6
Dynamics of a Particle

6.1. Introduction

We have seen that in an inertial reference frame, Euler’s first law (5.43) for
the motion of the center of mass “particle” of a rigid body 9, a fictitious material
point of mass m(98) that moves with the body, has the same form as Newton’s
second law (5.39) for the motion of a particle P of mass m(P). Hence, the motion
of any such “material point” or “particle” is governed by the Newton—Euler law
of motion, here written in its various forms as

F=p=ma=mv=mxX, 6.1)

in which m is the mass of the “particle,” p = mv, and X, v, and a are its respective
current position, velocity, and acceleration in an inertial reference frame.

Our objective now is to study a variety of physical applications and solutions
of the Newton—Euler equation of motion of a particle for various kinds of forces and
motions and thus demonstrate its predictive value. In some examples, the principal
body of interest may be small in some sense. An electron, a grain of sand, and
a fluid droplet are typical examples of infinitesimal or small bodies commonly
modeled as particles. Larger bodies like a ball, a pendulum bob, a crate, a person,
and an automobile are modeled as center of mass objects of rigid bodies. So long
as the rigid body has no rotation itself, there is no intrinsic difference between
these two models. In fact, in many such problems in which the body is replaced
by its center of mass “particle,” precise identification of the center of mass point is
not necessary; the mass distribution and the specific body geometry play no major
roles; and the actual points of application of the resultant forces that act on the body
are unimportant—they act on the particle. All of these virtually inconsequential
matters, however, have great importance later when rotational effects of a rigid
body are introduced. We recall, for example, the simple problem of a block sliding
down an inclined plane without tipping over. In this case, the body’s physical
and geometrical properties, the location of the points of application of forces
that act on it, and their moments were all very important to the description and
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analysis of the block’s motion. These sorts of underlying potential complications
are avoided when rotational effects are absent and a rigid body is modeled as a
particle.

The study of particle dynamics thus deals with the analysis of the vector
differential equation (6.1) for the motion of a particle and the forces that produce
it. When the motion, the velocity, or the acceleration is known either as a function
of time or as a function of a time dependent parameter, such as arc length along a
path, the force required to produce the motion is readily determined by (6.1). The
converse problem, to determine the motion of a particle under various kinds of
assigned forces, however, is more difficult, because it involves the integration of
(6.1). Moreover, the specification of some forces together with some components
of acceleration, velocity, or position leads to a mixed variety of problem types.
Some easy methods of integration useful in the analysis of (6.1) were studied in
earlier chapters. Additional methods and several new concepts will be introduced
as our study unfolds.

6.2. Component Forms of the Newton-Euler Law

We recall that the motion of a particle may be described in terms of different
coordinate systems that offer special advantages in applications; and, clearly, in
applications of (6.1), the force vector and the motion eventually must be repre-
sented in the same reference basis. For handy reference, the vector representations
of the Newton—Euler law in four familiar kinds of reference bases are provided
below.

Rectangular Cartesian reference frame ® = {O; 1, j, k}: The acceleration
is given by (1.12) and (6.1) may be written as
F = Fii+ F,j+ F:k = m(%i + yj + ZKk). (6.2)
Intrinsic reference frame iy = {P;t, n, b}: Equation (1.71) provides the
acceleration and (6.1) becomes
F = F,t+ F,n = m(s5t + «5°n). (6.3)

Notice that there can be no intrinsic force component Fj, normal to the osculating
plane. Hence, if the motion is constrained to a plane, the total force component
perpendicular to the plane must vanish. This is a property of every plane motion.

Cylindrical reference frame ¢ = {O;e,, €4, e;}: The Newton-Euler law
(6.1) and the acceleration vector in (4.60) yield the representation

. 1d )
F=Fe + Fyes+Fe,=m |:(f —réde, + ;5(7’205)% + Zez] . (6.4)
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Spherical reference frame ¢ = {O;e,, €y, €5}: The acceleration compo-
nents are defined in (4.71). Hence, (6.1) becomes

F = Fe, + Fpeg + Fpey = m[(’r’ — rf% — r¢*sin’ 9)e,

1 . , 1 ) .
+{ - i(r26?) —rd*sinfcos6 |es + | - i(rqu sin @) + r¢6 cos 9) €y |.
rdt rdt
6.5)

The left-hand expressions in (6.2) through (6.5) define the respective compo-
nent forms of the total force. The force components are then related to the accel-
eration components by equating their corresponding scalar components in these
expressions. The intrinsic force components F;, and F, in (6.3), for example, are
thus related to the intrinsic acceleration components by F, = m§, F, = mis*. The
procedure is the same for the others. The component equations are called the scalar
equations of motion. In general, however, we first formulate each problem in its
vector form, and afterwards identify the corresponding scalar equations of motion.

It is not always necessary to introduce a specific component form of (6.1).
Sometimes it is possible to solve a problem in direct vector form without mention
of any components, but more often than not this approach proves tedious and
impractical; therefore, the component forms find wider use in applications.

6.3. Some Introductory Examples and Additional Concepts

We shall begin with several introductory examples that employ the foregoing
representations in some problems where the motion is essentially known and cer-
tain force conditions are to be determined. Some earlier concepts are reviewed, and
some new concepts are introduced as the examples progress. The importance of
the Newton—Euler law in its generic form (5.34) is underscored in characterizing
the motion of a relativistic particle.

6.3.1. Some Applications in a Rectangular Cartesian Reference Frame

Three problems that use a rectangular Cartesian reference frame are solved.
The first is an easy application of (6.1) in which the acceleration is known and
a certain force is to be found. The example demonstrates the importance of our
distinguishing the inertial reference frame in applications of the Newton—Euler
law. The second exercise illustrates an application in which the acceleration of one
body is known, and a Coulomb condition for relative sliding of another contacting
body is to be determined. The results will be used in the third example to illustrate
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(a) Free Body of the
Control Device

Figure 6.1. Motion in an accelerating reference frame.

the converse problem in which the forces are known and information about the
motion is to be obtained. The form of the law in (6.2) is evident in the applica-
tions.

Example 6.1. A rocket propelled test vehicle V in Fig. 6.1 is used to study
man’s ability to function at high rates of acceleration and deceleration.* (a) Suppose
the vehicle is accelerating at 5g along a straight track in the inertial frame ® =
{F;I}. What force does the operator need to apply to a 2 Ib control device D
to impart to its center of mass a relative acceleration apy = 16i + 80j ft/sec? in
the vehicle frame ¢ = {V;i;}? (b) Compare the result with the force required to
perform the same task when the vehicle has a uniform motion in ®. Assume that
the local acceleration of gravity is 32 ft/sec?.

* The example brings to mind the daring exploits of U.S. Air Force Colonel John P. Stapp, MD, Ph.D.,
the biomedical engineering pioneer, who in December 1947, at Edwards (then Muroc) Air Force
Base, California, became the first human to ride a rocket propelled test sled to study human tolerance
to severe decelerations of the sort sustained in the crash of an automobile or aircraft. Based on Stapp’s
research studies, appropriate safety harnesses, helmets, restraints, and other essential equipment could
be developed. Stapp demonstrated firsthand that a properly harnessed and protected driver, pilot, or
astronaut could indeed survive an incredible impact, the wind blast, and deceleration of ejection
from an aircraft traveling at supersonic speeds at great altitudes, or the large acceleration of a rocket
lift-off, himself having withstood test sled decelerations of 25 to more than 40 times the acceleration
of gravity. With new facilities at the Holloman Air Force Base, New Mexico, where subsequently he
set up and directed his biomedical engineering and crash research programs, in 1954 Stapp rode the
rocket vehicle “Sonic Wind” from 632 mph to a dead stop in 1.4 sec, suffering only minor injuries
in a deceleration of more than 40 gs! A 2200 Ib (1000 kg) automobile smashing into a brick wall
at 50 mph (=80 kmph) would subject its driver to roughly the same impulsive shock. Other human
volunteers in his program tested the security of safety belts in decelerations that exceeded 25 gs.
See Time, The Weekly Newsmagazine, Volume 66, No. 11, September 12, (1955), 80-2, 85-6, 88.
Stapp’s adventures, his sense of humor, and his generosity to others are portrayed here. Dr. Stapp, then
dubbed “the fastest man on earth,” died at his New Mexico home on November 13, 1999, at age 89. 1
thank Professor O. W. Dillon, who during the early 1950s was stationed at Holloman when Stapp was
directing these research programs, and upon reading the manuscript reminded me of Stapp’s heroic
feats.
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Solution of (a). We begin with the problem kinematics. The absolute ac-
celeration of the vehicle in the inertial frame ® is given as ayr = 5gI, where
g = 32 ft/sec’. Thus, recalling the simple relative acceleration rule (4.50) and
the assigned center of mass acceleration apy = 16i + 80j ft/sec? of D in the ve-
hicle frame ¢ in which i, = I;, we determine the absolute acceleration of D in
frame &:

apr = apy + ayr = 1761 + 80J ft/sec?. (6.62)

This completes the kinematical analysis.

We now turn to the force analysis. The free body diagram of D is shown in
Fig. 6.1a. As usual, we shall assume that the contact force due to the surrounding
air is self-equilibrated to zero. Then the total force F(D, t) acting on D is the sum
of its weight W and the force F,, exerted by the operator. Hence, the Newton—Euler
law (6.1) applied to D in the inertial frame ® yields

F(D,t) = W+F,, =m(D)apr, (6.6b)

in which W = —mgJ = —2J lb and m(D) = 1/16 slug. The kinematics in (6.6a)
is now coupled with the force analysis in (6.6b) to yield the solution

F, = 111+ 7] Ib. (6.6¢)

Solution of (b). We note from (6.6¢) that |F,,| = /170 ~ 13.04 Ib. We wish
to compare this result with the force needed to perform the same task when the
vehicle has a uniform motion in ®. To impart the same acceleration to the device
when the vehicle has a constant velocity or may be at rest in & so that now
ayr = 0and apr = apy, we find from (6.6b) that the operator must apply a force
F,, = mapy — W =1+ 7] Ib. Hence, |F,,| = 54/2 ~ 7.07 Ib. Therefore, if the
Newton-Euler law were applied in the accelerating reference frame, the operator
would conclude incorrectly that a force of about 7 1b is needed, while the task
actually requires nearly twice that. We thus learn that when the operator works in
the accelerating vehicle, nearly twice the effort must be expended to perform the
assigned task. 0

This example demonstrates the important role of the inertial reference frame
in applications of the Newton—Euler law. The next problem concerns the prediction
of relative sliding of a body in contact with an accelerating surface.

Example 6.2. A truck carrying a crated load W is moving down a 15° grade
in Fig. 6.2. The driver suddenly applies the brakes and the truck decelerates at
the steady rate of 4 ft/sec? along its straight path. The coefficient of static friction
between the crate and the trailer bed is 4 = 0.3. Determine for the given values
of the parameters whether the crate will slide or remain stationary relative to the
trailer.
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\

(a) Free Body Diagram
of the Crate

Figure 6.2. Relative motion of a crate on an accelerating truck.

Solution. We shall assume initially that the crate does not slide relative to
the truck and seek a Coulomb condition sufficient to assure this. If this condition
fails for the assigned data, we then know that the crate will slide. This strategy will
enable us to decide the issue.

To investigate the motion of the crate C, we first draw its free body diagram
in Fig. 6.2a. To simplify matters, all contact forces due to the Earth’s atmosphere,
including air flow effects due to the truck’s motion and other wind effects, are
neglected. Then the total force F(C, t) acting on C is approximated by its weight
W and the resultant normal and tangential contact forces N and f exerted by the
trailer bed. The equation of motion (6.1) for C becomes

F(C,t) =W+ f+ N =macp, (6.7a)

whereinm = m(C) is the total mass of C and acr is its total rectilinear acceleration
in the inertial ground frame & = {F’;1i, j, k}. The vectors in (6.7a) are given by

W = W(sini— cos 6j), f=—fi N = Nj, acr = acl, (6.7b)
and hence
(Wsinf — )i+ (N — Wcos0)j = maci. (6.7¢)
Therefore, the scalar equations of motion for the crate are
mac = Wsinf — f, N — Wcos6 =0. (6.7d)

When a¢ is known, equations (6.7d) determine the unknown forces N and f. Thus,
with W = mg,

N = W cos#, f = W(sin6 —ac/g). (6.7¢)

Recalling the strategy proposed earlier, we note that the crate will not slip if
the frictional force f is smaller than its critical static Coulomb value (5.70), that
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is, provided that f < f. = uN. (See also (5.72).) In this case, because the crate
is assumed not to slip, its acceleration is the same as that of the truck, namely,
arr = ari. Thus, with the aid of (6.7¢) and ac = ar, the Coulomb no slip criterion
is

sinf — %T < peosf. 6.79)
This conclusion is independent of the weight, the size, and the shape of the crate.
Actually, however, we have tacitly assumed in (6.7f) that the crate geometry is
consistent with the no tip condition, which imposes limitations on the crate geom-
etry. The reader may confirm, for example, that for a rectangular box of height 24
and a square cross section of side 2b, the crate will not topple before slip occurs,
if it occurs at all, provided that b/ h > p.

The crate will not slide if (6.7f) holds for the assigned data; otherwise, it
will. We now test (6.7f) for the assigned values ar = —4 ft/sec?, g = 32.2 ft/sec?,
u=0.3, and 6 = 15°. The terms on the left side of (6.7f) yield the value
[ = 0.383 while those on right give r = 0.290. Since [ > r, (6.7f) does not
hold, and the crate will slide. For an alternative approach, the reader may show
that the critical acceleration ar of the truck for which sliding of the crate is

imminent is given by ar = g(sinf — pcos@) = —1 ft/sec?, the condition for
equality in (6.7f). Since |ar| = 4 ft/sec? > |ar|, the crate will slide, as concluded
previously. -0

The simple relative motion of the crate on the truck bed is examined next in
illustration of the converse problem in which the forces are known and the velocity
and the motion of the crate are to be found.

Example 6.3. The coefficient of dynamic friction between the crate and the
trailer bed is v = 0.25. What is the rectilinear acceleration of the crate relative to
the trailer? Determine the distance on the bed traveled by the crate after 1 sec and
after 2 sec.

Solution. The crate C has a rectilinear acceleration acr relative to the truck
T given by

acr = acr —arr, (6.8a)

wherein arr = ari is the known absolute acceleration of the truck in the inertial
frame ®. We need to find acF, the total acceleration of the crate in ®.

The vector equation for the sliding motion of the crate is the same as (6.7a),
and hence the scalar equations of motion for the crate in & are given in (6.7d).
But this time, because the crate is sliding on the trailer bed, the Coulomb frictional
force is given by (5.71). (See also (5.73).) Thus, with the last of (6.7d), we have
f = fa=vN = vW cos#, and use of this relation in the first equation in (6.7d)
yields ac. Thatis,acr = aci = g(sin® — v cos 0)i. Hence, (6.8a) delivers the first
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of the desired results:
acr = acri = [g(sin@ — vcos ) — arli. (6.8b)

Therefore, the rectilinear acceleration of the crate relative to the truck is inde-
pendent of the weight, the size, and shape of the crate, consistent with the no tip
condition.

The relative acceleration (6.8b) is a constant vector. With ay = —4 ft/sec?,
g=322 ft/sec?, v = 0.25, and 6 = 15°, we find act = 4.56i ft/sec?. To deter-
mine the distance traveled by the crate on the bed, we first integrate the differ-
ential equation §ver /8t = acr with the initial condition ve7(0) = 0 to obtain
Ver = acrt = 4.56ti. Hence, the relative speed of C is $(t) = 4.56¢; and with
5(0) = 0, the distance traveled by the crate is s(¢) = 2.28¢. Therefore, after 1 sec
the crate has moved a distance s(1) = 2.28 ft. After 2 secs, s(2) = 9.12 ft, and the
crate, regardless of its physical features, slams into the cab, initially only 9 ft away
in Fig. 6.2. g

6.3.2. Intrinsic Equation of Motion for a Relativistic Particle

In this section, the intrinsic equation of motion for a relativistic particle whose
“effective” mass varies with its speed is derived, and the result is applied to examine
the nature of a purely normal force that acts on the particle in its motion along a
smooth curved path. The Newton—Euler law in the form (6.1), however, cannot be
used in problems where the mass of the particle is variable; so we return to the
basic law (5.34).

In relativistic mechanics, the relativistic mass m of a particle P in a frame ¢
varies with its speed § relative to ® in accordance with the rule

m=ymy=—eoe  with f=-. 6.9)
1—p? ¢

The constant m,, the invariant mass of the particle, is called the rest mass of P in
® and the constant c is the speed of light in a vacuum. The relativistic mass m is
not the intrinsic mass of P. Rather, the concept of mass is retained as an invariant,
intrinsic property of an object, and hence m is identified as the invariant mass of
the object, the same for all observers and for all times. The principle of conservation
of mass applies to my, not to m. Although nowadays it is unfashionable to refer to
m as the relativistic mass, it is convenient in this text to retain the symbolic relation

m = ymg defined by (6.9) and continue to call it the relativistic mass.
These semantics aside, the relativistic momentum of P is defined by p =
mv = ymgyV, where v = dx/dt is the usual time derivative; and the rule governing
the motion of P is retained in the general Newtonian form F = dp/dt stated in
(5.34). Although m changes with §, it is easy to show that F = 0 holds if and only
if the motion is uniform in ®. This conforms with the condition set by the first
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law, i.e. F = 0 &= a = 0. Otherwise, in view of (6.9), the second law becomes
dm
F= —V. 6.10
ma+ l (6.10)
Now, with the aid of (6.9) and v = §t = ¢ft, we find

dm _ moppv__ mp? ot
a (A-pyR 1o

Therefore, use of this result and (1.71) for the intrinsic acceleration in (6.10) leads
to the intrinsic equation of motion for a relativistic particle:

F=m<1_sﬁ2t+/cszn>. 6.11)
Whens <« csothat 8 < 1,(6.9) reduces approximately to m = mg and we recover
from (6.11) the classical, nonrelativistic intrinsic equation in (6.3). It follows from
(6.11) that the total force F acting on a particle may be normal to its path, hence
perpendicular to its velocity vector v = $t, if and only if its speed is constant. (See
Problem 1.5, Volume 1.) This is illustrated below.

Example 6.4. A particle P, free from gravitational force, experiences a rel-
ativistic motion in a smooth, spatially curved tube. Find the force exerted on the
particle by the tube and characterize the tube geometry in order that the force may
have a constant magnitude.

Solution. The reader’s free body diagram of P will show that the total force
on P is simply the normal reaction force exerted by the smooth tube. Hence, use
of F = N = Nnin (6.11) yields the desired information:

N =mks? and §=0. (6.12)

Indeed, the second of these equations shows that the particle speed must be
constant; and hence the relativistic mass in (6.9) must be constant too. Therefore,
the first relation in (6.12) shows that in a smooth motion with constant speed, the
normal reaction force intensity at each point along the path is proportional to the
curvature and is directed toward the center of curvature. Clearly, N = 0 if and
only if the motion is uniform, in which case the tube must be straight. In general, N
may be constant if and only if the tube has a constant curvature. A cylindrical helix
is a familiar example of a space curve having a constant curvature. (See Example
1.14.) If the motion is a plane motion, the tube must be circular. The following
further example is left for the reader. O

Exercise 6.1. A particle P moves on a smooth surface S so that the only
force on P is the normal surface reaction force R. Prove that the principal normal
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vector n must be perpendicular to S at each point of the trajectory of P and hence
the path is a geodesic on S. (See Example 1.16 in Volume 1.) g

The results for the motion of a relativistic particle in a smooth tube hold
independently of relativistic considerations when 8 <« 1. It is shown later that
the same behavior occurs when an electrically charged particle, relativistic or not,
moves in a uniform magnetic field.

6.3.3. Electric and Magnetic Forces on a Charged Particle

Two basic laws that describe electric and magnetic body forces are introduced.
Afterwards, the trajectory of an electrically charged particle moving in a steady
and uniform magnetic field is described.

First, consider the mutual force of attraction or repulsion between two parti-
cles with electric charges ¢ and g; respectively situated at X; and X in an arbitrar-
ily assigned reference frame so that the distance between them is r = |X; — Xj|.
Let Fy; denote the force exerted on ¢, by ¢, and write e for the unit vector
directed from g, the source of the action, toward q,. The force exerted on ¢,

by ¢ is equal and oppositely directed so that Fy; = —F},. Experiments support
the following principle governing the mutual interaction of electrically charged
particles.

Coulomb’s law of electrostatics: Between any two charged particles in the
world, there exists a mutual electrostatic force which is directly proportional to the
product of the charges, inversely proportional to the square of the distance between
them, and directed along their common line in the sense of mutual repulsion or
attraction according as the charges are of the same or opposite kind, respectively;
that is,

The value of the positive constant & depends on the nature of the medium in
which the charges are placed. The physical dimensions of k are fixed by (6.13):
[k] = [FL*Q7?], where [Q] = [¢] denotes the physical dimension of electric
charge. The metric measure unit of ¢ is named the coulomb. Experiments on
charges in vacuum show that k = 9 x 10° N - m?*/coulomb?. Notice that only the
relative position vector r = re of g; from ¢, is important.

The rule (6.13) is a particular example of Noll’s general rule (5.115) governing
the internal force between any pair of particles, in this case charged particles;
and the formal similarity of (6.13) with Newton’s law of gravitation (5.46) is
evident. We thus introduce the parallel idea of an electric field & that arises from
the existence of a charged particle situated in space. And when a particle of charge
q is placed in this space, it experiences a force of attraction or repulsion determined
by (6.13). An electric field & is said to exist throughout space due to a particle of
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positive charge ¢, called the source of the electric field, whenever a force is felt
by another charged “test” particle placed anywhere in &. Thus, the electric field
strength E at the place X due to g is defined by

k
mxy:f?axx (6.14)

where e is the unit vector directed from g( toward the field point X at r from gy.
Hence, the electric force F, that acts on a particle P of charge g at the place X is
a body force given by

F.(P;X) = q(P)E(X). (6.15)

The same rule holds when the charged particle moves in the electrostatic field &.

The electric body force is in the direction of E (repulsive) when g is positive
and opposite to E (attractive) when ¢ is negative. Hence, the action of this force
alone will move a charged particle in a straight line in the direction of E if ¢ > 0,
oppositely if g < 0. The principle of conservation of electric charge asserts that
the total charge Q for a closed system of n charges g, is a constant equal to their
algebraic sum: Q = Y} _, gx. Thus, in a manner parallel to that demonstrated for a
gravitational field, the resultant electric force on a particle of charge ¢ placed in the
electric field of a system of charged particles or, similarly, in the field of a charged
continuum is given by the fundamental law (6.15). In general, then, the electric
force acting on a particle of charge ¢ having a motion X(g, ¢) in an electrostatic
field of strength E(X) is given by (6.15).

A magnetic field of strength B arises in a similar way from the existence in
space of some kind of magnetic object. When a charged particle moves with a
velocity v in a time independent magnetic field B, it experiences a body force F,,,
the magnetic force, given by

F,, = qv x B. (6.16)

This equation shows that the magnetic body force F,, on a charged particle
is always perpendicular to v, and hence to the particle’s path. Under the action of
this force alone the particle, from (6.12), must move with a constant speed vy, say;
so, the magnitude of its momentum |p| = muy is constant.

Example 6.5. Consider a relativistic charged particle of rest mass my mov-
ing in a constant magnetic field of strength B. (a) Prove that the charge moves
in a circular helix, a curve of constant curvature, and hence F,, has a constant
magnitude. (b) Derive the equation of the path for a plane motion perpendicular
to a constant magnetic field B = BKk.

Solution of (a). To determine the trajectory of a particle of charge g moving
in a magnetic field of constant strength B, we recall Newton’s law in (5.34) and
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consider the relation

4B =2 .B_¥,.B=0 (6.172)
a P T T Im B =D '
wherein (6.16) is the total force on g. Therefore, the component of the momentum

in the direction of B is constant:
p:-B =mv-B = C,aconstant. (6.17b)

Since the magnitudes of p and B are constant, (6.17b) implies that the angle
between the fixed axis of B and the tangent to the space curve along which ¢ moves
is constant everywhere along the path. Consequently, as described in Example
1.14, the path is a circular helix, a space curve of constant curvature; therefore,
|F.| = quoBsin(v, B) is constant. Conversely, it follows from (6.16) that if F,,
has a constant magnitude, sin (v, B) is constant and hence the path is a circular
helix.

The initial velocity vy may be considered arbitrary. If the velocity is initially
perpendicular to B, then, by (6.17b), p - B = 0 always, and the path is a circle in
the plane perpendicular to B. If the initial velocity vy is parallel to B, the constant
force F,, = 0; the motion is uniform and the path is a straight line along the axis
of B. The circle and the line are degenerate kinds of helices. In summary, the
trajectory of a charged particle which is given an arbitrary initial velocity in a
constant magnetic field is a circular helix.

Solution of (b). The path of a charge ¢ in a plane motion perpendicular to
the constant vector B is a circle. To describe this circle, we apply Newton’s law
in (6.16) to write dp/dt = d(gx x B)/dt. Integration yieldsp—gqx x B=A, a
constant vector. Let B = Bk and consider a plane motion perpendicular to B, so
thatx =xi+ yj. Thenp = (A; + ¢By)i + (A2 — g Bx)j,and withp - p = |p|* =
m?*v?, aconstant, this yields the equation of a circular orbit of radius R = mvy/q B:

A 2 A 2
( - q—;) + (y + q—é) = R2. (6.17¢)

We thus find with (6.9) that a charged relativistic particle in a uniform
magnetic field moves on a circular orbit with angular speed @ = vy/R =

qgB/m = (qB/mg)y/1 — B2. This is known as the circular cyclotron fre-
quency. d

When both fields (6.15) and (6.16) are present, the total electromagnetic force,
known as the Lorentz force, is
F.+F, =qE +gv xB. (6.18)

Many interesting effects may be produced by an electromagnetic field. In some
cases of physical interest an electromagnetic force is used to accelerate atomic
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Figure 6.3. Relative equilibrium of passengers in an amusement park centrifuge.

particles in a cyclotron to speeds nearly as great as the speed of light. In these ap-
plications the electromagnetic force on the particle is considerably greater than the
usual gravitational force, which is ignored. In further applications presented below,
unless explicitly stated otherwise, it will be assumed that the speed of the particle
is small compared with the speed of light so that the classical, Newton—Euler form
(6.1) of the equation of motion for a particle or center of mass object is appropriate.

6.3.4. Fun at the Amusement Park

Our final illustration in this section concerns a design analysis of an amuse-
ment park ride to assess the safety of its occupants during its rotational motion. The
cylindrical coordinate representation (6.4) for the equation of motion is illustrated.

Example 6.6. An amusement park ride shown in Fig. 6.3 consists of a 20 ft
diameter cylindrical room that turns about its axis. People stand against the rough
cylindrical wall. After the room has reached a certain angular speed, the floor
drops from under the riders. What must be the angular speed of the room to assure
that a person will not slide on the wall? The design coefficient of static friction is
w =104

Solution. To assess the safe angular speed design, we seek a no-slip Coulomb
condition sufficient to assure that a rider does not slide on the wall of the rotating
room. The free body diagram of a rider represented as a center of mass object
P is shown in Fig 6.3a. The rider’s weight is W = —Wk, and N = —Ne, and
f = f,e, + f;k are the normal and the tangential frictional forces exerted by the
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wall. Thus, the total force F on a rider in a cylindrical frame that turns with the
room is

F(P,tH) =N+f+W =—Ne, + fye, + (f, — Wk. (6.19a)

For the safety of a rider, we require that the rider remain at rest relative to the
wall. Then by (6.4) in which ¢ = w, or by (4.48) in which w ¢ = wk, it follows
that map = —mrw?e,. Equating this to the force in (6.19a), we obtain the scalar
equations of motion

N = mro?, W= f, fs=0. (6.19b)

'In the steady rotation of the room, no circumferential component f, of the
frictional force is exerted on the rider by the wall; and the second of these rela-
tions shows that the rider will not slide down the wall if the Coulomb condition
W = f, < f. = uN holds. Therefore, with the first equation in (6.19b), the design
criterion for safety of the riders is given by umrw? > W. That is,

w> |, (6.19¢)
ru

equality holding when slip is imminent; the smallest value w* = /g/r u being the
critical angular speed of the room. The result is independent of the weight of the
rider; so all persons, fat or thin, will stay on the wall, provided that their coefficient
of friction with the wall is not less than the design value chosen for [i.

For the given conditions r = 10 ft and pu = 0.4, the critical angular speed is
w* = 2.84 rad/sec, which is about 27 rpm. Thus, to secure the safety of the riders,
the room must spin at a rate greater than 27 rpm. g

6.3.5. Formulation of the Particle Dynamics Problem

The foregoing examples show that when information about the motion is
known, various questions involving the nature of the applied forces may be ad-
dressed. Some unanticipated physical conclusions are also pointed out, and the
predictive value of the classical principles of mechanics is demonstrated. A review
of the methods used in these examples reveals a fairly orderly arrangement of steps
followed in the formulation and in the solution procedure applied to the particle
dynamics problem; namely,

1. To begin, identify and express the data and the unknown quantities in
mathematical form, and ask the key question: what relations connect the
given data to the information to be found? Write these down and decide
upon an initial problem attack strategy; but be prepared to modify your
strategy as the attack advances and additional data is revealed.

2. To continue, construct a free body diagram that shows all of the properly
directed contact forces and body forces that act on the free body in an
appropriate reference frame.
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3. Write down the total, F, of all forces identified in the free body diagram
and express these various forces by their vector component representations
in the chosen reference basis.

4. Determine the absolute acceleration a of the particle in the inertial frame
but referred to the reference basis used above.

5. Assemble the results of steps 3 and 4 into the vector differential equation
of motion: F = ma.

6. Equate the corresponding scalar components to obtain the scalar equations
of motion, and proceed to solve these equations subject to the assigned
data. Other laws appropriate to the problem, such as Newton’s third law or
Coulomb’s laws, should be recalled and included here.

This basic procedural model is encountered repeatedly throughout our work.
The outlined program, however, is not rigid. The examples suggest that sometimes
itis useful, or simply a matter of personal preference, to begin with the kinematics
in step 4 and then advance to the formulation of the force relations described in
steps 2 and 3. Sometimes the vector equation in step 5, as shown in Example
6.5, page 105, may be solved directly without decomposing the vectors into their
scalar components, eliminating steps 3 and 6. The student must be prepared to
modify this schedule as other methods are introduced below. But the primary
organizational step 1 always should be considered first and revisited as the solution
unfolds.

With these ideas in mind, we shall begin the study of a variety of situations
in which certain forces are prescribed functions and information concerning the
motion and other forces is to be determined. This will require integration of the
vector equation of motion (6.1). Some new forces of nature will be introduced
along the way. We begin with some familiar examples.

6.4. Analysis of Motion for Time Dependent and Constant Forces

Problems of the motion of a particle under time varying and constant forces
are readily solved by the method of separation of variables, a familiar approach
used often in earlier examples. The formal solution of problems in this class, first
presented as kinematical problems in Chapter 1, is reviewed next. The results are
then applied in some elementary examples.

6.4.1. Motion under a Time Varying Force

Let us consider a total force F = F(P, t) acting on a particle P in an in-
ertial frame, given as a specified function of time. Then (6.1) yields a(P, t) =
F(P, t)/m(P), a known function of time. Hence, with dv = ad?, this differential
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equation is readily integrated in direct vector form to obtain the velocity of P:
1
v(P,t)=— /F(P, t)dt + ¢y, (6.20)
m

in which ¢; is a constant vector of integration.
A second integration with dx = vdt gives the motion of P:

x(P,t) = fv(P, t)dt + ¢, (6.21)

wherein ¢, is another constant vector of integration. The constants ¢; and ¢, are
fixed by the assigned initial data. The reader will notice that (6.20) and (6.21) are
respectively equivalent to the kinematical equations (1.24) and (1.23). A typical
example follows. (See also Example 1.7 in Volume 1.)

Example 6.7. A particle P in an inertial reference frame has an initial ve-
locity vy at the place Xy, and subsequently moves under the influence of a force
that is proportional to the time and acts in a fixed direction e. Find the position and
velocity of P at time ¢.

Solution. The force on P is given by F(P, t) = kte, where k is a constant
and e is a constant unit vector. Use of this relation in (6.1) and integration of the
result as shown in (6.20) with the initial value v(P, 0) = vy yields the velocity
v(P, 1) = kt?>/2me + v,. With the initial value x(P, 0) = xo, a second integra-
tion described by (6.21) yields the motion x(P, t) = kt>/6me + vot + Xo. Let the
reader show that if P starts at the origin with velocity vo = voj and the force
acts in the direction e = i, the path of P is a cubic parabola x = cy?>. Identify the
constant c. O

6.4.2. Motion under a Constant Force

In the special case when F(P, t) = Fj is a constant force, the acceleration
a(P,t) = Fy/m is also a constant vector. Hence, (6.20) reduces to

F
v(P,t) = 2t + v (6.22)
m

with ¢; = v(P, 0) = vy. Integration of (6.22) in accordance with (6.21) and use of
¢, = x(P, 0) = xq delivers the motion

F
x(P, 1) = ﬁﬁ 4 Vot + Xo. (6.23)

These elementary formulas are applied below to study projectile motion and
the motion of a particle that falls from rest relative to the Earth. To simplify matters,
the spin of the Earth and aerodynamic and atmospheric drag effects are neglected.
Then the two problems are similar because they occur under the same constant



Dynamics of a Particle 111

gravitational force Fy = W = mg, while only the initial conditions are different.
Any motion under gravity alone is called free fall.

6.4.2.1. Galileo’s Principle for Free Fall of a Particle

The initial conditions in the free fall problem of a particle P released from
rest at the origin are vo = 0, xo = 0, and (6.22) and (6.23) thus yield the familiar
elementary equations for the free fall motion, velocity, and acceleration of the
particle:

1
X(P,t) = 5gtz, v(P,t)=gt, a(P,t)=g. (6.24)

The results (6.24) are independent of the mass or any other property of the
object, and hence, for the same circumstances, we learn that all bodies fall with
the same speed along the plumb line of g. This is known as Galileo’s principle.
Accordingly, if two balls, one made of cast iron and the other of wood, were simul-
taneously released from the summit of the Leaning Tower of Pisa, an experiment
allegedT to have been done in 1590 by the famous Italian scientist, Galileo Galilei
(1564-1642), then together they would fall, and together they would strike the
ground. Of course, common experience with feathers and stones contradicts this
principle. But this happens because the physical attributes of the feather are not
accurately modeled by the assumptions—specifically, the primary assumption of
negligible air resistance which is plainly essential to our physical interpretation of
the theoretical results. On the contrary, experiments conducted on bodies falling
in a vacuum, including feathers and stones, lend support to Galileo’s principle,
which otherwise is especially altered by air resistance and to a lesser extent by the
rotation of the Earth, effects that are investigated later.

6.4.2.2. Motion of a Relativistic Particle under Constant Force

Many elementary but interesting problems concern the motion of a particle
when the total force is either a constant vector or an elementary function of time. It
is not intended, however, that any of the foregoing formulas should be memorized.
On the contrary, the examples serve to review procedures used often in Volume 1 to
obtain solutions to similar problems by the easy method of separation of variables.
While the same basic procedure may be applied to investigate the motion of a
relativistic particle, for example, the formulas derived above cannot be used at all.
This is illustrated next. Afterwards, the results are compared with those in (6.22)
and (6.23) when xg = 0, vo = 0.

f See Cooper’s study described in the References.



112 Chapter 6

Example 6.8. A relativistic particle P, initially at rest at the origin in frame ¥/,
is moving along a straight line under a constant force Fy. Determine the relativistic
speed and the distance traveled by P as functions of time.

Solution. The equation of motion for the relativistic particle is given by
(5.34) in which F(P, t) = F; is a constant force and (6.9) is to be used. Hence,
separation of the variables and integration of Fodt = d(mv) = d(ymv), with the
initial values v(P, 0) = 0 and y = 1, yields mv = Fyt. Thus, recalling (6.9) and
noting that v = vt and Fy = Fyt are parallel vectors, we have only one nontrivial
component equation: mov/(1 — v?/c?)!/? = Fyt. This scalar equation yields the
rectilinear, relativistic speed

v(P,t) = ———— with k= —. (6.25a)

Introducing v = § into (6.25a), separating the variables, and integrating ds = vdt
with the initial value s(0) = 0, we obtain the rectilinear distance traveled by P:

s(P,1) = %(\/ 1+ k)2 — 1), (6.25b)

Noticein (6.25a) that v/c < 1forallt,and v/c — 1ast — oo;thatis, under

a constant force, the relativistic particle speed cannot exceed the speed of light c.

This result is quite different from the corresponding speed v = Fyt/m described

by (6.22) for a Newtonian particle of mass m = my initially at rest and subject to

a constant force Fy; in this case v — oo with ¢. If mqc is large compared with Fyt

so that k¢t < 1, then (6.25a) and (6.25b) reduce approximately to
0 2

F 1 F
o(P, 1) = ckt = —t, s(P, 1) = =ckt®> = —1*.
mo 2

6.25
2m0 ( C)

These are the Newtonian formulas described by (6.22) and (6.23) for the corre-
sponding rectilinear motion of a particle of mass my initially at rest at the origin
and acted upon by a constant force Fy. In the present relativistic approxima-
tion, however, these results are valid for only a sufficiently small time for which
vice=kt L1 O

6.4.2.3. Elements of Projectile Motion

Equations (6.22) and (6.23) are applied next in two examples involving pro-
jectile motion and the simultaneous rectilinear or free fall motion of another target
body. Afterwards, a fascinating technological application of a controlled projec-
tile motion is studied. In addition to earlier assumptions, frictional effects are
ignored.

Example 6.9. Percy Panther is snoozing in an open-top artillery truck when
he senses the presence of the mischievous Arnold Aardvark lurking beneath. He
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Free Body of the Shell

Free Body of ".
the Truck '

Figure 6.4. Projectile motion in an inertial reference frame without friction.

quietly releases the handbrake to escape down the hill inclined at an angle .
Arnold Aardvark having quietly rigged a remote trigger, immediately fires the
gun, launching a shell of mass m straight up from the truck, as shown in Fig. 6.4.
The gun has a muzzle velocity vy, and the total mass of the truck and its strange
driver is M. Determine the time and the location at which the shell impacts the
ground, and find the location of Percy Panther at that time.

Solution. First, we determine the motion of the shell S, whose free body
diagram is shown in Fig. 6.4. The total force acting on § is its weight Wy = mg.
Thus, in the inertial frame ® = {F;i;} fixed in the ground, the constant force in
(6.22) and (6.23) is Fg = W = mg(sin ai— cos zj); and with vy = vgjand xo = 0
initially, we obtain, in evident notation,

vs(?) = voj + gt(sin wi— cos «f), (6.26a)

1 1
xs(t) = Egt2 sinai + (vot - Egt2 cos a) j- (6.26b)

Let the reader derive these results starting from (6.1), determine the maximum
height reached by S, and show that its trajectory is a parabola.

The shell returns to the ground after a time t* when xs(t*) = ri in Fig. 6.4,
and hence by (6.26b),

%2 2v0

sina, = .
gcosa

1
r=3st (6.26¢)

The results are independent of the mass or any other property of the shell. Elimina-
tion of ¢* from the first of (6.26¢) yields the impact range r in terms of the muzzle
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speed vy and the angle « that the gun makes with the vertical axis of g:

202t
r= 20 20% (6.264)
gcosa
Now consider the free body diagram of the truck in Fig. 6.4. The total force
F7 acting on the truck is its total weight Wy and the normal surface reaction
force N. Without frictional effects, (6.1) becomes

Fr =N+ Wr = Nj+ Mg(sinai— cos «j) = Mar. (6.26¢)

Since the truck accelerates along the i direction, N = Mg cos« and a; = g sini.
Hence, two easy integrations with vp = 0 and xo = 0 yield

vr(t) = gt sinai, (6.26f)

1
xr(t) = Egﬁ sin o (6.262)

Comparison of the i components in (6.26b) and (6.26g) parallel to the truck’s
motion reveals that the shell at each instant is directly above the truck, now coasting
toward the ultimate surprise! But a few tenths of a second before the impending
catastrophe, Percy Panther spots the converging shell and slams on the brakes. The
shell explodes violently in front of the truck, destroying it. Through the smoky haze,
Arnold Aardvark spies the black, whisker-singed and disheveled driver crawling
safely away to seek revenge another day. a

Example 6.10. Arnold Aardvark is sunbathing on a lookout platform at xo =
ai + bj in the frame ® = {O;i;} when he spots Percy Panther at O preparing to
fire an artillery gun pointed directly toward the platform, as shown in Fig. 6.5.
The gun has a muzzle velocity vy and the tower is well within its range 7. At the
moment the gun is fired, Arnold Aardvark, sensing impending danger, grabs his
umbrella, steps through a hole in the platform, and falls freely in pursuit of safety
toward the ground. Determine the distance d that separates Arnold Aardvark and
the shell at the instant #* when it crosses his line of fall.

Solution. The free body diagrams of the shell S and Arnold Aardvark B are
shown in Fig. 6.5, in which Wy = mgsg and Wp = m g denote their respective
weights. Their free fall equations of motion, in evident notation, are

FB =mpg = mpap, Fs =msg = mgag. (6273)

Therefore, B and S have the same constant, free fall acceleration, azg = ag = g,
but their respective initial conditions differ. Integration of this equation, i.e. dvg =
dvg, with vg(0) = 0 and vs(0) = vy, the muzzle velocity of the gun, gives

Vg = Vs — Vg with vy = vo(cos Bi + sin 8j). (6.27b)
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Figure 6.5. An unusual lesson on projectile motion.

A second integration with xg(0) = x¢ and x5(0) = 0 yields the relative position
vector D = xp—xg of B from § at any time #:

D =xy — vt with Xy = ai + bj. (6.27¢)

At the instant t* when the shell crosses Arnold Aardvark’s line of es-
cape x =a < r, D =dj. Thus, with vy given in (6.27b), (6.27c) yields dj =
(a — vot* cos B)i + (b — vgt* sin B)j. The i component determines ¢*, and the j
component yields

d=b-atanfp (6.27d)

for the distance separating Arnold Aardvark and the unyielding shell at #*. But
Percy Panther had directed the gun on the line toward the platform with tan 8 =
b/a; so, Arnold Aardvark is headed straight toward an unpleasant surprise at the
instant ¢*! But a few moments before disaster strikes, he spies the approaching
shell and quickly fixes the crook-handled umbrella to a tower beam, instantly
arresting his fall. The shell explodes violently beneath him, destroying the tower.
Arnold Aardvark, his snout scorched and twisted, escapes the assault with renewed
mischief in mind.

So long as the tower is within the gun’s range, the result is independent of
the muzzle speed and of the masses of the objects involved; it depends only on the
initial coordinates of B and the angle of elevation of the gun. Explain why Arnold
Aardvark, living in a world where this solution is meaningful, was wise not to have
used the umbrella as a parachute. (]
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Figure 6.6. Schema of the IBM ink jet printing process. Copyright 1977 by International Business Machines
Corporation; reprinted by permission.

6.4.2.4. Ink Jet Printing Technology

The same projectile ideas together with the basic law (6.15) for the elec-
tric force on a charged particle have a fascinating application in ink jet printing
technology. An ink jet printer, illustrated schematically in Fig. 6.6, produces an im-
age from tiny, charged spherical droplets of electrically conductive ink fired from a
drop generating nozzle, approximately 1/1000 in. diameter, at the rate of 117,000
drops per second. The conductive droplets pass between charging electrodes where
they are selectively charged electrostatically by command from programmed elec-
tronic control circuits that describe the image characters in terms of charge-no
charge language. Moving at roughly 40 mph initially, the charged droplets pass
through a constant electric field that directs them onto the paper. As vertical scan-
ning occurs, an electromechanical control mechanism moves the printer carriage
parallel to the paper at a constant speed of 7.7 in./sec. In this way, the ink jet printer
quietly composes characters of high quality at a rate of about 80 characters per
second, a full line of type across a standard page in about 1 sec. Of course, these
operating rates will vary with printer design and evolving technology.

To understand its fundamental working principle, we shall determine the
relative motion of a droplet P of mass m and charge ¢ having an initial velocity
v relative to the printer carriage. Since the carriage has a uniform velocity v,
as indicated in Fig. 6.6, the reference frame ¢ = {O;i;} fixed in the charger at
O is an inertial frame in which Newton’s law may be applied. For simplicity,
aerodynamic drag and wake effects, and the influence of electric repulsive forces
between the charged droplets are neglected. Then, as shown in the free body
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diagram in Fig. 6.6a, the total force F(P,t) = F, + W acting on a drop P is
due to its weight W = —mgj and the constant applied electric force F, = gE =
qEj. Hence, F(P,t) = (g E — mg)j is a constant force. From (6.1) and the initial
condition vy = vpi, we obtain the velocity of the drop relative to the printer carriage
whose constant velocity is v¢ = vck:

V(P,t) = voi + (cE — g)tj with c=gq/m. (6.28a)

With xy = 0 initially, integration of (6.28a) yields the motion of a droplet relative
to the printer carriage:

1
x(P, 1) = voti + E(CE - 9)t%j. (6.28b)

Hence, the path of the droplet relative to the carriage is a parabola

y(x) = iz(cE — g)x2. (6.28¢)
2vg
Let us imagine for simplicity that the deflection plates of length d extend
from the origin at the charger to the paper surface, as suggested in Fig. 6.6. Then
(6.28¢) holds for 0 < x < d. (See Problem 6.22.) Therefore, at x = d, the droplet
deflection or scan height 2 = y(d) at the paper surface is determined by

d2
h=_—(E—g). (6.28d)
2v;

The result (6.28d) shows that when an electrostatically charged drop enters
the uniform electric field, the electric force alters its free fall trajectory and de-
flects it vertically by an amount proportional to its charge. An uncharged drop
is collected in a gutter that returns the unused ink to its reservoir as shown in
Fig. 6.6. A charged drop impacts the paper. Alphabetic or any other characters,
shown schematically in Fig. 6.6, are formed by directing the ink dots onto the
paper in patterns determined by the printer electronics. The decision to charge
or not to charge is made automatically 117,000 times each second. The formula
(6.28d) shows that the character height is inversely proportional to the square of
the stream speed vy which is controlled by the pump pressure. The printer controls
the character height automatically by its pump control circuit. In this way, the
ink jet printer is able to rapidly generate various characters of high quality. Some
interesting style effects may be produced by varying the carriage rate.

A remarkable stroboscopic microphotograph of droplets of ink emerging from
an ink jet printer is reproduced* in Fig. 6.7. A jet of ink that originated in the drop
generator to the right has dissociated into spherical droplets. The lower line of drops

! This extraordinary photograph by Mr. Carl Lindberg was adapted from the color photograph on the
cover of the Number 1 issue of the 1977 IBM Journal of Research and Development. Copyright 1977
by International Business Machines Corporation; reprinted by permission. In Fig. 6.7, however, the
intensity of the droplets has been enhanced for greater clarity.
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Figure 6.7. Stroboscopic microphotograph of ink drops in a jet printer. Copyright 1977 by International
Business Machines Corporation; reprinted by permission.

were not charged, so these are moving toward the ink gutter to the left. The larger
gaps between these uncharged drops are the vacated positions formerly occupied
by the field deflected, charged drops that are traveling on the trajectories above.

The same ink jet technique was first applied in a similar way in the construc-
tion of a strip chart recorder, a high speed device for recording rapidly changing
electrical signals on a moving paper chart. The disintegrating fluid jet concept has
found other applications that include the sorting of cells in blood samples and
the atomization of fuels for combustion. The deflection of a charged particle by
an electric field also is used to control the motion of an electron stream in an
oscilloscope and to produce images on a television screen or a computer monitor.
Technological advances in electronic imaging, however, have led to the replace-
ment of cathode ray tube devices by liquid crystal and high resolution plasma
display systems whose basic operating principles are altogether different, and far
more complex. The practical use of liquid crystal technology, for example, is ev-
ident in its increasingly diverse applications to computer and television screens,
computer games, digital cameras, calculators, cellular phones, digital clocks and
watches, microwave ovens, and a great host of other consumer and military elec-
tronic products.

6.5. Motion under Velocity Dependent Force

So far, complications due to air resistance have been ignored. Realistically,
however, a projectile experiences atmospheric drag forces that slow it down and
alter its trajectory. The same is true of an aircraft, a sky diver, and a raindrop; and
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water behaves similarly to retard the motion of swimmers, water skiers, and ships.
Experience in such situations shows that the retarding force varies with the speed
of the body.

For objects moving slowly through the air, the resistance is roughly propor-
tional to the speed; but this simple rule breaks down at speeds typical of low
velocity projectiles for which the air resistance varies roughly with the square of
the speed. For an aircraft or a rocket whose velocity may approach the speed of
sound, the drag force increases in proportion to some higher power of the speed,
and so on. The retarding force is also a function of the density of air and hence
varies with the altitude. Of course, aerodynamic design plays an important role
too. These complications aside, we may gain physical insight into the nature of air
and water resistance by study of special, ideal models.

6.5.1. Stokes’s Law of Resistance

The simplest model used to study the nature of phenomena arising from drag
effects of air and water on an object moving at low speeds is described by Stokes’s
law: The drag force Fp on a particle is oppositely directed and proportional to its
velocity v:

Fp = —cv. (6.29)

The constant ¢ > 01is called the drag or damping coefficient. This model is applied
later to investigate the motion of a projectile and of a particle falling with air
resistance. First, however, we formulate the problem for a more general model for
which the drag force is an unspecified function of the speed.

6.5.2. Formulation of the Resistance Problem

Figure 6.8 shows a particle P moving in the vertical plane of frame ¢ =
{0; i}, under a total force F(P, t) = W + Fp consisting of its weight W = mg

A

i
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w
t
o] i (a) Free Body Diagram

Figure 6.8. Motion of a particle under a drag force Fp.
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and the drag force Fp = —R(v)t, where R(v) is an unspecified, positive-valued
function of the particle speed v. The equation of motion, by (6.1), is
mg — R(v)t = ma(P, t). (6.30)

Two cases are considered—rectilinear motion and plane motion.

6.5.2.1. Rectilinear Motion with Resistance

Let us consider a vertical rectilinear motion in the direction of g = gt in Fig.
6.8a. Then with a(P, t) = vt, (6.30) becomes

v=g-— % = F(v). 6.31)

Integration of (6.31) yields the travel time as a function of the particle velocity in
the resisting medium,

dv

t= f o) + co, (6.32)

where ¢ is a constant. Theoretically, this equation will yield v(¢) = ds/dt which
may be solved to find the distance s(¢) traveled in time ¢. Alternatively, using
v = vdv/ds in (6.31), we find the distance traveled as a function of the speed,

vdv
N =fm +C1, (633)

in which ¢; is another constant of integration. In principle, the integrals in (6.32)

and (6.33) can be computed when the resistance function R(v) is specified in (6.31).
The following example illustrates these ideas for Stokes’s linear rule (6.29).

Example 6.11. Falling body with air resistance. A particle of mass m, a
raindrop for example, falls from rest through the atmosphere. Neglect the Earth’s
motion, wind effects, and the buoyant force of air, and adopt Stokes’s law to
model the air resistance. Determine as functions of time the rectilinear speed and
the distance traveled by the particle.

Solution. The solution may be read from the foregoing results in which the
drag force is modeled by Stokes’s law (6.29) sothat F, = —R(v)t = — cvt. Hence,
use of R(v) = cv in (6.31) gives

d
d—j:g—vaF(v) with vs%.
For the initial condition v(0) = 0, we find by (6.32)

v odv 1 v
t= =——log{l——;
0 &— Vv v g

(6.34a)
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Figure 6.9. Graph of the normalized speed versus the normalized time for the vertical motion of a particle
falling with resistance proportional to its speed.

s0, the rectilinear speed of the particle in its fall from rest is

V() = veo(l —e™¥)  with vy = (6.34b)

< |og

In consequence, as t — 00, the particle speed v approaches a constant value vo, =
g/v = W/c, named the terminal speed. When the particle achieves its terminal
speed, its weight is balanced by the drag force so that cvs, = W, and the particle
continues to fall without further acceleration.

These facts are illustrated in Fig. 6.9. Equation (6.34b) shows that the rate at
which v(t) changes is governed by the coefficient of dynamic viscosity v = c/m,
which has the physical dimensions [v] = [F/MV] = [T~']. Thus, at the in-
stantz = v™!, by (6.34b), v(v™!) = vo(1 — e71) & 0.632v4,. Therefore, the speed
reaches 63.2% of the terminal speed in the time t = v~1, called the retardation
time. The straight line of slope 1 in Fig. 6.9 shows that this also is the time at
which the speed would reach the terminal value if it had continued to change at
its initial constant rate a(0) = g, without air resistance. As the particle’s speed
approaches the terminal speed of its ultimate uniform motion shown by the hori-
zontal asymptote, the weight W = Wt is balanced by the drag force Fp — Fy, =
—CVUxot.

Finally, with v = ds/dt and the initial condition s(0) = 0, (6.34b) yields the
distance through which the particle falls in time ¢:

s(t) = voo/ (1 —e™")dt = voot — v%o(l —e . (6.34¢)
0

Hence, the distance traveled in the retardation time interval is s(1/v) = v /(ve) &
0.368v0/v. The result (6.34c) also may be read from (6.33).

The reader may verify that in the absence of air resistance when v — 0 the
limit solutions of (6.34b) and (6.34c) are the elementary solutions (6.24). Now
consider the case when the viscosity v is small. First, recall the power series
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expansion of e* about z = 0:

2 2

e=1+z+ = +3'+ (6.34d)

Then use of (6.34d) in (6.34b) and (6.34c) yields, to the first order in v, an approx-
imate solution for the case of small air resistance:

v v

=g (1-51),  so=3¢(1-31). (6.34¢)
When v — 0, we again recover (6.24) for which air resistance is
absent. O

6.5.2.2. Plane Motion with Resistance

Now, let us consider the plane motion of a particle in frame ¢ = {O;1, j},
as shown in Fig. 6.8. With t = v/v = x/vi+ y/vj and g = —gj in (6.30), the
component equation (6.2) yields

R R
X =—ﬂfc, y=—-g— ﬂy. (6.35)
my my
These equations are difficult to handle in this general form. For resistance governed
by Stokes’s law (6.29), however, the ratio R(v)/mv = c¢/m is constant; and (6.35)
simplifies to

: c
X =-vx, y=—g—vy with v=— (6.36)
m

Example 6.12. Projectile motion with air resistance. A projectile S of mass
m is fired from a gun with muzzle speed vy at an angle B with the horizontal
plane. Neglect the Earth’s motion and wind effects and assume that air resistance
is governed by Stokes’s law. Determine the projectile’s motion as a function of
time.

Solution. The equations of motion with air resistance governed by Stokes’s
law are given in (6.36). To find the motion x(S, t), we first integrate the system
(6.36) to obtain v(S, t). Use of the initial condition vq = vp(cos Bi + sin Bj) yields

/* dx ) fY' dy .
-0 = —VI, - = 1l
vocos B X v, sin B gt+vy

These deliver the projectile’s velocity components as functions of time:

X = (vycos Ble™"", y = —§ + (vo sin 8 + E) e . (6.37a)
v
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Figure 6.10. Projectile motion with air resistance.

Then integration of (6.37a) with the initial condition xy = 0 yields the motion of
the projectile as a function of time:

x(t) = = cfsﬂ (1—e™), (6.37b)
(@) = ~2 + ! (Uo sin B8 + 5) 1—e™). (6.37¢)
Vv Vv 1%

Let us imagine that the projectile is fired from a hilltop into a wide ravine,
as shown in Fig. 6.10. Then, as ¢t — 00, in the absence of impact, (6.37a) gives
X — 0 and y — —g/v. Hence, the projectile attains the terminal speed v,, =
g/v at which its weight is balanced by air resistance; and (6.37b) and (6.37¢c)
show that the projectile approaches asymptotically, the vertical range line at ro, =
lim,_, o x(t) = (vo cos B)/v in Fig. 6.10. In the absence of air resistance, the range
for the same situation would grow indefinitely with the width of the ravine. The
simple Stokes model thus provides a more realistic picture of projectile motion
with air resistance that limits its range. g

6.5.2.3. The Millikan Oil Drop Experiment

When oil is sprayed in fine droplets from an atomizer, the droplets become
electrostatically charged, presumably due to frictional effects. The charge is usually
negative, which means that the drops have acquired one or more excess electrons.
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Figure 6.11. Schematic of the Millikan oil drop experiment.

This fact was exploited in 1909 by the famous American physicist Robert A.
Millikan in a classic experiment designed to measure accurately the charge of an
individual electron. Millikan’s experimental method, its relation to our study of
air resistance, and his remarkable result’ are discussed next.

A schematic of the oil drop test is shown in Fig. 6.11. Charged oil droplets,
about a thousandth of a millimeter in diameter, are ejected from an atomizer at the
top of the apparatus. A few drops escape through a small hole into an illuminated
electric field E directed as shown. A lighted drop is seen in a telescope as a tiny,
bright particle of mass m and negative electric charge —g falling slowly under
the influence of its weight Wy, the electric force F,, the drag force Fp, and the
buoyant force Fp of the air, as shown in the free body drawing in Fig. 6.11; so,
the total force on the droplet is F(P,t) = F, + Fp + Fz + W,. The use of oil
eliminates effects due to fluid evaporation, so only the drag force varies with time.
Independent tests confirmed that the charge on the drops does not affect the air
resistance to its motion, and because the particle’s rate of fall is small, Stokes’s
law of resistance is applicable.

The intensity of the electric field, hence the electric force F, = —gE on a
negatively charged drop, is adjusted until the droplet becomes stationary, spatially
suspended in equilibrium between the field plates. In this case, Fp = 0 and the
equilibrium equation yields

F.+W;+Fpg=—gE+W=0. (6.38a)

The effective weight W = W, + Fp of a droplet in air depends on the mass density

§ In 1923, Robert A. Millikan was awarded the Nobel Prize for physics, principally for his work
identifying precisely the unit of electric charge. Nearly 25 years subsequent to his death in 1953,
however, he was strongly criticized for his treatment of students and others, and for his mishandling
of the data. See the balanced account by D. Goodstein (among the references under Millikan) for
the rest of the story. The importance that Millikan placed on his amended form of Stokes’s law is
underscored in this article. Also, it should be mentioned that besides frictional effects that induce
negative charges on the droplets, the electric arc lamp is a source of ionization radiation of the space
between the horizontal capacitor plates that also induces positive charges on an atom of an oil droplet,
so the droplets are sometimes referred to as ions.
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of the oil and of the sealed air as well as on the size of the drop. The mass densities
are known, but the diameters of the drops are too small to be accurately measured
directly with the telescope. Millikan devised an ingenious, indirect method for
finding the size of the drops.

When the electric field is turned off, the drop accelerates in its fall until its
terminal speed is reached. This happens when the drag force given by Stokes’s
rule balances the effective weight of the drop so that the particle is in a state
of relative equilibrium at its constant terminal speed. Thus, the equation of the
uniform motion yields

F,+W=0, (6.38b)

in which Fo, = —cvnt is the air resistance at the terminal speed voo. By timing
the distance traveled at the constant slow rate of fall of the drop, Millikan mea-
sured the terminal speed and applied the result (6.38b) to compute the droplet size.
Then the drag coefficient ¢, which depends on the size of the drop and the known
viscosity of air, could be evaluated by a separate formula derived by Stokes from
hydrodynamic theory. But Millikan found that Stokes’s formula, due to the small
size of the drops compared with the mean free path of a gas molecule, was inaccu-
rate, and he provided an empirical correction to account for the discrepancy. With
this adjustment in mind, ¢ and v, may be considered known. Thus, in effect, the
charge on the drop is determined by eliminating W between (6.38a) and (6.38b)
to obtain —gE = F . Clearly, the error in Stokes’s formula for the calculation of
¢ does not affect the basic linear nature of the rule (6.29), and hence the droplet
charge is determined by
Clso
=% (6.38¢c)
Millikan and his co-workers found in many measurements the remarkable
result that every droplet had a charge q equal to an integral multiple of a number
e = 1.6019 x 107! coulomb, the basic amount of negative charge of one electron.
Thus, Millikan’s conclusive experimental result that

q = ne, n=1273,..., (6.38d)

showed that electric charge exists in nature only in integral units of magnitude e.

The procedure to obtain the data on one particular droplet sometimes took
hours. At times, when interrupted while working on a drop, Millikan would put it
into balance with the field and leave it. On one occasion he went home to dinner
and returned after more than an hour to find the droplet only slightly displaced
from where he had left it. At another time, Millikan realized he would not finish
his experiment in time to attend dinner at home with invited guests, so he phoned
Mrs. Millikan to explain that “T have watched an ion for an hour and a half and have
to finish the job,” but insisted that she and their guests go ahead with dinner. He
learned later that Mrs. Millikan advised their guests that Robert would be delayed
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because he had “washed and ironed for an hour and a half and had to finish the
job”

Measurement of e had been done earlier, but never with the accuracy achieved
by Millikan’s suspended oil drop test. He was studying the fundamental building
block out of which, it is now believed, all electrical charges in the universe are
composed, always in integral multiples of the basic unit electron charge e. The
entire basis for the measurement of its magnitude rested on application of Stokes’s
law to the terminal speed of spherical droplets of oil in air. The apparatus was
a device for catching and essentially seeing an individual electron riding on a
drop of oil. Millikan recalled later in his autobiography this exciting observational
experience: “He who has seen that experiment has in effect seen the electron.”

Additional examples of particle motion with air resistance are provided in
Problems 6.23 through 6.27. We continue with a new topic.

6.6. An Important Differential Equation

Many physical systems are governed by the second order differential equation
ii(t) + riu(t) = h(), (6.39)

for a scalar function u(t). Herein r is a real or complex constant and A(t) is a
specified function of the independent variable t. We are going to encounter lots
of applications in which one or more of the scalar equations of motion are of the
type (6.39); so it is most helpful to understand the physical nature of its solution
in general terms.

The solution of (6.39) when r = 0 describes a motion under a time varying
force. This case was studied in Section 6.4.1, page 109; therefore, we shall assume
that r # 0. In the general case, we recall from the theory of differential equations
that the solution of (6.39) is given by the sum

ut) =upy(t) +up(), (6.40)

in which up(¢), called the homogeneous solution, is the general solution of the
related homogeneous equation

iy +riuy =0, (6.41)
and u p(¢) is a particular solution that satisfies (6.39):
iip+riup = h). (6.42)

6.6.1. General Solution of the Homogeneous Equation

The general solution of the homogeneous equation is obtained by considera-
tion of a trial function u7 = Ce* in which A and C are constants. This function
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satisfies (6.41) for each root of the characteristic equation A* + r? = 0, namely,
A = =ir in which i = +/—1, so both uz(t) = Cye'"* and uz(t) = Coe""" are so-
lutions of (6.41). Hence, the general solution of the homogeneous equation that
contains two arbitrary integration constants C; and C; is given by the sum of these
independent solutions:

up(t) = C1e'"" + Cre™'. (6.43)

The homogeneous solution (6.43) is also known as the complementary function.

6.6.2. Particular Solution of the General Equation

The hardest part of our problem is to find a particular solution of (6.42)
for a given function A(t). Standard methods are available that may be applied
to find one. The method of variation of parameters, for example, is a powerful
procedure applicable to equations with variable or constant coefficients, but the
complementary function must be known in advance. This presents no difficulty
in the present problem for which it can be shown that this method leads to the
following general relation for a particular solution of (6.42):

I 1¢4
up(t) = f o) [¢h077) — 0] dr, (6.44)
Al — A
wherein A = (A1, A,) are distinct roots of the characteristic equation. In the present
case A = %ir yields A, = —A; = —ir. In evaluation of the indefinite integral in

(6.44) arbitrary constants are omitted; they have no importance in the particular
solution. The solution (6.44) also may be verified by its substitution into (6.42).
(See Problems 6.28 and 6.29.) In many problems of physical interest, use of the
formal relation (6.44) to compute the particular solution may be avoided. For
the kinds of problems we shall encounter ahead, it is much easier to generate a
particular solution on an ad hoc basis.

Example 6.13. Let us consider a particular solution for the case when h(t) is
a linear function of ¢, namely,

h(t) = c + bt, (6.45a)

for constants b and c¢. Then because 4(t) = 0, we see that a particular solution that
satisfies (6.42) is

h(t

up(t) = Lz) =r"*(c+br). (6.45b)

r
In this instance iip = 0. Indeed, a particular solution of (6.42) has the prop-
erty iip(t) = 0 if and only if up(¢) is a linear function like (6.45b), and hence
when and only when A(¢) is the linear function (6.45a). Therefore, in accordance
with (6.40), the general solution of (6.39) for this case is given by the sum of
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(6.43) and (6.45b):
u(t) = Ce™ + Cre™ " + r (¢ + bt). (6.45¢)

The solution for other special functions A () will be considered as the need arises.

6.6.3. Summary of the General Solution

In summary, we find with (6.43), (6.44), and (6.40) that the general solution
of the differential equation (6.39) may be written as

ut) = Cie"”" + Coe ™" + up(t), (6.46)
where the particular solution is defined formally by
t
h , .
up(t) = / -2@ [¢707" — e =D] dr. (6.47)
ir

This is a convenient means of representing a particular solution of (6.39) for an
arbitrary smooth function i(#). Remember, however, that in many cases of practical
interest, depending on the nature of h(¢), a particular solution of (6.39) may be
obtained by simpler ad hoc methods.

6.6.4. Physical Character of the Solution

Now let us consider two important cases of physical interest. In the first
instance we suppose that r = p is a real constant so that 7> = p? > 0. This leads
to a trigonometric type solution. In the second case, we take r = igq, a pure complex
constant, so that 2 = —g? < 0. This leads to an exponential type solution which
is then expressed in terms of hyperbolic functions. As a consequence, the physical
nature of these two classes of solutions of (6.39) is quite different. (See Problem
6.33.)

6.6.4.1. Trigonometric Solution: r = p, a real constant

Equation (6.39) for this case becomes
ii(t) + p*u(r) = h(r), p real. (6.48)

Of course, the general solution of this equation has precisely the form (6.46)
with r replaced by p. But the complex exponential solution, convenient in some
problems, suffers the undesirable disadvantage that the constants C; and C, are
complex quantities. It proves more convenient, therefore, to transform this solution
to its trigonometric form by use of Euler’s identity

e*P' = cos pt % i sin pt. (6.49)
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Then, with » = p, the general solution (6.43) of the homogeneous equation (6.41),
namely,

iig + pPug =0, p real, (6.50)
may be written as
ug(t) = Asin pt + B cos pt, (6.51)

wherein A and B are two real constants of integration. Thus, the complementary
function has an oscillatory character typical of trigonometric functions.

Substitution of (6.49) into (6.47), with r = p, leads to the following expres-
sion for the particular solution of (6.48):

up(t) = / ? sin p(t — t)dr. (6.52)

The general solution of (6.48) is the sum of (6.51) and (6.52). Formally,
u(t) = Asin pt + B cos pt + up(t). (6.53)

The trigonometric functions in (6.51) and (6.53) have well-known periodic behav-
ior whose physical relevance is discussed further in applications ahead.

Exercise 6.2. Let Cy = a; +iby, C; = ay +ib,, and set r = p in (6.43).
Use Euler’s identity and show that the homogeneous solution (6.43) is real-valued
when and only when b; + b, = 0 and a; — a; = 0. Determine in these terms the
real constants in (6.51). O

6.6.4.2. Hyperbolic Solution: r = iq, a complex constant

The equation (6.39) for this case becomes
ii(t) — q*u(t) = h(1), q real. (6.54)

It is important to recognize that the principal difference between (6.54) and (6.48)
is merely the sign of the second term. This results in significantly different kinds
of solutions. The general solution of (6.54) is given by (6.46) with r replaced by
iq. We thus obtain

t
h
u(t) = Cre 4" + Cre?' + f 2(—;) (979 — 740" dr. (6.55)

Notice that the homogeneous solution, the first two terms in (6.55), has an expo-
nential character. Unlike the oscillatory solution (6.51), this exponential solution
grows increasingly large with ¢. Hence, plainly, equations (6.48) and (6.54) will
describe totally distinct kinds of physical effects.

It is useful to observe that hyperbolic functions may be introduced to express
the solution by formulas analogous to those used in the trigonometric case. For
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comparison, the results are presented in order parallel to the trigonometric formulas
(6.49)—(6.53).

Representation in terms of hyperbolic functions. The hyperbolic sine and cosine
functions are defined by

1 1
sinhz = E(ez —e9), coshz = E(eZ +e7%). (6.56)

These equations may be solved to obtain the exponential functions e? and e™%:
e*? = coshz + sinhz. (6.57)

This is similar to (6.49). Then, with r = iq, the general solution (6.43) of the
homogeneous equation associated with (6.54), namely,

iig —q*uy =0, g real, (6.58)
may be written as
uy(t) = Asinhgt + B coshgt, (6.59)

wherein A and B are two real constants of integration. Use of the first of (6.56) in
(6.47) when r = iq yields the following formula for a particular solution of (6.54):

t
up(t) = f h—(qQ sinhq(t — t)dr. (6.60)

The general solution of (6.54), given by (6.55), is the sum of (6.59) and (6.60).
Formally,

u(t) = Asinhgt + Bcoshqt + up(t). (6.61)

This completes the parallel representation of results (6.58)—(6.61) which are to
be compared with the corresponding equations (6.50)—(6.53) for the trigonometric
solution. Although the forms of solutions (6.53) and (6.61) are similar, it is evident
that their physical nature is quite different. The trigonometric functions in (6.53)
are periodic, they recur over and over again. But, as seen by (6.56), the hyperbolic
functions in (6.61) grow indefinitely with the variable ¢. The graphs and some
additional basic properties of the hyperbolic functions follow.

Further properties of the hyperbolic functions. Graphs of the functions (6.56) and
some basic properties of the hyperbolic functions provide a helpful picture of their
growth behavior. To start with, differentiation of (6.56) shows that

d d
—(sinh z) = cosh z, —(cosh z) = sinh z. (6.62)
dz dz

We thus see an important difference in the derivatives of the hyperbolic functions
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compared with their trigonometric counterparts. It also follows easily from (6.56)
or (6.57) that

cosh? z — sinh? z = 1. (6.63)

This identity reveals a simple geometrical property that accounts for the
name of these functions. Indeed, with x = coshz and y = sinh z, (6.63) yields
x2 — y? = 1, the equation of equilateral hyperbolas with asymptotes along the
bisectors of the coordinate lines. Hence, the functions (6.56) are named hyperbolic
functions. The trigonometric functions x = cos z and y = sin z, on the other hand,
yield x> + y? = 1, the equation of a unit circle. And we recall that the trigonometric
functions are also known as circular functions.

The identity (6.63) shows that, unlike their trigonometric cousins, cosh z >
sinh z for all values of z. This means that their graphs never intersect; the graph
of coshz lies always above the graph of sinhz. Moreover, (6.56) and (6.62)
show that sinh z vanishes at z = 0 where its slope, coshz, has value 1. Since
d*(sinh z)/dz? = 0, the graph of sinh z has an inflection at z = 0. Equation (6.56)
shows that sinh(—z) = — sinh z is an odd function of z. The graph of sinh z thus
has the form shown in Fig. 6.12. The graph of cosh z, also shown there, has a
minimum at z = 0 where its value is 1, and, by (6.56), cosh(—z) = cosh z shows
that cosh z is an even function of z. Clearly, as z grows indefinitely large, (6.56)
indicates that both functions grow indefinitely, as shown in Fig. 6.12. It can be
proved from statics that the graph of the hyperbolic cosine function, also called
the catenary, is the shape assumed by a uniform, heavy cord supported at its ends
and hanging under its own weight, an easy experiment for the reader.
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6.7. The Simple Harmonic Oscillator

The differential equations (6.48) and (6.54) occur in a wide variety of dynam-
ical problems, the simplest kind being those for which i(r) = 0. These equations
reduce in this case to the respective homogeneous equations (6.50) and (6.58).
In particular, the oscillations of a mass attached to an ideal linear spring and the
small amplitude oscillations of a pendulum are motions of physical systems that
are governed by the same homogeneous equation (6.50)—the equation of a so-
called simple harmonic oscillator. An example in which (6.58) occurs will follow
shortly. We begin with the linear spring/mass system.

6.7.1. Hooke’s Law of Linear Elasticity

We usually think of a spring as a helically wound wire device. But all solid
bodies, like a solid rubber block or cord, behave in the same springy way, except
that the deformation of most solid bodies is usually very small. So all solid bodies
whatsoever, whether metal, wood, glass, or stone; hair, silk, tissue, or bone; and so
on, are springs too. In general, to characterize the uniform, uniaxial elastic behavior
of a deformable solid body under tensile or compressive end loads, we adopt an
ideal spring model described by Hooke’s law: The uniaxial force Fy required to
stretch or to compress an ideal spring is proportional to the uniaxial change of
length § of the spring from its natural, undeformed state:

Fy =ké. (6.64)

The constant k is called the spring constant. Sometimes the terms elasticity, mod-
ulus, or stiffness are also used. Clearly, [k] = [F/L]. An ideal spring for which
(6.64) holds is known as a linear spring.

The linear force—deformation law (6.64) was proposed by Robert Hooke in
1675. To protect his discovery from use by others while he exploited its appli-
cations, he claimed priority for the law and published its substance in a Latin
anagram, “ceiiinosssttuu.” Three years later, and 18 years since his first knowl-
edge of it, Hooke unscrambled the puzzle to read:T “ur tensio sic vis;” that is, the

[Tt}

1 Notice that the anagram has a double “u,” contrary to its Latin decipherment by Hooke. See R.
Hooke, De Potentia Restitutiva or of Spring, 1678; reproduced in R. T. Gunther, Early Science in
Oxford, Volume VIII, The Cutler Lectures of Robert Hooke, pp. 331-56, Oxford University Press,
Oxford, 1931. This is not an error. In early Latin manuscripts v often appears in print as . In fact, M.
Espinasse in Robert Hooke, University of California Press, Berkeley, 1962, p. 78, writes literally, “ut
tensio sic uis”” Hooke’s own decipherment, however, is commonly adopted in books on elasticity, its
history, and Hooke’s life. See Volume 1, p. 5, of I. Todhunter and K. Pearson, A History of the Theory
of Elasticity and of the Strength of Materials, Dover, New York, 1960; L. Jardin, Ingenious Pursuits:
Building the Scientific Revolution, pp. 322-3, Doubleday, New York, 1999; and the remarkable
treatise by J. F. Bell, “The Experimental Foundations of Solid Mechanics,” Fliigge’s Handbuch der
Physik, Volume VIa/l, pp. 156-60, Springer-Verlag, New York, 1973.
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extension of any spring increases in proportion to the tension. Hooke demonstrated
by experiments that in addition to solid bodies, the rule also holds for helical wire
springs for which the deformation § may be large. Because Hooke’s law is linear,
it follows that the extra force F* required to stretch (or compress) the spring an
additional amount 7, say, is proportional to n; i.e., F* = kn. This simple superpo-
sition rule does not apply to any nonlinear spring. Any potential confusion about
the effect of initial deformation of a spring in the formulation of a problem may
be avoided by use of a deformation variable defined with respect to the natural
state.

Hooke’s rule is not a fully accurate characterization of a springy body for
all cases of practical interest. It ignores, for example, the possibly large twisting
effect induced by uniaxial loading of a helical spring, whose torsional stiffness
and mass usually are neglected in applications of (6.64). And it does not hold for
large deformations possible in nonlinear rubberlike materials or biological tissues.
On the other hand, Hooke’s law provides a mathematically simple and useful
description of the physical nature of phenomena in a great variety of practical
cases where the elastic response of a solid may be reasonably modeled by a linear
spring.

6.7.2. The Linear Spring-Mass System

Let us consider a linear spring fixed at one end and having a mass m (some-
times called the load) attached to its other end, and either suspended vertically or
supported by a smooth plane surface. The mass of the spring is generally considered
negligible in comparison with the mass m; so, henceforward, its mass is ignored.
When m is displaced a distance § from the natural, unstretched spring configura-
tion, it exerts on the spring a uniaxial force Fy given by (6.64). In response, the
spring exerts an equal but oppositely directed restoring force Fs = —Fy = —k$J,
called the spring force, that acts always to return the mass toward the natural state of
the spring. Hence, if released, the mass will vibrate under the alternating extension
and compression reactions of the spring itself. Let us first study the oscillations of
the mass on a smooth horizontal surface, as shown in Fig. 6.13.

6.7.2.1. Horizontal Vibrations of a Mass on a Linear Spring

To characterize the horizontal oscillatory motion of the mass, we suppose
that m is given an initial uniaxial velocity vy = vpi from its natural equilibrium
configuration in ® = {F;1i, j} shown in Fig. 6.13. The free body diagram of m is
shown in Fig. 6.13a. The weight W is balanced by the normal reaction N of the
smooth surface, so the only force that affects the horizontal, uniaxial motion of
m is the spring force Fg = —kxi, in which x = § denotes the displacement of m,
the change of length of the spring from its natural state. Therefore, the equation
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Figure 6.13. An ideal spring-mass system.
of motion of m, namely, Fg = mXi, becomes

k
i+pix=0 with p= /j ) (6.652)

m
This equation has the form (6.50) whose general solution is given by (6.51):
x(t) = Asin pt + Bcos pt. (6.65b)

An oscillatory motion described by (6.65b) is called a simple harmonic motion.

The integration constants A and B are determined by specified initial con-
ditions; presently, x(0) = 0, %(0) = vp. Since x(0) = B = 0, (6.65b) reduces to
x(¢) = Asin pt, and with (0) = Ap = vy, we have the general solution

x(t) = 2 sin pr. (6.65¢)
p

The maximum displacement of m from its equilibrium state is called the
amplitude of the oscillation. The amplitude of the motion (6.65¢) is given by
x4 = vo/p. The graph of the motion (6.65c) and the corresponding velocity
X = vg cos pt are shown in Fig. 6.14. The motion of m varies from x4 to —x4
over and over again. Also, the displacement x(¢), and similarly the velocity v(z),
has the same value at times ¢t +2nnw/p =t +nt for n =0,1,2,...; that is,
sin(pt + 2nm) = sin p(t 4+ nt) = sin pt. Hence, the motion (6.65¢) is said to be
periodic, and the least nonzero time t = 27/ p for which x(¢) = x(¢ + 7) is called
the period of the motion—it is the time required to complete one oscillation. (See
Fig. 6.14.) The number of periods that occur in a unit of time is the number of
oscillations of the mass per unit time. This number, denoted by

P (6.65d)

T 2r’
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x(t),x(t)

—x(t) = v, cos pt

~x(t) = xAsin pt

Figure 6.14. Graphs illustrating the periodic nature of the simple harmonic motion and the simultaneous
velocity of the load in a linear spring-mass system.

is called the frequency of the oscillations. The measure units of f are expressed as
cycles per unit time. When the time is in seconds, the measure of f commonly is
stated in cycles per second or Hertz, abbreviated 1 cps= 1 Hz. Since there are 27
radians in one cycle, p = 2 f is called the circular frequency; its measure units
are radians per unit time. Clearly, [p] = [f] = [T~'] and [r] = [T].

The relation for the circular frequency of a simple harmonic motion may be
read immediately from the coefficient of the differential equation of motion (6.65a).
Consequently, the period and the frequency of the motion of the mass of a linear
spring-mass system may be obtained at once from (6.65d). We thus find

m 1 [k
T = 271\/;, f= wVm (6.65¢)

The graph of the uniaxial velocity X = v = vg cos pt versus the uniaxial po-
sition x = x4 sin pt, called a phase plane diagram, is an ellipse centered at the
origin and having semi-axes determined by x4 and vy:

X 2 % 2
[_] +[_] =1. (6.65f)
XA Vo

‘We may suppose that p in (6.65a) is known. Then for each choice of initial veloc-
ity vp, the pair (x4 = vo/p, vg) determines a different ellipse, and hence (6.65f)
describes a family of concentric ellipses. Moreover, the normalized plot of X /vg
versus x /x4 reduces every member of the family (6.65f) to a single unit circle.
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The periodic nature of the motion is exhibited by these closed phase plane paths,
all of which are traversed in the same time t = 27/ p, the period of the motion.
Equation (6.65f) has exactly two solutions x = +x, for which x = 0, and hence
the amplitudes tx 4 are the extreme points in the motion at which the mass comes
momentarily to rest. The £ sign reflects the symmetry of the motion about x = 0,
the equilibrium state of rest—the unique time independent solution of (6.65a).
And, by (6.65f), the greatest velocity X = vy also occurs at x = 0. These results
are evident in Fig. 6.14. We shall find in Chapter 7 that the phase plane curves are
related to the energy of the system.

For other initial conditions, the form of the solution (6.65¢), hence also the
relations describing the amplitude and the phase plane trajectory, will be some-
what different. General formulas for the amplitude and the phase plane graph for
arbitrary initial data assigned in any simple harmonic motion (6.65b) are presented
later.

6.7.2.2.  Vertical Vibrations of a Mass on a Linear Spring

Now let us consider the effect of gravity on the oscillatory motion of a load m
supported vertically by a linear spring. The weight produces a static deflection §g
of the spring from its natural state, and the mass is then set into vertical oscillatory
motion about this equilibrium state. We shall see that the motion of m relative
to the unstretched state is described by an equation that may be transformed to
another having the same form as (6.65a) relative to the static equilibrium state.

Let us fix the origin at the natural state of the spring so that i is in the
downward direction of g = gi. Construction of the free body diagram of m is left
for the reader. The weight W = mgi produces a static deflection 8 such that the
spring force exerted on m is Fg = —k§i; hence, the static equilibrium equation
W+ Fg = (mg — kdg)i = 0 yields

kég = mg. (6.66a)

When the mass is set into vertical motion, the weight W is unchanged but the
spring force becomes Fg = —kxi, where x denotes the stretch of the spring from its
natural state. Hence, the equation of motion W + Fg = (mg — kx)i = mii yields
kg

i+ pix =g, with p2=z=g,

(6.66b)

wherein (6.66a) is introduced. This equation has the form of (6.48) in which
h(t) = g is constant. Therefore, recalling the method leading to (6.45b) and (6.53),
we see that the general solution of (6.66b) is

x(¢) = Ccos pt + Dsin pt + i, (6.66¢)
p

in which C and D are integration constants to be fixed by the initial data.
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This shows that the motion of m is simple harmonic, but the center of the
oscillations is displaced to the position at xg = g/p* = mg/k = 8, the static
equilibrium position of m. Hence, introducing the new variable z = x — 6g to
describe the displacement of m from its static equilibrium position, the equation
of motion in (6.66b) transforms to

i+ pPz=0. (6.66d)

This has the same form as our earlier equation (6.65a) for the horizontal motion;
s0, the solution (6.66¢) may be cast in the form

z(t) = x(t) — 8g = C cos pt + Dsin pt. (6.66€)

Hence, both linear spring-mass systems are governed by the same kind of equation.
When the displacement is measured from the vertical static equilibrium position
of a linear spring-mass system, in effect, the static deflection and the weight of
the load may be ignored in view of the balance equation (6.66a). Therefore, the
static equilibrium state is a convenient reference state from which to study the
motion of a linear system, because we need only consider the additional spring
force F* = —kz = m7 for the displacement from that state. This superposition
procedure, however, cannot be used to study the motion of a load on a nonlinear
spring; in this case, the undeformed reference state must be used.

The frequency f = p/2n = (v/k/m)/2n of the vibration of m is independent
of the initial data. In view of (6.66a), this may be rewritten in terms of the static
deflection alone, namely,

1 /g

f= 7\ s, (6.66f)
Thus, regardless of the spring stiffness and independently of the amplitude, any
vertical loading that produces the same static deflection in different linear springs
will oscillate with the same frequency. Of course, for springs of different moduli,
the loads needed to produce the same static deflection differ; nevertheless, the
measured frequency of their oscillations is identical for all amplitudes, and hence,
in this sense, formula (6.66f) is universal.

We now study the small amplitude oscillations of a pendulum. Although this
physical system is quite different from the spring-mass system, both are governed
by the same basic equation of motion characteristic of a simple harmonic oscillator.

6.7.3. The Simple Pendulum

A simple pendulum, shown in Fig. 6.15, consists of a small heavy body
of mass m, called the bob, attached to one end of a thin rigid rod or string of
length £, negligible mass, and suspended from a smooth pin or hinge at the point
0. The pendulum is displaced to swing about its vertical equilibrium position.
Air resistance and the mass of the rod are ignored. We wish to determine the
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Figure 6.15. A simple pendulum and its free body
diagram.

frequency and period of its small amplitude oscillations in the vertical plane, when
the pendulum is released from rest at a small angle ;. The problem, however, is
first formulated exactly for large amplitude oscillations.

The free body diagram in Fig. 6.15 shows the gravitational force W = mg
and the rod tension T acting on the bob. The equation of motion for the angular
placement 6(t) of the bob from its vertical equilibrium position is readily described
in terms of intrinsic variables. In accordance with (6.3), F = W+ T = m(st +
«x$%m), in which § = €4, § = €6, and ¥ = 1/£. Therefore,

m(£dt + £6°n) = Tn — W(sin6t + cos On). (6.67a)
This yields the two scalar equations of motion:

6 + p*sinf =0, T = ml(6® + p*cosb), (6.67b)

p= \/% . (6.67¢)

Let the reader confirm these equations by use of (6.4).

The first equation in (6.67b) is an ordinary nonlinear differential equation for
the angular motion 6(¢) and the second gives the rod tension 7'(@) as a function
of 6. The exact solution of these equations for finite amplitude oscillations of a
pendulum will be studied in Chapter 7. Presently, however, we consider only small
values of 6 so that all squared and higher order terms in # and its derivative § may
be neglected. Then use of the series functions (2.17) in (6.67b) leads to

G+p*0=0 T=mg=W. (6.67d)

where

Certainly, for sufficiently small placements 6(t), it is expected that the rod
tension does not vary significantly from its static value, the weight of the bob, as
shown in (6.67d). The first equation in (6.67d) has the same form as (6.65a); so,
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the small amplitude pendulum motion is simple harmonic with circular frequency
p defined by (6.67c). Therefore,

0(t) = Asin pt + B cos pt. (6.67e)

The constants A and B are determined by the given initial conditions that the
pendulum is released from rest at a small angle 6, so that 8(0) = 6, and 6(0) = 0.
From (6.67¢), the angular speedis @ = Ap cos pt — Bp sin pt. We thus find A = 0
and B = 6, and (6.67¢) yields the solution

6(t) = 6y cos pt. (6.67f)

The angle 6 is the amplitude, the maximum angular placement from the
vertical equilibrium position in the motion (6.67f). Recalling the relations (6.65d),
we find the small amplitude frequency and period of a simple pendulum with
circular frequency (6.67c):

1 /g £
=—_/=, =2 [—. 6.67
f 7o\ 7 T ﬂ\/; (6.67g)

The period is the time required for the pendulum to swing from 6y to —6, and
back again to 6. The period of the small amplitude, simple harmonic motion of
a pendulum is independent of this amplitude. The finite amplitude motion of a
pendulum described by the first equation in (6.67b), though still periodic, is not
simple harmonic. It is shown in Chapter 7 that the periodic time in the finite motion
varies with the amplitude.

6.7.4. The Common Mathematical Model in Review

The linear spring-mass system and the simple pendulum (for small amplitude
oscillations) are merely two examples of a great many physical systems that are
characterized by the same mathematical model. Their common model, called the
simple harmonic oscillator, is described by the homogeneous differential equation

i + p*u =0, (6.68)
whose solution
u = Asin pt 4+ B cos pt, (6.69)

is simple harmonic. The constant circular frequency p and period t = 27/ p, or
the frequency f = 1/7, may be read immediately from the positive coefficient in
(6.68).

The amplitude of the motion of a harmonic oscillator may be obtained by
introduction of two other constants U and « defined by

A=Ucosa, B = Usina. (6.70)
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Therefore, the new constants are related to the former by
B

U=+VA?+ B?, tana = 1 (6.71)

We lose no generality in taking U positive, and & may be either positive or negative
valued.

Use of (6.70) in (6.69) yields the following alternative form for the motion
u(t) of the simple harmonic oscillator:

u(t) = Usin(pt + ). (6.72)

The reader may show that with A = Usin 8, B = U cos B, where 8 = /2 — a,
an alternative form of the solution (6.72) is given by u(t) = U cos(pt — B). Either
solution shows that U, the maximum value of u(z), is the amplitude of the motion.
The angle pt + « (or pt — B) is called the phase angle or simply the phase of the
motion; it characterizes the state of the oscillation at a specific time. The phase
constant o (or B) defines the initial phase of the motion. From (6.72), the velocity
may be written as

u(t) = Upcos(pt + ). (6.73)

Thus, if initially we are given u(0) = ug and #(0) = vy, then (6.72) and (6.73)
yield ug = U sine, vy = Up cos«. In consequence, by (6.71), the amplitude and
initial phase may be expressed in terms of the initial data:

2
U= u%+(@> s o = tan™" <M>
p Vo

A graphical description of the motion is obtained from (6.72) and (6.73). For
arbitrary initial data and for each fixed frequency p, the graph of u(t) versus u(t)
for the simple harmonic oscillator motion is a family of concentric ellipses having
semi-axes determined by U and U p:

u\? i\’

(U) +(Up) =1. (6.74)
In general, the plane graph of & versus u for any single degree of freedom system
is called the phase plane graph. Thus, for each choice of initial data, the phase
plane graph for the simple harmonic oscillator is an ellipse defined by (6.74).
However, it is seen further that the normalized plot of &/ Up versus u/U reduces
every member of the family (6.74) to a single unit circle. The periodic nature of
the simple harmonic motion is exhibited by these closed curves. Since p is fixed
and the period does not depend on the initial data, all trajectories in the phase
plane are traversed in the same time 7. Equation (6.74) has exactly two solutions
u = U for which &z = 0 and two solutions & = U p at the equilibrium position
u = 0, the unique time independent solution of (6.68). Hence, the amplitudes U
mark the extreme positions in a simple harmonic motion at which the velocity
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momentarily vanishes; and the greatest velocity £Up occurs at the equilibrium
state.

This concludes our study of the simple harmonic oscillator. The effect of
viscous damping on mechanical vibrations, and some effects of inertial forces
induced by rotating bodies, including effects of the Earth’s rotation, and other
kinds of forces are explored later in this chapter. It is important to recognize
that not every vibration need be periodic, and not every periodic motion need
be vibratory. Random vibrations, for example, are not periodic, and steady orbital
motions are periodic but not vibratory. The following example of a particle moving
in an electromagnetic field exhibits a motion that is periodic but not oscillatory.
The solution procedure, however, is the same.

6.8. Motion of a Charged Particle in an Electromagnetic Field

A particle of charge g and mass m is ejected from an electronic device, with
initial velocity vy = vj at the place Xy = Ri in an inertial frame ® = {F;i;}. The
charge moves under the influence of constant and oppositely directed electric and
magnetic fields that are parallel to the axis of the gravitational field, as shown
in Fig. 6.16. The total body force acting on ¢ is F = F, + F,, + W; hence, with
(6.18), the equation of motion may be written as

d
K-ckxB=—(k-cxxB)=cE+g, (6.752)

where in ¢ = g /m. This vector equation is readily integrated to obtain the velocity

Figure 6.16. Motion of a charged particle in uniform //
and oppositely directed electric and magnetic fields.
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X as a function of x and ¢; thus,
x =cx X B+ (cE + g)t + Cy. (6.75b)

The constant vector of integration is fixed by the initial data x(0)= xg, X(0)= vy,
so that

CO = Vg —CXp X B. (6750)

Although (6.75b) cannot be integrated further, its use in (6.75a) leads to another
integrable result. Bearing in mind that the vectors B, E, and g are parallel, we
obtain

X¥—c?xxB)xB=cCyxB+cE+g. (6.75d)

Finally, substitution of (6.75c¢) into (6.75d), expansion of the triple products in the
result, use of the orthogonality condition B - xy = 0, and w = ¢B yields the vector
differential equation

%4+ w’x — c*(x- B)B = w’xg + cvo x B+ cE +g. (6.75¢)

Exercise 6.3. Show that (6.75¢) may be written as ¥ + P>x = -, in which
P? = 0*(i® i+ j ® j) and ~ is a constant vector. ]

We now introduce B = —Bk, E=FEk, g=—gk, xy = Ri, vy=vj,
and x = xi + yj + zk into (6.75e) and equate the corresponding vector compo-
nents to obtain the following three scalar equations of motion:

)'é+w2x=w2(.R—£>, Frwly=0, =24, (6750

in which 2A = cE — g. The first pair of these equations shows that both x and
y are simple harmonic functions, and hence the general solution of the system
(6.75f) is given by

x(t)=a+ K coswf + Lsinot,  with a=R——, (675
w

y(t) = Mcoswt + Nsinwt and z(t) = At + Pt 4+ Q. (6.75h)

The initial data x(0) = X = Ri and %(0) = vy = vj determine the integration
constants L = M = P = Q = 0and K = N = v/w. Hence, the foregoing system
has the solution

X)) =a+ 2coswr, Y1) =Zsinwr,  z()= A% (6.75)
w w

It is seen that (x — a)* + y2 = /a))2 is the equation of a circle centered at
(a, 0), hence (6.751) suggests that the trajectory of g looks a bit like a cylindrical
helix of radius p = v/w. By taking R = p in (6.75g), we have a = 0, and the
cylinder axis is shifted to the origin of ®. The first two equations in (6.75f) have
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essentially the same form as equation (6.68) for the harmonic oscillator, but the
motion of ¢ is not oscillatory. On the other hand, the motion in the xy-plane
is periodic; the circular frequency w = ¢B, evident from (6.75f), describes the
constant rate of rotation of ¢ about the cylinder axis, and the periodic time 7 =
27 /w is the time required for the particle to make one full swing around that
axis as it advances along z. Notice that the tangent to the path does not make a
fixed angle with the cylinder axis; rather, t - k = 2A#(v? + 4A%¢?)~!/2, The pitch
increases with the square of the number of turns: p, = z(nt) = n?z(t),and z(t) =
A/4mw?* = py. So, the path is not a true cylindrical helix.

6.9. Motion of a Slider Block in a Rotating Reference Frame

We now turn to a different class of problems whose solutions involve the
hyperbolic functions. Two problems concerning the motion of a slider block in
a slot milled in a rotating table are studied. The first concerns the free sliding
motion of the block due to inertial forces induced by the table’s rotation. The
second problem is similar, but more interesting. An additional controlling spring
is introduced, and depending on the nature of two physical parameters, one due to
the rotation and the other due to the spring, the governing equation of motion may
have a solution of either trigonometric or hyperbolic type, or neither.

6.9.1. Uncontrolled Motion of a Slider Block

A block S of mass m shown in Fig. 6.17 is constrained initially by a cord
fastened at the end point A of a smooth slot milled in a table that turns in the
horizontal plane with a constant angular speed w. When the string is cut suddenly,
the block slides freely in the slot. We wish to determine the motion x(S, ¢) of the
slider block relative to the spinning table, and the behavior of the force that acts
on the block as a function of its position in the slot and as a function of time.

The free body diagram of the sliding block is shown in Fig. 6.17a. Of course,
the string force Fg = 0, and the weight of the block is W = —Wk. Because the
slot is smooth, it exerts on S only the normal contact forces N = —Nj in the
plane of the table and R = Rk perpendicular to it. The total force acting on S is
F =N+ R+ W, and hence the equation of motion for S in the inertial frame
® = {F;1;} fixed in the laboratory is given by

F=—-Nj+ (R — W)k = mag. (6.76a)
The absolute acceleration ag of S in ® may be obtained from (4.48). With

a0 =0, wy =wk, wy =0, and x(S, r) = xi + gj in the reference frame ¢ =
{O; i;} fixed in the table, as shown in Fig. 6.17, the total acceleration of S referred
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(a) Free Body

Diagram of S

Figure 6.17. Relative motion of a slider block on a rotating table.

to @ is

ag = (¥ — 0*0)i + Qi — aw?)j. (6.76b)

Substitution of (6.76b) into (6.76a) yields the scalar equations

’x =0, N = m(aw? — 2wx), R=W. (6.76¢)

X—w
The first of these equations determines the motion x(¢) of S relative to the
table, and the next one determines the normal contact force N either as a function
of x or of ¢. The last relation confirms that since there is no motion of S normal
to the table, the slot reaction force R balances the weight W, sothat R+ W =0
in (6.76a). Therefore, in future problems where the motion is constrained to a
smooth horizontal plane, for simplicity, the trivial normal equilibrated forces may
be ignored.
The first equation in (6.76¢) has the same form as the homogeneous equation
(6.58) whose solution is given by (6.59). Therefore, the slider’s motion is given by

x(t) = Asinhwt + B cosh wt. (6.76d)

The slider is initially at rest at x(0) = a in frame ¢, as shown in Fig. 6.17,
and hence x(0) = 0. Thus, with x(t) = Awcosh wt + Bw sinh wt, it follows that
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A =0, B =a;hence
x(t) = acoshwt, X(t) = awsinh wt. (6.76¢)
Therefore, the motion of S relative to the table frame may be written as
x(S, t) = a(cosh wti + j). (6.76f)

Use of (6.76e) in the second equation in (6.76¢c) gives the slot reaction force
N = —Nj as a function of time;

N = N(t) = —maw*(1 — 2sinh wt)j. (6.762)

Alternatively, use of the identity (6.63) yields the slot reaction force as a function
of the slider’s position along the slot:

N = N(x) = —mo*(a — 2v/x? — a?)j. (6.76h)

Let the reader show that the same result may be derived directly by integration of
the first equation in (6.76c) to find x(x).

These results show from (6.76g) that initially N(0) = —maw?j, and, as
time advances, the normal force N(¢) decreases to zero in the time t* for
which wt* = sinh~!(1/2) ~ 0.481, the instant when the slider is at the place
x* = a5 /2 ~ 1.118a in the slot. Afterwards, the normal, slot reaction force
reverses its sense of application to the opposite side of the block and grows again,
indefinitely for as long as the block is able to move outward. Suppose, for ex-
ample, that X(S, 0) = a(i + j) = 251 cm and @ = 20 /3 rad/sec (200 rpm). Then
a=25/ V2 cm, and the previous formulas show that N vanishes, and then re-
verses its sense of application, after t* ~ 0.023 sec when S has moved a distance
d* = x* — a ~ 2.086 cm from its initial position.

When the string was cut, the motion of the block along the slot was no longer
controlled, and the inertial effect of the table’s rotation drove the slider increasingly
farther from its rest state toward the end of the slot. The controlling effect of an
additional spring force is illustrated next.

6.9.2. Controlled Motion and Instability of a Slider Block

Suppose that the string shown in Fig. 6.17 is replaced by a linear spring of
stiffness k fastened at A and to the block S, initially at rest at the natural state
of the spring at x = a but otherwise free to slide in the smooth slot. We wish to
investigate the motion x(S, ) of the block relative to the rotating table.

The free body diagram of the sliding block is shown in Fig. 6.17a in the
table frame ¢. The forces are the same as before with the addition of the spring
force Fg = —k(x — a)i. Since there is no motion normal to the horizontal plane,
R + W = 0, as noted before. Therefore, the equation of motion for S in the inertial



146 Chapter 6

frame &, but referred to the table frame ¢, is given by

F=N+Fs = —Nj—k(x — a)i = mag. (6.77a)
Here we recall (6.76b) to obtain the scalar equations
¥+ p*(1 — n®)x = ap?, (6.77b)
N = m(aew?® — 2wx), (6.77¢)
wherein, by definition,
p=JX 422 (6.77d)
m p

The physical nature of the motion determined by (6.77b) depends on the
coefficient p?(1 — n?). There are three cases to explore: (i) < 1, (i) n = 1, and
(iii) n > 1. Each case is studied in turn for the assigned initial data

x(0)=a, x(0)=0. (6.77e)

Case (i): n < 1; i.e. the angular speed w < p. Then the equation of motion
in (6.77b) has the form of (6.48) in which p? is replaced by Q2 = p?(1 — %)
and h(t) = ap? is constant. Recalling (6.45b) and (6.53), we see that the general
solution of (6.77b) is

x(t) = Asin Qt + B cos Qf + 1—1—5, with Q= py/1—n% (6.77f)
-n
The relative motion of § is simple harmonic, but the center of the oscillation

is displaced to the relative equilibrium position at

a

Xp = ———,

(6.77g)
defined by the unique time independent solution of the equation of motion (6.77b).
Notice that xg > a. Hence, introducing the new variable z = x — xg to describe
the displacement of S from its relative equilibrium position, we may write

4 _ AsinQr + Bcos Q. (6.77h)

) =x0) = 75 =

Consequently, the equation of motion in (6.77b) transforms to the familiar equation
F+ Q%2 =0, (6.77i)

the differential equation for the simple harmonic oscillator.

The initial values (6.77¢) yield B = a — xg = —an?/(1 —n*) and A = 0;
$0, z(¢t) = B cos Q2t. The oscillations occur symmetrically about the relative equi-
librium position xz with the amplitude 7. = |B| = an?/(1 — n?) and circular
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frequency Q given in (6.77f). We thus find that the motion of the slider in the case
when w < p is given by x(S, t) = x(¢)i + aj = (z(¢) + xg)i + aj, in which

2

)= -2 _cos@t. (6.77))
1 —n?

a
x(t)=1_ 5

Case (ii): n = 1; i.e. the angular speed @ = p. The general solution of the
differential equation of motion (6.77b), for the initial data (6.77e), is given by

x(t) = —ap 22 +a. (6.77k)

This result suggests that w = p is the critical angular speed of the table at which the
motion of § about its relative equilibrium position x ceases to be oscillatory and
now tends to grow indefinitely with time. The previously stable relative equilibrium
position (6.77g) of the slider block about which it oscillates when w < p, no longer
exists, a fact evident from (6.77b) for which no time independent solution exists
when n = 1. And hence, the relative equilibrium position xg of the slider block
is said to be unstable at w = p. In our study of infinitesimal stability defined
later, it is proved that the relative equilibrium state is stable if and only if w < p.
Investigation of the physical nature of the slot reaction force (6.77c), both here
and below, is left for the reader.

Case (iii): n > 1; i.e. the angular speed w > p. The equation of motion
(6.77b), in which the coefficient is now negative, has the form of (6.54) in which
g% = p*(n* — 1) and h(t) = ap?. Therefore, with (6.45b) and (6.61) in mind, the
general solution of (6.77b) is given by

x(t) = Asinhgt + Bcoshgt — (6.771)

a
N =1
where ¢ = p(n* — 1)V/2. Alternatively, the change of variable £(t) = x(t) +
a/(n* — 1) transforms the equation of motion (6.77b) to £ — g2 = 0, an equation
of the type (6.58) whose solution is given by (6.59).
The initial data (6.77¢) yields B = an®/(n* — 1) and A = 0. We thus obtain

from (6.77]) the relative motion x(S, 1) = x(#)i + aJ (E(t) —a/(n?=1)i+ aj
in which

2

&)= oY ———coshgt.  (6.77m)

a
1) =
x(1) o

The motion x(¢) relative to the table frame when w > p and the slider block is
released from rest at x(0) = a thus tends to grow increasingly large with time. At
some point, of course, Hooke’s law fails, the limiting extensibility of the spring
restricts the extent of the motion, and (6.77m) is no longer valid. Notice that the
time independent solution of (6.77b) in this case is not a physically meaningful
relative equilibrium state.
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Figure 6.18. Schema for the moment of momentum principle.

6.10. The Moment of Momentum Principle

In this section the Newton—Euler law is applied to derive an additional prin-
ciple of motion that relates torque and the moment of momentum of a parti-
cle. First, however, we recall the definition (5.20) to write the moment My of
a force F about a point O, either fixed or in motion relative to an assigned
frame ®:

My =xx F, (6.78)

in which x = X is the position vector from O to the particle P on which the total
force F acts, as shown in Fig. 6.18. Let O be a fixed point in the inertial frame
® = {F;i;} in Fig. 6.18, so that x = X =, the velocity of P in ®. Now recall
the definition (5.31) of the moment of momentum of a particle P, differentiate it

with respect to time, and use (5.34) to obtain

dh d
—f:xxd—[t)—f—vxmv:xxF.

In view of (6.78), this yields our additional principle of motion.

The moment of momentum principle: The moment about a fixed point O
of the total force acting on a particle P in an inertial frame ® is equal to the time
rate of change of the moment about O of the momentum of P in &:

_dhy

My = . Ni
0= (6.79)
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6.10.1. Application to the Simple Pendulum Problem

The moment of momentum principle (6.79) provides an alternative and often
simpler means to derive the appropriate equation of motion for a particle without
our having to address details concerning certain forces of constraint; otherwise,
it delivers no more information on the motion than may be obtained from the
Newton-Euler law. This is demonstrated in our review of the equation of motion
for a simple pendulum.

The forces that act on the bob are shown in Fig. 6.15, page 138. To apply
(6.79), we first determine the moment of these forces about the fixed point O. The
central directed string tension has no moment about O, while the weight exerts a
torque about O given by

Moy =x x W= —mglsinfb,

where b =t x n is a constant unit vector perpendicular to the plane of motion.
The moment of momentum of the bob about the fixed point O in Fig. 6.15 is given
by hp = x x mv = —fn x m€t = m£>0b, and hence

dhy /dt = me26b.

Collecting this data in (6.79), equating the components, and writing p*> = g/, we
obtain the equation & + p2sin@ = 0 for the angular motion 6(¢) of the pendulum
bob, which is the same as the first equation in (6.67b). Because the cord tension
has no moment about O, the moment of momentum principle eliminates the need
to consider it further in the discussion of the motion of the bob.

6.10.2. The Moment of Momentum Principle for a Moving Point

The moment of momentum principle (6.79) holds only for an arbitrary point
O fixed in the inertial frame ®. We now determine the form of this principle when
O is an arbitrary moving point in ®.

The moment about O of the momentum p(P, t) = m(P)X(P, t)in the inertial
frame & is defined by (5.31) in which point O may be either a fixed or a moving
moment center. Hence, when O has an arbitrary velocity vo in ®, the derivative
of (5.31) with respect to time in ® is given by

f10=Xxp+xxF,

wherein x = X — v,. Hence, use of (6.78) now yields the moment of momentum
principle for an arbitrary moving reference point O:

Mo =ho +vo xp. (6.80)

Therefore, the moment of momentum principle (6.79) may hold with respect to a
moving point O if and only if vo x p = 0, i.e. when and only when the velocity of
O is parallel to the velocity of the particle P; otherwise, O must be a fixed point.
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ASmooth

Figure 6.19. Motion of a pendulum having a moving support.

In general, then, the modified principle (6.80) must be used when O is a moving
reference point. An application of this rule follows.

Example 6.14. A pendulum bob B attached to a rigid rod of negligible mass
and length £ is suspended from a smooth movable support at O that oscillates about
the natural undeformed state of the spring so that x(¢t) = xo sin Q¢ in Fig. 6.19.
Apply equation (6.80) to derive the equation of motion for the bob.

Solution. The forces that act on the pendulum bob B are shown in the free
body diagram in Fig. 6.19. Notice that the tension T in the rod at B is directed
through the moving point O. Moreover, the spring force and normal reaction
force of the smooth supporting surface also are directed through O; but these
forces do not act on B, so they hold no direct importance in its equation of motion.
Consequently, the moment about the point O of the forces that acton B atxz = fe,
in the cylindrical system shown in Fig. 6.19 is given by

My =xp x W = —£W sin ¢k. (6.81a)

The absolute velocity of B is determined by vz = vy + w X Xp, in which
w = ¢k and vp = xi = xpQcos Qti = vpi. Thus,

vp = voi + {de,, with v = xS cos Q1. (6.81b)
With the linear momentum p = mvg and use of (6.81b), we find
Vo X P = voi x mlde, = mvodlsin gk. (6.81c)

The moment of momentum about O is given by hg = xp x p = ml(vp cos¢ +
£¢)K, and its time rate of change is

ho = mé(ap cosd — vo sing + LP)k, (6.81d)
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in which ap = vp = —x¢Q?*sin Q¢. Substituting (6.81a), (6.8}0), and (6.81d)
into (6.80), we find —£W sin ¢k = m€(—xo Q> sin Qf cos ¢ + £¢)k. Hence, with
W = mg, the equation of motion for the bob may be written as

x092

é + p*sing = cos ¢ sin 1, (6.81e)
where p? = g/¢. The solution of (6.81¢) for small ¢(¢) is discussed later in our
study of mechanical vibrations. (See Example 6.15, page 161.) O

6.11. Free Vibrations with Viscous Damping

The simple harmonic oscillator is the fundamental model of the theory of me-
chanical vibrations. Its motion is a perpetual sinusoidal oscillation; once set into
motion, the oscillation continues indefinitely. In real situations, however, there
usually is a dissipative or viscous drag force, called a damping force, that causes
the vibration eventually to die out. If the damping force is very small, the sim-
ple harmonic oscillator often is a useful model. On the other hand, when friction
devices or shock absorbers are used in mechanical systems, it is the intent of the
design that their damping effect be considerable. The suspension system of an
automobile, for example, is designed to dampen smoothly and quickly the vibra-
tions induced by the irregular motion of the vehicle over a rough road. The viscous
damper used to ease the automatic closing of a door and prevent its slamming is an-
other example of the useful effects of damping. Other cases where damping effects
are sometimes desirable and sometimes not arise in instrument design. Damping
of the potentially violent needle motion of a galvanometer can prevent damage
to the instrument when the current is measured, whereas dissipative effects in a
gravitometer may seriously affect the accuracy of gravity measurements.

The analysis of induced motion, damped or not, is also important. The motion
of a structure induced by an earthquake or by aerodynamic effects of wind, the
sudden wing vibration of an aircraft exposed to high winds or turbulence, and
the vibration of a vehicle induced by a bumpy road obviously are undesirable but
unavoidable environmental effects. On the other hand, magnification of induced
motions is essential in the design of seismographs and certain flight instruments.

The analysis of the kinds of problems described above generally is quite
complex, especially when vibrational effects are nonlinear; however, a great variety
of problems that involve damping and induced motions can be adequately modeled
by a simplified damped spring-mass system that consists of a load of mass m, a
linear spring of constant stiffness &, and a linear viscous damper or dashpot. A
typical model of a damped spring-mass system is shown in Fig. 6.20.

A dashpot consists of a piston that moves within a cylinder containing a fluid,
usually oil. When the piston is moved by the load, it exerts a viscous retarding force
on the load. For simplicity, we model this viscous force by Stokes’s law (6.29) and
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Figure 6.20. Model of a damped spring-mass system.

write Fp = —cii, in which c is a constant damping coefficient. The spring force
is a restoring force given by Fg = —kxi, where x(¢) denotes the displacement
of the load from the natural state of the system. The other applied forces in Fig.
6.20 include a disturbing force F*(¢t) = F*(¢)i, attributed to certain environmental
effects of the sort mentioned above. The free body diagram in Fig. 6.20a shows that
the weight W is balanced by the normal reaction force N of the smooth surface,
and hence the motion x(¢) is determined by the differential equation

m¥i + cx + kx = F*(t). (6.82)

If the disturbing force F*(¢) = Fy is constant, the motion is called a free vibra-
tion; otherwise, it is called a forced vibration. When c is zero or may be considered
negligible, the motion is said to be undamped. The undamped, free vibrational mo-
tion is just the simple harmonic motion (6.65a) studied earlier. We next consider
the problem of damped, free vibrations of the load.

6.11.1. The Equation of Motion for Damped, Free Vibrations

In a free vibration, the only effect of a constant disturbing force F* = Fy, such
as gravity, is to shift the origin to the new position z = x — xg, where xp = Fy/k
is the unique time independent, relative equilibrium solution of (6.82). Therefore,
by this simple transformation, all damped, free vibrations of the system in Fig.
6.20 are characterized by the differential equation for the damped, free vibrational
motion of the load m about its relative equilibrium position:

P4 20z +pPz=0, (6.83)

wherein the coefficients are constants defined by

2= —, p=./—, (6.84)

C
m m
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in which p is the circular frequency of the familiar undamped spring-mass system.
The coefficient v is named the damping exponent. The damping coefficient has the
physical dimensions [c] = [FV~'] = [MT~!],andhence[v] = [p] = [T ~!]. The
dimensionless ratio

¢

= — (6.85)

_V
g—p—‘zmp,

is known as the viscous damping ratio.

6.11.2. Analysis of the Damped, Free Vibrational Motion

The general solution of (6.83) may be obtained by several methods. One
familiar approach is described at the end of this section in an exercise for the
reader. Another useful method that simplifies the presentation and emphasizes the
physical nature of the damping adopts a trial solution of the form

2() = e Pu(r). (6.86a)

The constant 8 and the function u(¢) are then chosen to eliminate the damping
term from the transformed equation for u(¢). Substitution of (6.86a) into (6.83)
yields

i +2(v — Bt + (B> — 2vB + pu = 0.

We thus choose 8 = v to remove the damping term; then u(z) is given by the
general solution of the homogeneous equation

i+ rfu=0, (6.86b)
wherein, with the aid of (6.85),
rt=p? -2 =p?(1 - 2. (6.86¢)

Equation (6.86b) has the structure of equation (6.41) whose general solution
for r # 0 is given in (6.43) in which r may be either real or complex. We use this
result in (6.86a) to obtain the solution of (6.83) in the general form

2(t) = e7V(Cre" 4 Cre™i"), (6.86d)

in which Cy, C, are arbitrary constants. The role of the damping exponent v is
now clear. From (6.86¢), there are three physical cases to consider: v < p, v >
p, v = p.In the latter case, r = 0 and we need only solve the equation ii(t) = 0.
We shall begin with the case for which v < p.

Case (i): Lightly damped motion. If ¢ = v/p < 1, then r> > 0 in (6.86c);
hence (6.86b), with r = w > 0, has the general solution u(t) = Acoswt +
B sin wt, wherein

w=pyJ1-10%<p. (6.86¢)
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Therefore, the general solution of (6.83) provided by (6.86a) is
z2(t) = e V(A coswt + Bsinot), (6.86f)

wherein A and B are real constants determined by the initial data.

The solution (6.86f) is oscillatory but not periodic. Because of the damping
factor e, the oscillations decay in time so that z — 0 as ¢t — o00; but in its
oscillatory motion the load returns again and again to the relative equilibrium state
at z = 0. In fact, by (6.86f), if the mass passes through z = 0 in a given direction at
time ¢,, then at time ¢t = 1, + 27 /w it will pass z = 0 again in the same direction.
The time 7 = 27 /w, therefore, is called the period of the lightly damped motion,
and the constant w defined in (6.86e) is named the damped circular frequency.
Hence,

1 w

= (6.86g)

Ja

defines the frequency of the damped, free vibration. Notice, however, that the
motion itself in (6.86f) is not periodic, because z(t + t) # z(¢).

The lightly damped motion (6.86f) may also be visualized from its equivalent
form

2(t) = z0e~"" cos(wt + A) = zoe V" sin(wt + V), (6.86h)

in which zy and A (or ¥) are integration constants. The graph of the first equation
is illustrated in Fig. 6.21. The initial displacement is zo cos A. The initial phase

z(t%

N

z e V!
z . 0
Z Cos A n
0 'Z -
i l 17} /N r~—
| ) > t

) \}[{w,__
t L -
., =Vt
Z,e

Figure 6.21. Graph of the motion of a lightly damped harmonic oscillator.
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A, however, may be chosen to adjust the time origin so that zy is the initial dis-
placement. The damping factor e~ reduces in time the amplitudes of successive
oscillations; these occur in time 7. We see from (6.86¢) that the damped circular
frequency w is smaller than the circular frequency p for the undamped, simple
harmonic case. Therefore, the effect of damping is to decrease the frequency of the
oscillations compared with those of the undamped case. However, if v < p, so
that the damping is very slight, the term e~ stays close to unity for large values
of ¢, and (6.86f) models more precisely the actual physical behavior of the ideal
simple harmonic oscillator.

An oscillographic recording of the motion in Fig. 6.21 may be obtained by
experiment, and this graph can be used to determine the damping parameters from
measurements of any two successive amplitudes at times #, and #,+ =, + 7.
Although the peak values of z(#) do not quite touch the exponential envelope
lines, they often are sufficiently close for practical experimental purposes. With
(6.86h) and z,, = z(t,), we find z,,/z,+1 = €"". Thus, the natural logarithm of this
ratio, called the logarithmic decrement A, determines v and hence ¢ in terms of
measurable quantities:

A=log " — 1. (6.861)
Zn+1

Therefore, with (6.86g), the damping exponent is determined by v = f;A, and
(6.84) yields the damping coefficient ¢ = 2mf; A = 2mA /7. Alternatively, with
the aid of (6.85) and (6.86e) in (6.86i), A may be written in terms of the vis-
cous damping ratio ¢; we find A =2mv/w =27¢/(1 — ¢?)Y/2. Then ¢ may
be expressed in terms of the frequency ratio w/p = f;/f or the logarithmic
decrement A, which are measurable quantities, to obtain ¢ = (1 — (f;/f)})'/? =
AJ(4m? + AD)2,

It is useful to observe for the experimental situation that the damping param-
eters can be evaluated by use of data for any number of complete cycles in the
oscillograph record in Fig. 6.21. Let z; and z,,+; denote the measured amplitudes
at times t; and t; + nt, for integers n = 1, 2, . . .. Then, in view of (6.86i) applied
in turn to each n in the set just indicated,

21 21 22 13 Zn Zn
log =log{ =~ -=-=...~— ) =nlog =nA.
n+1 22 I3 24 Zn+1 Zn+1

Therefore,

1
A=-— log< “ ) , (6.86j)

n Zn+1

which may be used to determine the damping parameters v, ¢, and ¢, as shown
above. This rule is particularly helpful in reducing experimental measurement
error when recorded successive amplitudes are so close together that even small
measurement errors in the amplitude and period will generate significant errors in
data used to compute the damping parameters.
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Figure 6.22. Graph of four typical motions EquW

of a heavily damped system. Position

Case (ii): Heavily damped motion. If { =v/p > 1, then r> = —¢> < 0 in
(6.86¢), where

g=VyV2-p2=pJ2—1<v. (6.86k)
Hence, with r = +iq in (6.86d), the general solution of (6.83) in this case is
z2(t) = e7V'(Ae? 4 Be 7). (6.861)

The constants A and B are determined by the initial data. Equation (6.861) may
also be expressed in terms of hyperbolic functions.

This motion is not oscillatory. Since ¢ < v, the damping factor e~ is dom-
inant; so, whatever initial conditions may be assigned, once the particle passes
through its relative equilibrium position, if at all, it will never do so again. The
unique null solution of (6.861) is obtained in the time

. _ log(=B/A)
o — 2q .

The viscosity in a heavily damped system is so great that the load cannot vibrate
about its relative equilibrium position; rather, it must creep slowly back to it as
t — o0.

Some typical cases are shown in Fig. 6.22. Curve 1 occurs for the initial
conditions z(0) = 0, z(0) = vy, from which —B/A = 1 and hence (6.86m) has
only the trivial solution ¢, = 0. This motion begins with a push away from the
equilibrium position and the mass can never cross it again; for, z — 0 again only
as t — oo. Curve 2 in Fig. 6.22 illustrates the case z(0) = zo, z(0) = 0. For the
general case z(0) = zo, 2(0) = v, the motion may resemble either curve 2, 3, or
4. In the last instance, the load passes through its equilibrium position only once
and then creeps gradually back to it from below. See Problem 6.62.

Case (iii): Critically damped motion.If { = v/p = 1, the general solution of
(6.86b) for which r? = Oisu = A + Bt, where A and B are integration constants.

(6.86m)
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Thus, by (6.86a), the general solution of (6.83) for the critically damped motion is
z(t) = (A + Br)e ™. (6.86n)

As t — oo, the motion z(t) — 0. The critically damped motion, therefore, is
similar to that for the heavily damped model illustrated in Fig. 6.22. Discussion of
the motion graphs is left for the reader in Problem 6.63.

From (6.85), the damping coefficient for this case has the value

¢* =2mp =2vVmk, (6.860)

which is named the critical damping coefficient. This is the value of the damping
coefficient at which the motion loses its oscillatory, lightly damped character in
transition to a nonvibratory, heavily damped decaying motion. In view of (6.860),
the damping ratio (6.85) in the general case is the ratio of the damping coefficient
to its critical value:

(= —=—. - (6.86p)

In both the oscillatory lightly damped case { < 1 and the nonoscillatory
heavily damped case ¢ > 1, the load takes a longer time to come to rest than it
does in the critically damped case ¢ = 1. This effect is illustrated by the familiar
automatic storm-door closer. If the closer mechanism is adjusted to have light
damping, the door will want to swing through its closed equilibrium position in an
effort to oscillate, so the door will slam. If the closer is adjusted to have too much
damping, the heavily damped door will close too slowly, perhaps not at all. The
optimum case is when the closer is critically adjusted so that the door will close
as quickly as possible, without slamming. Thus, the critical damping case { = 1
describes the most efficient damping condition, because the motion is damped in
the least time.

6.11.3. Summary of Solutions for the Damped, Free Vibrational Motion

For the damped, free vibrational motions, z(t) — 0 ast — 00, so all of these
motions eventually die out. To summarize, equation (6.83) for the damped, free
vibrational motion of the load about its relative equilibrium position is character-
ized by three physical situations depending on the value of the viscous damping
ratio { = v/p = c/2mp:

¢ Lightly damped motion, ¢ < 1:
2(t) = e " (Acoswt + B sinwt), w=py1-2¢2  (cf 6.86f)
* Heavily damped motion, { > 1:

z2(t) = e V"(Ae?" 4+ Be™?"), q=pJer—1. (cf. 6.861)
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¢ Critically damped motion, ¢ = 1:
z2(t) = e V(A + Bt). (cf. 6.86n)

The reader may explore the following additional elements.

Exercise 6.4. The usual solution method for linear equations with constant
coefficients adopts a trial solution z7 = Ae™. Find the characteristic equation for
A in order that (6.83) may be satisfied. Determine its roots, and thus show that the
solution of (6.83) is given by (6.86d). O

Exercise 6.5. The method based on (6.86a) may be applied more generally
in problems where the coefficients v and p? in (6.83) are functions of time. Let
z(t) = u(t)e" and find h(¢) and r2(¢) in order that (6.83) may be transformed to
an equation of the form (6.86b) for the function u(z). The solution u(¢) will now
depend on the nature of the function 7(¢); so, in general, u(¢) need not be a periodic
function. O

6.12. Steady, Forced Vibrations with and without Damping

The oscillatory motion of a mechanical system subjected to a time varying
external disturbing force is called a forced vibration. In this section, we investigate
the forced vibration of the system in Fig. 6.20 due to a steady, sinusoidally varying
disturbing force

F*(t) = Fysin Q1. (6.87)

The constant Fy is the force amplitude and the constant circular frequency €2 is
called the forcing or driving frequency.

The motion of a load induced by a time varying driving force of the kind
(6.87) is known as a steady, forced vibration; otherwise, the response is called
unsteady or transient. In general, a vibratory motion consists of identifiable steady
and transient parts. The transient part of the motion eventually dies out, and the
subsequent remaining part of the motion is called the steady-state vibration. A
disturbing force that changes suddenly by a constant value, called a step function,
and an impulsive exciting force which is suddenly applied for only a very short time,
are examples of forces for which the response is transient. Some other examples
are described in the problems. In the text, however, we shall explore only the
steady, forced vibration problem for which the equation of motion (6.82) has the
form

¥ 4 2vi + p*x = Qsin Qr, (6.88)
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in which v and p are defined in (6.84) and

= E. (6.89)

m

We recall that p is the free vibrational circular frequency of the undamped oscil-
lator; it is the intrinsic frequency of the system. Therefore, for future clarity and
brevity, p is called the natural (circular) frequency.

The general solution xy of the homogeneous equation associated with (6.88)
when Q = 0 is given by (6.65b) when v = 0, and by (6.86f), (6.861), or (6.86n),
accordingas0 < ¢ =v/p < 1,¢ > 1,or { = 1, respectively, as summarized ear-
lier (page 157). Consequently, the general solution of (6.88) is obtained by adding
to the appropriate homogeneous solution xy = e u(¢) a particular solution xp
of (6.88) that gives the effect of the external force.

A particular solution of (6.88) may be obtained by the method of unde-
termined coefficients. Accordingly, we take xp = Cy sin Q¢ 4+ C, cos Q2f, where
Q # p is the forcing frequency and the constants Cy, C; are chosen to satisfy
(6.88) identically. Substitution of x p into (6.88) yields

[(p* — Q)C1 — 20QC; — Q] sinQt + [2vQC) + (p* — Q%)C;] cos Qt =0,

which holds identically for all  if and only if the coefficients vanish. This provides
two equations for the constants Cy and C,, which yield

_ Xg(1 —£2) _ —2Xs&¢
(1— €22+ (260 2T a—er e

wherein, by definition,

Ci

(6.90a)

Xs

F Q
0 ly (6.90b)
p

Q
Pk T
and ¢ is the viscous damping ratio defined in (6.86p). Notice that X is the static
deflection of the spring due to Fy, and £ is the ratio of the forcing frequency to the
natural frequency.

The general solution of (6.88) is the sum x(¢) = xy + xp. This gives the
forced vibrational motion

x(t) = e "'u(t) + C, sin Qt + C, cos Qt, (6.90c)

provided that €2 # p. The first term in (6.90c) is the transient part of the motion.
It describes the damped, free vibrational part of the motion for which u(t) is
identified in (6.86f) for the lightly damped problem, in (6.861) for the heavily
damped case and in (6.86n) for the critically damped problem. In any event, the
transient, damped part of the motion (6.90c) vanishes as t — 00, and the motion
attains the steady-state simple harmonic form described by the last two terms.
When v = 0, however, u(t) is the simple harmonic solution of (6.68); and this
part of the undamped, forced vibrational motion (6.90c) does not die out, it is
not a transient motion. Nevertheless, the part of the undamped, forced vibrational
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motion described by the last two terms in (6.90c) is still named the steady-state
part. Thus, in every case the effect of the sinusoidal driving force is to superimpose
on the free, damped or undamped vibrational motion a simple harmonic motion
whose frequency €2 equals that of the driving force (6.87) and whose steady-state
amplitude, in accordance with (6.90a), is defined by

JA =21 2g0)?

See (6.71). The steady-state amplitude is constant for a fixed value of 2, hence &;
but it grows larger as £ — 1, that is, as the forcing frequency 2 approaches the
natural frequency p.

The foregoing results are used to study the ideal undamped, and the lightly,
heavily, and critically damped vibration problems. We begin with the undamped
case.

H=,/C}+C? (6.90d)

6.12.1. Undamped Forced Vibrational Motion

The equation for the undamped forced vibrational motion of the load is ob-
tained from (6.88) with v = p¢ = 0:

i+ p*x = Qsin Q. (6.91)

We recall (6.90a) and (6.90d) to obtain (C, C,) = (H, 0); then (6.90c), in which
u(t) is the simple harmonic solution of (6.68), yields the general solution of (6.91):

x(t) = Acos pt + Bsin pt + H sin Qt, (6.92a)

where, with (6.90b),

o Fo/k  Xs Q
H_p2(1—§2)_1~—§2_1—§2’ g‘_p;él. (6.92b)
The motion (6.92a) is the superposition of two distinct simple harmonic
motions. The first two terms, which contain the two integration constants, represent
an undamped, free vibration of circular frequency p. The third term is the steady-
state, forced vibrational contribution; it depends on the driving force amplitude in
(6.92b) but is independent of the initial data and has the same circular frequency
Q as the disturbing force. In general, the two motions have different amplitudes,
frequencies, and phase. Therefore, their composition, and hence the motion, is not
periodic unless the ratio £ = €2/ p is a rational number, or unless A and B are zero.
Thus, the undamped, forced vibrational motion (6.92a) usually is a complicated
aperiodic motion.
Suppose, for example, that the system is given an initial displacement x(0) =
xo and velocity £(0) = vo. Then (6.92a) yields A = xp and B = (v — HS2)/p,




Dynamics of a Particle 161
and the undamped, forced vibrational motion is described by
v
x(t) = xgcos pt + 2 sin pt + H(sin Qt — & sin pt). (6.92¢)
p

Even if the system were started from its natural rest state so that xo = vy = 0, the
solution x(t) = H(sin Qr — £ sin pt) still contains both free and forced vibration
terms. This motion generally is not periodic. Suppose, however, that the initial data
may be chosen so that xo = 0 and vy = HS2 for a fixed forcing frequency. Then
A = B = 0 and the motion (6.92a) reduces to the steady-state, periodic motion
x(t) = H sin Q1.

The effects of damping and the critical case when & = 1 will be discussed
momentarily. First, we consider an example that illustrates the application of these
results to a mechanical system.

Example 6.15. The equation for the undamped, forced vibration of the pen-
dulum device described in Fig. 6.19, page 150, is given in (6.81e). Solve this
equation for the case when both the motion of the hinge support and the angular
motion of the pendulum are small. Assume that the pendulum is released from rest
at a small angle ¢y.

Solution. The differential equation (6.81e) describes a complicated nonlin-
ear, undamped, forced vibrational motion of the pendulum. To simplify matters,
we consider the case when the angular placement is sufficiently small that terms
greater than first order in ¢ may be ignored. Then (6.81e) simplifies to

X092

14

b+ p'e = sin Q, (6.93a)

where p? = g/¢. This equation has the same form as (6.91); it describes the small,
undamped, steady forced vibrational motion of the pendulum. For consistency
with the small motion assumption, however, we consider only the case for which
the motion of the hinge support O also is small, so that xo /¢ < 1. Because the
amplitude of the disturbing force in (6.93a) varies with its frequency, for small
motions ¢(¢), the range of operating frequencies also is limited.

The general solution of (6.93a), with Q = x, Q?/¢, may be read from (6.92a):

¢(t) = Acos pt + Bsin pt + H sin Qt, (6.93b)
in which A and B are constants and the steady-state amplitude, by (6.92b), is

oo Y08
o1 -2

The assigned initial data determine the constants in (6.93b),

$p0)=A=¢y, $0)=Bp+HQ=0, (6.93d)

£= g £1. (6.93c)
p
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which then yields the solution for the small angular motion of the pendulum:

2
¢(t) = ¢ cos pt + Z()lco——ggz) (sin Q¢ — & sin pt). (6.93¢)
It is evident that this small motion solution is meaningful only for sufficiently
small values of the driving frequency ratio &; otherwise, the smallness of ¢(¢) is

violated. O

6.12.1.1. The Resonance Phenomenon

As ¢ = Q/p — 1, the motion (6.92¢) in response to the driving force grows
increasingly larger, and at £ = 1, its amplitude (6.92b) is infinite. The condition
& = Q/p =1 when the forcing frequency is tuned to the natural frequency of
the system is known as resonance. It is useful to examine the solution for the
undamped motion at the resonant frequency.

Let x*(¢) denote the motion at the resonant frequency Q2 = p, and recall
(6.92b). Then from (6.92c), we evaluate x*(t) = limg_, , x(¢) to obtain

x*(t)=(x0—Kt)cospt+l(vo+K)sinpt, KEE-XS:ﬂ.

)4 2 2mp
This is not a steady-state motion,; its amplitude increases continuously with time,
so the vibrations grow increasingly larger. Although the condition of resonance
does not occur instantaneously, the motion of the load may grow excessively and
exceedingly large in a short time.

6.12.1.2. Steady-State Amplitude Factors

Two kinds of dimensionless amplitude factors arise often in forced vibration
problems, both characterize the steady-state response of the system in terms of the
frequency ratio. One of these amplitude factors, defined by

1
=1 o

called the magnification factor, appears in the steady-state amplitude relation
(6.92b). The magnification factor is the ratio of the steady-state dynamic response
amplitude H to the static amplitude X; of the system, hence og = H/ X is a
measure of the dynamic displacement compared to the static displacement of the
load.

A different dimensionless amplitude factor, defined by

o (6.94a)

3’;2
oy = 1__—52 ) (694b)



Dynamics of a Particle 163

5 T
4 =
lail for £ >1
(out of phase)
3 -
alfor €<t
(in phase)
-t 2 -
o
S
8 1 i
= Resonant
b l.——Frequency Line
= 0 1
£ 0 ! 2
< Frequency Ratio, &
: - L
o ’_-""
> 52 bl
= a,= /
2L 1 R 52 / -
- —a, for £>1
!
Ip (out of phase) 1
-3 ‘% \J
~ A

Figure 6.23. Response amplitude factor o (&) for steady-state forced vibrations without damping as a
function of the system frequency ratio £ = Q/p.

appears in the steady-state amplitude relation (6.93c) for the forced vibration of the
pendulum. Since ¢£ describes the small horizontal motion of the pendulum bob,
we see that HZ is its maximum value in the steady-state motion ¢, = H sin Q.
Thus, the amplitude factor in this case, according to (6.93c), is the ratio of the
dynamical amplitude HZ of the bob to the amplitude x¢ of the support; hence «;
is a measure of the dynamical response of the system.

Graphs of the amplitude factors (6.94b) and (6.94a) are shown in Figs. 6.23
and 6.24, respectively. These response graphs are independent of the particular
physical problems in which these amplitude factors may arise. The general physical
relevance of (6.94b), however, is readily illustrated in connection with the driven
pendulum example.

The map of (6.94b) is shown in Fig. 6.23. Accordingly, at small operating
frequencies &, the amplitude factor «; also is small, both near zero. Thus, the
influence of the vibrating support on the small amplitude oscillations of the pen-
dulum is insignificant, and the motion in (6.93b) is essentially a simple harmonic
motion of natural frequency p. Moreover, for§ < 1,«; > Oand H = xpa;/¢ > 0.
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Figure 6.24. Response amplitude factor og(§) for steady-state forced vibrations without damping as a
function of the system frequency ratio § = Q/p.

Therefore, the steady-state motion ¢, = H sin Q¢ of the bob is in phase with the
driving force (6.87); that is, the bob’s motion is in the direction in which the sup-
port is moving. This is characterized by the solid left-hand curve in Fig. 6.23.
At resonance, the forcing frequency is tuned to the natural frequency at & = 1,
and therefore the amplitude factor (6.94b), and hence the amplitude of the pen-
dulum motion, becomes infinite, as indicated by the vertical line in the response
graph. But this is not an instantaneous effect, rather it indicates a growth in the
amplitude in time, growth which eventually violates the small amplitude motion
assumption used in the solution. When & > 1, the amplitude factor «; < 0, and
hence H = xpo /€ < 0also. Thus, the steady-state response of the pendulum, the
part ¢, = H sin Qt = |H|sin(2t £ ), is simple harmonic and 180° out of phase
with the driving force (6.87); that is, the bob’s motion is opposite to the direction
in which the support is moving. This case is represented by the dotted response
curve in Fig. 6.23. At high operating frequencies for which & > 1, oy — —1; that
is, H - —x¢o /L. Because xp < ¢, the high frequency, steady-state dynamical
amplitude of the pendulum swing will be small, and the steady-state pendulum
motion (6.93b) is a high frequency, simple harmonic vibration, but 180° out of
phase with the motion of the support. For graphical convenience, it is customary
to plot the absolute value of the amplitude factor. When this is done for a4, the
dotted curve in Fig. 6.23 is transformed into its mirror reflection shown as the solid
right-hand curve above it.

Interpretation of the general physical relevance of the magnification factor
(6.94a) in its relation to the response graph shown in Fig. 6.24 is a bit different. In
accordance with (6.92b), for a small operating frequency the magnification factor



Dynamics of a Particle 165

ap ~ 1, as shown in Fig. 6.24. This means that the steady-state motion of the mass
shown in Fig. 6.20 has an amplitude equal to the static displacement of the spring
duetoaforce F. The motion is in phase with the driving force, so the mass moves in
the direction of this force. As& — 1 atresonance, the amplitude grows indefinitely
great, as described earlier. Beyond resonance £ > 1; so, the steady-state motion in
(6.92a) is out of phase with the driving force, and hence the mass in Fig. 6.20 moves
in a direction opposite to the disturbing force. Under a high frequency driving force
for which £ — oo in Fig. 6.24, the steady-state amplitude response a(§) — 0,
and hence the steady-state amplitude in (6.92b) approaches zero. Therefore, the
high frequency vibration of the supporting structure has virtually no effect on the
motion of the system, and the mass in Fig. 6.20 remains essentially stationary.

Of course, some sort of damping or friction is always present in real me-
chanical systems. Damping effects in the forced vibration of a load are studied
next.

6.12.2. Steady-State Vibrational Response of a Damped System

When damping is present, the free vibrational part of the motion, the first
term in (6.90c) called the transient state, eventually dies out, and the vibrational
motion thus converges toward a harmonic motion having the same frequency as
the disturbing force, the steady-state heartbeat of the system. In consequence, only
the steady-state part of the motion (6.90c) of a damped system need be considered.

Let x, denote the steady-state solution. Then by (6.90c)

Xo = Hsin(Qt — 1), (6.95a)
where H is defined in (6.90d) and, from (6.90a), the initial phase A is given by
C, 28¢
tanh = —— = . 6.95b
an c g2 ( )

Clearly, for £ = 1, A = 90° at resonance; and in this case, when Qt = /2, F* =
Fy in (6.87) and x, = 0 in (6.95a). Hence, at resonance, the vibrating body in
Fig. 6.20 is moving through its mid position in its steady-state motion at the same
instant when the driving force is at its greatest value. Notice that the response
amplitude H in (6.90d) does not depend on any initial data. Thus, regardless of
how the system may be set into motion initially, after a time, it settles down to the
steady-state motion (6.95a) whose amplitude (6.90d) and phase (6.95b) depend
upon the damping and frequency ratios.
The amplitude factor defined by

1 H
- (6.95¢)

Ji_erraecr X

is a measure of the dynamic response; it is the ratio of the dynamic amplitude H
to the static spring deflection X of the load due to the maximum disturbing force

o
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Figure 6.25. Magnification factor as a function of the frequency ratio £ for various values of the damping
parameter ¢ in a forced vibration of a system.

Fy. Notice that when ¢ = 0, @ = || in (6.94a), and hence « is also known as
the magnification factor. The response curves corresponding to (6.95c) for various
values of the damping ratio are shown in Fig. 6.25. The curve for { = 0is the same
as the plot of o] in Fig. 6.24.

At low frequencies, £ = €2/ p is very close to zero, and (6.95c) shows that
is very nearly equal to 1 in Fig. 6.25. In this case, the disturbing force has such
a low frequency 2 in comparison with the undamped natural frequency p that it
behaves very nearly as a static dead load; hence H is nearly the same as the static
response to the disturbing force: H = X; = Fy/ k, very nearly. Notice by (6.95¢)
that for £ = 1, the curve for { = % yields & = 1. This is the emphasized point on
the resonance line £ = 1 in Fig. 6.25.

Athigh frequencies, £ > 1, and (6.95¢) shows that the dynamic response am-
plitude H becomes very small with  and approaches zero as § — oo in Fig. 6.25.
The frequency of the disturbing force in this instance changes so rapidly that the
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mass cannot respond but slightly, though at the same frequency, in accordance
with (6.95a). Figure 6.25 thus shows that for very small or very large values of &,
the effect of any sort of damping is insignificant.

At the resonant frequency, the forcing frequency € is tuned to the natural
frequency p so that £ = 1. Then (6.95¢) gives H = X;/2¢ = Fy/2¢k, (6.95b)
yields A = 7 /2 for the angle by which the disturbing force F* in (6.87) leads the
steady-state motion x, in (6.95a), which becomes

F
Xy = —Z‘% cos pt. (6.95d)

Hence, if the damping ratio is small, the amplitude of the steady motion may be-
come seriously large when € is close to p. Resonance in the undamped system
corresponds to ¢ = 0 in Fig. 6.25. The effect of damping is to reduce the response
amplitude, and at the resonant frequency ratio & = 1 the reduction may be espe-
cially significant. Thus, the intensity of the resonant motion may be substantially
reduced by the introduction of damping in the system.

The peak magnification in the damped motion, however, does not occur at
& = 1. For fixed values of ¢ and p, the maximum magnification occurs when &
has the value

£ =/1-2¢2 (6.95¢)

This is known as the damped resonant frequency ratio and Q* = p&* is called the
damped resonant forcing frequency. From (6.95¢), the peak frequency Q* occurs
at a ratio £€* which is somewhat smaller than 1, depending upon the degree of
damping.

At the damped resonant frequency ratio £*, the maximum dynamic amplitude
is H* and the magnification factor (6.95c) has the maximum value

. 1 H*
= — = —,
201 =¢2  Xs

which depends on the damping ratio. The locus of these maxima, indicated by the
dotted curve in Fig. 6.25, shows that the peak value ¢* increases as the damping
ratio ¢ decreases. Since ¢ usually is much less than 1, (6.95¢) shows that £* = 1;
that is, the value of the lightly damped resonant forcing frequency 2* differs very
little from the undamped, free vibrational frequency p of the system. In this case,
from (6.95f), the maximum dynamic amplitude at the damped resonant frequency
is H* = X;a* = X, /2¢, very nearly. For small damping the amplitude is greatest
near the resonant frequency ratio £ = 1. As ¢ increases, o* decreases and shifts
toward the left until it reaches a* = 1 at £* = 0 for ¢ = +/2/2. Afterwards, the
peak o* = 1 is arelative maximum value forall ¢ > +/2/2, and (6.95f) is no longer
applicable.

(6.951)
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6.12.3. Force Transmissibility in a Damped System

The vibrating load in its steady-state obviously transmits force to the sup-
porting structure of the system. Therefore, it is important to have a measure of
the intensity of this force. In this section, a certain transmissibility factor is intro-
duced, and effects due to variation in the damping and in the operating frequency
are discussed.

In the steady-state motion (6.95a), the spring and damping forces for the
mechanical system in Fig. 6.20 are given by

Fs¢ = kx, = kH sin(2t — 1), Fp =cx, = cQH cos(2t — 1), (6.96a)

whose amplitudes are Fs = kH and F}, = ¢HQ. Each force in (6.96a) contributes
to the total force transmitted to the support: Fs + Fp = Fysin(Qt — A + )
where tan ¢ = ¢/ k and the maximum impressed force, denoted by Fr, is defined
by

Fr=,/F}+ F} = H/R? + Q2 (6.96b)

Then the ratio of the total impressed force to the maximum value of the disturbing
force Fy = kX, defines the transmission ratio Tg, also known as the transmission
factor or the transmissibility. Thus, with (6.95c), we find the transmission ratio

R (6.96¢)

_Q_\/ 1+ (280)
TR V-t

The graph of the transmission ratio as a function of the frequency ratio & =
Q/p for various values of the damping ratio ¢ = ¢/2mp is shown in Fig. 6.26.
The greatest transmission to the supporting structure for small damping occurs
at resonance, and the effect of increased damping is to decrease the amplitude
of the transmission and shift it toward the left of the resonant frequency line
& = 1. Notice, however, that a transmission factor T = 1 occurs at a universal
frequency ratio & = +/2 (shown as the small circle in Fig. 6.26), regardless of
the amount of damping. For & > +/2, the transmission ratio T < 1, and hence
the transmitted force is smaller than the applied disturbing force. Moreover, the
transmission ratio actually is made smaller by decreasing the amount of damping
at high operating frequencies. Therefore, less vibrational force is transmitted to
the supporting structure. As a result, smoother operation may be expected. At very
low operating frequencies, the transmissibility is again close to 1 for all values of
the damping. Otherwise, Fig. 6.26 shows that increasing the amount of damping
¢ when 0 < & < +/2 decreases the maximum transmitted force. In summary, if
£ < /2, Tr > 1 and greater damping is recommended for smoother operation of
the system; however, when & > V2, Tr < 1 and decreased damping will result in
smoother operation, that is, the effect of the transmitted force intensity is reduced.
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Figure 6.26. Transmissibility as a function of the frequency ratio & for various values of the damping ratio
¢ in the forced vibration of a system.

For & = /2, Tg = 1 for every damped (linear) mechanical system. Mechanical
design with these ideas in mind is known as vibration isolation.

6.13. Motion under a General Nonlinear Force f(x, x)

So far, we have considered free and forced vibrations of damped and un-
damped systems subjected to forces that are linear in x and x. Here we study the
motion x(¢) of a particle under a general nonlinear force f = f(x, X) per unit
mass. This total force may include inertial forces as well as other sorts of linear
and nonlinear contact and body forces. The equation of motion is

i= f(x, %) (6.97)

Although exact solutions of such equations can be obtained, this is not always
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possible, and the analysis of (6.97) often is difficult. Some readily integrable
situations arise when f(x, %) has special properties. The reader will see eas-
ily, for example, that for a nonlinear force of the form f(x, x) = g(x)h(x) for
smooth functions g(x) and h(x), the equation of motion (6.97) has the first in-
tegral [h~!(x)dx? =2 [ g(x)dx + C, where C is a constant. Another example
follows.

6.13.1. Special Class of Nonlinear Equations of Motion

A variety of dynamical systems are characterized by an integrable nonlinear
equation of motion (6.97) of the form

.2 ‘I(x)

) 6.98
q(x)% + 2x I 8™ (6.98a)
for any smooth functions g(x) and g(x). This equation may be written as
d |1
- [Exzqm] = g(v), (6.98b)
which is twice integrable. We first derive
#g(x)=2 / g(x)dx + C = p(x), (6.98¢)
where C is a constant, and thus obtain the velocity function
v(x) =x(x) = M (6.98d)
q(x)

A second integration yields the travel time in the motion:

t= :I:/ —q(i)dx + 1o, (6.98¢)
p(x)

to denoting the initial instant. In principle, this determines the nonlinear motion
x(t); then v(z) can be found from (6.98d). The inversion of (6.98¢), however, may
require numerical integration. Two explicit examples are provided in the following
exercises.

Exercise 6.6. The motion of a particle free to slide on a smooth parabolic
wire y = %kx2 that rotates about its vertical y-axis with a constant angular speed
is described by the nonlinear equation

A+ E2xHi + Qx + k2xi? =0,

where k and 2 are constants. Derive a first integral for x(x). (]
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Exercise 6.7. The motion of a dynamical system is governed by the equation
(h* +r*0%)0 +r*00 + krf cos 6 = 0,

where k, k, and r are constants. The system is initially at rest at & = 0. Derive an
integral giving the travel time in the motion. O

6.13.2. Radial Oscillations of an Incompressible Rubber Tube

Nonlinear equations of the type (6.98a) arise often in physical problems. An
important example in nonlinear elasticity theory, discovered by J. K. Knowles in
1960, concerns the finite amplitude, free radial oscillations of a very long cylin-
drical tube made of an incompressible, rubberlike material. The tube has an inner
radius r; and outer radius r; in its undeformed state and is initially inflated uni-
formly by an internal pressure. A purely radial motion of the tube is induced by its
sudden deflation, so that the radial motion of any concentric cylindrical material
surface of radius R in the deformed state at time ¢ is described by R = R(r, 1),
where r is the radius of the corresponding undeformed cylindrical material sur-
face. Let R, R; respectively denote the inner and outer radii of the deformed tube
surfaces at time 7. Because of the incompressibility of the material, these radii
are related by R? — R? = r? — r?. Hence, the motion is determined completely if
R1(t) is known. It proves convenient to introduce the dimensionless ratios

Ry(t r2
x(t) = ;f ), L= 722 —1. (6.992)
1

Knowles found for arbitrary rubberlike materials that the free radial motion of the
tube is described by the nonlinear differential equation

u—+x

where h(x, ) is a known function that depends on the constitutive character of
the rubberlike material. Notice that while this problem concerns the motion of a
highly deformable body, the equation of motion actually involves only the motion
of a particle on the inner surface of the tube. All other particles on the inner surface
have the same radial motion.

At first glance, equation (6.99b) certainly appears formidable. Upon multi-
plication by x, however, it is seen that (6.99b) assumes the form (6.98a) and may
be written as

xlog (1+%)x+ (10g(1+%> _ K 2)x2+h(x,,u)=0, (6.99b)

d (1.,, H“ —
E (Ex X log (1 + F)) + Xh(x, M) =0. (6'99C)

This yields the first integral

x2x? log (1 + %) = —Z/xh(x, wydx + C = p(x). (6.994d)
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The integration constant C depends on the specified initial data x(0) = xg, %(0) =
vg. Equation (6.99d) thus determines the radial “velocity” function

v(x) =x(x)== (6.9%)

in which x = R, /ry, hence [v(x)] = [T~']. The analytical properties of the func-
tion p(x) show that the phase plane curves described by (6.99¢) are closed and that
(6.99¢) yields exactly two values x = a, x = b > a for which v(a) = v(b) = 0;
so the motion is periodic. See the referenced paper by Knowles for details.
Integration of (6.99¢), with the appropriate sign chosen to render ¢ > 0, yields

the travel time
*dx
t = —_ (6.991)
X0 U(x)

The finite periodic time t of the purely radial oscillations of the tube, the time
required for the tube to pulsate from x =a to x = b and back again, is thus

determined by the formula
b
d
r=2 / ad (6.992)

v(x)’

It turns out that the exact solution of (6.99g) may be obtained for special kinds
of rubberlike materials. Without getting into these matters, however, we see that
these general results are useful because they provide physical insight into what is
otherwise a very difficult dynamical problem. Some additional simpler examples
may be found in the problems at the end of this and subsequent chapters. (See
Problems 6.68 and 6.69.) Similar ideas are applied in Chapter 7 to determine
exactly the motion and period of the finite amplitude oscillations of a pendulum.

6.14. Infinitesimal Stability of the Relative Equilibrium
States of a System

In other problems for which the exact solution of (6.97) is not possible,
a variety of analytical and graphical methods described in other works may be
used to construct an approximate solution or to study various physical aspects of
the motion of the dynamical system. An important physical attribute of particular
interest is the infinitesimal stability of the relative equilibrium states of a dynamical
system governed by (6.97).

Relative equilibrium solutions of (6.97), if any exist, are the time independent
solutions xg of the equation

fxg,0)=0. (6.100)
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(a) Stable (b) Neutrally Stable (¢c) Unstable

Figure 6.27. Schematic illustrating the concepts of (a) infinitesimal stability, (b) neutral stability, and
(c) instability.

This provides the positions xg at which the mass is at relative rest. In the special
case when f is linear in x, there is only one equilibrium solution of (6.100), but for
nonlinear systems there may be many relative equilibrium positions. In particular,
if f(xg, 0) is a polynomial in xg, there are as many equilibrium positions as there
are real roots of (6.100); but some of these may not be stable.

The question of how the system behaves if disturbed only slightly from a
relative equilibrium position is of special interest. If the body either returns even-
tually to the relative equilibrium position xg, or oscillates about xz so that its
motion always remains in a small neighborhood of xg, the relative equilibrium
position is said to be infinitesimally stable, or briefly, stable. For greater clarity,
the term asymptotically stable is also used to characterize the relative equilibrium
position in the case when the body returns eventually to this state. If the body,
following its arbitrary small disturbance from an equilibrium position, remains at
a fixed small distance from the relative equilibrium position, the equilibrium state
is called neutrally stable. On the other hand, if the body moves away indefinitely
from xg, the relative equilibrium state is called unstable. These three situations
are illustrated in Fig. 6.27 for the small disturbance of a heavy particle from its
equilibrium position xz. The particle will perform small oscillations indefinitely
about the equilibrium state at the lowest point of the bowl in Fig. 6.27a, and hence
this state is infinitesimally stable. Now suppose the bowl contains water, then the
oscillations eventually will die out as the heavy particle settles down to xg; in this
instance xg is asymptotically stable. If the particle is given a small displacement
from xg on the horizontal plane surface in Fig. 6.27b and released from rest, it
will remain there; therefore, the equilibrium state xg is neutrally stable. Finally,
in Fig. 6.27c, if the particle is disturbed only very slightly from its equilibrium
position at the vertex of the inverted bowl, it will move away indefinitely from xg,
so this position is unstable.

To investigate the motion in the neighborhood of a relative equilibrium posi-
tion xg, we write

x(t) = xg + x (@), (6.101)

where x(z) is a small disturbance from xg, compatible with any constraints on x,
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so that * = x also is a small quantity of the same order. The function f(x, x) is
then expanded in a Taylor series about xg to obtain to the second order in x and ¥,

. af (x, x) af(x, x)| . .
fx, %)= fxg,0)+ f—a— + s , X+ 0% ).
x|y, dax 5
Thus, recalling (6.100) and (6.101), introducing
af (x, af (x, %
__YwHp g YO (6.102)
ax |, ax |,

and neglecting all terms of order greater than the first in x and ¥, we thus obtain
from (6.97) the linearized differential equation of motion of the body about the
relative equilibrium position xg:

X+ax+Bx=0. (6.103)

The relative equilibrium position will be stable if and only if the solution x (¢)
of this equation remains bounded for all time ¢ or approaches zero as t — oc.
Otherwise, the initial infinitesimal displacement grows with time and eventu-
ally violates the smallness assumptions leading to (6.103); so, the position xg is
unstable.

We recognize that (6.103) is similar to (6.83) for the damped, free vibrations of
a body about its relative equilibrium state. Here, however, the constant coefficients
obtained from (6.102) are arbitrary; they may be positive, negative, or zero, so all
possible solutions of (6.103) must be examined. The usual trial solution 7 = Ae*
of (6.103) yields the characteristic equation

AM+ar+B=0, (6.104a)

which has the two solutions

=g (3)2 B dp=—o- (3)2 —B. (6.104b)

2 2 2 2
Therefore, the general solution of (6.103) is
x() = Areh’ + Age™, (6.104c)

in which A, A, are arbitrary constants. The physical nature of the solution, and
hence the stability of the relative equilibrium positions, is characterized by the
signs of o and B, which determine the roots A; and X,. There are several cases to
explore.

1. Roots Ay, A, are real and negative. Then (6.104c) shows that x () — O as
t — oo. Therefore, the equilibrium position is asymptotically stable. For
real roots (6.104b), («/ 2)? > B must hold. Moreover, o > 0 is necessary
for a negative root A;. If B =0 or B < 0, A will be non-negative, con-
trary to the initial requirement. Consequently, it is necessary and sufficient
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that o > 0, (01/2)2 > B > 0 hold. Hence, @ > 0, 8 > 0 in (6.104a) imply
asymptotic stability.

2. Roots Ay, Ay are real and positive. Then () — oo ast — oo in (6.104c),
and hence the equilibrium position is unstable. Real roots require (a/2)? >
B. For A, > 0, @ < 01is necessary, and hence 8 = 0 or 8 < 0 cannot hold.
Therefore, it is necessary and sufficient that @ < 0, («/2)* > B > 0 hold.
Thus, ¢ < 0, B > 0in (6.104a) imply instability.

3. Roots A; > 0, A, < 0, or conversely. The second term in (6.104c) — 0 and
the first — o0, or conversely; so the relative equilibrium position is unsta-
ble. Real roots require (o /2)*> > B;and B # 0, otherwise A; = 0. Case 1
and Case 2 show that 8 > 0, @ > 0 and 8 > 0, @ < 0 cannot satisfy the
assigned conditions. Therefore, 8 < 0 must hold, and the conditions on A1,
A, are then satisfied for all real «. So, B < 0, « arbitrary imply instability.

4. Roots A1, A, are complex conjugates. Now g > (o/2)> > 0 must hold and
(6.104c) may be written as

X(t) — e—ott/2 (Aleirt + Aze—irt) , (6104d)

where r = (8 — (a/2)*)'/? is real and positive. If & > 0, we have Case
I: @ > 0, B > 0, and hence the equilibrium position is asymptotically
stable. Notice that x(t) —> 0 as t — oo. If @ = 0, the motion (6.104d)
is simple harmonic, and hence the relative equilibrium position is
infinitesimally stable. Finally, when o < 0, we have Case 2: a <0,
B > 0, and x(¢#) — oo with ¢. The equilibrium state is unstable.

5. For g =0, (6.104b) yields A; =0, A, = —«, and hence the motion is
given by

x(@) = A+ Are™™. (6.104¢)

When o > 0, x — A; as t — oo; the equilibrium position is neutrally
stable. When o < 0, x(¢#) — oo with ¢, and the equilibrium position is
unstable. The degenerate case when o = 0 also yields § = 0 in (6.103);
so x(t) = A + Ajt. The equilibrium state is again unstable.

In summary, for all real or complex characteristic roots (6.104b), the infinites-
imal stability of the relative equilibrium states is characterized by the following
four circumstances expressed in terms of the infinitesimal stability parameters o
and B, the coefficients (6.102) of the linearized equation of motion (6.103). The
relative equilibrium position is

(a) infinitesimally stable when ¢ = 0, B > 0,
(b) asymptotically stable for « > 0, 8 > 0,
(c) neutrally stable for a > 0, 8 =0,

(d) unstable for all remaining cases.

(6.105)
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These results also may be conveniently arranged in a matrix shown below.

al|B—>|>0|=0]| <0
>0 A N U
=0 S U U
<0 U U U

Notice that the system is always unstable when either « or f is negative.

6.14.1. Stability of the Equilibrium Positions of a Pendulum

We now investigate the infinitesimal stability of the (relative) equilibrium
positions of a simple pendulum whose finite angular motion is described by
(6.67b):

6 = —p?sinb. (6.106a)

This has the form of (6.97) in which f(6,8) = —p?sin@ is independent of 6.
Hence, by (6.102), @ = 0 and B8 = p? cos O at an equilibrium position 6. Thus,
from (a) in (6.105), O is a stable equilibrium position if and only if 8 > 0.

The (relative) equilibrium states, by (6.100), are given by

f6g) = —p*sinbg = 0, (6.106b)

also evident from (6.106a). This yields infinitely many equilibrium positions g =
+nm,n=0,1,2,.... Butonly two, 8 = 0, 7, are physically distinct positions.
For 0 =0, B = p?> > 0, and for 0 =7, B = —p? < 0. Hence, O = 0 is an
infinitesimally stable equilibrium position, whereas 8z = 7 is unstable.

To see this somewhat differently, recall (6.101), write 8(¢) = 0 + x(¢), and
then linearize equation (6.106a) to obtain

X% + (p*cosbp)x =0. (6.106¢)
This corresponds to the linearized equation (6.103). Specifically, then
i+pix=0forfp =0, j—p’x=0forfg=m (6.106d)

We know that the first of (6.106d) yields a stable simple harmonic solution for
any given initial data, whereas the second yields a solution that grows exponen-
tially with time. Hence, we again conclude that 6 = 0 is an infinitesimally stable
equilibrium position, while 6 = 7 is unstable.

The physical nature of the results is evident. Any small disturbance of the
pendulum bob from its lowest point at 8z = 0 results in a small oscillation about
this equilibrium position. Any infinitesimally small disturbance from its extreme
vertical position g = 7, on the other hand, grows increasingly larger and quickly
violates the smallness assumption leading to (6.106c¢).



Dynamics of a Particle 177
6.14.2. Application to Linear Oscillators

The foregoing discussion has focused on infinitesimal stability for nonlinear
problems in the class defined by (6.97), but the same infinitesimal perturbation
procedure can be applied to all sorts of dynamical systems, including problems
in which f(x, x) is linear in either one or both variables x and x. For illustra-
tion, let us reexamine the stability of the equilibrium positions of the rotating
spring-mass system studied in Section 6.9.2, page 145. Equation (6.77b) gives
the equation of motion in the form (6.97): ¥ = f(x,x) = ap2 — p*(1 — pP)x,
independent of % and linear in x. Equation (6.100) yields the evident equilib-
rium position xg = a/(1 — n?), the same as (6.77g). The infinitesimal stability
parameters in (6.102) are « = 0, B = — df (x)/dx|,, = p*(1 — n?). Therefore,
the equilibrium position xg is infinitesimally stable if and only if 8 > 0, that is,
when and only when n = w/p < 1. This is precisely the result derived earlier for
arbitrary amplitude oscillations consistent with obvious constraints but based on
the familiar nature of equation (6.77i).

The free vibrational motion of the general linear damped oscillator is de-
scribed in (6.83), and this equation is not restricted to infinitesimal motions z(¢)
from the equilibrium position zz = 0. In view of the physical nature of the damp-
ing and spring coefficients, the infinitesimal stability parameters in (6.103) are
positive; we identify @ = 2v > 0 and 8 = p? > 0. Therefore, we know from in-
finitesimal stability analysis that the equilibrium position zg = 0 is asymptotically
stable. In fact, it is physically clear that the system, when disturbed by any amount
consistent with design constraints, will return eventually to its equilibrium posi-
tion. If @ = 0, the motion about the equilibrium state will be stable for 8 = p* > 0,
as learned earlier.

It is not necessary to recall the details of the formal infinitesimal stability
analysis of the equilibrium states of a dynamical system. In special problems, it
is straightforward to simply determine the equilibrium states from the equation
of motion, introduce a disturbance like (6.101) for an infinitesimal perturbation
from these states, and then carry out a linéarized analysis of the equation of mo-
tion. This process leads to an incremental equation of motion similar to (6.103)
from which the stability may be determined in accordance with (6.105). For fur-
ther study of vibration problems and stability analysis see the referenced text by
Meirovitch.

6.15. Equations of Motion Relative to the Earth

To investigate effects of the Earth’s rotation on the motion of a particle, we
recall the equation of motion of a particle relative to the Earth:

ma, =F —2mQ x v,. (cf. 5.102)
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Figure 6.28. Motion of a particle relative to
the Earth.

Let the Earth frame ¢ = {O;i;} be oriented so that i is directed southward and
j is eastward in the horizontal plane tangent to the Earth’s surface at the latitude
A, the angle of elevation of the Earth’s axis above the horizontal plane, as shown
in Fig. 6.28. Then k is normal to the surface, directed skyward. Referred to ¢, the
angular velocity of the Earth frame is

Q = Q(— cos Al + sin AK). (6.107)
Hence, the Coriolis acceleration is given by
20 x v, = —2Qysin A + 2Q(x sin A + zcos A)j — 2Q2ycosAk,  (6.108)

wherein v, = 6x/8t and x(P, t) = xi + yj + zk is the relative position vector.
Finally, the total force acting on the particle P is F = T + W, where W = —mgk
is its apparent weight and T = Qi + Rj + Sk is the total of all other contact and
body forces thatacton P. Then, use of (6.108) in (5.102) yields the scalar equations
for the particle’s motion relative to the Earth:

mi = Q +2mQysin A, (6.109)
my = R —2mQ(x sinA + ZcosA), (6.110)
mz =S8 —mg+ 2mQycos . (6.111)

Some interesting Coriolis effects of the Earth’s rotation may be read from
these equations, or more directly from (6.108). When a particle is travel-
ing eastward so that v, = yj, for example, the Coriolis force —2m$2 x v, =
2mQy(sin Ai+ cos Ak) for A > 0 in the northern hemisphere drives the particle
toward the right, southward and upward; and at the same latitude in the southern
hemisphere for which A < 0, it drives the particle toward the left, northward and
upward. Therefore, in the moving Earth frame over a period of time, a ship or plane
in its eastward directed motion must make a small course correction northward in
the northern hemisphere and southward in the southern hemisphere, to counter the
Coriolis force effect in (5.102). At the equator A = 0, only the vertical component
is active: —2m$2 x v, = 2mQyk, so no course adjustment is needed. Other subtle
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Coriolis effects on the motion of a particle relative to the Earth are demonstrated
in some applications that follow.

6.16. Free Fall Relative to the Earth—An Exact Solution

The elementary result (6.24) for the motion of a particle that falls from rest
relative to the Earth shows that the particle falls on a straight line—the plumb line, a
result that ignores the Coriolis effect of the Earth’s spin. Due to the Earth’s rotation,
however, the particle in its free fall from rest is deflected horizontally from the
vertical plumb line. This Coriolis deflection effect is determined, and afterwards
the theoretical result is compared with experimental data. For simplicity, however,
effects due to air resistance, wind, and buoyancy are ignored.

The free fall problem is the simplest example for which an exact solution
of the equations of motion of a particle relative to the Earth may be obtained. In
this case, with (Q, R, ) = 0 and v,(P, 0) = 0 initially, (6.109)-(6.111) may be
readily integrated to obtain

X =2QysinA, (6.112a)
y = —=2Q(x sinA + zcos A), (6.112b)
7= —gt+2QycosA. (6.112¢)

The next step is less evident. We first substitute (6.112a) and (6.112c) into
(6.110) and set R = 0 to obtain

j 4 4Q%y = 2Qgt cos A. (6.112d)
The general solution of (6.112d) is given by
‘ __gtcosh
C2Q
Without loss of generality, the origin may be chosen so that x(P, 0) = 0. Thus,
withy =0and y =0att =0, we find A = 0, B = —(g cos A)/4Q?, and hence
_gcosh
42

Now substitute this relation into (6.112a) and (6.112c), recall the initial data, and
integrate the results to derive the exact time-parametric equations for the particle
path in its free fall relative to the rotating Earth frame:

y + Acos2Qt + B sin2Qt. (6.112¢)

(2Qt — sin 2Q2¢). (6.112f)

sin 2\
x= %T(zsz%z — 1+ cos29), (6.112g)
A
y= g:;’; (29t — sin2Q1), (6.112h)
gt?  gcos?A

7= (292%1% — 1 4 cos 2921). (6.1121)

2+ 42
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Notice that both horizontal and vertical components of the motion are af-
fected by the Earth’s rotation, and that the results are independent of the particle’s
mass. When the Earth’s rotational rate 2 — 0, these equations show that x — 0,
y— 0,z —> —% gt?. Thatis,x(P,t) = zk = %gtz, the elementary solution (6.24)
for which the Earth’s rotation is neglected.

6.16.1. Free Fall Deflection Analysis

Since €2 is small, but not zero, and the time of fall near the Earth’s surface
is of short duration, the path equations (6.112g)—(6.112i) may be simplified by
series expansion of the trigonometric functions to retain only terms of O(t)2.
This yields

t2
x(P,t) = ‘51—2((9:)2 sin 2 + 4Q1f cos Aj — 2(3 — 2(Q2t)% cos®> k). (6.112))

We thus find an eastward (j-directed) deflection of the first order and a north—south
(i-directed) essentially negligible deflection of the second order in 2¢. To terms of
the first order in 2¢, therefore, the motion is described by

1 1
X(P,t) = 5gszti* cos Aj — Egtzk. (6.112K)

The first term describes the Coriolis deflection, and the second is the elemen-
tary solution (6.24). Therefore, a particle P in its free fall relative to the Earth
experiences in either hemisphere an eastward directed deflection from the vertical
axis. The trajectory of P, shown in Fig. 6.29, to the first order in Q¢ is a semicubical
parabola in the east—west vertical plane:

) 8Q2 cos® A 2

=_ 6.1121
y o2 ( )

P
I“. Surface of the Earth

l W, 5
—————= East

l_ d J Figure 6.29. Free fall deflection of a particle relative to the
Earth.
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The deflection y = d for fall through a height z = —h is

2 [2
d= gthos)\ —h (6.112m)
8

The deflection is greatest at the equator (A = 0) and vanishes at the poles (A =
+m/2). For example, the greatest deflection of a raindrop falling freely through
10,000 ft (3049 m), without air resistance, wind, and buoyancy effects, according
to (6.112m), is dmax = 12.1 ft (3.69 m). Though only 0.12% of the height, the
deflection in the ideal free fall case would be clearly observable. In fact, some
experimental results on falling solid pellets have been reported.

6.16.2. Reich’s Experiment

The free fall of pellets down a deep mine shaft at Freiberg, Germany was
studied by F. Reich in 1831 and published a few years before Coriolis reported
his formula for relative rotational effects in 1835. The depth of the mine was
158.5 m, and Reich observed an average deflection of 28.3 mm in 106 trials. The
corresponding value estimated by (6.112m) for the data Q = 7.29 x 107 rad/sec,
g = 9.82 m/sec?, and A = 51°N is 27.5 mm. Our theoretical estimate thus demon-
strates excellent agreement with Reich’s experimental result on the eastward de-
flection. It is known, however, that the eastward deflection is slightly reduced by
air resistance.

Long before the expression for the Coriolis acceleration was discovered, the
eastward deflection due to the Earth’s rotation was argued intuitively by natural
philosophers, though usually incorrectly, and Reich knew about this. In addition,
however, Reich found a small southerly deflection at Freiberg. This north—south
deviation is determined exactly by (6.112g) and to terms of the order (2¢)> by
(6.112j). If the time of fall v from the height 4 is estimated by their omission in
(6.112)) so that 72 = 2h/g, the north-south deflection is approximated by § =
x(1) = (h*Q?/3g) sin 2. Hence, the southerly deflection predicted for Reich’s
experimental data is roughly 0.004 mm. Within the error of experiment, this would
be zero and in fact negligible; so, it seems unlikely that such a minute free fall
effect could be accurately measured. The fact that Reich and others have observed
and reported the effect at all is surprising.

6.17. Foucault’s Pendulum

In 1851, J. B. Léon Foucault™ (1819-1868) discovered by experiment that
the effect of the Earth’s rotation on the motion of a carefully constructed pendulum

** The story of Léon Foucault’s life, his pendulum experiments, his invention of the gyroscope, his
numerous other accomplishments, and the illustrious period of French history during which he



182 Chapter 6

is to produce relative to the Earth an apparent rotation of its plane of oscillation
at an angular rate @ = Qsin A, clockwise in the northern hemisphere (A > 0)
and anticlockwise in the southern hemisphere (A < 0). Foucault’s first pendulum
consisted of a 5 kg brass bob attached to a 2 m long steel wire suspended from the
ceiling in the cellar of his house, its end held in a device that enabled the pendulum’s
unhindered rotation. To avoid disturbing extraneous vibrations from the thunderous
clatter of passing carriages and other neighborhood noise, echoes of busy Paris
streets that followed him to his cellar laboratory, he worked during the wee small
hours of the night. His first test, 1-2 AM, Friday, January 3, 1851, ended quickly in
failure when suddenly the wire broke. Several days later, modifications concluded,
at two o’clock in the morning of Wednesday, January 8, 1851, he recorded in his
journal the slow steady rotation of the plane of the pendulum’s swing. Secluded
from the rest of the world in the cellar of his house, without reference to heavenly
bodies, he thus witnessed for the first time in history direct proof of the rotation of
the Earth about its axis! (Incidentally, to relate the time of Foucault’s pendulum
experiments in France to American history, we may recall that Millard Fillmore
was 13% President of the United States (1850-1853).)

Needless to say, Foucault was most anxious to demonstrate his important
discovery to French scientists, but he needed a prominent public place to display
his pendulum. Moreover, the effect could be enhanced by the use of a longer
pendulum wire—remember, the period of oscillation for a simple pendulum is
increased with its length; so, with a longer wire the pendulum swings more slowly,
and the turning of the Earth is more easily seen.

Having no scientific credentials himself, he was generally not well-regarded
by the members of the French Academy of Sciences. On the other hand, Frangois
Arago, aman of scientific prominence and a member of the Academy, the renowned
and distinguished Director of the Paris Observatory, a large building with a high
dome, was a somewhat friendly, admiring associate, who was certain to appre-
ciate his discovery. Foucault convinced Arago to permit the presentation of his
pendulum discovery in the Meridian Hall, the largest, longest, and highest room
in the Observatory and, though unimportant to the experiment, perfectly aligned
lengthwise with the Paris Meridian. (This is the very Meridian a certain spec-
ified length of which was proposed to define the length of the standard meter,
but because of errors of its measurement, which is another story, actually it does

struggled for recognition by his colleagues in the Academy of Sciences, is told in the books by
Aczel and by Tobin cited in the References and from which this summary narrative is adapted.
There are, however, some ambiguities and discrepancies in their reports. For instance, it is not clear
from their separate presentations that Foucault’s pendulum demonstration and his paper presented
by Arago at the Academy announcing the discovery occurred on the same day. Also, Tobin, page
141, sets the time for Foucault’s Meridian Hall invitation at 2-3 pMm, while Aczel, page 93, reports
3-5 pM; and they express a difference of opinion on other historical matters, including the date
of Foucault’s first successful test! Consequently, when I perceived a conflict, unable to check the
original sources myself, though the difference might seem insignificant, I generally leaned toward
Tobin’s view.
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not.) The high ceiling of Meridian Hall would allow use of a pendulum of 11 m
length.

Foucault prepared invitations and sent them to all members of the Academy
and some others—*“You are invited to come to see the Earth turn, in the Meridian
Hall of the Paris Observatory, tomorrow, from two to three.”—an invitation clearly
designed to stimulate curiosity and to drive attendance. On February 3, 1851,
Foucault (see the References) announced his pendulum discovery in a paper pre-
sented to the Academy by then supportive Arago. Later that day, many of France’s
most famous scientists and mathematicians assembled in Meridian Hall to see
the Earth turn. Word of Foucault’s pendulum experiment success instantly excited
the interest of science-minded Louis-Napoléon, President of the French Repub-
lic, who decreed straightaway that the experiment be repeated in the Panthéon, a
grand temple and mausoleum for great Frenchmen, the highest domed building
in all of Paris. A new pendulum 67 m long and weighing 28 kg, the then longest
and heaviest in the world, was fabricated. At the end of March 1851, Foucault’s
dream was realized—the Panthéon pendulum exhibition was open for all visitors
to witness. Later that year, a report of a pendulum experiment in Brazil confirmed
the counterclockwise, southern hemisphere (A < 0) rotation of the pendulum in
agreement with Foucault’s empirical sine relation w = Qsin A.

The dynamical equations of motion of a particle relative to a moving reference
frame were widely known long before 1851. The earliest derivation appears to have
come from A. Clairaut in 1742 (see Dugas in the References). The result, how-
ever, is commonly attributed to G. G. de Coriolis (1792—1843), a student of Siméon
Denis Poisson (1781-1840), who presented the correct equations in a paper read
to the Academy of Sciences in 1831 and published a year later. Moreover, it is
known that probably around 1837, Poisson had analyzed the Coriolis effect on the
motion of a pendulum; but failing to appreciate its cumulative effect, he rejected
the result as too small to be noticeable and apparently never published it. Fou-
cault’s demonstration sparked new interest among mathematicians and scientists
to explain by analysis Foucault’s empirical sine rule. At a meeting of the Academy
a few days after Arago’s presentation of Foucault’s memoir, J. P. M. Binet, an
obscure professor of mechanics and astronomy, wrote down the equations of mo-
tion from the principles of dynamics and following some approximations and a
lengthy analysis, there, for the first time, derived Foucault’s equation for the rate
of rotation of the pendulum. (See the References.)

Though widely acclaimed around the world for his work in science and en-
gineering, the ultimate honor that Foucault desperately desired, his election as a
member of the Academy of Sciences, was continually denied to him. A seat in the
Academy opened only upon the death of a member and then, of course, the number
of candidates seeking election was many, to say least about vote-rigging politics
that sometimes raised its ugly head. Foucault had narrowly missed election several
times. Finally, on January 23, 1865, 14 years after his famous demonstration of the
Earth’s rotation and 3 years before his death, his quest was finally realized when
he was elected to the Academy of Sciences. Foucault described the long awaited
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approbation of his peers, his election to Academy membership, as one of the great
joys of his life. (See Tobin in the References.)

Nowadays, one may find a Foucault pendulum in just about every major city
around the world. In Lexington, Kentucky, for example, a Foucault pendulum
swings in the Public Library on Main Street. Surprisingly, the pendulum has
been exhibited at the Panthéon only since 1995. In St. Petersburg (formerly
Leningrad), Russia, during the Soviet years from 1931, interrupted by the war
of 1941-1945, and thereafter continuing until the late 1980s, the world’s longest
Foucault pendulum, nearly 100 m in length, was suspended from the dome of
St. Isaac’s Cathedral, one of the tallest churches in the world, built in 1818-1858.
Students were taken regularly by their professors to see this remarkable display
proving the rotation of the Earth. Soon after Soviet President Mikhail Gorbachev’s
initiation of perestroika and his rise to power in 1988, St. Isaac’s was returned to
the Church, and the phenomenal Foucault pendulum, the incongruous centerpiece
of St. Isaac’s swinging from its cupola, was promptly removed. Today, the image
of a white dove in flight adorns the pinnacle of the incredibly beautiful and
spectacular ceiling within the golden dome of this magnificent church. Though
still principally a museum as decreed by the Soviet government in 1931, from time
to time St. Isaac’s nowadays holds religious services on special occasions, and a
Foucault pendulum may be seen at the St. Petersburg Planetarium. Everyone who
has observed the swing of a Foucault pendulum has, in effect, seen the rotation
of the Earth!

6.17.1. General Formulation of the Problem

We now turn to the analysis of Foucault’s pendulum phenomenon. Let us
consider a pendulum bob of mass m attached by a long wire of length £ to a
fixed point (0, 0, £) along the vertical plumb line in the Earth frame ¢ = {O;i;} in
Fig. 6.30. The relative position vector of m in ¢ is X(1m, t) = xi + yj + zk. The total
force F on the bob is its apparent weight mg and the wire tension T = Tn = Qi +
Rj + Sk, where n = —x/¢i — y/£j + (1 — z/0)k. Hence, the general equations
(6.109)—(6.111) yield the following relations for the motion of the pendulum bob
relative to the Earth:

Tx .
mi = —— +2mQysinA, (6.113a)
¢
T
my = —Ty — 2mQE sinA + £ cos &), (6.113b)
T -
mzi = (¢-2 —mg + 2m2y cos . (6.113¢)

These equations cannot be integrated exactly for large amplitude oscillations.
The manner in which the wire tension varies with the motion is unknown, and its
elimination from these equations serves only to further complicate matters. Itis pos-
sible, however, to derive an approximate solution for small amplitude oscillations.
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(a) Free Body Diagram
of the Bob m

S

Figure 6.30. Foucault’s pendulum and its motion relative to the Earth.

6.17.2. Equations for Small Amplitude Oscillations

Let us assume that the wire is long compared with the displacement so that
x/£, y/¢, and all of their time derivatives are small terms. Since £ — z = £[1 —
(x* + y»)/£*1'/2, our smallness assumption shows that z/¢ = (x2 + y2)/2¢62, ap-
proximately. Hence, z/¢ and its time derivatives are small quantities of the second
order and may be discarded from (6.113a)—(6.113c). In particular, (6.113c) then
yields an equation for the wire tension,

T =m(g —2Qycos ). (6.113d)
Since € is very small, (6.113d) shows that the tension, as expected, is very nearly
equal to the apparent weight of the bob.

Using (6.113d)in (6.113a) and (6.113b) and neglecting terms of second order,
we obtain the simpler, but coupled system of linear equations

¥ — 2wy + p*x =0, j+ 2wk + p*y =0, (6.113¢)

in which

pE\/g, w=Qsin\. (6113f)

The constant p is the familiar small amplitude, circular frequency of the simple
pendulum when the Earth’s rotation is ignored. Itis evident from (6.113e), however,
that the motion of Foucault’s pendulum is not simple harmonic.
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6.17.3. Solution of the Small Amplitude Equations
The solution of the coupled system (6.113e) may be obtained following an

unusual change of variable. We multiply the second of (6.113e) by i = 4/—1, add
the result to the first equation in (6.113e), and introduce the new complex variable

§(t) = x(1) +iy(r), (6.113g)
to obtain the single complex equation
E+2iwk + p* = 0. (6.113h)

The general solution of (6.113h) is
E(1) = A1’ + Aze™™, (6.113i)

in which A; and A, are integration constants, possibly complex, and the charac-
teristic exponents are given by

a = —w— o, = —w+ o, with o* = w?+ p2.  (6.113))
To determine the constants A; and A, let us suppose that the pendulum is
released from rest at x(0) = x¢, y(0) = 0 at time t = 0. Then, by (6.113g), the
initial values of the complex variable are £(0) = xo, £(0) = 0, and hence (6.113i)
delivers
X002 X0

A= , Ay =— . (6.113k)
oy — o ay — o
Finally, use of (6.113j) in (6.113k) yields the real-valued constants
X N —
A= (1+02), k=12 (6.1131)

We recall Euler’s identity (6.49) to cast (6.113i) in the form
E() = (A cosagt + Aycosast) + (A sinagt + A; sinayt). (6.113m)

It now follows with (6.113g) that the solution of the coupled equations in (6.113e)
for the small amplitude motion of Foucault’s pendulum is

x(t) = Ajcosayt + A, cosant,
() 1 1 2 2 } 6.1130)

y(t) = Ay sinagt + Aj sinapt,

where the constants o and Ay are given by (6.113j) and (6.1131). Let the reader
consider the following alternative procedure.

Exercise 6.8. Notice that (6.113h) s similar to the damped oscillator equation
(6.83), and hence the solution method starting from (6.86a) is applicable. Begin
with&(t) = eP'u(t), recall (6.113f) and (6.113j), and show that the general solution
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of (6.113h) for the assigned initial data for £(¢) yields the motion

w .
x(t) = xp (cos w*t cos wt + — sin w*t sin a)t) ,
w

w (6.1130)
y(t) = xo (— cos w*t sin wt + — sin w*t cos a)t) .
1)
Show that the same results follow from (6.113n). O

6.17.4. Physical Interpretation of the Solution

The motion (6.113n) is harmonic in time, but not simple, and it is not periodic
unless o /o is a rational number. Nevertheless, a period characteristic of the
oscillation may be defined that will facilitate our physical understanding of the
Foucault phenomenon.

The half-period t/2 is defined as the time required for the pendulum to
complete its outward swing from its initial position. To find the period 7, we first
determine all times 7 # 0 for which (7)) = 0. Differentiation of (6.113n) and
use of (6.113k) shows that 7" must satisfy sin(e; T) = sin(a, T) and cos(a; T) =
cos(a,T). Hence, Tay = Tay + 2nw for all integers n. Use of (6.113j) in this
expression yields the (positive) rest times

fmy="2 =" a=12... (6.113p)

At each time T'(n), the bob attains a position of instantaneous rest. Thus, for
the first outward swing, 7(1) = /2, and hence the period of the oscillations is

2 2w
=—= 6.113
iy g ©1139
Thus, @* defines the circular frequency of the oscillations, and the frequency is
given by

*
polo@ (6.113r)
T 2n 2&m

When the Earth’s rotation is neglected so that w = 0, (6.113q) and (6.113r) reduce
to the period and frequency for the simple pendulum. Otherwise, the Earth’s
rotational effect on the oscillations of a pendulum is to increase its frequency
(decrease its period) very slightly compared with that of the simple pendulum.
Moreover, in view of (6.113f), the frequency is greatest (the period least) at the
poles and least (greatest) at the equator where the effect vanishes to yield the
simple pendulum, small amplitude value. That is, the frequency varies from p /27
at the equator to (p? + 22)!"/2/27 at the poles.
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Figure 6.31. The Coriolis effect on the trajectory relative to the Earth of Foucault’s pendulum viewed from
its point of support at a place in the northern hemisphere where its apparent rotation is clockwise.

The rest positions of the bob at each half-period 7'(n) = nt/2 = nm/w* may
be obtained from (6.1130), which yields

x (%r) = (=1)"xg cos (gwt) , y (gr) = (=1)""'xysin (ga)t) .

(6.113s)
In particular, the position of the bob after one full swing out and back is, forn = 2,
x(1) = xp cos(wt), y(t) = —xp sin(wt). (6.113t)

Since x(nt/2)? + y(nt/2)* = xZ, itis seen that the locus of rest positions (6.113s)
is a circle of radius xy. Hence, (6.113t) shows that the initial position vector
Xo = Xpi, viewed from the point of support, has been rotated through an angle wt,
which is clockwise when w > 0 and counterclockwise when w < 0. The second
relation in (6.113f) shows that w > 0 in the northern hemisphere, @ < 0 in the
southern hemisphere, and w = 0 at the equator where the motion is always simple
harmonic. Therefore, as first demonstrated by Foucault, relative to the Earth,
the plane of oscillation of a pendulum has an apparent clockwise rotation in the
northern hemisphere, a counterclockwise rotation in the southern hemisphere, and
no rotation at the equator.

The motion is illustrated in Fig. 6.31 for the northern hemisphere. The pen-
dulum starts from a southward displaced position of rest at a small distance x
from the plumb line. As the bob moves on its outward swing, it experiences a
Coriolis force directed eastward; but on its return swing, the Coriolis force is
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directed westward. The deflection always is toward the right of the direction of
the swing in the northern hemisphere. This is shown in Fig. 6.31a. Hence, the
bob, after one period, has undergone a net displacement westward to the posi-
tion x(7) = xg(cos wti — sin wtj), the same distance from the origin, but rotated
clockwise through a small angle wt from Xo, as shown in Fig. 6.31b. At each
time T(n) = nt/2, the same thing is repeated over and over, so the bob traces
the star shaped trajectory described by (6.1130) and illustrated in Fig. 6.31. The
apparent motion in the southern hemisphere for which A < 0 is counterclockwise.
The vertical plane of the pendulum’s oscillations thus rotates relative to the Earth
with Foucault’s angular speed w = Q2 sin A, as indicated in (6.113t). The number
of days t,;(A) required to complete one full revolution of the plane of oscillation of
the pendulum is thus given by t;(1) = 1/ sin L. Consequently, Foucault’s pendu-
lum takes 1 day to complete its apparent turn at the poles where A = £ /2, and
this cyclic time increases as the latitude A decreases toward the equator where the
effect disappears. Specifically, at A = /6, t,(r/6) = 2 days/revolution, and at
the equator 7,(0) = oo days/revolution, that is, the Foucault effect vanishes.

6.18. Relative Motion under a Constant Force

The scalar equations (6.109)—(6.111) for the motion of a particle relative to
the Earth may be integrated exactly for any constant force components (Q, R, S).
However, the general description of motion of a particle P relative to the Earth
under a constant force f = F/m per unit mass also may be derived as an easy
approximate solution of the vector equation of motion (5.102), namely,
dv

— =f-2Q xv. 6.114
5 XV ( a)

This is a first order, vector differential equation for the relative velocity v =
v,(P, t) = 8x/3t. Since (2 is a constant vector, (6.114a) may be readily integrated
to obtain

8
v(P,1) = E)?( = fr — 20 x (X — %) + Vo, (6.114b)
in which xo = x(P, 0), vo = v(P, 0) are assigned initial values. For example,
when gravity is the only force on a particle at rest initially at the origin, f =
—gk, x0 =0, vy =0, and (6.114b) is then equivalent to the system of scalar
equations (6.112a)—(6.112c) for the motion of a particle in free fall relative to the
Earth.

The equation for the motion x(P, ) of P relative to the Earth under the general
constant force f follows by use of (6.114b) in (6.114a); we find

82x

St—z—49x(ﬂxx)=f——2ﬂx(ft+vo+20xxo). (6.114¢)
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Upon discarding terms of order ©2, we obtain the easily integrable vector differ-
ential equation

sv 8%
— = —=f-2Q x (ft . 6.11
5 = 32 x (ft 4+ vo) (6.1144d)
With the initial values xo and vy in mind, the first integral is
8x 1,
v=§=v0+ft—29x Eft +vot |, (6.114e)

and hence the approximate motion of P relative to the Earth is given by
1 1
X = Xo + Vol + zfﬁ - Qx <§ft3 + v0t2> : (6.114f)

To check the result, let us consider the motion of a particle in free fall from
rest at the origin. Then f = g = —gk and (6.114f) simplifies to

1 1
x(P, 1) = Egﬁ —-Qx ggt3. (6.114g)

Use of (6.107) yields (6.112k) derived earlier for the free fall case in which terms
of order 2 were neglected.

6.18.1. First Order Vector Solution for Projectile Motion

The approximate solution (6.114f) for the motion of a particle under a constant
force is applied to investigate the Coriolis effect on the motion of a projectile P
fired at xo = 0 with a relative muzzle velocity

vo = V(cos i+ cos Bj + cos yk). (6.115a)

Here «, 8, y are the direction angles of the gun in the frame ¢ = {O; 1, j, k} defined
in Fig. 6.28. The usual extraneous effects are neglected. Then only the body force
f = g = —gk per unit mass acts on P. We thus recall (6.107) and (6.115a) to
derive from (6.114f) the following estimate for the projectile’s motion relative to
the Earth:

X(P,t) = Vt(cosa + Q2 cos 8 sin A)i
: Qgr? :
+ Vit |cos B — Qt(cosy cosh + cosasinA) + ETA cosA |

t
+ Vi (cosy + QtcosBcosA — ég—v) k. (6.115b)

Example 6.16. Determine the Coriolis deflection of a projectile fired east-
ward at latitude A. Derive the classical relations for the motion and the range when
the Earth’s rotation is neglected.
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Solution. Since the projectile is fired due east (the j direction in Fig.
6.28), the angle of elevation is B. Then a = 7/2, y = 7 — B, and (6.115b)
becomes

X(P, 1) = QV1?cos B sin A
: Qgr’ :
+Vi|cosB — QtsinBcosh + —ﬁ/—cos)\ J (6.116a)

t
+Vt (sinﬂ+9tcosﬂcosk— 5—‘1) k.

First consider the case when the Earth’s rotation is neglected. With
Q2 =0, (6.116a) reduces to the classical elementary solution for projectile
motion:

t
X(P,t) = VitcosBj+ Vt (sinﬂ — f—v) k. (6.116b)

The time of flight t* = (2V sin B)/g for which z(¢+*) = 0 is then used to find the
projectile’s range r = y(t*), namely,

V2
r = —sin28. (6.116¢)
8

Now consider the Earth’s rotational effect. Equation (6.116a) indicates a
lateral (i-directed) Coriolis deflection of the projectile normal to its east directed
range line, toward the south in the northern hemisphere and toward the north in
the southern hemisphere. To find the deflection, we need the projectile’s time
of flight t* given by z(+*) = 0 in (6.116a). To the first order in 2, we find for
VQ/g <« 1,

2V si 2V A
o 2VsinB (1+ cos pcosr ) (6.116d)

g g
The lateral deflection x* = x(¢*) and the range r* = y(¢*) are now determined by

the remaining components in (6.116a). The projectile’s Coriolis deflection to first
order in 2, with VQ/g « 1, is thus given by

4QV?3 sin® in A
o sin ﬂzcosﬂ sin ' 6.1160)
8
The reader will explore the range effect in the exercise. O

Exercise 6.9. Show that to the first order in 2, the variation §r = r* — r in
the range due to the Earth’s rotation when the gun is fired eastward with muzzle
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speed V at an elevation angle 8 and at latitude A is

3

4QV . 4,
dr = cosAsinfB |1 — —sin“ B
g 3

2r3 cot 1
= QCcosA Loﬂ (1 - —tanz,B).
g 3

(6.116f)

O

Notice that §» = 0 when 8 = 60°; therefore, in the absence of air resistance,
the Earth’s rotation has no first order effect on the projectile’s range when fired
eastward at an elevation angle 8 = 60°. Otherwise, the Coriolis effect is to increase
the range when 8 < 60° and decrease it when 8 > 60°. The effect is the same in
both hemispheres, and it may be considerable for high velocity projectiles or
missiles. Large naval guns operate at fairly small angles of elevation, usually less
than 15°; so the Earth’s rotational effect is to increase their eastward directed
range.

Finally, consider the Coriolis deflection (6.116e). In the northern hemisphere,
sinA > Oand x* > 0; therefore, the projectile’s lateral deflection from its eastward
directed firing line is toward the right, southward. In the southern hemisphere,
however, the deflection is toward the left, northward. A correction for the effect
in the northern hemisphere by directing the line of fire northward by an amount
x* without subsequent readjustment in the southern hemisphere at the opposite
latitude would roughly double the northward deflection from the eastward directed
line of fire. While the projectile suffers no lateral deflection at the equator, A = 0,
the variation in the range with latitude given by (6.116f) is greatest there. Ballistic
accuracy, therefore, requires that the Coriolis effect be accounted for in fire control
and inertial guidance designs for long range, high velocity projectiles or missiles.

6.18.2. The Battle of the Falkland Islands

In late October 1914, Germany’s (East Asiatic) China Squadron under the
command of Vice Admiral von Spee patrolling in the Pacific Ocean was underway
toward Cape Horn to harass British bases and shipping in the South Atlantic before
attempting to return up the Atlantic to Germany.'" Two heavy cruisers, von Spee’s
flagship, the Scharnhorst, and her sister ship, the Gneisenau, each mounting eight
rapid-firing 8.2-in. guns, were accompanied by the three light cruisers Niirnberg,
Leipzig, and Dresden, each with ten 4.1-in. batteries. The German gunners were
well-trained, experienced, and most efficient.

tt This account is adapted from the referenced reports by D. Howarth and Major R. N. Spafford, that
by Howarth being more detailed. There are, however, a few minor discrepancies between them.
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A British Squadron of older, slower ships, manned mostly by inexperienced
reservists, based at the Falkland Islands under the command of Rear Admiral Sir
Christopher Cradock, was at sea off the Pacific coast of Chile in search of von
Spee. Cradock’s flagship Good Hope mounted two 9.2-in. and sixteen 6-in. batter-
ies; two light cruisers, the Monmouth and the Glasgow, each with several 6-in. guns;
and an armored merchant ship, the Otranto, carried eight 4.7-inchers. A dilapi-
dated battleship Canopus with four 12-inchers was too slow to keep pace with the
others.

In the evening of November 1, Spee was found at Coronel off the coast of
Chile. In heavy seas with winds near hurricane force, Cradock decided to run a
parallel course and wait for an opportunity; but by 7 M. Spee seized the initiative
and engaged the British. The German light cruisers were outgunned and retreated
from action, but Spee’s two armored cruisers provided overwhelming rapid-fire
power far superior to Cradock’s. The Scharnhorst scored 35 hits on the Good Hope;
the last struck the ship’s magazine. An enormous explosion followed. Ablaze from
stem to stern, almost instantly, the Good Hope, with Rear Admiral Sir Christopher
Cradock and all 900 officers and crew, was gone. Later that night, following a
relentless barrage by the Gneisenau, the Monmouth sank with all 754 hands. The
Glasgow and Otranto fled southward to escape in the darkness and join the old
battleship Canopus.

Not one man among the 1654 on board the two British cruisers survived the
battle royal, while the Germans suffered only two wounded and six minor hits in
the exchange. When word of this great tragedy and crushing defeat of the Royal
Navy reached the British Admiralty, a superior British Squadron of eight warships
was ordered to the Falklands to arrive on December 7, 1914. The dreadnoughts
Invincible and Inflexible, two of the first heavily armored British battleships to
have a large battery of eight 12-in. guns capable of being fired simultaneously in
the same direction, five light cruisers, and an armed merchant vessel were directed
to avenge the humiliating defeat at Coronel. The order: “Find Spee and destroy
him!”

At dawn the next morning, December 8, the Gneisenau and the Niirnberg
arrived at the Falklands to reconnoiter for a raid on the strategic coaling and
wireless station at Port Stanley, expecting to find no ships of any importance
stationed there. They were met instead with fire from the old Canopus, intentionally
grounded in the harbor mud to serve as a Falkland fortress. One 12-in. shell hit
the Gneisenau. Realizing the circumstances, von Spee’s ships turned toward the
open seas of the South Atlantic, unaware that any major British ships were in
the area. Dreadnoughts with superior speed and fire power suddenly appeared on
the horizon at the harbor entrance. At that moment, Spee realized his pending
doom. At 12.45 pM that afternoon, in a calm sea with a clear sky, von Spee’s
Scharnhorst, Gneisenau, Niirnberg, and Dresden were overtaken and attacked by
the superior British Squadron. Eight hours later, the fury ended. Vice Admiral Sir
F. C. Doveton Sturdee’s Royal Navy Squadron reported 6 killed and 19 wounded,
while the Germans lost Vice Admiral Maximilian Graf von Spee, the Danish born
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Pioneer of the German Navy, and 2260 other courageous officers and men.!" The
heavy cruiser Scharnhorst, the Gneisenau, and the light cruisers Niirnberg and
Leipzig all sunk. Only the light cruiser Dresden escaped the British rage. Three
months later, she was found at a small island off the Pacific coast of Chile. During
negotiations for surrender and while flying the white flag from her foremast, the
Dresden was scuttled by her crew on March 14, 1915.

Marion and Spafford report® that at the start of this horrific battle, the British
shells completely missed the German ships. Marion suggests that this was due to
the double Coriolis effect, but precise details are not provided. It is a fact, however,
that the British Isles are situated near 50° N latitude and the Falklands near 50° S
latitude.

For south directed fire at an angle of elevation «, the transverse Coriolis
deflection y* = y(¢*) obtained from (6.115b) to first order in 2 is approximated
by

4QV3

1
y =- sinfa [ = cosAsina 4 sinAcosa |, (6.117)
g 3

which varies with the latitude. On the other hand, we find no variation 8r in the
range at any latitude, when a projectile is fired either southward or northward,
which may explain why the combatants ran a parallel course toward the east, firing
toward the north and south. Notice that the Coriolis deflection (6.117) in a south
directed shot is not symmetric in A, so there is a slight difference in the magni-
tudes of the westward, northern hemisphere and eastward, southern hemisphere
deflections. The maximum angle of elevation for large naval guns is about 15°. To
estimate the Earth’s rotational effect on a projectile’s motion based only partially
on circumstances reported for the Falklands engagement, let us suppose that at
A = 50° N latitude a shell from a 12-in. gun is fired southward with a muzzle speed
V = 1800 ft/sec (1227 mph) at an angle 8 = 13°. The reader will find that the
range, which is given by the classical rule in (6.116c¢), is approximately 8.3 miles.

tt The gallant Spee, his Scharnhorst seriously crippled and listing, rejected surrender to Sturdee. The
Scharnhorst sank with Spee and all 765 hands. One hundred and ninety of the 850 man crew of the
Gneisenau and only 23 sailors from both the Niirnberg and Leipzig, all sunk, were rescued from the
frigid waters of the South Atlantic; but many of them subsequently died from their battle wounds or
shock.

$ Marion (page 348) remarks on the Coriolis effect but provides no reference or calculation to support
his claim that the British salvos fell 100 yards east of their southward targets. See the References
and Spafford’s report mentioned below.

The muzzle speeds used in the example presented below equation (6.117) and in Problem 6.76
are estimates obtained from general naval records: for a 5-in. gun, V = 2650 ft/sec, and for a 12-in.
gun V = 1800 ft/sec and greater, depending on the model design. The range and latitude (actually
closer to 51.5°S) are estimated from battle data described by Major R. N. Spaftord, whose sketch
of the battle plan of December 8, 1914 shows the British heading east, running a parallel course,
14,000 yards (8 miles) north of the Germans. By Spafford’s account, initial fire was exchanged but
without effect, except for a single German round that struck the Invincible. At the ideal range of
15,000 yards (8.5 miles) for the 12-in. guns of his battle cruisers, Sturdee found the target first and
bombarded Spee’s squadron.
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Under these conditions, the deflection, according to (6.117), will be about 19 yards
to the right, westward of the line of fire in the northern hemisphere and roughly 22
yards eastward in the southern hemisphere. A fire control system that corrects for
the deflection only in the northern hemisphere (by pointing its sights eastward),
when fired southward at 50° S latitude, will direct a shell about 41 yards to the left,
east of its south directed target. These deviations increase substantially for larger
muzzle speeds. (See Problem 6.76 and the remarks in the last footnote above.)

The weight of a projectile may vary considerably from roughly 70 1b for a
5-in. shell to about 1800 1b for a 16-in. shell. Since in this analysis gravitational
force is the only force acting on the projectile, however, it is seen that the results
are independent of the mass of the projectile or any of its design features. Intro-
duction of drag force and aerodynamic body features would bring these additional
characteristics into view. Of course, variations in the results arise from the lack
of more precise data for the parameters, and the motion of the ships has been
ignored.

Even though our model is not precise, it shows for a simple case that if ini-
tially the range of the British guns was erroneously set to correct for a westward
Coriolis deflection (appropriate for battle in the northern hemisphere in the vicinity
of the British Isles), when fired southward in similar circumstances at the opposite
latitude in the South Atlantic Ocean, the barrage would fall to the left of its target,
eastward, by a distance nearly double that deflection. If our simplified model is typi-
cal of the real circumstances, the actual gross effect must have appeared surprising
to the British gunners when, in the situation described by Marion, their “accu-
rately” aimed, southward directed salvos fell 100 yards to the east of the German
ships.

6.18.3. Concluding Remarks

There are other kinds of subtle but measurable Coriolis effects. Instead of a
single particle model, we may consider a stream of river particles flowing from
the north toward the south, like the great Mississippi. The Coriolis force on a fluid
particle in the Earth frame is directed westward. We thus see, if only heuristically,
that the water will exert greater pressure on the west bank than the east. Geographers
have established that this pressure causes greater erosion on the west bank and
further that the water level also is slightly but measurably higher on the west
bank. The same flow from north to south in the southern hemisphere would induce
greater erosion and a higher water level on the river’s east bank. The extent of the
effect varies, of course, with the geographic latitude. A similar effect occurs for
other directions of flow. The Coriolis effect on ocean and tidal currents is similar;
the effect on atmospheric air flow and cyclonic motion is more pronounced. All of
these measurable effects arise from the fact that the Earth is not an inertial reference
frame, and all are predictable from Newton’s basic principles of mechanics.

We have seen that the effects due to the Coriolis acceleration, though usually
small, certainly are not always negligible. For the sake of simplicity and because
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the moving Earth frame closely approximates an inertial reference frame, hencefor-
ward, unless specified otherwise, the Earth’s rotational motion is ignored in future
applications. It is nonetheless important that the engineering analyst be aware of
potential Coriolis effects and evaluate whether these should be safely excluded in
problems of motion relative to the Earth.
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Problems

6.1. The slider block A of a mechanism has mass m = 400 gm and moves in the horizontal
plane in a straight track with a dynamic coefficient of friction v = 0.25. At an instant of interest,
the links AB and BC are in the positions shown in the figure, and A has a speed of 30 m/sec which
is increasing at the rate of 20 m/sec?. An instrument indicates that link A B is under tension. Find
the forces that act on A in the plane of its motion at the moment of interest.

30 m/sec

Problem 6.1.



Dynamics of a Particle 199

6.2. A small pin P of mass m is constrained to move in a smooth, straight slot F'G milled
at an angle 6 in a flat plate fixed in the horizontal plane. The motion of P is controlled by a
smooth, slotted link A B that moves during an interval of interest with constant acceleration a4
in ® = {F;i}, as shown in the figure. Find as functions of 8 the force exerted on P by each slot,
and show that the ratio of their magnitudes is a simple function of the angle 6 alone. What is the
acceleration of P relative to A?

Problem 6.2.

6.3. Two slotted links shown in the figure move on smooth guide rails fixed at right angles
to one another, their motion being controlled by a smooth pin of mass m = 0.04 kg. At a moment
of interest in the machine frame ® = {F;I,}, the link A has an acceleration a4 = 50I cm/sec?,
and the link B is moving upward with a speed of 40 cm/sec which is decreasing at the rate of
100 cm/sec?. (a) What is the total force acting on P at the instant of interest? (b) Determine the
force that each link exerts on P.

J 50 cm/sec’
——

Problem6.3. F

6.4. A small guide pin P of mass 0.2 slug is attached to a spring loaded telescopic arm OP
of a bell crank lever hinged at O. The guide pin moves in a smooth, horizontal parabolic track
shown in the figure. At the track point A, the pin has a speed of 20 ft/sec, a rate of change of
speed of 10 ft/sec?, and the telescopic arm exerts a uniaxial compressive force on P. Determine
for the instant of interest the magnitudes of all forces exerted on the pin P at A.
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Smooth —l
k

Parabolic Trac

Problem 6.4.

6.5. The truck shown in the figure moves from rest with a constant acceleration a up an
incline of angle 6. What is the greatest speed v that the truck can acquire in a distance d, if the
crate C is not to slip on the truck bed? The coefficient of static friction is u.

Problem 6.5.

6.6. A mass m is suspended from a point O by an inextensible cord of length £, in a gravity
field g = —gk directed along the vertical axis through O. The mass rotates about the vertical
axis with a constant angular velocity w = wk. (a) Apply cylindrical coordinates to determine
the tension in the string and the vertical distance d from point O to the plane of motion of m.
(b) Solve the problem by application of appropriate spherical coordinates.

6.7. A small block of mass m rests on a rough, horizontal circular table that spins with a
constant angular speed w about its fixed central axis. What is the largest value that @ may have
if the block is to remain at rest at the radial distance r from the center? Explain how this device
might be used as an instrument to measure the coefficient of static friction.

6.8. Small bars of soap of equal weight W are cut from a continuous rectangular log by a
moving hot wire at the point A in a packaging machine shown in the figure. Each bar is released
from rest at A and slides down a smooth, circular chute of radius R to a conveyor belt at B.
(a) Determine the constant angular speed of the belt pulley P so that continuous transfer of
the bars to the conveyor will occur smoothly without sliding. (b) Find the contact force exerted
on a bar of soap as a function of ¢ and W. What force will a bar exert on the chute at the
point B?
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Problem 6.8.

6.9. A mechanism slider A of mass 0.2 slug moves in a horizontal plane in a smooth,
parabolic slot defined by 2y = x2. At the instant shown in the diagram, A has a speed of 40
ft/sec, decreasing at the rate of 20+/2 ft/sec?. All joints and surfaces are smooth. Find the plane
forces that act on A.

Problem 6.9.

6.10. A particle P weighing 1 N is free to slide on a smooth, rigid wire that rotates at a
constant angular speed w, = 30 rad/sec relative to a platform. At the instant shown, the platform
has an angular speed w; = 15 rad/sec that is decreasing at the rate of 5 rad/sec? relative to the
ground frame ®. The particle is initially at rest on the wire. What central directed force F is
needed to impart to P an instantaneous initial acceleration of 1 m/sec? relative to the wire?

Problem 6.10.
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6.11. The slider block A shown in the figure moves in a smooth, circular slot of radius 2 ft
milled in a horizontal plate. The slider has a speed of 10 ft/sec, increasing at the rate of 20 ft/sec?
at the instant when the links AB and BC are perpendicular. The link A B exerts a uniaxial tensile
force on A, whose mass m = 0.10 slug. (a) Find the forces in the horizontal plane that act on
A at this instant. (b) Suppose that the circular slot is rough with coefficient of dynamic friction
v = 0.30, all other conditions being the same as before. Find the forces that act on A at the
moment of interest.

Problem 6.11.

6.12. A 2560 1b boat is being dragged from its place of rest with a constant acceleration of
3 in./sec? up a steep inclined boat ramp shown in the figure. The dynamic coefficient of friction
is v = 1/4 and at this place g = 32 ft/sec?. (a) Find the tension in the cable at the connector A.
(b) After 8 sec, the connector breaks. How much farther will the boat move up the plane?

Problem 6.12.

6.13. A guide link L is controlled by a drive screw to move a pin P of mass 50 gm in a
circular slot in the vertical plane. The screw has a right-handed pitch p = 5 mm and is turning at
a constant rate w = 120 rpm, as described in the figure. Ignore friction. What is the magnitude
of the force exerted by the circular slot on the pin at the position shown?

6.14. Suppose that the drive screw described in the previous problem is turning at the rate
® = 150 rpm, as shown, but is slowing down at the rate of 30 rpm each second. Calculate the
magnitude of the force exerted by the circular slot on the pin at the position shown. What is the
intensity of the force exerted on the pin by the guide link?
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Problem 6.13.

6.15. A slider block S of mass m = 0.5 slug is constrained to move within a straight
cylindrical tube attached to a large disk A supported in a ring bearing R. The machine is situated
on the planet Vulcan where g = 20 ft/sec’. The slider maintains a constant speed v = 2 ft/sec
relative to A, which has a constant angular speed @, = & = 2 rad/sec relative to R. At an instant
of interest shown in the figure, & = tan~!(3/4), r = 2 ft, and the ring bearing is turning about its
horizontal shaft B with angular speed w; = 10 rad/sec and angular acceleration @; = 5 rad/sec?
in the inertial frame & = {F;I;}. Determine the instantaneous value of the total contact force F,
exerted on S, referred to the frame ¢ = {O;i;} fixed in A.

R
Ring Beanng

do,

Problem 6.15.

6.16. A small object of mass m rests at the top of a smooth cylinder of radius ». Under the
influence of gravity, a negligible disturbance causes the object to slide down the side of cylinder.
Determine the angle ¢ and the speed at which the object leaves the cylinder.

6.17. A constant total force F = 35i Ib acts for 3 sec at the center of mass particle C of a
body 28 that weighs 161 Ib. The initial velocity of C is vo = 9i + 40j ft/sec at xo = 16j ft in the
inertial frame ® = {O;i}. (a) Find the velocity and the motion of C as functions of time in ®.
(b) Determine the speed of C after 3 sec. (c) What is its location 2 sec later, and how far did C
move during that time? (d) Solve the problem for the same details by application of singularity
functions. See Volume 1, Chapter 1, page 47.
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6.18. An amusement park centrifuge shown in the figure consists of a large circular cylin-
drical cage of radius r that rotates about its axis. People stand against the cylindrical wall, and
after the cage has reached a certain constant angular speed w, to further excite the riders the cage
is rotated from its initial horizontal position to an inclined position at an angle 6. Determine the
minimum angular speed in order that a passenger will not fall when reaching the highest point
in the motion. The coefficient of static friction at the floor is w.

.:;:i Allen Amasements Ine ! :

TN TTII I T T P TII T T T T T T TS S Iy Problem 6.18
.18.

6.19. A small object of mass m rests on a smooth conical surface having an apex angle 2.
The cone turns about its vertical axis with a constant angular velocity w = wk in a gravity field
g = —gk. The object is restrained from sliding by an inextensible string of length £ attached
at the apex on the axis of rotation. Identify appropriate spherical coordinates and apply (6.5) to
determine the critical angular speed at which the object will leave the surface. What is the tension
in the string at the critical speed?

6.20. The figure shows a box A moving upward on a loading belt B inclined at 10° and
moving downward with a constant speed of 150 cm/sec relative to the ground frame ® = {F;L;}.
At the initial instant, the speed of A is 50 cm/sec relative to ®; and the coefficient of friction
between the sliding bodies is v = 0.3. How long does it take to reduce the relative speed between
the bodies to 25 cm/sec? Frame & should be suitably oriented for convenience.

0

Problem 6.20.
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6.21. An electrically conducting droplet of paint D of mass m and charge g, initially at rest
at the tip of a nozzle N, falls through a uniform electric field of strength E, directed as shown
in the figure, and ultimately impacts a flat sheet S beneath it. The field deflection plates P have
width 2d and height 4. (a) Derive the equation of the path traveled by D. What is the maximum
intensity of E that will still allow a droplet to impact S? (b) If the droplet D has an initial speed of
40 cm/sec, what electric field strength, directed as before, must be applied to produce a motion
x(D, t) = 6t%i + (Bt + yt2)j cm, in which 8 and y are constants? Determine 8 and y. (c) Find
the free fall droplet trajectory when the apparatus is tilted counterclockwise to an angle 6 from
the vertical axis.
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Problem 6.21.

6.22. The deflection plates of an ink jet printer are arranged as shown in the figure. A
charged ink droplet g enters the constant electric field E with the initial horizontal velocity v, at
point O. Find the trajectory y = y(x) of g for 0 < x < d and determine the droplet deflection
h* at the paper surface, approximated as a plane. Show that, independent of g, the deflection
h derived in (6.28d) for the case when £ = d is larger than the deflection A* by an amount
h—h*= (cE/2v§)(d — £)?, where ¢ = q/m.
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Problem 6.22.

6.23. A bullet of mass m is fired directly into a fluid that exerts on the bullet a drag force
that is proportional to its linear momentum. The gun has a muzzle velocity vo. Neglect gravity
and other fluid forces. Determine the total distance traveled by the bullet.
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6.24. Water exerts a drag force on a boat which is proportional to the cube of its speed.
When the power is cut off, the boat’s speed decreases from vy to v(¢) in time ¢. Find the distance
traveled by the boat and determine ¢.

6.25. Consider a particle Q initially at rest at O in frame ® = {O; i} and acted upon by
a constant force f = 4i — j + 32k 1b/unit mass and by a drag force fp, = —xi — 2yj — 0.4zk
Ib/unit mass. Find the velocity and the place in ® occupied by Q after 2 sec.

6.26. A shell fired vertically upward from the ground with a muzzle velocity v, experiences
air resistance proportional to the square of its speed. (a) Determine the shells speed and altitude
as functions of time. (b) What is the maximum altitude attained by the shell? (c¢) Find the time ¢*
required to reach the maximum height and show that no matter how large vy may be, t* cannot
exceed wt/2. Identify the time constant 7.

6.27. A ball dropped from rest at the origin experiences air resistance proportional to the
square of its speed. (a) Find its speed after the ball has fallen a distance . What is its terminal
speed? (b) Determine as functions of time the speed and the distance through which the ball has
fallen. Sketch and label a nondimensionalized graph of the speed versus time and describe the
results in a manner similar to Example 6.11, page 120.

6.28. Consider the following integral

h(t)
u(r) =f F(t;t)dr, (P6.28a)
80

wherein F(t;t) is an integrable function of t and also depends continuously on a parameter
t. Notice that the limits of integration are continuous functions g(¢) and h(t) of z. (a) Use the
definition of the derivative of a function u(t), namely,

du(t) CLou(t+ A —u(@)
= limit ,
dt A0 At

(P6.28b)

apply the mean value theorem of integral calculus, and derive Leibniz’s formula for the derivative
of the integral (P6.28a):

h(t) .
du(t) dh(r) dg(t) f dAE@D 0 (pease)
8

a =F(h(t);t)7—F(g(t);t) at + o di

(b) Apply this rule to show that (6.47) is a particular solution of the differential equation
(6.39). '

6.29. Derive from (6.47) the particular solution (6.45b) of the differential equation (6.39)
when A(z) is given by (6.45a).

6.30. A ball governor of a speed control device consists of an arm OA hinged at O to
a vertical shaft OZ that rotates relative to the machine with a constant angular speed w; =9
rad/sec, as shown. At the same time, OA is elevated at a constant angular rate w, = 3 rad/sec
relative to the shaft and a ball B of mass 0.02 slug slides on the smooth arm. The ball is attached
to a spring, the other end of which is fastened to the arm. Design criteria specify that the shut-off
position at which the ball comes to rest on OA must be 4 in. from O; and for the position shown
at 6 = 90°, the spring must elongate 2 in. to achieve shut-off. Find the spring constant in units
of Ib/in. that will satisfy the design shut-off criteria. What force is exerted by the spring in this
position?
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Problem 6.30.

6.31. Consider a rigid body rotating through an angle 6(¢) about a fixed axis with unit
direction c. Notice that the velocity vector X(P, t) = fa x x of a body point P at x(P, ¢) from
apoint O on « yields the equation dx/d6 = o x X relating x and 6. (a) If initially x(P, 0) = xo
and 0(0) = 0, prove that X - « is a constant, and derive the relation d?x/d6? + x = (o - Xp)av.
Hint: Notice that dx/d6 is perpendicular to . (b) Determine the general solution of this vector
differential equation. This involves two constant vectors of integration, say A and B. (c) Find A
and B and thus show that the solution yields (2.7), Volume 1, for the displacement of a particle
P of arigid body in its finite rotation about the fixed line.

6.32. The motion of a particle P initially at rest at the origin is governed by the equation
# — g%x = e4". Find the motion of P.

6.33. The motions of two particles P and Q are governed by the following scalar equations of
motion: (P, t) + p?x(P,t) = g and ¥(Q, t) — p*x(Q, t) = g, in which p and g are constants.
Initially, each particle is started separately at the place x(0) = x, with a speed vy. Find the motions
of P and Q and discuss their physical nature. Determine their common motion when p = 0.

6.34. Alinear spring-mass system shown in its natural state in Fig. 6.13, page 134, is given an
instantaneous initial speed vy = 3 ft/sec on a smooth horizontal surface. The mass m = 8 Ib,, and
the spring stiffness k = 3 Ib/in. Suppose that g = 32 ft/sec?. What is the maximum displacement
of m? Caution: See Chapter 5 remarks on measure units, page 86.

6.35. A linear spring of stiffness k supports weights W and nW connected by a cord, as
shown. Initially, the system is at rest. (a) Determine the acceleration of the load nW immediately

Problem 6.35.
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after the cord supporting the load W is cut. (b) Find the motion z(¢) of the load nW from the
undeformed natural state of the spring. (c) Determine the motion x(#) from the initial stretched
state of the spring. (d) What is the motion £(¢) from the static equilibrium state of the load n W?
(e) Which of the three motions is the simpler? Are they equivalent? How are they related?

6.36. The figure shows an unstretched linear spring of stiffness k attached to a small block
of mass m at rest on a horizontal board simply supported at A and suspended by a string at B.
The string is cut and the board falls clear of m. Derive the equation of motion for the mass and
determine its subsequent motion. How long does it take for m to return to its initial position?

L String

4B

Problem 6.36.

6.37. A certain simple harmonic oscillator has mass m = 2 slug and an equivalent spring
constant k, = 600 Ib/in. The load is released at uy = 2 in. with a speed i1y = —20 in./sec directed
toward its equilibrium position. Determine the frequency, amplitude, and initial phase of its
motion u(t).

6.38. A load m = 50 lb,, is supported as shown by two linear springs having the same
elasticity k = 25 1b/in. (a) Find the static stretch of each spring from its natural state and determine
the stiffness of a single equivalent spring that may replace the parallel pair. (b) The mass is given
an additional 2 in. displacement and released. Find its maximum speed and determine its greatest
height from the equilibrium position. How long does it take to first attain these states? Compare
these times with the period of the vibration.

Problem 6.38.

6.39. The figure shows a block B weighing 25 N suspended by a string and attached to a
linear spring of stiffness k = 20 N/cm in its natural state. Determine the amplitude, the frequency,
and the position about which the vibration will occur when the string is suddenly cut.

Problem 6.39.
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6.40. A small block B of mass m = 0.25 slug is attached to a linear spring of stiffness
k = 16 Ib/ft in a gravity field of strength g = 32 ft/sec’. The spring is compressed 6 in. from its
natural state and the mass is released to execute oscillations on a smooth plane inclined as shown
in the figure. Find the motion as a function of time and determine its frequency and amplitude.

Problem 6.40.

6.41. The figure shows a box B of weight 480 N supported by uniaxial linear springs having
constant elasticities k; = 40 N/cm and k, = 60 N/cm. (a) Find the static displacement § of B
and determine the stiffness of a single equivalent spring that may replace the series pair. (b) The
box is displaced an additional 5 cm from & and released. What is the period of its vibration?
(c) What is the location of the box from its static state 2 sec after its release?

Problem 6.41.

6.42. A particle P of mass m and charge ¢ moves in an electromagnetic field of constant
field strengths E = Fi and B = Bk in an inertial frame & = {O; i}. Initially, P is at rest at O.
Find the motion x(P, t) of P in ® and characterize its path. Neglect gravity.

6.43. Two unstretched, linear springs having moduli k; and k, are fastened, as shown, to a
slider mass m that rests on a smooth horizontal surface. The slider is displaced a distance xy and
released with speed vy directed toward the natural state. (a) What are the circular frequency, the
period, and the amplitude of the vibration? (b) Derive the subsequent motion of m. Sketch the
motion as a function of & = pt and label its major features.

Natural
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Problem 6.43. Smooth Surface

6.44. A simple pendulum shown in the figure is supported by a light, hinged rod hung from
the ceiling in an elevator which moves upward with a constant acceleration ap . A curious person
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displaces the bob a finite angular amount 6, and releases it. (a) Find as a function of 8 the ratio
of the tension in the rod to the weight of the bob. (b) For small placements 6, what will be the
circular frequency and the period of the pendulum motion witnessed by the person? (c) How
will these results be changed if the elevator accelerates downward at the same rate? Describe any
potentially unusual effects.

Problem 6.44.

6.45. According to elasticity theory, the infinitesimal circumferential engineering strain €
of a homogeneous, thin circular ring undergoing pure radial oscillations in its horizontal plane
is given by € = u/r, where r denotes the undeformed radius and u is the infinitesimal radial
displacement of the ring. The ring has uniform cross sectional area A and mass density w4 per unit
length. (a) Consider a circumferential ring element of mass dm(P) at a material point P. Apply
Hooke’s law for the uniform circumferential engineering stress 0 = Ee¢, where E is Young’s
modulus, and derive the equation for the radial motion. Recall that the circumferential force F
is defined by F = o A. (b) Determine the circular frequency and period. (c) What is the stiffness
of an equivalent linear spring-mass system that will produce the same vibrational frequency of a
load equal to total mass of the ring?

6.46. The spring and pulley system shown in the figure supports a load of mass M. The
spring has stiffness k and the masses of the cable, pulley, and load support bar are negligible.

LLLLLL LS LSS

Problem 6.46.
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Neglect friction and determine the circular frequency and period of the free vibration of the load
in its vertical displacement x(¢) from the static equilibrium state of the system.

6.47. A pendulum bob of mass m = 0.01 kg is fastened by a string of length / = 16 cm to
a hinge pin at r = 4 cm from the center of a smooth horizontal table on which the bob rests. The
table turns with a constant angular speed w, as shown in the figure. Relative to an observer in
the table reference frame, the pendulum executes oscillations of small amplitude Bo and period
7 = 0.5 sec. Find the angular speed of the table and compute the string tension 7 when § = Bo.

Problem 6.47.

6.48. Gravitational attraction by a fixed, homogeneous, thin ring of radius R and mass M
induces a particle P of mass m to move along its normal central axis, as shown in Fig. 5.13. (See
Example 5.6, page 38.) (a) Derive the differential equation of motion for P. (b) Show that for
sufficiently small displacements X(P, ) from the center O, the motion of P is simple harmonic.
What is the frequency of its small oscillations?

6.49. A smooth, rigid rod of length 2b is attached to a table that turns in the horizontal
plane with a constant angular velocity w, as shown. A slider block S of mass m is released from
rest relative to the rod at a distance a from its midpoint O. (a) Determine the horizontal force R

exerted by the rod on the slider as a function of its distance x from O. (b) Find of the motion of
S relative to the table.

Problem 6.49.

6.50. A small ball P of mass m slides in a smooth slot cut in a flat plate, asdescribed in the
diagram. The plate rotates in the horizontal plane with a constant angular speed 8 = w about an
axle at O in frame ® = {O;1, J} fixed in the plane space. The ball is attached to a linear spring



212 Chapter 6

of modulus &, which initially is unstretched when P is released from rest relative to the plate at
F. (a) Find the motion x(P, t) of P relative to the plate for all constant values of the angular
speed w. (b) Determine the force exerted on P by the slot as a function of x and as a function of
t. (c) Characterize all physical aspects of the motion of P for all values of w. Refer all quantities
to the plate frame ¢ = {Fe, f}.

Y

Problem 6.50.

6.51. A block S of mass m is free to slide on a smooth rod of length 2b shown in the figure.
The rod is fastened to a circular disk that rotates about an axle at O with a constant angular velocity

Problem 6.51.
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w = wkrelative to a turntable. The turntable spins in the horizontal plane with a constant angular
velocity £ = Qk about an axle at F in the ground frame. (a) Account for all forces that act on §
and derive its scalar equations of motion referred to the disk frame v = {O;i;}. What unknown
quantities do these equations determine? (b) Suppose that S is initially at ease at x = 0. Determine
the unknown quantities as functions of time.

6.52. The diagram shows two slider blocks of equal mass m attached to precompressed
springs of equal stiffness k /2. The blocks are confined to slide horizontally in smooth radial slots
in a table that spins counterclockwise with a constant angular speed w. Each block is positioned at
adistance £ from the center O when w = 0. If each spring is always under compression, determine
the equilibrium position r = rg of each block relative to the table. Examine the stability of this
relative equilibrium state.

Problem 6.52.

6.53. The figure shows a slider block of mass m attached to a spring of stiffness k in its
natural state at the center of a smooth rotating table upon which it rests in the horizontal plane.
The table turns with a constant anticlockwise angular speed w. (a) Determine the equation for
the motion r(¢) of the slider and examine the stability of the relative equilibrium states. (b) Note
that Hooke’s spring law (6.64) is the same in every reference frame and for every observer, that
is, the same extension of the spring in a fixed reference frame and in any other reference frame
having an arbitrary motion gives rise to the same force. The spring force is an internal action.
The inertial forces induced by the motion of the frame are external actions of the environment
on the system. The rotating observer, however, may perceive a pseudo-spring force F(r) with
stiffness k* that includes these inertial effects of the environment. What pseudo-spring force and
apparent stiffness are perceived by an observer in the table frame? (c) Discuss the character of
the motion as w is gradually varied.

Problem 6.53.
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6.54. A block S of mass m slides freely on a smooth rigid rod inclined at an angle o with
the horizontal plane of a rotating table T' to which the rod is fastened, as shown in the figure. The
table turns with a constant angular velocity w about a fixed vertical axis. If S is projected upward
from point O in the plane of T with an initial speed vy relative to T, determine its subsequent
position as a function r(). Find the initial force exerted on S by the rod. Refer all quantities to
the frame ¢ = {O;i;} fixed in the rod.

Problem 6.54.

6.55. Suppose in the previous problem that a coaxial spring of elasticity  is attached to the
smooth rod at point A and to the block S. The spring is unstretched when S is at O where its
initial speed is vp, as before. (a) Determine the relative equilibrium positions rs of S. (b) Find
the motion r(¢) of S relative to the table for all values of the angular speed w. (c) Discuss the
stability of the relative equilibrium states of S. Refer all quantities to the rod frame ¢ = {O;i;}.

6.56. A smooth rigid rod, whose geometry is described in the figure, is attached to a table
T that rotates in the horizontal plane with a constant angular velocity w = wk. A slider block
of mass m, supported symmetrically by identical springs of elasticity , is released from rest
relative to the rod at a distance a from the natural state at point O. (a) Determine the rod reaction
force on m as a function of its distance x from O. (b) Determine the critical angular speed w*

Problem 6.56.
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of the table for which a simple harmonic motion is not possible. (c) Find the motion x(m, t) for
the three cases for which w < w*, v = w*, and @ > w*. What are the period and the amplitude
of the motion of m in the oscillatory case? Use the table frame ¥ = {O; i} as reference.

6.57. A mass m is attached to one end of a rigid rod supported by a smooth hinge at O and
by a spring of stiffness k at A. The rod has negligible mass and the system is in equilibrium in
the horizontal position shown in the figure. The mass is given a small angular placement and
released. Apply the moment of momentum principle to derive the equation for the angular motion
6(t) of m and find the frequency of its small oscillations.

<k =i LI

k

Problem 6.57.

6.58. Apply the moment of momentum relation (6.80) for a moving point O to derive the
equation of motion of the pendulum bob in Problem 6.47.

6.59. A pendulum bob of mass m is attached to one end of a thin, rigid rod suspended
vertically by a smooth hinge at an intermediate point O. The rod is fastened at its other end
to identical springs of stiffness k, shown in the figure in their undeformed configuration. The
pendulum is given a small angular placement 6y and released with a small angular speed wy
toward the vertical equilibrium state. Ignore the mass of the rod. Find the motion 6(¢) of the bob
and describe its physical characteristics.

Problem 6.59.

6.60. Problem 4.48 in Volume 1 illustrates a simple pendulum of mass m and length £ hung
from a sliding support that oscillates vertically with a motion x(S, ¢t) = a + b sin pt, where a,
b, p are constants. Derive the scalar equations of motion for the bob. What quantities do these
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equations determine? This is a difficult nonlinear problem whose exact solution is unknown. For
small amplitude pendulum oscillations, however, the motion 6(¢) is described by Mathieu’s linear
differential equation, whose analysis, though well-studied, is not elementary. Let 2z = pt + n/2
and thus show that the Mathieu form of the equation of motion for small angular placements is

d*6 4g  4b
iz + (;ﬁ -7 cos 21) 0 =0. (P6.60)
6.61. The hinge support H for a simple pendulum of mass m and length £ is attached
to a Scotch mechanism. The crank has radius r and turns with a constant angular speed w, as
illustrated. (a) Derive the differential equation of motion for the bob m. (b) This equation has
no known exact solution. Show, however, that for a small angular motion 6(¢) the differential
equation reduces to the equation of motion for the forced vibration of an undamped, harmonic
oscillator. Find its solution when the pendulum is released at a small angle 6y with §(0) = 0.

Problem 6.61.

6.62. Discuss the free vibrational motion (6.861) of the heavily damped oscillator in relation
to Fig. 6.22, page 156. Show that if the mass is released from rest, it can only creep back to its
equilibrium position at z = 0 as t — oo (similar to Curve 2). However, if released with initial
velocity vy, it is possible that the load may cross its equilibrium position at one and only one
instant 7,, as suggested in Fig. 6.22. Find #,.

6.63. Repeat the details of the last problem for the critically damped, free vibrational motion
described in (6.86n).

6.64. The pointer of a vibration instrument has mass m and is supported vertically by a
spring of stiffness k. The base is subjected to a vertical motion u = A sin Q¢. (a) Derive the

|
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u=AsinQ2t  Problem 6.64.
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equation for the steady-state motion x(¢) of the pointer relative to the instrument and determine
its amplitude. (b) Let k = 5 N/mm, m = 2 kg, and suppose that the pointer moves between the
0.35 and 0.45 scale marks when the base motion has frequency €2 = 100 rad/sec. Determine
the amplitude of the base motion. (c) Now suppose further that the base motion frequency is
doubled while its amplitude is unchanged. What will be the response range of the pointer? Is the
pointer amplitude increased or decreased? (d) Is the system operating above or below its resonant
frequency?

6.65. The steam pressure indicator shown in the figure is an instrument that records the time
varying cylinder pressure generated in an engine. The piston Q, with surface area A, is restrained
by a spring of stiffness k = 100 1b/in. on one side and subjected to a periodically varying engine
cylinder pressure P = P cos wt on the other. The pressure produces forced vibrations of the
piston which are recorded on a uniformly rotating drum. The design requires that the natural,
free vibrational frequency p of the piston and recording pen assembly, which has a total effective
weight W, shall be much greater than the cylinder pressure fluctuation frequency w. Frictional
effects may be considered negligible. Derive the equation of motion for the piston assembly
relative to its static equilibrium position and estimate the weight limit of the assembly if the
pressure fluctuation frequency is not to exceed 10 Hz.
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Problem 6.65.

6.66. A heavy bead of mass m slides freely in a smooth circular tube of radius a in the
vertical plane. The tube spins with constant angular speed about the vertical axis, as shown.

Problem 6.66.
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(a) Derive the equation of motion two ways: (i) by use of the moment of momentum principle
and (ii) by application of the Newton—Euler law. (b) Examine the infinitesimal stability of all
relative equilibrium positions of the bead.

6.67. Experiment shows that the undamped, forced horizontal motion of the system shown
in Fig. 6.20, page 152, has a steady-state amplitude H; when the driving frequency is €2;. When
the machine is speeded up to double the driving frequency, the amplitude is reduced to 20% of its
previous value. What is the resonant frequency of the system? Was the test data obtained above
or below the resonant frequency?

6.68. The supporting hinge H of a simple pendulum of mass m and length £ is attached
to a horizontal slider that has a constant acceleration a. The pendulum is released from rest in
a horizontal position relative to the slider, as shown in the figure. (a) Find the pendulum string
tension T'(9) as a function of its angular displacement 6. (b) Show that the other extreme position
of the pendulum is given by 6, = 2tan"!(g/a) and determine the string tension in terms of
a = |a| at both extremes. (c) Derive an equation for the time ¢, required to attain the position
6. (d) Determine all positions of relative equilibrium and examine their infinitesimal stability in
terms of the assigned parameters only. Refer all quantities to the natural intrinsic frame for m.

Problem 6.68.

6.69. A slider block B of mass m oscillates in a smooth circular groove of radius r milled
in a plate in the vertical plane. The slider is attached to a linear viscous damper of circular
design and damping coefficient ¢. The assembly is mounted on a shaker table T that exerts a
horizontal driving force F* = Fjsin Qf, as shown. (a) Derive the differential equation for the
finite amplitude motion of B about its vertical equilibrium position and find an equation for the
force exerted by the groove on the slider. (b) Now suppose that the shaker table is arrested and
the damper is removed so that 2 = 0 and ¢ = 0 in the equation of motion. The block is then
released from rest at a finite angle ¢(0) = ¢. Derive an exact integral relation that determines
the period of the finite motion as a function of ¢. What is the period of the small amplitude
motion?

6.70. Consider the shaker table (Problem 6.69) for the case when the angular placement
@(2) of the slider is small. (a) Find the steady-state and transient parts of the motion ¢(z). (b) What
is the resonant frequency of the system? (c) What is the amplitude at the resonant frequency?
(d) Identify the amplitude factor for the system.

6.71. A small cylindrical block B of unit mass oscillates with a simple harmonic motion
y = acos pt in a smooth, straight cylindrical tube oriented in the east-west direction on the
Earth’s surface at north latitude A. The parameters a and p are constants. Show that in addition
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Problem 6.69.

to the weight of B, the Earth’s rotation induces a tube reaction force on B which has both a
north-south component and a vertical, radially directed component. Although these additional
force components are very small compared with the weight of B, over a period of time they
eventually induce wear of the tube surface, for example.

6.72. The motion of a particle on a smooth plane inclined at an angle y is determined by the
coupled equations X — 2ywcosy = gsiny, ¥ + 2¥wcosy = 0, in which w is a small constant
for which terms of O(w?) may be neglected and g is the acceleration of gravity. If the particle
starts from rest at the origin of the inclined plane frame ¢ = {O;1, j}, show that after a time ¢
the particle has been deflected a distance d(t) = %gwﬁ sin 2y from the i-axis.

6.73. A particle Q of mass m and charge g > 0 moves in outer space down the side of a
smooth, right pyramid that rotates with a small, constant angular speed w about its fixed vertical
axis in a constant electric field E directed as shown in the figure. Show that if the particle starts
from rest at the apex O, its trajectory suffers a deflection d(t) from the normal, altitude line OA
which, to the first order in w, is given by d(t) = %ch 13 sin 2«. Herein o denotes the surface
inclination from the vertical axis and ¢ = g/m.

Problem 6.73.

6.74. A projectile is fired from the ground at north latitude A with an initial velocity vg
directed skyward and it attains the ultimate altitude . Neglect air resistance; assume that & is
sufficiently small that effects due to altitude variations in g may be ignored; and include only first
order effects of the Earth’s rotation rate Q. (a) Determine the Coriolis deflection d*(h) when the
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projectile reaches the height k. (b) Show that the projectile strikes the ground to the west of its
launching site at a distance d = %Qh cos A+/2h/g. (c) Find expressions for d* and d in terms of
the initial speed of the projectile.

6.75. A person seated at the wall in a cylindrical amusement park centrifuge of radius a
tosses a ball B straight upward into the sky. The centrifuge has a constant angular velocity w
relative to the Earth at north latitude A. Derive the scalar equations of motion for B referred
to the centrifuge frame ¢ = {O;i;}. Include the effects of the Earth’s rotation and identify the
appropriate initial data. Check your result against the text solution in (6.109)—(6.111) for the free
fall case when w = 0. Show that when £ = 0, 2 + y? = w?(r? — a?), where r(¢) is the radial
distance of B from the centrifuge axis at time ¢.

6.76. British battle maps for the Falkland Islands conflict of 1914 show that the British
directed their fire on the Germans from the north, almost directly southward, while heading east
at a constant flank speed v*. (a) Derive equation (6.117), for the Coriolis deflection relative to the
ship, at 50 ° N and S latitudes; and find the projectile range and its Coriolis variation. (b) Determine
the range and the Coriolis deflection for a shell fired with a muzzle velocity V = 2650 ft/sec
at an angle of elevation « = 10°. If the gun sight design corrected for the Coriolis effect only
near 50 °N latitude, what is the total deflection by which the British shells would miss a German
cruiser when fired at 50° S latitude? (c) Discuss any situations where the deflection may vanish
when Q # 0.
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