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1 • Introduction
Music is full of structure, including sections, sequences of distinct
musical textures, and the repetition of phrases or entire sections.
The analysis of music audio relies upon feature vectors that
convey information about music texture or pitch content. Texture
generally refers to the average spectral shape and statistical
fluctuation, often reflecting the set of sounding instruments,
e.g., strings, vocal, or drums. Pitch content reflects melody and
harmony, which is often independent of texture. Structure is
found in several ways. Segment boundaries can be detected by
observing marked changes in locally averaged texture. Similar
sections of music can be detected by clustering segments with
similar average textures. The repetition of a sequence of music
often marks a logical segment. Repeated phrases and hierar-
chical structures can be discovered by finding similar sequences
of feature vectors within a piece of music. Structure analysis
can be used to construct music summaries and to assist music
browsing.

Probably everyone would agree that music has structure, but
most of the interesting musical information that we perceive lies
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hidden below the complex surface of the audio signal. From this
signal, human listeners perceive vocal and instrumental lines,
orchestration, rhythm, harmony, bass lines, and other features.
Unfortunately, music audio signals have resisted our attempts
to extract this kind of information. Researchers are making
progress, but so far, computers have not come near to human
levels of performance in detecting notes, processing rhythms, or
identifying instruments in a typical (polyphonic) music audio
texture.

On a longer time scale, listeners can hear structure including
the chorus and verse in songs, sections in other types of music,
repetition, and other patterns. One might think that without the
reliable detection and identification of short-term features such
as notes and their sources, it would be impossible to deduce any
information whatsoever about even higher levels of abstraction.
Surprisingly, it is possible to automatically detect a great deal
of information concerning music structure. For example, it is
possible to label the structure of a song as AABA, meaning
that opening material (the “A” part) is repeated once, then
contrasting material (the “B” part) is played, and then the opening
material is played again at the end. This structural description
may be deduced from low-level audio signals. Consequently, a
computer might locate the “chorus” of a song without having any
representation of the melody or rhythm that characterizes the
chorus.

Underlying almost all work in this area is the concept that
structure is induced by the repetition of similar material. This
is in contrast to, say, speech recognition, where there is a
common understanding of words, their structure, and their
meaning. A string of unique words can be understood using prior
knowledge of the language. Music, however, has no language or
dictionary (although there are certainly known forms and conven-
tions). In general, structure can only arise in music through
repetition or systematic transformations of some kind.

Repetition implies there is some notion of similarity. Similarity
can exist between two points in time (or at least two very
short time intervals), similarity can exist between two sequences
over longer time intervals, and similarity can exist between the
longer-term statistical behaviors of acoustical features. Different
approaches to similarity will be described.

Similarity can be used to segment music: contiguous regions of
similar music can be grouped together into segments. Segments
can then be grouped into clusters. The segmentation of a musical
work and the grouping of these segments into clusters is a form
of analysis or “explanation” of the music.
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2 • Features and Similarity Measures
A variety of approaches are used to measure similarity, but
it should be clear that a direct comparison of the waveform
data or individual samples will not be useful. Large differ-
ences in waveforms can be imperceptible, so we need to derive
features of waveform data that are more perceptually meaningful
and compare these features with an appropriate measure of
similarity.

2.1 Feature
Vectors for
Spectrum,
Texture, and
Pitch

Different features emphasize different aspects of the music. For
example, Mel-frequency cepstral coefficients (MFCCs) seem to
work well when the general shape of the spectrum but not neces-
sarily pitch information is important. MFCCs generally capture
overall “texture” or timbral information (what instruments are
playing in what general pitch range), but some pitch information
is captured, and results depend upon the number of coefficients
used as well as the underlying musical signal.

When pitch is important, e.g., when searching for similar
harmonic sequences, the chromagram is effective. The
chromagram is based on the idea that tones separated by octaves
have the same perceived value of chroma (Shepard, 1964). Just
as we can describe the chroma aspect of pitch, the short-term
frequency spectrum can be restructured into the chroma spectrum
by combining energy at different octaves into just one octave. The
chroma vector is a discretized version of the chroma spectrum
where energy is summed into 12 log-spaced divisions of the
octave corresponding to pitch classes (C, C#, D, …B). By analogy
to the spectrogram, the discrete chromagram is a sequence of
chroma vectors.

It should be noted that there are several variations of the
chromagram. The computation typically begins with a short-
term Fourier transform (STFT) which is used to compute the
magnitude spectrum. There are different ways to “project” this
onto the 12-element chroma vector. Each STFT bin can be
mapped directly to the most appropriate chroma vector element
(Bartsch and Wakefield, 2001), or the STFT bin data can be inter-
polated or windowed to divide the bin value among two neigh-
boring vector elements (Goto, 2003a). Log magnitude values can
be used to emphasize the presence of low-energy harmonics.
Values can also be averaged, summed, or the vector can be
computed to conserve the total energy. The chromagram can also
be computed by using the wavelet transform.

Regardless of the exact details, the primary attraction of the
chroma vector is that, by ignoring octaves, the vector is relatively
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insensitive to overall spectral energy distribution and thus to
timbral variations. However, since fundamental frequencies and
lower harmonics of tones feature prominently in the calculation
of the chroma vector, it is quite sensitive to pitch class content,
making it ideal for the detection of similar harmonic sequences
in music.

While MFCCs and chroma vectors can be calculated from
a single short-term Fourier transform, features can also be
obtained from longer sequences of spectral frames. Tzanetakis
and Cook (1999) use means and variances of a variety of features
in a 1-s window. The features include the spectral centroid,
spectral rolloff, spectral flux, and RMS energy.

Peeters et al. (2002) describe “dynamic” features, which model
the variation of the short-term spectrum over windows of about
1 s. In this approach, the audio signal is passed through a
bank of Mel filters. The time-varying magnitudes of these filter
outputs are each analyzed by a short-term Fourier transform. The
resulting set of features, the Fourier coefficients from each Mel
filter output, is large, so a supervised learning scheme is used
to find features that maximize the mutual information between
feature values and hand-labeled music structures.

2.2 Measures
of Similarity

Given a feature vector such as the MFCC or chroma vector, some
measure of similarity is needed. One possibility is to compute
the (dis)similarity using the Euclidean distance between feature
vectors. Euclidean distance will be dependent upon feature
magnitude, which is often a measure of the overall music signal
energy. To avoid giving more weight to the louder moments of
music, feature vectors can be normalized, for example, to a mean
of zero and a standard deviation of one or to a maximum element
of one.

Alternatively, similarity can be measured using the scalar (dot)
product of the feature vectors. This measure will be larger
when feature vectors have a similar direction. As with Euclidean
distance, the scalar product will also vary as a function of the
overall magnitude of the feature vectors. If the dot product is
normalized by the feature vector magnitudes, the result is equal
to the cosine of the angle between the vectors. If the feature
vectors are first normalized to have a mean of zero, the cosine
angle is equivalent to the correlation, another measure that has
been used with success.

Lu et al. (2004) use a constant-Q transform (CQT), and found
that CQT outperforms chroma and MFCC features using a cosine
distancemeasure.Theyalsointroducea“structure-based”distance
measure that takes into account the harmonic structure of spectra
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to emphasize pitch similarity over timbral similarity, resulting in
additional improvement in a music structure analysis task.

Similarity can be calculated between individual feature vectors,
as suggested above, but can also be computed over a window of
feature vectors. The measure suggested by Foote (1999) is vector
correlation:

Sw�i� j� = 1

w

w−1∑

k=0

�Vi+k •Vj+k�� (1)

where w is the window size. This measure is appropriate when
feature vectors vary with time, forming significant temporal
patterns. In some of the work that will be described below, the
detection of temporal patterns is viewed as a processing step that
takes place after the determination of similarity.

2.3
Evaluation of
Features and
Similarity
Measures

Linear prediction coefficients (LPC) offer another low-
dimensional approximation to spectral shape, and other encodings
such as moments (centroid, standard deviation, skewness, etc.)
are possible. Aucouturier and Sandler (2001) compare various
approaches and representations. Their ultimate goal is to segment
music according to texture, which they define as the combination
of instruments that are playing together. This requires sensitivity
to the general spectral shape, and insensitivity to the spectral
details that vary according to pitch. They conclude that a vector
of about 10 MFCCs is superior to LPC and discrete cepstrum
coefficients (Galas and Rodet, 1990).

On the other hand, Hu et al. (2003) compare features for
detecting similarity between acoustic and synthesized realiza-
tions of a single work of music. In this case, the goal is to ignore
timbral differences between acoustic and synthetic instruments,
but to achieve fine discrimination of pitches and harmonies. They
conclude that the chroma vector is superior to pitch histograms
and MFCCs.

3 • Segmentation
One approach to discovering structure in music is to locate
segments of similar musical material and the boundaries between
them. Segmentation does not rely on classification or the
discovery of higher order structure in music. However, one can
envision using segmentation as a starting point for a number of
more complicated tasks, including music summarization, music
analysis, music search, and genre classification. Segmentation
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can also assist in audio browsing, a task that can be enhanced
through some sort of visual summary of music and audio
segments.

3.1
Segmentation
Using Texture
Change

Tzanetakis and Cook (1999) perform segmentation as follows:
Feature vectors Vi are computed as described above. A feature
time differential, �i, is defined as the Mahalanobis distance:

�i = �Vi −Vi−1�
T�−1�Vi −Vi−1�� (2)

where � is an estimate of the feature covariance matrix, calcu-
lated from the training data, and i is the frame number (time).
This measure is related to the Euclidean distance but takes into
account the variance and correlations among features. Next, the
first order differences of the distance, �i − �i−1, are computed.
A large difference indicates a sudden transition. Peaks are picked,
beginning with the maximum. After a peak is selected, the peak
and its neighborhood are zeroed to avoid picking another peak
within the same neighborhood. Assuming the total number of
segments is given a priori, the neighborhood is 20% of the average
segment size. Additional peaks are selected and zeroed until
the desired number of peaks (segment boundaries) has been
obtained.

3.2
Segmentation
by Clustering

Logan and Chu (2000) describe a clustering technique for discov-
ering music structure. The goal is to label each frame of audio
so that frames within similar sections of music will have the
same labels. For example, all frames within all occurrences of
the chorus should have the same label. This can be accom-
plished using bottom-up clustering to merge clusters that are
similar. Initially, the feature vectors are divided into fixed-length
contiguous segments and each segment receives a different label.
The following clustering step is iterated:

Calculate the mean � and covariance � of the feature vectors within
each cluster. Compute a modified Kullback–Leibler (KL) distance
between each pair of clusters, as described below. Find the pair of
clusters with the minimum KL2 distance, and if this distance is below
a threshold, combine the clusters. Repeat this step until no distance
is below the threshold.

The KL2 distance between two Gaussian distributions A and B
is given by

KL2�A�B�= KL�A�B�+KL�B�A� (3)

= �A

�B

+ �B

�A

+ ��A −�B� ·
(

1

�A

+ 1

�B

)

	 (4)
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3.3
Segmentation
and Hidden
Markov
Models

Another approach to segmentation uses a hidden Markov model
(HMM). In this approach, segments of music correspond to
discrete states Q and segment transitions correspond to state
changes. Time advances in discrete steps corresponding to
feature vectors and transitions from one state to the next are
modeled by a probability distribution that depends only on
the current state. This forms a Markov model that generates a
sequence of states. Note that states are “hidden” because only
feature vectors are observable. Another probability distribution,
p�Vi�qi�, models the generation of feature vector Vi from state qi.
The left side of Figure 1 illustrates a four-state ergodic Markov
model, where arrows represent state transition probabilities. The
right side of the figure illustrates the observation generation
process, where arrows denote conditional probabilities between
variables.

The HMM has advantages for segmentation. In general,
feature vectors do not indicate the current state (segment class)
unambiguously, so when a single feature vector is observed, one
cannot assume that it was generated by particular state. However,
some features are more likely to occur in one state than another,
so one can observe the trend of feature vectors, ignoring the
unlikely outliers and guessing the state that is most consistent
with the observations. If transitions are very unlikely, one may
have to assume many outliers occur. On the other hand, if
transitions are common and segments are short, one can change
states rapidly to account for different feature vectors. The HMM
formalism can determine the segmentation (the hidden state
sequence) with the maximum likelihood given a set of transition
probabilities and observations, thus the model can formalize the
trade-offs between minimizing transitions and matching features
to states. Furthermore, HMM transition probabilities can be
estimated from unlabeled training data, eliminating the need to
guess transition probabilities manually.

Aucouturier and Sandler (2001) model the observation proba-
bility distribution P�Vi�qj� as a mixture of Gaussian distributions
over the feature space:

P�Vi�qj� =
M∑

m=1

cj�m ·N�Vi��j�m� 
j�m�� (5)

d

a b

c state sequence
(hidden)

feature vectors
(observable)

q1 q2 q3

V1 V2 V3

...
P(q2 | q1)

P(V1 | q1)
FIGURE 1 Hidden Markov model with four hidden
states a, b, c, and d. As shown, feature vectors
depend only upon the current state, which
depends only upon the previous state.
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where N is a Gaussian probability density function with mean
�i�m, covariance matrix 
j�m, and cj�m is a mixture coefficient. Here,
i indexes time and j indexes state. They train the HMM using
the Baum–Welch algorithm using the sequence vectors from the
single song chosen for analysis. The Viterbi algorithm is then
used to find the sequence of hidden states with the maximum
likelihood, given the observed feature vectors.

One potential drawback of this approach is that the HMM will
segment the signal according to fine-grain changes in spectral
content rather than long-term elements of musical form. For
example, inoneofAucoturierandSandler’s testcases(seeFigure2),
the HMM segmentation appears to isolate individual words of a
singer rather than divide the song according to verses and instru-
mental interludes (Aucouturier et al., 2005). In other words, the
segments can be quite short when there are rapid changes in the
music. Although this might be the desired result, it seems likely
that one could detect longer-term, higher-level music structure
by averaging features over a longer time span or applying further
processing to the state sequence obtained from an HMM.

Peeters et al. (2002) approach the problem of clustering with a
two-pass algorithm. Imagine a human listener hearing a piece of
music for the first time. The range of variation of music features
becomes apparent, and templates or classes of music are formed.
In the second hearing, the structure of the music can be identified
in terms of the previously identified templates.

An automated system is inspired by this two-pass model. In
the first pass, texture change indicates segment boundaries, and
“potential” states are formed from the mean values of feature
vectors within segments. In the second pass, potential states that
are highly similar are merged by using the K-means algorithm.
The resulting K states are called the “middle” states. Because
they represent clusters with no regard for temporal contiguity,
a hidden Markov model initialized with these “middle” states
is then used to inhibit rapid inappropriate state transitions by
penalizing them. The Baum–Welch algorithm is used to train the
model on the sequence of feature vectors from the song. Viterbi
decoding is used to obtain a state sequence. Figure 3 shows the
result of an analysis using this smoothing technique.

FIGURE 2 Segmentation of 20 s of a song. State 0 is
silence, State 1 is voice, accordion, and
accompaniment, and State 2 is accordion and
accompaniment. 0

1

2
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FIGURE 3 Classification of states in “Head Over Feet” from artist Alanis
Morisette. (Adapted from Peeters et al. 2002).

4 • The Similarity Matrix
A concept used by many researchers is the similarity matrix.
Given a sequence of feature vectors Vi and a measure of similarity
S�i� j�, one can simply view S�i� j� as a matrix. The matrix can
be visualized using a grayscale image where black represents
dissimilar vectors and white represents similar vectors. Shades
of gray represent intermediate values. Since any vector is similar
to itself, the diagonal of the similarity matrix will be white. Also,
assuming the similarity measure is symmetric, the matrix will be
symmetric about the diagonal. The interesting information in the
matrix is in the patterns formed off the diagonal.

In very general terms, there are two interesting sorts of patterns
that appear in the similarity matrix, depending on the nature
of the features. The first of these appears when features corre-
spond to relatively long-term textures. The second appears when
features correspond to detailed short-term features such as pitch
or harmony and where similar sequences of features can be
observed. These two types of patterns are considered in the next
two sections.

4.1 Texture
Patterns

First, consider the case where features represent the general
texture of the music, for example whether the music is primarily
vocal, drum solo, or guitar solo. Figure 4 shows an idealized
similarity matrix for this case. The white diagonal appears
because feature vectors along the diagonal are identical. Notice
that wherever there are similar textures, the matrix is lighter in
color (more similar), so for example, all of the feature vectors
for the vocals (V) are similar to one another, resulting in large
light-colored square patterns both on and off the diagonal. Where
two feature vectors correspond to different textures, for example
drums and vocals, the matrix is dark.
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FIGURE 4 An idealized similarity
matrix for segments of drum (D),
vocal (V), and guitar (G) texture. D V G V
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Notice that along the diagonal, a checkerboard pattern appears
at segment boundaries, with darker regions to the upper left and
lower right, and lighter regions to the lower left and upper right.
Foote (2000) proposes the correlation of the similarity matrix
S with a kernel based on this checkerboard pattern in order to
detect segment boundaries. The general form of the kernel is

C =

⎡

⎢
⎢
⎣

1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1

⎤

⎥
⎥
⎦ 	 (6)

(Note that in Eq. (6), row numbers increase in the downward
direction whereas in the similarity matrix images, the row
number increases in the upward direction. Therefore the diagonal
in Eq. (6) runs from upper left to lower right.) The kernel image
in Figure 5 represents a larger checkerboard pattern with radial
smoothing. The correlation N�i� of this kernel along the diagonal

Checkerboard Kernel
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FIGURE 5 The correlation of the kernel shown at lower left with a
similarity matrix.
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of a similarity matrix Scan be considered to be a measure of
novelty (Foote, 2000):

N�i� =
L/2∑

m=−L/2

L/2∑

n=−L/2

C�m�n�S�i+m�i+n�	 (7)

A graph of N�i� for the similarity matrix in Figure 4 is shown in
Figure5.Apeakoccursateachtransitionbecausetransitionbound-
aries have the highest correlation to the checkerboard pattern.

Cooper and Foote (2003) extend this technique for finding
segment boundaries with a statistical method for clustering
segments.

4.2 Repeating
Sequence
Patterns

While the texture patterns described above are most useful
for detecting transitions between segments, the second kind of
pattern can be used to discover repetition within a song. For these
patterns to appear, it is important that features reflect short-
term changes. Generally, features should vary significantly with
changes in the pitch of a melody or with changes in harmony. If
this condition is satisfied, then there will not be great similarity
within a segment and there will not be a clear pattern of light-
colored squares as seen in Figure 4. However, if a segment of
music repeats with an offset of j, then S�i� i� will equal S�i� i+ j�,
generating a diagonal line segment at an offset of j from the
central diagonal. This is illustrated schematically in Figure 6,
where it is assumed that the vocal sections (V) constitute three
repetitions of very similar music, whereas the two guitar sections
(G) are not so similar. Notice that each non-central diagonal line
segment indicates the starting times and the duration of two
similar sequences of features. Also, notice that since each pair of
similar sequences is represented by two diagonal line segments,
there are a total of six (6) off-central line segments in Figure 6.

FIGURE 6 When sections of music
are repeated, a pattern of diagonal
line segments is generated. D V G V

V

D

G

V

G

G
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V
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FIGURE 7 The vocal segments (V) in
this similarity matrix contain a
repetition, generating additional
pattern that is characteristic of
music structure. D V G V
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Although not shown in Figure 6, the similarity matrix can also
illustrate hierarchical relationships. For example, if each vocal
section (V) consists of a phrase that is repeated, the similarity
matrix would look like the one in Figure 7.

Figure 8 illustrates both texture patterns and repeated sequence
patterns from the song “Day Tripper” by the Beatles. The bridge
is displayed, starting with three repetitions of a two-measure
guitar phrase in the first 11 s, followed by six measures of vocals.
Notice how a checkerboard pattern appears due to the timbral
self-similarity of the guitar section (0–11 s) and the vocal section
(11–21 s). Finer structure is also visible. A repeated sequence
pattern appears within the guitar section as parallel diagonal
lines. This figure uses the power spectrum below 5.5 kHz as the
feature vector, and uses the cosine of the angle between vectors
as a measure of similarity.

FIGURE 8 Similarity matrix
using spectral features from
the bridge of “Day Tripper” by
the Beatles.
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FIGURE 9 Time-lag
matrix representation
of the similarity matrix
in Figure 7.

4.3 The
Time-Lag
Matrix

When the goal is to find repeating sequence patterns, it is
sometimes simpler to change coordinate systems so that patterns
appear as horizontal or vertical lines. The time-lag matrix r is
defined by

r�t� l� = S�t� t− l��where t− l ≥ 0	 (8)

Thus, if there is repetition, there will be a sequence of similar
frames with a constant lag. Since lag is represented by the vertical
axis, a constant lag implies a horizontal line. The time-lag version
of Figure 7 is shown in Figure 9. Only the lines representing
similar sequences are shown, and the grayscale has been reversed,
so that similarity is indicated by black lines.

5 • Finding Repeating Sequences
Of course, with audio data obtained from real audio recordings,
the similarity or time-lag matrix will be full of noise and
ambiguity arising from spurious similarity between different
frames. Furthermore, repetitions in music are rarely exact;
variation of melodic, harmonic, and rhythmic themes is an
essential characteristic of music. In order to automate the
discovery of musical structure, algorithms must be developed to
identify the structure that lies within the similarity matrix.
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5.1 Melodic
Sequence
Matching

One way to find repetition is to transcribe the melody and
perform matching on the resulting symbolic transcription. While
extracting the melody from a polyphonic recording (Goto, 2004)
is very difficult in general, an approximate transcription from
an instrumental recording or from a monophonic (melody only)
recording is relatively easy. Dannenberg (2002) describes a
simple transcription system based on the enhanced autocorre-
lation algorithm (Tolonen and Karjalainen, 2000) applied to a
ballad recorded by John Coltrane. The transcription results in a
quantized integer pitch value pi and real inter-onset interval di

for each note (inter-onset intervals are typically preferred over
note duration in music processing). This sequence is processed
as follows:

1. First, a similarity matrix is constructed where rows and
columns correspond to notes. This differs from the similarity
matrix described above where rows and columns correspond
to feature vectors with a fixed duration.

2. Each cell of the similarity matrix S�i� j� represents the duration
of similar melodic sequences starting at notes i and j. A simple
“greedy” algorithm is used to match these two sequences. If
note i does not match note j, S�i� j� = 0.

3. Simplify the matrix by removing redundant entries. If a
sequence beginning at i matches one at j, then there should be
another match at i + 1 and j + 1. To simplify the matrix, find
the submatrix S�i � u� j � v� where the matching sequences at i
and j end at u and v. Zero every entry in the submatrix except
S�i� j�. Also, zero all entries for matching sequences of length
1.

4. Now, any non-zero entry in S represents a pair of matching
sequences. By scanning across rows of S we can locate all
similar sequences. Sequences are clustered: The first non-zero
element in a row represents a cluster of two sequences. Any
other non-zero entry in the row that roughly matches the
durations of the clustered sequences is added to the cluster.
After scanning the row, all pair-wise matches are zeroed so
they will not be considered again.

The result of this step is a set of clusters of similar melodic
segments. Because repetitions in the music are not exact, there
can be considerable overlap between clusters. It is possible for
a long segment to be repeated exactly at one offset, and for a
portion of that same segment to be repeated several times at
other offsets. It may be desirable to simplify the analysis by
labeling each note with a particular cluster. This simplification
is described in the next section.
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5.2
Simplification
or Music
Explanation

The goal of the simplification step is to produce one possible set
of labels for notes. Ideally, the labels should offer a simple “expla-
nation” of the music that highlights repetition within the music.
The AABA structure common in songs is a typical explanation.
In general, longer sequences of notes are preferable because
they explain more, but when sequences are too long, interesting
substructure may be lost. For example, the structure AABAAABA
could also be represented as AABA repeated, i.e., the structure
could be labeled AA, but most theorists would consider this to
be a poor explanation. Hierarchical explanations offer a solution,
but there is no formal notion as yet of the optimal simplification
or explanation.

Dannenberg uses a “greedy” algorithm to produce reasonable
explanations from first note to last (Dannenberg and Hu, 2002).
Notes are initially unlabeled. As each unlabeled note is encoun-
tered, search the clusters from the previous section to find one
that includes the unlabeled note. If a cluster is found, allocate a
new label, e.g., “A”, and label every note included in the cluster
accordingly. Continue labeling with the next unlabeled note until
all notes are processed.

Figure 10 illustrates output from this process. Notice that the
program discovered a substructure within what would normally
be considered the “bridge” or the B part, but this substructure
is “real” in the sense that one can see it and hear it. The gap in
the middle of the piece is a piano solo where transcription failed.
Notice that the program correctly determines that the saxophone
enters on the bridge (the B part) after the piano solo. The program
also identifies the repeated two-measure phrase at the end. It
fails to notice the structure of ascending pitches at the very end
because, while this is a clear musical gesture, it is not based on
the repetition of a note sequence.

FIGURE 10 A computer analysis of “Naima” by John Coltrane. The
automatic transcription appears as a “piano roll” at the top, the
computer analysis appears as shaded bars, where similar shading
indicates similar sequences, and conventional labels appear at the
bottom.
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5.3 Finding
Similar
Sequences in
the Similarity
Matrix

Typically, transcription of a music signal into a sequence of notes
is not possible, so similar sequences must be detected as patterns
in the similarity or time-lag matrix. For example, Bartsch and
Wakefield (2001) filter along diagonals of a similarity matrix to
detect similarity. This assumes nearly constant tempo, but that
is a good assumption for the popular music used in their study.
Their objective was not to identify the beginnings and endings
of repeating sequences but to find the chorus of a popular song
for use as an “audio thumbnail” or summary. The thumbnail is
selected as the maximum element of the filtered similarity matrix,
with the additional constraints that the lag is at least one-tenth
of the length of the song and the thumbnail does not appear in
the last quarter of the song.

Peeters and Rodet (2003) suggest using a 2D structuring
filter on the lag matrix to detect similar sequences. Their filter
counts the number of values in the neighborhood to the left and
right of a point that are above a threshold. To allow for slight
changes in tempo, which results in lines that are not perfectly
horizontal, neighbor cells above and below are also considered.
Lu et al. (2004) suggest erosion and dilation operations on the
lag matrix to enhance and detect significant similar sequences.

Dannenberg and Hu (2003) use a discrete algorithm to find
similar sequences which is based on the idea that a path from
cell to cell through the similarity matrix specifies an alignment
between two subsequences of the feature vectors. If the path
goes through S�i� j�, then vector i is aligned with j. This suggests
using a dynamic time warping (DTW) algorithm (Rabiner and
Juang, 1993), and the actual algorithm is related to DTW.

The goal is to find alignment paths that maximize the average
similarity of the aligned features. A partial or complete path P is
defined as a set of pairs of locations and is rated by the average
similarity along the path:

q�P� = 1

�P�
∑

�i�j�∈P

S�i� j�� (9)

where �P� is the path length using Euclidean distance. Paths are
extended as long as the rating remains above a threshold. Paths
are constrained to move up one cell, right one cell, or diago-
nally to the upper right as shown in Figure 11 (and adopting
the orientation of the similarity matrix visualizations where time
increases upward and to the right). Therefore, every point that is
on a path can be reached from below, from the left, or from the
lower left. Each cell (i� j) of an array is computed by looking at the
cell below, left, and below left to find the (previously calculated)
best path (highest q�P�) passing through those cells. Three new
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i

j j + 1

i + 1

FIGURE 11 Extending a path from
S�i� j�.

ratings of r are computed by extending each of the three paths to
include (i� j). The path with the highest rating is remembered as
the one passing through (i� j).

Because cells depend on previously computed values to the
lower left, cells are computed along diagonals of constant i + j,
from lower left to upper right (increasing i+ j). When no path has
a rating above some fixed threshold, the path ends. A path may
begin wherever S�i� j� is above threshold and no previous paths
exist to be extended.

5.4 Forming
Clusters

After alignment paths are found, they are grouped into clusters.
So if sequence A aligns to sequence B, and sequence A also aligns
to sequence C, then A, B, and C should be grouped in a single
cluster. Unfortunately, it is unlikely that the alignments of A to
B and A to C use exactly the same frames. It is more likely that
A aligns to B and A′ aligns to C, where A and A′ are mostly
overlapping. This can be handled simply by considering A to
equal A′ when they start and end within some fraction of their
total length, for example within 10%. Once clusters are formed,
further simplification and explanation steps can be performed as
described above.

5.5 Isolating
Line Segments
from the
Time-Lag
Matrix

If nearly constant tempo can be assumed, the alignment path
is highly constrained and the alignment path approach may not
work well. Taking advantage of the fact that similar sequences
are represented by horizontal lines in the time-lag matrix,
Goto (2003a) describes an alternative approach to detecting
music structure. In this work, the time-lag matrix is first
normalized by subtracting a local mean value while emphasizing
horizontal lines. In more detail, given a point r�t� l� in the time-
lag matrix, six-directional local mean values along the right,
left, upper, lower, upper right, and lower left directions starting
from r�t� l� are calculated, and the maximum and minimum are
obtained. If the local mean along the right or left direction takes
the maximum, r�t� l� is considered a part of a horizontal line and
emphasized by subtracting the minimum from r�t� l�. Otherwise,
r�t� l� is considered a noise and suppressed by subtracting the
maximum from r�t� l�; noises tend to appear as lines along the
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FIGURE 12 The summary Rall�t� l�
indicates the possibility that there are
similar segments at a lag of l.

l (
la

g)

D V G V G V

t (time)

r (t,l)

Rall (t,l)

upper, lower, upper right, and lower left directions. Then, a
summary is constructed by integrating over time:

Rall�t� l� =
∫ t

l

r��� l�

t− l
d�	 (10)

Rall is then smoothed by a moving average filter along the lag. The
result is sketched in Figure 12. Rall is used to decide which lag
values should be considered when searching for line segments in
the time-lag matrix. A thresholding scheme based on a discrim-
inant criterion is used. The threshold is automatically set to
maximize the following between-class variance of the two classes
established by the threshold:

2
B = �1�2��1 −�2�

2� (11)

where �1 and �2 are the probabilities of class occurrence (the
fraction of peaks in each class), and �1 and �2 are the means of
peak heights in each class.

Each peak above threshold determines a lag value, lp. For
each peak, the one-dimensional function r��� lp� is searched over
lp ≤ � ≤ t. A smoothing operation is applied to this function and
the discriminant criterion of Eq. (11) is again used to set the
threshold. The result is the beginning and ending points of line
segments that indicate repeated sections of music.

5.6
Modulation
Detection

A common technique in pop music when repeating a chorus is
to change the key, typically modulating upward by half-steps.
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(Note that “modulation” in music is not related to amplitude
modulation or frequency modulation in the signal processing
sense.) Since modulation changes all the pitches, it is unlikely
that a feature vector that is sensitive to pitch sequences could
detect any similarity between musical passages in different keys.
To a first approximation, a modulation in music corresponds
to frequency scaling, as if changing the speed of a vinyl record
turntable or changing the sample rate of a digital recording. On
a logarithmic frequency scale, modulation is simply an offset,
and when the scale is circular as with pitch classes and chroma,
modulation is a rotation. To rotate a vector by �, the value of
the ith feature is moved to become feature (i + �) mod 12. One
would expect the chroma vectors for a modulated passage of
music to be quite similar to a rotation of the chroma vectors of
the unmodulated version.

Goto (2003a) exploits this property of the chroma vector by
extending the time-lag matrix to incorporate chroma vector
rotation by a transposition amount �. Denoting V�

t as a transposed
(rotated) version of a chroma vector Vt, r��t� l� is the similarity
between V�

t and the untransposed vector V0
t−l. Since we cannot

assume the number of semitones at the modulation in general,
the line segment detection is performed on each of 12 versions
of r��t� l� corresponding to the 12 possible transpositions (this
usually does not increase harmful false matches). The segments
from all 12 versions are combined to form the set of repeated
sections of music, and the transposition information can be saved
to form a more complete explanation of the music structure.

5.7 Chorus
Selection After
Grouping Line
Segments

Since each line segment indicates just a pair of repeated
contiguous segments, it is necessary to organize into a cluster
the line segments that have mostly overlapping frames. When a
segment is repeated n times (n ≥ 3), the number of line segments
to be grouped in a cluster should theoretically be n�n−1�/2 in the
time-lag matrix. Aiming to exhaustively detect all the repeated
segments (choruses) appearing in a song, Goto (2003a) describes
an algorithm that redetects missing (hidden) line segments to
be grouped by top-down processing using information on other
detected line segments. The algorithm also appropriately adjusts
the start and end times of line segments in each cluster because
they are sometimes inconsistent in the bottom-up line segment
detection. Lu et al. (2004) describe another approach to obtain
the best overall combination of segment similarity and duration
by adjusting segment boundaries.

A cluster corresponding to the chorus can be selected from
those clusters. In general, a cluster that has many and long
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segments tends to be the chorus. In addition to this property,
Goto (2003a) uses heuristic rules to select the chorus with a
focus on popular music; for example, when a segment has half-
length repeated sub-segments, it is likely to be the chorus. The
choruslikeness (chorus possibility) of each cluster is computed by
taking these rules into account, and the cluster that maximizes
the choruslikeness is finally selected.

5.8 Texture
Sequences

Detecting repeating patterns in the similarity matrix is equiv-
alent to finding sequences of similar feature vectors. An alter-
native is to find sequences of similar texture classes. Aucouturier
and Sandler (2002) perform a segmentation using hidden Markov
models as described earlier. The result is a “texture score”, a
sequence of states, e.g., 11222112200, in which patterns can be
discovered. They explore two methods for detecting diagonal lines
in the similarity matrix. The first is kernel convolution, similar to
the filter method of Bartsch and Wakefield (2001). The second uses
the Hough transform (Leavers, 1992), a common technique for
detecting lines in images. The Hough transform uses the familiar
equation for a line: y = mx + b. A line passing through the point
(x� y) must obey the equation b = −mx + y, which forms a line in
the (m�b) space. A series of points along the line y = m0x + b0 can
be transformed to a series of lines in (m�b� space such that all
intersect at (m0� b0). Thus, the problem becomes one of finding the
intersection of lines. This can be accomplished, for example, by
making a sampled two-dimensional image of the (m�b) space and
searching for local maxima. It appears that the Hough transform
could be used to find patterns in the similarity matrix as well as in
the “texture score” representation.

One of the interesting features of the texture score represen-
tation is that it ignores pitch to a large extent. Thus, music
segments that are similar in rhythm and instrumentation can
be detected even if the pitches do not match. For example,
“Happy Birthday” contains four phrases of six or seven notes.
There are obvious parallels between these phrases, yet they
contain four distinct pitch sequences. It seems likely that pitch
sequences, texture sequences, rhythmic sequences, and other
feature sequences can provide complementary views that will
facilitate structure analysis in future systems.

6 • Music Summary
Browsing images or text is facilitated by the fact that people
can shift their gaze from one place to another. The amount of
material that is skipped can be controlled by the viewer, and in
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some cases, the viewer can make a quick scan to search for a
particular image or to read headlines. Music, on the other hand,
exists in time rather than space. Listeners cannot time-travel to
scan a music performance, or experience time more quickly to
search for musical “headlines”. At best, one can skip songs or
use fast-forward controls with recorded music, but even this is
confusing and time-consuming.

One application of music structure analysis is to enable the
construction of musical “summaries” that give a short overview
of the main elements of a musical work. Summaries can help
people search for a particular piece of music they know or locate
unfamiliar music they might like to hear in full. By analogy to
low-resolution versions of images often used to save space or
bandwidth, summaries of music are sometimes called “music
thumbnails”.

Cooper and Foote describe a simple criterion for a music
summary of length L: the summary should be maximally similar
to the whole. In other words, a summary can be rated by summing
the similarity between each feature vector in the summary with
each feature vector in the complete work. The rating for the
summary beginning at feature vector i is

QL�i� = 1

NL

i+L∑

m=i

N∑

n=1

S�m�n�	 (12)

The best summary is then the one starting at the value of i
that maximizes QL�i�. The formula can be extended by weighting
S�m�n� to emphasize earlier or louder sections of the song.

Other approaches to summary construction are outlined by
Peeters et al. (2002). Assume that music has been segmented
using one of the techniques described above, resulting in three
classes or labels A, B, and C. Some of the interesting approaches
to musical summary are:

• Use the most common class, which in popular music is often
the chorus. Some research specifically aims to determine the
chorus as described earlier (Bartsch and Wakefield, 2001;
Goto, 2003a).

• Use a sample of music from each class, i.e., A, B, C.
• Use examples of each class transition, i.e., A → B, B → A, A → C.

In all cases, audio segments are extracted from the original music
recording. Unfortunately, artificially and automatically generated
transitions can be jarring to listeners. Music structure analysis
can help to pick logical points for transitions. In particular, a
cut from one phrase of music to a repetition of that phrase
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can be inaudible. When a cut must be made to a very different
texture, it is generally best to make the cut at an existing point
of strong textural change. In most music, tempo and meter
create a framework that is important for listening. Cuts that
jump from the end of one measure to the beginning of another
preserve the short-term metrical structure of the original music
and help listeners grasp the harmonic and melodic structure
more easily. Segments that last two, four, or eight measures
(or some duration that relates to the music structure) are more
likely to seem “logical” and less disruptive. Thus, music structure
analysis is not only important to determine what sections of
music to include in a summary, but also to organize those
sections in a way that is “musical” and easy for the listener to
comprehend.

An alternative to the construction of “music thumbnails” is
to provide a “smart” interface that facilitates manual browsing
of entire songs. The SmartMusicKIOSK music listening station
(Goto, 2003b) displays a time line with the results of an automatic
music structure analysis. In addition to the common stop, pause,
play, rewind, and fast-forward controls, the SmartMusicKIOSK
has controls labeled “next chorus”, “next section”, and “prev
section” (see Figure 13). These content-based controls allow users
to skim rapidly through music and give a graphical overview
of the entire music structure, which can be understood without
listening to the entire song.

FIGURE 13 The SmartMusicKIOSK
user interface showing music
structure and structure-related
controls.
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7 • Evaluation
Most research in this area has been exploratory, with no means
to evaluate whether computer-generated structures and segments
are “correct”. In most cases, it is simply interesting to explore
what types of structures can be uncovered and what methods can
be used. Quantitative evaluations will become more important as
problems are better understood and when competing methods
need to be compared.

Tzanetakis and Cook (1999) conducted a pilot study to compare
their automatic segmentation with human segmentation. They
found most human subjects agreed on more than half of the
segments, and their machine segmentation found more than half
of the segments that humans agreed upon.

Bartsch and Wakefield (2001) hand-selected “true audio
thumbnails” from 93 popular songs and measured “recall”, the
fraction of true frames labeled by their program as the chorus,
and “precision,” the fraction of labeled chorus frames that are
true frames. With the chorus length set to around 20–25 s, the
average recall and precision is about 70%, compared to about
30% for a chorus interval selected at random.

Goto (2003a) also used hand-labeled choruses in 100 popular
songs from the RWC Music Database, a source that enables
researchers to work with common test data (Goto et al., 2002).
Goto judged the system output to be correct if the F-measure
was more than 0.75. The F-measure is the harmonic mean of
recall rate (R) and precision rate (P): F-measure = 2RP/�R+P�.
The system dealt correctly with 80 of 100 songs.

Evaluating music structure descriptions is difficult. Structure
exists at many levels and often exhibits hierarchy. The structure
intended by the composer and perhaps determined by a music
theorist may not correspond to the perception of the typical
listener. Nevertheless, one can ask human subjects to identify
pattern and structure in music, look for consistency between
subjects, and then compare human descriptions to machine
descriptions of music. One can also evaluate the impact of music
structure detection upon tasks such a browsing, as in SmartMu-
sicKIOSK (Goto, 2003b).

8 • Summary and Conclusions
Knowledge of musical structure can be used to construct music
summaries, assist with music classification, provide high-level
interfaces for music browsing, and offer high-level top-down
guidance for further analysis. Automatic analysis of music
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structure is one source of music meta-data, which is important
for digital music libraries.

High-level music structure is generally represented by parti-
tioning the music into segments. Sometimes, segments are
labeled to indicate similarity to other segments. There are two
main principles used to detect high-level music structure. First,
segment boundaries tend to occur when there is a substantial
change in musical texture. In other words, this is where the music
on either side of the boundary is self-similar, but the two regions
differ from each other. Secondly, segments can be located by
detecting patterns of repetition within a musical work.

It should be noted that the music signal, viewed as a time-
domain waveform, is not directly useful for analysis because
repetition in music is never exact enough to reproduce phase
and amplitude relationships. Therefore, the signal is processed
to obtain features that capture useful and more-or-less invariant
properties. In the case of texture analysis, features should capture
the overall spectral shape and be relatively insensitive to specific
pitches. Low-order MFCCs are often used to measure texture
similarity. To detect music repetition, features should capture
changes in pitch and harmony, ignoring texture which may
change from one repetition to the next. The chroma vector is
often used in this case.

The similarity matrix results from a comparison of all
feature vector pairs. The similarity matrix offers an interesting
visualization of music, and it has inspired the application of
various image-processing techniques to detect music structure.
Computing the correlation with a “checkerboard” kernel is one
method for detecting texture boundaries. Using filters to detect
diagonal lines is one method for detecting repetition.

Detecting segment boundaries or music repetition generates
individual segments or pairs of segments. Further processing can
be used to merge segments into clusters. Hidden Markov models,
where each hidden state corresponds to a distinct texture, have
been applied to this problem. When music is analyzed using
repetitions, the structure can be hierarchical, and the structure
is often ambiguous. Standard clustering algorithms assume a set
of distinct, fixed items, but with music analysis, the items to be
clustered are possibly overlapping segments whose start and end
times might be adjustable.

Music structure analysis is a rapidly evolving field of study.
Future work will likely explore the integration of existing tech-
niques, combining texture-based with repetition-based segmen-
tation. More sophisticated features including music transcription
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will offer alternative representations for analysis. Finally, there is
the possibility to detect richer structures, including hierarchical
patterns of repetition, rhythmic motives, harmonic progressions
and key changes, and melodic phrases related by transposition.
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