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The Foundation Principles
of Classical Mechanics

I would mention the experience that it is exceedingly difficult to expound
to thoughtful hearers the very introduction to mechanics without being occa-
sionally embarrassed, without feeling tempted now and again to apologize,
without wishing to get as quickly as possible over the rudiments and on to
examples which speak for themselves. I fancy that Newton himself must have
felt this embarrassment . .. .

Heinrich Hertz
The Principles ofMechanics

5.1. Introduction

Dynamics is the theory of motion and the forces and torqu es that produce
it. Thi s theory integrates our earlier studies of kinematics, the geometry of mo-
tion , with certain fundament al laws of nature that relate force, torque, and motion.
In this chapter the primitive concepts of mass and force introdu ced in Chapter I
are related to moti on through some basic principles commonly known as New-
ton 's laws. Sir Isaac Newton (1642- 1727) in his Philosophiae Naturalis Principia
Mathematica (Mathematical Principles ofNatural Phil osophy), often referred to as
simply the Principia, published in 1687, formalized and extended earlier achieve-
ment s of others by creating an axiomatic structure for the foundation principl es of
mechanic s. By the organization of problems around his fund amental laws, Newton
successfully demonstrated the application of his theo ry to the study of problems of
mechanics of the solar sys tem. He thus began the idea that the motions of bodies
may be deduced from a few simple principles.

The formulation and application of Newton 's laws entail the use of analytica l
methods of differential equ ations. Surprisingly, however, Newton never recorded or
applied his laws in any general mathematical form ; and historians (e.g . Truesdell )
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have found no evidence to suggest that he was able to set up differential equations
for the mechanical systems he investigated. Others (e.g. Bixby) suggest that for the
benefit of scholars, in those times well-versed in geometry, Newton 's arguments
were laboriously worked out by geometrical methods, rather than in terms of his
emerging new calculus, so that mathematicians and scientists would be able to
understand his new ideas on the motions of bodies . In fact, it was not until 1750
that Newton's laws for material points were first formulated more generally by
Leonhard Euler (1707-1783) as differential equations relating force, torque , and
motion for all bodies, including deformable bodies .Thus , it was not Newton; it was
Euler who demonstrated countless times how to set up mechanical problems as
definite mathematical problems formulated from basic , first principles . Therefore,
it is not uncommon nowadays that the basic laws of mechanics are often referred
to as Euler's laws.The classical, mathematical principles of mechanics created by
Newton and Euler thus establish the fundamental laws governing the motions of
all bodies . They provide the foundation for our study of dynamics-the analysis
ofmotion.

The simplest kind of dynamical problem is to find the force needed to produce
a specified motion of a particle . The converse problem of finding the motion
arising from the application of known forces of various kinds is more difficult.
This problem requires the solution of differential equations. Our earlier practice
with simple integration methods applied in kinematics , therefore, will prove useful
in the study of problems of this kind.

To formulate these types of problems , we need to know how to specify math-
ematically the nature of various kinds of forces that act between pairs of bodies .
These forces are of two general kinds, contact force and body force . The weight
of a body is a familiar example of a body force that arises from the mutual action
between pairs of separated bodies in accordance with Newton's law of univer-
sal gravitational attraction . This basic body force law is studied in this chapter.
Of course, two bodies may also interact by contact, i.e. by mutual touching. Ev-
eryone knows, for example, that when two blocks are pressed together, a force
tangent to their common surfaces must be applied in order to slide one block on
the other. But once the sliding has begun, the force needed to sustain the motion is
somewhat smaller than that required to initiate it. The fundamental laws that char-
acterize these familiar experiences are studied here too. These principles , called
Coulomb's laws, relate the normal and the tangential components of the contact
force that acts between two bodies to oppose their relative sliding motion . Other
kinds of viscous, elastic, electromagnetic, and time varying forces are introduced
in the next chapter. In addition, we are going to find that certain pseudoforces act
on bodies having motion relative to an accelerating, rotating reference frame.

The effect of the motion of the frame of reference on the form of Newton's
second law of motion is investigated . It turns out that our moving Earth frame
is not the reference frame with respect to which Newton 's laws hold. Therefore,
we must learn how the governing laws are to be modified so that they may be
applied to problems in any moving frame, including our Earth frame. In addition
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to aiding our understanding of the extent of the error that may be expected when
the motion of the reference frame is neglected, the theory will also reveal in later
applications some interesting and subtle physical phenomena that arise from the
Earth 's rotation . The idea that laws governing the internal forces between the parts
of a system should be independent of any external reference frame used to describe
them is expressed in the principle offrame indifference studied here in the context
of the mutual force that acts between two particles and depends on only their
spatial positions. Application of this idea leads to the most general form of the
law of mutual action between two particles as a function of only their distance of
separation.

Our main objective in this chapter is to study the foundation principles of
classical mechanics. The Newton-Euler laws of mechanics are here formulated
in a manner that parallels that introduced by Newton and generalized by Euler.
The content, utility, and the predictive value of these rules in relation to special
force laws, like those that govern gravitation and sliding friction for example, are
explored in their application to physical theory and problems, and in some cases
by comparison of their theoretical predictions with experimental observations. A
few introductory illustrations of these qualities are investigated here; and many
additional examples and practice problems and solution techniques for particle
dynamics are presented in Chapter 6. Some other useful principles of momentum,
work, and energy that derive from the primary Newton-Euler law for a particle
or center of mass object are presented in Chapter 7. The structure used in these
beginning chapters is extended in Chapter 8 to the motion of a system of particles.
The moment of inertia tensor is introduced in Chapter 9; and then Euler 's grand
generalization of Newton 's principles of mechanics are formulated for a rigid body
in Chapter 10. Our study ends in Chapter II with an introduction to the methods
of advanced dynamics. The formulation of Lagrange's equations and Hamilton 's
principle for analytical mechanics are explored there. This is the point where books
on advanced dynamics usually begin. Construction of a foundation for these future
studies begins with one particle. First , it is recommended that the reader review
the primitive terms and concepts introduced on pages 3-7 in Chapter I.

5.2. Mass,Momentum, and the Center ofMass

The mass of a particle, a system of particles, and a rigid body, and the
corresponding principle of conservation of mass for each of these is introduced.
The momentum of a particle, and the momentum and the center of mass of a system
of particles and of a rigid body are defined. The latter ideas are then applied to
learn how the momentum of a system of particles and of a rigid body are related
to the momentum of their respective centers of mass . These preliminary concepts
and results on the center of mass are important to our future study of the classical
principles of mechanics.
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5.2.1. Mass and Momentum of a Particle

ChapterS

We recall from Chapter 1 that the mass m( P, t) of a particle P is a positive
scalar measure of its material content. The physical dimension of mass is denoted
by [M]. It is a postulate of Newton's mechanics that the mass of a particle is
invariant in time, that is,

m(P, t) =m(P) (5.1)

for all times t. This axiom is called the principle of conservation of mass. It
emphasizes that the mass of a particle is an invariant measure of its material
content alone. Of course, the mass of another particle may be different.

The momentum p(P, t) of a particle P in a reference frame <1> is a vector-
valued function of time t defined by the product of the mass m( P) of the particle
and its velocity v(P, t) in <1> :

p(P , t) == m(P)v(P, t) . (5.2)

Sometimes the momentum is called the linearmomentum to distinguish it from the
moment ofmomentum introduced later on. It is seen from (5.2) that the momentum
vector has the physical dimensions [p] = [MV] = [MLT- I ] . Specific measure
units are reviewed in the Appendix following the References at the end of this
chapter and in the Problems.

5.2.2. Mass, Momentum, and Center of Mass of a System of Particles

We recall from Chapter I that a body f3 = {Pkl consisting of n discrete parti-
cles Pk having mass mk = m(Pd, k = 1,2, ... , n, is called a system ofparticles.
It is clear that mass is an additive scalar measure on f3 . Hence, the mass m(f3)of
the system ofparticles is defined by the sum of the masses m, of the particles Pk
of f3:

n

m(f3) == Lmk.
k=]

(5.3)

The principle of conservation of mass (5.1) requires that the mass of the system is
constant: dm(f3)/dt = O. Clearly, in a system of particles the mass may vary from
one particle to another; and the mass of another system may be different.

5.2.2.1. Momentum of a System of Particles

By (5.2), each particle Pk has a momentum Pk == p(Pk, t) = mkVk for which
Vk == v(Pk, t) denotes the velocity of Pk in <1>. Therefore, the momentum of the
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Figure 5.1. Schema for the center of mass properties of a system of particles.

sys tem {3 in f rame <I> is defined by
n n

p ({3 , t) == I>k =Lmkvk.
k= 1 k= ]

5.2.2.2. Center ofMass ofa System ofParticles

(5.4)

The center of mass of a system of particles is an important concept that
enables us to reduce the momentum (5.4) of the system to the momentum of a
single, fictitious particle-a neat trick that proves most useful in future work. With
this objective in mind , consider a system of particles shown in Fig. 5.1 in frame
<I> = {F;Ij } , a set comprising an origin point F and an orthonormal vector basis
I j' as defined in Chapter I. Let Xk == x(Pi ; t) denote at time t the position vector of a
particle Pk whose mass is m i, The center ofmass ofa system ofparticles {3 = {Pk}
is defined as the point in <I> whose position vector x'== x'({3, t) is determined by

n

m({3)x' = L mkXb
k=1

(5.5)

wherein we recall (5.3) for the mass m({3 ) ofthe system. In this sense, the weighted-
average motion of the particles of the system is described by the motion x' ({3 , t ) of
a single, fictitious particle of mass m({3 ), the mass of the system. Some properties
of the center of mass are discussed next.

We first note that the center ofmass need not be a pla ce occupied by a particle
of {3, but it may be. Consider for example a system {3 = {PI , P2} of two particles
of equal massml = m2 = m, one at the origin XI = 0 and the other at an arbitrary
place X2 = d in <I> at an instant t . Then by (5.3), we have m({3) = 2m; and (5.5)
provides 2mx' = 2::;=1 mkXk = md. Hence, the center of mass of this system at
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the instant t is at the place x* = d/2 in <1>-a place that is not occupied by either
particle of f3 .On the other hand, consider a system of three particles of equal mass
m; one at XI = 0, one at X2 = d/2, and the other at X3 = din <1> at time t . In this
case, (5.5) shows that the center of mass of the system at the instant t is at the
place x* = d/2 occupied by the particle P2•

We show next that the center of mass is a unique point whose definition
is independent of the reference origin in <1>. First consider the reference origin .
Identify another reference point 0 at P from Fin <1> in Fig. 5.1. Introduce Xk =
P+ p~ and x* = P+ p*, where p~ and p* are the respective position vector s of
the particle Pk and of the center of mass C from O. Then (5.5), with the aid of
(5.3), becomes

n n n

m(f3)(p+ pO) = L mkP+L mkP~ = m(f3)p+L mkP~ .
k=l k=1 k= l

It thus follows that for an arbitrary point 0 ,
n

m(f3)p* = L mkP~
k=l

has the same form as (5.5). Therefore, the definition (5.5) for the center ofmass is
independentofthe choice ofthe reference origin in <1>.

Now let us choose 0 at the center of mass C so that p* = p~ - Pk = 0 in
Fig . 5.1. Then relative to the center of mass, we have

(5.6)

wherein Pk is the position vector of the particle P, from C at time t. Clearly, (5.6)
simply states that the position vector of the center of mass from itself is the zero
vector.

It is now easy to prove that the center of mass is the only point with respect
to which (5.6) holds for a system of particles. Indeed, suppose there exists another
point C', say, at the place r from C such that (5.6) holds. Then I:Z=l mkrk = 0,
where rk is the position vector of Pk from C'.However, substitution of Pk = r + rk
into (5.6) shows that r = 0; that is, the points C and C' coincide. Therefore, at
each instant, the center ofmass ofa given system ofparticles is the uniquepoint
for which (5.6) holds. Plainly, if the system is altered in any way, so is its center
of mass.

5.2.2.3. Momentum of the Center ofMass of a Systemof Particles

We now derive an important result relating the momentum of a system of
particles to the momentum of its center of mass . Of course, the system of particles
is generally in motion in <1> with momentum (5.4), in which Vk == Xk .We recall (5.5)
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and define v* == x*(f3 , t ), the veloci ty of the center of mass; Then, differentiation
of (5.5) with respect to time in <1> , the mass of the system being conserved, and
use of (5.4), yields the important result

n

p* == m(f3 )v*=L miv, = p(f3 , t) .
k='

(5.7)

The vector p* defined by the first equation in (5.7) is the momentum of an imaginary
particle of mass m(f3 ) that moves with the veloci ty v* of the center of mass.
Th is particle is named the center of mass particle (or object); and p* is called
briefly the momentum of the center ofmass. The result (5.7) thus shows that the
momentum of a system of particles is equal to the momentumofits center of mass:
p(f3 , t ) = p*(f3 , t) .

Further, differentiation of (5.6) yields

II

LmkPk = O.
k='

(5.8)

Hence. themomentumofa system ofparticles relative to its center ofmassparticle
is always zero.

Example 5.1. A system f3 = {PI , Pz, P3 } consists of three particles with
mass m I = m, mz = 2m, m3 = 3m and having the respective constant velocities
v , = v(6, - 7, 0), Vz= v(O, 2, - 3), V3= v(2, -I , - 2) in frame <I> = (F; Id .
Determine the momentum of the system in <1> , find the veloc ity of each parti-
cle relative to the cen ter of mass C, and thus confirm (5.8 ).

Solution. First recall (5.4) for the momentum of the system. The momentum
of each particle is determined by (5.2); and from the assig ned data, we obtain

PI = m,vI = mv(6, -7, 0), pz= mzvz = 2mv(0, 2, -3),
P3 = m3v3 = 3mv(2 , -I , - 2). (5.9a)

Then, by (5.4), the momentum of the system in <I> is given by

p(f3, t) = PI +pz+P3 = 6mv(21 - J - 2K). (5.9b)

The velocity of the particl e Pk relative to C is given by Pk = Vk - v*, in which
the velocit y of C may be found from (5.7). Hence, with (5.3), the momentum ofCis
p* = 6mv* = p(f3 , t); and use of (5.9b) yields v* = v (21 - J - 2K) . Therefore,

PI = VI - v* = v(4, - 6, 2),
P3= V3 - v* = 0,

pz= Vz - v* = v(-2, 3, - I),
(5.9c)



10

identify the velocity of each particle relative to C in <1>; and hence

ChapterS

3L mdJk =mJi}J +m2/}2 +m3P3 =mv(4, -6,2) + 2mv(-2,3, -1) + 0 = 0,
k= J

in agreement with the general result (5.8).

5.2.3. Mass, Momentum, and Center of Mass of a Rigid Body

(5.9d)
D

Let us consider a rigid body gj, and let dm(P) denote an additive parcel (or
element) of mass at the material point P. Then the mass of the body is defined by

m(gj) == L3dm(P) =Lp(P)dV(P), (5.10)

wherein dV(P) is the elemental material volume of gj at P, and pCP) ==
dm(P)/dV(P) , the ratio of the element of mass at P to its element of volume at
P, that is, the mass per unit volume of gj, is called the mass density .The subscript
gj on the integral sign, here and throughout this volume, means that the integra-
tion, with appropriate limits, is over the bounded region defined by the body gj.
Neither the mass density nor the material volume of a rigid body can change with
time, so the principle of balance of mass is satisfied: dm(gj) /dt = O. In general,
however, the density may vary from one material point to another. A rigid body .9c3
is said to be homogeneous whenever its mass density is constant throughout gj.
Thus, by (5.10), the mass of a homogeneous rigid body is simply the product of
the mass density and the material volume of gj, namely, m(gj) = pV( gj), where
V( gj) = f ggdV(P) .

5.2.3.1. Momentumofa Body

The momentum ofa body element ofmass dm(P) at P in <1> is dm(P)v(P, t) .
Hence, the momentum p(gj, t) ofa body in a reference frame <1> is defined by

p(gj, t) == [ yep, t)dm(P) .1m (5.11)

In general, both the velocity and mass distributions must be known to effect
the integration of (5.1 I). Consider, for example, a rigid body gj having a uniform
motion in the frame <1> . In this case, the velocity of every particle of gj is a constant
vectorv(P , t) = v, so equations (5.11) and (5.10) yieldp(gj, t) = v f qjdm (P) =
m(gj)v. Hence, the momentum of a rigid body .9c3 having a uniform motion is the
same as that of a single particle of mass m(gj) moving with the constant velocity
v. We shall see next that this imaginary particle is the center of mass of the body.
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Figure 5.2. Schema for the center of mass properties of a body.

5.2.3.2. Center ofMass ofa Body
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We shall soon discover that the dynamics of a rigid body involves the motion
of its center of mass, an important concept by which the momentum (5.11 ) of a
body may be replaced by the momentum of a single , imaginary particle situated at
its center ofmass . With this in mind , let x(P, t) denote at time t the position vector
of the material parcel dm(P) of a body gj in a spatial frame <I> = {Q; Ik } shown in
Fig . 5.2. The center ofmass ofthe body gj is the unique point in <I> whose position
vector x* == x*(gj, t) at time t is determined by

m( gj)x*(gj,t)= {x(P,t)dm(P),1m (5.12)

in which we recall (5.10) . In this sense, the weighted-average motion ofthe particles
of the body is described by the motion x*(gj, t) of a single , fictitious particle of
mass m(gj), called the center ofmass particle. Some properties of the center of
mass are described next.

It is easy to prove that the definition (5.12) is independent of the choice of
reference origin Q in <I>. Therefore, relative to the center ofmass point itself, (5.12)
becomes

{ pep, t)dm(P) = 0,
1.'%3

(5.13)
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(5.14)

where pep , t) is the position vector from the center of mass C to the parcel dm( P)
at P in frame <1> , as shown in Fig. 5.2. Thus, by an argument similar to that used
for a system of particles, it follows that at each instant t the center of mass is
the unique point with respect to which (5.13) holds. Indeed, its unique location
in a rigid body is determined relative to a body reference frame I{J = {O; ik } with
respect to which the position vectors in (5. 12) and (5.13) are independent of time.
Therefore , the center of mass of a rigid body is a unique point determined by the
geometry and material content of that body alone-it always occupies the same
place in the body referen ce frame relative to which (5.13) holds. The center of mass
moves with the body, and, of course, its position vector with respect to different
spatial reference frames will naturally vary.

Exercise 5.1. (a) Show that the definition (5.12) for the center of mass of a
body is independent of the choice of reference origin. (b) Prove that the center of
mass is the unique point for which (5.13) holds. 0

The center of mass of a homogeneous body often may be easily identified.
For a homogeneous body, the constant mass density may be eliminated from (5.12)
to obtain at time t the familiar formula fo r the geometrical centroid ofq]:

V( q])x*(q], t ) =Lx(P , t )dV (P),
where in V(YB) is the material volume of YB. Thus, the mass center ofa homoge-
neous body coincides with its centroid. Of course, very often, the centroid is easy
to identify.

In general, the center of mass need not be a place occupied by a particle
ofq] . It is clear, for example, that the center of mass of a homogeneous, circular
cylindrica l tube is at the geometrical center on its axis- plainly a place that is
not occupied by a particle of the tube. On the other hand, the center of mass
of a similar solid cylinder has the same location. These assertions are evident
from symmetry considerations. Nevertheless, it is instructive to review integration
methods typically involved in the use of (5.12) or (5.14), because similar techniques
are used for both homogeneous and nonhomogeneous bodies for which symmetry
may not be so evident.

Example 5.2. (i) Compute the location of the center of mass of the homoge-
neous, cylindrical tube described in Fig. 5.3. (ii) Find the center of mass when the
density varies linearly from the constant value Po at z = 0 to 2po at z = e.

Solution of (i). The circular tube shown in Fig. 5.3 has an inner radius r.,
outer radius ro , and length e.Because the material is homogeneous, the center of
mass is at the centroid determined by (5. 14) in which

(5.15a)
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(a) Vo lume Element

Figure 5.3. Geometry for determination of the center of mass of a tube.

is the material volume of the tube. It is natural to introduce cylindric al coordinates
in the imbedded frame tp = {o ; ik } , whose origin is at the base of the tube.Then the
position vector x (P, t ) == x (P) of a particle P of 93 and the elemental volume at
P in Fig. 5.3 may be expressed as x (P) = r (cos ¢i + sin ¢j)+ zk and dV (P ) =
r drdodz:Hence, with (5.14), the center of mass location x*( 93, t) == x*(93) in rp
is given by

V (93)x *(93) = t" t1ro
(r cos ¢i+ r sin ¢j + zk) rdr d zd¢ . (5.l 5b)10 10 r,

The first two integrals in the angle ¢ vanish. Therefore, as anticipated from
the symmetry, the center of mass lies on the axis of the tube. Integration of the
remaining term in (5. l5b) and use of (5. l5a) yields x*(93) = ij2k, that is, the
center of mass is at the center of the void. We notice also that x* is independent of
the radii of the tube, so the location of the center of mass in rp is the same for all
radii. In particular, for a solid cylinder for which r i = 0, x*(93) = ij2k holds as
well. Of course , whatever reference point may be used , the center of mass of the
rigid tube remains at the same central position ; and as the tube moves in space, its
center of mass retains its central location in the moving, imbedded frame . .

In problems of this kind it is often easierto simplify the integration in (5. l5b)
by use of the method of slices. The application of this method to the previous
homogeneous problem is left as a review exercise for the reader to show that
ex*(93) = J; zkzrz, which yields x*(93) = ej 2k , as before. We next apply this
method to solve the variable densit y problem.
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Solution of (ii). We are given that the mass density of the tube varies linearly
from Po at z = 0 to 2po at z = i, and hence p = Po (l + zli). Because p varies
only along the tube 's length, the simultaneous geometrical and mass distribution
symmetries about the tube's axis imply that the center of mass is on the axis.
Therefore, x * = y* = 0 and only the z* component need be found. Hence , (5.12)
yields

m( gj)z* = 1zdm . (5.15c)
qj

The method of slices shows that for the annular ring in Fig. 5.3 the volume
element dV = Adz , where A = n (r; - r?) is the constant area of the ring. The
mass is then found by (5.10) :

m( gj) = PoA it(I +~) d : = ~APoi ,

and the right-hand side of (5.15c) becomes

Lzdm = PoA itz (I +~) d z = ~PoAi2.

Therefore, by (5.15c), the center of mass is on the axis of the tube at z* = 5lj9
from its base at o. Clearly, the center of mass is not the centroid , which is located
at z* = i l2 in accordance with (5.14) . 0

5.2.3.3. Momentum ofthe Center ofMass ofa Rigid Body

We shall now derive an important result relating the momentum of a rigid
body to the momentum of its center of mass. The body is generally in motion in
<I> with momentum defined by (5.11), in which yep, t) == i(P , t) . The motion of
the center of mass is defined by (5.12), and hence v*(gj, t) == i *(gj, t) defines the
velocity of the center of mass. Thus, differentiation of (5.12) with respect to time
and use of (5.11) for a rigid body yields the important result

p*(gj, t) == m(gj)v*(gj, t) =1yep , t)dm(P) = p(gj, t) . (5.16)
qj

The vector p*(gj, t) defined by the first equation in (5.16) is the momentum of a
fictitious particle of mass m(gj) that moves with the velocity v*(gj, t) of the center
of mass. Our imaginary particle is sometimes called the center ofmass particle (or
object). Hence, p* is called briefly the momentum ofthe center ofmass. The result
(5.16) thus shows that the momentum ofa rigid body is equal to the momentum of
its center ofmass: p(.9c3, t) = p*(.9c3, t) .

Moreover, differentiation of (5.13) in the spatial frame <I> yields

Lpcp,t)dm (P) =o. (5.17)
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Hence, the momentum of a body relative to its center of mass in <l> is always
zero.

The definitions (5.10) and (5.11) may be readily extended to a deformable
body whose volume and density may vary with time, and for which similar center
of mass properti es hold at each instant. In this case, however, greater care must be
exercised in differentiation of the integrals in (5.12) and (5.13) because the region
r!l3 of the integration over the deforming body varies with time; and the location
of the center of mass will vary with the deformation. Of course, the body region
r!l3 for a rigid body is the same for all time. Deformable bodies are not studied in
this text.

5.3. Moment of a Vector About a Point

The moment of a vector about a point occurs frequently in future work.
This operation is first defined in general terms; and the transformation rule that
describes the effect of a change of the reference point follows. The familiar idea
of the moment of a force about a point is then reviewed ; and the momen t of
momentum vector is introduced in the next section.

We start with the general idea. Let x Q ( P) be the position vector of a point P
from a point Q, and let u (P) denote a vector quantity at P in Fig. 5.4. The moment
about Qofthe vector u(P ) is a vector entity J-LQ(P) defined by the rule

J-LQ(P) == xQ(P) x u (P ) . (5.18)

This vector is perpendicular to both x Q (P) and u (P) . It is represented in Fig. 5.4
as a vector line with an arrow turning about it in the right-hand sense of (5.18).

ulP)

Figure 5.4. Schema for the moment of a
vector about a point.
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5.3.1. Reference Point Transformation Rule

Chapter 5

The vector J.LQ (P) depends on the choice of Q. The moment of the same
vector u(P) about another reference point 0 in Fig. 5.4 is given by

J.Lo (P) = Xo (P) x u (P) ,

where xo(P) is the position vector of P from O. It is seenin Fig. 5.4 that xo(P) =
rOQ + xQ(P) , in which rOQ == ro(Q) is the position vector of Q from O. Hence,
substitution of this relation into the previous equation and use of (5.18) yields the
transformationrule relatingthemomentsofthe same vectoru(P) about thepoints
o and Q:

J.Lo (P) = J.LQ (P) + rOQ x u (P). (5.19)

It is seen that J.Lo (P) = J.LQ (P) when and only when the nonzero vector rOQ is
parallel to u(P).

5.3.2. Moment of a Force About a Point

We recall the familiar idea of the moment of a force about a point. In Fig. 5.4,
let u(P) == F(P) denote a force acting on a particle P whose position vector from
point Q is xQ (P), and write J.LQ (P) == MQ(P). Then, by (5. I8), the moment
about Qofthe force F (P) is the vectorMQ(P) definedby the rule

MQ(P) == xQ (P) x F (P). (5.20)

The moment vector is a measure of the turning or twisting effect of the force about
the reference point. Hence , the moment of a force is also called the torque; its
physical dimensions are [MQl = [FLl.

If a is a vector from Q to any point A on the action line of F(P) , the vector
defined by r == xQ(P) - a is parallel to F(P) . It thus follows from (5.20) that
MQ(P) =a x F(P) holds for any point A on the action line of the force acting
on P. Therefore, the moment of the force F(P) about Q is independent of the
actual point of application of the force along its line of action; and hence only
the component of XQ (P) that is perpendicular to F(P) determines the torque of
F(P) about Q. Thus, in abbreviated notation, the magnitude IMQI = IXQIIFI
sin < xQ, F > of the moment vector M Q is equal to the product of the magnitude
of the force F == IFI and the perpendicular distance d == IXQ Isin < xQ, F > from
Q to the action line of F, where < xQ, F > denotes the smaller angle between xQ
and F, as usual; that is, IMQI = Fd, a familiar elementary rule.

The definition (5.20) may be applied to each particle Pk of a system of par-
ticles. In this case, the total, or resultant, moment about a point Q of the several
forces Fk = F (Pk) that act on a system of n particles f3 = {Pk} is defined by the
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sum of the moments about Q of all of the forces Fk that act on f3 :
n n

M Q(f3 )=LMQ(Pk) = LXQk x Fk,
k=l k=l

17

(5.21)

(5.22)

where XQk =xQ (Pk) is the position vector of particle Pk from Q; and the total , or
resultant, force is defined by F(f3) = I::Z=lFk ·

The same rule may be applied to determine the total moment about a point Q
of all the concentrated and distributed force s that act on a rigid body £13. For the
elemental force distribution dF d (P) acting on a material parcel at P , for example,
the total torque about a point Q of the distributed force is defined by

MQ( £13) = rxQ (P) x dFd (P) ,1.0/)
where xQ (P) is the position vector from Q to the parcel at P. A formula similar
to (5.21) holds for n concentrated forces Fk(£13) acting on £13.

Now consider the point transformation rule. Clearly, the turning effect of a
force about another reference point at 0 in Fig. 5.4 will be different from that
about Q.The transformation rule (5.19) shows that the moment ofthe same force
about the reference point 0 is related to its moment (5.20) about the point Q by
the rule

M o (P) = M Q (P) + rOQ x F(P) . (5.23)

We recall that rOQ is the position vector of point Qfrom 0 ; and hence rOQ x F (P)
is the moment about 0 of the total force as though it were placed at Q.

The same point transformation rule applies to (5.21) and (5.22); thus,

Mo(£13) = MQ(£13) + rOQ x F(£13), (5.24)

where the total force acting on £13, namely, F( £13) = Fd(£13) + Fc(£13) , is the sum
of the total distributed force Fd(£13) = f8(3dFd (P) and the total of all concentrated
forces Fc(£13) = I:~=l Fk(£13) . Also , Mo(£13) and MQ( £13) are the total moments
about points 0 and Qof all of these force s. Therefore, by (5.24), the total moment
offorce about a point 0 is equal to the total moment offorce about point Q plus
the moment about 0 ofthe total force placed at Q.

The rule (5.24) relates the moments of the force about any two points. In
particular, if 0 is the center of mass at C, then rOQ = -rQc = -xQ(£13) and
(5.24) is written

(5.25)

in which Me(£13) is the total moment of force about the center of mass and MQ(£13)
is the moment about Q of the total force placed at the center of mass :

(5.26)
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(5.28)

(5.29 )

Thus, in physical terms (5.25 ) shows that the total moment offorce about any point
Q is equal to the moment about Q of the total force placed at the center ofmass
plus the total moment off orce about the center ofmass.

5.3.3. Equipollent Force Systems

Now consider two systems of force s and torques. These systems are said to be
equipollent if and only if they have the same total force and the same total torque
about the same point. That is, a system A with total force FA and total torque M~

about a point Q is equipollent to a system B with total force FB and total torque
M~ about the same point Qwhen and only when

FA= FB and M~ = M~ . (5.27)

It follows from the point transformation rule (5.23) or (5.24) that if two force
systems are equipollent with respect to a point Q, they are equipollent with respect
to any other point O.

We know from (5.20) that the moment about Q of a single force is perpen-
dicular to the force and to the position vector from Q to its point of application. In
general, however, this is not true for a system of force s-the total torque M Q about
a point Qof a system offorces generally is not perpendicular to the total force act-
ing on the system. Here we focus on the special case when the system of forces A is
such thatM~ . FA = 0; then , by (5.27) the same holds for the equipollent system B.
Consider, for example, a distributed system of force s FB (.?l3) = Fd(.?l3) with a total
torque M~(.?l3) equal to (5.22) such that M~(.?l3) . FB (.?l3) = O. Then , this system
is equipollent to a single force FA(.?l3) = P located at distance from Q such that

P =LdFJCP) = Fd(.?l3),

M~(.?l3) == xQx P = LxQ(P) X dFd(P ) = M~ (.?l3) ,

where the locu s of the unknown vector xQ from Q traces the line of action of
P. Of course, xQ is necessarily perpendicular to M~(.?l3). Now, bearing in mind
that only the component of xQperpendicular to the line of action of the force P
influences the torque about Q, the relation (5.29) determines the place xQ' say, on
the line from Q perpendicular to P , called the center offorce with respect to Q,
through which the force P must act to produce the same total torque about Q. Of
course, the center of force with respect to another moment center at 0, say, though
also on the line of action of P, will be different. Notice that (5.29) may be written
as xQx Fd(.?l3) = f gJ xQ( p) x dFd(P ). Specifically, for any system of planar
force s or for any system of parallel forces , the total moment of the force s about an
arbitrary point is plainly perpendicular to the total force; therefore , in accordance
with (5.28) and (5.29), each of these systems may be reduced to a single force
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Figure 5.5. A homogeneous, thin rigid rod under a uniformly distributed load.

acting at its center of force. Clearly, for a system of discrete forces, the procedure
is similar. CSee Problem 5.35.) For further discussion on the reduction of force
systems for the general case see the referenced texts on statics.

Example 5.3. A homogeneous, thin rigid rod of length .e is supported at one
end by a smooth hinge at Qand is subjected to a load of magnitude y per unit length
distributed uniforml y over the region [a, .e ] shown in Fig. 5.5. (i) Find the force
system with respect to Q that is equipollent to the distributed load. (ii) Determ ine
the moment of the distributed load about the center of mass of the rod at C.

Solution of (i), The total force FA = P equipollent to the distributed load
FB = FdCge) for which dFdCP ) = y dx j is given by C5.28). Thus,

P = ifydxj = yc.e - a)j . C5.30a)

The total moment of the distribution about the hinge point Q is given by C5.22) in
which xQCP) = x i+yj;

M~ Cge) = i fxi x ydxj = r C.e2 - a2 )k. C5.30b)
a 2

Of course, for the system B only the component xi of xQCP ) that is perpendicular
to the distribution contributes to the torque about Q.

Notice that this is a system of parallel forces, andM~ Cge) is perpendicular to
P. Thus, with xQ = xi + yj and C5.30a), we may write M~ = xQx P = xyC.e -
a)k. Here we see that for the system A only the component Xi of xQthat is
perpendicul ar to P contributes to the torque about Q. Thus, with C5.30b), C5 .29)
yields x= !C.e + a); that is, with respect to Q, the center of force x'Q for P is at

xQ= !C.e +a)i = [a + !C.e - a)] i. C5.30c)
The line of action of P is traced by xQ= xQ+ yj for all values of y. Equation
C5.30c) shows that the center of force for the uniforml y distributed load is at the
geometrical center of the loaded portion of the rod in Fig. 5.5. The force system
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(5.30d)

consisting of the single force P acting at the center of force x'Q in (5.30c) is
equipollent to the assigned uniformly distributed force system; it consists of the
same total force (5.30a) and produces the same total moment about Q in (5.30b).

Solution of (ii), The moment of the same distribution about point C may be
found from the transformation rule (5.25). In accordance with (5.26), consider the
load P placed at the center of mass of the homogeneous rod at x'Q ((J)3) = !ii, and
recall (5.30a) to determine M'Q({J)3) = x'Q x P = !y£(£ - a)k. Then by (5.25) and
(5.30b) , we find

B f7Z) B f7Z) * f7Z) aMc(uu) = MQ(uu) - MQ(uv) = Y"2(£ - a)k.

The same result may be obtained by our noting that the equipollent system
consists of the single force (5.30a) acting at x'Q in (5.30c). Hence, its moment about
Cat x'Q = !£i is given by (x'Q - x'Q) x P = !ya(£ - a)k, which is the same as
(5.30d) . 0

Finally, notice that if F({J)3) == 0, then (5.24) shows that Mo( {J)3) = MQ({J)3)
and hence the resultant moment is independent of the choice of reference point.
In this case, the force system is called a couple. A force system consisting of a
noncollinear pair of equal and oppositely directed forces is a familiar example.
If both F({J)3) == 0 and Mo({J)3) == 0, then MQ({J)3) == 0 as well. In this case the
resultant moment with respect to any reference point vanishes, and the force system
is said to be equipollent to zero. It is an exercise for the reader to show that any force
system can be reduced to a single force acting at an arbitrary point together with a
couple. A torque MQ induced by essentially twisting a body about an axis at a point
Qis called a concentrated couple.Tightening a screw in a wooden body by twisting
the screw about its axis is a physical example that may be modeled as a concentrated
couple acting on the wooden body.We may think of a concentrated couple at Qas
a pair of equal and opposite, noncollinear forces of very large intensity and having
a very small moment arm, the perpendicular distance between the force pair,
at Q.

None of the foregoing results for a body require that it be rigid. Moreover,
although explicit dependence on time t is not indicated, it is clear that all of the
foregoing vector entities also may vary with time. Another useful application of
the moment of a vector about a point follows.

5.4. Moment of Momentum

Here we introduce an important vector quantity called the moment of
momentum. The moment of momentum of a particle, a system of particles, and a
body are defined in tum.
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Figure 5.6. Schema for the moment about a point 0 of the momentum of a particle P relative to frame <1>.

5.4.1. Moment of Momentum of a Particle

Let Xo (P, t) = x (P, t) denote the position vector of a particle P from an
arbitrary spatial point 0 in a reference frame <I> = {F; Ik } shown in Fig. 5.6. The
velocity of P relative to <I> is given by v (P, t) = X(P, t), where X (P, t) is the
position vector of P from F, as usual; and the momentum of P is defined by
(5.2). In accordance with (5.18), the moment about point 0 of the momentum of
P relative to <1>, denoted by ho (P, t), is a vector-valued function oftime defined
by

ho (P, t) == Xo (P, t) x pCP, t) = x(P, t) x m (P)v(P, t). (5.31 )

Notice that two reference points are involved in this definition, the origin F offrame
<I> and the spatial point O. The moment about reference points 0 and Qof the same
momentum vector pep, t) are related by h o (P, t) = hQ(P, t) + rOQ x pep, t) in
accordance with the transformation rule (5.19).

The moment of momentum is also known as the angular momentum, a term
frequently used in other texts. It follows from (5.31) that moment of momentum
has the physical dimensions [hal == [Hl = [M L2r- l ] .

5.4.2. Moment of Momentum of a System of Particles

Each particle of a system f3 = {Pk} ofn particles has a moment ofmomentum
about point 0 given by (5.31), so that h Ok == ho (Pk, t) = XOk X pk, where
XOk == Xo (Pk, t) is the position vector of Pk from 0, and Pk = mkvk = mkXk
is its momentum relative to <1>. Relative to a frame <I> = {F; Id, the moment of
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momentumho(,B, t) ofa system ofparticles about a point 0 in <I> is definedby
n n n

ho(,B, t) == LhOk = LXOk x Pk = LXOk x mkvk.
k=l k=l k=]

(5.32)

(5.33)

Example 5.4. At an instant of interest to, the three particles described in
Example 5.1, page 9, are situated at XOI = (0,0, -1), Xoz = (-3, -2, 2), and
X03 = (6, -2, -4) from a point 0 located at B =(2, -1, 3) from F in frame
<I> = {F;Ik } . Compute the moment of momentum of the system about 0 at to .

Solution. The moment about 0 of the momentum of a particle is determined
by (5.31). Thus , for the system of three particles with momenta (5.9a), we find

hOI =XOI XPI =-Kxmv(61-7J)=mv(-71-6J),
1 J K

hoz = Xoz X pz = 2mv -3 -2 2 = 2mv (21-9J-6K),° 2 -3
1 J K

h03 = X03 XP3 = 3mv 6 -2 -4 = 6mv (2J - K) .
2 -1 -2

Then, by (5.32), the moment of momentum of the system about point 0 in <I> is

ho(,B, to) = hOI + h 02 + h03 = -3mv (1+4J +6K).

D

Exercise 5.2. What is the moment of momentum about F in <I> for the system
of particles described above? Derive the reference point transformation rule for
the moment of momentum of a system of particles. D

5.4.3. Moment of Momentum of a Body

Consider a body 9B in Fig. 5.7 and recall that the momentum in <I> of a parcel
of mass dm(P) of 9B at P is defined by yep, t) dm(P). Thus,for a body 9B the
moment ofmomentumabout a point 0 in <I> = {F; Ik} is defined by

ho(9B, t) ==LXo (P, t) x yep, t)dm (P).

Herein Xo (P , t) = X(P , t) is the position vector of the material point P from the
point 0 in <I> and v(P , t) = X(P , t) is its velocity relative to <1>. While in this book
we shall be concerned only with bodies that are rigid, the definitions (5.11) for
the momentum and (5.33) for the moment of momentum of a body hold more
generally for all deformable solid and fluid bodies .
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Figure 5.7. Schema for the Moment about a
point 0 of the momentum of a body g(3relative
to frame <1>.

Example 5.5. Find the moment about 0 "in <P of the momentum of a body
having a constant translational acceleration relative to <P.

Solution. Since a(P , t) = a*(g(3) is a constant vector for all particles of g(3,
the translational velocity v(P , t) =v*(g(3, t) = a*t + vo(g(3) is also the same for
all particles of g(3,where v(P , 0) = vo(g(3) is the translational velocity of the center
of mass of g(3 initially. Hence, (5.33) may be written as

ho (g(3, t) =LXo (P, t)dm (P) x v*(g(3, t) .

Recalling (5.12) and (5.16), we obtain

ho (g(3 , t) = x~ (g(3 , t) x m (g(3) v* (g(3 , t) = x~ (g(3, t) x p* (g(3, t),

in whichx~(g(3 , t) is the position vector of the center of mass from O. This equation
has the same form as (5.31) for a single particle. Thus, with respect to an arbitrary
point 0, the moment of momentum of a body having a uniform translational
acceleration is equal to the moment of momentum of its center of mass. D

The forgoing concepts on the mass, momentum, and moment of momentum
of a particle, a system of particles, and a body have been assembled here for future
convenience and to emphasize their parallel definitions and structure. These ideas,
including the notion of the center of mas s of a system and a body, will also be
helpful in our introduction and discussion of the basic laws of mechanics to be
studied next. Their main thru st, however, will appear later as the theory unfolds
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(5.34)

leading eventually to the analysis of the motion of a system of particles and of a
rigid body.

5.5. Newton's Laws ofMotion

The structure of classical dynamics rests upon three foundation axioms
introduced by Sir Isaac Newton in 1687. These are known as Newton's laws of
motion. In their original form, however, Newton's principles are inadequate for the
study of the motion of a rigid or a deformable body. These applications require a
brilliant generalization introduced by Leonhard Euler in 1750 and thereafter. Here
we follow the course of classical developments and begin with an introduction to
the foundation principles of mechanics for a particle.* Principles for systems and
continua are discussed briefly below and in greater detail in later chapters. In the
meanwhile, we shall see in the following two chapters that our subject is rich with
interesting and useful results that derive from the following principles of classical
mechanics.

1. The first law ofmotion: In every material universe, the motion ofaparticle
in a preferential reference frame <P is determined by the action offorces
whose total vanishes for all times when and only when the velocity of the
particle is constant in <P. That is, a particle initially at rest or in uniform
motion in the preferentialframe <I> continues in that state unless compelled
by forces to change it.

2. The second law of motion: There exists a material universe, called the
world, wherein the total force F(?, t) exerted on a particle P in the pref-
erential frame <P is equal to the time rate ofchange ofthe momentum of P
in <P:

F(P,t)= dp(P,t) = ~[m(P)v(p,t)].
dt dt .

3. The law of mutual action: To every action force A there corresponds an
equal and oppositely directed reaction force R. That is, the mutual actions
oftwo particles, one on the other, are oppositely directed vectors :R = -A.

These foundation principles characterize a material universe that is intended
to model the physical world, the real world in which we live. Indeed, a large body
of practical experience and the test of many experiments have shown that these

* In the statement of his laws, Newton uses the term "body" or "bodies ". The least of these, however,
is a single particle ; and we shall see later on that for a body of finite size the laws may be stated in
terms of its center of mass particle . Moreover, we recall that Newton 's theory focuses principally on
its applications to the motions of celestial bodies whose dimensions are small compared with their
enormous distance s of separation , so heavenly bodies are usually modeled as particles.
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laws model very well mechanical phenomena in the real world. Therefore, they
are employed universally with confidence in their predictive value. On the other
hand, there may exist other material universes where these rules do not hold, or
they hold only approximately. We shall say more about this later on. Let us look
more closely at their content.

5.5.1. The Material Universe and Forces

In analytical terms, the material universe is the set OY= {Ok} whose elements
O, are material objects; and a body fX3 is a subset of Otf, the least of which consists
of a single particle P. Forces can exist only in the presence of pairs of bodies . A
force acts on a body fX3 only when there exists another body 9J separate from fX3
which is the source of the action. Moreover, the action of a force in one direction
is not the same as its action in another direction. Thus, force is a vector-valued
entity defined on pairs of separate bodies in Otf.

The forces of interaction between pairs of material objects are classified as
contact forces and body forces . Contact force arises from the mutualaction of
material objects that touch one another. Body force arises from the mutual' action
between a pair of separated objects , and for this reason body force is often called
action at a distance. Gravitational, electrical, and magnetic forces are familiar
examples of body forces . However, forces are not always what they seem to be.
Artificial gravity, for example, can be created by the whirling motion of a human
centrifuge used to train astronauts .This apparent gravity is felt by the astronaut as a
contact force when pressed hard into the seat by the centrifuge motion; and every-
one has witnessed the apparent increase and decrease in gravity while riding up and
down, respectively, in a fast moving elevator. A similar feeling of artificial gravity
would be experienced in an elevator in outer space moving "upward" with a con-
stant acceleration. And we all know that astronauts experience "weightlessness"
(actually the absence of contact force in a perpetual free fall within the spacecraft),
because the gravitational force that continues to act on them is very nearly bal-
anced by a certain pseudo-force that arises from the orbital motion of the rapidly
moving spacecraft and its passengers.

Interaction between material objects in uti may be internal or external to
a subset ./ of Otf. This is diagrammed in Fig. 5.8. A force exerted on part (Jj)

(a subset) of a body ./ cOY by another disjoint part ~ of the same body is
called an internal force . The force exerted on a part (Jj) of a body ./ c OY due to
another body J c OY that is not contained in j is called an external force . The
collection of forces that act on a body is assumed additive. We remember that a
part (Jj) of a body is itself a body. Hence , the total force exerted on a body (Jj) in
./ is defined as the vector sum of all internal and external forces that act on ~
Since the first two laws apply only to a body ./* consisting of a single particle
(see Fig. 5.8.), it follows that the total force in these laws is necessarily the to-
tal external force that acts on that particle. Whatever may be the physical nature
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Figure 5.8. The material universe and its interacting parts.

Chapter 5

of a force, its physical dimensions are defined on the basis of (5.34); namely,
[F] == [F] = [MVT-'] = [MLT-2] • (See also the preface to the Problems for
this chapter.) The three foundation laws are next discussed in turn.

5.5.2. The First Law of Motion

It is important to observe that Newton's laws hold only with respect to a
certain preferential frame <1>. This special frame is called a Newtonian or inertial
reference frame. The properties of the inertial frame will be studied later. For the
time being, let us accept the idea that there exists in the universe an inertial frame
that may serve as the preferred frame of Newton's laws, and continue.

The first law of motion postulates the existence of at least one preferred
frame <I> and specifies that any disturbance of a particle P which is at rest or in
uniform motion relative to this frame can occur only in response to force, while an
arbitrary uniform motion or stationary state of P in <I> requires no force at all. So,
explicitly, if F(P, t) denotes the total force acting on a particle P in any material
universe whatever, the motion x(P, t) of P relative to <I> is determined by a certain
functional relation (i.e., an equation in which the variable itself is a function or a
set offunctions) x(P , t) = X (F(P, t», more commonly expressed in the standard
form

F(P, t) =g"(x(P, t»). (5.35)

Moreover, whatever its form, this general functional equation must satisfy the
specified necessary and sufficient condition for a uniform motion in <1>, namely,

x(P, t) = xo(P) + vo(P)t * F(P, t) = 0 for all i, (5.36)

wherein Xo and Vo are constant vectors . A rest state corresponds to the trivial case
Vo = O. Accordingly, the first law states that the unique solution of the equation
F(P, t) = g"(x(P , t» = 0 valid for all t in <I> is the uniform motion in (5.36). Or,
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conversely, if the motion is uniform in <1> , then F(P , t ) = g"(xo+ vot) = 0 for
all t.

Alternatively, since a motion is uniform in <I> when and only when the
acceleration in <I> is zero for all times t , (5.36) may be written as

F(P , t ) = 0 for all t ¢> a(P , t ) = 0 for all t . (5.37)

Because there is no inherent difference between a uniform motion and a state of
rest, by definition, a stationary or uniform state of motion in the preferred frame
<I> is called an equilibrium state in <1> . Thus, in accordance with (5.36) and (5.37) ,
the first law specifies that in every material universe, a condition necessary and
sufficient for equilibrium ofa particle P in an inertial reference fram e is that the
total f orce acting on P shall vanish for all times:

Equilibrium ¢> F(P , t) = 0 ¢> a(P , t) =O. (5.38)

Thus , Newton 's first law postulates the general rule of determinism (5.35) and
it specifies, by (5.36) or (5.38) , a universal principle ofequilibrium for a particle.
It provides the foundation for the important special branch of dynamics called
statics- the study of forces on bodies at rest in <1> .

The principle of equilibrium is the same in every material universe-it is a
universal rule. However, when the motion is not uniform, the form of the functional
equation (5.35) will depend upon the nature of the material universe it describes.
In this respect , the first law is intentionally vague. The second law, on the other
hand, is specific about the form of (5.35).

5.5.3. The Second Law of Motion

The second law of motion identifie s a special material universe, called the
world, for which the definite relation (5.34) between force and motion is introduced
to describe the mechanical nature of things in the world. Of course, the abstract
world of the second law is our analytical model of the real material universe, the
real world where we live. However, the rule (5.34) must respect the conditions set
in (5.36) or (5.37). Clearly, F(P , t ) = 0 for all t holds in (5.34) when and only
when the momentum p(P , t) = m(P)v(P , t) = Po(P) is a constant vector. Hence,
the motion is uniform ifand only if the mass m(P) is constant (which it is).

On the other hand, imagine a different material universe in which (5.34) holds
but now the mass varies with the particle speed. The second law would still support
the conditions of the first law in this othermaterial universe. In classical mechanics,
however , the mass of a given body is an invariant, fixed property of the body-it
is independent of the position, velocity, temperature, or any other influence acting
on the body, so long as no part of the body disappears; that is, the mass of the body,
or any part of the body, does not change in time. The principle of conservation of
mass (5.1) invokes this condi tion for every motion of a particle. In consequence,
from the rule (5.34), we obtain the basic formula popularly known as Newton's
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equation of motion:

F(P, t) = m(P)a(P, t),

Chapter 5

(5.39)

(5040)

in which a( P, t) is the acceleration of P in the inertial frame.
The condition (5.37) imposed by the first law for every material universe

strongly suggests that the simplest law of motion for the world is one for which F ex:
a, so that F = 0 implies a uniform motion in the inertial frame <1> , and conversely.
This means we should have F =ka, where k is some constant characteristic of the
particle. And what more appropriate constant might we select than the invariant
mass of the object? Indeed, this is just the way it turned out in (5.39).

Thus, according to the first law, there may exist infinitely many material
universes, or worlds , all having the same law of equilibrium but each characterized
by a special equation of motion of its own, conceivably quite different from (5.34).
The second law, however, provides a simple mathematical model to study the
nature of most , though not all, physical phenomena in our world . Let us briefly
look at its extension to a system of particles and to a continuum.

5.5.3.1. The Second Law for a System ofParticles

The total force acting on a system of particles is defined as the sum of the
forces that act on all of its particles. Let Fk = F(Pi , t) denote the total force acting
on the particle Pk of a system {3 = {Pk } of n particles. Then , with (5.34) and (504),
we derive Newton's second law for a system of particles: The total force acting
on a system ofparticles is equal to the time rate ofchange ofthe momentum ofthe
system in the inertial frame , i .e.,

F({3, t) = t: Fk = i: dpk = dp({3 , t) .
k=l k=1 dt dt

With the aid of (5.7) and the fact that mass is conserved, (5040) may be cast
in the same form as the basic equation of motion (5.39) for a single particle:

dp*({3, t) *
F({3, t) = =m({3)a ({3 , t) ,

dt
(5041)

where a*({3, t) = v*({3 , t) is the acceleration of the center of mass of the system .
In words, the total force acting on a system ofparticles is equal to the time rate
of change of the momentum of its center of mass in the inertial frame <1> , and
hence is equal to the product of the mass of the system and the acceleration of its
center ofmass in <1> . The second law (5AI) for a system of particles thus aids the
determination of the motion of the fictitious center of mass particle and external
forces that control or constrain the motion of the system. In addition to (5041), for
a system of particles the auxiliary relations (5.5) through (5.8) are often needed in
applications, as are the separate equations of motion of the particles. The equations
of motion for a system of particles are discussed further in Chapter 8. Some further



The Foundation Principles of Classical Mechanics 29

(5.42)

(5.43)

(5.44)

remarks on the equilibrium and interaction between the particles of the system
follow shortly.

5.5.3.2. Introduction to Euler 's Laws for a Continuum

We may visualize that as the number of particles of a system grows
indefinitely , the system becomes a continuum 9c3 with momentum (5.11). In this
case, the rule (5.34) is replaced by a more general principle known as Euler's first
law of motion: The total (external) fo rce F(9c3. t ) acting on a body is equal to the
time rate ofchange of its momentum in the preferred fram e, i.e.,

dp(.93, t ) d 1FW3. t ) = = - . yep , t )dm (P ).
dt dt ;j'j

It is an amazing fact that this relation also may be written in the form of
Newton's basic equation (5.39) . We recall (5.16) and note that because the mass
is conserved, Euler' s first law (5.42) becomes

F(.93. t) = dP*~~' t ) = m(.93)a*(.93. t ).

Theref ore, the total f orce acting on a body is equal to the time rate ofchange of
the momentum of its center of mass, and hence is equal to product of the mass of
the body and the acceleration a*(.93. t ) of its center of mass in the inertial fram e.
Euler 's first law for a body thus relates the applied force to the motion of the center
of mass.

Euler 's second law has no counterpart among Newton's laws of motion.
Euler's second principle relates the rotational part of the body 's motion to the
applied torque-the total moment of the applied forces about a fixed point in the
inertial frame; and it also involves the moment of momentum (5.33) for a body.
Thus, to study the general motion of a rigid body, besides (5.43), we shall need
Euler's second law of motion: With respect to a fixed point 0 in the inertial
fram e cI>, the total torque Mo(9c3. t ) that acts on a body is equal to the time rate
ofchange in cI> of the total moment ofmomentum ofthe body about 0:

. dlMo(.93, t) = ho(.93. t) = - xo(P . t) x yep , t)dm(P ).
dt ;j'j

Euler's basic laws (5.42) and (5.44) are postulated for all bodies, including
deformable solid and fluid bodies. Their application in this book, however, is
restricted to rigid bodies. In this case, the velocity v(P; t ) of an arbitrary body
particle P may be expressed in terms of the angular velocity vector. This fact
suggests that (5.44) relates the body 's angular velocity and angular acceleration to
the total applied torque about a fixed point in the inertial frame. We thus envision
that Euler 's second law is useful in determination of the rotational motion of the
rigid body.
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It follows from (5.43) and (5.44) that equilibriumofa rigidbody requires two
conditions necessary and sufficient in order that everyparticle of the body initially
at rest or in uniform motion in the inertial frame shall continue in that state . With
the initial conditions in mind, equilibrium requires that both the total force and the
total torque acting on the rigid body about a fixed point must vanish for all time,
i.e. the system of forces must be equipollent to zero:

Equilibrium {} F(.c13, t) = 0 and Mo(.~, t) = 0 for all t. (5.45)

This rule and Euler's laws are discussed further in Chapter 10.
The principle (5.43) that the mass center moves like a particle having mass

equal to the mass of the body and acted upon by a force equal to the total force
acting on the body means that the motion of the center of mass of a body often
may be found by the methods of particle dynamics. Therefore, in our future study
of the dynamics of a particle, it should be clear that it is correct to model a body of
finite size by its center of mass particle. In general, however, because the equations
of motion (5.43) and (5.44) for a body may be coupled, we cannot suppose that a
problem of rigid body motion may be split into simple separate parts-a problem
of particle dynamics and one of rotation of the body about an axis . In problems
where rotational effect s are absent, however, Euler's first law for a rigid body, or
equivalently, Newton's second law for a particle, may be used to determine the
motion of the center of mass particle and related unknown forces that drive or
constrain that motion . The effects due to torques that may act on the body are
studied later. Further discussion of (5.40) through (5.44) is reserved for their own
place later; but, as we continue, we shall need to consider continua and systems
of particles in discussion of their mutual interactions.

5.5.4. The Law of Mutual Action

Newton 's third law admits that particles may exert mutual forces on one
another to induce motion in accordance with the previous laws; however, whatever
the nature of the force, the reaction of one particle in response to the action of
another must be of equal, but oppositely directed intensity. Of course, this does
not mean that these two forces will cancel from the equat ions of motion (5.39)
for the particles, for the forces of action and reaction do not act on the same
particle.

On the other hand, when the two particles are treated as a system , the mu-
tual forces have no influence in the equation of motion (5.40) for the system.
To see this, let us consider a system f3 = {PI , P2} in which the particles PI and
P2 exert mutual force on one another. Let F I2 = F(P" t) be the force exerted on
particle PI by particle P2, and F21 = F(P2, t) the force exerted on particle P2 by
particle PI . Then the third law requires that F12 = -F21. These mutual forces
are internal forces, and hence the total internal force is F(PI, t) + F(P2, t) = O.
Therefore, such mutual pairs of internal forces do not contribute to the total force
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F(,B , t ) in the equation of motion (5.40), or (5.41), for the system. On the other
hand, if only one particle PI , say, is considered, then the mutual force F 12 acts
on this new "sys tem", and it does not vanish in the equation of motion (5.39)
for Pl .

This example shows the importance of carefully distinguishing the system
being cons idered. The system chosen for study in a particular situation is called a
f ree body. A drawing that shows all of the forces acting on the free body is called
afree body diagram. a device introduced to facilitate the solution of a problem. To
construct a free body diagram for any system, we need only recall that there are
two classes of forces: contact forces and body forces. Therefore, we may begin by
asking the question-What bodies are touching our free body?We then show in the
free body sketch the approp riately directed contact forces exerted on the free body
by each contacting body. Next, we ask-What bodies exert forces at a distance
that are acting on our free body? And we show these appropriately directed body
forces in the free body diagram. This simple but important initial procedure in the
analysis of problems is illustrated many times in the sequel. It is essential that the
student learn how to do this.

It is also important to mention that although the total internal force acting on
a system of two particles is always zero, this does not imply that the system is in
equilibrium. The particle s could be moving with proportional acce leration vectors
directed along the same line, or perhaps moving on distinct parallel lines. Also,
particles of a system need not have the same uniform motion to be in equilibrium.
On the other hand , for a system of two particles that separately are in equilibrium,
the equal and oppositely directed mutual forces must be balanced by external
forces so that the total force acting on each particle treated as a separate system
is zero . Hence, the vanishing of the total force that acts on a system of particles
is a necessary but not a sufficient condition for equilibrium. Moreover, if it is not
required or otherwise established that mutual forces act along the line joining the
particles, the force F IZ exerted on PI by Pz will have a definite turning effect
on PI in moving it around Pz as center. Newton 's law of universal gravitational
attraction assumes this collinearity, whereas, as shown later, the collineari ty of
mutual forces actually may be proved on the basis of a general rule governing
the nature of mutual internal force that depends only on the locations of the two
particles.

To advance further, however, we shall need to identify various kinds of forces.
We begin by introducing the mutual gravitational force between two material
objects.

5.6. Newton's Law of Gravitation

One kind of body force between two bodies is the mutual force of gravitational
attraction, a basic force of nature that everyone knows as grav ity. The theory of
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Figure 5.9. Schema for the mutual gravitational attraction of two particles.

Chapter 5

gravitation invented by Newton to explain the motions of celestial bodies is studied
here. The idea ofa gravitational field created by the existence ofmatter is introduced
to describe the gravitational field strength due to a particle, to a system of particles,
and to a continuum; and the gravitational force exerted by these bodies on another
particle, or body, is derived. We shall see that with regard to their grav itational
attraction, bodies behave very much like particles, but not entirely. Our objective
is to show that in all cases the gravitational force acting on a material object is
equal to the product of its mass and the gravitational field strength it experiences.
Afterwards, Newton's theory of gravitation is illustrated in a few examples. The
gravitational attraction by an ideal planet is determined, and subsequently the
definition of the weight of a body is introduced.

We begin with a pair of particles PI, P2 having mass m I , m2, respectively,
and denote by F 12 the force exerted on PI by P2 , as shown in Fig. 5.9. Let e be
a unit vector directed from P2, the source of the action, toward PI; and write r =
IX2 - XII for the distance between PI and P2, wherein XI and X2 are the respective
distinct position vectors of PI and P2 in any reference frame <I> = {F ; Id .Clearly,
only the relative position vector r == re of PI from P2 is important, so a reference
frame is needed only for the solution of particular problems. These terms are used
to state the following law of nature.

Newton's lawof gravitation: Between any two particles in the world, there
exists a mutual gravitational force that is directly proportional to the product of
their masses, inversely proportional to the square of their distance ofseparation,
and directed in the sense ofmutual attraction along their common line, i.e.,

(5.46)
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The positive constant G in (5.46) is named the gravitational constant , it
is universal for all particles. Its physical dimensions consistent with (5.46) are
[G] = [FLZj M Z] = [L 3 j (M T Z) ] ; its value will be given later. Of course, the
roles of PI and Pi are mutual and may be reversed. Hence, it is a consequence of
the law itself that the mutual gravitational force exerted by PIon Pz automatically
respects the principle of mutual action , that is, FZ1 = -F12•

Newton 's law describes the gravitational interaction between any two particles
in the world; and it has the same form in every reference frame-it depends only on
the relative positions of the particles and their invariant masses. It is conceivable,
however, that there may exist other material worlds where the law of gravity is
different, or where Newton's law may hold only approximately. In fact, in the
real world it has been known for a long time that the observed orbit of the planet
Mercury differs very slightly from the path determined from calculations based
on Newton 's law. Indeed, the combined gravitational influence of all the known
planets has failed to account for the observed shift in Mercury's perihelion.

In 1915, however, Einstein proposed a theory of relativity by which he showed
that for bodies that move with speeds that are small compared with the speed of
light Newton's theory of gravitation is a first approximation to a more general
theory of gravitational fields. Unlike Newton 's theory, which introduces the idea
of mysterious forces at a distance, Einstein's theory is based on a special geometry
of space and time-a theory whose formulation far exceeds the scope of our studies
here .

Of course, practically all deviations from Newton's law that are predicted by
Einstein's theory are so small that even with precision instruments they are difficult
to measure. The precessional motion of the elliptical orbit of Mercury is a model
case for which measurements of the rotation of its major axis, about 43 arc-seconds
each century, agree precisely with Einstein's prediction. The deflection oflight by
the gravitational field of a star, the influence of gravitational field strength on the
frequency of emitted light , and an explanation of the expanding motion of galactic
systems are other effects predicted by Einstein's theory of relativity and confirmed
by observations. These delicate, fascinating phenomena cannot be explained by
Newton 's theory. There are, however, countless other phenomena in the world that
are perfectly and more easily modeled by Newton's simpler theory of gravitation
described by (5.46) . The discovery of Neptune based on an incredibly tedious year
long calculation in 1846 by Urbain Jean Joseph Le Verrier, for example, was an
exceptional accomplishment of Newton 's theory.

Irregularity in the orbit of the planet Uranus was also known for a long time.'
Calculations by the astronomer Le Verrier of the path of a hypothetical planet,
whose gravitational attraction in accordance with Newton 's theory would produce
the observed discrepancy in Uranus's orbit , predicted the position of a new body
in the sky. And when eventually a telescope was focussed on this place, the new

t Historical details of the discovery of Neptune and the search for the putative planet Vulcan are
provided in articles by J. D. Fernie cited in the References.
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planet Neptune was discovered very close to its predicted position. The same
trick was used by Le Verrier to try to account for the discrepancies in Mercury 's
orbit. But his hypothetical planet named Vulcan has never been found. Rather,
it was Einstein's theory of gravitation in 1915 that eventually accounted for the
orbital discrepancies of Mercury, and it predicted similar effects for other planets ,
including the Earth. These are impressive theoretical results. Nevertheless, it is fair
to say that in general Newton's simpler law of gravitation provides an exceptionally
good mathematical model for studying the nature of many, though certainly not
all, gravitational phenomena in the world; and we may use it with confidence in
its predictive value. The idea of a gravitational field based on Newton 's theory is
introduced next.

5.6.1. The Gravitational Field of a Particle

A gravitational field fl is said to exist in all of space due to the mass m;
whenever a force of attraction is felt by another "test" particle placed anywhere
in fl. Hence , m; is named the origin , or source, of the gravitational field. The
attractive force due to m.; per unit mass of the test particle , is called the strength
of the field fl. Let g(X) denote the field strength at X. Then, in accordance with
(5.46),

Gm;
g(X) = --e,

r2
(5.47)

where e is the unit vector directed from the source m; to the field point X whose
distance from m; is r, as shown in Fig. 5.10. Since g is the gravitational force that
a particle of unit mass will experience when placed at X in §, the gravitational
force F( P;X) exerted on a particle P of mass m at X is given by

F(P ;X) =m(P)g(X).

K

-r----J

Figure 5.10. Gravitational field strength g(X) due to the mass point mo.

(5.48)
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Alternatively, with (5.47), F(P ;X) = -Gmome/r 2, which is the same as (5.46) .
Observe again that the gravitational force is independent of the reference frame
that may be used to identify the place X.

5.6.2. The Gravitational Field of a System of Particles

The law of gravitation (5.46) , hence also its alternate form (5.48) , applies
only to two particles. To find the gravitational force exerted on a particle P by a
system of particles f3 = {Pk} , we use the fact that the field strength is a vector
measure of force per unit mass. Since forces are vectorially additive, the separate
field strengths of all particles of f3 must be vectorially additive. We suppose that
the internal forces between the particles of f3 remain equal and opposite and in no
way alter the individual field strengths gk(X) due to the separate particles Pk of
f3. Then, with the aid of (5.48), the resultant gravitational force exerted on P by
the totality of particles that comprise f3 is given by F(P ;X) = L~=I Fk(P;X) =
L~=1 m(P)gk(X), wherein Fk(P;X) is the gravitational force exerted by Pk on
the particle P at X. Thus, use of (5.47) for each source mass ni, in f3 yields the
resultantfield strength g(X) for a system ofn particles:

(5.49)

The interpretation of rk and ek is evident from Fig 5.11 in which the resultant field
strength at X for a two particle system is illustrated. Hence, use of (5.49) yields
the resultant gravitational force on a particle P due to a system of particles:
F(P ;X) = m(P)g(X), which has the same form as (5.48). Of course, the particle
P exerts an equal but oppos itely directed gravitational force on f3 . (See Problem
5.14.)

The direction of F( P;X) will depend on the direction of g(X), which is
determined by the system f3 . In general , the resultant gravitational field strength
(5.49), and hence the resultant gravitational force, does not pass through the center

g(X)=g (X) +g (X)
I 2

Figure 5.11. Resultant Held strength g = g, + g2 of a system of particles fJ = {Pl. P2l.
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(5.50)

of mass of the field source fJ. Indeed, the field strength g*(X) due to the center
of mass particle at the place r" = -r*e* from X and having mass m" == m(fJ) is
given by (5.47) . Writing rk = -rkek (no sum) for the position vector of Pk from
X, as suggested in Fig . 5.11, and recalling (5.5) for the center of mass, we see by
(5.47) and (5.49) that

In general, therefore, g(X) is not parallel to r *, and hence the resultant gravitational
force does not pass through the center of mass of fJ .Consequently, the gravitational
force on P has a moment about the center of mass of the system. On the other hand,
it may be seen that g(X) = g*(X), very nearly, when the particle P is sufficiently
far from the neighborhood of fJ so that the distance rk of each particle Pk from X
is equal, very nearly, to the distance r" of the center of mass of fJ from X. Precise
demonstration of this statement based on the last relation above is left for the reader.

We have found that the formula for the resultant gravitational force on a
particle due to a system of particles has the same form as the basic rule (5.48) for
the gravitational force due to one particle. Derivation of a similar result for the
gravitational interaction of two separate systems is left for the reader.The procedure
and consequences are similar to those described below for two continuous bodies .

5.6.3. The Gravitational Field of a Body

The gravitational force due to a continuum acting on a particle may be found
in a parallel manner. In this case, we generalize the particle theory by considering
a gravitational field whose strength due to a parcel of mass dm; of the body .9c3o
is defined by -(Gdmo/ r2)e, where e is the unit vector directed from the source
dm; to the field point X shown in Fig. 5.12 at a distance r from dm .; Then the
resultantfield strength at X due to the body .9c3o is defined by

g(X) == -G [ +-dmo•l:l3o r (X)

Both e and r will vary in the integration over the source body .9c3o , so they cannot be
taken outside the integral. The resultantgravitationalforce exertedby the body .9c3o
on a particle P ofmass m at X is determined by F(P ;X)=m(P)g(X), which has
the same representation as the basic rule (5.48) for the attraction between two
particles. Of course, the particle exerts an equal and oppositely directed gravita-
tional force on the body.

The direction of the resultant force F( P;X) is the same as that of g(X), which
is determined by the body .9c3o• It may be seen that the resultant gravitational field
strength (5.50), and hence the resultant gravitational force usually does not pass
through the center of mass of .9c3o. The proof is parallel to that for a system of
particles. Hence, in general, the resultant gravitational force exerted on P by the
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K

Figure 5.12. Elemental gravitational fieldstrengthdg(X) due to a parcelof mass dm; of a body H6o•

body is not the same as the gravitational force exerted on P by its center of mass
particle. In consequence, the gravitational force on P exerts a torque about the
center of mass of the body. Of course, when the particle P at X is sufficiently far
from the neighborhood of .9c'30 so that the distance of each of its particles from X
is equal very nearly to the distance r* of the center of mass of g()o from X, the two
field strengths are very nearly equal.

Finally, let us suppose that P is a material parcel dm(P) of another body
.9c'3 with mass m(g(). Then use of the field strength (5.50) in integration over .9c'3
determines the resultant gravitational force F(.9c'3) exerted on .q(j by g()o, namely,

F(.0/.3) = 1g(X)dm(P) = m(.9c'3) g(.9c'3) .
.'fl

(5.51)

(5.52)

/\

The quantity g (.9c'3) defined by (5.51) is named the average, or mean field strength
due to .9c'30 • (See Problems 5.23 and 5.24.)

The gravitational force exerted by ,q(3 on .9c'3o is necessarily equal and oppositely
directed to F(.9c'3); but the forces need not be collinear, nor pierce the center of mass
of either body. Thus, with respect to an arbitrary reference point, in general the
source body ,q(30 will exert a gravitational torque on the body .9c'3. If xQ(P) is the
position vector from a reference point Q to an element of mass dm(P) of ,q(3 , the
moment about Q of the gravitational force distribution exerted on !!J3 by the field
source '~o , in accordance with (5.22), is

MQU"*3) = [/3 xQ(P) x g(X)dm(P).
This is illustrated in a subsequent Exercise 5.5, page 42, that includes discus sion
of the equipollent force and couple for the gravitational force system (5.51) and
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(5.52). Of course, the gravitational torque may vanish and the mutual gravitational
forces may pierce the centers of mass in special cases . This happens, for example,
when q) is sufficiently far from the source body q)o.

Observations of the kind described above will be helpful in understanding
the approximations assumed in our future studies of particle dynamics in which
bodies of finite size occur in many of the problems. We have seen that with regard
to the equation of motion , a body may be replaced by its corresponding center
of mass object; and as regards the gravitational force acting on a body, there is
presently only one rule that need concern us here. In sum, regardless ofthe nature
of the field source, the gravitational force F(O) acting on a material object fJ is
equal to the product of its mass m( fJ) and the total gravitational field strength
g(O) experienced by fJ; that is, in contracted notation.

F(6) = m(CI)g(6).

5.7. Some Applications of Newton's Theory of Gravitation

(5.53)

The application of Newton 's theory of gravitation is illustrated next in two
examples. The gravitational interaction between a wire ring and a particle, and
between a wire ring and a thin rod are studied. It is confirmed that when a material
object is sufficiently far from the field source, the gravitational interaction reduces
to the fundamental law (5.46) for two particles. The gravitational torque exerted
on a rod by a semicircular wire is then described in an exercise. We begin with the
gravitational interaction between a solid body and a particle .

Example 5.6. Interaction between a wire ring and a particle. A homoge-
neous, thin circular wire !::k3o of radius R and mass m., is shown in Fig. 5.13.

k

Figure 5.13. Geometry for the gravitational interaction between a wire ring and a particle.
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(5.54a)

(5.54b)

Determine the gravitational field strength of the wire ring at a point P on the nor-
mal axis through its center o. Show that the resultant gravitational force exerted
by f!l3o on a particle of mass m placed at P reduces to the gravitational force (5.46)
between two particles when P is far enough from 0 such that IXI » R.

Solution. The resultant field strength of the circular wire f!l3o at the
place X = Zk is determined by (5.50) in which the relative position vec-
tor reX) of the point P from the parcel of mass dm; of f!l3o is given by
r'(X) =re = X - R = Zk - Re, in terms of the cylindrical reference variables
shown in Fig. 5.13. With r2 = Z2+ R2, the integrand in (5.50) may be written as

e Zk-Rer

Introducing a = mo/2n R, the mass per unit length of the homogeneous wire,
and ds = Rdo, its elemental length, we have dm ; = o ds = 2~ mod¢. Then, with
(5.54a) in (5.50), noting that both Z and R are fixed quantities, and setting the
limits of integration over f!l3o , we obtain the resultant field strength of the circular
wire at X:

g(X) = _ Gmo 3 (Zk [2Jr d¢ _ R [2Jr erd¢) ,
2n(Z2 + R2)'i 10 10

in which er = cos ¢i +sin ¢j . The last term vanishes; and the gravitational field
strength at the place X due to the circular wire is thus given by

GmoZ
g(X) = - 3 k. (5.54c)

(Z2 + R2)2

The field strength at the place P is directed toward the center of the ring.
A particle of mass m placed at X in the field (5.54c) experiences an attractive

gravitational force given by (5.48) in accordance with the rule (5.53) , namely,

Gmm.Z.
F(P ;X) = m(P)g(X) = - 3 k, (5.54d)

(Z2+ R2)2

directed through the center of mass of f!l3o • Notice that if P is placed at the center
o where Z = 0, the resultant, mutual gravitational force on P is zero.

Finally, suppose that P is far enough from 0 so that R/ Z « 1, hence
negligible . Then r = Z, k = e, approximately, and (5.54d) may be written as
F(P; X) = -Gmmoe/ r 2, which has the same form as Newton 's law (5.46) for the
gravitational force between two particles of mass m and mo, respectively placed
at P and O. 0

We next study an application of (5.51) for the gravitational attraction between
two solid bodies .
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(5.55a)

(5.55b)

Figure S.14. Gravitational interaction between a wire ring and a thin rod.

Example5.7. Interaction between a wire ring and a thin rod. A homoge-
neous, thin rod qj of length e and mass m(qj) is placed along the normal axis
of the wire ring described in the last example. What is the resultant gravitational
force exerted by the rod on the ring? Find the mean field strength due to the ring.

Solution. Since the gravitational field strength of the wire ring is known
by (5.54c), it is convenient to first find the resultant force that the ring exerts on
the rod, and afterwards obtain the opposite force acting on the ring. The rod is
placed along the central axis with its ends A and B at the respective distances a
and b from the center 0, as shown in the Fig. 5.14. For the homogeneous, thin
rod, the parcel of mass at X = Zk from 0 is dm(P) = m(qj)dZ /e . Hence, the
substitution into (5.51) of the gravitational field strength vector (5.54c) acting on
dm(P) determines the resultant gravitational force on the rod. Introducing the
integration limits for the rod qj and noting that 2ZdZ = d(Z2 + R2), we obtain

Gmom(.CJl3) l b d (Z2 + R2)
F(qj) = - k 3 •

2e a (Z2 + R2)'i

This yields the resultant gravitational force on the rod qj due to the wire ring qjo :

F(qj) = - Gmo;(qj\ ((R2+ a2r ~ - (R 2+ b2r ~) .

The resultant gravitational force exerted on the ring is now given by
F(qjo) = -F(qj) .This force pierces the mass centers of both homogeneous solids.
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When the center of the rod is at 0, b = a = .€ /2 and the mutual resultant gravita-
tional force vanishes. When the rod is sufficiently far from the ring so that R /a and
.€ /a are both « I, (5.55b) for the gravitational attraction between the two bodies
reduces to (5.46) for two particles.

To determine the mean field strength due to the ring, first observe that

(5.55c)

(5.55d)

are the respective distances from any point Q on the ring to the end points A and
B of the rod. Then, with (5.55b) , the mean gravitational field strength due to the
ring, in accordance with (5.51) , is

/\ f7Z) F(.c13) o-; (bo-ao)g(:7u)=--=-- -- k.
m(.c13) a.b; .€

o
The reader will find it informative to work through the following exercises.

These review the previous examples in the solution of a similar problem for a
semicircular wire. In addition , the gravitational torque effect is illustrated.

Exercise 5.3. Interaction betweena semicircular wire and a thin rod. Sup-
pose that the ring in the previous example is replaced by a semicircular wire of
radius R in the upper half plane so that ¢ E [- I' I] (see Fig. 5.13), while the
rod retains the configuration shown in Fig. 5.14. Recall the sequence of equations
(5.54a) through (5.54d) . Show that the semicircular wire produces on the normal
axis through 0 at X = Zk a resultant gravitational field strength given by

Gmog(X) = , (2Ri -:rrZk) ; (5.56a)
n (Z2 + R2)'i

and hence the resultant gravitational force exerted by the wire on the rod is

F(.c13) = Gmom [~(bao - abo)i -:rr (bo - ao)k] ,:rr.€aobo R
where a., and b; are defined in (5.55c).

(5.56b)

o
Exercise 5.4. Gravitational torque exerted by a semicircularwire on a thin

rod.It is seen in (5.56b) that the resultant gravitational force on the rod has a vertical
component that has a moment about the center point 0, for example. Therefore,
the gravitational force distribution on the rod gives rise to a gravitational torque
(5.52) . Let Qbe the reference point at 0 so that Xo = Zk in (5.52). Show that the
gravitational torque about 0 exerted on the rod by the semicircular wire is

2RGmom .
Mo( .c13) = (bo - aoh (5.56c)

n ia.b;
o
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Exercise 5.5. The force system (5.56b) and (5.56c) is equipollent to a grav-
itational force F(.c?8) at a certain point Q and a gravitational couple C(.c?8) ==
Xo x F(.c?8), where x., = (i , y,z) is a position vector from 0 to any point on the line
of action ofF(.c?8). Hence, Q is an arbitrary point on this line; and C(.93) = Mo(.93)
provides the equation of the line of action of the equipollent force. Find the equa-
tion of the line of action of the equipollent force for the gravitational force system
exerted by the semicircular wire on the rod. Determine its intercepts (io, Yo, zo)
with the axes, and thus show that the line of action of the equipollent force act-
ing on the rod pierces the center of mass of the homogeneous semic ircular wire,
but not that of the rod. Consequently, the rod exerts on the wire a gravitational
force F(.c?8o ) = -F(.c?8) and a gravitational couple C(.930 ) = -C(.93) at its center
of mass. 0

5.8. Gravitational Attraction by an Ideal Planet

Though enormous in size compared to ordinary material things, heavenly
bodies are separated by great distances, so the ratios d / D of their diameters d to
their distances of separati on D are small quantities. Consequently, as regards their
gravitational interactions, the heavenly bodies typically are modeled as particle s.
Here we examine this hypothe sis for an ideal planet and show that its gravitational
field strength is the same as the field strength of a particle of equal mass placed at
its center.

Every material object in the vicinity of the Earth experiences a gravitational
attraction that arises principally from the attractive force exerted by all parts of the
Earth on every part of the objec t. Of course, the dimensioris of ordinary bodies are
infinitesimal in comparison with the size of the Earth , so even when these bodies
may be on or very near the Earth, it seems sensible in a first approximation to
model the body in its relation ship to the Earth as a particle or, more precisely, as
a center of mass object of mass m. Since the mass of a planet like the Earth is so
considerably greater than the mass of even the largest structures, like an aircraft, a
ship, or a skyscraper, the mutual gravitational attraction s of these bodies obviously
are small in comparison with the total gravitational force due to the Earth . Indeed ,
in all of our experience we have suffered no apparent propulsion toward these
objects, nor they toward one another. But when we have the misfortune to tumble
from even the slightest height, it hurts! The effect would be the same if it happened
on the Moon, but with much reduced intensity due to the Moon 's smaller size and
mass. (See Problems 5.25 and 5.26.) In any case, ignoring other bodies , we want
to know-What is the gravitational force on a body due to the Earth?

To model the shape of a typical planet and its mass distribution , let us assume
that (i) the planet is a sphere of radius A, and (ii) its mass density p = p (R) varies
only with the distance R from its center. The total gravitati onal force exerted by
the sphere on an external material point P at a distance X from its center may
be determined by use of (5.50) in (5.48), and cast in the spherical coordinates
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Figure 5.15. Geometry for the gravitational attraction of a particle P due to an ideal spherical planet.

(R, B,¢) shown in Fig. 5.15. The material volume element is shown in Fig. 5.15a.
Hence, the spherical element of mass is dm; = p(R)R2sinB dRdndc : Also,
-e/ r2 = (R - X) /r 3 , wherein the unit source vector e is directed from the parcel
dm., at R = R sinB(cos ¢i+ sin ¢j)+R cos Bk to the particle P at X = Xk, and
r = (R2+ X2 - 2RX cos B)1. Collecting these terms into (5.50) and setting the
limits of integration over the sphere ~o , we find the gravitational force (5.48)
exerted by the ideal planet on a particle P of mass m at X is given by

F(P ;X) = fA [" r (R sin B(cos¢i + sin ¢j) + (R cos
3B

- X)k)
mG 10 10 10 (R2+ X2 - 2RX cosB) "i

x p(R)R2sinBdRdBd¢.

The integrations are not so formidable as may appear. In fact, integration with
respect to ¢ yields J~ll (cos ¢i + sin ¢j)d¢ = 0 and J02ll d¢ = Ln, Therefore, it
follows , as one might expect from symmetry, that the resultant gravitational force
exerted by an ideal planet on a particle ofmass m is directed toward the center of
the sphere :

F . ) _ i A ill (X - R cos B)p(R)R2sin BdRdB(P ,X - -2nmGk 3 •

o 0 (R2+X2_2RXcosBP
(5.57)
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The reader may show directly that (5.57) may be obtained by use of symmetry
about the k-axis and by considering the attraction of a thin ring of radius R sin 8
and thickness dRat a central angle 28. So far the result (5.57) actually holds more
generally for p = p(R , 8). To continue, however, we need p = p(R).

Returning to (5.57) and integrating the functions in 8, being careful to observe
that the particle at X lies outside the sphere, i.e. X :::: R, we eventually find the
important result

m(P)m(PlJo)F(P;X) == -G X2 k=m(P)g(X) for X:::: R, (5.58)

wherein m(PlJo) is the mass of the sphere and g(X) is its field strength at X :

Gm(PlJo)g(X) = - X2 k. (5.59)

(5.60)

The gravitational force (5.58) has precisely the same form as (5.46) for the
gravitational attraction between two particles ; and the gravitational field strength
in (5.59) is the same as the field strength (5.47) of a particle of equal mass m(PlJo)
placed at the center of the sphere. Therefore, as regards its gravitationalattraction,
a sphere ofmass density p(R) behaves like a particle having mass m.,=m(PlJo),
the mass ofthe sphere, and locatedat its center. Thus, any planet that is essentially
spherical and has an average density variation that depends only on the distance
from its centerwill attract a particle of mass m with the central directed force (5.58)
characteristic of a source particle located at its center. Plainly, our hypothetical
planet does not represent accurately the true features of the Earth, nor any other
real planet. This analysi s provides only a simple first approximation of the field
strength due to the Earth, or any similar body.

5.9. Gravitational Force on an Object Near an Ideal Planet

Let us consider the field strength in the vicinity of our ideal planet. The radius
vector from its center to an object P in the neighborhood of its surface may be
written as X = (A + s )k , where e, the normal distance of P from the surface, is
very small compared with the planet's radius A. Then (5.58) may be written as

Gmmok
F(P ;A+g)=- A2(1+ s jA)2 '

where m., == m(qJo) denotes the planet's mass. When e = 0, we obtain the gravi-
tationalforce on P at the planet's surface:

Gm;
F(P;A)=m(P)g(A) with g(A) = -gk == -AZk. (5.61)
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The constant g == Gmol A2 is known as the acceleration ofgravity; its value plainly
depends upon the size and mass distribution of the planet. Although g, as its name
implies, has the physical dimensions of acceleration, it is not a kinematical quantity;
it is not the derivative of a velocity vector.

To determine the error committed by our neglecting the term eIA in (5.60),
the relation (5.61) and the binomial expansion of (1 + elA)- 2 are used to obtain

'Ie 3e2
F(P ;A + eo) = F(P ;A)(1- A + AT - ...).

The first approximation e]A = 0 yields (5.61). Therefore, the next term 'Ie]A is
a measure of the error comm itted when this term is ignored. For example, for
an aircraft flying at an altitude of e = 10 mile (16 km) above the Earth, whose
average radiu s is 3960 mile (6373 km), Le] A = 0.005, whereas for a spacecraft
at an altitude of 100 mile (161 km), Ze] A = 0.05. In the first instance we commit
an error of about 0.5% when using the estimate (5.61), in the second we err by
nearly 5%. Thus , so long as the objec t P does not stray too far from the planet , to
a close approximation, the gravitational force F = mg is a constant vector given
by (5.61). The extent to which this approximation may be useful depends on the
particular application . In situations where gravitational variations with the altitude
are important, the estimate (5.61) is not to be used. (See Problem 5.22.)

5.10. Weight of a Body and its Center of Gravity

The gravitational force exerted by a body £:?li t on another body~ is called
the weight of £:?li2 relative to £:?li \ . The gravitational field strength of a body £:?lio is
given by (5.50), and the gravitational force it exerts on an objec t ~ is described
by (5.53) . This is the weight of ~ relat ive to £:?lio . Thus, specifically, the weight
W (P ;X) at X of a particle P of mass m(P ), relative to £:?lio , is defined by

W (P ;X) == m(P )g(X ). (5.62)

The universal law of gravitation (5.46), hence (5.50), involves invariant quan-
tities that are independent of the reference frame-it is the same for all observers.
Therefore, the weight of an object is the same for all observers; but it varies with the
relative gravitational source. The weight of a particle P near the Earth is estimated
by the constant force (5.61). The weight of the same particle in the neighborhood
of the Moon, say, is also estimated by (5.61), but its value differs from its weight
relative to the Earth . (See Problem 5.25.) In both cases, however, the massm(P ) is
the same- mass is an invariant property of a body; its weight is not. Henceforward,
unless stated otherwise, the weight ofa body shall mean its weight relative to the
Earth. Thus, by (5.61) and (5.62) , the weight W of a body modeled as a particle
of mass m is an attractive body force abbreviated by W = Wn = mgn = mg,
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where n is a unit vector directed toward the center of the Earth . In accordance with
(5.53), the weight of a system of particles and a continuum are regarded similarly.

5.10.1. The Local Acceleration of Gravity-An Estimate

It is known from experimental measurements that the gravitational constant
has the value G = 6.67 X 10-11 N · m2 . kg-2 = 3.43 X 10- 8 lb - ft2 • slugr'. The
estimated average mass density of the Earth is p = 5520 kg/m", and its average
radius is A = 6373 km, very nearly. Hence, the constant acceleration of gravity in
the vicinity of the Earth estimatedby (5.61) is g = 9.824 m/sec' = 32.23 ft/sec'' .
These values are reviewed and refined later on. In most engineering applications,
however, it is customary to use the estimate g = 9.8 m/sec/ = 32.2 ft/sec",

Since the gravitational constant G is so very small, even when two bodies
may be very close to one another, the gravitational force between them, though
measurable (as demonstrated in experiments to measure G), is insignificant unless
the mass of at least one of the bodies, like the Earth, is enormous. Therefore, the
mutual attractive forces of neighboring bodies other than the Earth are ignored,
and hence the total attractive gravitational force on an object is its weight. (See
Problem 5.26.)

5.10.2. Center of Gravity of a Body

So far as a particle may be concerned there is no ambiguity as to where the
weight vector acts-it acts on the particle. But when the total weight of a system
of particles or of a body is introduced, the place relative to their material points
at which the total weight of these bodies may be supposed to act is not evident.
The concept of the center of gravity is introduced to clarify this question . We
shall discuss the center of gravity for a body and leave as an exercise the parallel
development for a system of particles .

The weight of a material parcel of mass dm(P) at a point P of a body qj is
g(P)dm(P), where g(P) is the gravitational field strength at P due to the Earth.
In accordance with the first equation in (5.51), the weight of qj is defined by

W(qj) = [ g(P)dm(P).
193

(5.63)

If the gravitational field strength is uniform over qj so that g(P) = g, a constant
vector, the weight of qj is simply the product of g and its mass m(qj): W(qj) =
m(qj)g.

Since the body over which the gravitational field acts is small compared with
the Earth, the Earth's field, though directed approximately toward its center, may
be modeled as a parallel field over the body region, so that g(P) = g(P)n, where
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Figure 5.16. Schema for the equipollent moment condition in a parallel, variable gravity field.

n is a constant unit vector radially directed toward the Earth . Hence, (5.63) yields

W(gj) = ( dw(P) = ( g(P)dm(P) , (5.64)193 193
in which dw(P) == g(P)dm(P) is the elemental weight of the parcel dm(P) .

By (5.63) , the distribution of the weight of a body in a parallel, but variable
gravitational field is equipollent to the single force W(gj). In addition, for any
assigned point Q in the Earth frame <1> = {F;Ik } shown in Fig . 5.16, the moment
MQ about Q of the weight distribution dw(P) = ndw(P) in the parallel Earth
field is equipollent to the moment about Q of the total weight W (913) = nW(913)
acting at a point C along its line of action in <1> . The unknown position vector of C
from Q is denoted by xQ(913) in Fig 5.16. Thus, the equipollent moment condition
(5.29) is

(5.65)

wherein xQ(P) is the position vector of a material parcel of weight
dw(P) at P. With dw = dwn and use of (5.64) , (5.65) yields W(913)xQ x
n = J9'! xQ(P)d w(P) x n. For simplicity, let us discard the subscript Q, and note
that in general the position vectors may vary with time t , as suggested in Fig. 5.16 .
Then, with these adjustments, since Qmay be chosen arbitrarily and n is a fixed
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direction , we may satisfy this equation by choosing the point at xdefined by

W(~)x(~, t )=1x(P , t )dw(P )
9B

(5.66)

to provide the location from Q of the point C at which the weight of ~ acts to
produce a moment about Q equal to that of its distribution. The point of the body
~ defined by x(~, t) in (5.66) is called the center ofgravity of .9c3.

The location of the center of gravity will depend on the variable gravitational
field strength g(P) and the orientation of the body, which also might be nonho-
mogeneous. So, if the body is moved to a different configuration at another place
in a variable gravity field, the center of gravity generally is not at the same place
in the body frame; and hence the center of gravity generally is not a unique point
in the body frame .

Example 5.8. A homogeneous cylinder ~ of height h and its base at the
distance a from the Earth's center F in frame <I> = {F; Ik } is shown in Fig. 5.17.
Show that the center of gravity in a variable gravity field is not an invariant point
in the body reference frame.

i = I

n a

F,,;-_--'---L--._ K

J
Figure 5.17. Schema for evaluation of the center of
gravity of a uniform cylinder in a variable. parallel
gravitational field.
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(5.67a)

(5.67b)

(5.67c)

Solution. The second equation in (5.59) gives the variable gravitational field
strength g(P ) =MG/X2 at P due to the Earth. The Earth's mass is M =m(gjo)
and X is the distance from F to a material parcel at P having weight dw(P) =
g( P)dm(P) = (M G/ X 2)adX, where a = m] h is the mass per unit length of gj.
Integration in accordance with (5.64) shows that the weight of the cylinder in the
given configuration will vary with the distance a from the Earth:

_ mMG r: dX _ mMG
W(gj) - -h- 10 X2 - a(a + h) '

The location x(gj) = XI + YJ +ZK of the center of gravity from F is given
by (5.66). With x(P) = XI+ YJ + ZK in Fig. 5.17 , we find by symmetry about
the I-axis that Y= Z = 0 and

rio - MmGr dX MmG (a +h)W(;'lu)X=-- -=--In -- .
h 0 X h a

Using (5.67a) and introducing i == X - a, we obtain the location i of the center
of gravity in the body frame IfJ = {O; id in Fig . 5.17:

i = a [I + h/a In (1 + ~) - 1] .
h]a a

This result shows that the center of gravity in the body frame varies with a, the
vertical distance of 0 from the center of the Earth . If the body is moved vertically
to another place, the location i of the center of gravity in the body frame will
change. Hence, in contrast with the invariant center of mass of the same body, the
center of gravity generally is not a unique point in the body reference frame 1fJ.
The center of gravity is not an invariant property of the body.

On the other hand, the variable gravity effect on the position of the center
of gravity of an ordinary body usually may be considered negligible. Because the
body 's height h is small compared to the radial distance a from the center of the
Earth, we may ignore in the last formula all terms of order greater than the first in
h]a « 1. We recall the series expansion In(l + z) = Z -1Z2 + ~ Z 3 - . .. valid
for 0 < Z = h / a < 1and thus obtain the unique, approximate location i = h / 2 of
the center of gravity in the body frame 1fJ. 0

In most practical cases of interest, the gravitational field throughout a body gj
that is small compared with the Earth may be approximated by a constant field of
strength g throughout that body. Hence, the center of gravity of a body gj, even
in a variable, parallel gravitational field, is the unique point in the body frame IfJ
whose position vector x from any assigned point Q in ct> is given by (5.66) , very
nearly . Therefore, so far as its weight is concerned, the body may be replaced by
a particle of weight W(gj) located at its center of gravity. Of course, the center
of gravity particle need not be a material point of gj, but it may be. In a fixed
configuration of the body, the definition (5.66) is independent of the choice of the
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(5.68)

reference point Q in <1>, and hence in a locally, constant gravity field, the center of
gravity is the unique point C in the body frame relative to which

r pep, t)dw(P) = O.
Jg(J

Here pcp, t) is the position vector from C to the parcel of weight dw(P) at P.
Equation (5.68) states that the moment of the weight distribution of the body about
its center of gravity vanishes. The foregoing construction does not specify that the
body be rigid. For a rigid body, however, p(P, t) is independent of time in a body
frame.

We have learned that in general the center of gravity is not an invariant
property of the body-it varies with the gravitational field strength in the region
of space that the body currently occupies. However, because the field strength due
to the Earth varies insignificantly over ordinary bodies , it is quite reasonable to
replace the variable , parallel gravitational field by a locally uniform, parallel field.
In this case, (5.66) reduces to (5.12) so that x= x*. Thus, in a locally uniform
gravitational field, the center ofgravity and the center ofmass ofa body coincide,
in which case the center of gravity shares all of the properties of the center of
mass.

Finally, we recall that sometimes the weight density yep) == p(P)g(P), the
weight per unit volume of ::2, is used in engineering analysis . In this case, we
have dw(P) = y(P)dV(P). Thus, if the weight density of a body is constant, the
weight of the body is the product of its weight density and its volume V( gj) :
W( gj) = yV(gj) . Hence, from (5.66) and (5.14), the center ofgravity ofa body
ofuniform weight density is at its centroid. For a homogeneous body in a locally
uniform, parallel gravitational field, p, g, and y = pg are constants, and hence
in this important special case the center of gravity, the center of mass, and the
centroid ofthe body are coincident points. In general, however, they are not.

5.11. Coulomb'sLaws of Friction

So far, our study has focused on one important kind of body force, the familiar
force of gravity. We now consider a familiar kind of contact force, the frictional
force that arises between pairs of separate bodies in their pending or relative sliding
motion . Two physical laws, known as Coulomb's laws, govern the nature of this
frictional force.

The first law of friction was known for a long time before Charles Coulomb
(1736-1806), a senior captain in the French Royal Corps Engineers, verified it in
1781 during investigation of mechanical improvements for military gear. Histo-
rians, however, discovered long ago a statement of the first law in the notebooks
of the famous Italian artist and inventor Leonardo da Vinci (1452-1519). From
simple experiments, da Vinci concluded that the amount offriction is proportional
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to the normal pressure between the contacting bodies and is independent oftheir
area of contact. Da Vinci's empirical proposition thus provided the first record
in scientific writings of a law for sliding friction, an important contribution to
mechanical science that was lost for nearly three centuries!

The notebooks, for several reasons, were virtually unknown prior to 1797.
Translation of the manuscripts, language aside, was hampered by da Vinci's habit
of writing in a reversed, left-directed fashion that required reading from a mirror,
certainly an uninviting prospect. Though da Vinci apparently planned to assemble
his voluminous notes for publication, this never happened. Upon his death in 1519,
the encoded notebooks were passed to a close friend who guarded and preserved
them until his own death in 1570; and from that time onward the manuscripts
passed many hands, some parts being lost forever. Thirteen volumes survived and
eventually were collected in the Ambrosian Library at Milan . But in the invasion
of Italy in 1796, the documents were seized by Napoleon Bonaparte and carried to
Paris, where for the first time they were studied by J.B. Venturi who later described
them in an essay published in 1797. (See Hart, Chapters I and VII.)

It is no surprise, therefore, that da Vinci's law of friction was unknown to
the French engineer Guillaume Amontons, who rediscovered it in 1699, nearly
200 years after da Vinci. It is astonishing, however, that the French Academy of
Sciences, which expressed disbelief of the independence of the area of contact, re-
ceived Amontons's rule with skepticism. Yet later, in 1781, the Academy awarded
Coulomb a prize for essentially the same thing, though presented more thoroughly
and in broader terms. (See Deresiewicz.) Coulomb's exemplary experiments es-
tablished, not one, but two basic laws of friction that express a clear distinction
between static friction and dynamic friction that went unnoticed by all others.
These principles characterize the nature of the contact force between surfaces at
rest and in relative sliding motion; they are the focus of the discussion that follows .

5.11.1. Contact Force between Bodies

A contact force is the mutual force acting at the interface between separate
bodies that touch one another. At each interface point q, the contact force i(q),
say, exerted by one body upon the other may be separated into component forces
TI(q) and r(q), respectively, normal and tangent to the interface at q, so that
i(q) = TI(q) +r(q) .The normal component describes the mutual pulling (tension)
or pushing (compression) of one body by the other perpendicular to the interface;
it is called the normal force . If the contacting bodies ~l and ~2 are subsets of
the same body ~ = ~1 U~2 separated by an imaginary material surface .s1, the
tangential component r(q) characterizes the mutual resistance to shearing of the
two parts along .s1, so that r(q) is named the shearforce . These particular contact
forces playa paramount role in the mechanics of deformable solids and fluids.
We shall encounter them in a different setting in various problems ahead. If we
wish, for example , to determine how the tension in the string of a pendulum varies
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as the pendulum swings to and fro, it is necessary to introduce an imaginary cut
in the string, and show in its place in a free body diagram of the pendulum bob,
the normal (tensile) force that the string exerts on the bob. On the other hand,
when two bodies YB\ and YB2 are physically separate, to maintain their contact the
normal component of the contact force must be compressive; and its tangential
component characterizes the mutual resistance to sliding of one body surface
over the other, a natural effect that everybody knows as friction . In this case, the
tangential component is called the frictional force .

The description of the frictional force is far more complicated than suggested
above .The normal and tangential components ofthe interfacial force are distributed
over the area ofcontact. But the actual area ofcontact is unknown. Indeed, even the
most carefully polished surfaces look under magnification like miniature mountain
ranges with hills and valleys that are much larger than molecular dimensions, and
the contacting surfaces press upon these tiny mountains. Therefore, the actual area
of contact may be much smaller than the apparent area of contact described by the
macroscopic dimensions of the interfacial region .

Although interlocking effects of the surface asperities playa role in the over-
all complex mechanism! of sliding frict ion, it is known from sophisticated mea-
surements that frictional force arises mainly from the force requ ired to shear the
mountain peaks . Moreover, these experiments reveal that the actual area of con-
tact, accounting for the deformation, depends on the intensity of the normal force.
This area, however, is very nearly independent of the apparent interfacial area of
the sliding bodies. The intense pressure at the contact point s increases the area
of contact until it is large enough to support the load . But in observation of the
frictional resistance, the growth in the real area of contact manifests itself through
the increase in the applied normal thrust, and hence is independent of the apparent
interfacial area of contact. These measurements confirm da Vinci 's primary ob-
servations and support his law of sliding friction; and they are the foundation for
Coulomb's laws.

The distribution of the contact force is also unknown. But information about
this force is required before any problem that involves friction can be solved. To
hurdle this obstacle, we adopt the advance strategy that the normal and tangential
distributions of the contact force , whatever the actual area of contact may be, are
equipollent to a resultant normal force N and a resultant frictional force f that acts
to oppose the relative motion of two contacting separate bodie s YB I and YB2•Thus ,
if ry(q) and r(q) denote the normal and tangential force distributions per unit area
a of the apparent contact area A, then N = fA ry(q)da , f = fA r(q)da ; and the
resultant contact force R = fA ,(q)da exerted by .93\ on YB2 is

R=N+f. (5.69)

j See the classical treatise by Bowden and Tabor. Contemporary molecular theories of friction and
modern surface measurement techniques are discussed in the referenced article by Krim.
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(a) Contact Forces on$ ~ by$.

w

(b) Free Body Diagram of $ 1

Figure 5.18. The contact forces exerted by the body !?i'I1on the body ga2 . and the free body diagram of !?i'I2.

Thus, instead of having to deal with the unknown surface load distribution s, we
may work with their result ants in (5.69). The resultant contact forces exerted by
a body gJ ] on another body gJ2 are shown in Fig. 5.18a. Other contact and body
forces may act on gJ2, but these are not shown here. Of course, the contact forces
exerted by gJ2 on gJ ] are opposite to those exerted by gJ , on gJ2.

5.11.2. Governing Principles of Sliding Friction

Perfectly smooth, frictionless surfaces do not exist. Nonetheless, sometime s
the surface asperity is so fine that the surface feels perfectly smooth to our sensa-
tion of touch . Therefore, in situations where frictional effects may be considered
negligible or unimportant, we may sometimes consider an ideal model of smooth
contacting surfaces that offer no sliding resistance whatever, a model that brings to
mind the seemingly effortless, graceful motion of a skater on virtually frictionless
ice. In this ideal case, the frictional force is zero and the contact force is normal to
the interfacial tangent plane, that is, f = 0 and R = N in (5.69) . This ideal property
characterizes a so-called smooth surface.

When the surfaces are not perfectly smooth, it is intuitively clear that if
the angle (X of the inclination of the plane surface of the body gJ ] shown in
Fig. 5.l8a is sufficiently small, the body gJ2 will remain at rest on the plane.
But as (X is gradually increased, the magnitude of the frictional force must also
increase gradually to restrain gJ2 . Eventually, the angle of repose (X will exceed
a certain critical, maximum value a; at which the frictional force can no longer
sustain the equilibrium of gJ2, and gJ2will begin to slide down the plane. Thus, the
magnitude f = IfIof the static fri ctional force between the bodies eventually will
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reach a critical value f = L, called the critical force, at which slip is imminent.
Of course , after sliding begins, friction continues to act between the contacting
surfaces to oppose the relative motion . Clearly, this dynamic frictional force fd
cannot exceed the static, critical force; in fact, experiments show that !d < i;
These critical values of the frictional forces depend on the intensity of the normal
contact force between the bodies. Indeed, we see readily that when lightly pressed
together, our hands can be slid easily one upon the other; but when pressed tightly
together, their relative sliding is rendered more difficult. The values of the critical ,
static and dynamic frictional forces are most simply related to the magnitude of the
normal contact force between the bodies in accordance with the following basic
and ideal principles of friction commonly known as Coulomb's laws of friction.

1. The law ofstatic friction: The critical magnitude I, ofthe static frictional
force between dry or lightly wetted surfaces that are at the verge ofslipping
relative to each other is proportional to the intensity N of the mutual,
resultant normal force between them:

f e =p,N. (5.70)

The constant p" called the coefficient of static friction , is independent of
the interfacial contact area; it depends only on the nature ofthe contacting
surfaces.

2. The law of dynamic friction: The magnitude fd of the frictional force
between two dry or lightly wetted surfaces sliding relative to one another
is proportional to the intensity N of the mutual, resultant normal force
between them:

!d = vN. (5.71)

The constant v, named the coefficient ofdynamic friction, is less than the
static coefficient for the same conditions, v < u :Moreover , v is indepen-
dent of the interfacial area ofcontact and of the relative sliding speed of
the surfaces; it depends only on the nature ofthe contacting surfaces .

The first law determines the greatest frictional force that can develop between
contacting surfaces before sliding occurs , whereas the second law determines the
magnitude of the frictional force that acts during the relative sliding motion . If a
sliding motion between two bodies has not occurred and is not imminent, then the
magnitude f of the frictional force is always less than the critical force I, and
may be determined by equilibrium considerations. These remarks are summarized
schematically in Fig. 5.19 to illustrate the relations

Static: 0 ::: f ::: I, = p,N;
Dynamic: 0 ::: f = !d = vN < fe .

(5.72)
(5.73)
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Figure 5.19. Graphical interpretation of Coulomb's laws of static and dynamic friction.
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Note that f = f e holds in (5.72) only when relative slip is imminent; and f = !d
holds in (5.73) only while sliding occur s. Further, f = 0 holds only for ideal,
perfectly smooth surfaces for which fL = IJ = O. Otherwise, since IJ < u ;once slip
is achieved , a smaller force acts to retard the motion . These effects are assumed
to be independent of the interfacial area of contact and of the relative speed of the
dry or lightly wetted surfaces.

The static and dynamic coefficients of friction will depend only on the nature
of the contacting material surfaces, that is, on the materials of which the bodies are
made, their surface roughness quality, their degree of lubrication, their tempera-
ture, perhaps their chemical characteristics, and some other less important things.
Clearly, the values of both fL and IJ must be found by experiments. Also, when
one body rolls on another, there is very little interfacial slip; but the bodies still
experience mutual resistance to rolling, which is called rolling fri ction . Everyone
knows that it is easier to roll than to slide a body on a flat surface; hence, rolling
friction is considerably smaller than sliding friction. Further, when a layer of fluid,
such as air or water, separates two surfaces, there is a resisting force exerted by
the fluid which is called drag or viscous fri ction . Both rolling and viscous friction
are determined by laws that are entirely different from Coulomb 's rules of sliding
friction . The effects of viscous friction are discussed in Chapter 6. The interested
reader may consult the sources cited at the end of this chapter for details on these
additional matters . We now turn to some examples.

5.11.3. Equilibrium of a Block on an Inclined Plane

Let us consider the familiar, elementary problem of equilibrium of a rigid
block a'32 shown in Fig. 5.18a at rest on an inclined plane a'3\ . Our focus is on
the general procedure for setting up and solving this problem . In addition, some
elementary results of static friction are also reviewed .

First, choose a'32 as a free body (the system to be investigated). Now identify
all of the contact and body forces that act on .9c32 alone .We may ignore the contact
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force of the surrounding air. (Why?) Then the only body that touches £I32 is the
body £I3 I , so the total contact force acting on £I32 consists of the equipollent normal
force N and frictional force f due to £I31, or the equivalent reaction force R. The
Earth is the only body that exerts a significant body force on £I32, hence the total
body force acting on £I32 is its weight W. All of the forces that act on £I32 , whether
it be in equilibrium or in motion in an assigned inertial frame are shown in the
free body diagram in Fig. 5.l8b. The direction of these forces must be consistent
with the physical situation. In particular, f must act to retard the potential motion
of £I32, N must support £I32, and W must be directed toward the center of the Earth.
The vector g denote s in the figure the direction of the gravitational attraction of
the Earth.

Any inertial frame may be introduced to formulate the problem, but one
choice may be mathematically more convenient than another. The inertial frame
cp = {F ; ik } shown in Fig. 5.18b is a good choice because the forces are most easily
related to it. The free body diagram shows that the total force acting on the block
£I32 is

F(£I32, t) =W + f + N.

Next, express these forces in terms of their components in tp:

W=W(sinO'i-cosO'j) , f=-ji, N=Nj.

(5.74a)

(5.74b)

Here W = mg, j , and N denote the magnitudes of these forces. This completes
the primary phase in the problem formulation.

5.11.3.1. The Force Equilibrium Relations

Since the block is in equilibrium in cp, in accordance with (5.45) , the total
force (5.74a) and the total moment about a point fixed in cp of the forces in (5.74b)
must vanish for all times. First, consider the forces. Substitute (5.74b) into (5.74a) ,
and write the force equilibrium equation,

F(£I32, t ) = (W sin o - f)i + (N - W cos o jj = O. (5.74c)

Consequently, each vector component must be zero; and so the normal and fric-
tional forces on £I32 are determined by

N = W cOSO', j = W sin o. (5.74d)

5.11.3.2. The Moment Equilibrium and No Tip Conditions

The zero moment equation MO(£I32 , t) = 0, the second of the equilibrium
conditions for a rigid body in (5.45), will fix the location d of the line of action
of the resultant normal force N. Since the resultants Nand f in Fig. 5.l8b are
concurrent at a certain point 0 in the interfacial plane, it is clear that the moment
M o of the forces (5.74b) taken about this fixed point in cp will vanish if and only if
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the line of action of W also passes through O. Indeed, it is easily shown in general
that three concurrent force s acting on a particle in equilibrium must be coplanar.
(Is the same generally true for a particle in motion?) Hence, the concurrent forces
W, N, and f lie in the vertical plane containing the interface point 0 and the
center of gravity of the block at the height h above the plane surface. Clearly,
the block will not tumble forward so long the line of action ofW falls within the
distance b to the leading edge of the block, and hence for d S b in Fig . 5.18b.
The line of action of W, and hence the point 0 , is at the leading edge when the
angle a = at = tan" b] h. Therefore, if the plane's angle of inclination may be
increased to the angle at without exciting slip so that at < cc ; the critical angle
of sliding friction, the block will be at the verge of tipping over rather than sliding
down the plane. The slightest further increase in the inclined angle at pushes the
line of action ofW ahead of the leading edge and the block will topple down the
plane before sliding impends, because the moment ofW about 0 at the leading
edge of the block is no longer balanced. Henceforward, we shall suppose that the
moment equilibrium condition a S at for no tipping of the block is respected.
(See Problem 5.28.)

5.11.3.3. The No Slip Condition

From (5.74a) , R = f +N = - W; and hence the resultant contact force must
be opposite to the weight W. Indeed, the zero moment condition for equil ibrium in
(5.45) shows that RandW must be collinear.Hence, in consequence ofequilibrium,
the angle ethat R makes with the normal to the inclined plane surface in Fig . 5.18a
is equal to the plane's angle a. From (5.74d) and (5.72), it is seen that the angle of
repo se must satisfy the inequality

tan o = ~ S u , (5.74e)

in order that f shall be less than the critical force I; at which fX32 will be at the
verge of slipping. The greatest angle ac for which (5.74e) holds is called the critical
angle offriction; it is given by Coulomb's law (5.70) as expressed in (5.74e), that
is,

f c
tanc , = - = [L ,

N
(5.74f)

Thus, the tangent of the angle of repose is critical when it reaches a value equal
to the coefficient of static friction, a value that is independent of the weight of
the block fX32•When a = a; < at, the block will not topple over, but the slightest
further increase in the plane's inclination will cause the block to slide , and our
equilibrium analysis, no longer valid, must be replaced by analysis of the block's
motion. D

The basic free body formulation procedure used above is applied almost in-
variably in the formulation ofall problems in both statics and dynamics. Sometimes



58 ChapterS

problems may be solved easily in direct vector notation, so the decomposition of
the forces into components may not be necessary, but more often than not, for sim-
plicity, it is. It cannot be too strongly emphasized that the free body formulation
for the total force is the same for both a statics and a dynamics problem; and it
is important that the student become thoroughly familiar with this method. The
analysis of the block's motion follows .

5.11.4. Motion of a Block on an Inclined Plane

We now encounter our first application of dynamics in the analysis of the
sliding motion of a block down an inclined plane. Let us continue from where we
left off above and suppose that the plane's angle of inclination exceeds the critical
angle of friction . Then the block slides down the plane without tumbling provided
that ac < a < a, holds . The free body diagram for @ 2 is shown in Fig. 5.18b; it
is the same as before. Consequently, the free body formulation for the dynamics
problem is the same as that for the statics problem and leads again to (5.74a); but
this time the block has a translational motion down the plane, and the appropriate
dynamical equations of motion must be decided . Since the body @ 2 is rigid and
does not tumble, its motion is determined by the Newton-Euler equation (5.43)
for its center of mass:

(5.75a)

The next step is the formulation of the appropriate kinematics. Since the
motion is along a straight line on and down the plane,

(5.75b)

where X*(@2, t) = x*i is the position vector of the center of mass of @ 2 from the
fixed origin F in cpo Collecting the first equation in (5.74c) and (5.75b) in (5.75a),
we have

(W sino - f)i + (N - W cosoj] =mx*i.

This yields the component equations of motion

mx" = W sin o - f and N - W cos o = 0

(5.75c)

(5.75d)

to be solved for the normal force N and for the rectilinear motion X*(@2 , t) of the
center of mass of @ 2.

The second equation of (5.75d) determines the normal force N = W cos u ,
and Coulomb's second law (5.71) for the sliding motion gives

f = !d = vN = vW cos a.

Then with (5.75b) and W = mg, the first relation in (5.75d) yields

a* = x* =g(sina - vcosa)i .

(5.75e)

(5.75f)
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Thus, the acceleration of the center of mass, indeed the acceleration of every
particle of the block in its parallel translation down the plane, is a constant
vector.

The velocity and the motion of the center of mass point are noweasi ly obtained
by integra tion of (5.750, subjec t to specified initial conditions. Let us suppose that
the block is released from rest in rp so that v*(982, 0) = 0 and x*(982, 0) = 0 at
t = O. Then integration of (5.75f) yields

v*(982 , t) = gt(s in a - vcos a)i, then x*(982, t) = 4gt2(sin a - v cos a) i.

(5.75g)

We thus find that the sliding motion is independent of the mass of the body-
it is the same for all bodies, both large and small, so long as (5.71) holds
and the no tip constraint is satisfied. Thi s completes the analysis of the slid-
ing translational motion of the block, but some additional points are noted in the
exercise.

Exercise 5.6. Equation (5.75a) shows that in the dynamic s problem the resul-
tant contact force R on the block is not opposite to the weight W . Consider at time
t the moment equation (5.44) for the applied forces about the fixed origin F at the
initial position of the center of mass of the block . (a) Prove that M F = 0, and thus
show that R is concurrent with W through the center of mass. (See Example 5.5,
page 23.) Therefore, in the absence of rotation, the moment of the forces about the
moving center of mass point also vanishes. (b) Show that the same result follows
when the fixed point F is in the contact plane at the initial position. What is !iFin
this case? (See Problem 5.28 .) 0

Our sliding block example illustrates for a simple translational motion the
more complex nature of the motion analysis of bodie s and the importance of the
center of mass.The translational motion of the block is described completely by the
motion of its center of mass particle, regardle ss of its location in the body. Notice
that the actual identit y of the center of mass was unimportant in (5.75f), and it
remained anonymous in (5.75g)- its location (actually the center of gravity in this
case) was important only in the discussion of potential rotational effects expres sed
by the no tip condition derived from the moment equati on. The anonymity of the
center of mass is typical of many rigid body problems in which rotational effects
are absent.

5.12. Applications of Coulomb 's Laws

Two problems that use Coulomb 's laws in demon stration of the predicti ve
value of the principles of mechanics are studied. The first example illustrates the
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(a)

i~

l.

Figure 5.20. A simple experiment demonstrating the pressure induced. friction reduction principle.

phenomenon of pressure-induced friction reduction useful in a variety of engi-
neering applications. The second example demonstrates the application of basic
principles in providing the solution to a major technical problem during World
WarIL

5.12.1. The Sliding Can Experiment

An empty beverage can' g(j having identical top and bottom rims is shown in
Fig. 5.20a. The can is placed at A on a sheet of slightly wetted glass, which is then
gradually tilted until the critical angle £Xc is attained at which sliding of the can is
initiated. Since the can slides on its narrow rim, the critical angle is independent of
whether the open or the closed end of the can is upward . Of course , upon reaching
the edge of the glass at B, the can falls off. The experiment is conducted at room
temperature and the measured critical angle of friction is about 17°. Coulomb's
laws hold for slightly wetted surfaces, and (5.74f) thus determines the coefficient
of static friction f..i = tan 17° = 0.30.

The empty can is then chilled and the test repeated by first placing the can
on the wetted glass with its open end upward . The critical angle is found to be the
same as before, thus showing for this case that u. is independent of the temperature.
Finally, the can is chilled to the same temperature as before and placed on the wetted
surface with its open end downward. Surprisingly, the can starts to slide when the
critical angle a; is only I° or 2°; and it slides down the entire length of the glass
held at this very small inclination. But it stops rather abruptly when the open end
extends just beyond the edge of the sheet at B in Fig. 5.20a.

§ Adapted from the article by M. K.Hubbert andW.W.Rubey cited in the chapter references . See also
the related articles by M. B. Karelitz and by B. Noble reported therein.
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This curious phenomenon occurs because after a few seconds the cold, trapped
air expands as it begins to warm, causing the internal air pressure to increase.
Because the surface area of the closed end of the can is greater than that of its
open end, there is a resultant uplifting, internal normal pressure on the closed end
that partially supports the weight of the can, and thus reduces the normal surface
reaction force between the can and the glass . The can stops suddenly at the edge
of the sheet because the pressure is abruptly released. To prove this hypothesis,
we analyze the phenomenon.

5.12.1.1. The EquilibriumAnalysis

We begin by showing in Fig. 5.20b the free body diagram of the chilled can
placed on the glass with its open end downward in the inertial frame <1>. The body
force is the weight W of the can. In addition to the normal and frictional contact
forces N and f, there is also a resultant internal contact force P on the closed end
of the can due to excess of the internal air pressure over the outside air pressure.
Thus, the total force acting on the can f?!3 is

F(f?!3 , t ) = W +N +f +P. (5.76a)

Introducing in (5.76a) the component representations for W, N, and f given in
(5.74b), noting that P = Pj , and equating each component to zero in the equilib -
rium equation F(f?!3 , t ) = 0, we find the contact forces

!J = W sinad, Nd = W cos ad - P, (5.76b)

in which the subscript notation should be evident. We see that Nd , the normal
surface reaction force when the open end is down, is indeed reduced by the excess
internal contact force P.

The case when the open end of the can is upward follows from (5.76b) in
which we set P = 0, adjust the subscripts accordingly, and thus recover (5.74d).
When au is increased gradually until sliding is imminent, (5.74f) yields

(5.76c)

(5.76d)

aeu denoting the critical angle of friction when the open end of the can is upward.
This gives the coefficient of static friction Jl between the can and the glass.

Now let us return to the case when the open end of the can is downward , and
rewrite (5.76b) to obtain

!Jtan ad = (l - p(ad»-,Nd

in which p (ad) == P/ W cos ad is the ratio of the uplifting force P to the normal
component W cos ad of the weight of the can. Hence, 0 :::: p (ad) :::: 1. Suppose
that ad is gradually increased to the angle aed at which the can is at the verge of
sliding down the plane. Now remember that in both instances the coefficient of
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static friction in (5.70) is defined by the ratio of the tangential surface frictional
force to the normal surface reaction force ; and since the coefficient of friction must
be the same as before, by (5.76c), f ed / Nd = f eu / N; = tan o.; holds , and (5.76d)
yields the following relation for the apparent critical angle <Xed when the open end
is downward:

with P(<Xed) = P / W cos <Xed . (5.76e)

Because I - p(<Xed) < I, it follows that <Xed < <Xeu , that is, the apparent critical
angle of sliding when the open end of the can is downward is smaller, perhaps
much smaller, than the actual critical angle when its open end is upward. Now, we
know from the experimental data that J1 = tan <Xeu = tan 17° and the largest critical
angle <Xed = 2°; therefore, (5.76e) yields p(2°) = 1 - tan 2°/ tan 17° = 0.886, that
is, the normal internal force on the closed end is very nearly 89% of the can's
weight. The result (5.76e) , therefore, confirms the hypothesis explaining the sliding
beverage can phenomenon-the frictional effect is reduced due to the uplifting,
internal air pres sure .

To continue from here in the static case, we shall need to know the weight of a
typical can , and then compare the predicted force P = 0.89Wwith the value com-
puted from thermodynamics on the basis of the volume and the initial temperature
of the air trapped in the chilled can at room temperature. Without getting into this,
however, we may ask instead-What can be learned about the subsequent motion
of [YJ?

5.12.1.2. The Motion Analysis

The observation that the can stops abruptly when the open end extends just
at the edge of the sheet is investigated. Singularity functions are used to describe
the discontinuous behavior of P when the trapped air suddenly escapes. A similar
analysis may be carried out without the use of singularity functions, an exercise
left for the reader.

Let fa be the distance moved by the center of the can from its initial rest
position at x = 0 to its position at B in Fig . 5.20a, where the trapped air is released.
Afterwards the can will continue to move so that it extends beyond the edge of
the glass an amount say, 8, but it does not fall off. To determine the value of 8
compared with f a , we first find the speed of the can as a function of its position
along the sheet.

Let x* = x denote the center of mass coordinate in the inertial frame <1>, and
begin with the force analysis. The free body diagram of the can is shown in Fig.
5.20b. We suppose that the internal pres sure is "turned on" at x = 0 when the can
is placed on the glass with its open end downward, and later "shut off" at x = £0
as the air suddenly escapes when the can reaches the edge of the sheet. Then, with
the aid of the unit step function (I . I 17), we have

P=[P <x-O >o-P <x-fo >O]i. (5.77a)
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The total force on the can throughout its motion is given by (5.76a), and hence
with (5.74b) and (5.77a) , the equation of motion F(~, t) =ma* =mXiyields the
scalar component relations for the sliding motion at the critical angle acd:

mx = W sinacd - Idd, Nd = W cosacd - p « x - 0 > 0 - < X - £0 > 0),

(5.77b)

wherein by Coulomb's second law (5.71), I dd = VNd during the sliding motion.
Then with W =mg and p(acd) in (5.76e), (5.77b) yields the equation of motion:
x = g cosacd [tanacd - v + vp(acd)(< x - 0 > 0 - < X - £0 >0)] . (5.77c)

To find the speed x = vex) as a function of x, we write x = udvfdx =
d( v2/ 2)/dx , and recall (1.132) for integration of the unit step function . Then use
of the initial data v(O)= 0 at x = 0 in the integration of (5.77c) yields the squared
speed of the can at its current position x(t) :

v2(x) = 2g cos acd [x (tan acd - v)+ vp(acd) (< x - 0 > I - < X - £0 > 1)] .
(5.77d)

Now consider the case when the can slides beyond the edge of the glass and
stops at x = £ > £0'Recalling (1.127) for the unit slope function , setting v(£) = 0,
and introducing p(acd) from (5.76e), we find from (5.77d) the relation for 8/£0:

£ 8 1 - (tan acd) / u.
- = 1+ - = (5.77e)
£0 £0 1 - (tanacd)/v'

wherein 8 == £ - £0 is the overhang distance at the edge of the sheet. The solution
thus shows that the overhang 8 is proportional to the length £0' and hence our
analysis discloses an oversight in the experimental description. If the sheet were
too long, 8 might exceed the can' s radius r, the critical overhang when the can
slides beyond the edge of the glass ; and the can would then fall off. An estimate of
the critical length eoof the sheet, i.e. the maximum initial distance of ~ from the
edge in order that the can will not slide off the end, may be obtained from (5'77e)
at 8 = r;we find

£0 eo v - tanacd- = - = fL . (5.77f)
8 r (fL - v) tan acd

Since tan acd and (fL - v) are small quantities, it follows that the critical length
may be rather large. Hence , for most practical experimental circumstances, our
theoretical analysis predicts that the can generally will stop abruptly and not fall
from the edge.

To get an idea of the size of eo, suppose that v = 0.25 < u. = 0.3. Then for
acd = 2°, say, the critical length to can radius ratio, by (5.77f), iseo/ r = 36.95,
and for the same parameters the can's overhang ratio is 8/£0 =0.027 . Thus, for
a can of radius r = 3.3 em (1.3 in), the critical distance would be about eo =
1.22 m (4.00 ft). For a plate of length £0 = 25 cm (about 10 in.) , say, the overhang
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will be 8 = 0.68 em (0.27 in.), and for £0 = I m (39.4 in.), a value close to the
length of plate reported for the experiment, 8 = 2.7 em (l.l in.). Both example
values are much smaller than the can 's radius . For a larger value of u, or a smaller
value of (Xed, the overhang will be even smaller while the critical length of the
plate will grow larger. Thus, starting at a practicable distance from the edge, the
can will travel beyond the edge only a small distance compared with its radius and
will indeed stop rather suddenly.

5.12.1.3. TechnicalApplications ofthe Friction Reduction Principle

The idea that frictional effects may be reduced by an uplifting internal pres-
sure has been applied to study other phenomena. The spectacular geological phe-
nomenon in which huge masses of nearly horizontal rock formations are displaced
great distances, sometimes as much as 10 to 50 miles or more, is an example . For
sufficiently high interstitial fluid pressure in porous rock, fault blocks of rock may
be pushed over a nearly horizontal subsurface. Like our can experiment, due to
uplifting fluid pressure, the fault blocks slide under their own weight over very
much smaller slopes than otherwise would be possible.

Another striking application of pressure induced friction reduction occurred
in the mechanical design of bearings for the 200 inch telescope at the Mount
Palomar Observatory. Frictional forces opposing the steady, precise rotation of the
telescope in tracking the apparent motion of the stars relative to the Earth had to
be very much less than those that would be produced by conventional bearing s.
Moreover, for these bearing devices, the torque required to tum the telescope would
demand considerable horsepower, and the required loading would cause excessive
deformation of the telescope 's mounting yoke. The problem of supporting and
moving precisely such a massive structure was solved by floating the telescope on
a thin film of oil under pressure. The entire weight of the telescope , roughly one
million pounds (455,000 kg), was supported by bearing surfaces separated by a
thin film of oil 0.005 in. (0.013 mm) thick and under pressure ranging from 200
to 500 psi (1.4 to 3.4 x 106 N/m2) . This design concept reduced considerably the
power required to drive the massive telescope to only 1/12 horsepower!

These examples underscore the utility of the friction reduction principle il-
lustrated by the sliding can experiment. Our next example applies the principles
of mechanics to explain critical U.S. Navy torpedo failures during World War II.

5.12.2. Damn the Torpedoes!

U.S.Navy submarine operations'[ in the early months ofWorldWar II reported
recurring instances of frustrating torpedo malfunction and detonation failures.

'J[ This narrative is adapted from the referenced article s by A. A. Bartlett, D. Murphy, and the book by
T. Roscoe . All discus s the problem of torpedo failures in U.S. Navy submarine operat ions. See also
S. E. Morison.
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Faced with a shortage of torpedoe s and state-of-the-art magnetic detonators that
proved greatly unreliable, Admiral Charles A. Lockwood in Pearl Harbor ordered
the magnetic detonators replaced with impact detonators. But in no time at all
worrisome reports of torpedo failures continued to come in.More than a year passed
with no solution in sight when good fortune in disguise appeared unexpectedly.

On July 24,1943, the U.S. submarine Tinosa was patrolling west ofTruk with
16 torpedoes aboard when Lieutenant Commander Lawrence R. Daspit sighted the
unescorted oil tanker Tonan Maru No.3, one of the largest in the Japanese fleet,
at an unfavorable great range of 4000 yards (3658 m). Four torpedoe s were fired
in a fan pattern oblique to the tanker, actually an unfavorable angle of attack. Two
found their target and exploded near the tanker 's stern to slow the great ship. Two
more were released. Daspit at the periscope, witnessed two explosions that brought
the Tonan Maru to a stop, dead in the water, smoking and starting to settle by the
stern, but not sinking . At the ideal range of about 875 yards (800 m) and now
stationed for a perfect shot at 900 off the tanker's bow, Daspit setup for the kill.
The Tinosa fired a single torpedo that struck normal to the side, nearly amidships
of the giant tanker. The torpedo was heard to make a normal run, followed by
silence. Daspit witnessed only a spray at the point of impact. The torpedo was a
dud! Two more perfect shots followed-both duds. The remaining "tin fish" were
pulled from their tubes and their settings checked, all in good order. Over the next
few hours, six additional torpedoe s were launched one at a time. Each failed to
explode on impact. Damn the torpedoe s-all duds! A frustrated Daspit returned to
Pearl Harbor with his last torpedo, and Japanese salvage vessels from their naval
base at Truk saved the Tonan Maru . The fact that many similar torpedo failures
in the early months of the war slowed U.S. efforts to contain Japanese advances
across the South Pacific islands and the Philippines, underscore s the significance
of this major technic al problem .

The German s experienced similar frustration with magnetic influence torpedo
failures,many exploded prematurely, others missed their target, or failed to explode
on impact. A particularly significant incident occurred on the morning of October
30, 1939, the day before Sir Winston Churchill 's scheduled meeting aboard the
battleship Nelson with Admiral Sir Charles Forbes, Commander-in-Chie f, and
Admiral of the Fleet Sir Dudley Pound. Two weeks earlier on October 14, the
German U-boat commander, Lieutenant Commander Gunther Prien, slipped his
U-47 into the center of Britain 's main naval harbor at the supposedly impregnable
Scapa Flow. Prien maneuvered there on the surface , undetected, and around 1 a.m.
attacked and sunk at anchor the magnificent British battleship HMS Royal Oak ,
afterwards escaping to become a celebrated naval hero .l Following this disaster in

II On March 8, 1941, the destroyer Wolverinewhile escorting a convoy in the North Atlantic, sighted
theU-47 running initially on the surface, and attacked andsank her by depthcharges.The remarkable
and daring LieutenantCommander Gunther Prien, age 33, and his entire crew lost their lives. See the
book by G. S. Snyder in the chapter references for the full story of the Royal Oak disaster, including
many tales of German submarine commander frustration with torpedo failures.
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which 833 officers and men lost their lives, an urgent conference was arranged for
October 31, between Churchill and his admirals aboard the Nelson, the flagship
of Admiral Forbes . But another disaster was unfolding during the morning hours
of the 30th, when V-56, commanded by Lieutenant Wilhelm Zahn, sighted the
battleships Nelson and Rodney, accompanied by the battle cruiser Hood and a
screen of ten destroyers. Zahn maneuvered within range and released a spread of
three torpedoes on Nelson . Three impacting thumps against the battleship's side
were heard in V-56, but no detonation. All duds! The angry Zhan turned away and
reported his aborted attack toV -boat Command, unaware of the true significance of
his failed attempt to sink the Nelson . Nearly every If-boat commander, including
the celebrated "ace" Gunther Prien, reported torpedo failures ; sometimes every
"eel", whether set to explode on impact or set for magnetic detonation, was a dud.

5.12.2.1. Identifying the Problem

What was wrong with the German torpedoes? A special Torpedo Commission
discovered that the fault was not with the torpedoes themselves, but with the depth
at which they were set to pass beneath the target's hull, the point at which the
magnetic pull of the victim was supposed to trigger the warhead. Errors of design
caused the weapon to run too deep, and countermeasures applied by the British also
may have contributed to the German problem. The delicate magnetic exploders
eventually were replaced with dependable impact exploders. By the time the U.S.
entered the war in Europe , the If-boats were scoring hit after hit with shocking
efficiency. (I do not know of any studies on German torpedo defects responsible
for impact failures reported above.)

What was wrong with the V.S. Navy 's torpedoes ? The torpedo returned by
Daspit to Pearl Harbor, checked and later test fired at underwater cliffs of Ka-
hoolawe Island in Hawaii, also was a dud. Examination of the torpedo 's detonator
mechanism revealed that the firing pin that would set off the warhead had released,
but it failed to strike the primer cap with sufficient force to trigger it. Impact exper-
iments were conducted to study the problem . To model a normal impact against
the side of a ship, torpedoes loaded with cinder concrete rather than explosives
were dropped from about 90 ft (27 m) onto a steel plate . Seventy percent of the
tests revealed the same kind of trigger failure on normal impact. In actual sub-
marine operations, however, an oblique impact was believed more likely to occur.
To simulate this condition, the steel plate was set at an angle so that the torpedo
would strike a glancing blow. It was found that the exploder mechanism gener-
ally functioned properly. The investigation now focused on the firing pin design, a
small device weighing several ounces .When released, a spring drove the pin along
parallel guide rods perpendicular to the torpedo axis. The perpendicular impact
force of deceleration was found to be about 500g's, that is, 500 times the force of
gravity, per unit mass . This force produced a guide rod Coulomb frictional compo-
nent of nearly 190 lbs on the firing pin. The trigger spring was unable to overcome
the frictional force and drive the firing pin with sufficient force against the primer
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Figure 5.21. Model of a torpedo exploder mechanism.

cap. In an oblique, glancing impact, the frictional effect was less severe and the
torpedoe s often exploded on impact. So, nearly 2 years after the start of the war,
between July and September 1943, as a fortuitou s consequence of Daspit' s failed
attack on the Tonan Maru , the torpedo exploder mechani sm problem was finally
identified and solved.f

5.12.2.2. The Model Analysis

The problem of U.S. Navy torpedo failures was finally explained by elemen-
tary princip les of mechanics involving Coulomb friction. To explore this, consider
the simple model of the exploder mechani sm shown in Fig. 5.21. The free body
diagram of the firing pin modeled as a block of weight W = mg is shown in
Fig. 5.2I a. The actual direction of g may vary from that chosen in the exam-
ple. The trigger spring driving force from its precompressed state is a known
function FAy ) of the firing pin displacement y; N denotes the normal (impulsive
reaction) force exerted by the guide rods, and Cd is the dynamic friction force.
So, the total force on the block in its sliding motion is F = F, + N +W +Cd =
- Ni + (FAy ) - W - /d )j, in which f d = vN and W = mg.

Here we have a motion of the mass m relative to the rapidly decelerat-
ing torpedo frame. Therefore, the total acceleration of m in the inertial frame
\II = {F; id is given by a = a, + ao = yj - ati , in which a, == f} x/8t 2 = yj
is the relative acceleration of the firing pin in the moving torpedo frame , and

§§ The Tinosa soon returned to the hunt , and by the end of the war she had sunk 16 Japanese vessels,
64,655 tons in all, and survived. In both the number of ships and tonnage sunk in the Pacific theater,
she ranked 19th among the top 25 pig boats in the list of leadin g individual submarine scores . (See
Roscoe, p. 446 . According to this expert (p. 442), "submarines played the leading role in Japan's
defeat. They wrecked Japan's merchant marine. They sank a sizeable chunk of the Imperial Navy.
They bankrupted Japan's home economy with a blockade which established a new adage : viz., an
island is a body of land surrounded by submarines .")
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ao == at = -ati is the rigid body deceleration of the torpedo in 1Jt. Therefore, the
corresponding scalar components in Newton's law (5.39) are -N = <ma, and
Fs(Y) - mg - vN =my , from which the relative acceleration of the firing pin
during the rapid deceleration period is given by

This equation essentially determines the force with which the firing pin will
strike the primer cap to detonate the warhead-it reveals both the problem and
its easy solution. The contribution of g is negligible compared to vat. The spring
force that drives the firing pin is effectively reduced by the increa sed frictional force
arising from the large deceleration of the torpedo in its normal impact. Therefore,
because of its reduced relative acceleration y, the firing pin is unable to strike the
primer cap with sufficient force to trigger the warhead. The simplest direct solution
is to increase the spring force, reduce the firing pin 's mass and, if possible, reduce
the coefficient of friction . The predictive value of the principles of mechanics
demonstrated in this and in previous examples is repeated many times in future
problems.

5.13. What is the Inertial Frame?

In addition to specifying a law of equilibrium for every material universe ,
Newton's first law provides the criterion for deciding whether a reference frame
is an inertial frame. The inertial frame in Newton's laws is an undefined entity,
a primitive concept, but its choice is not arbitrary; it must be a reference frame
relative to which a uniform motion can be sustained without force . Otherwise, the
laws are not applicable, in fact, they have no meaning until the inertial frame itself
is identified. But the first law does not tell us which reference frame is the preferred
referential frame, it merely assumes that such a reference frame exists. Therefore,
what physical reference frame (or body) in the real world may be identified as
Newton's preferential frame?

Plainly, every motion can be determined in a reference frame that is absolutely
at rest. But a body can be identified as fixed in space only relative to other bodies
known to be fixed in space, an evident irresolvable tautology. So, the idea of an
inertial reference frame (or body) being fixed in space is meaningless. In its place,
our most natural choice appears to be the Earth frame .We know, however, that the
Earth's principal motion has a subtle, but demonstrable effect on the oscillations
of a pendulum and on the trajectories of shells and falling bodies. Such relative
motion effects preclude the possibility of an arbitrary uniform motion of a particle
relative to the Earth without intervention of a controlling force , as we shall see
shortly. Then what is the reference frame relative to which the Earth 's motion
may be referred, and under what circumstances may the Earth frame be used as a
Newtonian frame ?
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It appears time after time that the remote stars visible in the night sky alway s
are in their same place relative to the Sun. And these "fixed stars" are used to obtain
a navigational fix on our motion.While sophi sticated measurements reveal that the
distant stars are, in fact, not fixed relative to each other, the so-called "fixed stars"
are chosen as a physical model of an inertial reference system for the real world,
because the remote stars comprise a set of objects (bodies) whose perceptible mu-
tual distances have not changed significantly over countless centuries. Therefore,
the astronomical frame of the fixed stars is a prime candidate for a reference system
that may approximate an inertial frame to a preci sion sufficient for our needs. To
evaluate the accuracy of this assumption, we may compare the observed physical
behavior of bodies with theoretical predictions of that behavior based on Newton's
laws in the astronomical frame . Well, it happens that theoretical predictions of the
effects of the Earth's rotation on the swing of Foucault's pendulum, on the motion
of missiles and falling bodies, and various other phenomena in the world, stand in
sharp agreement with observations. Therefore, the real world , physical reference
frame that corre sponds to the ideal, abstract inertial reference frame in Newton's
laws may be tentatively identified as a reference frame in the distant stars. The
motion of the Earth relative to the astronomical frame is known, so we are now
in a position to evaluate the effect s of using the Earth as a first approximation to
an inertial frame . The effect of the motion of a reference frame on the form of the
laws of motion is described next.

5.14. The Second Law of Motion in a Noninertial Frame

Now, we are, after all, concerned mainly with motion relative to the noninertial
Earth frame, or perhaps another convenient moving reference frame . Therefore,
we shall need to express Newton's second law in terms of the acceleration 82x/8t2
apparent to a moving observer. We thus recall (4.48) for the total acceleration of a
particle referred to a moving frame and rewrite the second law (5.39) to obtain the
equation ofmotion for a particle ofmass m having a motion relative to a moving
frame rp:

ma",(P , t) = F - m (ao +Wf x (w f x x) +wf x x+2wf x v",). (5.78)

Here F = map is the force acting on the particle P whose absolute acceler-
ation in the Newtonian frame <I> is ap = a(P,t) ; and a",(P, t) == 82x/8t2 and
v", = v",(P, t) == 8x/8t are the respective acceleration and velocity of P relative
to rp.

The form of Newton's second law (5.78), in addition to the total force F ,
exposes several "fictitious" forces apparent only to the moving observer in tp, to
whom it appears that the particle is acted upon by a total force

(5.79)
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calIed the apparentforce.The pseudo forces - mw I X (WI X x)and-2mw I X vrp
are called the centrifugal f orce and the Coriolis f orce, respectively. The total of
the pseudoforces, namely,

F[ == -m (ao +WI X (w I X x) + w I x x + 2w I x vrp) , (5.80)

is called the inertialforce. Use of (5.79) in (5.78) now yields Newton 's second law
ofmotion relati ve to any moving fram e cp, including the Earth frame:

82x
Frp = marp(P , t ) = m 8t2 • (5.81)

The basic difference between (5.81) and (5.39) is that the force Frp in (5.79)
is not the total of forces due purely to the interaction between pairs of bodies in the
universe . The additional inertial force (5.80) arises solely from the motion of the
moving observer's frame of reference. Therefore, to a moving observer, the actual
forces that act on a body are not always what they may seem to be.

We are now positioned to show that there exists relative to the inertial frame
infinitely many moving reference frames with respect to which Newton's laws hold
unchanged. Hence, each of these frames is an inertial reference frame. Indeed , we
need characterize only those frame s for which the inertial force (5.80) vanishes
for all motions relative to tp; i.e. those frame s for which

ao +WI x (w I x x) +WI x x + 2w I x vrp = 0, (5.82)

for all x(P , t ) and vrp (P , t ). This is possible when and only when both ao == 0
and wr == 0, that is, if and only if cp has a uniform translational motion relative
to the inertial frame <1> . In this case, from (5.79) and (5.81), Frp = F = marp (P , t )
holds for all motion s of the particle P in the moving frame ip, In particular, Frp = 0
holds, if and only if the particle P has a uniform motion relative to tp, and hence
tp is an inertial frame .

Now let us return momentarily to (5.81) and extend the definition of an
equilibrium state to a particle in a moving frame tp , A particle P is in equilibrium
relat ive to ip if and only if P is at rest or in uniform motion relative to tp, Then , by
(5.81),

equilibrium in cp {} arp(P , t) = 0 {} Frp(P , t ) =O. (5.83)

In this case , by (5.79), the force F applied to P to control its uniform motion in cp
is balanced by the inertial force (5.80): F + F[ = O. Hence, the frame cp is not an
inertial frame. In general, a particle in equilibrium in cp will not be in equilibrium
in the inertial frame <1> , and vice versa. In fact, by (5.38), the particle P may be in
equilibrium simultaneously in <I> if and only if -F[ = F = 0 so that (5.82) holds
for all uniform motion s x = Xo+ vot relative to tp; where Xo and Vo == vrp(P) are
constant vectors; but (5.82) holds when and only when frame cp has a uniform
translational motion relative to the inertial frame in the distant stars.

In sum, every nonrotating, uniformly translating reference fra me is a Newto-
nian referenceframe in which Newton 's laws may be applied. Moreover, a particle
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that is in equilibrium in one inertial frame <1> is in equilibrium in every frame <p
having only a uniform motion oftranslation relative to <1> .

Example 5.9. A particle P in Fig. 5.22 has a radially directed, uniform
motion relative to a frame <p = {O; ek1that is rotating with angular velocity Wf
relative to the inertial frame <1> fixed in the distant stars . The origin 0 has a constant
velocity v0 in <1> . What is the force acting on the particle, and under what conditions
does it vanish?

Solution. We wish to find F = F(P , t) in (5.78) . Since the motion of P
relative to <p is uniform, the particle is in equilibrium relative to <poHence , (5.78)
and (5.83) yield

(5.84a)

Moreover, the origin 0 has a constant velocity, so ao = O. Further, with x = reI ,
we have v'P = 8x/Ot = rei , which is constant relative to frame <p = {O;ek}, shown
in Fig. 5.22. Thus, noting that Wf = we3 and Wf = we3 in the astronomical frame
<1> = {S;Ikl, we find by (5.84a) the force that acts on the particle to control its
uniform motion in the moving frame ip:

F(P, t) = -mrw2el +mirtu + 2wr)e2 . (5.84b)

Therefore, frame <p is not an inertial frame-the uniform motion in <p cannot be
sustained without the application of force in the inertial frame <1>. Clearly, F = 0
in <1> if and only if to == 0, that is, when and only when the frame <p has a uniform
translational motion with velocity Vo in the inertial frame <1>, then <p is an inert ial
frame too. 0
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5.15. Newton's Law in theNoninertial Earth Frame

Now let us consider the influence of the Earth 's motion on the form of
Newton 's equation ofmotion for a particle moving relative to the noninertial Earth
frame. Introduce an inertial frame <1> = {F ;A, B, C} fixed relative to the distant
stars (see Fig . 5.23), and recall the notation used in (4.92) where W f = 0 approx-
imates the constant total angular velocity of the Earth frame cp = {o ;Q, {3, ,}
relative to <1> , x = r is the position vector from the Earth's center C to a particle P
moving on or near the Earth's surface, and ao = ac denotes the acceleration of C
in <1> . Then the apparent force (5.79) acting on P in its motion relative to cp becomes

Fip = F-m (ac +0 X (0 X r)+20xvip) ' (5.85)

First, determine ac by using the second law in which the total force acting on
the Earth as a center of mass object of mass mEat C is to be estimated. All bodie s
in the universe exert a gravitational pull on the Earth , whose mass is estimated
at 5.98 x 1024 kg (1.36 X 1022 tons). In view of the result (5.58) for spherical
bodies, the gravitational actions of all bodies-the Sun and the Earth, the Earth
and the Moon, the Earth and an apple-are modeled as the attractions of particles.
Therefore, an estimate of the total gravitational force acting on the Earth may be
obtained by regarding the Earth E as a free body, in Fig . 5.23, acted upon by the
particle P, the moon M, and the sun S. The equation of motion for the center of
mass of the Earth is thus given by

(5.86)

(5.87)

in which gs , gM, and gp are the respective gravitational field strengths at C due to
the principal surrounding bodies S, M, and P; and FE is the resultant of all other
forces that may act on E, including other weak gravitational force s and the contact
force exerted by the Earth's atmosphere, for example. This estimates ac in (5.85) .

Now consider the free body diagram of the object P in Fig. 5.23. The total
force acting on P is F = m(g \ +g2+g3)+ F0 ' where g" g2, g3 are the field
strengths at P due to the bodies S, M , and E , respectively, F 0 is the total of
all other forces acting on P and mEgp = -mg3 is the mutual gravitational force
between E and P. Use of these relations and (5.86) in (5.85) yields the equation
of motion (5.81) for the object P in the Earth frame cp:

maip = F0 +mg3 (I + :E) +m (g\ - gs) +m (g2 - gM)

m
--FE-m (0 x (0 x r)+20 x vip) '
mE

In view of the great distances separating the principal bodies, some further
approximations are introduced to simplify (5.87) . For the motion of P on or near
the Earth's surface, we have [r] = rs in Fig. 5.23. Hence, the other distances
shown there may be approximated by r\ = rs and rz = ru so that gl = gs and
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Figure 5.23. Free body diagram of a particle P and principal interacting bodies-the Earth, the Moon, and
the Sun.

g2 = gM, very nearly. Clearly, the ratio mimE is infinitesimal, hence negligible
compared with unity, and even though IFE I may be large, we may assume that
m IFEI [mE « IFa I. Use of these further approximations in (5.87) yields the
final reduced form of Newton's equation ofmotion for a particle in the noninertial
Earth frame :

(5.88)

where mg3 is the gravitational force on P due to the Earth, Fa is the total of all
contact and nongravitational body forces that act on P, and the other terms are
inertial forces due to the Earth's rotation.

5.16. The Apparent Gravitational Field Strength of the Earth

The Earth's gravitational field strength apparent to an Earth observer is af-
fected by the Earth 's rotation and by the variation in its shape. To understand this
and to learn how the real and apparent gravitational field strengths are related, let
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us consider an object P at rest relative to the Earth so that vrp = 0 and a, = O.
Then (5.88) reduces to the equation of relative static equilibrium:

Fa +m (g3 - 0 x (0 x r) = O. (5.89)

Suppose P rests on the smooth , horizontal surface of a highly polished desk. Then
Fa is the normal, desk top reaction force on P, and Fa +mg3 = '(- Fa +mg3)n ,
wherein g3 = g3n and n is the central directed , unit normal vector to the Earth 's
spherical surface. Note, however, that the centrifugal force term in (5.89) is directed
outward and perpendicular to the Earth 's rotation vector 0 , so it has components
both normal and tangential to the Earth's surface at the colatitude B, namely,

-m 0 x (0 x r) = mrQ2 sinB(cosB t - sinB n), (5.90)

where t is the southward directed , unit tangent vector to the surface at P. Because
there is no other tangential component in (5.89) to balance the tangential compo-
nent of the centrifugal force, we find the contradictory result Q = 0; otherwise,
the relative equilibrium of an object at ease on a polished desk is not possible!

This dichotomy implies that the general equation (5.88) for the motion of a
particle relative to the Earth cannot be a correct approximation. Review of earlier
estimate s used to obtain (5.88), however, suggests that the problem is more subtle
than the possibility of error introduced by our treating the Earth, the Sun, and
the Moon as particles separated by great distances and neglecting small terms in
mfm s , Suppose, on the other hand, that the gravitational force in (5.89) must
have a small tangenti al component that balances the tangential centrifugal force
component in (5.90). Though this correction addresses objections raised here, it
implies that our spherical model of the Earth is inaccurate.

Let us consider the revised model shown in Fig. 5.24. Suppose that the
attractive force mg3 of the Earth on P has a small northerly directed , tangen-
tial component -mg3 sinat to balance the tangential centrifugal force compo-
nent mr2Q sin Bcos f3t shown in Fig. 5.24a. If the gravitational force exerted by
the Earth is directed toward its center C , while Fa is normal to its surface, as
shown in Fig. 5.24, then the Earth must flatten somewhat at the poles and bulge
slightly at the equator. In fact, geophysical theory and measurements show that
the Earth is an oblate spheroid with a mean equatori al radius re =3963 mile
(6378 km) and a smaller mean polar radius rp = 3950 mile (6357 km), approxi-
mately. The accepted international value for the amount of flattening at the pole is
fL == (rE - rp)lrE = 1/297. The centrifugal force arising from the Earth's rota-
tion thus produces a measurable equatorial bulge of the Earth. Therefore, to derive
a more precise equilibrium result and resolve earlier contradictions, it is necessary
to account for the Earth 's oblateness in computing the gravitational field strength
for a spheroid. This is a difficult problem that we shall not need to discuss here. The
interested reader may consult the chapter reference s by Heiskanen and Meinesz
and by Ramsey for further details.

To account for polar flattening, let us suppose that the direction of the actual
gravitational force mg3 due to the Earth is still directed toward its center C in
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Figure 5.24. The real and apparent gravitational forces acting on a particle P at rest relative to a spheroidal
Earth model.

Fig. 5.24. For equilibrium of P relative to the oblate spheroidal Earth, (5.89) now
yields

(5.91)
+ (-mg3sin a +mrQ2sin ()cos 13) t = O.

In this equation, 13 is the geograph ical colatitude angle, the angle between the polar
axis of rotation and the outward, normal vector to the surface; () is the geocentric
colatitude angle, the angle between the polar axis and the radial line through the
Earth 's center; and a == () - 13 is their angle of deviation. (See Fig. 5.24.) Thus, the
normal reaction force F0 in (5.89) balances the apparent weight mg of P , which
varies slightly over the surface of the Earth . That is, F 0 +mg = 0, wherein the
apparent gravitational fie ld strength g is defined by

g == g3 - 0 x (0 x r) . (5.92)

This rule shows the effect of the Earth 's rotation on the real gravitational field
strength g3. The tangential component of g vanishes in accordance with (5.91):

-g3 sin o + rQ 2sin e cos«() - a ) = 0; (5.93)

and (5.92) becomes

g = gn = (g3cos a - rQ2sin() sin«() - a») n , (5.94)

in which n is the inward directed unit normal vector to the Earth 's surface.
(See Fig. 5.24a.) This is named the apparent acceleration of gravity ; it is the
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gravitational field strength apparent to an observer stationed at a point on the
surface of the Earth at the geographic colatitude f3 = () - a.

The apparentaccelerationofgravity is always perpendicular to the Earth's
surface. This is the direction n along which a plumb bob is attracted when freely
suspended by a string . In this case, F 0 is the tension in the line. The angle a of
the plumb line's deviation from 'the direction of the real gravitational vector g3 in
Fig . 5.24 may be determined by (5.93), but we must remember that g3, r, and a
vary with the angle (). It can be shown by (5.93) and (5.94) that

g3=g(cosa+Asin2()) , (5.95)

in which sin a = A sin() cos () and A == rQ2/ g, with r == r(()) E [rp, rEJ. Since
A is very small (see (4.89)), the angle a is a very small quantity . Retaining only
terms to the second order in a in (5.95), we derive the estimates

g3 = g (I + A sin2() - ~2 sin22()) , a = ~ sin 2(). (5.96)

A final simplification of(5.96) in which terms of order A2and aA are omitted
and r is approximated by its mean value R, say, is given by

RQ2
g3 = g + RQ2cos2A= gE - RQ2sin2A, a = -- sin 2A, (5.97)

2g
where A= I - () +a is the geographiclatitude, the angle between the equatorial
plane and the outward normal to the Earth's surface . This simple estimate relates
the values of the real and apparent field strengths as functions of the latitude A,
and it gives an estimate of the angle of deviation. In particular, g3 = g at the poles
and g3 = gE = g + RQ2 at the equator. Although g3 is closely approximated by
the apparent gravitational field strength g, we have not determined the variation
of g as a function of () or A. This is given accurately by the international gravity
formula .

When rand g are known as functions of () or A, the real gravitational field
strength and its angle of deviation from the normal to the Earth's surface may be
found . A more advanced analysis in potential theory is used to determine g(A),
and ellipsoidal geometry is applied to determine r(A, /1-) in terms of the geographic
latitude Aand the flatness factor /1- . These details need not concern us. It turns out
that the general formulas for the Earth's variable radius r and for the apparent
acceleration ofgravity g are given as

rCA, /1-) = rs (1 - /1- sirr' A+ 5~2 sin22A) , (5.98)

g(}..) = u(l + a sirr' }.. - b sirr' 2}..), (5 .99)

wherein a and b are certain constants. It is seen that r (O, /1-) = re and g(O) = se
are the respective equatorial values of rCA, /1-) and g(A). See the text by Heiskanen
and Meinesz in the References.
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The ellipsoidal shape function with /L = 1/297 adopted by the International
Geodetic Association at Madrid in 1924 is given by the international ellipsoid
formula :

r = 6378.388(1 - 0.0033670sirr' 'A + 0.0000071 sin2 2'A) km. (5.100)

The constants gE and a in (5.99) are obtained empirically from gravity measure-
ments , but b is derived theoretically. The accepted values of these constants adopted
by the General Assembl y of the International Union of Geode sy and Geophysics at
Stockholm in 1930, and reaffirmed unanimou sly at the Toronto, Canada Assembly
in 1957, appear in the inte rnational gravity formula :

g = 9.780490(1 + 0.0052884sin2 'A - 0.0000059sirr' 2'A) mI sec" . (5.101)

This formula provides the apparent local acceleration of gravity as a function
of the geographic latitude. The value of g varies from 9.83 m/sec/ at the poles to
9.78m/sec? at the equator. Our earlier rough calculation based on (5.61)for an ideal
spherical Earth , namely, g = 32.23 ft/ sec' = 9.824 m/sec-, stands in excellent
agreement with these extremes. The standard value adopted internationally for
the apparent acceleration of gravity at sea level and at latitude 'A = 45° is g =
32.1740 ft/ sec2 = 9.80665m/sec/. It is customary to use the rounded value g =
32.2 ft/sec? = 9.80m/sec? in numerical examples. In the sequel, however, we shall
sometimes use g = 32 ft/sec'' to simpli fy a numerical illustration.

The appa rent weight mg of a body q] is its weight apparent to an observer
on the Earth; it is the weight, for example, that one measures when standing on a
bathroom scale! We thus witness again that to a moving observer the actual force
acting on a body is not always what it may seem to be. The difference between the
apparent weight of q] and its absolute, or real weight relative to the Earth in the
inertial reference frame is quite small. Nevertheless, it is our custom to measure
the weight of a body relative to our moving Earth frame , so no confu sion should
arise if, henceforward, the apparent weight of a body q] relative to the Earth is
called, briefly, the weight of q]. Then g = gn in (5.62) is the apparent acceleration
of gravity, and the weight of q] is W =mg = mgn, where n is the inward directed,
unit normal vector to the Earth 's surface.

5.17. Newton's Law in the Earth Frame

The foregoing analysis of the effect of the Earth's motion on the real weight
of a body is based on static considerations. It is clear, however, that the terms in
(5.92) are independent of the particle 's motion relative to a fixed point Q on the
Earth 's surface, and the same terms may always be grouped in the same way in
the dynamical equation (5.88) in which r is replaced by the current position vector
of P from C, written as x = r + p , where p is the position vector of P from Q.
Thus, for motion on or near the Earth 's surface Ipl « [r], and hence the additional
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centripetal acceleration term In x (n x p)1 « In x (n x r)1 is negligible in
comparison with all other terms in the equation. Therefore, in all cases of mo-
tion on or near the Earth's surface, the form of Newton's second law of motion
(5.88) relative to the Earth frame simplifies to

ma", = F - 2mn x v"" (5.102)

in which the total force F acting on the particle P includes its apparent weight
W = mg and the total F 0 of all other forces that act on P. The Coriolis force
in (5.102) is the only term that reflects directly the influence of the Earth 's mo-
tion. Its maximum value, however, is about 1.6 x 10-4 sec" times the magni-
tude of the relative momentum m IV", I' so its contribution is generally small in
comparison with all other forces in (5.102). Consequently, very often the approx-
imation of (5.102) to the classical Newtonian law in a noninertial Earth frame
is used in engineering practice . Indeed, our examples demonstrate that excel-
lent analytical predictions can be obtained by taking the Earth frame as the pre-
ferred frame. Nevertheless, Coriolis effects are sometimes surprising and difficult
to predict without careful analysis, so use of (5.102) for the motion of a parti-
cle relative to the Earth is of interest. Some examples are explored in the next
chapter.

In general , however, in problems of motion referred to a noninertial reference
frame ip, Newton's law (5.81) may be used in cp provided that the total "force"
F", defined in (5.79) includes all inertial forces and all applied forces . The inertial
forces can be significant in noninertial frames other than the Earth frame, and they
should never be thoughtlessly ignored .

This concludes the introduction to the foundation principles of classical me-
chanics created by great mathematicians of the seventeenth and eighteenth cen-
turies. More about this grand and bountiful heritage follows in the chapters ahead.
We end this chapter with an advanced topic borrowed from continuum mechanics .
Here we focus on its application to the problem of the internal interaction between
two particles . The result is useful in our study of the internal potential energy of a
system of particles in Chapter 8. Study of this topic requires familiarity with the
material in Chapters 3 and 4, the relevant parts of which are sketched below. The
reader who may have omitted this material in a first reading, however, will suffer
no significant loss of continuity in moving on to the next chapter.

5.18. Frame Indifference and the Law of Mutual Internal Action

Consider two reference frames cp = {O; id and <I> = {F; Id , the frame
<I> being the preferred frame so that I k are independent of t , though this is
not really essential. Recall the basis transformation tensor Q(t)= ik(t) 0 I k so
that ik(t) = Q(t)Ik is the Euler rotation of the basis of frame <I> into the ba-
sis of frame tp, Of course , to an observer in frame ip ; the bases vectors ik are
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independent of t, as discussed in Chapter 4. Let x<p(P, t) denote the position
vector in <I> of a particle P from the origin of tp, but referred to cp so that
x<p(P, t) = Xk(P, t)ik(t) = Q(t)[Xk(P, t)Id. We define the relative position vec-
tor xct>(P, t) = Xk(P, t)Ik referred to <1>, and thus obtain the transformation rule
relating the relative position vectors :

x<p(P , t) =Q(t)xct>(P, t) . (5.103)

The relative position vectors have the same time dependent components Xk( P, t) in
both frames . Therefore, a transformation of this kind is said to be frame indifferent,
or objective. (Here and below, see Chapter 4, pages 313-317.)

5.18.1. Change of Reference Frame

A change of reference frame is characterized by an orthogonal linear trans-
formation that preserves distances and angles, and for which all observers use
the same universal clock so that trivial, constant time shifts may be ignored. The
change offrame is exhibited in terms of the position vectors Xct>(P, t) and x<p(P , t)
of the same particle from the origins F and 0 of the respective frames <I> and cp in
accordance with

Xct>(P , t) = Bct>(O, t) + x<p(P, t) = Bct>(O , t) + Q(t)xct>(P , t), (5 .104)

where Bct>( 0, t) is the position vector of 0 from F and we recall (5.103). Hencefor-
ward , for simplicity of notation, let us write s'(P, t) =Xct>(P, r), c(t) =Bct>(O, t),
and x(P, r) = xct>(P, t) so that the change of reference frame is given by

x/(P, t) = ,(x, t) = c(t) +Q(t)x(P , t) . (5.105)

Thus, c(t) is the position vector of 0 in frame <I> and Q(t) is an orthogonal tensor
that specifies the rigid rotation of frame cp relative to frame <1> . It is easy to verify
that the change of frame preserves distance between points and angles between
lines.

From now on, let us consider (5.105) as a general change of reference frame
mapping cp = {O ;ed into cpl = {O l;e~}. Then x and Xl are the respective posi-
tion vectors of the same particle P from the origins 0 and 0 1 at time t , and
,(x, t) : tp --+ cpl is shorthand for the right-hand side of (5.105). We may exclude
trivial rigid body rotations of 2mr rad, for n = 1, 2, . . .. For all of these and
for a null rotation, Q= 1. A pure translation is thus described by Q= 1 so that
,(x, t) = c(t) + x(P, t) . Also, we recall from (3.88) that a rotation tensor Q pre-
serves the axis of rotation e, and hence all points u = ue along that axis, that is,
Qu = u. Therefore, Qv(u) = v(u) holds if and only if the vector v(u) is parallel
to u, and hence v(u) =g(u)u, where g(u) is a scalar-valued function of u. These
results are needed below.
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5.18.2. The Principle ofMaterial Frame Indifference

ChapterS

It is commonly assumed , without actually saying so, that the internal force
in a spring is independent of the particular situation in which the spring might be
used. We take for granted that the same extension of the same spring in a fixed
reference frame and in any other reference frame having an arbitrary motion, gives
rise to the same internal spring force and vice versa. Accordingly, the internal
force-extension law of the spring (introduced in the next chapter) is the same at the
top ofa high mountain, the bottom of a deep mine, in fact at any place of rest, and on
a rotating table in a laboratory or in a vehicle speeding along a tortuous highway.
In fact, the idea of invariance of the spring law under translations was adopted
by Hooke in 1675 in a proposal to use the spring to measure gravity. Thus, it is
commonly assumed that the law relating the internal force to the extension depends
only on the extension of the spring relative to itself, and it is not affected in any
manner by arbitrary superimposed rigid body motions of translation and rotation,
the latter altering only the relative direction of the spring force . This is an example
of the important classical principle of invariance of internal material response to
external superimposed rigid body motions, called, briefly, the principle ofmaterial
frame indifference. The principle" has been widely applied in works on material
response of deformable bodies, though often indirectly. In 1955, however, the
general principle of material frame indifference for deformable bodies was given
new motivation by Noll in its application to the constitutive theory of materials in
continuum mechanics. This rule is stated in Noll's termsll as follows .

The principle of material frame indifference: The constitutive laws gov-
erning the internal interactions between the parts of a physical system do not
depend on whatever external frame of reference is used to describe them.

It is emphasized that the principle applies only to internal interactions be-
tween parts ofa system, not to actions of the external world on the system and its
parts. It does not apply to actions on a body that arise, for example, from inertial
forces induced by the motion of the reference frame. These are frame dependent
actions of the external environment on the system, actions that arise as a conse-
quence of the noninertial nature of the reference frame, and which vanish only
when an inertial frame is used. The choice of the external frame of reference is a
matter of convenience. The internal interactions may be mechanical, gravitational,
thermodynamical, electromagnetic, for example. Here we apply the principle to
study the nature of the internal force between a pair of particles, an illustration due
to Noll.

** A history of this principle is traced in the remarkable treatise by Truesdell and Noll cited in the
References.

tt The presentation below, in somewhat different notation and without use of the language and math-
ematical rigor of finite dimensional spaces, parallels that due to W. Noll in unpublished articles
described in the References. I thank Professor Noll for providing a copy of his papers and for his
permission to use the example.
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Newton's law of universal gravitational interaction between any two particles
in (5.46) postulates that the force exerted by one particle on another at any given
instant depends only on their positions , such that (i) the force is directed along
their common line; and (ii) the magnitude of the force depends only on the distance
between them. We are going to show, as Noll proved, that both conditions are
consequences of the principle of material frame indifference.

Consider a system of two particles PI and P2 at a given fixed time t; and let
us assume that the mutual force F21 exerted on the particle P2 by PI depends only
on the positions y and x of the two particles at that instant, so that

F21= F(X, y). (5.106)

Of course , we consider only distinct material points: x =I y. Now, after a change
of frame (5.105), or an equivalent superimposed rigid body motion of the system,
the particles appear at the positions x' = ,(x) , y' = ,(y) and the force appears
to be rotated into F;l = QF21, where Q is the orthogonal tensor in (5.105). Then
according to the principle of frame indifference, the same function F should also
describe the dependence of the force on the positions x' , y' after the change of
frame, so that QF21 = F;l = F(x ' , y') ,This means that the function F must satisfy

QF(x, y) = F(x ', y') , (5.107)

for every change of frame (5.105) and for all points x and y Eep at the instant t .
Let x, y be given, choose a point at q E ep arbitrarily, and consider a pure trans-

lation for which Q = 1 and ,(x) = x + c translates x to x'= q . Then y' = c+Y=
q + (y - x), and hence (5.107) reduces in a pure translation to

F(x , y) = F(q, q + (y - x)).

In particular, we may take q = 0, which is equivalent to our choosing c = -x.
This relation, however, must hold regardless of what q may be chosen . Therefore,
we find that the function F must have the form

F(x , y) = G(y - x) ,

for all x, y. Returning to (5.107) and using (5.108), we have

QG(y - x) = G(y' - x') ,

(5.108)

(5.109)

for all orthogonal Q and for all positions x, y.
Recalling from (5.105) thaty'- x'= Q(y - x) holds for all rotations Q andfor

all x, y, by (5.109), we have QG(y - x) = G(Q(y - x)), that is, with r = y - x,
the position vector of the particle P2 relative to the particle P1,

QG(r) = G(Qr) . (5.110)

This must hold for all vectors r and for all orthogonal transformations Q. Given r,
(5.110) must hold, in particular, for all rotations Q about the axis r so that Qr = r .
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Then, by (5.110), QG(r) =G(r), and hence these Q leave G(r) unchanged. This
means that G(r) must be parallel to r , the axis of rotation . Hence, there exists a
scalar-valued function g(r) such that

G(r) = g(r)r, (5.111)

for all r . But the condition (5.110) require s that g(r)Qr =g(Qr)Qr, that is,
g(r) =g(Qr) for all orthogonal Q. (5.112)

Given r = re , where r = [r]=,.,fM, introduce el = Qe and note that
Qr = Qre = rei . Then, by (5.112), g(re) = g(re/) for an arbitrary direction e' .
Thus , choose e' = -e to obtain g(re) = g( -re).Therefore, the scalar-valued func-
tion g(r) must be an even function of r and independent of its direction. Hence,
g(r) is a scalar-valued function of r alone, defined by g(r) == h(r), and now (5.111)
becomes

G(r) = h(r)r.

Recalling (5.108) and noting in (5.113) that r = y - x, we have

F(x, y) = h(ly - xl)(y - x).

(5.113)

(5.114)

We thus find that the dependence of the force F21 in (5.106) on the positions
x and y must reduce to the specific form

F21 = h(r)r, (5.115)

where r = Ir] and r = re = y - x is the position vector of particle P2 from PI . This
is the most generalform ofthe law ofmutual internal action that satisfies the prin-
ciple ofmaterial frame indifference. Moreover, from (5.114) , F(y, x) = -F(x, y),
that is, F I2 = -F21. This is Newton's third law of mutual action. Thus, the prin-
ciple of frame indifference applied to the internal force between two particles that
depends only on their positions, shows that their mutual internal force is a function
of the distance of their separation and is directed along their common line.

Exercise 5.7. Begin with (5.115) and show that (5.107) is satisfied for an
arbitrary change of frame (5.105). This will conclude the proof of Noll 's theo-
rem: The internal fo rce (5.106) between two particles that depends only on their
positions is frame indifferent if and only if it has the form (5.115). D

Newton's law (5.46) for the mutual gravitational attraction of a pair of particles
is obtained from (5.115) with her) == -Gmlm2/r3. Similarly, Coulomb 's law for
the electrostatic force between two particles with electrical charges q] and qi ,
studied in the next chapter, follows from (5.115) with h(r) == kq, q2/ r3, in which
k is a constant. The general rule (5.115) is also useful in characterizing the total
internal potential energy of a system of particles in Chapter 8.
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that was transporting a group of Japanese scientists and other experts, most of whomwent down
with the ship en route to conquered territories in the East Indies. LieutenantCommander"Pilley"
Lent, however, reported that two of the four magneticallytriggeredtorpedoesfiredon TaiyoMaru
were duds or malfunctioned. Frequent problems of unreliable state-of-the-artmagnetic exploders
that sometimes exploded prematurely, and sometimes not at all, ultimately led to the use of older
impact exploders. Chapter II, Torpedo!, tells of the serious effects of disturbing torpedo impact
failures(includingTinosa 's failed attackon the TonanMaru) , theircause and ultimateelimination.
These major technical problems of defective magnetic and impact torpedoes and the drop-test
experimentsleadingeventuallyto the solutionof the latter are depicted, though somewhatloosely,
in the 1951 WarnerBrothers filmOperation Pacific, starring JohnWayneand PatriciaNeal.

25. SNYDER, G.S.,The Royal Oak Disaster ,WilliamKimber, GreatBritain, 1976; reprintedbyPresido
Press of San Rafael, California, 1978.An American journalist describes in this book one of the
worst disasters in the history of the Royal Navy, whichoccurredduring the earlymonthsofWorld
War II. The story is a fascinating account of the sinking of the great battleshipRoyal Oak by the
German submarineU-47, underLieutenantCommanderGunther Prien, followinghis remarkable
intrusion into the supposedly impregnableBritish navalbase at Scapa Flow.

26. SYNGE, J. L., AND GRIFFITH, B. A., Principles ofMechanics, 2nd Edition, McGraw-Hili, New
York, 1949. Chapters 5 and 13 study effects of the Earth's rotation on the apparent gravitational
field strength and on the equation of motion.

27. TRUESDELL,C; Essays in the History ofMechan ics,Springer-Verlag,Berlin-Heidelberg-NewYork,
1968. This is a fascinating collection of lectures by a renowned scholar, applied mathematician,
and historianof mechanics-highly recommendedto all readers. Chapter I describesandcritiques
the notebooksand the mechanicsof Leonardoda Vinci,including his law of friction and study of
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motionon an inclinedplane. The development of the foundation principlesof classicalmechanics
in the 17thand 18thcenturies due to Newton(1687), Euler (1750), Lagrange(1788), and others
is detailed in Chapter 2. See also Reactions of late Baroque mechanics to success, conjecture,
error, and failure in Newton's Principia . In: Mechanics, editor N. C. Lind, AmericanAcademy
of Mechanics, University Park, Pennsylvania pp. 1-47, 1970. Euler's papers of 1744--1750 are
sketched in The Rational Mechan ics of Flexible or Elastic Bodies 1638-1788. Introduction to
Leonardi Euleri Opera Omnia, Vol. 10 and II, 2nd Series, pages 222-9, 250-4, Orell Fussli
Turici, Switzerland, 1960. This is a historical study of the mechanics of deformablebodies ideal
for all studentsof engineeringand appliedmathematics.

28. TRUESDELL C; AND NOLL, W, The Non-Linear Field Theories ofMechanics, Flugge's Handbuch
derPhysik,Vol. 11113, NewYork, 1stEdition1965, 2ndEditionSpringer-Verlag,Berlin,Heidelberg,
1992. The principleof material frame indifference is presented in Sections 17 through 19, pages
41-5 , and the historyof the principle is traced in Section 19A, pages45-7 , of the firstedition.

29. YEH, H., AND ABRAMS, 1. I., Principles ofMechanics of Solids and Fluids. Vol. I, Particle and
Rigid Body Mechan ics, McGraw-Hill, NewYork, 1960.Equipollentforce systemsare discussed
in Chapters4 and 5.

Appendix: Measure Units inMechanics

In numerical examples, exercises, and problems where measure units are not
explicit, consistent measure units always are understood. It makes no difference
in theoretical mechanics what measure units may be used to express numerical
results. But all countries throughout the world have agreed to adopt in scientific
work the International System of Units, called SI units . Some SI units used in
mechanics are listed in the Table 5.1.

Table5.1. Systemsof measure units

Measure

Mass
Length
Time
Force

SI units

kilogram (kg)
meter(m)
second (sec)
Newton (N)

Engineering units

slug (lb -sec2/ft )
feet (ft)
second (sec)
pound(lb)

English units

pound(Ibm)
feet (ft)
second (sec)
poundal (lb.)

Universal conversion to the SI system, even at this date, is incomplete, and,
of course, many important earlier reference works employ other systems of units,
including the Engineering systemwhich still enjoys wide use throughout the United
States and to a lesser extent in Great Britain. The English system, now largely
abandoned, is another scheme that has been used by engineers in these countries.
Table 5.1 identifies for these systems the measure units of force based on Newton's
second law:

I N = 1kg m/sec", 1 Ib = 1 slug ft/sec", I lb, = 1 Ibm' ft/sec" .

The following conversion factors may be used to relate SI and engineering units:

1 N = 0.225 lb, 1m = 3.281 ft, 1 slug = 14.58kg.
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The Engineering and the English units of mass are related by a dimensionless
conversion factor gowhose numerical value is equal to the standard value of the
acceleration of gravity at a specified point on the Earth . By definition, the mass of
a standardonepound body is I Ibm and its weight is lib, thus W = I lb = I slug -
ft/sec? = mgo = I Ibm ' go ft/sec? . Then with go = 32.2, say , I slug = 32.2 Ibm .
Similarly, the pound is defined as the unit of force that will impart to a I Ibm an
acceleration equal to go. Then with force measured in pounds (engineering units)
and mass measured in pounds mass (English units), Newton's law would become
F = mal go .Wemay be thankful that this practice is no longer fashionable. Though
we shall have no need in this book to prefer one system over another, in numerical
work only Engineering and SI units are used .

Problems

It is essential that throughout the study of this text the student should work a variety of
problems in order to grow familiar with use of the notation, concepts, and definitions; to cultivate,
test, and expand one's understanding of the subject matter; to learn the general methods of
mechanics; and to master various techniques of problem solving. Moreover, it is important that
the problems be approached in a spirit and manner similar to that expressed in the examples,
namely by the use of vector methods so far as may be reasonable and, in large measure, without
the aid of a computing device. Instances where use of a computer is desirable to promote practice
with some numerical calculations will be evident. In general , however, numerical values usually
will serve only to simplify an analysis and to lay bare the relevant aspects of the illustration.
Therefore, the majority of problems in this book have been constructed to avoid senseless use
of a computer so that the student's skills with direct calculations and with manipulations of
anal ytical relations may be reinforced and sharpened to further develop the student's ability to
handle fundamental aspects of analytic geometry, trigonometry, calculus, vector methods, and
differential equations, all essential to the modem demands of engineering practice.

5.1. Three particles of mass ml = 3 kg, m: = 2 kg, m3 = 5 kg are initially located in
<I> = {F ; ik } at XI = 3i - 2j + k m, X2 = 2i - 3k m, X3 = -i + 4k m, respectively, and their
corresponding initial velocities are given by VI = i - 2k m1sec, V2 = 2i - 3j m1sec, V3 =
-2k m1sec. Determine for the initial instant (a) the position and velocity of the center of mass
and (b) the momentum of the system.

5.2 . Consider a system fJ = (Pd of n particles P, with mass m~ , and introduce the nor-
malized mass m, = mUm(fJ) in which m(fJ) is the mass of the system. Let Xk = x*+ Xk and
Xk denote the respective position vectors of Pk from point 0 and from the center of mass C in
frame IjJ = {F;ed . Then, by (5.5), the position vector of C from 0 is given by

/I

x* = L mkXk with
k=1

(P5 .2a)

Lagrange observed that the location of the center of mass C ofa system of particles is determined
uniquely by their relative positions, that is, by their mutual distances of separation djk . He thus
posed the problem of finding C in terms of only these mutual distances. To see how this may be
done, first (a) prove Lagrange's Lemma (1783):

(P5.2b)
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where Jk is the distance from C to the particle P« and djk denotes the distance between the
particles with mass mj and mi . Hint: Note that the vector Xk - xj = Xk - Xj from mj to mk
determines the squareddistancedJk = dfj ' (b) Apply (P5.2b) to proveLagrange's Theoremw on
the center ofmass (1783):

(P5.2c)

wherein dk and de are the respective distances of the particle Pk and of the center of mass C
fromanyspecifiedpoint O. Hint:DetermineL;= I mkJf = L;= I mk(Xk . Xk). The result follows
from here. Because 0 is an arbitrary point, it may be chosen at any of the particle locations so
that the distance of C from any three noncoplanarand noncoaxial particles can be found from
(P5.2c). Therefore, the locationof C may be foundwhen only the mutualdistancesof separation
of the particles are known.

5.3. Lagrange's methoddescribed in the previous problemgenerally involvessome rather
tedious calculations in its application, but it gives an easy solution in some cases. To grasp the
ideaof the theorem,considera systemof two identicalparticlesseparatedby a distancea.Apply
Lagrange's theorem to find the center of mass, and describe carefully how its location is fixed.

5.4. Four identical particlesare situatedat the verticesof an equilateral pyramidwith edge
lengthsa and heighth. Find the center of mass C of the system (a) by use of Lagrange's theorem
in Problem5.2 and (b) by the usual methodexpressed in the normalizedform (P5.2a). (c) Show
that C is the intersection point of the pyramid altitude lines at distance de = 3h/4 from each
particle.

5.5. Find the center of mass of a homogeneous right circular cone of base radius rand
height h.What is the mass of the cone?

Problem 5.6,

5.6. A homogeneouscylindricalwedgeof radius r, length e, and central angle y is shown
in the figure. Determinethe massof the wedge,and findits centerof mass in 1/1 = {F; ik } . Locate
the center of mass of a homogeneoushalf cylinder.

!! A special case of Lagrange's theorem applied to a molecular chain configuration of n atoms of
equalmass is presented byP. J. Flory, StatisticalMechanics of ChainMolecules,Hanser, New York,
pp.5, 383-4, 1988. SeealsoM.F.Beatty, Lagrange's theorem on thecenterofmassof a system of
particles,AmericanJournalofPhysics40, 205-7 (1972).
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Problem 5.7.

B

a IB.t )

5.7. One end of a connecting link AB is hinged at A to a gear G of radius Sem; the other
end is hinged at B to a slider block of mass m = 100 gm. The gear rolls on a fixed horizontal
rack. In 2 sec, the slider block moves from its initial rest position at C in frame <I> = 10; ik }
to the position shown in the diagram. During the intervalof interest, the slider has acceleration
an = IS,y'(x - 16)/3i ern/sec? in <1> . Determinethe momentumof the slider block at the instant
shown in the figure . What is the moment of momentum of B about points at 0 and A at the
instantof interest?

5.8. At a moment of interest to, a particle P of mass 2 kg has the velocity v(P , to) =
16i+4j - 12k mlsecat theplaceX(P , to) = 2i - j + 4k m in frame <I> = IF; id. (a)Determine
the momentumof P and find its moment about F at the time to. (b) What is the instantaneous
momentof momentumof P about the point 0 at r = 2i - 3j + 6k m in <I> when (i) 0 is fixed
in <I> and (ii) 0 is moving in <I> with the velocityVo = 4i-6j mlsec?

5.9. Water issuing from the nozzles of the garden sprinkler described in Problem 4.66,
Volume I , causes it to turn with an angular velocityw(t) as shown. Compute the moment of
momentum about 0 of a fluidparticleP ofmassm as itexits thenozzleat E withaconstantspeed
v relativeto thenozzle.Whatis theabsolutetimerateofchangeof themomentofmomentum of P
at E?

K

Problem 5.10.

5.10. The flywheel shown in the figurehas a constant, counterclockwise angular speed of
5 rad/secrelativeto a platformturningwithaconstant-angular speedof 10rad/sec, as indicated.A
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small slider block of mass 0.2 slug is movingalong a wheel spoke toward the center O. At the
instant to shown, the slider block is I ft from 0 and has a speed of 20 ft/sec that is increasingat
the rateof 10ft/sec? relativeto the flywheel frame cp = 10 ; ik }. (a)What is the linearmomentum
of the block in the ground frame <I> = IF; Id at to? (b) What is its corresponding moment of
momentumabout O? (e) Determineat to the momentof momentum of the slider about F in <1> .

5.11. For the data providedin Problem5.1, determinefor the initial instant the momentof
momentumof thesystemaboutF.What is themomentofmomentumof the systemaboutanother
fixedpoint 0 at Xo = 3i - 2j + k m in <I>? How is the momentabout 0 of the momentumof
the systemaffectedwhen 0 has the initial velocityv0 =4i - 13j+ 6k mJsec?

5.12. Threeparticlesof massm , 2m, and3m occupytherespectiveinitialpositions Xl = 6j
ft, Xz = 0, X3 = -2j ft, and they have the constant velocities VI = 6i+ 3j, V2 = 6i - 3j, V3 =
4i - 5j + 2k (all in ft/see), respectively, in frame <I> = 10 ; ik }. Determine (a) the velocityof the
center of massparticleand (b) themomentumof the system. (c) Find themotionof the centerof
massparticleas a functionof time t , anddescribeits path. (d)What is themomentof momentum
of the system about 0 initially? (e)What is themomentabout 0 of themomentumof the center
of mass particle?

5.13. A loaded balloon of total weightW is falling verticallywith a constant acceleration
a. Neglectwind effects and air resistance,but account for the buoyantforce of the air, and find
the amountof ballastweightw thatmust bediscardedto givethe balloonan upwardacceleration
-a.

5.14. Threeparticlesof massm, 2m, and3m are stationaryat the respectivepoints (0,0,0),
(1,2,3), and (3, 2, I) in frame <I> = 10 ; ik }. Find the resultantgravitational forceexertedon the
particle of massm.

5.15. A particle P of mass fI is at the central point of a homogeneous, semicircular, thin
wireof radius b andmassdensity a per unit length. Determinethe gravitational forceexertedon
P by the wire.

k

Problem 5.16.

5.16. Two thin, homogeneous circular wires gal and ga2of radii a and b, respectively, are
positioned in parallel planesdistanced apart. The mass density of ga2, per unit length, is twice
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that of :d31• A particle P of unit mass is situated as shown in the figure on the normal line 0 A
through their centers. (a) Apply (5.54d) to find the total gravitational force on P due to both
rings . (b) Show that the gravitational force due to .'1B1 alone vanishes at the center of the ring at
o and at infinity, hence a maximum value of this force exists. Find the location b* of P where
the intensity of the gravitational force of :d31 on P is greatest. (c) Repeat part (a) for the case
b = b*.What is the mass ratio m- ]m I of the rings?

5.17. A thin, flat annular body ed has an inner radius R I , an outer radius R2, and uniform
mass density a per unit of area . (a) What gravitational field strength does g(3 produce at a
point P on the line normal to the plane of :d3 through its center 0, at distance X from O?
(b) Determine the field strength at 0 due to d3. (c) Show that for X » R2 the field strength
of g(3 is g(X) = -Gm/ X2k, wherein m = m(0'3), and hence in its gravitational attraction at a
sufficiently great distance X, the ring behaves like a particle in accordance with (5.47).

5.18. A particle P of mass f3 is situated at a distance X > a from the center, and along
the axis of a homogeneous thin rod of length 2a and mass density a per unit length . Find the
gravitational force acting on P due to the rod.

5.19. A particle P of mass f3 is located at a distance X on the center line perpendicular to
the axis of a homogeneous thin rod of mass m and 'length 2a, both lying in the xz-plane. The
origin is at the center of the rod with its axis along k. Show that the gravitational force that the
rod exerts on P is

F
Gmf3 •

(P;X)=- ~I.
X" X2+ a2

(P5.l9)

5.20. A particle of mass m is placed at an external point on the axis of a homogeneous,
right circular cylinder at a distance a from one end . (Choose a frame with origin at the particle
and the cylinder axis as k.) The cylinder has radius R , length L , and mass M . Find the attract ive
force it exerts on the particle .

5.21. Determine the gravitational field strength at the central point Q of a homogeneous,
thin hemispherical shell of radius R and mass m.What is the field strength at Q for a complete
spherical shell?

5.22. Show that the gravitational field strength of a spherical Earth model with radius R
and mass density p = p(R) varies with the normal altitude h from its surface in accordance with
the relation

g(X) == g(h) g(R)
(\ +h/R)2' (P5.22)

where g(R) denotes the field strength at the surface .

5.23. A homogeneous thin rod RI of length 2b and mass M is placed with its axis along the
center line perpendicular to the axis of a similar rod R2 of mass m and length 2a, in the xy-plane.
The center of RI is at c = cj from the center of R2. Determine the gravitational force that the
rod R2exerts on R I . (See Problem 5.19.) Tables of integrals may be needed .

5.24. A homogeneous, thin rod of length eand mass m is positioned with its axis on the
line through the center 0 and perpendicular to the plane of a homogeneous, thin circular disk of
radius R and mass m. The end of the rod near the disk is at a = ak from point O . Find the total
gravitational force exerted on the rod by the disk. What gravitational force does the rod exert on
the disk?

5.25. The moon has a mean diameter of about 2 t60 miles, while that of the Earth is roughly
7910 miles. The ratio of the mass of the moon to that of the Earth is about 3/250 . What is the
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acceleration of gravity on or near the surface of the moon? Compare your weight relative to the
Earth and the Moon.

5.26. Determine the gravitational force between two identical spheres of diameter d when
they touch each other. What is the ratio of the magnitude Wo of their mutual attraction to the
magnitude W of the attractive force exerted on each of them by the Earth? Evaluate the result
for lead spheres with d = 2 ft and p = 22.5 slug/tr' .

L
-+--._p

Problem 5.27.

5.27. A block of weight WI supports a smaller block of weight Wz = iWI constrained by
a light wire inclined at an angle 8 , as shown. (a) Find the horizontal force P required to just start
the block of weight WI moving toward the right. (b) Find the tension in the cable after slip has
occurred. Assume that all surfaces have the same coefficients of static and dynamic friction, and
express the results in terms of tan 8.

p
r - - -
I
I
I
I

o
Problem 5.28.

5.28. A homogeneous crate of mass m rests on a horizontal surface where the coefficient
of dynamic friction is v. (a) Find the magnitude of the inclined force P required to give the crate
a constant accelerat ion a in the direction shown. (b) Apply Euler's second law (5.44) to find the
distance from the center of mass to the line of action of the normal surface reaction force N. Do
this in three ways . (i) Prove that MQ = 0 about a fixed point Q at the initial position of the center
of mass of the crate, and thus solve for the location of N. (ii) Repeat the analysis for the torque
Mo = fio about a fixed point 0 in the contact plane at the initial position. (iii) Prove that the
total torque Me about the moving center of mass must vanish and thus locate the action line of
N. (c) What is the critical angle 8e for impending tip expressed in terms of assigned quantitie s
only?

5.29. The wedge body g(JI in Fig 5.18a, page 53, is accelerated at a constant rate a toward the
right. The block g(Jz maintains contact with the plane throughout the motion. The gravitational
force acts downward in the figure. Show that g(Jz will slide down the inclined surface if a >
g tan(a - l/f), where tan a = J1 is the coeffic ient of static friction for the two surfaces and l/f < a .
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Smooth
Ring

Problem 5.30.

L
v=1/3

93

5.30. The figure shows a block 8 1 of weight WI attached by an inextensible cable to a block
8z of weight Wz .The weight ratio WI/ Wz = 5/6. The cable is supported by a smooth ring, and
8 z rests on a rough horizontal surface where jJ., = 2/5 and v = 1/3. (a) Determine the critical
weight ratio WI/ Wz for which motion is imminent, and thus show that the system must move if
released from rest. (b) Find the acceleration a of the block 8 1 as a function of the weight ratio,
and determine its value for the assigned data .

5.31. A body P of mass m = 5 slug has weight W = 160j Ib relative to the planet <1> .
(a) Suppose that P is at rest on a scale inanonrotating frame e = {o ; ik } which has an acceleration
ao = 20j ft/sec? relative to <1> . What is the weight of P apparent to an observer in cp '1 What is
its apparent weight when «J has the opposite acceleration ao = -20j ft/sec? in <1> '1 Find the
acceleration of cp for which the apparent weight of P vanishes. (b) Now suppose that P is
dropped from a state of rest in <I> so that the only force that acts on P is its weight relative to
<1> . Address the previous question for the observer in tp. (c) Discuss the results and compare the
observat ions in cp with those in <1>.

Problem 5.32.

5.32. During an interval of interest, the vertical motion of a load W is controlled by a
parabolic cam A8C that moves horizontally with a constant velocity v directed as shown. Draw
a free body diagram of the block. Determine the compress ive force in the push rod 8 D in terms
of the load and the assigned quantitie s. Neglect friction .

5.33. A part in an aircraft engine consists of a 0.10 kg massm attached by a 30 em rod to the
propeller drive shaft. The shaft turns, as shown, with an angular velocity w = IOOw(t)i rad/sec .
During a dive, the aircraft accelerates at 3g, and the rod is inclined at a fixed angle () = 30° in
the frame f3 = {o ; id fixed in the propeller shaft. Determine the total force acting on m.
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5.34. A test tube is held at a fixed angle () in a centrifuge spinning, as shown, with a constant
angular velocity w about a fixed vertical axis . A fluid particle ofmass m, initially near the bottom
at F, is moving outward in the tube with a constant relative velocity v = vi. Identify the time
dependent variables, and determine as a function of time the total force that acts on P, referred
to the tube frame 1/1 = IF ; id·

Problem 5.34.

5.35 . A system of three forces F, = 6i + 2j + 4k N, F2 = -2i + 2j - 4k N, F3 = 5i-
3j + 2k N act at the respective points x I = (I , 0 , 0) rn, X2 = (0, 1, 0) rn, X3 = (0, 0, I) m in
frame cI> = IQ; id . (a) Find the equipollent system with force FA = P and torque M~ with
respect to Q. (b) Is FA . M~ = O? (c) Find the equations that describe the line of action of the
single force P . (d) Determine the center of force xQwith respect to the orig in Q. (e) Determine
the center of force x~ with respect to the point 0 at x I in cI>, and confirm your result by showing
that x~ x P = M~ for the original system of force s.
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