = g-l(g(X) + tAd) .

(a) Prove p is well-defined providing 8 is small.

(b) Prove the following properties:

(i) p is continuously differentiable .

(ii) pea) = x .
(iii) p'ea) = d.
(iv) h(p(t)) = hex) for all small t .

(c) Deduce that a direction d lies in N(V'h(x)) if and only if there
is a function p : (-8,8) -+ R n for some 8 > a in R satisfying
the four conditions in part (b) .

(d) Deduce K h- ' (h (x )) ( X ) = N(V'h(x)) .
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7.2 The Karush-Kuhn-Tucker Theorem

The central result of optimization t heory describes first order necessary
op timality condit ions for the general nonlinear problem

inf{f(x) IXES }, (7.2.1)

where, given an op en set U c E , t he objective fun ction is f : U ---+ R and
the feasible region S is described by equality and inequali ty constraint s:

S = { x E U Igi(X) :::; 0 for i = 1,2 , .. . , m, h(x) = O}. (7 .2.2)

The equality constraint map h : U ---+ Y (where Y is a Euclidean space)
and the inequality const raint fun ctions gi : U ---+ R (for i = 1, 2, .. . , m ) are
all continuous . In this section we derive necessary cond it ions for t he point
x in S to be a local minimizer for the problem (7.2.1) .

In outline, th e approach takes t hree steps. We first ex tend Liust ernik 's
theorem (7.1.6) to describe the cont inge nt cone K s(x) . Next we calculate
t his cone 's polar cone using the Farkas lemma (2.2 .7) . F inally, we apply
the Cont ingen t necessary condit ion (6 .3.10) to derive the result .

As in our development for the inequali ty-constrained problem in Section
2.3, we need a regulari ty condition. Once again , we deno t e the set of indices
of the ac t ive inequ ality cons traints by 1( x) = {i I gi( X) = O} .

Assumption 7.2.3 (The Mangasarian-Fromovitz constraint qual
ification) Th e active constraint functions gi (for i in 1(x)} are Frechei
differentiable at the point ii , the equality cons train t map h is strictly differ
entiable, with a surjective gradient , at x, an d the set

is nonempty.

{p E N (\!h (x )) I (\!gi (X),P) < 0 fo r i in 1(x)} (7.2 .4)

Notice in par ti cular that the set (7.2.4) is nonempty in t he case where the
map h : U ---+ R q has components h I , h2 , ..• , hq and the set of gradient s

(7 .2.5)

is linearly indep endent (Exercise 1).

Theorem 7.2.6 Suppose the Mangasarian -Promovitz cons train t qualifica
tion (7.2.3) holds. Th en the contingent cone to th e f easible region S defin ed
by equation (7.2.2) is given by

K s(x) = {p E N(\!h (x )) I (\!gi (X), p) :::; 0 fo r i in 1(x)}. (7 .2.7)
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Proof. Denote the set (7.2.4) by K and the right hand side of formula
(7.2.7) by K . The inclusion

Ks(x) c K

is a straightforward exercise. Furthermore, since K is nonempty, it is easy
to see K = cl K. If we can show K c K s(x) then the result will follow
since the contingent cone is always closed .

To see K c Ks(x) , fix an element p of K. Since p lies in N( '\7h(x»,
Liusternik's theorem (7.1.6) shows p E Kh-l(O)(X). Hence there are se
quences t; lOin R ++ and pT ---+ P in E satisfying h(x + tTpT) = 0 for all
r. Clearly x + tTpT E U for all large r, and we claim gi( X + tTpT) < O. For
indices i not in I( x) this follows by cont inuity, so we suppose i E I( x) and
gi( X+ tTpT) ~ 0 for all r in some subsequenc e R of N. We then obtain the
contradiction

o = lim
r ---+ oo in R

gi( X + tTpT) - gi(X) - ('\7gi( X), tTp" )

tT1 1pT11
> _ ('\7gi(X), p)
- Ilpll
> O.

The result now follows . o

Lemma 7.2.8 Any linear maps A : E ---+ R q and G : E ---+ Y satisfy

{x E N(G) IAx < O} - = A*R~ + G*Y.

Proof. This is an immediate application of Section 5.1, Exercise 9 (Poly
hedral cones) . 0

Theorem 7 .2.9 (Karush-Kuhn-Tucker cond it ions) Suppos e x is a
local minimizer for problem {7.2.1} and the objective function f is Frech et
differ'entiable at X. If the Manqasarian-Fromooitz constraint qualification
{7.2.3} holds then there exist multipliers Ai in R + (for i in I( x» and {-L in
Y satisfying

'\7 f (x ) + L Ai'\7gi( x) + '\7h(x)*{-L = O.
i E/e x)

Proof. The Contingent necessary condition (6.3.10) shows

- '\7 f( x) E Ks(x) -

= {p E N('\7h(x» 1 ('\7gi(x ),p) ~ 0 for i in I(x)} -

= L R + '\7gi(x ) + '\7h(x )*Y
i E/ex)

using Theorem 7.2.6 and Lemma 7.2.8.

(7.2.10)

o
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Exercises and Commentary

A survey of the history of these results may be found in [158]. The Mangas
arian-Fromovitz condition orig inated with [133J , whil e the Karush-Kuhn
Tucker conditions first appeared in [111J and [117J . The idea of penalty
functions (see Exercise 11 (Quadratic penalties» is a common technique
in optimization. The related notion of a barrier penalty is crucial for inte
rior point methods; examples include the penalized linear and semidefinite
programs we considered in Section 4.3, Exercise 4 (Examples of duals) .

1. (Linear independence implies Mangasarian-Fromovitz) If the
set of gradients (7.2.5) is linearly independent , then by considering
the equations

(\l9i (X), p) = -1 for i in I(x)

(\lhj (x ), p) =0 forj=1,2, . .. , q,

prove the set (7.2.4) is nonempty.

2. Consider the proof of Theorem 7.2.6.

(a) Prove K s( x) c K.

(b) If K is nonempty, prove K = clK.

3. (Linear constraints) If the functions 9i (for i in I (x» and hare
affine , prove the contingent cone formula (7.2.7) holds.

4. (Bounded multipliers) In Theorem 7.2.9 (Karush-Kuhn-Tucker
conditions), prove the set of multiplier vectors (A, f.L) satisfying equa
tion (7.2.10) is compact.

5. (Slater condition) Suppose the set U is convex , the functions

91,92 , . . . , 9m : U ~ R

are convex and Frechet differentiable, and the function h : E ~ Y is
affine and surjective. Suppose further there is a point i: in h- 1(0)

satisfying 9i(i:) < 0 for i = 1,2, . . . , m . For any feasible point ii: for
problem (7.2.1) , prove the Mangasarian-Fromovitz constraint quali
fication holds .

6. (Largest eigenvalue) For a matrix A in S" , use the Karush-Kuhu
Tucker theorem to calculate

sup{xT Ax I llxll = 1, x ERn} .
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7. * (Largest si ngu lar value [100, p . 135)) Given any m x n matrix
A, consider the optimization problem

and the matrix

a = sup{xT Ay IIIxI1 2 = 1, IIyI1 2 = I}

~ [ 0 A]A = AT 0 .

(7.2 .11)

(a) If IL is an eigenvalue of A , prove - JL is also.

(b) If JL is a nonzero eigenvalue of A , use a corresponding eigen
vector to construct a feasible solution to problem (7.2.11) with
objective value IL .

(c) Deduce a 2: A1(1) .

(d) Prove problem (7.2.11) has an optimal solution.

(e) Use the Karush-Kuhn-Tucker theorem to prove any optimal
solution of problem (7.2.11) corr esponds to an eigenvector of A.

(f) (Jordan [108)) Ded uce a = A1(1 ). (This number is called the
largest singular valu e of A .)

8. * * (Hadamard's inequality [88)) The matrix wit h columns X l , x 2
,

n · R " d t b (1 2 n) P ( -1 - 2 - n)• • • ,X In we eno e y x , X , • . • , x . rove X , x , .. . , X

solves the problem

inf
subject to

- det(x1 , x 2 , . .. , x n )

II x
i

l1
2

xl , x 2, . . . , .Tn
1 for i = 1,2, . . . ,n

E R n

if and only if the matrix (Xl , x2, . .. , xn ) has determinant equal to
one and has columns forming an orthonormal basis, and deduce the
inequality

n

det(xl,x2
, .. . ,xn

) < II Ilxi ll·
i = 1

9. (Nonexistence o f multipliers [77)) Define a function sgn : R -> R
by

sgn(v) = { ~
-1

and a function h : R 2 -> R by

if v > 0

if v = °
if v < °

(a) Prove h is Frechet differentiable at (0,0) with derivative (0,1) .
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(b) P rove h is not cont inuous on any neighbourhood of (0, 0) , and
deduce it is not st rictly differenti abl e at (0, 0) .

(c) P rove (0, 0) is optimal for the problem

inf{j (u , v) Ih(u ,v ) = O} ,

where f eu,v) = u, and yet there is no real A satisfying

V'f (O , 0) + AVh(O ,0) = (0, 0) .

(Exercise 14 in Secti on 8.1 gives an approach to weakening t he con
di tions required in this section. )

10. * (Guignard optimality conditions [87]) Suppose t he point x is
a local minimizer for the optimization problem

inf{j(x) Ihex ) E R, XES }

where R c Y. If t he functions f and h are st rictly differenti able at
x and t he tran sversali ty condit ion

holds, use Section 7.1, Exercise 6 (Tr ansversality) to prove the opti
mali ty condit ion

oE V'f( x) + V'h (x )*N R(h(x)) + Ns(x).

11. ** (Quadratic penalties [136]) Take t he nonlinear program (7.2.1)
in the case Y = R q and now let us ass ume all the fun ctions

are cont inuously differenti abl e on the set U. For positive integers k
we define a function Pk : U -+ R by

m q

Pk(X) = f(x) + k( i)gt(x) )2 + 2:)hj (x))2) .
i=l j=l

Suppose the point x is a local minimizer for the problem (7.2.1). Then
for some compact neighbourhood W of ii in U we know f (x ) 2: f (x )
for all feasibl e points x in W. Now define a fun ction Tk : W -+ R by

and for each k = 1, 2, . . . choose a point x k minimizing Tk on W .



lim gt(xk
) = 0 for i = 1,2, . .. , m

k~oo

7.2 The Karush-Kuhn-Tucker Theorem

(a) Prove rk(xk) ::; f(x) for each k = 1,2, ... .

(b) Deduce

and
lim hj(xk) = 0 forj=1 ,2, .. . ,q.
k~oo

(c) Hence show x k
--+ X as k --+ 00.

(d) Calculate \7rk(x).

(e) Deduce

m q

- 2(x k - x) = \7 f(x k) + L A~\7gi(xk) + LJ-LJ\7hj(xk)

i=l j=l

for some suitable choic e of vectors Akin R+ and J-Lk in R q.

(f) By taking a convergent subsequence of the vectors

165

show from parts (c) and (e) the existence of a nonzero vector
(AO , A, J-L) in R x R+ x Rq satisfying the Fritz John conditions:

(i) Aigi( X) = 0 for i = 1,2, .. . ,m.

(ii) Ao\7f(x) + 2::::1 Ai\7gi(X) + 2::j=l J-Lj\7hj( x) = O.

(g) Under the assumption of the Mangasarian-Fromovitz constraint
qualification (7.2.3) , show that the Fritz John conditions in part
(f) imply the Karush-Kuhn-Tucker conditions.
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7.3 Metric Regularity and the Limiting
Subdifferential

In Section 7.1 we presented a convenient t est for t he weak metric regularity
of a funct ion at a point in terms of the surjectivity of its strict derivative
there (Theorem 7.1.5). This te st , while adequate for most of our purposes,
can be richly refined usin g the limiting subdifferent ial.

As before, we consider an open set U c E , a Euclidean space Y, a
closed set S C U, and a funct ion h : U ----> Y which we ass ume throughout
thi s section is locally Lipschitz. We begin with the full definition of metric
regularity, strengthening the notion of Section 7.1. We say h is m etrically
regular on S at the point x in S if there is a real cons tant k such that the
est imate

dSn h-l(y )(z) ::; kllh( z) - yll
holds for all points z in S close to x and all vectors Y in Y close to h( x) .
(Before we only required this to be true when y = h( x) .)

Lemma 7.3.1 If h is not m etrically regular on S at x then there are se
quences (vr) in S converging to x , (Yr) in Y converging to h( x ), and (lOr)
in R++ decreasing to zero such that, for each index r, we have h( vr ) f. Yr
and the function

Ilh(·) - Yrll + lOrll . -vr ll
is minimized on S at vr .

Proof. The proof is complete ly analogous to that of Lemma 7.1.3: we
leave it as an exercise. 0

We also need the following chain-ru le-type result; we leave the proof as
an exercise.

Lemma 7.3 .2 At any point x in E where h( x) f. 0 we have

Oallh (' ) II(x ) = oa(llh(x)II-1h(x) , h(-) )(x).

Using this result and a very similar proof to Theorem 7.1.5, we can now
exte nd the surjec t ivity and metric regul ari ty resul t .

Theorem 7.3.3 (Limiting subdifferential and regularity) If a point
x lies in S and no nonzero elem ent w of Y satisfies the condition

oE oa(w,h( ·»)(x) + Ns (x )

then h is m etrically regular on S at x .
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Proof. If h is not metrically regular , we can apply Lemma 7.3.1, so with
that notation the function

Ilh(-) - Yrll + Er ll . - vr ll

is minimize d on S at V r . By P roposit ion 6.3.2 (Exact penalization) we
deduce for large enough real L

o E oa( llh(·) - Yrll + Er ll · - vrll+ Lds(-)) (vr)
C oallh( ·) - Yrll(vr ) + ErB + LOads(vr)

for all r, using t he Limiting subdifferent ial sum rule (6.4.4) . If we wr ite
ui; = Ilh(vr ) - Yrll- 1(h(vr) - Yr) , we obtain by Lemma 7.3.2

so t here are elements U r in oa(wnh(·) )(vr) and Zr in LOads(vr) such that
Ilur + zr ll ::; froThe sequences (wr) , (ur) , and (zr) are all bounded , so by
taking subsequences we can ass ume ui; approaches some nonzero vector w ,
Zr approaches some vector z, and Ur approaches -z.

Now, using the sum rule again we observe

for each r . The local Lipschit z constant of the function (wr - W , h(·)) tends
to zero, so since oa(w, h( ·)) is a closed mul ti function at x (by Sect ion 6.4 ,
Exe rcise 5) we deduce

- Z E oa(w,h(·) )(x) .

Similarly, since oadS(-) is closed at x, we see

Z E Loads(x) c N'S (x )

by Exercise 4, and this contradicts the assumption of the t heorem. D

This result st rengt hens and generalizes the elegant test of Theorem
7.1.5, as the next resul t shows.

Corollary 7.3.4 (Surjectivity and metric regularity) If h is strictly
differentiable at th e point x in Sand

(V'h(X) *) -l(N'S (x)) = {O}

or, in particular,
V'h(x)(Ts(x )) = Y

then h is m etrically regular on S at x.
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Proof. Since it is easy to check for any element w of Y t he fun ction
(w, h( ·) ) is strictly differenti able at x with derivative \7h(x) *w, the first con
dition implies the result by Theorem 7.3.3. On the other hand, the second
condition implies the first , since for any eleme nt w of (\7h( X)*)-l(N s(x))
there is an element z of Ts(x ) satisfying \7h(.r) z = w , and now we deduce

II wl12 = (w, w) = (w, \1h( x) z ) = (\7h(x )*w, z) ~ 0

using Exercise 4, so w = o. o

As a final ext ension to the idea of metric regularity, consider now a
closed set D eY containing hex) . We say h is m etrically regular on S at
x with respect to D if there is a real constant k such that

dSn h-' (y+D)(Z) ~ kdD(h(z) - y)

for all points z in S close to x and vectors y close to O. Our previous
definition was the case D = {hex)} . This condit ion est imates how far a
point z E S is from feasibility for the system

h(z ) E y+D, z E S ,

in terms of t he const raint error dD(h(z) - y).

Corollary 7 .3.5 If the point x lies in the closed set SeE with hex) in
the closed set DeY, and no nonzero element w of ND( h(x )) satisfies the
condition

o E Oa(w, he·))(x) + Ns (x ),

then h is metrically regular on S at x with respect to D .

Proof. Define a funct ion h : U x Y ----> Y by h(z ,y) = h(z) - y, a set
S = S x D , and a point x = (x ,h(x)) . Sinc e by Exercise 5 we have

N§(x) = Ns (x ) x N D(h(x ))

and
Oa(w, h( .))(x) = oa(w , h( ·) )(x) x {-w}

for any element w of Y , there is no nonzero w sa t isfying the condition

oE Oa(W ,h( .))(x) + N§(x) ,

so h is metrically regular on S at x by Theorem 7.3.3 (Limiting subdiffer
ent ial and regularity) . Some straightforward manipulation now shows h is
metrically regular on S at x with resp ect to D. 0

The case D = {hex)} recaptures T heorem 7.3.3.
A nice application of t his last result estimates the dis t an ce to a level

set under a Slater-type assumption, a typi cal illustration of t he power of
metric regularity.
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Corollary 7.3 .6 (Distance to level se t s ) If the func tion 9 : U ~ R is
locally Lipschit z aroun d a point x in U satisfying

g(x ) = 0 and 0 tf- oag(x)

then there is a real constan t k > 0 such that the estimate

holds for all points z in E close to x.

Proof. Let S c Ube any closed neighbourhood of x and apply Corollary
7.3.5 with h = 9 and D = - R + . D

Exercises and Commentary

In many circumstances , me t r ic regularity is in fact equiva lent to weak met
ric regularity (see [25]) . T he power of the limiting subdifferential as a tool
in recogni zing met ric regulari ty was first observed by Mordukhovich [144];
t here is a comprehensive discussion in [145, 168].

1. * P rove Lemma 7.3.1.

2. * Assume h(x ) =I- o.
(a) Prove

(b ) Prove the analogous resul t for t he limiting subdifferential. (You
may usc t he Limiting subdifferential sum rule (6.4 .4) .)

3. (Metric regularity and openness) If h is metrically regul ar on S
at x , prove h is open on S at x ; t ha t is, for any neighbour hood U of
x we have hex) E int h(UnS ).

4. ** (Limiting normals and distance functions) Given a point z
in E , suppose y is a near est point to z in S .

(a) If 0 ::; cx < 1, prove t he unique nearest po int t o o z + (1 - cx )y in
Sis y.

(b) For z not in S , deduce every element of 0_ ds (z ) has norm one.

(c) For any eleme nt w of E , prove

ds(z + w) ::; ds(z) + ds(Y + w).

(d) Deduce o_ds(z) c o _ ds (Y).
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Now consider a point x in S .

(e) Prove </> is an element of oadS(x) if and only if there are se
quences (z") in S approaching x , and (</>1') in E approaching </>

satisfying </>1' E o_ds(x 1' ) for all r .

(f) Deduce R+oads(x ) C N'S(x) .

(g) Suppose </> is an element of o_os(x). For any real E > 0, ap 
ply Section 6.4, Exercise 3 (Local minimizers) and t he Limiting
subdifferential sum rule to prove

(h) By taking limits, deduce

(i) Deduce
Ns(x) = cl (conv N'S(x)),

and hence
Ts(x) = N'S(x) -.

(Hint: Use Section 6.4, Exercise 7 (Limiting and Clarke subdif
ferentials) .)

(j) Hence prove the following properties are equivalent:

(i) Ts(x) = E .
(ii) N'S(x) = {O} .

(iii) x E int S .

5. (Normals t o products) For closed sets Se E and De Y and
points x in Sand y in D, prove

N'SXD(X,y) = N'S(x) x ND(y) .

6. * Complet e the remaining details of the proof of Corollary 7.3.5.

7. Prove Corollary 7.3.6 (Distanc e to level sets) .

8. (Limiting versu s Clarke conditions) Define a set

S = {(u, v) E R 2 Iu :::; °or v < O}

and a function h : R 2
-+ R by h(u, v) = u + v . In Corollary 7.3.4

(Surjectivity and metric regularity) , prove the limit ing normal cone
condition holds at the point x = 0, and yet the Clarke tangent cone
condition fails.
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9. ** (Normals to level sets) Under the hypotheses of Corollary 7.3.6
(Distance to level sets), prove

(Hint: Use Exercise 4 and the Max rule (Section 6.4, Exercise 10(g) .)
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7.4 Second Order Conditions

Optimality conditions can be refined using second order information; we
saw an early example in Theorem 2.1.5 (Second order conditions) . Because
of the importance of curvature information for Newton-type methods in
numerical optimization, second order conditions are widely useful.

In this section we present prototypical second order conditions for con
strained optimization. Our approach is a simple and elegant blend of con
vex analysis and metric regularity.

Consider an open set U c E , a Euclidean space Y . Given any function
h : U ----t Y that is Frechet differentiable on U, the gradient map \7h is a
function from U to the vector space L(E, Y) of all linear maps from E to
Y with the operator norm

IIAII = max IIAxl1 (A E L(E, Y)) .
x EB E

If this map \7h is itself Frechet differentiable at the point x in U then we
say h is twice Frechei differentiable at x : the gradient \72h(x) is a linear
map from E to L(E, Y), and for any element v of E we write

In this case h has the following quadratic approximation at x:

1
h(x + v) = h(x) + \7h(x)v + 2\72h(x)(v, v) + o(llvI1 2

) for small v .

We suppose throughout this section that the functions f : U ----t Rand
h are twice Frechet differentiable at x, and that the closed convex set S
contains ii: We consider the nonlinear optimization problem

inf{f(x) Ih(x) = 0, X E S } ,

and we define the narrow critical cone at x by

C(x) = {d E R+(S - x) I \7 f(x)d :::; 0, \7h(x)d = O} .

(7.4.1)

Theorem 7.4.2 (Second order necessary conditions) Suppose that
the point x is a local minimum for the problem (7.4.1), that the direction
d lies in the narrow critical cone C(x), and that the condition

oE core (''Vh(x)(S - x)) (7.4 .3)

holds. Then there exists a multiplier ,X in Y such that the Lagrangian

L( ·) = f(·) + (,x, h(·)) (7.4.4)
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satisfies the conditions
V L(x ) E -Ns (x)

and

Proof. Co nsider first the convex program

inf{V f (x )z IVh(x )z = - V 2h(x )(d, d), z E R +(S - x )} .
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(7.4.5)

(7.4.6)

(7.4.7)

Su pp ose the point z is feasible for problem (7.4.7). It is easy to che ck for
small real t ~ 0 the path

t2

X (t) = ii + td + 2 z

lies in S . Furthermore, the qu adratic approximat ion shows this path almost
satisfies t he original constraint for small t :

t2

h(x (t )) = h(x ) + tVh(x )d + 2 (Vh(x )z + \]2h(x )(d, d)) + o(t2)

= o(t2
) .

Bu t condit ion (7.4.3) implies in particular t hat Vh(x )Ts (x ) = Y ; in fact
t hese condit ions are equivalent, since the only convex set whose closure is
Y is Y itself (see Sect ion 4.1 , Exercise 20(a) (Propert ies of the rela ti ve
interior) ) . So, by Theorem 7.1.5 (Surjec t ivity and met ric regul ar ity) , his
(weakly) metrically regul ar on S at X. Hence the path above is close to
feasible for the original problem : there is a real cons tant k such t hat , for
small t ~ 0, we have

dSn h- l (O) ( X ( t ) ) ~ kllh(x (t ))11= o(t2
) .

T hus we can perturb the path slightly to obtain a set of points

{x (t) It ~ O} c Sn h- 1 (0)

sat isfying Il x(t) - x( t )11= o(t2
) .

Since x is a local minimizer for the original problem (7.4.1), we know

t 2

f( x) ~ f (x (t )) = f (x ) + tV f (x )d + 2 (V f (x )z + V 2 f (x )(d, d)) + o(t2
)

using t he qu adrati c ap proximation again . Hence V f (x )d ~ 0, so in fact
V f (x )d = 0, since d lies in C( x ). We deduce

V f (x )z + V2 f (x )(d,d) ~ O.
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We have therefore shown the optimal value of the convex program (7.4 .7)
is at least -\72f(x)(d,d) .

For the final st ep in the proof, we rewrite problem (7.4.7) in Fenchel
form:

Since condit ion (7.4.3) holds , we can apply Fenchel duality (3.3.5) to deduce
there exist s ,X E Y satisfying

- \72f( x) (d , d) :::; - <5R+ (S - x ) ( - \7h(x)*,X - \7 f( x)) - <5{ -V'2h(x)(d,d)} (,X)

- <5N S (x ) ( - \7h (x )*'x - \7 f( x)) + (,X, \7 2h(x)(d, d) ),

whence the result . o

Under some further conditions we can guarantee that for any multiplier
,X satisfying the first order condition (7.4 .5) , the second order condition
(7.4 .6) holds for all directions d in the narrow cri ti cal cone (see Exercises
2 and 3) .

We contrast the necessary condition above with a rather elementary
second order sufficient condit ion . For this we use the broad critical con e at
x:

C(x) = {d E Ks(x) 1\7 f( x)d:::; 0, \7h(x)d = O} .

Theorem 7 .4 .8 (S econd or der su fficien t con d ition) Suppose for each
nonzero direction d in the broad critical cone C(x) th ere exist multipliers
11 in R+ asui ); in Y such that the Lagrangian

L(.) = fLf(-) + (,X , h(·))

satisfies the conditions

\7L(x) E - N s (x ) and \72L (x )(d , d) > O.

Th en for all small real <5 > 0 the point x is a strict local minimizer for the
perturbed problem

inf{f(x) - <5l1x - xl1 2 1h(x) = 0, XES} . (7.4.9)

Proof. Suppose there is no such <5, so there is a sequence of feasible
solutions (x1' ) for problem (7.4.9) converging to x and satisfying

. f(x 1' ) - f( x)
lim sup II _ 11 2 < O.

1' --->00 X 1' X

By t aking a subsequence, we can assume

I· X1' - X d
HfI = ,

1'---t oo Ilx1' - xi i

(7.4.10)
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and it is easy to check the nonzero directi on d lies in C( x) . Hence by
ass umpt ion t here exist t he required multipliers J1 and A.

From the first order condit ion we know

so by the qu adrati c approximat ion we deduce as r --- 00

J1 (J (Xr ) - f (x )) L (xr ) - L (x )

:2 ~V'2L(X) (Xr - X,X r - x) + o( llxr - xI1 2
) .

Divi ding by Ilxr - xl12 and taking limits shows

. . f (xr ) - f (x ) 1 2- -
J1hmmf II -112 :2 - V' L(x )(d, d» O,

r ---> oo X r - x 2

which contradicts inequ ali ty (7.4 .10). o

Notice t his resul t is of Frit z John type (like Theorem 2.3.6): we do not
assume t he multiplier J1 is nonzero . Furthermore, we can eas ily weaken t he
assumpt ion that the set 5 is convex to t he condition

(5 - x) n EB c K s(x ) for some E > O.

Clea rly t he narrow crit ica l cone may be smaller t han the broad crit ical
cone, even when 5 is convex. They are equal if S is quasipolyhedral at x:

(as happens in par ti cul ar when 5 is polyhedral). However , even for un
const rained problems t he re is an intrinsic ga p between the second order
necessary conditions and t he sufficient condit ions.

Exercises and Commentary

Our approach here is from [25] (see also [12]). There are higher order ana
logues [11]. Problems of the form (7.4.11) where all the functions involved
are quadratic are ca lled quadratic programs. Such problems are part icularly
well-b ehaved : the optimal value is attained when finite, and in this case
the second order necessary condit ions developed in Exercise 3 are also suf 
fi cien t (see [21]). For a straight forward exposit ion of the st andard second
order condit ions, see [132]' for example.

1. (Higher order conditions) By considering the funct ion

sgn(x ) exp ( - :2)
on R , explain why t here is no necessary and sufficient n t h order
optimality cond it ion .
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2. * (Uniform multipliers) With t he assumpt ions of Theorem 7.4.2
(Second order necessary condit ions), suppose in addition that for all
directions d in the narrow crit ical cone O(x ) there exists a solution z
in E to the syste m

'Vh(x) z = -'V2h(x)(d,d) and z E span (8 - x).

By considering problem (7.4 .7), prove t hat if the multiplier>' sat is
fies the first order condit ion (7.4.5) then the second order condit ion
(7.4.6) holds for all d in O(x ). Observe this holds in particular if
8 = E and 'Vh(x) is surj ective.

3. ** (Standard second order necessary conditions) Consider the
problem

inf f( x) }
subject to gi(X) ~ a for i. =: 1, 2, , m

hJ(x) - a forJ -l ,2, , q
x E Rn,

(7.4.11)

where all the fun ct ions are twice Frechet different iable at the local
minimizer x and the set of gradients

A = {'Vgi( x) li E 1(x)} U { 'Vhj (x) I j = 1,2 , . . . , q}

is linearly independent (where we denote the set of indices of the
act ive inequality constraints by 1(x) = {i I gi(X) = a}, as usual) .
By writing t his problem in the form (7.4.1) and applying Exercise 2,
prove there exist multipliers /-Ii in R + (for i in 1(x)) and >'1, >'2 , ... , >'q
in R such that t he Lagrangian

q

L(·) = f( ·) + L /-ligi +L >'jhj
iE I (x) j=1

sa t isfies the condit ions

'VL(x) = a and 'V2L(x)(d,d) :2: a for all d in Al- .

4. (Narrow and broad critical cones are needed) By considering
the set

and the problem
inf{x2 - <Xxi Ix E 8}

for var ious values of the real par ameter o, explain why the narrow
and broad crit ical cones cannot be interchan ged in eit her the Second
ord er necessary condit ions (7.4.2) or t he sufficient conditions (7.4.8).



7.4 Second Order Conditions 177

5. (Standard second order sufficient conditions) Write down the
second order sufficient optimality condit ions for t he genera l nonlinear
program in Exercise 3.

6. * (Guignard-type conditions) Consider the problem of Section
7.2, Exercise 10,

inf{f(x) Ih(x) E R , X ES } ,

where the set R c Y is closed and convex. By rewriting this problem
in t he form (7.4.1) , derive second order optimality condit ions.



Chapter 8

Fixed Points

8.1 The Brouwer Fixed Point Theorem

Many qu estions in optimizati on and ana lysis reduce to solving a nonlinear
equation h(x ) = 0, for some fun cti on h : E ---> E . Equiva lently, if we define
another map f = 1 - h (where I is t he identity map) , we seek a point x in
E satisfying f (x ) = x ; we ca ll x a fixed point of f .

The most po tent fixed point existence theorems fall into t hree cate
gor ies: "geometric" results , devo lving from the Banach contraction princi
ple (which we st ate below), "order-theoret ic" resul t s (to which we briefly
return in Section 8.3) , and "topological" results , for which t he prototype is
t he theo rem of Brouwer forming the main body of t his section. \Ve begin
wit h Banach 's result .

Given a set C c E and a cont inuous self map f : C ---> C , we ask
whether f has a fixed point. We call f a contraction if t here is a real
constant I f < 1 such that

Ilf (x) - f (y )11 :::; I f llx - yll for all x, y E C . (8.1.1 )

Theorem 8.1. 2 (Bana ch contraction) Any contraction on a closed sub
set of E has a unique fixed point .

Proof. Suppose the set C C E is closed and the fun cti on f : C ---> C
sati sfies the contraction condit ion (8.1.1). We apply the Ekeland vari ational
principl e (7.1.2) to the fun cti on

z E E t---> { li z- f (z)11
+00

if z E C
otherwise

at an arb it rary point x in C , with the choice of constants

to = Ilx- f (x )1I and >. = _ to_ .
1 - I f

179
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This shows there is a point v in C satisfying

Ilv- f( v) 11< li z- f( z)11+ (1 - ')' f )llz- vii

for all points z i= v in C . Hence v is a fixed point, since otherwise choosing
z = f (v) gives a contradiction. The uniqueness is easy. D

What if the map f is not a contraction? A very useful weakening of
the notion is the idea of a nonexpansive map, which is to say a self map f
satisfying

Ilf (x ) - f(y) 11 :::; Ilx - yll for all x , y

(see Exercise 2). A nonexpansive map on a nonempty compact set or a
nonempty closed convex set may not have a fixed po int, as simple examples
like translations on R or rotations of t he unit circle show. On t he other
hand, a straight forward argument using the Banach contraction theorem
shows this cannot happen if the set is nonempty, com pact, and convex.
However , in this case we have the following more fundamental resu lt .

Theorem 8.1.3 (Brouwe r ) Any continuous self map of a nonempty com
pact convex subset of E has a fixed point.

In this section we present an "analyst's approach" to Brouwer 's theo
rem. We use the two following important analytic tools concerning C(1)

(continuously differentiable) functions on the closed unit ball B e Rn .

Theorem 8 .1.4 (Stone-Weier stra ss) For any continuous map f : B --+

R " , there is a sequence of C(l) maps f r : B --+ R " converging uniformly
to f.

An easy exercise shows that , in this res ult, if f is a self map then we can
assume each l- is also a self map.

Theorem 8 .1.5 (Change of variable) Suppose that th e set W c R " is
open and that the C(1) map g : W --+ R n is one-to-one with \1g invertible
throughout W . Then the set g(W) is open with measure

fwIdet \1gl·

We also use the elementary topological fact that the open unit ball int B
is connected; t hat is, it cannot be written as the disjoint union of two
nonempty open sets .

The key step in our argum ent is the following topological result .

Theorem 8.1.6 (Retra ct ion) Th e unit sphere S is not a C(l) ret r act of
the unit ball B,. that is, there is no C(1) map from B to S whose restriction
to S is the identity.
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(8.1.7)

Proof. Suppose there is such a retraction map P : B --+ S . For real
t in [0,1], define a self map of B by Pt = tp + (1 - t)I. As a function
of the variables x E Band t , the function det VPt( x) is continuous and
hence strictly positive for small t. Furthermore, Pt is one-to-one for small
t (Exercise 7) .

If we denote the open unit ball B \ S by U , then the change of variables
theorem above shows for small t that Pt(U) is open with measure

vet) = 1det VPt .

On the other hand , by compactness , pt(B) is a closed subset of B , and we
also know Pt(S) = S . A little manipulation now shows we can write U as
a disjoint union of two open sets:

(8.1.8)

The first set is nonempty, since Pt(O) = tp(O) E U. But as we obs erved , U
is connecte d , so the second set must be empty, which shows pt(B) = B .
Thus the function vet) defined by equat ion (8.1.7) equals the volume of the
unit ball B for all small t.

However, as a function of t E [0,1]' vet) is a polynomial , so it must be
constant. Since P is a retraction we know that all points x in U satisfy
IIp(x) 11 2 = 1. Differentiating implies (Vp(x))p(x) = 0, from which we
deduce det Vp(x) = 0, since p(x) is nonzero . Thus v(l) is zero, which is a
contradiction. 0

Proof of Brouwer's theorem. Consider first a C(1) self map I on the
unit ball B . Suppose I has no fixed point. A straightforward exercise
shows there are unique fun ctions a : B ----+ R + and P : B --+ S satisfying
the relationship

p(x) = x + a(x)(x - I(x)) for all x in B . (8.1.9)

Geometrically, p(x) is the point where the line ext ending from the point
f( x) through the point x meets the unit sphere S. In fact P must then be a
C(1) retraction, contradicting the retraction theorem above. Thus we have
proved that any C(1) self map of B has a fixed point.

Now suppose the function I is just continuous. The Stone-Weierstrass
theorem (8.1.4) implies there is a sequence of C(l) maps IT : B --+ R"
converging uniformly to I , and by Exercise 4 we can assume each IT is a
self map . Our argument above shows each IT has a fixed point x", Since B
is compact, the sequence (xT

) has a subsequence converging to some point
x in B , which it is easy to see must be a fixed point of I. SOany continuous
self map of B has a fixed point.
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Finally, consider a nonempty compact convex set C c E and a contin
uous self map 9 on C . Just as in our proof of Minkowski 's theorem (4.1.8) ,
we may as well assume C has nonempty interior. Thus t here is a home
omorphism (a cont inuous onto map with cont inuous inverse) h : C --+ B
(see Exercise 11). Since the function h og 0 h- 1 is a cont inuous self map of
B , our argument above shows this function has a fixed point x in B , and
therefor e h - 1 (x) is a fixed point of g. 0

Exercises and Commentary

Good general references on fixed point t heory are [68, 174, 83]. The Ba
nach cont ract ion principle appeared in [7] . Brouwer proved the three
dimensional case of his theorem in 1909 [49] and the general case in 1912
[50], with another proof by Had amard in 1910 [89]. A nice exposit ion of t he
Stone-Weierstrass theorem may be found in [16], for example. The Chan ge
of variable theorem (8.1.5) we use can be found in [177]; a beautiful proof
of a simplified version, also sufficient to prove Brouwer 's t heore m, appeared
in [118]. Ulam conjectured and Borsuk proved their resul t in 1933 [17] .

1. (Banach iterates) Consider a closed subset C c E and a cont rac 
tion f : C --+ C with fixed point x l. Given any point Xo in C , define
a sequen ce of points induct ively by

Xr+ l = f( x r ) for r = 0,1 , . . ..

(a) Prove limr,s->oo Il xr - xs ll = 0. Since E is complete, the se
quence (xr ) converges. (Another approach first shows (x r ) is
bounded.) Henc e prove in fact tc; approaches xl. Deduce the
Banach cont ract ion theorem.

(b) Consider anot her cont ract ion 9 : C --+ C with fixed po int x" ,
Use par t (a) to prove the inequality

Il x i _ xg ll :::; SUPzEC Ilf(z) - g(z)ll .
1- I I

2. (Nonexpansive maps)

(a) If the n xn mat rix U is or thogonal , prove the map x E R" --+ Ux
is nonexpansive.

(b) If the set SeE is closed and convex then for any real >. in the
interval [0,2] prove the relaxed projection

x E E t---+ (1 - >.) x + >'Ps(x)

is nonexpan sive. (Hint: Use the nearest point characterizat ion
in Section 2.1, Exercise 8(c).)
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(c) (Browder-Kirk [51, 112]) Suppose the set C c E is compact
and convex and the map f : C ----> C is nonexpansive. Prove f
has a fixed point. (Hint: Choose an arbitrary point x in C and
consider the contractions

z E C f---t (1 - E) f (z ) + EX

for small real E > 0.)

(d)* In part (c) , prove the fixed points form a nonempty compact
convex set.

3. (Non-uniform contractions)

(a) Consider a nonempty compact set C c E and a self map f on
C satisfying the condition

Ilf(x) - f(y)11 < Ilx- yll for all distinct x, y E C .

By considering inf Ilx - f( x)ll, prove f has a unique fixed point .

(b) Show the result in part (a) can fail if C is unbounded.

(c) Prove the map X E [0,1] f---t x e- x satisfies the condition in part
(a) .

4. In the Stone-Weierstrass theorem , prove that if f is a self map then
we can assume each f r is also a self map.

5. Prove the interval (-1, 1) is connected . Deduce t he op en unit ball in
R" is connected.

6. In the Change of variable theorem (8.1.5) , use metric regularity to
prove the set g(W) is open.

7. In the proof of the Retraction theorem (8.1.6) , prove the map P is
Lipschitz, and deduce that the map Pt is one-to-one for small t. Also
prove that if t is small then det Vp, is strictly positive throughout B .

8. In the proof of the Retraction theorem (8.1.6) , prove the partition
(8.1.8), and deduce pt(B) = B .

9. In the proof of the Retraction theorem (8.1.6) , prove v(t) is a poly
nomial in t.

10. In the proof of Brouwer 's theorem , prove the relationship (8.1.9) de
fines a C(1) retraction P : B ----> S.
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11. (Convex sets homeomorphic to the b all) Suppose the compact
convex set C C E satisfies 0 E int C. Prove that the map h : C --+ B
defined by

h( ) = { /,c(X)ll x11 - 1x if x f= 0
x 0 if x = 0

(where /'0 is the gauge function we defined in Section 4.1) is a home
omorphism.

12. * (A nonclosed nonconvex set with the fixed point property)
Let Z be the subset of the unit disk in R 2 consisting of all lines
through the origin with rational slope. Prove every continuous self
map of Z has a fixed point.

13. * (Change of varia b le and B rouwer) A very simple proof may
be found in [118] of the form ula

when the function f is cont inuous with bounded support and the
function 9 is differentiable, equaling the identity outside a large ball .
Prove any such 9 is surjective by considering an f supported outside
the range of 9 (which is closed). Deduce Brouwer's theorem.

14. ** (Bro uwer and inversion) The central tool of the last chapter,
the Surjectivity and metric regularity theorem (7.1.5), considers a
function h whose strict derivative at a point satisfies a certain surjec
t ivity condition. In this exercise, which comes out of a long tradition,
we use Brouwer's theorem to consider functions h which are merely
Frechet differentiable. This exercise proves the following resu lt .

Theorem 8.1.10 Consider an open set U C E , a closed convex set
S C U, and a Euclidean space Y , and suppose the continuous func 
tion h : U --+ Y has Frechet derivative at the point xES satisfying
the surjectivity condition

\lh(x)Ts(x) = Y.

Then there is a neighbourhood V of h(x), a continuous, piecewis e
lin ear function F : Y --+ E , and a function 9 : V --+ Y that is Frechet
differentiable at h(x) and satisfies (F 0 g) (V) c Sand

h((F 0 g)(y)) = y for all y E V .

Proof. We can assume x = 0 and h(O) = O.
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(a) Use Section 4. 1, Exercise 20 (P ropert ies of the relat ive interior)
to prove V'h(O )(R+S) = Y .

(b) Deduce tha t there exists a basis YI , Y2, .. . , Yn of Y and points
U I , U 2 , ... , U n and WI, W2 , .. . , W n in S sat isfying

V'h(O)Ui = Yi = - V'h(O)wi for i = 1, 2, . . . , n .

(c) Prove the set

n n

B 1 = {L tiYi I t ERn, L Itil ::; I}
I I

and the fun ction F defined by

n n

F( L tiYi) = L (ttUi + (-ti)+Wi )
I I

satisfy F (Br) c S and V'(h 0 F )(O ) = J.

(d) Deduce there exis ts a real E > 0 such that EB y C B I and

Ilh(F(y)) - yll < I I ~ II whenever lIyll ::; 2c

(e) For any poin t v in t he neighbourhood V = (Ej2)B y , prove t he
map

Y E V I---> V + Y - h(F (y))

is a continuous self map of V.

(f) Apply Brouwer 's theorem to deduce the exist ence of 11 fixed point
g(v) for the map in part (e). Prove V'g(O ) = J , and hence
complete t he proof of the resul t.

(g) If x lies in the interior of S, prove F can be assumed lin ear.

(Exercise 9 (Nonexistence of multipliers) in Section 7.2 suggest s the
importance here of assuming h continuous.)

15. * (Knaster-Kuratowski-Mazurkiewicz principle [114]) In this
exercise we show the equivalence of Brouwer 's theorem with the fol
lowin g resul t.

Theorem 8.1.11 (KKM) Suppose fo r every point x in a nonempty
set X C E there is an associated closed subset lv/(x) C X . A ssum e
the property

conv Fe UM (x )
xE F
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holds for all finite subsets F eX. T hen for any finit e subset F C X
we have nM(x) i- 0.

xEF

Hence if some subs et M(x) is compact we have

nM(x) i- 0.
xEX

(a) Prove that t he final assertion follows from t he main part of t he
theorem using T heorem 8.2.3 (General definition of compact
ness) .

(b) (KKM implie s Brouwer) Given a continuous self map f on a
nonempty compact convex set C C E , apply t he KKM theorem
to the family of sets

M(x) = {y Eel (y - fey) , y - x ) ::; O} for x E C

to deduce f has a fixed point .

(c) (Brouwer implies KKM) With the hypotheses of the K KM
theorem, ass ume n xEFM(x) is empty for some finite set F . Con
sider a fixed point z of the self map

E F
2:xEF dM( x)(Y)x

y conv f--+

2:xEF dM( x)(Y)

and define F ' = {x E F I z rt M(x)} . Show z E conv F' and
derive a contradiction.

16. •• (Hairy b all theor em [140» Let Sn denote the E uclidean sphere

{x E R n+l Illxll = I} .

A tangent vector field on Sn is a function w : Sn ----+ R n+1 satisfying
(x , w( x» ) = 0 for a ll points x in Sn . This exercise proves the following
res ult.

Theorem 8 .1.12 For every even n, any con tinuous tangent vector
field on Sn must vanish somewhere.

Proof. Consider a nonvanishing continuous tangent vector field u
on s.;

(a) Prove there is a nonvanishing C(1) tangent vector field on Sn,
by using the Stone-Weierstrass theorem (8 .1.4) to approximate
u by a C(1) function p and then considering t he vector field

x E Sn f--+ p( x) - (x,p(x» )x .
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(b) Deduce the existe nce of a positively homogeneous e (1) fun ction
W : R n+l ~ R n+ 1 whose restriction to Sn is a unit norm e(l)

t angent vector field: II w(x)11 = 1 for all x in Sn.

Define a set

A = {x E R n +1 11 < 211xll < 3}

and use the field W in part (b) to define functions Wt : R n+1 ~ R n+1

for real t by

Wt( x) = x + tw(x) .

(c) Imit ate the proof of Brouwer 's theorem to prove the measure of
t he image set Wt (A) is a polynomial in t when t is small.

(d) Prove directly the inclusion wt(A ) C v'f+t2A.

(e) For any point y in v'f+t2A, apply the Banach contraction t he
orem to the function x E kB f-7 Y - tw(x ) (for large real k) to
deduce in fact

Wt(A ) = J1+t2A for small t .

(f) Complete t he proof by combining parts (c) and (e). 0

(g) If f is a continuous self map of Sn where n is even , prove eit her
f or - f has a fixed point.

(h) (Hedgehog theorem) Prove for even n that any nonvanishing
cont inuous vector field must be somewhere normal: I(x , f( x) )1 =

Ilf(x)11for some x in Sn'

(i) Find examples to show the Hairy ball theorem fails for all odd
n.

17. * (Borsuk-Ulam theorem) Let Sn denote the Euclidean sphere

{x E R n +1 I llxll = I} .

We state t he following resul t without proof.

Theorem 8.1.13 (Borsuk-Ulam) For any positive in tegers m ::;
n , if th e funct io n f : Sn ~ R '" is continuous th en th ere is a point x
in Sn sa tisfying f( x) = fe- x) .

(a) If m ::; n and the map f : Sn ~ R '" is cont inuous and odd,
prove f vani shes somewhere.
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(b) Prove any odd cont inuous self map f on Sn is surjective. (Hint:
For any point u in Sn , consider the function

:r E Sn f---7 f(x) - (f(x) ,u)u

and apply part (a) .)

(c) Prove the result in part (a) is equivalent to the following result :

Theorem 8.1.14 For posit ive integers m < n there is no con
tinuous odd map from Sn to Sm '

(d) (Borsuk-Ulam im p lies Brouwer [178]) Let B denote the
unit ball in R " , and let S denote the bo undary of B x [- 1, 1]:

S = {( x ,t) E B x [-1 ,1] I llxll = 1 or ItI = I}.

(i) If the map 9 : S --+ R " is continuous and odd, use part (a)
to prove g vanishes somewhere on S .

(ii) Consider a continuous self map f on B . By applying part
(i) to the function

(x , t) E S f---7 (2 - Itl)x - tf(tx) ,

prove f has a fixed point.

18. ** (Generalized Riesz lemma) Consider a smooth norm III ·111on
E (t hat is, a norm which is continuously differentiable except at the
origin) and linear subspaces U, Ve E satisfying dim U > dim V = n .
Denote the unit sp here in U (in t his norm) by S(U) .

(a) By choos ing a basis VI , V2 , . .. , V n of V and applying the Borsuk
Ularn theorem (see Exercise 17) to the map

prove there is a point x in S(U) satisfying "V III ' 111(x) ..1 V .

(b) Deduce the origin is the nearest point to x in V (in this norm) .

(c) With this norm, deduce there is a unit vector in U whose dis
tance from V is equal to one.

(d) V se t he fact that any norm can be uniformly approximated ar 
bitrarily well by a smooth norm to extend the result of part (c)
to arbitrary norms.

(e) Find a simpler proof when V c U .
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19. ** (Riesz implies Borsuk) In this question we use the generalized
Riesz lemma, Exercise 18, to prove the Borsuk-Ulam result, Exercise
17(a) . To this end, suppose the map f : Sn ----+ R" is continuous and
odd. Define functions

Ui : Sn ----+ R for i = 1,2, , n + 1

Vi : R" ----+ R for i = 1,2, , n

by Ui( X) = Xi and Vi(X) = Xi for each index i. Define spaces of
continuous odd functions on Sn by

U = span{uI,u2 , . . . .un +d
V = span {VI 0 f, V2 0 l, . . . ,V n 0 f}

E=U+V,

with norm Ilull = maxu(Sn) (for uin E).

(a) Prove there is a function u in U satisfying Ilull = 1 and whose
distance from V is equal to one .

(b) Prove u attains its maximum on Sn at a unique point y .

(c) Use the fact that for any function w in E , we have

(V'II · II(u))w = w(y)

to deduce f(y) = O.
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8.2 Select ion and the Kakutani-Fan Fixed
Point Theorem

The Brouwer fixed point theorem in the previous section concerns functions
from a nonempty compact convex set to its elf. In optimization, as we have
alread y seen in Section 5.4, it may be convenient to broad en our language
to consid er multifunctions n from the set to it self and seek a fixed point-a
point x sat isfying x E n(x) . To begin this section we summarize some
definitions for future reference.

We consider a subset K c E , a Euclidean space Y , and a mul t ifun ction
n : K --7 Y. We say n is USC at a point x in K if every open set U
cont aining n(x) also contains n(z) for all points z in K close to x .

Thus a multifunction n is USC if for any sequence of points (xn ) ap
proaching x, any sequence of elements Yn E n(x n ) is eventually close to
n(x) . If n is USC at every point in K we sim ply call it USC. On the
other hand, as in Section 5.4, we say n is LSC if, for every x in K , every
neighbourhood V of any point in n(x) intersects n(z) for all points z in K
close to x .

We refer to the sets n(x) (x E K) as the images of n. The multi
function n is a cusco if it is USC with nonempty compact convex images.
Clearly such multifunctions are locally bounded: any point in K has a
neighbourhood whose image is bounded . Cuscos appear in several impor
tant optimization contexts. For example, the Clarke su bdifferential of a
locally Lipschitz funct ion is a cusco (Exercise 5) .

To see anot her important class of examples we need a further definition.
We say a multifunction <I> : E --> E is monotone if it satisfies the condit ion

(u - v ,x - y) ~ 0 whenever U E <I>(x) and v E <I>(y) .

In particular, any (not necessaril y self-adjoint) positive semidefinite lin
ear operator is monotone, as is the subdifferential of any convex function.
One multifunction contains another if the graph of the first cont ains the
graph of the second. We say a monotone mul tifunction is maximal if the
only monotone multifunction containing it is itself. The subdifferentials
of closed proper convex functions are examples (see Exercise 16) . Zorn 's
lemma (which lies outside our immediate scope) shows any monotone mul
tifunction is cont ained in a maximal monotone multifunction.

T h eor e m 8 .2.1 (Maximal m on ot onicity ) Maximal monotone multi
fun ctions are cuscos on the interi ors of their domains .

Proof. See Exercise 16. o

Maximal monotone mul tifunctions in fact have to be single-valued gener
ically, that is on sets which are "large" in a topological sense, specifically
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on a dense set which is a "Go" (a countable intersection of open sets)-see
Exercise 17.

Returning to our main theme, the cent ral res ult of this section extends
Brouwer 's t heorem to the multifunction case.

Theorem 8.2.2 (Kakutani-Fan) If the set C c E is nonempty, compact
and convex, then any cusco 0 : C ----+ C has a fixed point.

Before we prove this result, we out line a lit tle more topology. A cover
of a set K c E is a collection of sets in E whose union contains K . The
cover is open if each set in the collect ion is open. A subcover is just a
subcollect ion of the sets which is also a cover. The following result , whi ch
we state as a t heorem, is in t ruth t he definition of compactness in spaces
more general t han E .

Theorem 8.2.3 (General definition of compactness) Any open cover
of a compact set in E has a finit e subcover.

Given a finit e op en cover {01 , O2 , . .. , Om } of a set K c E , a par
tition of unity subordinate to this cover is a set of cont inuous fun ctions
PI , P2, . . . ,Pm : K ----+ R + whose sum is identically equal t o one and satisfy
ing Pi( X) = 0 for all point s x ou tside O, (for each index i) ..We ou tline the
proof of the next result , a central to pologica l tool, in the exe rcises .

Theorem 8.2.4 (Partition of unity) Th ere is a partition of unity sub
ordinate to any finit e open cover of a compact subset of E .

Besid es fixed points, the other main t heme of this section is the idea
of a continuous selecti on of a multifunction 0 on a set K c E , by whi ch
we mean a cont inuous map f on K satisfying f (x ) E O(x) for all points x
in K . The cent ral step in our proof of the Kakutani-Fan t heorem is the
followin g "approximate selection" theorem .

Theorem 8.2.5 (Cellina) Given any compact set K c E , suppos e the
multifunction 0 : K ----> Y is US C with nonempty convex im ages. Th en
for any real f. > 0 there is a continuous map f : K ----> Y which is an
"approximate selection" of 0 :

dC Cf !) (x , f( x)) < f. for all points x in K . (8.2.6)

Furth ermore the range of f is contained in the convex hull of the range of
O.

Proof. We can assume the norm on E x Y is given by

II(x,y)IIEXY = Il xilE + Ilylly for all x E E and y E Y



192 8. F ixed Points

(since all no rms are equivalent- see Section 4.1, Exercise 2). Now, since
n is USC, for each point x in K there is a real 8x in t he interval (0, E/2)
satisfying

E
n(x + 8x BE ) c n(x) + 2By .

Since the sets x + (8x /2)int BE (as t he point x ranges over K ) comprise an
open cover of the compac t set K , there is a finite subse t { Xl , X 2 , " " X m }

of K with the sets Xi + (8d2)int BE comprising a finite subcover (where 8i

is shorthand for 8x i for each index i).
Theorem 8.2.4 shows there is a partition of unity Pl ,P2, . . . ,Pm: K ~

R + subordinat e to this subcover. We now construct our desir ed approxi
mate selection f by choosing a point Yi from n(Xi) for each i and defining

m

f( x) = I>i(X)Yi for all points x in K .
i =l

(8.2 .7)

Fix any poi nt x in K and define the set I = {i IPi (x) i= O} . By definition,
x satisfies Ilx - Xi II < 8d2 for each i in I . If we choose an ind ex j in I
maximizing 8j , the t riangle inequali ty shows Il xj - xiii < 8j , whence we
deduce the inclusions

E
Yi E n(Xi) C n(Xj + 8jBE ) c n(Xj) + 2By

for all i in I . In other words, for each i in I we know d~(xj )(Yi) ::::; E/2. Since
the dist ance function is convex, equat ion (8.2.7) shows d~(xj )(f(x)) ::::; E/2.
Since we also know Il x- Xj II < E/2, t his proves inequality (8.2.6) . T he final
claim follows immediately from equation (8.2.7). 0

Proof of the Kakutani-Fan theorem. With t he assumption of the
theorem , Cellina' s resul t above shows for each posit ive integer r there is a
cont inuous self map fT of C satisfyin g

1
dG(~)(x , fT(X)) < - for all points x in C .

r

By Brouwer 's theorem (8.1.3) , each i- has a fixed point x " in C, which
therefore sa tisfies

dG(~)(XT , z" ) < ~ for each r.
r

Since C is compact , the sequence (xT
) has a converge nt subsequence, and

its limit must be a fixed point of n because n is closed by Exercise 3(c)
(Closed versus USC). 0

In the next section we describe some vari ational applications of the
Kakutani-Fan theorem. But we end t his section with an exact selection
theorem par allel to Cellin a 's result but ass uming an LSC rather than a
USC mult ifunction.
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Theorem 8.2.8 (Michael) Given any closed set K c E , suppo se the
multifunction 0 : K -t Y is LSC with nonempty closed convex im ages.
Th en given any point (x, y) in G(O) , there is a continuous selection f of
o satisfying f( x) = y.

We ou tline t he proof in the exercises.

Exercises and Commentary

Many useful properties of cuscos are summarized in [27]. An exce llent
general reference on monotone operators is [153]. The topology we use in
t his section can be found in any standard text (see [67, 106], for example) .
The Kakutani -Fan theorem first appeared in [109] and was extended in
[74]. Cellina's approx imate select ion theorem appears , for example, in [4,
p . 84]. One example of the many uses of the Kakutani-Fan theorem is
establishing equ ilibr ia in mathematic al economics. T he Michael select ion
theorem appeared in [137].

1. (USC and continuity) Cons ider a closed subset K c E and a
multifunction 0 : K -t Y .

(a) Prove the multifun ction

X E E ~ { ~(x) for x E K
for x tf. K

is USC if and only if 0 is USC.

(b) Prove a fun ction f : K -t Y is cont inuous if and only if the
mul tifunction x E K ~ {f( x)} is USC.

(c) Prove a fun ction f : E -t [- 00, + 00] is lower semicontinuous at
a point x in E if and only if the multi fun ction whose graph is
the epigraph of f is USC at x.

2. * (Minimum norm) If t he set U c E is open and the multifunction
0 : U -t Y is USC , prove t he function g : U -t Y defined by

g( x) = inf{ll yll l y E O(x)}

is lower semicontinuous.

3. (Closed versus USC)

(a) If the multifunction <I> : E -t Y is closed and the mul tifunction
o :E -t Y is USC at the point x in E with O(x) compact , prove
the multifunction

z E E ~ O(z) n cI>( z)

is USC at x.
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(b) Hence prove that any closed multifunction with compact range
is USC.

(c) Prove any USC multifunction with closed images is closed .

(d) If a USC multifunction has compact images, prove it is locally
bounded.

4. (Composition) If the multifunctions 1> and 0 are USC prove their
composition x f--+ 1>(O(x» is also.

5. • (Clarke subdifferential) If the set U c E is open and the function
f : U --+ R is locally Lipschitz, use Section 6.2 , Exercise 12 (Closed
subdifferentials) and Exercise 3 (Closed versus USC) to prove the
Clarke subdifferential x E U f--+ oof(x) is a cusco.

6. ** (USC images of compact sets) Consider a given multifunction
0 : K --+ Y.

(a) Prove 0 is USC if and only if for every open subset U of Y the
set {x E K IO(x) c U} is open in K .

Now suppose K is compact and 0 is USC with compact images.
Using the general definition of compactness (8.2 .3), prove the range
O(K) is compact by following the steps below.

(b) Fix an open cover {Ul' I'Y E r} of O(K). For each point x in K,
prove there is a finite subset I'x of r with

(c) Construct an open cover of K by considering the sets

as the point x ranges over K .

(d) Hence construct a finite subcover of the original cover of O(K).

7. • (Partitions of unity) Suppose the set K c E is compact with a
finite open cover {01 , O2 , .. . , Om}.

(i) Show how to construct another open cover {VI, V2 , .. . , Vm } of
K satisfying cl Vi C O, for each index i. (Hint: Each point x in
K lies in some set Oi, so there is a real ri, > 0 with x+6xB c Oi;
now take a finite subcover of {x + 6xint B Ix E K} and build the
sets V; from it .)
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(ii) For each index i , prove the function qi : K -'> [0,1] given by

is well-defined and cont inuous, with qi ide nt ically zero outside
the set O«.

(iii) Deduce that the set of funct ions Pi : K -'> R + defined by

is a partition of unity subordinate to the cover {0 1 , O2 , . .. , Om} .

8. Prove the Kakutani -Fan theorem is also valid under the weaker as
sumption t hat t he images of the cusco 0 : C -'> E always intersect
t he set C using Exercise 3(a) (Closed versus USC) .

9. ** (Michael's theorem) Suppose all the assumptions of Michael 's
theorem (8.2.8) hold. We cons ider first the case with K compact .

(a) F ix a real E > O. By construct ing a partit ion of unity subord inate
to a finite subcover of the open cover of K consisting of the sets

Oy = {x E E l dn(x)(Y) < E} for yin Y ,

cons t ruct a continuous function I : K -'> Y satisfying

dn(x)(f(x» < E for all point s x in K .

(b) Construct a sequence of continuous functions iI ,12 , . . . : K -'> Y
sat isfying

dn(X)(fi( X» < 2- i for i = 1,2 , .

IIIi+1(x) -li(x)11 < 21- i for i=1,2, .

for all po ints x in K. (Hint : Construct iI by applying part (a)
with E = 1/2; then construct I i+ 1 induct ively by applying part
(a) to the multifunction

with E = 2- i - 1 •

(c) The fun ctions Ii of part (b) must converge uniformly t o a con
tinuous fun ct ion f. Prove I is a continuous selection of O.
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(d) Prove Michael' s theorem by applying par t (c) to the mult ifunc
tion

if x =I- x
if x = ii ,

(e) Now extend to the general case where K is possibly unbounded
in the following steps. Define sets K n = K n nBE for each
n = 1, 2, . . . and apply the compact case to the multifunction
0 1 = OIK, to obtain a continuous selection gl : K 1 ---. Y . Then
induct ively find a continuous selection gn+1 : Kn+l ---. Y from
the mult ifunction

o (x) - { {gn(x)}
n+1 - O(x)

for x E K n

for x E K n+1 \ K n

and prove the function defined by

I(x) = gn(x) for x E K n, n = 1,2, . ..

is the required selection.

10. (Hahn-Katetov-Dowker sandwich theorem) Suppose the set
K c E is closed.

(a) For any two lower semicontinuous functions I, 9 : K ---. R satis
fying I ~ -g, prove there is a continuous function h : K ---. R
satisfying I ~ h ~ - g by cons idering the multifunction x f--7

[-g(x),I(x) ]. Obs erve the result also holds for extended-real
valued I and g.

(b) (Urysohn lemma) Suppose the closed set V and t he open
set U satisfy V cUe K . By applying part (i) to suitable
functions, prove there is 11 continuous function I : K ---. [0,1]
that is ident ically equal to one on V and to zero on UC.

11. (Continuous extension) Consider a closed subset K of E an d a
continuous function I : K ---. Y . By cons ider ing the multifunction

O(x) _ { {I( x)}
- cl (conv I(K))

for x E K
for x ~ K,

prove there is a continuous function 9 : E ---. Y satisfying g lK = I
and geE) c cl(conv I(K)) .

12. * (Generated cuscos) Suppose the multifunction 0 K ---. Y is
locally bound ed with nonempty images .
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(a) Among those cuscos containing 0, prove there is a unique one
with minimal graph, given by

1>(x) = nclconv (O(x + EB)) for x E K.
<>0

(b) If K is nonempty, compact, and convex, Y = E , and 0 satisfies
the conditions O(K) c K and

x E 1>(x) =} x E O(x) for x E K ,

prove 0 has a fixed point.

13. * (Multifunctions containing cuscos) Suppose the multifunction
o : K -+ Y is closed with nonempty convex images, and the funct ion
f : K -+ Y has the property that f (x) is a point of minimum norm
in O(x) for all points x in K. Prove 0 contains a cusco if and only if
f is locally bounded. (Hin t: Use Exercise 12 (Generated cuscos) to
consider the cusco generated by f .)

14. * (Singleton points) For any subset D of Y , define

s(D) = inf{r E RID c y + r Bv for some y E Y} .

Consider an open subset U of E .

(a) If the multifunction 0 : U -+ Y is USC with nonempty images,
prove for any real E > 0 the set

S< = {x E U I s(O(x )) < E}

is open. By considering the set nn>lSl /n, prove t he set of points
in U whos e image is a singleton is a Go.

(b) Use Exercise 5 (Clarke subdifferential) to prove that the set of
points where a locally Lipschitz function f : U -+ R is strictly
differentiable is aGo . If U and f are convex (or if f is regular
throughout U) , use Rademacher's theorem (in Section 6.2) to
deduce f is generically differentiable.

15. (Skew symmetry) If the matrix A E M n satisfies 0 i- A = -AT ,
prove the multifunction x ERn J--+ xT Ax is maximal monotone, yet
is not the subdifferent ial of a convex function .

16. ** (Monotonicity) Consider a monotone multifunction 1> : E -+ E.

(a) (Inverses) Prove 1> -1 is monotone.

(b) Prove 1> - 1 is maximal if and only if q> is.



198 8. Fixed Points

(c) (Applying maximality) Prove <I> is maximal if and only if it
has the property

(u - V,x - y) 2:: 0 for all (x ,u) E G(<I» =} v E <I>(y) .

(d) (Maximality and closedness) If <I> is maximal, prove it is
closed with convex images.

(e) (Continuity and maximality) Supposing <I> is everywhere
single-valued and hemicontinuous (that is, continuous on ev
ery line in E), prove it is maximal. (Hint: Apply part (c) with
x = y + tw for w in E and t lOin R.)

(f) We say <I> is hypermaximal if <I> + AI is surjective for some real
A > O. In this case , prove <I> is maximal. (Hint: Apply part (c)
and use a solution x E E to the inclusion v + Ay E (<I> + AI) (x) .)
What if just <I> is surjective?

(g) (Subdifferentials) If the function f : E --+ (00, +00] is closed,
convex , and proper, prove of is maximal monotone. (Hint : For
any element ¢ of E , prove the function

x E E f-7 f(x) + IIxl1 2 + (¢,x)

has a minimizer, and deduce of is hypermaximal.)

(h) (Local boundedness) By completing the following steps, prove
<I> is locally bounded at any point in the core of its domain.

(i) Assume 0 E <I>(O) and 0 E coreD(<I», define a convex func
tion g : E --+ (00, +00] by

g(y) = sup{(u,y - x) Ix E B , u E <I>(x)}.

(ii) Prove D(<I» C domg.

(iii) Deduce g is continuous at zero .

(iv) Hence show Ig(y)1 :::; 1 for all small y , and deduce the result.

(j) (Maximality and cuscos) Use parts (d) and (h), and Exercise
3 (Closed versus USC) to conclude that any maximal monotone
multifunction is a cusco on the interior of its domain.

(k) (Surjectivity and growth) If <I> is surjective, prove

lim 11<I>(x)II = +00.
Ilxll--->oo

(Hint: Assume the maximality of <I> , and hence of <I>-l ; deduce
<I>-l is a cusco on E, and now apply Exercise 6 (USC images of
compact sets).)
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17. ** (Single-valuedness and maximal monotonicity) Consider a
maximal monotone mul tifunction D : E ----> E and an op en subse t U
of it s domain, and define the minimum norm funct ion 9 : U ----> R as
in Exer cise 2.

(a) Prove 9 is lower semicont inuous . An applicat ion of t he Baire
catego ry theorem now shows that any su ch function is gene ri
cally conti nuous .

(b) For any point x in U at which 9 is cont inuous, prove D(x) is a
singleton . (Hint : Prove 11 ·11is constant on D(x) by first ass uming
y, z E D(x) and Ilyll > Ilzll , and then using the condit ion

(w - y , x + ty - x) ~ 0 for all small t > 0 and wE D(x + ty)

to derive a cont radict ion. )

(c) Conclude t hat any maximal mo notone multifunction is generi
cally single-valued.

(d) Deduce that any convex function is generically di fferen tiable on
the inte rior of it s domain .
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8 .3 Variational Inequalities

At the very beginning of t his book we considered the problem of minimizing
a differentiable fun ction f : E ~ R over a convex set C c E . A necessary
optimali ty condition for a point xo in C to be a local minimizer is

or equivalently

(\7f( xo), x - xo) 2: 0 for all points x in C ,

oE \7 f( xo) + Nc(xo).

(8.3.1)

If the fun ction f is convex instead of differentiab le, the necessary and suf
ficient condit ion for optimality (assuming a constraint qualification) is

oE 8f(xo) + Nc(xo) ,

and there are analogous nonsmooth necessary condit ions.
We call problems like (8.3.1) "variat ional inequalities" . Let us fix a

mult ifunct ion D : C ~ E. In this section we use t he fixed point t heory we
have developed to study t he multivalued vari ational inequality

v I(D ,C ): Find point s Xo in C and Yo in D(xo) sa t isfying
(Yo,x - xo) 2: 0 for all points x in C .

A more concise way to wri te t he problem is this:

F ind a point Xo in C satisfying 0 E D(xo) + Nc(xo ). (8.3 .2)

Suppose t he set C is closed, convex, and nonempty. Recall that the
projection Pc : E ~ C is the (conti nuous) map t hat sends point s in E
to their unique nearest points in C (see Section 2.1 , Exercise 8) . Using
t his not ati on we can also write the vari ati on al inequality as a fixed point
problem:

Find a fixed point of Pc 0 (I - D) : C ~ C . (8.3 .3)

This reformulation is useful if the multifunction D is sing le-valued, but less
so in general because the composition will often not have convex images.

A more versatil e approach is to define t he (multivalued) normal map
ping Dc = (D 0 Pc) + 1 - Pc , and repose t he problem as follows:

Find a point x in E sat isfying 0 E Dc(x) . (8.3.4)

Then setting Xo = Pc(x) gives a solut ion to the original problem. Equiva
lently, we could phrase this as follows:

F ind a fixed point of (I - D) 0 Pc : E ~ E. (8.3.5)
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As we shall see , this last formulation let s us immediately use t he fixed point
theory of the previous section.

The basic result gu aranteeing the existence of solutions to variational
inequalities is the following.

Theorem 8.3.6 (Solvability of variational inequalities) If the subset
C of E is compact, convex, and nonempty, then for any cusco 0 : C ----> E
the variational in equality V 1(0 , C) has a solution.

Proof. We in fact prove Theorem 8.3.6 is equivalent to the Kakutani-Fan
fixed point theorem (8.2.2).

When 0 is a cusco it s range O(C) is compact -we ou tline t he proof
in Section 8.2, Exercise 6. We can easily check t hat the multifunction
(I - 0) 0 Pc is a lso a cusco because the projection Pc is continuous. Since
this mult ifun ction maps t he compact convex set conv (C - O(C )) into itself,
t he Kakut ani -Fan theorem shows it has a fixed point , which, as we have
already observed , implies the solvability of V 1(0, C) .

Conversely, suppose the set C c E is nonempty, compact, and convex .
For any cusco 0 : C ----> C , the Solvabili ty theorem (8.3.6) implies we can
solve the variational inequality V1(1 - 0 , C) , so t here ar e po ints Xo in C
and Zo in O(xo) satisfying

(xo - Zo, x - xo) 2: 0 for all points x in C.

Set ting x = Zo shows Xo = Zo, so Xo is a fixed point. o

An elegant application is von Neumann 's minimax t heorem, which we
proved by a Fenchel duali ty argument in Section 4.2, Exercise 16. Consider
Euclidean spaces Y and Z , nonempty compact convex subsets F eY and
G c Z , and a linear map A : Y ----> Z . If we define a function 0 : F x G ---->

Y x Z by O(y , z) = (-A*z , Ay) , then it is easy to see that a point (yo, zo)
in F x G solves the variational inequality V1(0,F x G) if and only if it is
a saddlepoint:

(zo, Ay) ::; (zo, Ayo) ::; (z, Ayo) for all y E F , z E G.

In particular , by the Solvability of variational inequali ti es theorem, there
exists a saddlepoint, so

minmax (z ,Ay) = max min (z, A y).
zE G y E F y E F z EG

Many interesting variational inequalities involve a noncompact set C .
In such cases we need to impose a growt h condit ion on the multifunction
to guarantee solvability. The following resul t is an example.
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Theorem 8.3.7 (Noncompact variational inequalities)
C of E is nonemp ty, closed, and conv ex, and the cusco D
coercive, that is, it satisfies the conditi on

If the subset
C ----> E is

(8.3.8)

(8.3.9)

(8.3.10)

liminf inf (x , D(x) + Nc(x)) > 0,
Ilxll->oo, x EC

then the vari ational inequality V I(D , C) has a solution.

Proof. For any large integer r, we can apply the solvability theorem (8.3.6)
to the variat ional inequality V I (D, C n rB ) to find a poi nt x; in C n 1'B
satisfying

o E D(xr) + Ncnrdxr )

= D(xr ) + Nc(xr ) + NrB (x r )

C D(x r) + Nc(xr ) + R +x r

(using Section 3.3, Exercise 10). Hence for all large r , the po int X r satisfies

inf (x r , D(xr) + Nc(xr )) ::; O.

This sequence of points (xr ) mus t t herefore remain bounded , by t he co
ercivity conditi on (8.3.8) , and so X r lies in int rB for large r and hence
satisfi es 0 E D(xr) + Nc(xr ), as requi red . D

A straightforward exercise shows in par ti cul ar that the growt h condit ion
(8.3.8) holds whenever the cusco D is defined by x E R" f---+ xT A x for a
matrix A in S++.

The most important example of a noncompact var iat ional inequality
is t he case when the set C is a closed convex cone S e E . In this case
V I(D , S) becomes the multivalued complementarity problem:

F ind points Xo in S and Yo in D(xo ) n (- S-)
satisfying (xo ,Yo) = O.

As a par t icul ar example, we consider t he dual pair of abst ract linear pro
grams (5.3.4) and (5.3.5) :

inf{ (c, z) IA z - b E H , z E K}

(where Y is a Euclidean space, t he map A : E ----> Y is linear , the cones
HeY and K C E ar e closed and convex, and b and c are given elements
of Y and E resp ectively) , and

(8.3.11)

As usual , we denote the corresponding pri mal and dual opt imal values by
p and d. We consider a corresponding variational inequality on the space
E xY:

VI(D ,K x (-H-)) with D(z ,¢) = (c-A*¢ ,Ax-b) . (8.3.12)
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Theorem 8.3.13 (Linear programming and variational inequali
ties) Any solution of the above variational inequality {8.3.12} consists of
a pair of optim al soluti ons fo r the linear programming dual pair {8.3.1 O}
and {8.3.11}. Th e conve rse is also true, providing there is no duali ty gap
{p = d}.

We leave the proof as an exercise.
Not ice t hat the linear map appearing in the above example, namely

M : E x Y --> E x Y defined by M( z , ¢) = (-A*¢ , A z) , is monotone. We
st udy monotone complementarity problems fur ther in Exercise 7.

To end t his sect ion we return to the complementarity problem (8.3.9)
in the special case where E is R n , t he cone S is R~ , and t he multi function
o is single-valued: O(x) = {F( x)} for all points x in R~ . In other words ,
we conside r the followin g problem :

Find a point Xo in R~ satis fyin g F (xo) E R~ and (xo, F( xo) ) = O.

The lat tice operation 1\ is defined on R " by (x I\Y) i = min{x i' yd for po ints
x and y in R " and each index i . With t his notation we can rewrite t he
above problem as the following order complementarit y problem.

OCP( F) : F ind a point Xo in R~ sat isfying Xo 1\ F(xo) = O.

The map x E R " f--+ X 1\ F(x) E R " is sometimes ame nable to fixed point
methods.

As an example, let us fix a real a > 0, a vector q E R n, and an n x n
matrix P with nonnegative ent ries , and define the map F : R " --> R"
by F(x ) = ax - P x + q. Then t he complementarity problem OCP(F) is
equivalent to finding a fixed point of the map <I> : R n --> R n defined by

1
<I>(x) = - (0 V (P x - q)),

a

a problem t hat can be solved it eratively (see Exercise 9) .

Exercises and commentary

(8.3.14)

A survey of variat ional inequalities and complementarity problems may be
found in [93J. The normal mapping Oc is especially well stud ied when
the multifunction 0 is single-valued with affine components and the set
C is polyhedral. In this case the normal mapping is piecewise affine (see
[164]). Mor e generally, if we restrict the class of multifunctions 0 we wish
to cons ide r in t he variational inequality, clearly we can correspondingly
restrict t he versions of the Kakutani -Fan theorem or normal mappings we
st udy. Order complementarity problems are studied fur ther in [26J . The
Nas h equilibrium theorem (Exercise 10(d)), which appeared in [147], asse rts
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the exis te nce of a Pareto efficient choice for n individuals consuming from
n associated convex sets with n associated joint cost functions.

1. Prove the equivalence of t he vari ous formulations (8.3.2) , (8.3.3) ,
(8.3.4) and (8.3.5) with the original variational inequality V1(0" C).

2. Use Section 8.2, Exercise 4 (Composition) to prove t he mul tifunction

(1 - 0,) 0 Pc

in the proof of Theorem 8.3.6 (Solvability of vari ational inequali ti es)
is a cusco.

3. Consider Theorem 8.3.6 (Solvability of variational inequalities) . Use
the fun ction

x E [0, 1] f---7 { ~
-1

if x> 0

if x = 0

to prove the assumption in the theorem- that the multifunction 0, is
USC- cannot be weakened to 0, closed .

4. * (Variational inequalities containing cuscos) Suppose the set
C c E is nonempty, compact , and convex, and consider a mul tifunc
t ion 0, : C ----7 E .

(a) If 0, contains a cusco, prove t he variational inequality V 1(0" C)
has a solution.

(b) Deduce from Michael 's theorem (8.2.8) that if 0, is LSC with
nonempty closed convex images then V 1(0" C) has a solution.

5. Check the details of the proof of von Neumann's minimax theorem.

6. Prove Theorem 8.3.13 (Linear programming and variational inequal
ities) .

7. (Monotone complementarity problems) Suppose the linear map
M : E ----7 E is monotone.

(a) Prove the funct ion x E E f---7 (M x, x) is convex.

For a closed convex cone 8 c E and a point q in E , consider the
optimization problem

inf{(Mx + q,x) IM x+q E -8- , x E 8} . (8.3.15)

(b) If the condit ion -q E core (8 - + M8) holds, use t he Fenchel
duality theorem (3.3.5) to prove problem (8.3.15) has optimal
value zero .
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(c) If the cone S is po lyhedral, problem (8.3.15) is a convex "quad
ratic program" : when the optimal value is finite , it is known that
there is no duality gap for such a problem and its (Fenchel) dual ,
and that both problems attain their optimal value . Deduce that
when S is polyhedral and contains a point x with M x +q in - S - ,
there is such a point satisfying the additional complementarity
condit ion (M x + q,x) =0.

8. * Consider a compact convex set C C E satisfying C = - C and a
continuous function f : C ---+ E. If f has no zero es, prove t here is
a point x on the boundary of C satisfying (j(x),x ) < O. (Hint: For
positive integers n, consider V I (f + 1/ n ,C).)

9. (Iterative so lut io n of OCP [26]) Consider the order complemen
tarity problem OCP(F) for t he function F that we defined before
equation (8.3.14) . A point xOin R +. is feasible if it satisfies F(xO) 2 O.

(a) P rove the map <]} in equation (8.3.14) is isotone: x 2 y implies
<I>(x) 2 <I>(y) for points x and y in R " .

(b) Suppose the point xO in R +. is feasible. Define a sequence (x r) in
R +. inductively by x r+1 = <]}(x r ) . Prove this sequence decreases
monotonically: X~+ l ~ xi for all rand i .

(c) Prove the limit of the sequence in part (b) solves OCP(F).

(d) Define a sequence (yr) in R+. ind uctively by yO = 0 and y1'+1 =
<I>(yr). Prove this sequence increases monotonically.

(e) If OCP(F) has a feasible solut ion, prove the sequenc e in part
(d) converges to a limit y which solves OCP(F). W hat happens
if OCP(F) has no feasib le solution?

(f) Prove the limit y of part (e) is the minimal solution of OCP(F):
any ot her solution x satisfies x 2 y.

10. * (Fan minimax inequality [74]) We call a real function 9 on a
convex set C C E quasiconcave if the set {x E C Ig(x) 2 a} is convex
for all real a .

Suppose t he set C C E is nonempty, compact, and convex.

(a) If the function f : C x C ---+ R has the properties that the
function f (', y) is qu asiconcave for all points y in C and the
function f (x , .) is lower semicontinuous for all points x in C ,
prove Fan's inequality:

minsupf(x,y) ~ sup j'(zi;,») .
y x x



206 8. Fixed Points

(Hint : Apply t he KKM theorem (Section 8.1, Exercise 15) to
the family of sets

{y E C I f( x ,y)::; ,B} for x E C,

where ,B denotes the right hand side of Fan's inequality.)

(b) If the funct ion F : C ----+ E is cont inuous, apply Fan's inequality
to the function f( x , y) = (F (y), y - x) to prove the vari ational
inequality V I(F, C) has a solution .

(c) Deduce Fan 's inequali ty is equivalent to the Brouwer fixed point
t heorem.

(d) (Nash equilibrium) Define a set C = C1 X C2 X . . . X Cn,
where each set C, C E is nonempty, compact, and convex . For
any cont inuous functions [s . 12 ,. . . ,f n : C ----+ R , if each function

is convex for all elements y of C , prove there is an element y of
C satisfying the inequ ali ties

(Hint : Consider t he function

and apply Fan 's inequali ty.)

(e) (Minimax) Apply t he Nash equilibrium result from part (d) in
the case n = 2 and fl = - 12 to deduce t he Kakutani minimax
t heorem (Section 4.3, Exercise 14) .

11. (Bolzano-Poincare-Miranda intermediate value theorem)
Consider the box

J = {x E R n 10 ::; Xi ::; 1 for all i}.

We call a conti nuous map f : J ----+ R" reversing if it satisfies t he
condit ion

f i( X)fi(Y) ::; 0 whenever Xi = 0, Yi = 1, and i = 1,2 , . . . , n .

P rove any such map vanishes somewhere on J by completi ng t he
following ste ps:

(a) Observe the case n = 1 is just the classical intermediate value
theorem.
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(b) For all sm all real E > 0, prove the function r = f + eI satisfies
for all i

x. - 0 and . - 1 ::::} { either f t(y) > 0 and f iE(X) ::; 0
, - y, - or f Hy) < 0 and f iE(X) :2: o.

(c) l,From part ~) , deduce there is a function 1', defined coordi
natewise by ft = ±fiE, for some suitable choice of signs, satisfy
ing the condit ions (for each i)

h' (x ) ::; 0 whenever Xi = 0 and

h' (x ) > 0 whenever Xi = l.

(d ) By conside ring the variational inequality V 1(1' , .1), prove t here
is a point x E in .1 satisfying 1' (x E

) = o.
(e) Complete t he proof by letting E approach zero.

12. (Coercive cuscos) Consider a multi function n : E -7 E with non
empty images.

(a) If n is a coercive cusco, prove it is surjective.

(b) On the other hand, if n is monotone, use Section 8.2, Exercise
16 (Monot onicity) to deduce n is hyperm aximal if and only if it
is maximal. (We generalize thi s result in Exercise 13 (Monot one
vari ational inequalit ies) .)

13. ** (Monotone variational inequalities) Consider a continuous
fun ction G : E -7 E and a monotone mul tifunction <I> : E -7 E .

(a) Given a nonempty compact convex set K c E, prove there is
point Xo in K sa t isfying

(X - Xo,Y + G(xo) ) :2: 0 for all X E K , y E <I>(x )

by completing the following st eps:

(i) Assuming t he result fails , show the collection of sets

{ X E K I (z - X, W+ G(x) ) < O} for Z E K , w E <I>(z)

is an op en cover of K .

(ii) For a partition of unity PI, P2, . . . ,Pn subordinate to a finite
subcover K I ,K 2, .. . K n corresponding to points Zi E K and
Wi E <I>(Zi) (for i = 1,2, . . . , n) , prove t he funct ion

is a continuous self map of K.
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(iii) Prove the inequ ality

(l (x ) - X,L i Pi(X)Wi + G(x) )

LPi(X)Pj( x) (Zj - X,Wi + G(x»)
i ,j

< 0

by considering the terms in the double sum where i = j and
sums of pairs where i i= j separately.

(iv) Deduce a cont rad ict ion with part (ii) .

(b) Now assume G satisfies the growt h condit ion

n IIG( )11 dr' f (x, G(x) )
IIx lt~oo x = +00 an I I~rv~~ Il xIIIIG(x)11 > O.

(i) Prove t here is a point Xo in E satisfying

(x - Xo,Y + G(xo) ) 2:: 0 whenever y E <I> (a;).

(Hint : Apply part (a) with K = nB for n = 1,2, . . . .)
(ii) If <I> is maximal, deduce -G(xo) E cI>(xo).

(c) Apply part (b) to prove t hat if <I> is max imal then for any real
A > 0, the multifunction <I> + AI is surjective.

(d) (Hypermaximal {:} maximal) Using Section 8.2, Exercise 16
(Monotonicity) , deduce a monotone mult ifunction is maximal if
and only if it is hyp ermaximal.

(e) (Resolvent) If <I> is maximal then for any real A > 0 and any
po int y in E prove there is a unique point x sat isfying the inclu
sion

Y E <I>(x) + AX.

(f) (Maximality and surjectivity) Prove a max imal <I> is surjec
ti ve if and only if it sat isfies the growth condit ion

lim inf 11cI>(x) II = +00.
II x 11---> 00

(Hint: The "only if" direction is Section 8.2, Exercise 16(k)
(Monotonicity) ; for the "if" dir ect ion, apply part (e) with A =

l in for n = 1,2, .. ., obtaining a sequenc e (x n ) ; if th is sequence
is unbounded, apply maximal monotonicity.)

14. * (Semidefinite complementarity) Define F : S" x S" ----7 S" by

F (U,V) = U + V - (U2 + V2)1/ 2.

For any function G : S" ----7 S" , prove U E S" solves the variational
inequality VI(G,S+-) if and only if F(U,G(U» = O. (Hint : See
Section 5.2, Exercise 11.)
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Monotonicity via convex analysis

209

Many important properties of monotone multifunctions can be derived us
ing convex analysis, without using the Brouwer fixed point theorem (8.1.3) .
The following sequence of exercises illustrates the ideas. Throughout , we
consider a monotone mul ti function <I> : E ~ E . The point (u,v) E E x E
is monotonically related to <I> if (x - 71, Y - v) ~ 0 whenever y E <I>(x ):
in other words, appending this point to the graph of <I> does not destroy
monotonicit y. Our main aim is to prove a cent ral case of the Debrunner
Flor extension theorem [59]. The full theorem st ates t hat if <I> has range
contained in a nonempty compact convex set C c E , and the function
j : C ~ E is cont inuous , then t here is a po int c E C such that t he point
(f( c),c) is monotonically related to <I> . For an accessible derivation of this
resul t from Brouwer 's theorem , see [154]: the two results arc in fact equiv
alent (see Exercise 19).

We call a convex fun ct ion H : Ex E ~ (00, +00] representative for <I>
if all points x , y E E sa tisfy H( x ,y) ~ (x , y) , with equality if y E <I>(x) .
Following [79], t he Fitzpatrick junction F it> : E x E ~ [-00, + 00] is defined
by

Fit>(x ,y) = sup{(x, v) + (u, y) - (u,v) I v E <I>(u)} ,

while [171, 150] the convexified representati ve Pit> : E x E ~ [- 00, + 00] is
defined by

Tn

Pit>(x ,y) = inf {L Ai( Xi ,Yi) 1 m E N , A E R 't ,
i = l

m

LAi(x i'Y i , l ) = (x ,y,I) , u, E <I>(xd Vi }.
i=l

These const ructions are explored extensively in [30, 43, 172].

15. (Fitzpatrick representatives)

(a ) Prove the F it zpat rick fun ct ion Fit> is closed and convex.

(b) Prove Fit>( x , y ) = (x , y) whenever y E <I>(x) .

(c) Prove Fit> is represent ative providing <I> is maximal.

(d) Find an example where Fit> is not representative.

16. (Convexified representatives) Consider points x E E and y E

<I>(:r) .

(a) Prove P it> (x , y) :::; (x , y).

Now conside r any points u, v E E.
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(b) Prove P<t>(u,v) ~ (u, y) + (x ,v)- (x, y).

(c) Deduce P<t>(x, y) = (x, y).

(d) Deduce P<t>(x ,y) + P<t>(u,v) ~ (u , y) + (x, v).

(e) Prove P<t>(u,v) ~ (u,v) if (u,v) E convG(<I» and is + 00 other
wise.

(f) Deduce that convexified representatives are indeed both convex
and representative .

(g) Prove P; = F <t> ::::: F ,i, .

17. * (Monotone multifunctions with bounded range) Suppose
that the monotone multifunction <I> : E --+ E has bounded range
R(<I» , and let C = cl conv R(<I» . Apply Exercise 16 to prove the
followin g properties.

(a) Prove the convexity of the function f : E --+ [-00, + 00] defined
by

f( x) = inf{P<t> (x , y) lyE C} .

(b) Prove that t he function 9 = infy E c ( . , y) is a continuous concave
minorant of f .

(c) Apply the Sandwich theorem (Exercise 13 in Section 3.3) to
deduce the exist ence of an affine fun ction 0: sa t isfying f ~ 0: ~ g .

(d) Prove that the point (0, 'V0:) is monotonically related to <I> .

(e) Prove 'Vo: E C .

(f) Given any point x E E , show that <I> is cont ained in a monotone
multifun ction <I>' with x in it s domain and R( <I>') c c.

(g) Give an alternative proof of part (f) using the Debrunner-Flor
extension theorem.

(h) Extend part (f) to monotone multifunctions with unbounded
ranges, by assuming that the point x lies in t he set int dom f 
dom be ' Express this conditi on explicitly in terms of C and t he
domain of <I>.

18. ** (Maximal monotone extension) Suppose the monotone mul
tifunction <I> : E --+ E has bounded range R( <I» .

(a) Use Exercise 17 and Zorn 's lemma to prove that <I> is contained
in a monotone multifunction <I>' with domain E and range con
tained in cl conv R( <I> ) .

(b) Deduce that if <I> is in fact maximal monotone, t hen it s domain
is E .
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(c) Using Exerc ise 16 (Local boundedness) in Section 8.2, prove t hat
the multifunction <P" : E ----> E defined by

<I>"(x) = ncl conv<I>'(x + lO B )
€>o

is bo th monotone and a cusco.

(d) Prove that a monotone multifunction is a cusco on the interior
of its domain if and only if it is maxim al monotone.

(e) Deduce that <I> is contained in a maximal mo notone multifun c
tion with domain E and range contained in cl conv R( <I» .

(f) Apply part (e) to <I> -1 to deduce a par allel result.

19. ** (Brouwer via D ebrunner-Flor) Consider a nonempty compact
convex set D C int B and a cont inuous self map 9 : D ----> D. By
applying the Debrunner-Flor extension t heorem in the case where
C = B , the multifunct ion <P is the ident ity map, and f = g o PD

(wh ere PD is t he nearest point projection) , prove that 9 has a fixed
point.

In similar fashion one may establish that the sum of two maximal
monotone multifunctions S and T is maximal assuming t he condit ion 0 E

core (dom T - dom S) . One commences with the Fit zpatrick inequality
that

F T( X,x* ) + F s(x , - x* ) :::: 0,

for all x, x* in E. This and many other applicati ons of representa tive
funct ions are descr ibed in [30].



Chapter 9

More N onsmooth
Structure

9.1 Rademacher's Theorem

We mentioned Rademacher's fundamental theorem on the differentiability
of Lipschitz functions in the context of the Intrinsic Clarke subdifferential
formula (Theorem 6.2.5):

(9.1.1)

valid whenever the function f : E -> R is locally Lipschitz around the
point x E E and the set Q c E has measure zero. We prove Rademacher 's
theorem in this section, taking a sligh t diversion into some basic measure
theory.

Theorem 9. 1. 2 (Rademacher) Any locally Lipschitz map between Euc
lidean spaces is Frech et differentiable almost everywhere.

Proof. Without loss of generality (Exercise 1), we can consider a locally
Lipschitz fun ct ion f : R n -> R . In fact , we may as well further suppose
that f has Lipschitz constant L throughout R" , by Exercise 2 in Section
7.1.

Fix a direction h in R n . For any t =1= 0, the function gt defined on R n

by
gt(X) = f( x + th) - f( x)

t

is continuous, and takes values in the interval I = Lllh ll[-l,l], by the
Lipschitz property. Hence, for k = 1,2, .. ., the function Pk : R " -> I

213
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defined by

9. More Nonsmooth Structure

(9.1.3)

Pk(X) = sup 9t(X)
O< ltl< 11k

is lower semicontinuous and therefore Borel measurabl e. Consequently, the
upper Dini deri vative Dt f : R n ---+ I defined by

Dtf(x) = lim sup c.I ai) = inf pdx)
t ->O k EN

is measurable, being the infimum of a sequence of measurable fun ct ions.
Similarly, the lower Dini derivative Dl: f : R n ---+ I defined by

Dl: f( x) = liminf 9t(x)
t-> O

is also measurable.
The subset of R n where f is not different iable along t he direction h,

namely
Ah = {x E R " IDl: f (x) < Dt f (x)} ,

is therefore also measurable. Given any point x E Rn, t he function t f--->

f( x + th) is absolute ly cont inuous (being Lips chi tz) , so the fundamental
t heorem of calculus implies this funct ion is differ entiable (or equivalently,
x + th 'I- A h ) almost everywhere on R .

Consider the nonnegative measurable fun ct ion ¢ : R n x R ---+ R defined
by ¢(x , t) = b A h (x+th) . By our observation above, for any fixed x E R" we
know fa ¢(x , t) dt = O. Denoting Lebes gue measure on R '' by IL, Fubini's
t heore m shows

0= f (f ¢(x, t) dt) du = f (f ¢(x, t) dp) dt = f p(Ah ) dtJan JR i. Jan Ja
so the set A h has measure zero. Consequently, we can define a measurabl e
fun ction Di.] : R" ---+ R having the property Di.] = Dt f = Dl: f almost
everywhe re .

Denote the standard basis vectors in R n by el, e2, .. . , en . The function
G : R " ---+ R " with components defined almost everywhere by

8f
Gi = Def =-

, 8 X i

for each i = 1,2, . .. , n is the only possible candidate for the derivati ve of
f · Indeed, if f (or - J) is regular at x, then it is easy to check that G(x)
is the Frechet derivative of f at x (Exercise 2) . The general case needs a
lit tle more work.

Consider any cont inuously differentiable fun ction 'I/J : R n ---+ R t hat is
zero except on a bounded set. For our fixed direct ion h, if t i= 0 we have

f 9t(X) 'I/J(x)dp = f f( x) 'I/J (x-th)- 'l/J(x)dp.
Jan Jan t
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As t -+ 0, the bounded convergence theorem applies, since both f and 'ljJ
are Lips chi tz, so

fanD,.j(x) 'ljJ (x ) dJL = - fan f( x) (\l'ljJ(x ), h) dJL .

Setting h = e; in the above equat ion , multiplying by hi , and adding over
i = 1,2, .. . ,n, yields

Since 'ljJ was arbitrary, we deduce Dhf = (h, G) almost everywhere.
Now extend the basis e1, e2, . . . , en to a dense sequence of uni t vectors

{hd in the uni t sphere 8n - 1 eRn. Define the set A c R " to consist of
those points where each fun ction Dhkf is defined and equals (hk , C ). Our
argument above shows AChas measure zero. We aim to show, at each point
x E A , that f has Frechet derivative G(x) .

Fix any E > O. For any t =I- 0, define a function rt : R" -+ R by

rt(h ) = f( x + th) - f( x ) _ (G(x ), h).
t

It is eas y to check that rt has Lipschitz constant 2L. Furthermore, for each
k = 1,2 , .. ., there exists 15k > 0 such that

Since the sphere 8n - 1 is compact , there is an integer M such t hat

M

8n - 1 c U(h k + 4~B) .
k= l

If we define 15 = min{(h , 152 , . . . , 15M } > 0, we then have

E
Irt(hk)1 < 2 whenever 0 < ItI < 15, k = 1,2 .. . , M .

Finally, conside r any uni t vector h. For some positive integer k :::; M
we know Ilh - hkll :::; E/4L, so whenever 0 < ItI < 15 we have

Hence G(x) is the Frechet derivative of f at x, as we claimed. D

An analogous argume nt us ing Fubini 's theorem now proves the subdiffer
ent ial formula (9.1.1)-see Exercise 3.
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Exercises and Commentary

A basic reference for the measure theory and the version of the fundamental
theorem of calculus we use in this section is [170]. Rad em acher's t heorem
is also proved in [71] . Various implica t ions of the insensitivity of Clarke's
formula (9.1.1) to sets of measures zero are explored in [18] . In the same
light , the generalized J acobian of Exercise 4 is investigated in [72].

1. Assuming Rademacher 's theorem with range R , prove the general
version.

2. * (Rademacher's theorem for regular functions) Suppose the
function f : R" --+ R is locally Lipschitz around the point x E

R " . Suppose the vector G(x) is well-defined by equation (9.1.3) . By
observing

and using the sublinearity of r (x; .), deduce G(x) is the Frechet
derivative of f at x.

3. ** (Intrinsic Clarke subdifferential formula) Derive formula
(9.1.1) as follows.

(a) Using Rademach er 's theorem (9.1.2) , show we can assume t hat
t he function f is differentiable every where outside the set Q.

(b) Recall the one- sided inclusion followin g from the fact that the
Clarke subdifferent ial is a closed mul t ifunction (Exercise 12 in
Section 6.2)

(c) For any vector v E E and any point z E E , use Fubini's theorem
to show that the set {t E R Iz + tv E Q} has measure zero , and
deduce

f( z + tv ) - f( z) = it('17 f( z + sv ), v) ds.

(d ) If formul a (9.1.1) fails, show t here exists vE E such that

r (x; v) > lim sup ('17 f (w),v) .
w-+ x , wff-Q

Use part (c) to deduce a cont radic t ion.

4. (Generalized Jacobian) Consid er a locally Lipschi tz map be-
tween Euclidean spaces h : E --+ Y and a set Q C E of measure zero
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outside of which h is everywhere Gateaux differentiable. By analogy
with formula (9.1.1) for the Clarke subdifferential, we call

the Clarke generalized Jacobian of h at the point x E E .

(a) Prove that t he set Jh( x) = oQh(x) is independent of the choice
ofQ.

(b) (Mean value theo rem) For any points a,b E E , prove

h(a) - h(b) c conv Jda ,b](a - b).

(c) (Chain rule) If the function g : Y ---+ R is locally Lipschitz,
prove the form ula

Oo(g 0 h)( x) c Jdx)*oog(h(x)) .

(d) Propose a definition for the generalized Hessian of a continuously
differentiable function f : E ---+ R .
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9.2 Proximal Normals and Chebyshev Sets

We introduced the Clar ke normal cone in Section 6.3 (Tangent Cones), via
the Clarke subdifferent ial. An appealing alte rnative approach begins with
a more geometric notion of a normal vector. We call a vector Y E E a
proximal normal to a set 5 c E at a point x E 5 if, for some t > 0, the
nearest point to x + ty in 5 is x. The set of all such vectors is ca lled the
proximal normal cone, which we denote N~(x).

The proximal normal cone, which may not be convex, is contained in
the Clarke normal cone (Exercise 3) . The containme nt may be strict , but
we can reconstruct the Clarke normal cone from proximal normals using
the following result .

Theorem 9.2.1 (Proximal normal formula) For any closed set 5 c E
and any point x E 5, we have

Ns (x ) = conv{ li:-UYr IYr E N~ (xr ), X r E 5, tc; ----+ x }.

One route to thi s result uses Rad emacher's theorem (Exercise 7). In this
section we take a more direct approach.

The Clarke normal cone to a set 5 c E at a point x E 5 is

by Theorem 6.3.8, where

ds(x) = inf li z- xii
zES

is the distan ce function. Not ice the following elementary bu t important
result t hat we use repeatedly in this section (Exercise 4(a) in Section 7.3).

Proposition 9.2.2 (Projections) If x is a nearest point in the set 5 c E
to the point x E E , then x is the unique nearest point in 5 to each point
on the half-open line segment [x, x ).

To derive the proximal normal formula from the subdifferential formula
(9.1.1) , we can make use of some st riking different iability properties of
d ist an ce fun ctions, summarized in the next result .

Theorem 9.2.3 (Differentiability of distance functions) Consider a
nonempty closed set 5 c E and a point x ~ 5 . Then the follo wing proper
ties are equivalent:

(i) the Dini subdifferential EL ds (x ) is nonempty;

(ii) x has a unique nearest point x in 5 ;
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(iii) th e distance fun ction ds is Frech et differentiable at x.

In this case,

'lds (x ) = I I ~ =: 11 E N~(:E) C Ns( x) .
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The proof is outlined in Exercises 4 and 6.
For our alternate proof of the proximal normal form ula without re

course to Rademacher 's theorem , we return to an idea we introduced in
Section 8.2 . A cusco is a USC multifunction wit h nonempty compact con
vex images . In particular, the Clarke sub differential of a locally Lipschitz
function on an open set is a cusco (Exercise 5 in Section 8.2) .

Suppose U C E is an op en set , Y is a Euclidean space, and <I> : U ----> Y
is a cusco. We call <I> minimal if it s graph is minimal (with respect to
set inclusion) among graphs of cuscos from U to Y . For example, the
subdifferential of a continuous convex function is a minimal cusco (Exercise
8) . We next use this fact to prove that Clarke subdifferentials of distance
functions are also minimal cuscos.

Theorem 9 .2.4 (Distance su b d iffe rent ia ls are minimal) Outside a
nonempty closed set B e E, the distance function ds can be expressed
locally as the differen ce betw een a smooth conv ex function and a continuous
convex function. Cons cquently, the Clarke subdifferential oods : E ----> E is
a minimal cusco.

Proof. Consider any closed ball T disjoint from B. For any point y in B,
it is easy to check that the Frechet derivative of the function x f---+ Ilx - yll
is Lipschitz on T . Suppose the Lipschitz constant is 2L. It follows t hat the
func tion x f---+ Ll lxl1 2 - Il x - vii is convex on T (see Exercise 9). Since the
fun ction h : T ----> R defined by

h(x) = L llx l12 - ds(x) = sup{L llxl12 - Il x - yin
y ES

is convex, we obtain t he desired expression ds = £11 . 11 2 - h.
To prove minimality, consider any cusco <I> : E ----> E satisfying <I>(x) C

oods (x) for all points x in E . Notice that for any point x E int T we have

oods(x) = - oo(- ds )(x ) = oh(x) - Lx .

Since h is convex on int T , t he subdifferential oh is a minimal cusco on this
set, and hence so is oods . Consequently, <l> must agree with oods on int T,
and hence throughout Be, since T was arbitrary.

On the set int B, the function ds is identically zero. Hence for all points
x in int B we have Gods = {O} and therefore also <I>(x) = {O} . We also
deduce 0 E <I>(x) for all x E cl (int B) .
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Now consider a point :1; E bd S. The Mean value theorem (Exercise 9
in Section 6.1) shows

oods (x ) = conv{ 0, li:-u yr I yr E oods(x r) , x r
-> X , x" ¢ S}

= conv{ O,li:-uy r Iyr E <I>(x r) , x" -> X, x r ¢ S} ,
where °can be omitted from the convex hull unless x E cl (int S) (see
Exercise 10) . But the final set is contained in <I>(x) , so the result now
follows. D

T he Proximal normal formula (Theorem 9.2.1) , follows rather qui ckly from
t his result (and indeed can be strengthened) , using the fact that Clarke
subgradients of t he distance function are proximal normals (Exercise 11) .

We end t his section with another elegant illustration of the geometry
of nearest points. We call a set SeE a Che byshe v set if every point in E
has a unique nearest point Ps(x) in S . Any nonempty closed convex set
is a Chebyshev set (Exercise 8 in Section 2.1) . Much less obvious is the
converse, st a ted in the following result .

Theorem 9 .2 .5 (Convexity of Chebyshev sets) A subse t of a Euclid
ean space is a Chebysh ev se t if and only if it is n on empty, closed and convex.

Proof. Consider a Chebyshev set S eE. Clearly S is nonempty and
closed , and it is easy to verify t hat the projection Ps : E -> E is conti nuous.
To prove S is convex, we first introduce anot her new not ion . We call S a
Sl1n if, for each point x E E , every point on the ray Ps(x) +R +( x - Ps(x))
has nearest point Ps(x) . We begin by proving t hat the following properties
are equivalent (see Exercise 13) :

(i) S is convex;

(ii) S is a sun;

(iii) Ps is nonexpansive.

So, we need to show that S is a sun .
Suppose S is not a sun, so there is a point x ¢ S with near est point

Ps (x ) = x such that the ray L = x + R +( x - x) strictly contains

{z E L I Ps(z) = e} ,

Hence by P roposition 9.2.2 (Projections) and the continuity of Ps , the
above set is nontrivial closed line segment [x,xo] containing x .

Choose a radius E > °so that the ball Xo + EB is disjoint from S. The
cont inuous self map of this ball

Xo - Ps(z)
z f---t Xo + E Ilxo _ Ps(z)11
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has a fixed point by Brouwer 's theorem (8.1.3) . We then quickly derive a
contradiction to the definition of the point xo . 0

Exercises and Commentary

Proximal normals provide an alternative comprehensive approach to non
smooth analysis: a good reference is [56] . Our use of the minimality of
distance subdifferentials here is modelled on [38]. Theorem 9.2.5 (Convex
ity of Chebyshev sets) is sometimes called the "Mot zkin-Bunt theorem" .
Our discussion closely follows [62] . In the exercises, we outline three nons
mooth proofs. The first (Exercises 14, 15, 16) is a variational proof follow
ing [82] . The second (Exercises 17, 18, 19) follows [96], and uses Fenchel
conjugacy. The third argument (Exercis es 20 and 21) is due to Asplund [2].
It is the most purely geometric, first deriving an interesting dual result on
furthest points , and then proceeding via inversion in the unit sphere. As
plund extended the argument to Hilbert space, where it remains unknown
whether a norm-closed Chebyshev set must be convex. Asplund showed
that , in seeking a nonconvex Chebyshev set , we can restrict attention to
"Klee caverns" : complements of closed bounded convex sets.

1. Consider a closed set S eE and a point xES.

(a) Show that the proximal normal cone N~ (x) may not be convex.

(b) Prove x E int S =} N~(x) = {O} .
(c) Is the converse to part (b) true?

(d) Prove the set {z E S IN~ (z) i:- {O}} is dense in the boundary of
S .

2. (Projections) Prove Proposition 9.2.2 .

3. (Proximal normals are normals) Consider a set SeE. Suppose
the unit vector y E E is a proximal normal to S at the point x E S.

(a) Use Proposition 9.2.2 (Projections) to prove d's (x; y) = 1.

(b) Use the Lipschitz property of the distance function to prove
oods(x) c B .

(c) Deduce y E oods(x).

(d) Deduce that any proximal normal lies in t he Clarke normal cone .

4. * (Unique nearest points) Consider a closed set SeE and a point
x outside S with unique nearest point ii in S. Complete the following
steps to prove

x- x
Ilx - xii E o_ds(x).
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(a) Assuming the resul t fails , prove there exists a dir ection h E E
such that

(b) Consider a sequence t; ! 0 such that

and suppose each point x + trh has a nearest point s; in S .
Prove s ; ----. ii:

(c) Use the fact that the gradient of the norm at the point x - s; is
a subgradient to deduce a cont radict ion.

5. (Nearest points and Clarke subgradients) Consider a closed set
SeE and a point x outside S with a nearest point x in S. Use
Exercise 4 to prove

x-x
Ilx - xii E oods(x) .

6. * (Differentiability of distance functions) Consider a non empty
closed set SeE.

(a) For any points x, z E E , observe t he identity

d~(z) - d~(x) = 2ds(x)(ds( z) - ds(x» + (ds( z) - dS(x» 2.

(b) Use the Lipschi tz property of t he distance fun cti on to deduce

Now suppose y E o_ds(x) .

(c) If x is any nearest point to x in S, use part (b) to prove x :;=

x - ds(x)y , so ii is in fact the unique nearest point .

(d) Prove - 2ds(x )y E 0_(-d~)(x) .

(e) Deduce 4 is Frechet differenti able at x.

Assume x 'f. S .

(f) Deduce ds is Frechet differenti able at :r.

(g) Use Exercises 3 and 4 to complete the proof of Theorem 9.2 .3.

7. * (Proximal normal formula via Rademacher) Prove Theorem
9.2.1 using the subdifferenti al formula (9.1.1) and T heore m 9.2.3 (Dif
ferentiability of distan ce functions ).
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8. (Minimality of convex subdifferentials) If the open set U c E
is convex and t he fun ction f : U ----+ R is convex, use the Max formula
(Theorem 3.1.8) to prove that the subdifferential of is a minimal
cusco.

9. (Smoothness and DC functions) Suppose the set C c E is open
and convex, and the Frechet derivative of the fun ction g : C ----+ R has
Lipschitz cons t ant 2£ on C . Deduce that the fun ction £11 . 11 2 - g is
convex on C .

10. ** (Subdifferentials at minimizers) Consider a locally Lipschitz
function f : E ----+ R + , and a point x in f -l(O) . Prove

where 0 can be omit t ed from the convex hull if int f - 1 (0) = 0.

11. ** (Proximal normals and the Clarke subdifferential) Consider
a closed set S eE and a point x in S Use Exerc ises 3 and 5 and the
minimality of t he subdiffcrent ial oods : E ----+ E to prove

Deduce the Proximal normal formula (Theorem 9.2.1) . Assuming
x E bd 5, prove t he following st ronger version. Consider any dense
subset Q of S" , and suppose P : Q ----+ 5 maps each point in Q to a
nearest point in S . Prove

!') d ( ) { . x
r

- P( x
r) I r r Q}

U O S x = conv 0, h:.n Il xr _ P( xr)11 x ----+ x, x E ,

and derive a stronger version of t he Proximal normal formul a .

12. (Continuity of the projection) Consider a Chebyshev set 5. P rove
directly from the definition that the projection Ps is cont inuous .

13. * (Suns) Complete the det ails in the pro of of Theorem 9.2.5 (Con
vexity of Chebyshev sets) as follows.

(a) Prove (iii) ==}- (i) .

(b) Prove (i) ==}- (ii) .

(c) Denoting the line segment between points y, z E E by [y, z],
prove proper ty (ii) implies

Ps(x) = p[z,Ps (x)] (x) for all x E E, z E S . (9.2.6)
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(d) Prove (9.2.6) =} (iii) .

(e) Fi ll in the remaining details of the proof.

14. ** (Basic Ekeland va r iat ional principle [43]) Prove the following
version of the Ekeland variation principle (Theorem 7.1.2). Suppose
t he function f : E ----+ (00, +00] is closed and the point x E E satisfies
f (x) < inf f + Efor some real E> O. Then for any real >. > 0 there is
a point vE E satisfying the conditions

(a) Ilx - vii::; >. ,

(b) f(v) + (E/>')l lx - vii::; f(x) , and

(c) v minimizes the function f(·) + (E/>.) II· -v ii.

15. * (Approximately convex sets) Consider a closed set C c E. We
call C approximately convex if, for any closed ball De E disjoint from
C , there exists a closed ball D' :) D disjoint from C with arbitrarily
large radius.

(a) If C is convex, prove it is approximately convex.

(b) Suppose C is approximately convex but not convex.

(i) Prove there exist points a, b E C and a closed ball D cen
tered at the point c = (a + b)/2 and disjoint from C.

(ii) Prove there exists a seq uence of points Xl, X 2 , .. • E E such
that the balls B r = X r + r B are disjoint from C and satisfy
Dc B; C B r +l for all r = 1,2, . ...

(iii) Prove the set H = cl U T B; is closed and convex, and its
interior is disjoint from C but contains c.

(iv) Suppose the unit vector u lies in the po lar set H O. By
considering the quantity (u, Il x r - x ll-l(xT - x» ) as r ----+ 00,
prove H Omust be a ray.

(v) Deduce a contradiction.

(c) Conclude that a closed set is convex if and only if it is approxi
mately convex.

16. ** (Chebyshev sets a n d approximate convexity) Consider a
Chebyshev set C C E , and a ball x + f3B disjoint from C .

(a) Use Theorem 9.2.3 (Differentiability of distance functions) to
prove

1· dc(v) - dc(x) - 1
rm sup II _ II - .

v --->x V X
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(b) Consider any real a > dc(x) . Fix reals a E (0,1) and p satisfy
ing

ex - dc(x)
-----'---'- < P < a - {3.

a
By applying the Basic Ekeland variational principle (Exercise
14) to the function - de + 6x +p B , prove there exists a point
vE E satisfying the conditions

de(x) + a llx - vii
dc( z) - a llz - vii

< dc(v)

< dc(v) for all z E x + pB.

Use part (a) to deduce Ilx -v ll = p, and hence x +{3B C v+aB.

(c) Conclude that C is approximately convex , and hen ce convex by
Exercise 15.

(d) Extend this argument to an arbitrary norm 011 E .

17. ** (Smoothness a n d biconjuga cy) Consider a function I : E -t

(00, +00] that is closed and bounded below and satisfies the condition

lim I(x) = + 00.
Ilxll----> oo Ilxll

Consider also a point x E dom I.

(a) Using Caratheodory's theorem (Section 2.2 , Exercise 5), prove
there exist points X l, X2, . . . ,xm E E and real )'1, A2, .. . , Am > 0
satisfying

LAi = 1, L AiXi = x, LAi!(x d = j**(x) .
i

(b) Use the Fenchel-Young inequality (Proposition 3.3.4) to prove

Suppose furthermore that the conjugate 1"* is everywhere differen
ti able.

(c) If X E ri(dom(f**», prove Xi = X for each i ,

(d) Deduce ri(epi(f**» C epi(f) .

(e) Use the fact that I is closed to deduce I = r, so I is convex.

18. * (Chebyshev sets and differentiabilit y) Use T heorem 9.2.3 (Dif
ferentiability of distance functions) to prove that a closed set Se E is
a Chebyshev set if and only if the function d~ is Frechet different iable
throughout E .
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19. * (Chebyshev convexity via conjugacy) For any non empty closed
set SeE, prove

Deduce, using Exercises 17 and 18, t hat Chebyshev sets are convex.

20. ** (Unique furthest points) Consider a set SeE, and define a
funct ion rs : E ~ [-00, + 00] by

rs (x ) = sup Ilx - yll·
y E S

Any point y attaining the above supremum is called a fu rth est point
in S to the point x E E .

(a) Prove t ha t t he funct ion (r~ - II . 11 2 )/ 2 is the conj ugate of t he
funct ion

O-s _11 ,11 2

ss = 2

(b) Prove tha t the funct ion r~ is str ict ly convex on its domain.

Now suppose each point x E E has a unique near est point qs( x) in
S .

(c) Prove that the funct ion qs is continuous .

We consider two alte rnat ive proofs t hat a set has the unique furthes t
point property if and only if it is a singleton.

(d) (i) Use Section 6.1 , Exercise 10 (Max-functions) to show that
the function r~ / 2 has Clarke subdifferential the singleton
{x - qs(x)} at any point x E E, an d hence is everywhere
differenti able.

(ii) Use Exercise 17 (Smoothness and biconjugacy) to deduce
that t he func tion 9s is convex, and hence that S is a single
ton .

(e) Altern atively, suppose S is not a singleton. Denote the unique
minimizer of the functi on t s by y. By investigating the cont i
nuity of the functi on qs on the line segment [y,qs(Y)], derive a
contradiction without using part (d) .

21. ** (Chebyshev convexity via inversion) The map c : E \ {O} ~ E
defined by t(x ) = Il xll - 2x is called the inversion in the unit sphere.

(a) If D eE is a ball with 0 E bdD, prove at» ;{O}) is a halfspace
disjoint from O.
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(b) For any point x E E and radius 15 > Ilxll, prove

1
L((X + JB) \ {O}) = 152 _ II xl1 2 {y E E : Ily + xii:::: J}.
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Prove that any Chebyshev set C c E must be convex as follows.

Without loss of generality, suppose 0 tf- C but 0 E cl (conv C) . Con
sider any point x E E .

(c) Prove the quantity

p = inf{J > 0 I LC C X + 15B}

satisfies p > Il xll .
(d) Let Z denote the unique near est point in C to the point

- x

Use part (b) to prove that LZ is the un ique furthest point in LC

to x .

(e) Use Exercise 20 to derive a contradiction.
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9.3 Amenable Sets and Prox-Regularity

In t he previous section we saw that nonempty closed convex subsets 5 of
the Euclidean space E are characterized by the attractive globa l property
that every point in E has a unique nearest point in 5. The corres ponding
local proper ty is also a useful tool: we begin with a condit ion guaranteeing
t his prop er ty.

We call the closed set 5 prox-regular at a point x in 5 if there exist s
a constant p > 0 such that all distinct points x, x ' E 5 near x and small
vectors v E N s( x ) sa t isfy the inequ ality

(v, x' - x) < pllx' - x112 . (9.3 .1)

Geometrically, t his condit ion states t hat t he ball centered at the point
x + 2

1
V cont aining the point x on its boundary has int erior disjoint from

5 . p

Proposi tion 9.3.2 (Prox-regu larity and projection s ) If a closed set
5 c E is prox-regular at a point x E 5 , then each point in E close to ti: has
a unique nearest point in 5 .

Proof. If t he resu lt fails , then t here exist sequences of poin ts u: --> x in
E and x: i- x~ in 5 such that both x; and x~ are nearest points in 5 to u. :
Clearly we have x; --> x and x~ --> x, and Exercise 3 in Section 9.1 implies
o i- u; - x; E Ns(xr ) . Applying inequality (9.3.1), there exist constants
E, p > 0 such that

for all large r. However , t he fact that lIur - xrll = Ilur - x~1 1 eas ily implies

cont radict ing the preceding inequality. D

In t his section we study an important class of st ruc tured prox-regular
sets . Our key tool is the cha in rule we outlined in Section 7.1 (Exercise 6
(Transversality)).

We proceed by filling in t he details of the chain rule. Throughout this
section we consider a Euclidean space Y , open sets U C E and V C Y ,
closed sets 5 C U and R e V , and a cont inuous map h : U --> Y. Our aim
is to calculate the tangent cone to the set 5 n h- 1(R ): the first step is an
easy inclusion for the contingent cone, generalizing Propositi on 7.1.1.
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Proposition 9.3.3 Suppose the function h is Frechet differentiable at the
point xES n h- 1(R). Then

K Snh-l(R)(X) c Ks(x) n (V'h(x)) -1 KR(h(x)) .

To obtain an inclusion in the opposite direction, we need the transver
sality condition

V'h(x)(Ts( x» - TR(h(x» = Y . (9.3.4)

(9.3.6)

(9 .3.7)

Theorem 9.3.5 (Chain rule for sets) If the function h is strictly dif
ferentiable at the point x E S n h -1 (R), and the transversality condition
(9.3.4) holds, then

TSnh-l(R)(X) ~ Ts(x) n (V'h(X» -1TR(h(x»

NSnh-l(R)(X) c Ns(x) + (V'h(x» *NR(h(x».

If furthermore the sets Sand R are tangentially regular at the points x
and h(x) respectively then the set S n h-1(R) is tangentially regular at x ,
and

TSnh- l(R)(X) = Ts(x) n (V'h(X»-1TR(h(x»

N Snh-l(R)(X) = Ns( x) + (V'h(x»* NR(h(x» .

Proof. The function g : U x V --+ Y, defined by g(z , y) = h( z) - y , is
strictly differentiable at the point (x, h(x» , with derivative (V'h(x) ,-1)
(where I denotes the identity map) . Section 6.3, Exercise 9 (Products)
shows Ts xR(X , h(x» = Ts(x) x TR(h(x», so the transversality condition
says V'g(x , h(x»TsXR(X, h(x» = Y.

We can now apply Theorem 7.1.5 (Surjectivity and metric regularity)
to deduce that the function g is weakly metrically regular on the set S x R
at the point (x , h( x) ): in other words, there is a constant k' such that

d(SXH)ng -1(O)(z,y) ~ k'llh(z) - yll
for all points (z ,y) E S x R close to (x,h(x) . Thus the locally Lipschitz
function

(z , y) f-7 k'llh(z) - yll - d(SxR) ng- 1(o)(z, y)

has a local minimizer on S x R at (x ,h(x)), so by Proposition 6.3.2 (Exact
penalization), there is a constant L > a such that (x, h(x» is an uncon
strained local minimizer of the function

(z, y) f-7 k'llh(z) - yll - d(SxR)ng- 1(o)(z, y) + Ld sxR(z , y).

Since dSxR(Z , y) ~ ds(z) + dR(y), if we set k = max{k', L}, we obtain the
inequalities

dSnh-l(R)(Z) ~ d(SxR) ng-1(o)(z , h( z») ~ k(ds(z) + dn(h(z») , (9.3.8)
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for all z E U close to x .
Now consider a vector P E Ts(x) n ('V'h(x)) -lTR(h(x)) , and sequences

x r -> x in S n h-1(R) and t; 1 O. According to Theorem 6.3.6 (Tangent
cones), to prove inclusion (9.3.6) we need to find vectors pr

-> P satisfying
x" + t rp r E S n h- 1 (R) for all r . To t his end, note that t he inequalities
(9.3.8) show

dSnh- l (R)(Xr + t rP) :::; k(ds(x r + t rP)+ dR(h(x r + trP))),

so there exist points z" E S n h - 1(R) such t hat

We now claim the vectors Pr = t ;:l (z" - z" ) sa t isfy our desired properties.
Clearly, z" + t rpr E S n h- 1(R ), by definition, and

Since P E Ts(x) , we know t ;:lds(x r + trP) -> O. On the ot her hand, by
strict differenti ability,

as r -> 00, so

The first term on the right approaches zero, since V'h(x)p E TR(h(x)) by
assumption, so we have proved Pr -> P as desired .

We have t hus proved inclusion (9.3.6) . The Krein-Rutman polar cone
calculus (3.3.13) and the tran sversality condition imply

so we immediately obt ain inclusion (9.3.7). Wi th the extra tangenti al reg
ularity assumpt ions, Proposition 9.3.3 implies

TSnh- l (R)(X) C K Snh-l (R)(x) C K s(x) n (V'h(X))-l KR(h(x))

= Ts(x) n (V'h(X)) -lTR(h(x)) C TSnh-l (R)(X) ,

so t he final claims now follow. o

Inverse images of convex sets under smooth mappings are particularly
common examples of nonsmo oth non convex sets. We call a set Q C E
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amenable at a point x E Q if there exists an open neighbourhood U of
x, a Euclidean space Y, a closed convex set R c Y, and a continuously
differentiable map h : U --+ Y , such that

and furthermore , the transversality condition

NR(h( x)) n N«\lh(x)) *) = {O}

(9.3.9)

(9.3.10)

holds. If furthermore we can choose h to be twice continuously differentiable
at ii ; then we call Q fully amenable at x. It is easy to check that if the
condition (9.3.10) holds, then it also holds with the point x replaced by
any nearby point in Q.

The following straightforward exercise using the preceding chain rule
shows that amenable sets are well-behaved.

Corollary 9.3.11 (Amenable sets) If the set Q c E is am enable at the
point x E Q, then Q is tangentially regular at X. Furthermore, given the
representation (9.3.9), we have

v h(x) - lTR(h(x))

\lh(x)* NR(h(x)) .

With the extra assumption of full amenability, we arrive , as promised,
at a broad class of prox-regular sets.

Theorem 9.3.12 (Amenability and prox-regularity) If a set Q c E
is fully amenable at a point x E Q, then Q is prox-regular at X.

Proof. Suppose we have the representation (9.3.9), where the function h is
twice continuously differentiable, and suppose the transversality condition
(9.3.10) holds. If prox-regularity fails, then there exist sequences of points
X r -I- x~ approaching x in Q, and vectors u; E NQ (x r ) approaching 0, such
that

(VTl X~ - x r ) > r l l x~ - xr11
2

.

As we observed above, the condition (9.3.10) implies

(9.3.13)

for all large r . Hence Corollary 9.3.11 (Am enable sets) implies there exist
vectors Yr E NR(h(x r)) such that Vr = (\lh(xr))*Yr , for each large T .

We next obs erve that the vectors Yr approach O. Indeed , if this were
not the case, we could find a subsequence for which IIYrl1 ~ c for some
f > 0 and with IIYrll-1Yr --+ u for some unit vector u . Since the normal
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cone NRc-) is a closed multifunction (Section 4.2, Exercise 8), we deduce
U E NR(h(x)) . On the ot her hand, as r ~ 00 in the subsequence,

so U E N("Vh(x)*) , contradicting t he transversality condition (9.3.10) .
Returning to our proof, for all large r we have by Taylor 's theorem ,

a > (YT>h(x~) -h(xr) )

(YT> "Vh(xr )(x~ - xr )) + \Yr , ~"V2h(zr)(X~ - xr ,x~ - xr)),

for some point z; between X r and x~ . For large r , inequality (9.3.13)
shows that the first term on t he right hand side is bigger than r l lx~ - xrI1

2 ,

which is event ually larger than minus the second term. This contrad iction
completes the proof. D

Exercises and Commentary

Prox-regularity as a tool for nonsmooth analysis was introduced in [156].
Its relationship with the differentiab ility of the distance function is st udied
in [157]. Amenability is surveyed in [155].

1. Prove Proposition 9.3.3.

2. (Persistence of a menab ili ty) Prove t hat if a set Q is amenable at
a point ii: E Q, then it is ame nable at every nearby point in Q.

3. * Use t he chain ru le for sets, T heorem 9.3 .5, and Section 3.3, Exercise
16 (Sums of closed cones), to prove Corollary 9.3.11 (Amenable sets) .

4. (Amenability and Mangasarian-Fromowitz) Compare Corol
lary 9.3.11 (Amenable sets) wit h t he form ula for the contingent cone
to a feasible region satisfying the Mangasarian-Fromowitz constraint
qualification (T heorem 7.2.6).
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Having solved an op timiza t ion problem , we ofte n wish to study t he sensi
t ivity of t he solut ion to small cha nges in the problem. Such "sens it ivity
analysis" often depends on a judicious blend of smooth and nonsmooth
ana lysis . In this secti on we consider a class of sets particular ly well st ruc
t ure d for such analysis.

We begin by formali zing the idea of a smooth surface in E. We ca ll a
set NI C E a manifold of codimension m around a p oint x E N! if t he re is
a neighbourhood V of x and a twice cont inuously differen ti able (C (2») map
F: V -> R Tn wit h surjective der ivative \7F (x ) such that points x E V lie
in M if and only if F (x ) = O. A set M is simply a manifo ld (of codime nsion
m) if this condit ion holds for all points x E M .

T he set in R 3 defined by the inequality z ::::: [z ]+ y2 has a sharp "r idge"
described by t he manifo ld M of po ints sat isfying the equat ions x = 0 and
z = y2. Minimizing t he linear function (x ,y , z) t---> Z over t his set gives
the opt im al solution (0,0,0) , and minimizing any nearby linear function
gives a nearby optimal solut ion lying on NI. We isolate t his kind of st able
structure of t he solution in t he following definit ion .

We call a closed set S e E partly smooth relati ve to a manifold NI c
S if, for all points x E NI , t he set S is tangenti a lly regular at x wit h
NM (X) = Ns(x) - N s( x), and fur thermore, for any normal y E Ns (x)
and sequence of points x ; E NI approaching x , t here exists a sequence
of normals Yr E N s( x r ) approaching y . A simple example is the posit ive
orthant.

Proposition 9.4.1 (Partly sm oot h orthant) Th e posit ive orthant R +.
is partly smooth relative to each manifold

{xE R~ I I{i IXi = O} I = k}
(Jor k = 0,1 ,2, .. . , n) .

A f ace of a polyh ed ron is its intersection wit h a supporting hyperplane.
T he result above shows t hat the positive orthant is partl y smooth relative
to the relative interior of any face: not sur prisingly, t his prop erty holds for
any po lyhedron.

An analogous , less obvious resu lt concerns the semidefinite cone: we
state it wit hout proof.

Theorem 9.4.2 (Partial sm oot h n ess of s +.) The semidefini te cone S+.
is partly sm ooth relat ive to each manifold {X E S" I rank X = k} (for
k = 0, 1, 2, . .. , n) .

The following easy resu lt describes another basic example.
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Proposition 9.4.3 (Partial smoothness and cones) Any closed con
vex cone K c E is partly smooth relative to K n (- K) .

By building on the chain rule for sets (Theorem 9.3.5) , more complex ex
amples follow from the building blocks above. We leave t he following result
as an exercise.

Theorem 9.4.4 (Partly smooth chain rule) Given a Euclidean space
Y and a map h : E ~ Y that is continuously different iable around a point
x E E, suppose the closed set R c Y is partly smooth relative to a manifold
M containing h(x). Assuming the transversality condition

Vh(x)E - TM(h( x)) = Y ,

then fo r some open neighbourhood U of x , the set h- 1(M )n U is a manifold,
relative to which the set h- 1 (R) is partly sm ooth.

An eas y consequence is the par tial smoothness of inequality-constrained
set s, ass uming a typical const raint qual ification .

Corollary 9.4.5 (Inequalities and partial smoothness) Given map s
gi : E ~ R (for i in som e fin ite index set I) that arc continuously differ
entiable around a point

x E S = {x EEl gi(x) ::::; 0 (i E 1)},

define the active index set at x E E by

I(x) = {i E I Igi(X) = O} ,

and suppose the set of active gradients {Vgi(x) l iE I( x)} is linearly inde
pendent. Th en for som e open neighbourhood U of x, the set

{x E U I I(x) = I(x)}

is a manifold , relative to which S is partly smooth.

Our aim is sensitivity analysis and sufficient optimality conditions for
problems with partly smooth feasible regions. To accomplish this, we com
bine a variety of condit ions familiar in optimization t heory: a smooth sec
ond order condit ion like that of Theorem 2.1.5 ; t he partial smoothness
condition we introduced above; a kind of "st rict complement arity condi
tion" ; the prox-regulari ty condition we discussed in the previous section .

Given a set SeE t hat is partly smooth relative to a manifold M c
S, we call a point x E M strongly critical for t he minimization problem
infs (c, .) if

- c E ri N s(x) (9.4.6)
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1· . f (c,x - x) 0
1IP. .1ll II 112 > .x~x In M x -x
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(9.4.7)

We can write this latter condition rather more constructively as follows .
According to our definition, there exists a neighbourhood VeE of ii: and
C(2) fun ctions hi : V --+ R (for i = 1,2 , .. . , m) such that the gradients
\lhi( x) are linear independent and

M n V = {x E V Ihi( x) = 0 Vi}.

The condition (9.4.6) t ogether with partial smoothness of S implies t he
existence of scalars .xi sa t isfying -c = I:i .xi\lhi( x). In fact , by linear
indepe ndence, t hese .xi are unique. Now an exerc ise shows that t he second
order condit ion (9.4 .7) is equivalent to the condit ion

m

o~ d E {\lhi( x) Ii = 1,2 , . . . , m} J.. =} L .xi\l2hi( x )(d, d) > O. (9.4 .8)
i=l

Theorem 9.4.9 (Strong critical points) Suppo se the closed se t SeE
is partly sm ooth relative to th e manifold M C E . If th e point x E M
is strongly cri tica l fo r th e problem infs (c, .), then for all vectors c E E
close to c the problem inf s (c,·) has a strong critical point x (c) EM whose
dependen ce on c is conti nuously differentiable, and satisfying x (c ) = x . If
S is also prox-regular at x , then fo r all c close to i: th e point x (c) is a strict
local minim izer for infs (c, .) .

Proof. Describ e t he manifold M as in t he previous paragraph, and con
sider the system of equations in vari abl es x E E and A E R17\

hi( x) 0 (i=I ,2 , . . . , m )
m

L Ai\lhi( x) C.

i= l

Usin g t he posit ive definiteness condit ion (9.4.8) , the inverse fun ction the
orem shows t he existence of a solution (x(c) ,A(C)) for c close to c, whos e
dep endence on c is con tinuously differenti able, and sat isfying x (c ) = x.
An exercise shows that , providing c is close to C, any nonzero vector d
orthogonal to each vector \lhi( x(c)) satisfies

m

L Ai(C)\l2hi( x(c)) (d , d) > O.
i=l

To complet e the proof t hat the point x (c) is strongly crit ical, we just
need to check - c E ri Ns (x( c)), for all vectors c close to c. Recall that
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t he subspace spanned by t he cone Ns(x(c)) is NM(x(c)) , and c lies in this
subspace by the definition of x(c) .

By way of cont radiction, suppose there is a sequence of vect ors c; -. cin
E satisfying -er f/. ri N s (x( cr )) for each r . Hence we can separate - Cr from
Ns(x(cr)) in t he subspace NM( x(cr)) , so some uni t vect or z; E NM(x(er))
satisfies inf (zr,Ns(x(er)) + cr ) ~ o. By taking a subsequence, we can
suppose Zr approaches a uni t vector z; which must lie in NM(x) .

Now consider any vector y E Ns(x) . By parti al smoothness, there are
vectors Yr E Ns(x(cr )) approaching y. Since (zr, Yr + cr) ~ 0, we deduce
(s, y + c) ~ O. We have t hus shown that the uni t vector z separates the
vector - c from the cone Ns(x) in its span, NM(x), contradicting the fact
that -c E ri Ns( x).

Now suppose the set S is prox-regular at ii (and hence also at any
nearby point in S). Clearly it suffices to prove the strict local minimizer
property just for the point X. By prox-regularity, there is a const ant p > 0
such that all distinct points x, x' E S near x and sm all vect ors v ENs (x)
sat isfy

(v, x' - x) < pllx' - x112 .

On the ot her hand, by the second order condit ion (9.4.7), there is a constant
8 > 0 such t hat all points x" E M near x sat isfy the inequali ty

(c,x" - x) ~ 811x" - x1l 2
. (9.4 .10)

We claim that this inequality in fact holds for all x" E S near x.
If t he claim fails, t here is a sequence x~ -. x in S satisfying the inequal

ity
(c,x~ - x) < 8 1 1 x~ - x 11 2

,

for all r . Since manifolds are prox-regular (Exercise 9), for all lar ge r the
point x~ has a unique near est point X r in M . Inequality (9.4.10) implies
x ; i= x~, so after taking a subsequence, we can suppose t he uni t vectors

approach a unit vector z. Noti ce

(_ ) (c, x~ - x) - (c, X r - x) i" II x~ - x[12 - [I xr - xl12
C, z; = II I II < U II I I[xr - X r xr - X r

Letting r -. 00 shows the inequali ty

(c,z) :::; O. (9.4.11)

Since X r -. x, we know z lies in the su bspace NAJ(x) , which is the span
of t he cone Ns(x) , so by condit ion (9.4 .6) , there exists a scalar >' > 0 such
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that - c+ Ai E Ns (x ). Hence, by par tial smoot hness, there exist vectors
Vr E Ns (x r ) approaching - c+ Ai . By prox-regularity, there exist s a scalar
'" > °such t hat

("'VnX~ - xrl < pll x~ - xrl12

for all r, so (vn zrl < pll x~ - xrll/"'. Letting r -+ 00 shows t he inequality
(-c + Ai , il :::; 0, cont radic t ing inequality (9.4.11). 0

Exercises and Commentary

The material in t his sect ion is taken from [126, 92].

1. Prove Proposition 9.4 .1 (Partl y smoot h or th ant) .

2. * Prove that any polyhedron is partly smooth relative to the relat ive
interior of any face .

3. Prove Proposition 9.4 .3 (Partly smoot h cones).

4. Identify all the manifolds relative to which t he second-order con e
epi (II . II) is partly smooth.

5. * Prove Theorem 9.4 .4 (P artly smooth chain rule) .

6. * (Strict complementarity) Prove Corollary 9.4.5 (Inequalities and
partial smoot hness) . With the assumptions of this result , prove that
the strict complementarity condit ion (9.4.6) holds if and only if there
exist Lagran ge multipliers Ai > 0 (for i E le x)) such that x is a
critical point of the Lagrangian defined by

L(x) = (c, xl + L A;gi( X).
iE / ex )

7. * (Constructive second order condition) Verify the claim before
Theorem 9.4.9 that the two second order conditions (9.4.7) and (9.4 .8)
are equivalent.

8. * Complete the details of the proof of Theorem 9.4.9 (Strong crit ical
points) .

9. * (Prox-regularity of manifolds) If the set M c E is a manifold
around the point x E M , prove M is prox-regular at x.
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10. * (Necessity of prox-regularity) Partition R 2 into four disjoint
sets,

3 1 {(x ,y) IY::::: O}

32 {(x ,y) I°< Y < 2x
2

}

33 {(x ,y) 10< 2x 2
::::: y::::: 4x 2

}

34 {(x, y) 14x2 < y} ,

and define a function j : R 2
---7 R by

{

X 2 _ Y

j( ) _ J x 4 + 2x2 y - y2

x ,y - 3x2 _ Y

y - 5x 2

on 3 1

on 8 2

on 3 3

on 8 4 .

(i) Prove that j is everywhere locally Lipschitz.

(ii) Prove that j is everywhere regular.

(iii) Prove that the set epi j is partly smooth at zero relative to each
of the manifolds

M 1 {(x,y ,z)IY=O, z= x 2
} ,

M2 {(x, Y,z) IY = 4x 2
, Z = _x2

} .

(iv) Prove that zero is a strong critical point relative to M 1 for the
problem of minimizing the function (x , y , z) f--7 z over epi j , but
is not a local minimizer.

(v) Is epi j prox-regular at zero?



Chapter 10

Postscript: Infinite Versus
Finite Dimensions

10.1 Introduction

We have chosen to finish this book by indicat ing many of the ways in
which finite dimensionality has played a critical role in the previous chap
ters. While our list is far from complet e it should help illuminate the
places in which care is appropriate when "generalizing" . Many of our main
results (on subgradients, variational principles, open mappings, Fenchel
duality, metric regul arity) immediately generalize to at least reflexive Ba
nach spaces . When t hey do not , it is principally becau se the compactness
proper ti es and support proper ties of convex set s have become significantly
more subt le. There are also significant ly many proper ties that characteri ze
Hilb ert space. The most striking is perhaps the deep result that a Banach
space X is (isomorphic to) Hilb ert space if and only if every closed vector
subspace is complemented in X . Especially with respect to best approxi
mation properties , it is Hilb ert space that best capt ures the prop er ti es of
Euclide an space.

Since this chapter will be primarily helpful to t hose with some knowl
edge of Banach space funct ional analys is, we make use of a fair amount of
standard t erminology without giving det ails . In the exercises more specific
cases are cons ide red .

Throughout , X is a real Ban ach space with cont inuous du al space X *
and f : X -. (00, + 00] is usually convex and proper (som ewhere finite) . If
f is everywhere finite and lower semiconti nuo us t hen .f is cont inuous-since
a Ban ach space is barreled, as it is a Baire space (see Exercise 1). T his is
one of the few significant an alyti c propert ies which hold in a large class of
incomplete normed spaces. By contrast , it is known that completenes s is

239
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characterized by the nonemptiness or maximality of subdifferent ials on a
normed space. For example, on every incomplete normed space there is a
closed convex function with an empty subdifferenti al , and a closed convex
set with no support poi nt s.

The convex subdifferential at a point x where f is finite is defined by

af(x) = { x* E X * I (x*, h):::; f(x +h) - f (x) for all hEX} .

In what follows, sets are usually closed and convex and B(X) denotes
the closed un it ball : B(X) = {x I [z] :::; I} . In general our notation
and terminology are consiste nt with the Banach space lit erature. We will
interchangeably write (x*, h) or x* (h) dep ending whether functional or
vectorial ideas are first in our minds.

A point x* of a convex set C is a (prop er) support point of C if there
exists a linear cont inuous functional 1> with

1>(x* ) = 0' = sup 1> > inf 1>.
c c

Then 1> is said to be a (nontrivial) supportin g fun ctional and H = 1>- 1(0')
is a supporting hyperplane. In the case when C = B(X) , 1> is said to be
norm-attaining.

We complete the pr eliminari es by recalling some derivative notions. Let
(3 denote a bomology , that is, a family of bounded and cent rally symmetric
subsets of X , closed under posit ive scalar mult iplication and finit e unions,
and whos e union is X . We write x* E afJ f(x) if for all sets B in (3 and real
f > 0, there exists real 8 > 0 such that

(x*, h) :::; f(x + t~) - f( x) + f for all t E (0 ,8) and h E B .

It is useful to identify t he following bornologies:

points f-+ Gateaux (G)

(norm) compact s f-+ Had am ard (H)

weak compact s f-+ weak Hadamard (WH)

bounded f-+ Frechet (F) .

Then all f (x) = aG f( x) for any locally Lipschitz t, whil e OFf(x) =
aW H f(x) when X is a reflexive space. With this language we may de
fine t he (3-derivative of f a t x by

{\7 fJ f( x)} = afJ f(x) n - a fJ ( - J)(x)

so that
{\7 fJ f(x)} = afJ f(x ) for concave f.
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For convex fun ctions there is a subtle interplay between t hese notions.
For example, a convex function that is weak Hadamard differentiable at a
poi nt of X is Frechet differentiable at t hat point if £1(N) et X . For general
Lipschitz mappings t he situation is much simpler. For example, on every
nonreflexive but smooth Banach space there is a distance function t hat is
everywhere weak Hadamard differentiabl e but not Frechet differentiable at
some point. Hence the sit uat ion on Co(N) differs ent ire ly for convex and
distance functions.

10.2 Finite Dimensionality

We beg in with a compend ium of st andard and relatively easy results whose
proofs may be pieced toge t her from many sources. Sometimes the separable
version of these resul ts is simpler.

Theorem 10.2.1 (Closure, continuity, and compactness) Th e fol 
lowing statem ents are equivalent:

(i) X is fin it e-dimensional.

(ii) Every vector subspace of X is closed.

(iii) Every lin ear map taking values in X has closed range.

(iv) Every linear funct ional on X is contin uous.

(v) Every convex function f : X ----., R is continuous.

(vi) Th e closed unit ball in X is (pre-}compact.

(vii) For each n onernpty closed set C in X and for each x in X, the dis
tance

dc(x) = inf{ llx - ylll y E C }

is attained.

(viii) Th e weak and norm topologies coinci de on X .

(ix) Th e weak-star and norm topologies coincide on X *.

Turning from continuity to t angency properties of convex set s we have
the following result.

Theorem 10.2.2 (Support and separation) Th e foll owing stateme nts
are equiva lent:

(i) X is finit e-dim ensional.
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(ii) Whenever a lower semicontinuous convex f : X ----; (00,+00] has a
unique subgradient at x then f is Gateaux differentiable at x.

(iii) X is separable and every (closed) convex set in X has a supporting
hyperplane at each boundary point.

(iv) Evert) (closed) convex set in X has nonempty relative interior.

(v) An R = 0, A closed and convex, R a ray (or line) =? A and Rare
separated by a closed hyperplane.

It is conjectured but not proven that the property described in part (iii) of
the above result holds in all nonseparable Banach spaces X.

In essence these two results say "don 't trust finite-dimensionally derived
intuitions". In Exercise 6 we present a nonconvex tangency characteriza
tion.

By comparison, the following is a much harder and less well known set
of results.

Theorem 10.2.3 The following statements are equivalent:

(i) X is finite-dimensional.

(ii) Weak-star and norm convergence agree for sequences in X* .

(iii) Every continuous convex f : X ----; R is bounded on bounded sets.

(iv) For every continuous convex f : X -7 R, the subdifferentialof is
bounded on bounded sets.

(v) For every continuous convex f : X -7 R, any point of Gateaux dif
ferentiability is a point of Frechet differentiability.

Proof sketch. (i) =? (iii) or (v) is clear; (iii) =? (iv) is easy.
To see (v) =? (ii) and (iii) =? (ii) we proceed as follows. Consider

sequences (x;',) in X* and (an) in R satisfying Ilx;'11 = 1 and 0 < an ! O.
Define

f(x) = sup {(x~ , x) - an}.
nEN

Then f is convex and continuous and satisfies

Gateaux differentiable at a {:} x~ ~ 0

and
Frechet differentiable at 0 {:} Ilx~ll* ----; O.

Thus (v) =? (ii) .
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Now consider the function

f(x) = L'Pn(\X~,X)),
n

where 'Pn(t) = n(ltl- (1/2))+ . Then f is

finite (continuous) {:} x~ ~ 0,

and is
bounded on bounded sets {:} Ilx~ ll * -7 o.

Thus (iii) ~ (ii) .
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D

Note that the sequential coincidence of weak and norm topologies char
acterizes the so called Schur spaces (such as R1 (N)), while the sequential co
incidence of weak and weak-star topologies characterizes the Grothendieck
spaces (reflexive spaces and nonreflexive spaces such as Roo (N)) .

The last four statements of the previous theorem are equivalent in the
strong sense that they are easily interderived while no "easy proof" is
known of (ii) ~ (i). (This is the Jos ephson-Nissenzweig theorem, first
established in 1975.) For example, (ii) ~ (iii) follows from the next resul t .

Proposition 10.2.4 Suppose that f : X -7 R is continuous and convex
and that (x n ) is bounded while f( x n ) -7 00 . Then

Thus each such function yields a Joseplison-Nisscuzweig sequence of unit
vectors w*-convergent to zero.

Theorem 10.2.3 highlights the somewhat disconcerting fact that even
innocent-seeming examples of convex functions inevitably involve deeper
questions about t he structure of Banach spaces. The following are some
examples.

(i) In co(N) with the supremum norm 11 ·11 0,,, one may find an equivalent
norm ball Bo(X) so that the sum B oo(X) + Bo(X) is op en. This
is certainly not possible in a reflexive space, wher e closed bounded
convex sets are weakly compact .

(ii) A Banach space X is reflexive if and only if each continuous linear
functional is norm-attaining, that is, achieves its norm on the unit
ball in X . (This is the celebrated theorem of James.) In consequence,
in each nonreflexive space there is a closed hyperplane H such that
for no point x outside H is dH(x) at tained.
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(iii) In mos t nonseparable spaces t here exist closed convex sets C each of
whose points is a proper suppo rt point . This is certainly not possible
in a separable space, wherein quasi relative interior points must exist .

10.3 Counterexamples and Exercises

1. (Absorbing sets) A convex set C satisfying X = U{ tC I t 2 O} is
said to be absorbing (and zero is said to be in the core of C) .

(a) A normed space is sa id to be barreled if every closed convex ab
sorbing subset C has zero in its interior. Use t he Baire category
theorem to show that Ban ach spaces are barr eled . (There are
normed spaces which are barreled but in which the Baire cat 
egory theorem fails, and there are Baire normed spaces which
are not complete: appropriate dense hyperplanes and countable
codimension subspaces will do the job.)

(b) Let f be proper lower semicontinuous and convex. Suppose t hat
zero lies in the core of the domain of f. By considering the set

C = {x E X I f( x) ::; I} ,

deduce t hat f is continuous at zero.

(c) Show that an infinite-dimension al Banach space cannot be writ
ten as a countabl e union of finite-dimensi on al subspaces, and so
cannot have a countable but infini te vector space basis.

(d) Let X = £2(N ) and let C = {x E X Ilxnl ::; 2- n } . Show

X # U{tC It 2 O} but X = cl U{tC It 2 O} .

(e) Let X = £p (N ) for 1 ::; p < 00 . Let

C = {x E X Ilxnl ::; 4- n
} ,

and let
D = {x E X IX n = 2- n t , t 2 O} .

Show C n D = {O} , and so

Tc nv(O) = {O}

but
Tc(O) n Tv (0) = D.

(In general, we need to require something like 0 E core (C - D) ,
which fails in this example-see also Section 7.1, Exercise 6(h) .)
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(f) Show that every (separable) infin ite-d imensional Ban ach space
X contains a prop er vector subspace Y with cl (Y) = X. Thus
show t hat in every such space there is a nonclosed convex set
with empty interior whose closure has interior.

2. (Unique subgradients)

(a) Show that in any Banach space, a lower semicontinuous convex
fun cti on is continuous at any point of Giit eau x di fferent iability.

(b) Let f be t he indicator fun ction of t he nonn egative cone in fp(N)
for 1 :::; p < 00 . Let x* have strict ly positive coord inates. Then
prove zero is t he unique element of 8f(x*) but f is not cont in
uous at x*.

(c) Let X = £1 [0, 1] with Leb esgue measure. Consider the negative
Boltzmann-Shann on entropy :

B (x ) =11

x( t) log x(t) dt

for x( t) ~ a almost everyw here and B (x ) = +00 othe rwise.
Show B is convex , nowhere cont inuous (but lower semicont inu
ous) , and has a un iqu e subgradient when x > a almost every
where, namely 1 + log x (t ).

3. (Norm-attaining functionals)

(a) Find a non- norm-at taining functional in eo(N) , in foo(N ), and
in f 1 (N ).

(b) Conside r t he unit ball of f 1 (N ) as a set C in f 2 (N ). Show that
C is closed and bo unded and has empty in terior. Determine the
support poin ts of C .

4. (Support points)

(a) Let X be separable and let C c X be closed , bounded , and
convex. Let {x n In E N} be dense in C. Let x* = 2::=12-n xn .

Then any linear cont inuous functional f with f( x*) = sUPe f
must be constant on C and so x* is not a proper support point
ofC.

(b) Show that every point of the nonnegative cone in t he space f 1 (R)
is a suppo rt p oin t .

5. (Sums of closed cones)

(a) Let X = f 2 (N ). Construct two closed convex cones (subspaces)
Sand T such t hat S nT = {a} while S - +T- =J t'2(N ). Deduce
that t he sum of closed subspaces may be de nse.
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(b) Let X = £2 (N). Construct two cont inuous linear operators map
ping X to itself such that each has dense range but their ran ges
intersect only at zero . (This is easier if one uses the Fourier
identification of L 2 with £2,)

6. (Epigraphical and tangential regularity)

(a) Let C be a closed subset of a finite-dimension al space. Show
that

dc(O; h) = dKc(o)(h)

for all h EX. Show also that de is regular at x E C if and only
if C is regular at x.

(b) In every infinite-dimensional space X t here is necessarily a se
quence of unit vectors (un) such that inf{llun-umlll n =1= m} > O.
Consider the set

C = {4-n (Uo + ~Un) In = 0,1,2 , . . . } U {O} .

Show the following results:

(i) Tc(O) = Kc(O) = O.

(ii) For all hEX,

Ilhll = dc'(O;h) = dKc(o)(h)

~ dc(O;h) ~ -( - d)c (O;h) = -llhll.

(iii) dc(O;uo) = dKc(o)(uo) > dc(O;uo) .

(iv) (-d)c(O;uo) > (-d) c(O;uo).

Conclude that C is regul ar at zero , but that neit her de nor -de
is regular at zero.

(c) Establish that X is finite-dimensi onal if and only if regularity of
sets coincides with regularity defined via distan ce functions .

7. (Polyhedrality) There is one par ticularly striking example where
finite-dimensional results "lift" well to the infinite-dimensional set
t ing. A set in a Banach space is a polyhedron if it is the int ersection
of a finite number of hal fspaces. The definition of a polytope is un
changed since its spa n is finit e-dimensional.

(a ) Observe that polyhedra and polytopes coincide if and only if X
is finite-dimensiona l.

(b) Show that a set is a polyhedron if and onl y if it is the sum of a
finite-dimensional polyhedron and a closed finit e-codimensional
subspace of X .
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So each polyhedron really "lives" in a finite-dimensional quotient
space. In essence, this is why convex problems subject to a finite
number of linear inequality constraints are so tractable. By contrast,
note that Theorem 10.2.2(v) shows that even a ray may cause diffi
culties when the other set is not polyhedral.

8. (Semicontinuity of separab le functions on £p) Let functions
'Pi : R ---+ [0, +00] be given for i E N . Let the function F be defined
on X = £p for 1 ::; p < 00 by

F(x) = L 'Pi(Xi) '

Relatedly, suppose the function 'P : R ---+ (00, +00] is given, and
consider the function

(a) Show that F is convex and lower semicontinuous on X if and
only if each 'Pi is convex and lower semicontinuo us on R .

(b) Suppose 0 E domF<p' Show that F <p is convex and lower semi-
continuous on X if and only if

(i) 'P is convex and lower semicontinuous on R , and

(ii) infR'P = 0 = 'P(O) .

T hus , for 'P = exp o we have F <p is a natural convex fun ction
which is not lower scmicontinuous.

9. (Sums of su bspaces)

(a) Let AI and N be closed subspaces of X . Show that M + N is
closed when N is finit e-dimensional. (Hint : First consider the
case when M n N = {O} .)

(b) Let X = £p for 1 ::; p < 00. Define closed subspaces M and N
by

M = { x IXZn = O} and N = {x IX Zn = Tnxzn _d ·

Show that M + N is not closed . Observe that t he same res ult
obtains if M is rep laced by the cone

K = {x I X Zn = 0, XZn-l 2:: O} .

(Hint: Denote the unit vectors by (Un). Let

x
n = L UZk-l and yn = x

n + L 2- k
u Zk .

k <n k <n

Then x " E M, yn E N, but x n - yn E M + N converges to

I:k<oo 2k
u Zk ~ M + N.)
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(c) R elatedly, let X := £2 and denote the unit vectors by (Un).
Suppose (an) is a sequence of positive real nu mb ers with 1 >
a n > a and a n ---> 1 sufficien tly fas t. Set

Consider the subspaces

M 1 = cl span{ el, e2 , . .. } and M 2 = cl span{h , 12 ,... }.

(i) Show M 1 n M 2 = {a} and that the sum M t +M{ is dense
in X but not closed .

(ii) Du ally, show that M t n M { = {a} and that the sum M 1 +
M 2 is dense in X but no t closed.

(iii) Find two cont inuous linear op erators on X , T1 , and T2 such
that both have dense range but R(TdnR(T2 ) = {a}. (Such
subspaces are ca lled disjoin t operator ranges.)

Notes on Previous Chapters

Chapter 1: Background

In infinite-dimensional spaces, the sep arat ion theorem is known as the ge
ometric version of the Hahn-Banach theorem and is one of the basic prin
ciples of functional analysis (for example, see [179] or [169]).

The Bolzano-Weierstrass theorem requires some assumpt ion on the
sp ace to hold. One of its main applica ti ons can be stated as follows: any
lower semicontinuous real-valued function on a counta bly compact space
(a space for which every countable open cover has a finite subcover) is
bounded below and assumes its minimum [169] .

Exercise 13 in Section 1.1 (The relative interior) does not extend to
the infinite-dimens ional setting. As a simple counterexample, consider the
nullspace H of a discontinuous linear functional. It is den se (and so not
closed) , convex , and nonempty but has empty rel ative interior. To over
come that difficulty, new definitions were given to classify sets that are big
enough in some sense (compactly epi-Lipschitz sets, epi-Lipschit z-like sets,
. . .). All these defini tions agree in finit e dimensions. Another approach
conside rs the "quasi relative inter ior" (see [34]) .

Chapter 2: Inequality Constraints

First order necessary condit ions hold in general spaces [105, 131]. However ,
one has to be careful about nearest point properti es (Section 2.1 , Exercise
8) . We have existence and uni city of the nearest point to a closed convex
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set in a Hilb ert space or for weakly compact convex set s in a strictly convex
norm, but no longer without any assumptions. Often it is possibl e t o deal
with approximations by using density results such as the Bishop-Phelps
theorem, which states: the set of continuous linear fun ctionals that attain
their norm on the uni t ball in a Banach space is norm dense in the du al
[153,82].

Chapter 3: Fenchel Duality

The main results (Fenchel duality, Lagrange mul tiplier theorem) still hold
in a very general setting [105, 131]. Properties of convex fun ctions defined
on Ban ach spaces are investi gated in [153, 82]. Note that many properti es
of cones coincide in finit e dimensions, while one has to be more careful in
the infini te-dimension al setting (see [29]).

Chapter 4 : Convex Analysis

Convexity in gener al linear spaces is st udied in [98].

In infini te dimen sions, Minkowski's theorem requires some assumption
on the space since there may be bounded closed convex sets that do not
have support ing hyperplanes (indeed, James ' theorem state s that a Banach
space is reflexive ifand only ifevery continuous linear functional achieves it s
m aximum on th e closed unit ball) . Here is a generaliz at ion of Minkowski 's
theorem: Any weakl y compact (respectively, closed bounded) convex subset
of a Banach space (resp ectively, Banach space with the Rad on-Nikodym
property) is t he closed convex hull of it s st rongly exp osed point s [63].

The Op en mapping theorem extends to general Ban ach spaces (for ex
ample, see [179]). Simil arly, t he Moreau-Rockafellar theorem holds in gen
eral spaces [146, 165]. Furthermore, Lagran gian du ality, which is equivalent
to Fenchel du ality, can be est ablished in great generality [131, 105].

Chapter 5: Special Cases

The t heory of linear op erators is well-develop ed in infinite dimensions. See
[149] for spec tral t heory in Banach algebras and [188] on compact opera
tors. Many of the eigenvalue results have extensions for compact selfadjoint
operators [37] .

As we saw, closed convex processes are natural generalizat ions of linear
mappings; in Banach space they admit open mapping, closed graph, and
uniform boundedness theor ems (see [5], and also [3] for applicat ions to
differenti al inclusions) .
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Chapter 6: Nonsmooth Optimization

All the ca lculus rul es and the mean valu e t heorem exte nd . Note however
that Hadamard and Frechet derivatives are no longer equal (see [55] and
also this chapter) . Density theorems extend (see [153]).

Various subdifferentials have been defined in infinite dimensions. See
the recent survey [42] for how ca lculus rul es and main properties are proved ,
as well as for some applications.

Chapter 7: Karush-Kuhn- Tucker Theory

Ekeland 's variational principle holds in complete metric spaces (see [3]). It
has numerous applicat ions. For example, it is used in [153] to obt ain the
Bronsted-Rockafellar theorem, which in turn implies the Bishop-Phelps
theorem (see also [82]).

The idea of a vari ational principle is to consider a point where the
function is almost minimized and show it is the minimum of a slight ly per
turbed function. In Ekeland's variat ional principle, the perturbed function
is obtained by adding a Lipschitz function to the original function. On the
other hand, t he Borwein-Preiss vari ational principle adds a smooth convex
fun ct ion . This latter principle is used in [42] to obtain several results on
subdifferentials.

Ther e are several other such pr inciples. Examples include St ella 's vari
a t ional principle [56] (which adds a linear function), and the Deville
Godefroy-Zizlcr variational principle (see [153, §4]) .

Metric regularity results extend to Banach space (see [145], for exam
pie) . Constraint qu alifications take various forms in infinite dimensions
(see [105, 131] for some examples).

Chapter 8: Fixed Points

The Banach contraction principle holds in complete metric spaces. Mor e
over , in the Banach space setting , fixed point t heore ms hold not onl y for
cont ract ions but also for certain nonexpansive map s; see [63] for more pre
cise formulations . See also [189] for a more extens ive reference on fixed
point theorems and applica t ions.

Brouwer 's theorem holds in Ban ach spaces for continuous self maps
on a compact convex set [189]. Michael 's selection theorem extends to
appropriate multifunctions from a par acompact space into a Ban ach space
[3], as does the Cellina selection t heorem.

Chapter 9: More Nonsmooth Structure

A complete analogue of the Intrinsic Clarke subdifferential formula exist s
in separable Ban ach spaces, using Gateaux derivatives and the notion of
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a "Haar null set " , and due originally to Thibault: see [43]. The proxi
mal normal formula has satisfactory extensions to Hilbert space, and, with
appropriate modifications, to all reflexive spaces [43] .

Not every Clarke subdifferential is minimal. In particular, there is a
nonexpansive real function whose Clarke subdifferential is [-1 ,1] through
out R . An example is the integral of the characteristic function of a
"ubiquit ous" subset of R (one which int ersects each interval (a,b) in a set
of me asure strictly between 0 and b - a): for the existence of such sets, see
[177,43] . A much deeper result [43, Cor 5.2.34] is that in every Banach
space there is a Lipschitz function whose Clarke subdifferential is the dual
ball throughout the unit ball. In such cases , every point is Clarke-critical,
and the Clarke subdifferential is maximal and provides no information.
In Banach space, the minimality of various Clarke subdifferentials (as in
Theorem 9.2.4) is a rich subject that may be followed up in [43] .

A Banach space is finite-dimensional if and only if every point has a
nearest point in every norm-closed bounded set. To see this , in any infinite
dimensional space, take a set of unit vectors Un with no norm-cluster point ,
and consider the sequence {( 1 + n - 1 )un } . The existence or non-existence
of a non-convex Chebyshev set in Hilbert space remains one of the most
challenging problems in the field. While many partial results have been
established, the overall state of play rem ains little different than when
Asplund wrote his paper [2] . A recent and detailed discussion is to be
found in [62].
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Section 1.1: Euclidean Spaces

E: a E uclidean space

R: the reals

C' , .): inner product

R n : the real n-vectors

II. II: the norm

B : the unit ball

C + D, C - D , AC : set sum, difference, and scalar product

x : Cartesian product

R +: the nonnegative reals

R +' : the nonnegative orthant

R >: the vectors with nonincreas ing components

span : linear span

conv : convex hull

int : interior

R +.+: the inter ior of the nonnegative orthant

----;, lim : (vector) limit

cl: closure

bd: boundary

D C: set complement

A' : adjoint map

N(·) : null space

e J..: orthogonal complement

inf: infimum

sup: supremum

0: composition of functions
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0+ (0): recession cone

aff : affine hull

ri: relative interior

Section 1.2: Symmetric Matrices

S": the n x n real symmetri c matrices

S +. : the positive semidefinite matrices

::::::, <, 2, >: component wise ord ering

~ , -< , t: , >- : semidefinite orderin g

S +.+ : the posit ive definite matrices

I: identity matrix

tr: t race

Ai (0): i th largest eigenvalue

Diag (0): diagonal matrix

det: determinant

o n: the orthogonal mat rices

X 1 / 2 : matrix square-root

[oj: non increasing rearrangement

p n: the permutation matrices

rn : t he doubly stochast ic matrices

M": the n x n real matrices

0" i ( 0 ) : i th largest singular value

Section 2.1: Optimality Conditions

.f'(0; 0): direct ional derivat ive

\7: Gateaux derivative

Nc (-): normal cone

\72: Hessian

y +: positive part of vector

Pc : projection on C
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Section 2.2: Theorems of the Alternative

Py : orthogonal project ion

Section 2.3: Max-functions

1(·): active set

N: the natural numbers

L( ·; .): Lagr angian

Section 3.1: Subgradients and Convex Functions

be : indicator function

dom: do main

!in: !ineali ty space

core : core

(J: subdifferential

dom 8 f : domain of subdifferential

r( .): gamma function

Section 3.2: The Value Function

L( ·; .): Lagrangian

v(·): value fun ction

cpi : epigraph

dom: domain

Section 3.3: The Fenchel Conjugate

h*: conjugate

Ib: log barr ier on R ++

Id: log det on S++

cont : points of continuity

J{ - : polar cone
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Te(-): (convex) tangent cone

8 : infimal convolut ion

de: distance function

9*: concave conjugate

Section 4.1: Continuity of Convex Functions

~: the simplex

')'e: gauge funct ion

Co: polar set

ext (.): extreme points

Section 4.2: Fenchel Biconjugation

lim inf h (x r) : lim inf of sequence

cl h: closure of function

0+ f : recession function

ho : concave polar

Section 4.3: Lagrangian Duality

<1>: dual fun ction

Section 5.4: Convex Process Duality

D( ·): domain of multifunction

<1>(C) : image under a multifunction

R(·): range of multifunction

G( ·): graph of multifunction

BE : unit ball in E

<1> -1: inverse multifunction

<1>*: adjoint multifunction

II . Ill: lower norm

II . Jlu: upper norm
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Section 6.1: Generalized Derivatives

t : (-; .): Dini d irect ional derivative

r(·; -): Clarke directional derivat ive

I"(-; .): Michel- P errot directional derivat ive

00 : Clarke subdifferenti al

0_ : Dini subdifferentia l

00 : Michel-Penot subdiffer enti al

f V g: po intwise maximum of functions

Section 6.3: Tangent Cones

ds : dist ance function

Ts (' ): Clarke tange nt cone

K s (-): continge nt cone

Ns(' ): Clarke norm al cone

[x , y], (x , y) : line segments

star: star of a set

Ps (-): pseudotange nt cone

Section 6.4: The Limiting Subdifferential

t: (-; .): Din i direct ion al der iva tive

0_ : Dini subd ifferential

oa: limiting subdifferenti al

Ns(-): limi ting no rmal cone

U(f; Xi <5): f-neighbourhood of x.

Section 7.1 : An Introduction to Metric Regularity

hi s: h restricted t o S

Section 7.2: The Karush-Kuhn-Tucker Theorem

sgn: sign function
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Section 7.4: Second Order Conditions

L(E, Y): the linear maps from E to Y

9 2h(x ): second derivat ive

9 2h(x)(v ,v ): evaluated second derivat ive

C(x): narrow critical cone

L(·),L( .): Lagrangians

C(x): broad critical cone

Section 8.1: The Brouwer Fixed Point Theorem

"yf: cont ract ion constant

C (l) : cont inuously differentiable

S : unit sphere

Sn: unit sphere in R n+ l

S (U): unit sphere in U

Section 8.2: Selection and the Kakutani-Fan Fixed
Point Theorem

Go: countable intersect ion of open sets

Section 8.3: Variational Inequalities

V 1(0" C) : variational inequality

Fit>: Fitzpat rick function

Pit> : convexified represent a tive

Section 9.1: Rademacher's Theorem

o;f(·): upper Dini derivative

Dhf( ·): lower Dini derivative

oQh(·): Clarke generalized Jacobian

Jh ( · ) : Clarke generalized Jacobian
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Section 9 .2 : Proximal Normals and Chebyshev Sets

N~(-): proximal normal cone

L: inversion in t he unit sphere

Section 10.1: Euclidean Space

X : a real Banach space

X*: continuous dual space

Section 10.2: Finite Dimensionality

x*: a continuous linear functional

B(X): closed unit ball

(3, G, H, W H, F : a bornology, Gateaux, Hadamard, weak Hadamard,
Frechet

8f3: bornological subdifferential

\1 f3 : bornological derivative

t'p(N), co(N): classical sequence spaces

11· 11*: dual norm
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continuously differentiable, see
differentiability,
continuous

contour, 82
contraction, 179

Banach space, 250
non-uniform, 183

control theory, vii , 112
convergent subsequence, 3ff
convex

analysis, vii-ix
infinite-dimensional, 68,

249
monotonicity via, 209-211
polyhedral, 97

approximately, 224
calculus, 52, 53, 56, 139

failure , 57
sum rule, 52

combination, 2, 5ff
const raint, 43ff
function, 4, 33, 44ff

bounded, 242
characterizations, 37
composition, 6
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convex fun ction (cont .)
condit ions for minimizer ,

16
cont inuity of, see

continuity of convex
functions

cr it ical points of, 16, 33
difference of, 57 , 108, 219
differentiabili ty of, 36
directional derivat ive, 16
examples, 39
exte nded-valued, 33 , 43,

46ff
Hessian characteri zation ,

see Hessian, and
convexity

of matrices , 40
on Banach space, 249
recogni zin g, 37 , 38
regu larity, 131, 138
sy mmetric , 27

growth cond it ions , 7
hull, 2, 5ff

and exposed points, 249
and extreme p oints, 68
and .Gordan 's theo rem, 23
of lim iting subdifferenti al,

145, 149
im age, 190-199
log- , 41
midpoint , 80
multifunction, 114 , 115
order- , see order-convex
process, see process
program, 43-48, 51ff

duality, 88
Schur-, 25, 27, 38 , 108, 135
set, 2ff
spectra l fun ction, see

spect ral fun cti on
strictly, see strictl y convex,

essentia lly
subd ifferentia l, 131ff

and limiting, 145
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convex ified represent ative,
209-210

convexity, see convex
and continuity, see

continuity of convex
fun cti ons

and differenti ability, 15
and monotonicity, 129
in linear spaces, 249
in optimization, 33ff
of Chebys hev sets, ix ,

220 -227
core, 34

in infin ite dimensions, 244
versus interior, 37, 67

cost funct ion , 204
countable

basis, 244
codime nsion, 244

countably compact, 248
cover , 191, 248
crit ical cone

broad, 174-177
narrow, 172-177

crit ica l point , 16
approximate, 17
st rong , 234- 238
unique, 19

curvature, 172
cusco, 190- 211 ,219-223

DAD problems, 42, 62
Davis ' theor em , 105, 106, 108
DC function , see convex

fun ction, difference of
Debrunner-Flor exte ns ion

theorem , 209-211
dens e

hyp erplane, 244
range, 246, 248
subspace, 245

der ivative, see differe nt iability
directional , see direct ion al

de rivative



294

derivative (cont .)
Frechet , see Frechet

derivative
Gateaux, see

differentiability,
Gat eaux

generalized, 123
Had amard, see Had amard

derivative
strict , see strict derivative
weak Hadamard, see weak

Hadamard derivative
det erminant , 9, 163, 180, 183

order preservation, 107
Deville-Godefroy-Zizler vari

at ional principle, 250
differentiability

and pseudoconvexity, 143
bornological , 240
cont inuous, 132-134, 157,

159, 164
approximat ion by, 180

Frechet , see Frechet
derivative

Gateaux, 15, 28, 61,
130-136, 139, 240-245

generic, 197, 199
of convex funct ions , 36, 82
of dist ance funct ion , 57,

218,222
of Lipschitz functions, ix,

133
of spectral funct ions , 105
of the conjugate , 225
strict , see st rict derivative
twice, 172-176, 231, 233

differential inclusion , 249
dimension, 68

infinite, see infinite
dimensions

Dini
calc ulus, failure, 128
derivative, 127, 214

Index

Dini (cont.)
directional derivative, 145,

147
and contingent cone , 137
cont inuity, 128, 146
Lipschitz case , 123, 129,

131
subdifferential , 124, 125,

129, 131, 145
of distan ce function, 169,

218
surjective , 128

subgradient, 124, 146, 148
exists densely, 135, 145,

150
Dirac, see Fermi-Dirac
directi on al der ivative, 15, 61

and subgradients, 35, 123
and tangent cone, 137
Clarke, see Clarke

directional derivative
Dini , see Dini

subdifferenti al
Michel-Penot, see

Michel-Penot
di rectional derivative

of convex fun ction, 34- 42
of max-functions, 28, 33, 38
sublinear, 34, 123, 124, 137

disjoint op erator ranges, 248
distance

Bregm an, 39
from feasibility, 168
function, 57, 133, 137-144,

218-226
attainme nt, 241, 243, 248
differ ent iability, 241
di rectional derivative , 144
regularity, 138, 246
subdiffere nt ials, 169
to level set, 171

to inconsistency, 119, 122
divergence bounds, 63
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domain
of convex function , 33 , 44,

65
of mu lt ifunction, 114
of subdifferential, 35

not convex , 40
po lyhedral, 97

doubly stochastic , 10, 12, 75
pattern , 42

Dowker , 196
dua l

attainment , see attainment,
dual

cone, 27
func t ion, 88
linear progr am, 109, 202
problem, 88

examples, 91
solut ion, 82, 89, 90
space, 239
value , 52, 88-96

in LP and SD P , 109-113
du ality, vii, 2, 76ff

cone program , see cone
program

duali ty-based algorit hms , vii
Fenche l, see Fen chel duali ty
gap, 88-96

Duffin's, 46, 92
in LP and SDP, 110-113,

203
geometric progr amming, 103
in convex programming, 88
infinite-dimensional , 91, 249
Lagr angian, see Lagrangian

duality
LP, vii, 25, 109-113, 202
nonconvex, 93
norm, 117
process, 114-122
quadratic progr amming, 205
SDP, vii, 109-113
st rict-smoot h , 78, 82

295

du ali ty (cont.)
weak

cone program, 109, 110
Fenchel, 52-53, 101
Lagrangian , 88 , 91

Duffin 's duality gap , see du ali ty,
gap , Duffin 's

efficient , 204
eigenvalues , 9

derivati ves of, 135
functions of, 104
isotonicity of, 136
lar gest , 162
of operators, 249
op timizati on of, 106
subdifferenti als of, 135
sums of, 108

eigenvector , 19, 163
Einstein , see Bose- Einstein
Eke land variat ional pri nciple, 17,

153-157, 179, 224, 225
in metric space, 250

engineering , ix
entropy

Boltzmann- Shann on , 55
Bose- Einstein , 55
Fermi- Dirac, 55
maximum, 41, 56, 62

and DAD problems, 42
and expected sur prise, 87

epi-Lipschitz-like, 248
epigraph, 43ff

as multifunction graph , 193
closed , 76, 81
normal cone to , 47
polyhedral , 97
regula rity, 246
suppo rt functi on of, 55

equilibrium , 193
equivalent no rm , see norm ,

equivalent
essent ially smooth, 37, 74, 80

conjugate, 78, 82
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essentially smooth (cont.)
log barriers, 51
minimizers, 40
spectral functions , 106

essent ially strictly convex, see
strictly convex,
essentially

Euclidean space, 1-9, 239
subspace of, 24

exact penalization, see
penalization, exact

existence (of optimal solution,
minimizer) , 4, 79, 90ff

expected surprise, 86
exposed point, 73

strongly, 249
extended-valued, 145

convex functions , see convex
function ,
extended-valued

extension
continuous, 196
maximal monotone, 210

extreme point, 67
existence of, 73
of polyhedron, 98
set not closed, 73
versus exposed point , 73

Fan
- Kakutani fixed point

theorem, 190-201, 203
inequality, 10-14, 104, 105
minimax inequality, 205
theorem, 10, 13

Farkas lemma, 23-25, 109, 160
and first order conditions,

23
and linear programming,

109
feasible

in order complementarity,
205

region, 29, 160

Index

feasible region (cont .)
partly smooth, 234

solution, 29, 43, 110
Fenchel, ix, 54

- Young inequality, 51,52,
71, 105

-Young inequality, 225
biconjugate, 49, 55, 76-85,

99, 105, 106, 126
and duality, 89
and smoothness, 225, 226

conjugate, 23, 49-63
and Chebyshev sets, 221
and duality, 88
and eigenvalues, 104
and subgradients, 51
examples, 50
of affine function, 79
of composit ion, 93
of exponent ial, 49, 56, 62,

63
of indicator function , 55
of quadratics, 55
of value function, 89
self-, 55
strict-smooth duality, 78,

82
transformations, 51

duality, 52-63, 73, 77, 81,
102

and complementarity, 204
and LP, 110-113
and minimax, 201
and relative interior, 74
and second order

conditions, 174
and strict separation, 70
generalized, 102
in infinite dimensions,

239,249
linear constraints, 53, 62,

71, 100
polyhedral, 100, 101
symmetric, 62
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Fenchel d ua lity (cont.)
versus Lagr angian, 93

problem , 52
Fermi- Dirac entropy, 55
F illmore-W illia ms theorem , 108
finite cod imension, 246
finite dimensions, 239- 250
fini tely generated

cone, 25, 26, 97-99
function, 97-101
set, 97-101

first order cond it ion (s)
and max-functions , 28- 32
and the Farkas lemma, 23
for optimality, 16
Fri t z John, see Fritz John

condit ions
in infinite dimensions, 248
Karush-Kuhn-Tucker , see

Karush - Kuhn- Tucker
theorem

linear constraints , 16, 19,
21,42

necessary, 15, 16, 29, 139,
160,174, 175

sufficient , 16
Fish er informati on , 79, 84, 87
F itz patrick fun ction, 209
fixed point , 179-211

in infin ite dimensions , 250
methods, 203
property, 184
theorem

of Brouwer , see Brouwer
fixed point theor em

of Kakutani-Fan, see
Kakutani-Fan fixed
point t heorem

Fourier identification, 246
Frechet derivati ve, 132-134, 153,

213-216
and continge nt necessary

condition , 139, 157
and inversion, 184-185

297

Frechet derivative (cont.)
and mult ip liers , 163
an d subderivatives , 152
in constraint qualification ,

160
in infini te d imensions,

240- 250
Fri t z J ohn conditions , 29- 31,

130, 165
and Gordan 's t heorem, 30
nonsmooth, 127
second or der , 175

Fubini 's theo rem, 214- 216
fun ctional analys is, 239, 248
fundam ental theorem of

ca lculus , 214, 216
fur thest point , 73, 221, 226-227
fuzzy sum rule, 146, 148, 150

G8, 191, 197
gamma function , 41
Gateaux

derivati ve, see de rivative ,
Gateaux

different iable, see
differentiability,
Gateaux

gauge function , 66 , 71, 184
genera lized

deriva ti ve, 123
Hessian, 217
J acobi an, 216-217

generated cuscos, 196
gen erating cone , 120
generic, 190

cont inuity , 199
differenti abili ty, 197, 199
single-value d , 199

geometric progr amming, 101,
102

global minimizer, see minimizer ,
global

Godefroy, see Deville-Godefroy
Zizler
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Gordan's theorem, 23-27
and Fritz John conditions,

30
graph, 114, 190

minimal , 197
normal cone to , 150
of subdifferential , 145

Graves , 157
Grossberg, see Krein-Grossberg
Grothendieck space, 243
growth condition, 4, 20

cofinite, 83
convex, 7
multifunction, 201, 208

Guignard
normal cone calculus, 158
optimality conditions, 164,

177

Haberer , Guillaume, viii
Hadamard, 182

derivative, 240-250
inequality, 48, 163

Hahn
- Banach extension, 55, 58

geometric version, 248
- Kat et ov- Dowker sandwich

theorem, 196
Hairy ball theorem, 186-187
halfspace

closed, 3, 25ff
in infinite dimensions, 246
op en, 23, 25
support function of, 55

Halmos, viii
Hardy et al. inequality, 10-12
Hedgehog theorem, 187
hemicontinuous, 198
Hessian, 17, 172-176

and convexity, 37, 38, 40
generalized, 217

higher order optimality
conditions, 175

Hilbert space, 221, 239

Index

Hilbert space (cont.)
and nearest points , 249

Hiriart.-Urruty, vii, 25
Holder's inequality, 31, 41, 71
homeomorphism, 182, 184
homogenized

linear system, 109
process , 120

hypermaximal, 198, 207, 208
hyperplane, 2, 25ff

dense, 244
separating, see separation

by hyperplanes
supporting, 67, 122,

240-249

identity matrix, 9
improper polyhedral function ,

101
incomplete, 239
inconsistent, 29, 111

distance to, 122
indicator function , 33, 67, 137

limiting subdifferential of,
146

subdifferential of, 37
inequality constraint, see

const raint , inequality
infimal convolution, 57, 137, 157
infimum, 3ff
infinite-dimensional, viii , 79,

157 , 239-250
interior, 2ff

relative, see relative interior
tangent characterization,

170
versus core, see core versus

interior
interior point methods, vii-ix,

54, 79, 91, 162
inverse

boundedness, 120
function theorem, 159, 184,

235
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inverse (cant .)
image, 3, 100
Jacobian , 180
multifunction , 114- 122

inversion, 221, 226
Ioffe, 149
isomet ric, 85, 86
isotone, 6, 205

cont ingent cone , 141
eigenvalues, 136
tangent cone, 143

J acobian, generalized , 216-217
James t heore m, 243, 249
Jordan 's theorem, 163
Josephson-Nissenzweig

sequence, 243
theorem , 243

Kakut ani
- Fan fixed point t heorem,

190- 201, 203
minimax t heorem , 96, 206

Karu sh-Kuhn-Thcker
theorem, 30-32, 130, 160

convex case, 43- 45, 131
infini te-dimension al , 250
nonsmooth, 127

vector, 47, 93
Katetov, 196
Kirchhoff 's law, 20
Kirk , see Browder-Kirk
Klee cavern, 221
Knaster- Kur atowski-Mazurkie

wicz principle, 185 , 206
Konig, 11
Kr ein

- Grossberg t heore m, 120
- Rut man theorem, 54, 158
-Rutman t heo rem , 230

Kruger, 149
Kuhn, see Karush-Kuhn-Tucker

Lagrange mult iplier , 17, 29-32,
161
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Lagrange multiplier (ca nt .)
and second order

condit ions , 172-176
and subgradients, 43
bounded set, 162
convex case, 43-47
in infinit e d imensions, 249
nonexistence, 46, 163, 185

Lagrangian , 29, 172- 176
convex, 43, 88
du ality, 88-96, 103

infinite-di mension al , 249
linear progr amming, 109

necessary condit ions, see
necessary condit ions,
Lagrange

sufficient conditions , 43- 48,
107

Lambert W-function, 58
lat tice

cone, 9
ordering, 11, 203

Ledyaev, ix
Legendre, 54
Lemarechal, Claude, vii , viii
level set , 3, 13

bounded , 4, 7, 69, 78, 83
closed , 76
compact, 20, 41, 51, 95, 154

of Lagrangian , 90, 91
distan ce to , 168
norm al con e to , 47, 171

Ley, Olivier , viii
limit (of seq uence of points) , 2
limiting

mean value t heorem , 151
norm al cone, see normal

cone, limi ting
subdifferent ial, 145-152

and regul arity, 166-171
of compos it ion, 150
of distance fun ction , 170
sum rule, see nonsmooth

calculus
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line segme nt, 2, 142
lin eality space, 34
linear

constraint , see constraint ,
linear

fun ctional
cont inuous , 241
discontinuous, 248

independence qualifi cation ,
see constraint
qualification, linear
independence

inequality constraints, 62
map,3ff

as process, 120
object ive , 109
operator, 249
progr amming (LP), vii, 54,

91
abs t ract, 1l0, Ill , 202
and Fenchel du ali ty,

1l0-1l3
and processes, ll4
and variational

inequaliti es, 203
duali ty, see du ali ty, LP
penalized , 91, ll3, 162
primal problem , 109

space, 249
span , 2
subs pace, 2

linearization, 153
Lipschitz, ix , 65,66,68, 123-152,

155, 183, 213-217
bomological derivatives, 240
eigenvalues, 108, 135
extension, 157
gene ric differentiability, 197
non- , 127
perturbation, 250

Liustemik, 157
t heorem, 156, 158, 160

via inverse funct ions, 159
local minimizer , 15-19, 29ff

Index

local minimizer (cont .)
strict , 174

localiza tion , 120
locally bounded , 65, 66, 68, 78,

190, 194, 196-198
locally Lipschitz, see Lipschitz
Loewn er orde ring , 9
log, 5, 13, 49, 55, 62, 92, 104
log barrier , 49
log det , 13, 15, 20, 21, 32, 37, 40,

46, 48, 49, 55, 69, 92,
104-106

log-convex , 41
logarithmic homogeneity, 79, 82
lower norm, ll7
lower semi continuous, 37, 76-81 ,

101
and attainment, 248
and USC , 193
approximate minimizers,

153
ca lculus , 146-148
gener ic cont inuity, 199
in infinite dimensions , 239
mul tifuncti on , 114
sandwich theorem, 196
value fun cti on , 89, 90, 95
versus closed fun cti on , 76

LP, see linear programming
LSC (multi function) , ll4-119,

190, 192-196, 204
Lucet , Yves , viii

Mangasarian- Fromovitz
cons traint qualification,
see const raint
qu alifica tion ,
Mangasarian
Fromovitz

manifold , 233-238
mathem ati cal economics , viii ,

ll9, 193
matrix , see also eigenvalues

analysis, 104
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matrix (cont.)
completion , 21, 40
optimization, 109

Max formula, 36- 42, 53, 61 , 116,
123

and Lagrangian necessary
condit ions , 44

nonsmooth, 124, 125, 139
relativizing, 42, 74

max-function(s)
and first order condit ions,

28-32
directional derivative of, 28
subdifferential of, 47 , 59,

125
Clarke, 129, 151
limiti ng, 151, 171

maximal monotonicity, 190-211
maximizer , vii , 3ff
maximum ent ropy, see entropy,

maximum
Ma zur kiewicz, see

Kn as ter-Kuratowski
Mazurkiewicz

mean value t heorem, 128, 136,
217

infinite-d imensional, 250
limi ting , 151

measure t heory, 213-217
metric regularity, vii, 153-159,

183 , 184, 229
and second order

conditions, 172- 173
and sub differentials,

166-171
in Banach space, 250
in infinite dimensions , 239
weak, 154-158

metric space , 250
Michael select ion theorem ,

193-196, 204
infinite-dimension al, 250

301

Michel-Penot
directional derivative,

124-144
subdifferential, 124-135
subgrad ient , 124

unique, 130, 132
midpoint convex , 80
minimal

cusco, 219 -223
graph, 197
solut ion in orde r

compleme ntarity, 205
minimax

convex-con cave, 95
Fan 's inequality, 205
Kakutani's theorem, 96, 206
von Neumann 's theorem,

see von Neumann
minimax t heorem

minimizer , vii , 3ff
and differen ti ability, 15
and exact penalization, 137
app roximate , 153
existence , see existence
global, 4, 16, 33ff
local, 15-19, 29ff
nonexistence, 17
of essentially smooth

fun ctions, 40
strict , 174
subdifferential zeroes, 35 ,

123
minimum volume ellipsoid, 32,

40, 48
Minkowski , 5, 101

theorem, 68, 73, 98 , 182
converse, 73
in infinit e dimens ions, 249

minorant , 76
affine, 76, 79, 84, 100
closed , 78

Miranda, see Bolz ano-Poincare
Miranda

monotonically re lated, 209-210
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rnonotonicity
and convexity, 129
maximal. 190-211
multifunction , 190-211
of complementarity

problems, 203, 204
of gradients, 40
via convex analysis , 209-211

Mordukhovich , 149, 169
Moreau, 54

- Rockafellar theorem ,
78-83, 249

Motzkin-Bunt theorem, 221
multicriteria optimization, 140
multifunction, vii, 114-122 ,

190-211
closed , 80

and maximal monotone,
198

versus USC, 193
set-valued map , 114
subdifferential, 35

mult iplier , see Lagrange
multipli er

mult iva lued
complementarity pro blem ,

202
variational inequali ty, 200

narrow crit ical cone, 172-177
Nash equilibrium, 204, 206
near est point , 19, 24, 57, 182,

188
and prox-regularity, 228
and proximal normals ,

218-223
and subdifferent ials, 169
and variat iona l inequali ties,

200
in epigraph, 135
in infinit e dimensions , 239,

248
in polyhedron, 62
proj ection , 20, 211

Index

nearest point (cont.)
selection, 193, 199
un iqu e, see also Chebyshev

set , 228
necessary condit ion(s) , 125, 138

and subdifferenti als , 123
and sufficient, 175
and variati on al inequalities,

200
contingent , see cont ingent

necessary condition
first or der, see first order

condit ion (s), necessary
for optimality, 16
Fritz John, see Fritz John

condit ions
Gui gnard , 164, 177
high er order , 175
Karush -Kuhn-Tucker , see

Karush- Kuhn- Tucker
t heore m

Lagrange, 44-46, 49, 89,
130, 131

nonsmooth, 126, 130, 139,
145, 149, 151

limi ting and Clarke, 170
second orde r, 172
stronge r, 127, 145

neighbourhood , 2
Nemirovski , ix
Nesterov , ix
Newton-type methods, 172
Nikodym, see Radon-Nikodym
Nissenzweig, see

J osephson-Nissenzweig
noncompact variat ional

inequality , 202
nondifferenti able, 18, 33ff
nonempty images , 114, 118
nonexpansive, 180 , 182, 220

in Ban ach space, 250
nonlinear

equation, 179
progr am, 160, 177
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nonnegative cone , 245
nonsmooth

analysis , viiff
and metric regul arity, 157
infinite-dimensional , 149
Lipsch itz , 137

calculus, 125, 128, 139, 155
and regul arity, 133
equality in , 131
failure , 145, 149
fuzzy, 146
infinite-dimensional , 250
limiting, 145, 148-151 ,

167, 169
mixed , 134
nor me d fun ction, 166
sum rule, 125

max formulae, see Max
formula , nonsmooth

necessary conditions, see
necessary condition(s) ,
nonsmooth

optimization, see
optimization,
nonsmooth

regularity, see regular
norm, 1

-attaining, 240, 243 , 245,
249

-preserving, 10, 12
equivalent , 66, 69 , 192
lower , 117
of linear map, 117
of process, 117-122
smooth, 188
strictly convex, 249
subgradients of, 38
top ology, 241-243
upper , 117

normal
proximal , ix, 218-223

normal cone, 15, 16, 18
and polarity, 53
and relative int erior, 74

303

normal cone (con t.)
and subgradients, 37, 56
and tange nt cone, 54
Clarke, see Clarke normal

cone
examp les, 18
limiting, 146, 166-171

and subdifferential , 150
proximal , 218
to epigraph, 47
to graphs, 150
to intersecti on , 56, 86
to level sets, 47

normal mapping, 200, 203
normal problem, 91
normal vector, 15, 218
normed space, 2:{9, 244
null space, 3, 116, 117

objective fun ct ion , 29, 30ff
linear , 109

one-sided approx imat ion , 35
open, 2

functions and regularity,
169, 183

mapping theorem, 71, 82 ,
101, 110, 120

for cones, 85
for processes, 118
in Banach space, 249
in infinite dimensions, 239

multifunction, 114-121
operator

linear , 249
op timal

cont rol, viii
solution , 4ff
value, 51, 88-96, 100, 174

function , 43
in LP and SDP, 109-113,

202
primal , 52

optimality conditi ons, vii, 15-22
and the Farkas lemma , 24
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optimality conditions (cont.)
and variational inequ alit ies ,

200
first order, see first order

condition(s) for
optimality

higher order, 175
in Fenchel problems, 56, 82
necessary, see necessary

condit ion(s)
nonsmooth, 123
second order, see second

order conditi ons
sufficient, see sufficient

condit ion (s)
optimizat ion, vii, 3ff

and calculus, 16
and convexity, 33
and nonlinear equations,

179
computational, vii , 162, 172
duality in, 76, 88
infin ite-dimensional , viii, 79,

157
linear , 109
matrix, 109
mult icriteria, 55
nonsmooth, 28, 33, 123-152

infini te-dimensional , 250
one-sided approximati on , 35
problem , 4, 29ff
subgradient s in , 35, 123
vector, 72, 140, 141

order
-convex , 59-62, 72, 80, 108
-reversing, 49
-sublinear , 59- 62, 108, 121
-theoreti c fixed point

results, 179
complementarity, 203- 205
epigraph, 121
infimum, 60
interval, 120
preservation, 11, 72

Index

order preservat ion (cont.)
of determinant , 107

statist ic, 129
regular ity, 135
subdiffer ential , 152

subgradients, 55, 60-62
ordered spectral decomposit ion ,

10
ordering , 9

lat ti ce, 11
orthogonal

complement, 3
invariance, 107
matrix, 10, 182
proj ection , 25
similarity t ransformation,

107
to subspace, 24

orthonormal basi s, 163

p-norm , 31, 71
par acompact , 250
Pareto minimization, 72, 204

proper , 141
parti tion of uni ty, 191-195, 207
partly smooth , ix , 233-238
pen alizati on , 91, 113, 162

exact, 137-140, 155, 158,
167, 229

qu ad rati c, 164
Penot , see Miche l-Penot
permut ati on

matrix, 10, 27, 75, 108
perturbati on , 43, 51ff
Phelps, see Bishop-Phelps
piecewise linear , 184
Poincar e, see Bolzano- Po incare-

Miranda
poin ted , see cone, pointed
pointwise maximum, 79
polar

calc ulus, 70, 117
concave, 85
cone, see con e, polar



Index

polar (cont.)
set , 67, 69~70

polyhedral
algebr~ 100-101, 116
calculus , 101
complementarity problem ,

205
cone , 98, 102, 110 , 113, 161
Fenche l duality, 100
fun cti on, 97-102
mult ifunction, 114
problem, 109, 110
process, 116
qu asi- , 175
set, see pol yhedron
variat ional inequali ty, 203

polyh edron , 3, 9, 11, 58, 97- 102
compact, 98
in vector optimization, 141
infinite-dimensional , 246
nearest poin t in , 62
partial smoothness of, 237
po lyhedral set , 97
tangent cone to, 101

polynomial
nearest , 21

polytope, 55 , 97-99
in infinite dimensions, 246

positive (semi)de finite, 9ff
pos it ively hom ogeneous , 33
P reiss, see Borwein-Proiss
pr imal

linear progr am, 109
problem , 88
recovering soluti ons, 82
semidefi nite progr am, 111
value, see op timal value

process, 114-122, 249
product , see Cartesian produ ct
projecti on, see also nearest poin t

continuity, 223
onto subspace, 24
orthogonal, 25
re laxed, 182
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proper
funct ion , 33, 44, 76, 97, 116
P areto minimization , 141
point , 142

prox-regular, 228-238
proximal nor mal, ix , 218-223
pseudoconvex

fun ction, 143
set, 142, 143

P shenichn ii- Rockafellar
condit ions, 58

qu adrat ic
approximation, 172-175
conjugate of, 55
path, 173
penalizati on , 164
program, 91, 175, 205

quasi relative interi or , 244, 248
qu asiconcave, 205
quasipolyh ed ral , 175
quotient space, 247

Rademacher's theorem , ix, 133,
197, 213-216, 218

Radon- Nikodyrn prop erty, 249
Radst rom cancellation, 5
range

closed , 241
dense, see dense range

range of mult ifun ction , 114, 191,
194, 201

bounded , 210-211
rank-one, 122
ray, 242, 247
Rayleigh quotient , 19
real function , 123
recession

cone, see cone, recession
function, 83

reflexive Banach space, 239- 249
regular , 130-136, 138

and generic differe nt iability,
197
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regul ar (cont .)
and Rademacher 's theorem,

216
regul arity

condit ion, 30, 44, 65, 100,
160

epigraphical, 246
metric, see metric regul ari ty
prox- , see prox-regular
tange nt ial, see t an genti al

regularity
relative interior , 5-8, 173, 185

and cone calculus, 159
and cone programming, 113
and Fenchel duality, 74, 102
and Max formula, 42
calc ulus, 74
in infinite dim ensions , 242,

248
qu asi , 244, 248

relaxed projection , 182
representa tive, 209-210
reso lvent , 208
retraction, 180, 183
reversing, 206
Riesz lemma, 188
Robinson , 119, 157
Rockafellar, vii- ix, 54, 58, 78,

119, 250
Ru tman, see Krein-Rutman

saddlepoint, 95, 96, 201
Sandwich theorem , 58, 210

Hahn-Katetov-Dowker, 196
scalarization, 72, 140, 142
Schur

-convexity, see convex,
Schur-

space, 243
Schwarz , see Cauchy- Schwa rz
SDP, see semidefinite progr am
second order condit ions , 17,

172-177, 237
selection , 190-1 99

Index

self map, 179-1 88, 207
in Banach space, 250

self-conjugacy, 55
self-dual cone , 18, 53, 54, 85,

105, 111
selfadjoint , 249
semidefini te

complementarity , 108, 208
cone, 9, 18, 53, 54, 104, 106,

109,233
matrix, 9
progr am (SDP) , vii, 54, 92,

109-113, 162
central path, 113

Sendov, Hristo, viii
sensitivity analysis, 233
separable, 62 , 92

and sem icontinuity, 247
Banach space, 241-245

separation, 2, 5, 25ff
and bipolars , 54, 67
and Gordan 's theorem, 23
and Hahn-Banach , 248
and scalar ization, 142
Basic t heorem, 2, 17, 77
by hyperplanes, 3
in infinit e dimensions, 241
nonconvex , 142
st r ict, 70
strong, 6

set-valued map, see
multi fun ction

Shannon, see
Boltzmann-Shannon

signal reconstruction, 79
simplex, 66 , 79
simultaneous orde red sp ectral

decomposition , 10, 105
single-valued, 190, 197

gene ric, and maximal
mon otonicity, 199

sing ular value, 13
largest , 163

skew symmetric, 197
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Slater condition, see constraint
qualification, Slater

smooth Banach space, 241
solution

feasible, see feasible solution
optimal, 4ff

solvability of variational
inequalities, 201-208

spectral
conjugacy, 104, 106, 107
decomposition, 10, 19
differentiability, 105
function , 104-108, 133

convex, 105, 106
subgradients, 105, 107
theory, 249

sphere, 180, 186-189
inversion in , 226

square-root iteration , 11
st able, 91

Clarke tangent cone, 138
steepest descent

and Cauchy-Schwarz, 31
Stella's variational principle, 250
St ern, ix
Stiemke's theorem, 26
Stone-Weierstrass theorem,

180-183
strict

compleme nt ar ity, 234-237
derivative, 132-134, 149,

150, 155-167
generic, 197

local minimizer , 174
separation, 70

strict-smooth duality, 78, 82
strictly convex, 4, 38-41

and Hessian, 38
conjugate, 78, 82
essentially, 35, 40, 84
log barriers, 51
norm, 249
power fun ction, 21
spectral functions , 106
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st rictly convex (cont.)
unique minimizer, 19

strictly differentiable, see strict
derivative

strong
crit ical point , 234-238

subadditive, 34
subcover, 191
subdifferential , see also

subgradient(s)
and essential smoothness , 74
bounded multifun ction , 242
calculus, 123
Clarke, see Clarke

subdifferential
closed multifunction, 80,

134, 145, 149, 156, 167
compact ness of, 66
convex, see convex

subdifferential
Dini, see Dini

subdifferential
domain of, see domain of

subdifferential
in infinite dimensions, 250
inverse of, 80
limiting, see limiting

subdifferential
maximality, 240
Michel-Perrot , see

Michel-Penot
subdifferential

monotonicity, 190, 197, 198
nonconvex, 123
nonempty, 36 , 240
of distance functions ,

219-223
of eigenvalues, 135
of polyhedral fun ction, 102
on real line, 149
smaller , 145
support function of, 55
versus derivative, 123

subgradient (s) , vii , 35
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subgradient(s) (cont .)
and conjugation, 51
and Lagrange mul tipliers, 43
and lower semi continuity, 81
and normal cone, 37, 56
at op timality, 35
Clarke, see Clarke

subgradient
cons t ru ct ion of, 35
Dini, see Dini subgradi ent
existence of, 36, 43, 53, 100,

116
in infinite dimensions, 239
Michel-Penot, see

Michel-Penot
subgradient

of convex functions, 33-42
of distance functions,

219-223
of max-functions, see

max-function,
subdifferenti al of

of maximum eigenvalue , 38
of norm, 38
of polyhedral function , 98
of spectral functions, see

spect ral subgradi ents
order , see order subgradient
unique, 36, 242, 245

sublinear, 33, 35, 58, 66, 69, 85,
107, 108, 137

and support functions, 77
directional derivative, see

directional derivative,
sublinear

everywhere-finite, 77
order- , 59-62
recession functions, 83

subspace, 2
closed , 241
compleme nted , 239
countable-codimensiona l,

244
dense, 245

Index

subspace (cont .)
finite-codimensional, 246
projecti on onto, 24
sums of, see sum of

subspaces
sufficient condit ion(s)

and pseudoconvexity, 143
first order , see first order

condit ion(s) , sufficient
Lagrangian , see Lagrangian

sufficient condit ions
nonsmooth, 149
partly smooth, 234
second order, 174

sum
direct , 3
of cones, see cone sums
of sets , 1
of subspaces, 245, 247
rule

convex, see convex
ca lculus

nonsmooth, see
nonsmooth calculus

sun, 220-224
support fun ction (s), 55, 80, 82

and sublinear fun ctions, 77
directional derivative,

124-128
of subdifferentials, 125

support poin t , 240-245
suppor t ing

functional , 240-245
hyperplane, see hyperplane,

supporting
supremum, 3

norm, 243
surjective

and growt h, 198, 207
and maximal monotone,

198, 208
Jacobian, 155, 156, 159,

166, 173, 176, 184
linear map , 71, 101, 110
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surjective (cont.)
process, 114-122

surprise, expected, 86
symmetric

convex function, 27
function, 104-108
matrices, 9-14
set , 108

tangency properties, 241
tangent cone , 137-144

and directional derivatives,
137

as conical approximat ion,
137

calculus, 73, 86, 159, 228
Clarke, see Clarke tangent

cone
coincidence of Clarke and

contingent, 138
convex, 54, 74, 138
ideal , 143
intrinsic descriptions, 138,

140
to graphs, 141, 150
to polyhedron, 101

t angent space, 157
tangent vector field , 186
tangential regularity, 138, 156,

158, 229, 233, 246
Theobald's condition, 13
theorems of the alternative,

23-27, 97
Todd, Mike, viii
trace, 9
transversality, 158, 164, 228-232,

234
trust region, 93
Tucker, see

Karush-Kuhn- TUcker
twice differentiable, see

differentiability, twic e

Ulam, 182
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uniform
bounded ness theorem, 249
convergence, 180, 195
multipliers, 176

unique
fixed point, 179, 183
minimizer, 19
nearest point, 248
subgradient, see

subgradient, unique
upper norm, 117
upper semicontinuity (of

multifunctions) , 117
Urysohn lemma, 196
USC (multifunction), 190-207

value function, 43-48, 52, 88-91,
116, 119

polyhedral, 100
Vandenberghe, ix
variational

inequality, 200-208
principle, 17

in infinite dimensions,
239, 250

of Ekeland, see Ekeland
variational principle

vector field, 186-187
vector optimization, see

op timization, vector
Ville's theorem, 26
viscosity subderivative, 149, 151
von Neumann, 11

lemma, 13
minimax theorem, 79, 81,

201, 204

Wang, Xianfu, viii
weak

-star topology, 241-243
duality, see duality, weak
Hadamard derivative,

240-241
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weak (cont.)
metric regul arity, see metric

regularity, weak
minimum, 72
topology, 241-243

weakly compac t , 243, 249
and nearest points, 249

Weierstrass , see also
Bolzano-Weierstrass ,
Stone-Weierstrass

proposition, 4, 17ff
Wets, vii-ix
Weyl, 101
Williams, see Fillmore-Williams
Wolenski , ix

Young, see Fenchel-Young

Zizler , see Devill e-Godefroy
Zizler

Zorn 's lemma, 190, 210
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