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Glossary

Scanning tunneling microscope (STM)
A nano-technology instrument capable of imaging the
topography of conducting surfaces with atomistic res-
olution. It can also be used to manipulate individual
atoms and molecules, and construct nano-scale struc-
tures.

Atomic force microscope (AFM) A nano-technology in-
strument for investigation of material surfaces on
atomistic and molecular scales. It can be used to map
the topography of non-conducting surfaces, by sens-
ing the inter-atomic forces, and produce three-dimen-
sional images of these surfaces.

Spintronics Refers to the field of spin-based electronics
rather than charge-based electronics. It will lead to
a new type of device that is based on the use of elec-
tron spin for transfer and storage of information.

Brillouin zone In solid state physics several Brillouin
zones can be defined. The first zone is defined as the
Wigner–Seitz primitive cell of the reciprocal lattice.
The nth Brillouin zone is defined as the set of points
that are reached from the origin by crossing (n � 1)
Bragg planes.

Monte Carlo (MC) method In computational modeling,
this method provides a probabilistic scheme for solv-
ing a variety of problems by employing powerful sam-
pling techniques. In nano-science and condensedmat-
ter physics, one application of this method is for com-
puting the minimum energy state of a nano-structure.

Stochastic dynamics (SD) method This refers to the
computer simulation method wherein the Langevin
equation of motion, describing the random behavior
of a particle, is solved as opposed to the deterministic
MD method in which Newton’s equations of motion
are solved.

Nano-electromechanical systems (NEMS) These are
nano-technology based systems that are the smaller
versions of the micro-electromechanical systems
(MEMS). They are capable of measuring small dis-
placements, sensingminute amount of substances, and
performing rotary motions. NEMS can be constructed
via either the top-down approach, i. e., via minia-
turization of the micro-scale devices, or via the bot-
tom-up approach, i. e., by positioning single atoms or
molecules so that a complex and functional nano-sys-
tem is built from below the nano-scale.

Ab initio approach This is the first-principles approach
to the computation of the properties, especially the
electronic-structure properties, of nano-scale systems
using quantum-mechanical concepts and methods. In
this method, the structure of a molecule, for instance,
is obtained purely from a knowledge of its composition
by solving the Schrödinger equation.
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Definition of the Subject

Carbon nanotubes form the fourth allotrope of crys-
talline carbon after graphite, diamond, and a variety of
caged-like fullerene molecules, and were discovered in
the early 1990s. Their mechanical properties make them
stronger than steel, and their thermal conductivity is faster
than copper. They have very exotic electronic-conduc-
tion properties, namely, by changing their geometry, or
introducing topological defects into their structure, their
electronic conductance can change from metals to semi-
conductors. They can also be used to store gases and trans-
port fluids. Furthermore, nano-scale robots, machines,
and sensors can be constructed from them, and these can
be used to deliver drugs to specific locations in the body,
or detect individual cancer cells, or be used as molecular
filters to separate minute particles from the environment.
Carbon nanotubes are referred to as the fabric of nano-
technology, and will play a central role in the future devel-
opment of this technology. Understanding the properties
of nanotubes, via computational simulation studies, has
been one of themost intensive areas of research in physical
sciences during the past 20 years.

Introduction

The current scientific-technological arena is distinguished
by the presence of four distinct and highly complex disci-
plines, namely:

1) information science, underlying the fields of infor-
mation technology, high performance computing, and
computational science,

2) molecular genetics and molecular biology, underlying
the fields of genetic engineering and bio-technology,

3) neuro and cognitive sciences, and their related fields of
neural- and brain-based technologies,

4) nano-science, and its related fields of nano-technol-
ogy and molecular-scale engineering, making atom-
by-atom manipulation of the physical, biological and
smart matter possible.

These four areas are strongly correlated, and the post-
modern era in science and technology will be character-
ized by research efforts to establish, step-by-step, a close
synergy among these fields, leading to their total integra-
tion within a unified and holistic framework, promoting
the convergence of all these seemingly separate and com-
partmentalized branches and paving the way for the emer-
gence of a convergent technology [49]. Such a technol-
ogy will produce advanced man-made machines, devices,
components, andmaterials that carry some of the most es-
sential characteristics of the biological and smart systems,

such as self-repair, self-assembly, self-correction of inter-
nal faults, re-production, ability to establish communica-
tion, and adaptation to unfamiliar environments.

The convergence takes place at the nano-scale (1–100
nanometers) since the main building blocks of the physi-
cal, biological and smart matter, i. e., the physical and bio-
logical nano-structures, and the laws governing their evo-
lution, are formed at this scale. It is, therefore, no exagger-
ation to state that nano-scale science and nano-scale tech-
nology [17] represent the main components of the 21st
century science and technology. It is now accepted that
nano-science can be defined as the study of structures, dy-
namics, and properties of systems wherein one or more of
spatial dimensions varies in the nanoscopic range. At this
scale, the dynamics and properties of systems are distinctly
different, very often in quite unforeseen ways, from those
in microscopic and macroscopic systems.

Nanoscopic structures operate on very reduced time
and energy scales, and are constructed from a countable
number of atoms and molecules. Their sizes are located
between those of molecules and micro-structures, and
their distinguishing feature is their high aspect, or surface-
to-volume, ratio. Nano-technology represents the combi-
nation of atomic and molecular level techniques and in-
strumentations for constructing nano-scale devices, sys-
tems, and components from the assemblies of individual
nano-structures. On the other hand, nano-technology is
an enabling technology, injecting nano-structures intomi-
cro- and macro-scale, devices, materials, and systems to
enhance, or radically change, their electronic, mechanical,
optical and thermal properties. For instance, nano-struc-
tured materials, i. e., materials with nano-sized grains, or
materials injected with nano-grains, can show very differ-
ent mechanical, thermal, electronic and optical properties.
For instance, it is known that nano-structured Fe, Cu and
Ni have electrical resistances respectively 55%, 15% and
35% higher than the coarse-grained polycrystalline sam-
ples [38].

Nano-structures can be assembled by a precise po-
sitioning of the atoms at specified locations, using such
highly sensitive devices as the scanning tunneling mi-
croscope (STM) [9], and the atomic force microscope
(AFM) [8]. These devices can provide access to the de-
tailed topography, crystal structure, and the electronic-
structure maps at material surfaces and of individual
nano-structures. Their use has led to the design and fabri-
cation of devices, and materials, that manifest novel phys-
ical, chemical and biological properties.

Among the multitude of nano-structures currently
used in nano-technology, carbon nano-structures occupy
a central position, with wide-ranging applications in prac-
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tically all the nano-technology sub-fields. Carbon is a fun-
damental element, crystallizing in several allotropes. In
the 1970s, diamond and graphite were the only known
forms of condensed carbon, and a third allotrope, the cage-
like fullerenemolecules, was discovered and synthesised in
macroscopic amounts by mid 1980s. In 1990s, the fourth
allotrope, the multi-walled carbon nanotube (MWCNT),
and the single-walled carbon nanotube (SWCNT) were
synthesized [20,21]. Several growth techniques, namely,
the arc-discharge, the laser ablation, and recently the
chemical vapor deposition method, have been developed.
The appearance of nanotubes has led to the emergence
of new and very active areas of research within several
fields; in computational and experimental nano-science,
industrial nano-technology, theoretical and experimental
condensed matter physics and chemistry, materials sci-
ence and engineering, bio-physics, medical nano-technol-
ogy, molecular genetics, nano-biotechnology, information
technology device fabrication, optics, electro-mechanical
systems and electronics, carbon nanotubes are viewed as
highly relevant nano-structures with extensive potential
applications.

Originally, the carbon nanotubes were of multi-walled
variety, with outer diameters in the range of 4–30 nm
and lengths of up to 1 �m [21]. These consisted of
seamless concentric cylindrical shells, separated by 3.4 Å.
Each shell was a rolled-up version of a two-dimensional
graphene sheet. The single-walled nanotubes were synthe-
sized later [6,22], and consisted of single graphene sheets
with a typical diameter on the order of 1.4 nm, simi-
lar to the diameter of a C60 molecule, and lengths usu-
ally on microscopic orders [21]. It was also found that
these SWCNTs can bundle together to form a rope, nor-
mally patterned as a hexagonal array, with a morphology
very similar to porous materials, and membranes, with
nanometer spaces available both inside the nanotubes and
in the interstitial channels between them that can be uti-
lized for storage of adsorbed gases, and flow of fluids, turn-
ing them into filtering channels and molecular sieves.

Another form of SWCNTs, called single-walled carbon
nanohorn (SWCNH), has also been synthesized [23]. This
horn-shaped material has a closed structure, with a cylin-
drical part and a horn-tip part. Its internal space is not nor-
mally available as a storage medium, but heat-treatment
within an oxygen environment promotes the appearance
of windows on the its walls, allowing for gas and liquid
particle transfer to the interior.

Nanotubes incorporating fullerenes, such C60 mole-
cules, have also been synthesized [55], and are referred
to as peapods. The internal space of the SWCNT is filled
with a regularly-arranged formation of fullerene mole-

cules [21]. Peapods, when heated to 1000–1200°C, trans-
form into double-walled carbon nanotubes (DWCNTs),
as the encapsulated molecules coalesce [21]. Peapods pro-
vide a good model of nano-platforms for targeted drug
delivery.

As will be discussed later, an SWCNT is identified by
two chiral indices (n;m) that determine its diameter, and
depending on their values, three different classes of nano-
tube are observed. These are the (n; 0), or the zigzag, nano-
tube, the (n; n), or the armchair nanotube, and the (2n; n),
or the general chiral nanotube. They have very different
electronic conduction properties. The graphene sheet is
a semi-metal with a zero band-gap. The electronic states of
an infinitely long nanotube are continuous in its axial di-
rection, but are quantized along its circumference. For the
(n; n) armchair nanotubes, there always exist electronic
states that cross the corner points of the first Brillouin
zone, making these nanotubes a metallicmaterial. For the
(n;m) nanotubes, if (n � m)/3 ¤ an integer, the electronic
states miss the corner points, and these nanotubes behave
as semi-conductors with a band-gap that scales with the
diameter d of the tube as 1/d, and which is on the or-
der of 0.5 eV. If (n � m)/3 D an integer, however, cer-
tain electronic states are located on the corner points, and
these nanotubes behave as semi-metals, but become small-
band semi-conductors due to the curvature-induced re-
hybridization [14]. These remarkable electronic-conduc-
tion properties, that are linked with the geometry of the
material, are also very partial to local deformations in the
geometry. Recent exploitation of the electronic properties
of carbon nanotubes includes the field of spin-electronics,
or spintronics that utilizes the spin of the electrons to trans-
fer and store of information.

Nanotubes have also extraordinary mechanical, ther-
mal, mass-transport, and gas-storage properties. For ex-
ample, their Young’s modulus, being a measure of their
stiffness, is estimated to be of the order of 1.5 to nearly
5 TPa, and their tensile strength is far higher than that of
steel. They are, therefore, strong candidates as functional
units in molecular-scale machinery, and highly complex
nano-electromechanical systems (NEMS), and as probe
tips in STM and AFM [56]. Their high thermal conductiv-
ity, far exceeds that of diamond. They can also act asmedia
for the transport and storage of various types of gases and
fluids.

The investigation into nanotube properties has
prompted an intensive experimental and theoretical/
computational research, leading to major discoveries, and
the appearance of several thousand patents and publica-
tions in fields of basic sciences, engineering, andmedicine.
One of themost active areas has involved the use of predic-
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tive computational modeling of their mechanical, thermal
and mass transport properties [44]. These computational
modelings and simulations have been performed via two
distinct methodologies:

1) using quantum mechanical methods, such as the
density functional theory (DFT) of atoms and
molecules [36] that provides an ab initio approach
to computation of the properties of nano-scale systems
composed of several ten to several hundred atoms,

2) using classical statistical mechanics methods, such as
the molecular dynamics (MD), Monte Carlo (MC) and
stochastic dynamics (SD) simulation methods [2] that
can handle nano-scale structures composed of several
thousand to several billion atoms. These simulation
methods require the use of phenomenological inter-
atomic potentials to model the energetics of the sys-
tem. These potentials play a very crucial role, and the
more accurate they are, the closer the simulation re-
sults approach the experimental data. A good deal of
efforts have been focused to develop highly accurate in-
ter-atomic potentials for different classes of materials,
particularly the covalently-bonded ones. Some of these
potentials are many-body potentials, and most of the
simulations concerning carbon nanotubes have used
these many-body potentials.

Research into the properties of carbon nanotubes has led
to the appearance of several informative reviews, among
which one can mention those by [1,5,16,40,43,45]. In ad-
dition, an impressive number of encyclopedias and hand-
books [7,34,48,51] covering most sub-fields of this topic
are also available.

In this review I have surveyed the field of computa-
tional modeling of the thermo-mechanical, transport and
storage properties of nanotubes. In the interest of saving
space, I have only described, albeit very briefly, one of
the computational methods that has been extensively em-
ployed in these research studies, namely the MD simula-
tion method. The interested reader can find a very good
summary of the other methods in [43]. An extensive part
of the modeling-based research into the mechanical prop-
erties has employed concepts from the field of contin-
uum elasticity theory, using such structures such as curved
plates, shells, vibrating rods, and bent beams. An easy-
to-follow introduction to these topics can found in my
book [44].

The organization of this review is as follows. In
Sect. “Geometry of SWCNT, MWCNT and SWCNH”,
the description of the geometrical structure of the SWC-
NTs, MWCNTs and the SWCNHs is briefly considered.
In Sect. “Simulation at Nano-Scale” the basic principles

of the classical MD simulation method is presented. In
Sect. “Modeling Fluid Transport and Gas Storage Proper-
ties of Nanotubes”, the flow of fluids and the storage of
gases in nanotubes are considered, while in Sect. “Mod-
eling the Mechanical Properties of Nanotubes”, the me-
chanical properties are considered. Section. “Modeling the
Thermal Properties of Nanotubes” summarizes the ther-
mal conductivity and specific heat properties of nano-
tubes, and Sect. “Concluding Remarks” presents an overall
summary together with the future directions.

Geometry of SWCNT, MWCNT and SWCNH

The SWCNT

We can construct an SWCNT by rolling a 2D graphene
sheet into a cylinder. Consider a lattice point O as the ori-
gin in a graphene sheet, as shown in Fig. 1. The 2D Bravais
lattice vector of the graphene sheet Ch , referred to as the
chiral vector, can be used to reach any other equivalent
point Z on the sheet. The vector Ch is constructed from
the pair of unit-cell vectors a1 and a1 as

Ch D na1 C ma2 ; (1)

wherem and n are a pair of integers, and

a1 D (
p
3
2
;
1
2
)a ; a2 D (

p
3
2
;�

1
2
)a ; (2)

where a D 2:46Å is the lattice constant of graphite

a D
p
3aC–C ; (3)

Carbon Nanotubes, Thermo-mechanical and Transport Proper-
ties of, Figure 1
The geometry of a two-dimensional graphene sheet, showing
the relevant vectors that characterize a single-walled carbon
nanotube (SWCNT). Figure based on [15]



Carbon Nanotubes, Thermo-mechanical and Transport Properties of C 693

Carbon Nanotubes, Thermo-mechanical and Transport Properties of, Figure 2
The outlines of three types of nanotube: a a (10,0) zig-zag nanotube; b a (5,5) armchair nanotube; c a (7,3) general chiral nanotube

and aC–C is the carbon-carbon bond length. The angle �
that Ch makes with the zigzag axis of the sheet is referred
to as the chiral angle, and (n;m) are called the chiral in-
dices. If the sheet is rolled, and the point characterized
by the pair of values of (n;m) coincides with the origin
O, then an (n;m) nanotube is generated. The zigzag di-
rection corresponds to � = 0, and when the direction of
rolling is along this axis, a zigzag nanotube is formed.
When � D �/6, the direction is called the armchair direc-
tion, and rolling along this direction generates an armchair
nanotube. A nanotube generated for any other value 0 <
� < �/6 is referred to as a general chiral nanotube. Fig-
ure 2 shows the schematic representations of these three
types of nanotube.

The circumference of the nanotube, i. e., the length of
the chiral vector, is given by [15]

L Dj Ch jD a(n2 C m2 C nm)
1
2 ; (4)

and, hence, the diameter is

dt D
L
�
D

(n2 C m2 C nm)
1
2

�
a : (5)

Other relationships connecting the chiral angle with the
chiral indices are [15]

sin � D
p
3m

2(n2 C m2 C nm)
1
2
;

cos � D
2nC m

2(n2 C m2 C nm)
1
2
;

tan � D
p
3m

2nC m
: (6)

Hence, if n D m, then � D �/6 and the resulting nano-
tube is an (n; n), or an armchair, nanotube. If m D 0, then
� D 0, and an (n; 0), or a zigzag, nanotube is obtained. The
nanotubes in the general chiral category are (2n; n).

The rectangle bounded by the chiral vector Ch and the
vector T, i. e., OYWZ, where Y is the first lattice point
through which the vector passes, is the unit-cell of the
nanotube. This vector is written as [15]

T D t1a1 C t2a2 ; (7)

where t1 and t2 are a pair of integers, related to m and n
via

t1 D
2mC n

dR
; t2 D �

2nC m
dR

; (8)

and dR denotes the highest common divisor (HCD) of
(2nC m; 2m C n), given by

dR D
�
D d if (n � m) not a multiple of 3d ;
D 3d if (n � m) multiple of 3d ;

�
(9)

where d is the HCD of (n;m). The length T of the vector
T is given by

T Dj T jD
p
3L
dR

: (10)
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The unit-cell of the nanotube contains 2N atoms, where

N D
2(n2 C m2 C nm)

dR
: (11)

Carbon nanotubes can be capped at both ends [15]. This
can be done by bisecting a C60 molecule into two hemi-
spheres and joining these with a cylindrical nanotube of
the same diameter as the molecule.

An SWCNT is a low-energy structure with a distinct
topology, brought about by distorting the geometry of the
2D graphene sheet into the third dimension. The act of
rolling the sheet calls for the expenditure of a modest
amount of strain, or curvature, energy, which is the dif-
ference between the total energy of a carbon atom in an
SWCNT and that in a graphene sheet. In nanotubes with
a diameter less than 1 nm, this energy penalty is more sig-
nificant since the bond angles deviate far below the ideal
120° angles in the graphene sheet.

The MWCNT

Two forms of MWCNTs have been found in experiments.
These are a thermodynamically-stable system composed
of nested coaxial cylinders [20], and a metastable type with
a scroll structure [26]. The transition from the latter type
to the nested type is attributed [26] to the presence of the
dislocation-like defects in the scroll type. The inter-shell
gap in an MWCNT is estimated to be �3.4 Å [50], very
close to the inter-planar gap in the graphite crystal. Sev-
eral other values of this gap, in the range 3.42Å to 3.75Å,
have also been reported [25], with the gap increasing when
the nanotube diameter decreases. The simplest type of an
MWCNT is a DWCNT. To construct a DWCNT, the chi-
ral vector of the inner SWCNT, with indices (n1;m1), is
related to the chiral vector of the outer SWCNT, with in-
dices (n2;m2). These indices are related via

m2
2 C m2n2 C (n22 � �(n1;m1)) D 0 ; (12)

where

�(n1;m1) D
�
2�(rt1 C rg)

a

�2
; (13)

and rt1 and rg are respectively the radius of the inner nano-
tube, and the inter-shell gap. Then n2 and m2 can be ob-
tained by solving (12). For example, for a (9,6) inner nano-
tube, and n2 D 15, we find m2 D 9:96 which rounds to
m2 D 10 and, therefore, the nanotube (9,6) can be nested
inside the nanotube (15,10).

The SWCNH

These objects are distinguished by their horn shape. Pure
SWCNH samples are relatively easier to produce than pure
SWCNT samples [33]. SWCNHs are always produced
with closed tips, incorporating pentagons into their hexag-
onal lattices to close the ends. They consist of a tubule part,
and a conical cap whose average angle is 20ı, implying that
the caps contain five pentagon rings and several hexagon
rings. The average length of SWCNHs is 30-50 nm, and
the separation between neighboring SWCNH is about
0.35 nm. The average diameter of the tubular parts is 2-
3 nm, larger than the 1.4 nm diameter of a typical SWCNT.
The interstitial spaces in an SWCNH assembly provide the
external micropore and mesopore spaces [33,35], where
pores with a width of less than 2 nm are called micropores,
and those with a width between 2 and 50nm are called
mesopores. The width of the internal pores in SWCNHs is
close to the critical size of 2 nm [33]. Oxidation produces
windows on the walls of a closed SCWNH [35], making
available 11% and 36% of the closed spaces at T = 573K
and 623K respectively [32].

Simulation at Nano-Scale

The time-evolution of the energetics and dynamics of
complex nano-structures and nano-processes, involving
several billions of atoms, can be accurately studied via sim-
ulation methods that use concepts from classical statisti-
cal mechanics. The information gained from these simu-
lations can be profitably used in the design of nano-scale
components, nano-structured materials, and structures
dominated by nano-interfaces. Furthermore, the construc-
tion of functional assemblies of nano-structures requires
a deep understanding of the interaction between individ-
ual nano-structures, and this can be handled by the use of
such simulationmethods.We briefly consider the essential
elements of one of the most popular simulation methods
at the nano-scale, namely the MD simulation method.

MD Simulation Method

Classical MD simulation [2,18,46] studies the motion of
individual atoms in an assembly of N atoms or molecules
employing either the Newtonian, or the stochastic dynam-
ics, when the initial spatial configuration and velocities of
these atoms are given. InMD, theN-atom structure is con-
fined to a simulation cell of volumeV , and this cell is repli-
cated in all dimensions, generating the periodic images of
itself and of the N atoms. This periodic boundary condi-
tion (PBC) is necessary to compensate for the undesirable
effects of the artificial surfaces associated with the finite
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size of the simulated system. The energetics of the system
are modeled by two- or many-body inter-atomic poten-
tials HI(ri j), and in the simulation the force experienced
by each atom is obtained from

Fi D �
X

j>i

rri HI(ri j) ; (14)

where rij is the distance between atoms i and j. The 3N
coupled equations of motion are integrated numerically
via a variety of numerical techniques, all based on the fi-
nite-difference method. One popular integration scheme
is the velocity Verlet algorithm [2], whereby the positions
ri and velocities vi of the atoms of massmi are updated at
each simulation time step dt according to

ri (t C dt) D ri (t)C vi(t)dt C
1
2
(dt)2

Fi(t)
mi

;

vi(t C
1
2
dt) D vi (t)C

1
2
dt

Fi(t)
mi

;

vi(t C dt) D vi (t C
1
2
dt)C

1
2
dt

Fi(t C dt)
mi

:

(15)

At each dt, the exact instantaneous values of thermody-
namical observables, such as the temperature and pressure

Tins D
1

3NkB

NX

i

j p2i j
mi

;

Pins D
1
3V

0

@
NX

i

j p2i j
mi
C

NX

iD1

NX

j>i

ri j :Fi j

1

A :

(16)

can be computed, where pi is momentum of particle i, kB
is the Boltzmann constant and Fi j is the force experienced
by atom i due to atom j. These instantaneous data then
allow for the computation of time-averaged values at the
conclusion of the simulation.

Constant-Temperature MD: The Nosé–Hoover Method

MD simulations are generally performed on closed
isothermal systems, represented in statistical mechanics by
canonical ensembles whereinN, V , and the temperature T
of the members are all fixed [37]. A constant-temperature
MD simulation can be realized in a variety of ways [42],
and a method that generates the canonical ensemble dis-
tribution in both the configuration and momentum parts
of the phase space was proposed by Nosé [42]. Its appli-
cation leads to a modification of the equations of motion
(15) to the following forms [59]

ri(t C dt) D ri(t)C vi(t)dt

C
1
2
dt2

�
Fi (t)
mi
� �(t)vi (t)

�
;

vi (t C
dt
2
) D vi(t)C

dt
2

�
Fi(t)
mi
� �(t)vi (t)

�
;

�(t C
dt
2
) D �(t)C

dt
2Q

" NX

i

miv2i (t) � gkB T

#

;

�(t C dt) D �(t C
dt
2
)

C
dt
2Q

" NX

i

miv2i (t C
dt
2
) � gkB T

#

;

vi(t C dt) D
2

2C �(t C dt) dt

�

�
vi(t C

dt
2
)C dt

Fi(t C dt)
2mi

�
:

(17)

where Q is given by

Q D g kB T �2 ; (18)

and � is the friction coefficient of the heat bath connected
to the system, � is the relaxation time of this bath, normally
of the same order of magnitude as dt, and g D 3(N � 1) is
the number of degrees of freedom. The parameter � con-
trols the speed with which the bath damps down the fluc-
tuations in the temperature.

Modeling Fluid Transport
and Gas Storage Properties of Nanotubes

Fluid flow and gas storage in nano-scale objects, like car-
bon nanotubes, is significantly different as compared with
the corresponding activities in microscopic and macro-
scopic structures. For instance, fluid flow in a nano- scale
machine is not similar to the flow in a large-scale machine,
since in the latter case, there is no need to consider the
atomic structure of the fluid, and it can be characterized
by its viscosity, density and other bulk properties [61].
Furthermore, in large-scale objects, the so-called no-slip
boundary condition is often invoked, according to which
the fluid velocity is negligibly small at the fluid-wall inter-
face.

Reduction in length scales immediately introduces
new phenomena, such as diffusion, into the system. More-
over, for flow, or storage, in nano-scale objects, the dy-
namics of the walls, the fluid, or the gas, and their mu-
tual interaction, must all be considered. We note that
the dynamics of the walls can be strongly size-dependent.
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An added difficulty is that, at nano-scale, standard clas-
sical notions such as pressure and viscosity may also not
have a clear definition. For example, the surface area of
a nano-scale object, such as a nanotube, may be ambigu-
ous. Notwithstanding these difficulties, modeling fluid
flow and gas storage in nanotubes has been an active area
of research, with practical consequences. In this section we
consider a set of studies, each highlighting one aspect of
transport and storage properties of nanotubes.

Modeling Fluid Flow

Let us consider the MD simulation of the flow of
fluids, composed of Ar and He particles, through an
SWCNT [61]. In simulations, the fluid atoms were always
dynamic, whereas for the nanotube, the first 10 and the last
10 rings were always frozen, and the rings in the middle
section were treated either as static or as dynamic rings,
giving rise to either a static or a dynamic nanotube. The
significant result was that the dynamic nanotube slowed
down the fluid particles faster than the static nanotube. It
took about 42 ps for the fluid velocity to slow down to 2.5%
of its initial velocity in the static nanotube, while in the dy-
namic nanotube this time was 15 ps. Furthermore, the mo-
tion of the nanotube perturbed the motion of the adjacent
fluid atoms, causing faster randomization and promoting
hard collisions with the walls that slowed down the fluid
steadily until it essentially came to a stop. Similar results
were also obtained for the Ar fluid, whose atoms are some
10 times heaver than He atoms. In this case, it was found,
however, that the velocity damping was even more pro-
nounced. It was also found that the higher the fluid den-
sity, the faster it slowed down.

Another MD simulation has addressed the rapid im-
bibition of oil (decane) in a (13,13) SWCNT, at tempera-
ture T = 298K [58], modeling the SWCNT as a rigid cylin-
der. The computed fluid density � inside the nanotube
showed that the nanotube first filled rapidly with the low
density fluid, followed by the higher density fluid at lower
speeds tending to � 150 m/s for � > 0:2. Such speeds are
comparable to the speed of sound in air (340 m/s). It was
found that, the flow terminated at the end of the nano-
tube, i. e., although the nanotube was open, its end acted as
a barrier to further flow. It was also found that the imbibi-
tion was much faster than predicted by the classical Wash-
burn equation which relates the penetration length of the
fluid, in a macroscopic tube, to its radius, the surface ten-
sion, the viscosity and the time.

The effect of confinement of liquid water in a nanotube
on its vibrational and rotational spectra has been also been
investigated via MD simulations [30] for four different-

sized nanotubes (6,6), (8,8), (10,10) and (12,12). The liquid
water density was an input. The significant aspect of the re-
sults was the presence of a frequency band, between 3640
and 3690 cm�1 , which is absent in bulk water. This was re-
ferred to as a vibration frequency, and its position shifted
to smaller values when the nanotube radius increased. It
was concluded that this vibration band was purely an ef-
fect of confinement. Adsorption line shape in the domain
between 300 and 1000 cm�1, that corresponds to the ro-
tational motion of the molecules, was also obtained, and
again a shift to lower frequencies was observed compared
with those in the bulk. Hence, there was a direct connec-
tion between the radius of the nanotube and some of the
observed frequency shifts.

Transport of water through a solvated carbon nano-
tube has also been modeled [19]. The central channel of
the nanotube is strongly hydrophobic in character. It was,
however, found that the initially empty channel rapidly
filled up with water from the surrounding container, and
was occupied during the entire simulation run. The water
density inside the cylinder was found to exceed the bulk
density. Since the water molecules interact weakly with the
carbon atoms, the continuous hydration of the nanotube
interior was unexpected.

Modeling Gas Storage

Gas storage can take place in single nanotubes, as well as
in their bundles, where three adsorption sites are avail-
able, namely the interstitial channels between the SWC-
NTs, the outer surfaces of the nanotubes in the bundle,
and the groove channels, i. e., the wedge-shaped spaces
on the outer surface of the bundle where two SWCNTs
meet [60]. Simulation results indicate that while H2, He
and Ne atoms can adsorb in the interstitial channels, other
types of atoms are too large to fit into these spaces. The
clarification of adsorption sites and the adsorbed amount
has been the focal point of research in this area.

Hydrogen Storage The storage of atomic and molecu-
lar hydrogen has occupied a very prominent position in
the field of gas adsorption in nanotubes. The adsorption
of para-hydrogen in (9,9) and (18,18) SWCNTs and their
bundles has been modeled at several temperatures [62].
The inter-nanotube spacing within a bundle, called the
van derWaals gap, is approximately 3.2 Å, measured from
the center of the nanotube walls. The gap g is defined as
(g D a � D), where a is the lattice spacing, and D is the
diameter of the nanotube. The total storage in the bun-
dle is a sum of interior and interstitial adsorptions. The
computed isotherms atT = 77K show that, in the low pres-
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sure range, the (9,9) nanotube bundle gives a higher gravi-
metric and volumetric densities than the (18,18) nanotube
bundle, since the hydrogen-nanotube interaction in the
former case is stronger. At pressures above 5 and 10 atm,
the situation is reversed. The volume of a (9,9) nano-
tube is of such a size that it can hold one layer of ad-
sorbed molecules on the interior surface and a column of
molecules in the center of the nanotube, whereas the vol-
ume of the (18,18) nanotube can accommodate three lay-
ers of hydrogen in three concentric rings and a column in
the center of the nanotube.

It was found that the interstitial adsorption formed
14% of the total adsorption in the (18,18) nanotube bun-
dle, in the (9,9) nanotube bundle this proportion was
less than 1%. Increasing the temperature from T D 77
to 298K lowered the adsorbed amount in both the (9,9)
and the (18,18) bundles by approximately a factor of
5 at 100 atm. The computed adsorption isotherms on
the external and internal surfaces of an isolated (18,18)
SWCNT showed that it adsorbed slightly more than the
(9,9) SWCNT at T D 77K, except at the lowest pressures.
A significant portion of the total adsorption took place on
the external surfaces.

Quantum-mechanical based computation of adsorp-
tion of hydrogen atoms in (5,5) and (10,10) SWCNTs and
in a (5,5)@(10,10) DWCNT has also been performed [27].
The results show that there were two chemisorption sites
on the exterior and the interior of the nanotube, and that
a form ofH2 molecule formed within the empty pore inside
the nanotube. Furthermore, hydrogen capacity increased
linearly with the diameter of the nanotube. The results for
the DWCNT showed that the SWCNTs were better for
higher hydrogen storage than the DWCNT.

Another study on the physisorption of molecular hy-
drogen H2 in SWCNT bundles [64] has shown that small-
diameter bundles are preferable for storage, and that the
delamination of the nanotube bundle increases the gravi-
metric storage capacity.

In another simulation [63], the question of optimiza-
tion of the gap in a bundle of SWCNTs for maximum stor-
age of H2 has been addressed for two bundle geometries,
namely, a square bundle and a triangular bundle, each
bundle composed of four nanotubes of types (9,9), (12,12),
(18,18). The gap was varied to obtain the optimum sepa-
ration for adsorption. The results on the gravimetric and
volumetric densities, as a function of the gap, for T = 298K
and P = 50 atm showed that for g D 3:2Å, i. e., the smallest
gap, much of the volume and surface area in the bundles
were unavailable for adsorption in both packing geome-
tries. Increasing this gap allowed adsorption to take place
on the external surface of the nanotubes. It was found that,

the optimum value of g, as a function of temperature, was
g D 6Å at T = 298K, and g D 9Å at T = 77K in a trian-
gular bundle of the (9,9) nanotubes.

The adsorption of H2 molecules in charged (9,9)
SWCNTs, and their two-dimensional rhombic-shape bun-
dles, has also been investigated [53]. The results for iso-
lated SWCNTs showed more second layer adsorptions in
the charged nanotubes, as compared with the uncharged
nanotubes, and that the difference in adsorption was about
10%–20% at T = 298K and 15%–30% at T = 77K. Further-
more, it was noticed that the negatively charged nano-
tubes adsorbed more than the positively charged nano-
tubes at T = 77K. At the higher temperature of T = 298K,
there was no observable difference. Volumetric densities
for the adsorption in the bundles of charged and neutral
nanotubes, as a function of the van derWaals gap, showed
that the charged bundle had an enhanced adsorption of
H2 because of charge-multipole interactions. The results
from these simulations imply that an enhancement of the
hydrogen storage capacity of nanotubes can be achieved
by using electric fields and gradients.

Adsorption of Other Gases The quantum ground-state
energy of He atoms, as well as the isosteric specific heat of
low-density He gas, adsorbed on the external groove sites
in a bundle of 37 nanotubes have been computed [52]. The
energy was found to be � 22.7meV, in close agreement
with the experimental value, but larger than the computed
energy for the He atom adsorbed in the interstitial chan-
nels, which is �27.9 meV. The data on specific heat for
adsorption in the grooves were computed, and were seen
to be very different from the data for adsorption in the in-
terstitial positions.

The adsorption of Xe atoms in (10,10) SWCNTs, and
their hexagonal bundle, at T = 95K was modeled [54].
The results showed that the rather strong interaction be-
tween highly polarizable Xe atoms and the nanotubes led
to significant adsorption even at very low pressures. The
adsorption isotherms for internal and external surfaces
showed a significant difference. Adsorption in the bun-
dle of SWCNTs was also considered, and as the interstitial
space was only 2.9 Å wide, for a large bundle, adsorption
was expected to take place only in the interior of the nano-
tubes.

Adsorption of NO2, O2, NH3, CO2, H2O gasmolecules
on (10,0), (17,0), (5,5) and (10,10) SWCNTs has also been
obtained [66]. Different adsorption sites, such as the top
of a carbon atom, the top of the center of a C-C bond,
and the top of a carbon hexagon, were considered. The re-
sults showed that, in general most of the gases were weakly
bound to the nanotubes, i. e., they were physisorbed. Fur-
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thermore, most of the molecules were charge donors with
a small charge transfer, whereas O2 and NO2 were charge
acceptors. The influence of adsorption on the electronic
properties of SWCNTs was also investigated, and it was
found that the adsorption of NH3 and NO2 did not signif-
icantly affect either the conduction or the valence band of
a (10,0) nanotube. The density of states (DOS) of the nano-
tube decorated with NH3 was very close to that of a pure
nanotube. This behavior was also observed for all charge
donor molecules, i. e., N2, H2O, CO2 etc. The adsorption
of NO2 significantly changed the shape of DOS, implying
that semi-conducting SWCNTs can be turned into p-type
conductors following adsorption of NO2 or O2.

Another study [12] has considered the influence of lat-
tice dilation, due to adsorption of He, Ne, H2, D2, Ar and
CH4 gases in the interstitial channels of the SWCNT tri-
angular bundles, on the further uptake of these gases. The
basic idea was that, lattice dilation allows small molecules
to significantly enhance their binding energies in the inter-
stitial channels without a substantial increase in the inter-
nanotube interaction energy. The results revealed that the
chemical potential for H2 was about 200K lower than the
value in the absence of dilation, i. e., there was a greater
tendency for the adsorption in a dilated medium than in
an undilated one. In the case of D2, the lattice dilated less
than in the case of H2. Also the dilation in the He and Ne
adsorptions was less than 0.5%. For H2, Ar and CH4 the
consequences of dilation were significant.

Adsorption of Gases in SWCNH Assemblies Since
SWCNHs are closed structures, access to their interior
must first be achieved by opening potential entry points.
The most common method for pore opening is heat treat-
ment in oxygen [3], and oxidization at T = 573 and 623K
respectively leads to the opening of 11% and 36% of the
spaces. Assemblies of SWCNHs also possess interstitial
channels.

Adsorption of nitrogen, at T = 77K was used to esti-
mate the volumetric porosity of aggregates of heat-treated
SWCNHs [32]. The interaction of the corn (apex) parts
of the horns was not taken into account, and only the
contribution of tube parts was considered. It was found
that the interstitial site in the middle of three SWCNHs
provided the strongest site. However, since only a one-di-
mensional array of N2 molecules could be packed at this
site the adsorption capacity was limited there. Strong ad-
sorption could also occur on the sites within the SWCNHs
near their walls, leading to the formation of a monolayer.
A third site, of weaker type, also located in the interior of
SWCNHs, was also identified. Therefore, three sites were
found for adsorption.

Adsorption of N2 in the internal pore space of indi-
vidual SWCNHs has been addressed [35], with the inter-
action of the corn part of the SWCNH included. Adsorp-
tion isotherms were obtained for different diameters D of
the tube part of the SWCNH, and since the SWCNHs were
partially oxidized atT = 693K, almost all of the pore spaces
were available for adsorption. The computed isotherms
showed two gradual steps around the normalized pres-
sures of 10�5 and 10�1, and the smaller the value of D,
the shaper was the step. The average pore width w of the
internal space was found to be w = 29Å. Experimental im-
ages of three regions, namely the tip, the neck and the tube
parts of the SWCNHs showed that the adsorption in these
regions was considerably different, and that it began at the
tip and thenmoved to the neck space, and in the tube space
the molecules were adsorbed on the internal wall in multi-
layers.

Modeling the Mechanical Properties of Nanotubes

Modeling the mechanical properties of carbon nanotubes
occupies a central position in research on nanotubes,
and computational simulation in this field has employed
highly sophisticated atomistic and continuum-elasticity
models. These studies reveal that nanotubes have high ten-
sile strength, large bending flexibility and high aspect ra-
tios, properties that make them an ideal superstrong ma-
terial. Research has focused on the elastic constants, Pois-
son’s ratio and Young’s modulus, and their dependence on
the diameter and chirality of the nanotubes. A very inter-
esting part of this research has used well-established con-
tinuum-based theories of curved plates, thin shells, bend-
ing beams and vibrating rods. An extensive presentation
of these topics, as applied to nanotubes, can be found
in [44]. These theories have been used either as inde-
pendent computational tools to model the elastic prop-
erties and deformation modes of nanotubes, or in con-
junction with the atomistic models to interpret the re-
sults obtained from them. A key issue in this respect is
the identification of the total energy of an atomistic system
with the elastic strain energy of an equivalent continuum
system.

Some research problems pose a challenge to both types
of the modeling. Large MWCNTs are a case in point, as
their sizes present a challenge to MD simulations, and the
continuum mechanics is most successful in the limit of
a thin-shell. A very fruitful approach would be a multi-
scale modeling that couples the continuum, the atom-
istic and the quantum description of the nanotubes within
a unified model, and until such models are developed,
a pragmatic attitude would be the application of both
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atomistic and continuum modeling to extract as much
useful information as possible.

Structural Deformations of Nanotubes

Modeling the axial compression, bending and torsion
modes of a (7,7) SWCNT has been performed via both
MD simulations, and the continuum elasticity theory of
plates [65]. Let us consider the axial compression model-
ing, whereby a compression was applied to the ends of the
nanotube by shifting the end atoms along the axis in small
steps, and then relaxing the nanotube while keeping each
end constrained. The variation of the strain with the strain
energy showed a set of discontinuities that were associated
with the rather exotic shape changes undergone by the
nanotube. The evolution of this deformation mode within
the continuum theory was examined via the expression for
the deformation energy of a curved plate. Using the MD
generated information as input, the curved plate parame-
ters, i. e., its flexural rigidity and in-plane stiffness, that ap-
pear in the continuum energy expression were obtained. It
was found that at a critical level of imposed strain, and em-
ploying the plate parameters, the nanotube buckled side-
ways, very similar to what happened in theMD simulation,
and that the lowest value of the strain was close to that
obtained in the MD simulation. The overall results from
all the simulations showed that nanotubes could sustain
extreme strains without developing any brittle or plastic
transitions or dislocations, and beyond the range covered
by Hooke’s law, their behavior can be described by contin-
uum-based modeling.

The mechanism whereby uniaxially strained (5,5) and
(10,10) nanotubes release their stored strain energy has
also been investigated [11]. The nanotube was subjected to
a 10% tensile strain, and following equilibration at 1800 K,
the first signs of mechanical yielding appeared. This yield
was accompanied by the formation of topological defects,
beyond a critical tension. The first defect to appear was
a 90ı rotation of a C–C bond about its center which trans-
formed four hexagons into a double pentagon-heptagon
(5-7-7-5) defect. This bond rotation is referred to as the
Stone–Wales transformation. The energy barriers to the
bond rotation that produced the defect were calculated,
and it was found that for both types of nanotubes it de-
creased with an increase in the strain. Furthermore, the
results showed that by annealing the (5,5) nanotube, sub-
ject to 10% strain, under the condition of high tempera-
ture (T = 2500K), the (5-7-7-5) defect was reversible and
the nanotube recovered its original hexagonal network.

In a further simulation [10], a (10,10) nanotube con-
taining an initial (5-7-7-5) defect was strained up to 15%,

and it was observed that octagonal defects and higher or-
der rings appeared, i. e., the initial defect had acted as a nu-
cleation center for other defects. The simulation showed
that armchair nanotubes could display a ductile behavior
via plastic flow of the (5-7) dislocation cores. These topo-
logical defects could change the chirality of the nanotube,
and when dislocations covered a sizable distance of the
nanotube wall, they left behind a nanotube whose chirality
changed according to the dislocation rules, i. e., (n; n) !
(n; n � 1) ! (n; n � 2) : : : , i. e., an armchair nanotube
transformed into a zigzag geometry.

The effect of hydrogen storage on the deformation
properties of (10,10) and (17,0) SWCNTs has also been in-
vestigated [67]. The SWCNTswere pre-stored with 4.17 or
8.34wt% H2 gas, and the maximum strain and maximum
tensile force as a function of hydrogen wt%, and tem-
perature were obtained, showing that both the maximum
strain and maximum force decreased with the storage of
H2, and that the reduction at T = 600K was much big-
ger than that at T = 300K. The reductions were attributed
to the competition between the C–C bonds and the C–H
bonds. The effect of storage on the (17,0) nanotube did not
seem to be as significant as on the (10,10) nanotube.

Elastic Properties of Nanotubes

Elastic properties of nanotubes, i. e., their elastic con-
stants, Young’s, bulk and shear moduli, have been com-
puted [28,29] for a number of SWCNTs and MWCNTs.
An inspection of the results shows that the shear and bulk
moduli of SWCNTs and MWCNTs of different diame-
ters were respectively around 0.4 TPa and 0.75TPa, and
Young’s modulus for these nanotubes was around 1TPa,
comparing well with the experimental value of 1.3 TPa.
Comparison of the SWCNT and MWCNT results shows
that:

1) the elastic moduli change very little with the number of
walls,

2) the inter-shell van derWaals interaction does not affect
significantly the elastic moduli of multi-walled nano-
tubes,

3) there is a large anisotropy in elastic properties of both
SWCNTs and MWCNTs,

4) the elastic properties are basically the same for all nano-
tubes with radii greater than 1 nm.

An MD simulation [41] has also computed Young’s mod-
ulus and Possion’s ratio � of the SWCNTs, giving

E D 1:20 TPa ; � D 0:27 for a (10,10) nanotube ;
E D 1:10 TPa ; � D 0:28 for a (5,5) nanotube ;

(19)
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Another MD simulation [24], using an energy approach
(EA) and a force approach (FA), has computed the axial
Ez and the rotational E� Young’s moduli of a set of (n; n)
SWCNTs, for n = 6 to 19, and has found thatEz and E� had
little dependence on the radius of the nanotubes in both
approaches, and that both moduli were very close. The av-
erage values for different nanotubes in both approaches
were

Ez D E� D

(
1:344˙ 0:02 TPa (EA) ;
1:238˙ 0:01 TPa (FA) :

(20)

The bulkmoduli of (6,6), (10,10) and (8,4) SWCNT hexag-
onal bundles subject to hydrostatic pressure have also been
computed [47], giving the bulk modulus of the bundle
Kbund, and the individual nanotubes Ktube as

Kbund D 37GPa ;
Ktube D 230GPa :

(21)

Modeling the Thermal Properties of Nanotubes

Thermal stability of nanotubes is crucial to the safe oper-
ation of nano-scale devices. Measurements of the specific
heat and thermal conductivity of microscopic mats, cov-
ered with compressed ropes of nanotubes have beenmade,
providing information on the ensemble-average thermal
properties of bulk-phase materials, rather than on individ-
ual nanotubes. Equilibrium and non-equilibrium types of
MD simulations have also been applied. In the former case,
the equilibrium time-correlation functions of the heat flux
operator are computed and are used in the Green–Kubo
relation to obtain the thermal conductivity. In the latter
method, hot and cold reservoirs are coupled to the two
ends of the nanotube, and the thermal conductivity is ob-
tained via the average heat flux .

Thermal Conductivity of Nanotubes

In an MD simulation [4], combining both equilibrium
and non-equilibrium methods, the temperature-depen-
dence of the thermal conductivity  of an isolated (10,10)
nanotube has been computed, showing that at T = 100K
the nanotube displayed an unusually high value  D
37 000W/mK, far exceeding that of pure diamond, i. e.,
 D 3320W/mK. Comparing the thermal conductivity of
an isolated nanotube with those of an isolated graphene
sheet and bulk graphite showed that the nanotube had
a very similar heat transport properties as those of a hypo-
thetical isolated graphene sheet. The results on the three
carbon structures showed that below T = 300K, the ther-
mal conductivity of the graphene sheet was higher than

that of the nanotube, and between T = 300K and 400K
they were nearly equal. For graphite, the thermal conduc-
tivity of the basal plane also peaked near the T = 100K
point, and its value in the range T = 200K to 400K was
always smaller than the values for other two structures.

Another MD simulation [13] investigated the depen-
dence of  on the nanotube length, and the presence
of defects and vacancies, showing that after an initial
rise in , up to a nanotube length of L D 100Å, it con-
verged to a fairly constant value  D 29 800W/mK along
the nanotube axis for L in the range 100 to 500Å. This
was similar to the value obtained by [4]. In the com-
putations, the thickness of the nanotube was taken to
be 1Å. The results on the variation of  with the va-
cancy concentration showed that it decreased smoothly
from  D 14 000W/mK for a concentration of 0.002 to
 D 4000W/mK for a concentration of 0.01. Further-
more, the role of Stone–Wales (5-7-7-5) defects was exam-
ined, showing that  decreased from  D 35000W/mK
at concentration of 0.5 (on the 1/1000 scale) to about
 D 12 000W/mK for a concentration of 3. Both the rate
of decrease and its absolute amount were less than the case
with vacancies.

For a bundle of (10,10) nanotubes, it was found that
 D 9500W/mK along the axis, very close to that of the
in-plane bulk graphite at  D 10 000W/mK, while per-
pendicular to the axis,  D 56W/mK, similar to the out-
of-plane conductivity in graphite at  D 55W/mK.

Specific Heat of Carbon Nanotubes

The low-temperature specific heats CV of individual
SWCNTs, and of their bundles composed of n SWCNTs
of type (9,9), with n D 1; 2; : : : ; 7, and of MWCNTs have
been computed [39], based on the phonon contribution to
CV . The results showed three different patterns for CV of
an individual SWCNT for T < 100K, namely at very low
temperatures,

CV / T
1
2 ; (22)

while with an increase in temperature,

CV / T ; (23)

and above T � 5K, the optical phonons began to make
a contribution. Furthermore, it was found that, the T

1
2

behavior diminished when nanotubes were added to the
bundle, and for a bundle composed of 7 nanotubes, this
form of dependency on T was no longer observable and
CV (T) approached the experimental value.
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For MWCNTs, the specific heat of a five-walled nano-
tube, (5,5)@(10,10)@(15,15)@(20,20)@(25,25), was calcu-
lated, showing that by starting with the (5,5) nanotube and
adding more shells to it, the T

1
2 part diminished and dis-

appeared and was replaced by a linear dependence on T.
If the number of shells were increased, CV tended to that
of graphite. It should be remarked that the variation of CV
with T for MWCNTs differed significantly from the exper-
imental behavior.

Concluding Remarks

In this survey we have reviewed the modeling studies on
the mechanical, thermal and transport properties of car-
bon nanotubes. We have seen that in modeling the fluid
flow correctly, the motion of both the fluid and the walls,
and their mutual coupling must be considered. In this
field, the future research must address the use of such clas-
sical concepts as viscosity and pressure that are not clearly
defined at nano-scales. Furthermore, flow-induced struc-
tural instability poses another important research prob-
lem.

In the storage of gases, we have seen that adsorption
can take in both the internal spaces and in the intersti-
tial channels, and that SWCNTs provided a better storage
medium for hydrogen than the MWCNTs. Furthermore,
the small-diameter ropes were more preferable than large-
diameter ones. The future research should help clarify the
question of volume storage capacity of nanotubes and the
ways this capacity could be improved as the data obtained
in different studies are not yet unitary. They indicate, how-
ever, that the adsorption in nanotubes is higher than in
most carbonaceous materials.

In the studies of mechanical and elastic properties,
both the atomistic and continuum theories have been used
successfully in providing deep insights into the deforma-
tion and elastic properties of nanotubes. as well as provid-
ing quantitative estimates of the pertinent variables. Stud-
ies focusing on obtaining Young’s modulus of the nano-
tubes have shown that the estimates obtained depended on
the theoretical models or the inter-atomic potentials used.
Computed values ranged from 1TPa to 5.5 TPa for SWC-
NTs, and for the MWCNTs an average experimental value
of about 1.8 TPa seemed to be the accepted result. Fu-
ture research could employ better continuum-based mod-
els to help reduce the number of very time-consuming and
costly MD simulations that are currently employed to ob-
tain the estimates of mechanical and elastic properties.

Finally, we have seen that the thermal conductivity
of the SWCNT as a function of temperature is unusually
high, implying that the mean free path of phonons was

quite large in nanotubes. The presence of defects and va-
cancies also substantially affected this conductivity. In the
computation of the specific heat, the main finding con-
cerned the significant contribution of phonons to the spe-
cific heat as compared with the electrons, and in the low
temperature regime, several important scaling laws on the
behavior of the specific heat have been derived. The future
research could consider such problems as the computation
of the thermal properties of nanotubes containing defects,
or decorated with adsorbed molecules, or nano-scale de-
vices composed of carbon nanotubes.
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Glossary

Singularity Let f : Rn ! Rm be a differentiable map de-
fined in some open neighborhood of the point p 2 Rn

and Jp f its Jacobian matrix at p, consisting of the
partial derivatives of all components of f with re-
spect to all variables. f is called singular in p if rank
Jp f < min fn;mg. If rank Jp f D min fm; ng, then f
is called regular in p. For m D 1 (we call the map
f : Rn ! R a differentiable function) the definition
implies: A differentiable function f : Rn ! R is singu-
lar in p 2 Rn , if grad f (p) D 0. The point p, where the
function is singular, is called a singularity of the func-
tion. Often the name “singularity” is used for the func-
tion itself if it is singular at a point p. A point where
a function is singular is also called critical point. A crit-
ical point p of a function f is called a degenerated criti-
cal point if the Hessian (a quadratic matrix containing
the second order partial derivatives) is singular at p;
that means its determinant is zero at p.

Diffeomorphism A diffeomorphism is a bijective differ-
entiable map between open sets ofRn whose inverse is
differentiable, too.

Map germ Two continuous maps f : U ! Rk and
g : V ! Rk , defined on neighborhoods U and V of
p 2 Rn , are called equivalent as germs at p if there
exists a neighborhoodW � U \ V on which both co-
incide. Maps or functions, respectively, that are equiv-
alent as germs can be considered to be equal regarding
local features. The equivalence classes of this equiva-
lence relation are called germs. The set of all germs of
differentiable maps Rn ! Rk at a point p is named
"p(n; k). If p is the origin of Rn , one simply writes
"(n; k) instead of "0(n; k). Further, if k D 1, we write
"(n) instead of "(n; 1) and speak of function germs
(also simplified as “germs”) at the origin ofRn . "(n; k)
is a vector space and "(n) is an algebra, that is, a vector
space with a structure of a ring. The ring "(n) contains
a unique maximal ideal �(n) D f f 2 "(n)j f (0) D 0g.
The ideal �(n) is generated by the germs of the
coordinate functions x1; : : : ; xn . We use the form
�(n) D hx1; : : : ; xni"(n) to emphasize, that this ideal
is generated over the ring "(n). So a function germ
in �(n) is of the form

Pn
iD1 ai(x) � xi , with certain

function germs ai(x) 2 "(n).
r-Equivalence Two function germs f ; g 2 "(n) are called

r-equivalent if there exists a germ of a local diffeomor-
phism h : Rn ! Rn at the origin, such that g D f ı h.

Unfolding An unfolding of a differentiable function germ
f 2 �(n) is a germ F 2 �(n C r) with FjRn D f
(here jmeans the restriction. The number r is called an
unfolding dimension of f . An unfolding F of a germ
f is called universal if every other unfolding of f can
be received by suitable coordinate transformations,
“morphisms of unfoldings” from F, and the number of
unfolding parameters of F is minimal (see “codimen-
sion”).

Unfolding morphism Suppose f 2 "(n) and F : Rn �

Rk ! R and G : Rn �Rr ! R be unfoldings of f .
A right-morphism from F to G, also called unfolding
morphism, is a pair (˚; ˛), with ˚ 2 "(nC k; nC r)
and ˛ 2 �(k), such that:

1. ˚ jRn D id(Rn), that is ˚(x; 0) D (x; 0),
2. If ˚ D (�; ), with � 2 "(n C k; n),  2 "(n C

k; r), then  2 "(k; r),
3. For all (x; u) 2 Rn � Rk we get F(x; u) D

G(˚(x; u))C ˛(u).

Catastrophe A catastrophe is a universal unfolding of
a singular function germ. The singular function germs
are called organization centers of the catastrophes.
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Codimension The codimension of a singularity f is given
by codim( f ) D dimR�(n)/h@x f i (quotient space).
Here h@x f i is the Jacobian ideal generated by the par-
tial derivatives of f and �(n) D f f 2 "(n)j f (0) D 0g.
The codimension of a singularity gives of the minimal
number of unfolding parameters needed for the uni-
versal unfolding of the singularity.

Potential function Let f : Rn ! Rn be a differentiable
map (that is, a differentiable vector field). If there
exists a function ' : Rn ! R with the property that
grad' D f , then f is called a gradient vector field and
' is called a potential function of f .

Definition of the Subject

Catastrophe theory is concerned with the mathematical
modeling of sudden changes – so called “catastrophes” – in
the behavior of natural systems,which can appear as a con-
sequence of continuous changes of the system parameters.
While in common speech the word catastrophe has a neg-
ative connotation, in mathematics it is neutral.

You can approach catastrophe theory from the point
of view of differentiable maps or from the point of view
of dynamical systems, that is, differential equations. We
use the first case, where the theory is developed in the
mathematical language of maps and functions (maps with
range R). We are interested in those points of the domain
of differentiable functions where their gradient vanishes.
Such points are called the “singularities” of the differen-
tiable functions.

Assume that a system’s behavior can be described by
a potential function (see Sect. “Glossary”). Then the singu-
larities of this function characterize the equilibrium points
of the system under consideration. Catastrophe theory
tries to describe the behavior of systems by local proper-
ties of corresponding potentials. We are interested in local
phenomena and want to find out the qualitative behavior
of the system independent of its size.

An important step is the classification of catastrophe
potentials that occur in different situations. Can we find
any common properties and unifying categories for these
catastrophe potentials? It seems that it might be impos-
sible to establish any reasonable criteria out of the many
different natural processes and their possible catastrophes.
One of the merits of catastrophe theory is the mathemat-
ical classification of simple catastrophes where the model
does not depend on too many parameters.

Classification is only one of the mathematical aspects
of catastrophe theory. Another is stability. The stable states
of natural systems are the ones that we can observe over
a longer period of time. But the stable states of a sys-

tem, which can be described by potential functions and
their singularities, can become unstable if the potentials
are changed by perturbations. So stability problems in na-
ture lead to mathematical questions concerning the stabil-
ity of the potential functions.

Manymathematical questions arise in catastrophe the-
ory, but there are also other kinds of interesting problems,
for example, historical themes, didactical questions and
even social or political ones. How did catastrophe theory
come up? How can we teach catastrophe theory to the stu-
dents at our universities? How can wemake it understand-
able to non-mathematicians? What can people learn from
this kind of mathematics? What are its consequences or
insights for our lives?

Let us first have a short look at mathematical history.
When students begin to study a new mathematical field,
it is always helpful to learn about its origin in order to
get a good historical background and to get an overview
of the dependencies of inner-mathematical themes. Catas-
trophe theory can be thought of as a link between classical
analysis, dynamical systems, differential topology (includ-
ing singularity theory), modern bifurcation theory and the
theory of complex systems. It was founded by the French
mathematician René Thom (1923–2002) in the sixties of
the last century. The name ‘catastrophe theory’ is used for
a combination of singularity theory and its applications.
In the year 1972 Thom’s famous book “Stabilité struc-
turelle et morphogénèse” appeared. Thom’s predecessors
include Marston Morse, who developed his theory of the
singularities of differentiable functions (Morse theory) in
the thirties, Hassler Whitney, who extended this theory
in the fifties to singularities of differentiable maps of the
plane into the plane, and John Mather (1960), who in-
troduced algebra, especially the theory of ideals of differ-
entiable functions, into singularity theory. Successors to
Thom include Christopher Zeeman (applications of catas-
trophe theory to physical systems), Martin Golubitsky (bi-
furcation theory), John Guckenheimer (caustics and bifur-
cation theory), David Schaeffer (shock waves) and Gordon
Wassermann (stability of unfoldings). From the point of
view of dynamical systems, the forerunners of Thom are
Jules Henry Poincaré (1854–1912) who looked at stability
problems of dynamical systems, especially the problems
of celestial mechanics, Andrei Nikolaevic Kolmogorov,
Vladimir I. Arnold and Jürgen Moser (KAM), who in-
fluenced catastrophe theory with their works on stability
problems (KAM-theorem).

From the didactical point of view, there are two main
positions for courses in catastrophe theory at university
level: Trying to teach the theory as a perfect axiomatic sys-
tem consisting of exact definitions, theorems and proofs
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or trying to teach mathematics as it can be developed from
historical or from natural problems (see [9]). In my opin-
ion the latter approach has a more lasting effect, so there is
a need to think about simple examples that lead to the fun-
damental ideas of catastrophe theory. These examplesmay
serve to develop the theory in a way that starts with intu-
itive ideas and goes forward with increasing mathematical
precision.

When students are becoming acquainted with catas-
trophe theory, a useful learning tool is the insight that con-
tinuous changes in influencing system parameters can lead
to catastrophes in the system behavior. This phenomenon
occurs in many systems. Think of the climate on planet
earth, think of conflicts between people or states. Thus,
they learn that catastrophe theory is not only a job for
mathematical specialists, but also a matter of importance
for leading politicians and persons responsible for guiding
the economy.

Introduction

Since catastrophe theory is concerned with differentiable
functions and their singularities, it is a good idea to start
with the following simple experiment: Take a piece of wire,
about half a meter in length, and form it as a ‘curve’ as
shown in Fig. 1. Take a ring or screw-nut and thread the
wire through it so that the object can move along the wire
easily.

The wire represents the model of the graph of a poten-
tial function, which determines the reactions of a system
by its gradient. This means the ring’s horizontal position
represents the actual value of a system parameter x that
characterizes the state of the system, for example, x might
be its position, rotation angle, temperature, and so on. This
parameter x is also called the state parameter. The form of
the function graph determines the behavior of the system,
which tries to find a state corresponding to a minimum
of the function (a zero of the gradient of f ) or to stay in
such a ‘stable’ position. (Move the ring to any position by
hand and then let it move freely.) Maxima of the poten-
tial function are equilibrium points too, but they are not
stable. A small disturbance makes the system leave such
an equilibrium. But if the ring is in a local minimum, you
may disturb its position by slightly removing it from that
position. If this disturbance is not too big, the system will
return to its original position at the minimum of the func-
tion when allowed to move freely. The minimum is a sta-
ble point of the function, in the sense that small distur-
bances of the system are corrected by the system’s behav-
ior, which tries to return to the stable point. Observe that
you may disturb the system by changing its position by

Catastrophe Theory, Figure 1
Ring on the wire

hand (the position of the ring) or by changing the form of
the potential function (the form of the wire). If the form of
the potential function is changed, this corresponds to the
change of one ormore parameters in the defining equation
for the potential. These parameters are called external pa-
rameters. They are usually influenced by the experimenter.
If the form of the potential (wire) is changed appropriately
(for example, if you pull upward at one side of the wire),
the ring can leave the first disappearing minimum and fall
into the second stable position. This is the way catastro-
phes happen: changes of parameters influence the poten-
tials and thus may cause the system to suddenly leave a sta-
ble position.

Some typical questions of catastrophe theory are:

� How can one find a potential function that describes
the system under consideration and its catastrophic
jumps?

� What does this potential look like locally? How can we
describe the changes in the potential’s parameters?

� Can we classify the potentials into simple categories?
� What insights can such a classification give us?

Now we want to consider two simple examples of systems
where such sudden changes become observable. They are
easy to describe and lead to the simplest forms of catastro-
phes which Thom listed in the late nineteen-sixties. The
first is a simple physical model of an eccentric cylinder on
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an inclined plane. The second example is a model for the
formation of a traffic jam.

Example 1: The Eccentric Cylinder
on the Inclined Plane

We perform some experiments with a cylinder or a wide
wheel on an inclined plane whose center of gravity is ec-
centric with respect to its axes (Fig. 2).

You can build such a cylinder from wood or metal by
taking two disks of about 10 cm in radius. Connect them
with some sticks of about 5 cm in length. The eccentric
center of gravity is generated by fixing a heavy piece of
metal between the two discs at some distance from the axes
of rotation. Draw some lines on the disks, where you can
read or estimate the angle of rotation. (Hint: It could be
interesting for students to experimentally determine the
center of gravity of the construction.)

If mass and radius are fixed, there are two parameters
which determine the system: The position of the cylinder
can be specified by the angle x against a zero level (that
is, against the horizontal plane; Fig. 4). This angle is the
“inner” variable of the system, which means that it is the
“answer” of the cylinder to the experimenter’s changes of
the inclination u of the plane, which is the “outer” param-
eter. In this example you should determine experimentally
the equilibrium positions of the cylinder, that is, the an-
gle of rotation where the cylinder stays at rest on the in-
clined plane (after releasing it cautiously and after letting

Catastrophe Theory, Figure 2
The eccentric cylinder on the inclined plane. The inclination of the plane can be adjusted by hand. The position of the disc center and
the center of gravity are marked by colored buttons

the system level off a short time). We are interested in
the stable positions, that is, the positions where the cylin-
der returns after slight disturbances (slightly nudging it
or slightly changing the inclination of the plane) without
rolling down the whole plane. The search for the equilib-
rium position x varies with the inclination angle u. You
can make a table and a graphic showing the dependence
of x and u.

The next step is to find an analytical approach. Refer
to Fig. 3: Point P is the supporting point of the cylinder
on the plane. Point A marks the starting position of the
center of gravity. When the wheel moves and the distance
between M and A is big enough, this center can come into
two equilibrium positions S1 and S2, which lie vertically
over P.

Now, what does the potential function look like? The
variables are:
R: radius of the discs,
u: angle of the inclined plane against the horizontal plane

measured in radians,
x: angle of rotation of the cylinder measured against the

horizontal plane in radians,
r: distance between the center of gravity S of the cylinder

from the axes marked by point M,
x0 (resp. u0): angles where the cylinder suddenly starts to

roll down the plane.
Refer to Fig. 4. If the wheel is rolled upward by hand from
the lower position on the right to the upper position, the
center of gravity moves upward with the whole wheel, or
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Catastrophe Theory, Figure 3
Two equilibrium positions (S1 and S2) are possible with this configuration. If the point A lies “too close” to M, there is no equilibrium
position possible at all when releasing the wheel, since the center of gravity can never lie vertically over P

Catastrophe Theory, Figure 4
The movement of S is a composite of the movement of the cylinder represented by the movement of point M and the rotation
movement with angle x

as the midpoint M or the point P. But point S also moves
downward by rotation of the wheel with an amount of
r � sin(x).

The height gained is

h D R � x � sin(u) � r � sin(x) : (1)

From physics one knows the formula for the potential en-
ergy Epot of a point mass. It is the product m � g � h, where
m D mass, g D gravitational constant, h D height, where
the height is to be expressed by the parameters x and u and
the given data of the cylinder.

To a fixed angle u1 of the plane, by formula (1), there
corresponds the following potential function:

f (x) D Epot D m � g �h D m � g �(R �x �sin(u1)�r �sin(x)) :

If the inclination of the plane is variable, the angle u of
inclination serves as an outer parameter and we obtain
a whole family of potential functions as a function F in
two variables x and u:

F(x; u) D Fu(x) D m � g � (R � x � sin(u) � r � sin(x)) :

Thus, the behavior of the eccentric cylinder is described
by a family of potential functions. The extrema of the sin-
gle potentials characterize the equilibria of the system. The
saddle point characterizes the place where the cylinder
suddenly begins to roll down due to the slightest distur-
bance, that is, where the catastrophe begins (see Fig. 5).

Example. The data are m D 1 kg, g D 10m/sec2,
R D 0:1m, r D 0:025m.

For constant angle of inclination u, each of the func-
tions f (x) D F(x; u D const) is a section of the function F.
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Catastrophe Theory, Figure 5
Graph of F(x;u) for a concrete cylinder

To determine the minima of each of the section graphs,
we calculate the zeros of the partial derivative of F with
respect to the inner variable x. In our particular example
above, the result is @x F D �0:25 cos(x)C sin(u). The so-
lution for @x F D 0 is u D arcsin(0:25 cos(x)) (see Fig. 6).

Calculating the point in x–u-space at which both par-
tial derivatives @x F and @xx F vanish (saddle point of the
section) and using only positive values of angle u gives
the point (x0; u0) D (0; 0:25268). In general: x0 D 0 and
u0 D arcsin(r/R). In our example this means the catastro-
phe begins at an inclination angle of u0 D 0:25268 (about
14.5 degrees). At that angle, sections of F with u > u0 do
not possess any minimum where the system could stably
rest. Making u bigger than u0 means that the cylindermust
leave its stable position and suddenly roll down the plane.
The point u0 in the u-parameter space is called catastrophe
point.

Catastrophe Theory, Figure 6
Curve in x–u-space, for which F(x;u) has local extrema

Catastrophe Theory, Figure 7
Graph of the section F(x;u0)

What is the shape of the section of F at u0? Since in our
example

f (x) D F(x; u0) D 0:25x � 0:25 sin(x) ;

the graph appears as shown in Fig. 7.
The point x D 0 is a degenerated critical point of f (x),

since f 0(x) D f 00(x) D 0. If we expand f into its Taylor
polynomial t(x) around that point we get

t(x) D 0:0416667x3 � 0:00208333x5 C 0:0000496032x7

�6:88933 � 10�7x9 C O[x]11 :
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Catastrophe theory tries to simplify the Taylor poly-
nomials of the potentials locally about their degenerated
critical points. This simplification is done by coordinate
transformations, which do not change the structure of
the singularities. These transformations are called diffeo-
morphisms (see Sect. “Glossary”). Amap h : U ! V , with
U and V open inRn , is a local diffeomorphism if the Jaco-
bian determinant det(Jph) ¤ 0 at all points p in U. Two
functions f and g, both defined in some neighborhood
of the origin of Rn , are called r-equivalent if there exists
a local diffeomorphism h : U ! V at the origin, such that
g D f ı h.

The Taylor polynomial t(x) in our example starts with
a term of 3rd order in x. Thus, there exists a diffeomor-
phism (a non-singular coordinate transformation), such
that in the new coordinates t is of the form x3. To see
this, we write t(x) D x3 � a(x), with a(0) ¤ 0. We define
h(x) D x �a(x)1/3. Note that themap h is a local diffeomor-
phism near the origin since h0(0) D a(0)1/3 ¤ 0. (Hint:
Modern computer algebra systems, such as Mathematica,
are able to expand expressions like a(x)1/3 and calculate
the derivative of h easily for the concrete example.)

Thus for the eccentric cylinder the intersection of the
graph of the potential F(x; u) with the plane u D u0 is the
graph of a function, whose Taylor series at its critical point
x D 0 is t D x3 ı h, in other words: t is r-equivalent to x3.

Before we continue with this example and its relation
to catastrophe theory, let us introduce another example
which leads to a potential of the form x4. Thenwe will have
two examples which lead to the two simplest catastrophes
in René Thom’s famous list of the seven elementary catas-
trophes.

Example 2: The Formation of Traffic Jam

In the first example we constructed a family F of poten-
tial functions directly from the geometric properties of the
model of the eccentric cylinder. We then found its crit-
ical points by calculating the derivatives of F. In this sec-
ond example themethod is slightly different.We start with
a partial differential equation which occurs in traffic flow
modeling. The solution surface of the initial value problem
will be regarded as the surface of zeros of the derivative of
a potential family. From this, we then calculate the family
of potential functions. Finally, we will see that the Taylor
series of a special member of this family, the one which be-
longs to its degenerated critical point, is equivalent to x4.

Note:Whenmodeling a traffic jamwe use the names of
variables that are common in literature about this subject.
Later we will rename the variables into the ones commonly
used in catastrophe theory.

Let u(x; t) be the (continuous) density of the traffic at
a street point x at time t and let a(u) be the derivative of
the traffic flow f (u). The mathematical modeling of simple
traffic problems leads to the well known traffic flow equa-
tion:
@u(x; t)
@t

C a(u)
@u(x; t)
@x

D 0 :

Wemust solve the Cauchy problem for this quasilinear
partial differential equation of first order with given initial
density u0 D u(x; 0) by the method of characteristics. The
solution is constant along the (base) characteristics, which
are straight lines in xt-plane with slope a(u0(y)) against
the t-axes, if y is a point on the x-axes, where the charac-
teristic starts at t D 0. For simplicity we write “a” instead
of a(u0(y)). Thus the solution of the initial value prob-
lem is u(x; t) D u0(x � a � t) and the characteristic surface
S D f(x; t; u)ju � u0(x � a � t) D 0g is a surface in xtu-
space. Under certain circumstances Smay not lie uniquely
above the xt-plane but may be folded as is shown in Fig. 8.
There is another curve to be seen on the surface: The bor-
der curve of the fold. Its projection onto the xt-plane is
a curve with a cusp, specifying the position and the begin-
ning time of the traffic jam.

The equations used in the example, in addition to the
traffic flow equation, can be deduced in traffic jam mod-
eling from a simple parabolic model for a flow-density re-
lation (see [5]). The constants in the following equations
result from considerations of maximal possible density
and an assumed maximal allowed velocity on the street.
In our example a model of a road of 2 km in length and
maximal traffic velocity of 100 km/h is chosen. Maximal
traffic density is umax D 0:2. The equations are f (u) D
27:78u � 138:89u2 and u(x; 0) D u0(x) D 0:1 C 0:1 �
Exp(�((x � 2000)/700)2). The latter was constructed to
simulate a slight increase of the initial density u0 along the
street at time t D 0. The graph of u0 can be seen as the
front border of the surface.

To determine the cusp curve shown in Fig. 8, consider
the following parameterization ˚ of the surface S and the
projection map � : S ! R2:

˚ : R �R�0 ! S � R3

(x; t) 7! (x C a(u0(x)) � t; t; u0(x)) :

The Jacobian matrix of � ı ˚ is

J(� ı ˚)(x; t) D

0

B
@

@(� ı˚)1
@x

@(� ı ˚)1
@t

@(� ı˚)2
@x

@(� ı ˚)2
@t

1

C
A

D

�
1C a(u0(x))0 � t a(u0(x))

0 1

�
:
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Catastrophe Theory, Figure 8
Characteristic surface S, initial density, fold curve and cusp curve

It is singular (that is, its determinate vanishes) if 1 C
(a(u0(x)))0 � t D 0. From this we find the curve c : R! R2

c(x) D
�
x;�

1
a0(u0(x)) � u00(x)

�

which is the pre-image of the cusp curve and the cusp
curve in the Fig. 8 is the image of c under � ı ˚ .

Whether the surface folds or not depends on both
the initial density u0 and the properties of the flow func-
tion f (u). If such folding happens, it would mean that
the density would have three values at a given point in
xt-space, which is a physical impossibility. Thus, in this
case, no continuous solution of the flow equation can exist
in the whole plane. “Within” the cusp curve, which is the
boundary for the region where the folding happens, there
exists a curve with its origin in the cusp point. Along this
curve the surface must be “cut” so that a discontinuous so-
lution occurs. The curve within the cusp region is called
a shock curve and it is characterized by physical conditions
(jump condition, entropy condition). The density makes
a jump along the shock.

The cusp, together with the form of the folding of
the surface, may give an association to catastrophe the-
ory. One has to find a family of potential functions for this
model, that is, functions F(x;t)(u), whose negative gradient,
that is, its derivative by u (the inner parameter), describes
the characteristic surface S by its zeroes. The family of po-

Catastrophe Theory, Figure 9
The solution surface is “cut” along the shock curve, running
within the cusp region in the xt-plane

tentials is given by

F(x; t; u) D �t�
�
u � a(u) �

Z
a(u)du

�
�

x�a(u)�tZ

0

u0(x)dx

(see [6]). Since

�gradFx;t(u) D �
@F
@u
D 0, u � u0(x � a(u) � t) D 0

the connection of F and S is evident. One can show that
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a member f of the family F, the function f (u) D F(�; �; u),
is locally in a traffic jam formation point (�; �) of the form
f (u) D u4 (after Taylor expansion and after suitable coor-
dinate transformations, similar to the first example).

The complicated function terms of f and F thus can be
replaced in qualitative investigations by simple polynomi-
als. From the theorems of catastrophe theory, more prop-
erties of the models under investigation can be discovered.

Now we want to use the customary notation of catas-
trophe theory.We shall rename the variables: u is the inner
variables, which in catastrophe theory usually is x, and x, t
(the outer parameters) get the names u and v respectively.
Thus F D F(x; u; v) is a potential family with one inner
variable (the state variable x) and two outer variables (the
control variables u and v).

Unfoldings

In the first examples above we found a family F(x; u) of
potential functions for the eccentric cylinder. For u fixed
we found single members of that family. The member
which belonged to the degenerated critical point of F, that
is, to the point (x; u) where @x F D @xx F D 0, turned out
to be equivalent to x3. In the second example the corre-
sponding member is equivalent to x4 (after renaming the
variables). These two singularities are members of poten-
tial families which also can be transformed into simple
forms.

In order to learn how such families, in general, arise
from a single function germ, let us look at the singu-
larity f (x) D x3. If we add to it a linear “disturbance”
u � x, where the factor (parameter) u may assume differ-
ent values, we qualitatively have one of the function graphs
in Fig. 10.

The solid curve in Fig. 10 represents the graph of
f (x) D x3. The dashed curve is the graph of g(x) D x3 �
u � x; u > 0. The dotted line is h(x) D x3 C u � x; u > 0.

Catastrophe Theory, Figure 10
Perturbations of x3

Catastrophe Theory, Figure 11
The function f (x) D x3 embedded in a function family

Please note: While for positive parameter values, the
disturbed function has no singularity, in the case of nega-
tive u-values a relative maximum and a relative minimum
exist. The origin is a singular point only for u D 0, that is,
for the undisturbed function f .

We can think of f (x) D x3 as a member of a function
family, which contains disturbances with linear terms.

The function f (x) D x3 changes the type of singular-
ity with the addition of an appropriate small disturbing
function, as we have seen. Therefore f is called “struc-
turally unstable”. But we have also learned that f (x) D x3

can be seen as a member of a whole family of functions
F(x; u) D x3 C u � x, because F(x; 0) D f (x). This fam-
ily is stable in the sense that all kinds of singularities
of the perturbed function are included by its members.
This family is only one of the many possibilities to “un-
fold” the function germ f (x) D x3 by adding disturbing
terms. For example F(x; u; v) D x3 C u � x2 C v � x would
be another such unfolding (see Sect. “Glossary”) of f . But
this unfolding has more parameters than the minimum
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Catastrophe Theory, Figure 12
The function f (x) D x4C u � x5, uD 0 (solid), u D 0:2 (dotted)
and u D 0:3 (dashed)

needed. The example of a traffic jam leads to an unfold-
ing of f (x) D x4 which is F(x; u; v) D x4 C u � x2 C v � x.

How can we find unfoldings, which contain all possi-
ble disturbances (all types of singularities), that is, which
are stable and moreover have a minimum number of pa-
rameters?

Examine the singularity x4 (Fig. 12). It has a degener-
ated minimum at the origin. We disturb this function by
a neighboring polynomial of higher degree, for example,
by u � x5, where the parameter u with small values (here
and in what follows “small” means small in amount), en-
sures that the perturbed function is “near” enough to x4.

For f (x) D x4 C u � x5, we find that the equation
f 0(x) D 0 has the solutions x1 D x2 D x3 D 0, x4 D
�4/(5u). To the threefold zero of the derivative, that is,
the threefold degeneratedminimum, another extremum is
added which is arbitrarily far away from the origin for val-
ues of u that are small enough in amount due to the term
�4/(5u). This is so, because the term �4/(5u) increases as
u decreases. (This is shown in Fig. 12 with u D 0, u D 0:2
and u D 0:3). The type of the singularity at the origin thus
is not influenced by neighboring polynomials of the form
u � x5.

If we perturb the polynomial x4 by a neighboring poly-
nomial of lower degree, for example, u � x3, then for small
amounts of u a newminimum is generated arbitrarily close
to the existing singularity at the origin.

If disturbed by a linear term, the singularity at the
origin can even be eliminated. The only real solution of
h0(x) D 0, where h(x) D x4 C ux, is x D �(u/4)(1/3).

Note: Only for u D 0, that is, for a vanishing distur-
bance, is h singular at the origin. For each u ¤ 0 the linear
disturbance ensures that no singularity at the origin oc-
curs.

The function f (x) D x4 is structurally unstable. To
find a stable unfolding for the singularity f (x) D x4, we

must add terms of lower order. But we need not take into
account all terms x4C u � x3C v � x2Cw � xC k, since the
absolute term plays no role in the computation of singu-
lar points, and each polynomial of degree 4 can be written
by a suitable change of coordinates without a cubic term.
Similarly, a polynomial of third degree after a coordinate
transformation can always be written without a quadratic
term. The “Tschirnhaus-transformation”: x 7! x � a1/n,
if a1 is the coefficient of xn�1 in a polynomial p(x) D xnC
a1xn�1C : : :C an�1xC an of degree n, leads to a polyno-
mial q(x) D xn C b1xn�2 C : : :C bn�2x C bn�1 with-
out a term of degree n � 1. Indeed, the expression
F(x; u; v) D x4 C u � x2 C v � x is, as we shall see later, the
“universal” unfolding of x4. Here an unfolding F of a germ
f is called universal, if every other unfolding of f can be re-
ceived by suitable coordinate transformations “morphism
of unfoldings” from F, and the number of unfolding pa-
rameters of F is minimal.

The minimal number of unfolding parameters needed
for the universal unfolding F of the singularity f is called
the codimension of f . It can be computed as follows:

codim( f ) D dimR�(n)/h@x f i :

Here h@x f i is the Jacobian ideal generated by the partial
derivatives of f and �(n) D f f 2 "(n)j f (0) D 0g. "(n) is
the vector space of function germs at the origin ofRn . The
quotient �(n)/h@x f i is the factor space.

What is the idea behind that factor space? Remem-
ber, that the mathematical description of a plane (a two
dimensional object) in space (3 dimensional) needs only
one equation, while the description of a line (1 dimen-
sional) in space needs two equations. The number of equa-
tions that are needed for the description of these geo-
metrical objects is determined by the difference between
the dimensions of the surrounding space and the object
in it. This number is called the codimension of the ob-
ject. Thus the codimension of the plane in space is 1
and the codimension of the line in space is 2. From lin-
ear algebra it is known that the codimension of a sub-
space W of a finite dimensional vector space V can be
computed as codimW D dimV � dimW . It gives the
number of linear independent vectors that are needed to
complement a basis of W to get a basis of the whole
space V . Another well known possibility for the defini-
tion is codimW D dimV/W . This works even for infi-
nite dimensional vector spaces and agrees in finite dimen-
sional cases with the previous definition. In our exam-
ple V D �(n) and W should be the set O of all functions
germs, which are r-equivalent to f (O is the orbit of f un-
der the action of the group of local diffeomorphisms pre-
serving the origin of Rn). But this is an infinite dimen-
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sional manifold, not a vector space. Instead, we can use its
tangent space Tf O in the point f , since spaces tangent to
manifolds are vector spaces with the same dimension as
the manifold itself and this tangent space is contained in
the space tangent to �(n) in an obvious way. It turns out,
that the tangent space Tf O is h@x f i. The space tangent to
�(n) agrees with�(n), since it is a vector space. The details
for the computations together with some examples can be
found in the excellent article by M. Golubitsky (1978).

The Seven Elementary Catastrophes

Elementary catastrophe theory works with families (un-
foldings) of potential functions

F : Rn �Rk ! R (with k � 4)
(x; u) 7! F(x; u) :

Rn is called the state space, Rk is called the parameter
space or control space. Accordingly x D (x1; : : : ; xn) is
called a state variable or endogenous variable and u D
(u1; : : : ; uk) is called a control variable (exogenous vari-
able, parameter).

We are interested in the singularities of F with respect
to x and the dependence of F with respect to the control
variables u. We regard F as the unfolding of a function
germ f and want to classify F.

In analogy to the r-equivalence of function germs, we
call two unfoldings F and G of the same function germ
r-equivalent as unfoldings if there exists an unfolding-
morphism (see Sect. “Glossary”) from F to G. An unfold-
ing F of f is called versal (or stable), if each other unfolding
of f is right-equivalent as unfolding to F, that is, if there
exists a right-morphism between the unfoldings. A ver-
sal unfolding with minimal unfolding dimensions is called
universal unfolding of f .

Thus we have the following theorem (all proofs of the
theorems cited in this article can be found in [1,2] or [12].)

Theorem 1 (Theorem on the existence of a universal
unfolding) A singularity f has a universal unfolding iff
codim( f ) D k <1.

Examples (see also the following theorem with its exam-
ples):

If f (x) D x3 it follows

F(x; u; v) D x3 C ux2 C vx is versal;

F(x; u) D x3 C ux is universal;

F(x; u) D x3 C ux2 is not versal :

The following theorem states how one can find a universal
unfolding of a function germ:

Theorem 2 (Theorem on the normal form of uni-
versal unfoldings) Let f 2 �(n) be a singularity with
codim( f ) D k <1. Let u D (u1; : : : ; uk) be the param-
eters of the unfolding. Let bi (x), i D 1; : : : ; k, be the ele-
ments of �(n), whose cosets modulo h@x f i generate the vec-
tor space �(n)/h@x f i. Then

F(x; u) D f (x)C
kX

iD1

ui bi (x)

is a universal unfolding of f .

Examples:

1. Consider f (x) D x4. Here n D 1 and �(n) D �(1) D
hxi. The derivative of f is 4x3, so h@x f i D hx3i and
we get hxi/hx3i D hx; x2i. Thus F(x; u1; u2) D x4 C
u1x2 C u2x is the universal unfolding of f .

2. Consider f (x; y) D x3 C y3. Here n D 2 and �(n) D
�(2) D hx; yi. The partial derivatives of f with respect
to x and y are 3x2 and 3y2, thus h@x f i D hx2; y2i
and we get hx; yi/hx2; y2i D hx; xy; yi. Therefore
F(x; y; u1; u2; u3) D x3C y3Cu1 � x � yCu2 � xCu3 � y
is the universal unfolding of f .

Hint: There exists a useful method for the calculation of
the quotient space which you will find in the literature as
“Siersma’s trick” (see for example [7]).

We now present René Thom’s famous list of the seven el-
ementary catastrophes.

Classification Theorem (Thom’ s List)

Up to addition of a non degenerated quadratic form in
other variables and up to multiplication by ˙1 a singu-
larity f of codimension k (1 � k � 4) is right-equivalent
to one of the following seven:

f codim f universal unfolding name
x3 1 x3 C ux fold
x4 2 x4 C ux2 C vx cusp
x5 3 x5 C ux3 C vx2 C wx swallowtail
x3 C y3 3 x3 C y3 C uxyC vxC wy hyperbolic

umbilic
x3 � xy2 3 x3 � xy2 C u(x2 C y2)

C vxC wy
elliptic
umbilic

x6 4 x6 C ux4 C vx3 C wx2 C tx butterfly
x2yC y4 4 x2yC y4 C ux2 C vy2

C wxC ty
parabolic
umbilic

In a few words: The seven elementary catastrophes are
the seven universal unfoldings of singular function germs
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of codimension k (1 � k � 4). The singularities itself are
called organization centers of the catastrophes.

We will take a closer look at the geometry of the sim-
plest of the seven elementary catastrophes: the fold and the
cusp. The other examples are discussed in [9].

The Geometry of the Fold and the Cusp

The fold catastrophe is the first in Thom’s list of the seven
elementary catastrophes. It is the universal unfolding of
the singularity f (x) D x3 which is described by the equa-
tion F(x; u) D x3 C u � x. We are interested in the set of
singular points of F relative to x, that is, for those points
where the first partial derivative with respect to x (the sys-
tem variable) vanishes. This gives the parabola u D �3x2.
Inserting this into F gives a space curve.

Figure 13 shows the graph of F(x; u). The curve on
the surface joins the extrema of F and the projection curve
represents their x; u values. There is only one degenerated
critical point of F (at the vertex of the Parabola), that is,
a critical point where the second derivative by x also van-
ishes. The two branches of the parabola in the xu-plane
give the positions of the maxima and the minima of F, re-
spectively. At the points belonging to a minimum, the sys-
tem is stable, while in a maximum it is unstable. Project-
ing x–u space, and with it the parabola, onto parameter
space (u-axis), one gets a straight line shown within the
interior of the parabola, which represents negative param-
eter values of u. There, the system has a stable minimum
(and an unstable maximum, not observable in nature). For
parameter values u > 0 the system has no stability points
at all. Interpreting the parameter u as time, and “walking
along” the u-axis, the point u D 0 is the beginning or the
end of a stable system behavior. Here the system shows
catastrophic behavior. According to the interpretation of
the external parameter as time or space, the morphology
of the fold is a “beginning,” an “end” or a “border”, where
something new occurs.

What can we say about the fold catastrophe and the
modeling of our first example, the eccentric cylinder? We
have found that the potential related to the catastrophe
point of the eccentric cylinder is equivalent to x3, and
F(x; u) D x3 C ux is the universal unfolding. This is inde-
pendent of the size of our ‘machine’. The behavior of the
machine should be qualitatively the same as that of other
machines which are described by the fold catastrophe as
a mechanism. We can expect that the begin (or end) of
a catastrophe depends on the value of a single outer pa-
rameter. Stable states are possible (for u < 0 in the stan-
dard fold. In the untransformed potential function of our
model of the eccentric cylinder, this value is u D 0:25268)

Catastrophe Theory, Figure 13
Graph of F(x;u) D x3 C u � x

corresponding to the local minima of F(:; u). This means
that it is possible for the cylinder to stay at rest on the in-
clined plane. There are unstable equilibria (local maxima
of F(:; u) and the saddle point, too). The cylinder can be
turned such that the center of gravity lies in the upper po-
sition over the supporting point (see Fig. 3). But a tiny dis-
turbance will make the system leave this equilibrium.

Let us now turn to the cusp catastrophe. The cusp
catastrophe is the universal unfolding of the function germ
f (x) D x4. Its equation is F(x; u; v) D x4Cu �x2Cv �x. In
our second example (traffic jam), the function f is equiva-
lent to the organization center of the cusp catastrophe, the
second in René Thom’s famous list of the seven elementary
catastrophes. So the potential family is equivalent to the
universal unfolding F(x; u; v) D x4 C u � x2 C v � x of the
function x4. We cannot draw such a function in three vari-
ables in three-space, but we can try to draw sections giving
u or v certain constant values.We want to look at its catas-
trophe surface S, that is, the set of those points in (x; u; v)-



Catastrophe Theory C 715

Catastrophe Theory, Figure 14
The catastrophemanifold of the cusp catastrophe

space, where the partial derivative of F with respect to the
system variable x is zero. It is a surface in three-space called
catastrophe manifold, stability surface or equilibrium sur-
face, since the surface S describes the equilibrium points of
the system.

If S is not folded over a point in u; v-space there is
exactly one minimum of the potential F. If it is folded
in three sheets, there are two minima (corresponding to
the upper and lower sheet of the fold) and a maximum
(corresponding to the middle sheet). Stable states of the
system belong to the stable minima, that is, to the upper
and lower sheets of the folded surface. Other points in
three-space that do not lie on the surface S correspond to
the states of the system that are not equilibrium. The sys-
tem does not rest there. Catastrophes do occur when the
system jumps suddenly from one stable state to another
stable state, that is, from one sheet to the other. There
are two principal possibilities, called “conventions”, where
this jump can happen. The “perfect delay convention” says
that jumps happen at the border of the folded surface. The
“Maxwell convention” says that jumps can happen along
a curve in uv-space (a “shock-curve”) which lays inside the
cusp area. This curve consists of those points (u; v) in pa-
rameter space, where F(:; u; v) has two critical points with
the same critical value. In our traffic jam model a shock
curve is a curve in xt-space that we can interpret dynami-
cally as themovement of the jam formation front along the
street (see Fig. 9). The same figure shows what we call the
morphology of the cusp: according to the convention, the

Catastrophe Theory, Figure 15
The catastrophemanifold (CM), catastrophe set (CS) and bifurca-
tion set (BS) of the cusp catastrophe

catastrophe manifold with its fold or its cut can be inter-
preted as a fault or slip (as in geology) or a separation (if
one of the parameter represents time). In our traffic jam
model, there is a “line” (actually a region) of separation
(shock wave) between the regions of high and low traffic
density.

Besides the catastrophe manifold (catastrophe surface)
there are two other essential terms: catastrophe set and
bifurcation set (see Fig. 15). The catastrophe set can be
viewed as the curve which goes along the border of the
fold on the catastrophe manifold. It is the set of degen-
erated critical points and is described mathematically as
the set f(x; u; v)j@x F D @2x F D 0g. Its projection into the
uv-parameter space is the cusp curve, which is called the
bifurcation set of the cusp catastrophe.

The cusp catastrophe has some special properties
which we discuss now with the aid of some graphics. If
the system under investigation shows one or more of these
properties, the experimenter should try to find a possible
cusp potential that accompanies the process.

The first property is called divergence. This property
can be shown by the two curves (black and white) on the
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Catastrophe Theory, Figure 16
The divergence property of the cusp catastrophe

Catastrophe Theory, Figure 17
The hysteresis property of the cusp catastrophe

catastrophe manifold which describes the system’s equi-
librium points. Both curves initially start at nearby po-
sitions on the surface, that is, they start at nearby stable
system states. But the development of the system can pro-
ceed quite differently. One of the curves runs on the up-
per sheet of the surface while the other curve runs on the
lower sheet. The system’s stability positions are different
and thus its behavior is different.

The next property is called hysteresis. If the system de-
velopment is running along the path shown in Fig. 17 from
P1 to P2 or vice versa, the jumps in the system behavior,
that is, the sudden changes of internal system variables,
occur at different parameter constellations, depending on

Catastrophe Theory, Figure 18
The bifurcation property of the cusp catastrophe

the direction the path takes, from the upper to the lower
sheet or vice versa. Jumps upward or downward happen
at the border of the fold along the dotted lines. The name
of this property of the cusp comes from the characteristic
hysteresis curve in physics, occurring for example at the
investigation of the magnetic properties of iron.

Figure 18 shows the bifurcation property of the cusp
catastrophe: the number of equilibrium states of the sys-
tem splits from one to three along the path beginning at
the starting point (SP) and running from positive to neg-
ative u values as shown. If the upper and the lower sheet
of the fold correspond to the local minima of F and the
middle sheet corresponds to the local maxima, then along
the path shown, one stable state splits into two stable states
and one unstable state.

Further Applications

Many applications of catastrophe theory are attributable
to Christopher Zeeman. For example, his catastrophe ma-
chine, the “Zeeman wheel,” is often found in literature.
This simple model consists of a wheel mounted flat against
a board and able to turn freely. Two elastics are attached
at one point (Fig. 19, point B) close to the periphery of the
wheel. One elastic is fixed with its second end on the board
(point A). The other elastic can be moved with its free end
in the plane (point C).

Moving the free end smoothly, the wheel changes its
angle of rotation smoothly almost everywhere. But at cer-
tain positions of C, which can be marked with a pencil,
the wheel suddenly changes this angle dramatically. Join-
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Catastrophe Theory, Figure 19
The Zeeman wheel

ing the marked points where these jumps occur, you will
find a cusp curve in the plane. In order to describe this
behavior, the two coordinates of the position of point C
serve as control parameters in the catastrophe model. The
potential function for this model results from Hook’s law
and simple geometric considerations. Expanding the po-
tential near its degenerated critical point into its Taylor
series, and transforming the series with diffeomorphisms
similar to the examples we have already calculated, this
model leads to the cusp catastrophe. Details can be found
in the book of Poston and Stewart [7] or Saunders (1986).

Another example of an application of catastrophe the-
ory is similar to the traffic jam model we used here. Catas-
trophe theory can describe the formation of shockwaves
in hydrodynamics. Again the cusp catastrophe describes
this phenomenon. The mathematical frame is given in the
works of Lax [6], Golubitsky and Schaeffer[3] and Guck-
enheimer [4].

In geometrical optics light rays are investigated which
are reflected on smooth surfaces. Caustics are the en-
velopes of the light rays. They are the bright patterns of
intensive light, which can be seen, for example, on a cup of
coffee when bright sunlight is reflected on the border of the
cup. Catastrophe theory can be applied to light caustics,
because the light rays obey a variational principle. Accord-
ing to Fermat’s principle, light rays travel along geodesics
and the role of the potential functions in catastrophe the-
ory is played by geodesic distance functions. Caustics are
their bifurcation sets. The calculations are given for exam-
ple in the work of Sinha [11].

A purely speculative example, given by Zeeman, is an
aggression model for dogs. Suppose that fear and rage of

Catastrophe Theory, Figure 20
A dog’s aggression behavior depending on its rage and fear

a dog can be measured in some way from aspects of its
body language (its attitude, ears, tail, mouth, etc.). Fear
and rage are two conflicting parameters, so that a catas-
trophe in the dog’s behavior can happen. Look at Fig. 20.

The vertical axis shows the dog’s aggression potential,
the other axes show its fear and rage. Out of the many
different ways the dog can behave, we choose one exam-
ple. Suppose we start at point A on the catastrophe man-
ifold (behavioral surface). Maybe the dog is dozing in the
sun without any thought of aggression. The dog’s aggres-
sion behavior is neutral (point A). Another dog is coming
closer and our dog, now awakened, is becoming more and
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more angry by this breach of his territory. Moving along
the path on the behavior surface, the dog is on a trajec-
tory to attack his opponent. But it suddenly notices that
the enemy is very big (point B). So its fear is growing, its
rage diminishes. At point C the catastrophe happens: At-
tack suddenly changes to flight (point D). This flight con-
tinues until the dog notices that the enemy does not follow
(point E). Fear and rage both get smaller until the dog be-
comes calm again.

The example can be modified a little bit to apply to
conflicts between two states. The conflicting factors can be
the costs and the expected gain of wars, and so on.

Among the variety of possible examples, those worthy
of mention include investigations of the stability of ships,
the gravitational collapse of stars, the buckling beam (Eu-
ler beam), the breaking of ocean waves, and the develop-
ment of cells in biology. The latter two problems are exam-
ples for the occurrence of higher catastrophes, for example
the hyperbolic umbilic (see Thom’s List of the seven ele-
mentary catastrophes).

Future Directions

When catastrophe theory came up in the nineteen-six-
ties, much enthusiasm spread among mathematicians and
other scientists about the new tool that was expected to
explain many of the catastrophes in natural systems. It
seemed to be the key for the explanation of discontinuous
phenomena in all sciences. Since many applications were
purely qualitative and speculative, a decade later this en-
thusiasm ebbed away and some scientists took this theory
for dead. But it is far from that. Many publications in our
day show that it is still alive. The theory has gradually be-
come a ‘number producing’ theory, so that it is no longer
perceived as purely qualitative. It seems that it will be ap-
plied the sciences increasingly, producing numerical re-
sults. Thom’s original ideas concerning mathematical bi-
ology seem to have given the basis for the trends in mod-
ern biology. This is probably the most promising field of
application for catastrophe theory. New attempts are also
made, for example, in the realm of decision theory or in
statistics, where catastrophe surfaces may help to clarify
statistical data.

From the point of view of teaching and learning math-
ematics, it seems that catastrophe theory is becoming and
increasingly popular part of analysis courses at our univer-
sities. Thus, students of mathematics meet the basic ideas
of catastrophe theory within their first two years of under-
graduate studies. Perhaps in the near future its basic prin-
ciples will be taught not only to the mathematical special-
ists but to students of other natural sciences, as well.
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Glossary

Dynamical system is a set of components the properties
of which (e. g. their quantity, activity level etc.) change
in time because the components interact among them-
selves and are also influenced by external forces.

Network node is a constituent component of the net-
work, in biological networks most often identifiedwith
a molecular species.

Interaction is a connection between network nodes; in
biological networks an interaction means that two

nodes chemically react, regulate each other, or effec-
tively influence each other’s activities. Interactions are
mostly pairwise, but can be higher-order as well; they
can be directed or undirected, and are usually charac-
terized by an interaction strength.

Network is a system of interacting nodes. A network can
be represented mathematically as a graph, where ver-
tices denote the nodes and edges denote the interac-
tions. Biological networks often are understood to be
dynamical systems as well, because the activities of net-
work nodes evolve in time due to the graph of interac-
tions.

Network state is the vector of activities of all nodes that
fully characterizes the network at any point in time;
since a biological network is a dynamical system, this
state generally changes through time according to a set
of dynamical equations.

Biological function refers to the role that a specific net-
work plays in the life of the organism; the network can
be viewed as existing to perform a task that enables the
cell to survive and reproduce, such as the detection or
transduction of a specific chemical signal.

Pathway is a subset of nodes and interactions in a net-
work along which information or energy and matter
flow in a directed fashion; pathways can be coupled
through interactions or unwanted cross-talk.

Curse of dimensionality is the rapid increase of com-
plexity encountered when analyzing or experimentally
observing network states, as more and more network
nodes are added. If there are N network nodes each
of which only has two states (for example on and off ),
the number of states that the network can be in grows
as 2N .

Design principle is an (assumed) constraint on the net-
work architecture, stating that a biological network, in
addition to performing a certain function, implements
that function in a particular way, usually to maximize
or minimize some further objective measure, for in-
stance robustness, information transmission, or des-
ignability.

Definition of the Subject

In cell biology, networks are systems of interacting mole-
cules that implement cellular functions, such as the regu-
lation of gene expression, metabolism or intracellular sig-
naling. While on a molecular level a biological network is
a mesh of chemical reactions between, for example, en-
zymes and their substrates, or DNA-binding proteins and
the genes that they regulate, the collective effect of these re-
actions can often be thought of as the enabling and regulat-
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ing the flow of matter and energy (in metabolic networks),
or of information (in signaling and transcriptional regula-
tory networks). The field is concerned primarily with the
description and properties of such flows and with their
emergence from network constituent parts – themolecules
and their physical interactions. An important focus is also
the question of how network function and operating prin-
ciples can be inferred despite the limited experimental ac-
cess to network states and building blocks.

Introduction

Biological network has come to mean a system of interact-
ing molecules that jointly perform cellular tasks such as
the regulation of gene expression, information transmis-
sion, or metabolism [28]. Specific instances of biological
networks include, for example, the DNA and DNA bind-
ing proteins comprising the transcriptional regulatory net-
work; signaling proteins and small molecules comprising
various signaling networks; or enzymes and metabolites
comprising the metabolic network. Two important as-
sumptions shape our current understanding of such sys-
tems: first, that the biological networks have been under
selective evolutionary pressure to perform specific cellular
functions in a way that furthers the overall reproductive
success of the individual; and second, that these functions
often are not implemented on a microscopic level by sin-
gle molecules, but are rather a collective property of the
whole interaction network. The question of how complex
behavior emerges in a network of (simple) nodes under
a functional constraint is thus central [144].

To start off with a concrete example, consider chemo-
taxis in the bacterium Escherichia coli [16,40], one of the
paradigmatic examples of signal transduction. This sys-
tem is dedicated to steering the bacteria towards areas high
in nutrient substances and away from repellents. Chemo-
effector molecules in the solution outside the bacterium
bind to receptor molecules on the cell surface, and the re-
sulting structural changes in the receptors are relayed in
turn by the activities of the intracellular signaling proteins
to generate a control signal for molecularmotors that drive
the bacterial flagella. The chemotactic network consists of
about 10 nodes (here, signaling proteins), and the inter-
actions between the nodes are the chemical reactions of
methylation or phosphorylation. Notable features of this
system include its extreme sensitivity, down to the lim-
its set by counting individual molecules as they arrive at
the cell surface [17], and the maintenance of this sensitiv-
ity across a huge dynamic range, through an adaptation
mechanism that provides nearly perfect compensation of
background concentrations [27]. More recently it has been

appreciated that aspects of this functionality, such as per-
fect adaptation, are also robust against large variations in
the concentrations of the network components [6].

Abstractly, different kinds of signaling proteins, such
those in chemotaxis, can be thought of as the building
blocks of a network, with their biochemical interactions
forming the wiring diagram of the system, much like the
components and wiring diagram of, for instance, a radio
receiver. In principle, these wiring diagrams are hugely
complex; for a network composed of N species, there are
� CN

k possible connections among any set of k compo-
nents, and typically we don’t have direct experimental
guidance about the numbers associated with each ‘wire.’
One approach is to view this as giant fitting problem:
once we draw a network, there is a direct translation of
this graph into dynamical equations, with many parame-
ters, and we should test the predictions of these dynam-
ics against whatever data are available to best determine
the underlying parameters. Another approach is to ask
whether this large collection of parameters is special in
any way other than that it happens to fit the data – are
there principles that allow us to predict how these systems
shouldwork? In the context of chemotaxis, wemight imag-
ine that network parameters have been selected to opti-
mize the average progress of bacteria up the chemical gra-
dients of nutrients, or to maximize the robustness of cer-
tain functions against extreme parameter variations. These
ideas of design principles clearly are not limited to bacte-
rial chemotaxis.

An important aspect of biological networks is that
the same components (or components that have an easily
identifiable evolutionary relationship) can be (re)used in
different modules or used for the same function in a dif-
ferent way across species, as discussed for example by Rao
et al. [118] for the case of bacterial chemotaxis. Further-
more, because evolutionary selection depends on function
and not directly on microscopic details, different wiring
diagrams or even changes in components themselves can
result in the same performance; evolutionary process can
gradually change the structure of the network as long as
its function is preserved; as an example see the discussion
of transcriptional regulation in yeast by Tanay et al. [148].
On the other hand, one can also expect that signal pro-
cessing problems like gain control, noise reduction, en-
suring (bi)stability etc, have appeared and were solved re-
peatedly, perhaps even in similar ways across various cel-
lular functions, and we might be able to detect the traces
of their commonality in the network structure, as for ex-
ample in the discussion of local connectivity in bacterial
transcriptional regulation by Shen–Orr et al. [136]. Thus
there are reasons to believe that in addition to design prin-
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ciples at the network level, there might also be local or-
ganizing principles, similar to common wiring motifs in
electronic circuitry, yet still independent of the identity of
the molecules that implement these principles.

Biological networks have been approached at many
different levels, often by investigators from different dis-
ciplines. The basic wiring diagram of a network – the fact
that a kinase phosphorylates these particular proteins, and
not all others, or that a transcription factor binds to the
promoter regions of particular genes – is determined by
classical biochemical and structural concepts such as bind-
ing specificity. At the opposite extreme, trying to under-
stand the collective behavior of the network as a whole
suggests approaches from statistical physics, often look-
ing at simplified models that leave out many molecular
details. Analyses that start with design principles are yet
a different approach, more in the ‘top–down’ spirit of sta-
tistical physics but leaving perhaps more room for details
to emerge as the analysis is refined. Eventually, all of these
different views need to converge: networks really are built
out of molecules, their functions emerge as collective be-
haviors, and these functions must really be functions of
use to the organism. At the moment, however, we seldom
know enough to bridge the different levels of description,
so the different approaches are pursued more or less in-
dependently, and we follow this convention here. We will
start with themolecular building blocks, then look atmod-
els for networks as a whole, and finally consider design
principles. We hope that this sequence doesn’t leave the
impression that we actually know how to build up from
molecules to function!

Before exploring our subject in more detail, we take
a moment to consider its boundaries. Our assignment
from the editors was to focus on phenomena at the level
of molecular and cellular biology. A very different ap-
proach attempts to create a ‘science of networks’ that
searches for common properties in biological, social, eco-
nomic and computer networks [104]. Even within the bio-
logical world, there is a significant divide between work
on networks in cell biology and networks in the brain.
As far as we can see this division is an artifact of history,
since there aremany issues which cut across these different
fields. Thus, some of the most beautiful work on signal-
ing comes from photoreceptors, where the combination
of optical inputs and electrical outputs allowed, already in
the 1970s, for experiments with a degree of quantitative
analysis that even today is hard to match in systems which
take chemical inputs and give outputs that modulate the
expression levels of genes [14,121]. Similarly, problems of
noise in the control of gene expression have parallels in the
long history of work on noise in ion channels, as we have

discussed elsewhere [156], and the problems of robustness
have also been extensively explored in the network of in-
teractions among the multiple species of ion channels in
the membrane [51,88]. Finally, the ideas of collective be-
havior are much better developed in the context of neural
networks than in cellular networks, and it is an open ques-
tion how much can be learned by studying these different
systems in the same language [151].

Biological Networks and Their Building Blocks

Genetic Regulatory Networks

Cells constantly adjust their levels of gene expression. One
central mechanism in this regulatory process involves the
control of transcription by proteins known as transcrip-
tion factors (TFs), which locate and bind short DNA se-
quences in the regulated genes’ promoter or enhancer re-
gions. A given transcription factor can regulate either a few
or a sizable proportion of the genes in a genome, and a sin-
gle gene may be regulated by more than one transcription
factor; different transcription factors can also regulate each
other [166].

In the simplest case of a gene regulated by a single TF,
the gene might be expressed whenever the factor – in this
case called an activator – is bound to the cognate sequence
in the promoter (which corresponds to the situation when
the TF concentration in the nucleus is high), whereas the
binding of a repressor would shut a normally active gene
down. The outlines of these basic control principles were
established long ago, well before the individual transcrip-
tion factors could be isolated, in elegant experiments on
the lactose operon of Escherichia coli [69] and even sim-
plermodel systems such as phage [115]. To a great extent
the lessons learned from these experiments have provided
the framework for understanding transcriptional control
more generally, in prokaryotes [114], eukaryotes [75], and
even during the development of complex multicellular or-
ganisms [8].

The advent of high throughput techniques for prob-
ing gene regulation has extended our reach beyond sin-
gle genes. In particular, microarrays [30] and the related
data analysis tools, such as clustering [36], have enabled
researchers to find sets of genes, or modules, that are coex-
pressed, i. e. up- or down-regulated in a correlated fashion
when the organism is exposed to different external con-
ditions, and are thus probably regulated by the same set
of transcription factors. Chromatin immunoprecipitation
(ChIP) assays have made it possible to directly screen for
short segments of DNA that known TFs bind; using mi-
croarray technology it is then possible to locate the inter-
genic regions which these segments belong to, and hence
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find the regulated genes, as has recently been done for the
Saccharomyces cerevisiaeDNA-TF interaction map [86].

These high throughput experimental approaches,
combined with traditional molecular biology and com-
plemented by sequence analysis and related mathematical
tools [139], provide a large scale, topological view of the
transcriptional regulatory network of a particular organ-
ism, where each link between two nodes (genes) in the reg-
ulatory graph implies either activation or repression [5].
While useful for describing causal interactions and trying
to predict responses to mutations and external perturba-
tions [89], this picture does not explain how the network
operates on a physical level: it lacks dynamics and speci-
fies neither the strengths of the interactions nor how all the
links converging onto a given node jointly exercise control
over it. To address these issues, representative wild-type
or simple synthetic regulatory elements and networks con-
sisting of a few nodes have been studied extensively to con-
struct quantitative models of the network building blocks.

For instance, combinatorial regulation of a gene by
several transcription factors that bind and interact on the
promoter has been considered by Buchler et al. [31] as
an example of (binary) biological computation and syn-
thetic networks implementing such computations have
been created [56,170]. Building on classical work describ-
ing allosteric proteins such as hemoglobin, thermody-
namic models have been used with success to account
for combinatorial interactions on the operator of the 
phage [2]. More recently Bintu et al. [24,25] have reviewed
the equilibrium statistical mechanics of such interactions,
Setty et al. [134] have experimentally and systematically
mapped out the response surface of the lac promoter
to combinations of its two regulatory inputs, cAMP and
IPTG, and Kuhlman et al. [85] have finally provided a con-
sistent picture of the known experimental results and the
thermodynamic model for the combinatorial regulation of
the lactose operon. There have also been some successes
in eukaryotic regulation, where Schroeder et al. [132] used
thermodynamically motivated models to detect clusters of
binding sites that regulate the gap genes in morphogenesis
of the fruit fly.

Gene regulation is a dynamical process composed of
a number of steps, for example the binding of TF to DNA,
recruitment of transcription machinery and the produc-
tion of the messenger RNA, post-transcriptional regula-
tion, splicing and transport of mRNA, translation, mat-
uration and possible localization of proteins. While the
extensive palette of such microscopic interactions repre-
sents a formidable theoretical and experimental challenge
for each detailed study, on a network level it primarily in-
duces three effects. First, each node – usually understood

as the amount of gene product – in a graph of regulatory
interactions is really not a single dynamical variable, but
has a nontrivial internal state representing the configu-
ration on the associated promoter, concentration of the
corresponding messenger RNA etc.; the relation of these
quantities to the concentration of the output protein is not
necessarily straightforward, as emphasized in recent work
comparing mRNA and protein levels in yeast [46]. Second,
collapsing multiple chemical species onto a single node
makes it difficult to include non-transcriptional regulation
of gene expression in the same framework. Third, the re-
sponse of the target gene to changes in the concentrations
of its regulators will be delayed and extended in time, as in
the example explored by Rosenfeld and Alon [123].

Perhaps the clearest testimonies to the importance of
dynamics in addition to network topology are provided by
systems that involve regulatory loops, in which the output
of a network feeds back on one of the inputs as an activator
or repressor. McAdams and Shapiro [99] have argued that
the time delays in genetic regulatory elements are essen-
tial for the proper functioning of the phage  switch, while
Elowitz and Leibler [38] have created a synthetic circuit
made up of three mutually repressing genes (the “repres-
silator”), that exhibits spontaneous oscillations. Circadian
clocks are examples of naturally occurring genetic oscilla-
tors [171].

In short, much is known about the skeleton of genetic
regulatory interactions for model organisms, and physical
models exist for several well studied (mostly prokaryotic)
regulatory elements. While homology allows us to bridge
the gap between model organisms and their relatives, it is
less clear how and at which level of detail the knowledge
about regulatory elements must be combined into a net-
work to explain and predict its function.

Protein–Protein Interaction Networks

After having been produced, proteins often assemble into
complexes through direct contact interactions, and these
complexes are functionally active units participating in
signal propagation and other pathways. Proteins also in-
teract through less persistent encounters, as when a pro-
tein kinase meets its substrate. It is tempting to define
a link in the network of protein–protein interactions by
such physical associations, and this is the basis of sev-
eral experimental methods which aim at a genome-wide
survey of these interactions. Although starting out be-
ing relatively unreliable (with false positive rates of up to
50%), high throughput techniques like the yeast two hy-
brid assay [68,161] or mass spectrometry [45,61] are pro-
viding data of increasing quality about protein–protein in-
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teractions, or the “interactome” [84]. While more reliable
methods are being developed [5] and new organisms are
being analyzed in this way [49,91,125], the existing inter-
action data from high throughput experiments and cu-
rated databases has already been extensively studied.

Interpretation of the interactions in the protein net-
work is tricky, however, due to the fact that different ex-
perimental approaches have various biases – for exam-
ple, mass spectrometry is biased towards detecting interac-
tions between proteins of high abundance, while two hy-
brid methods seem to be unbiased in this regard; on the
other hand, all methods show some degree of bias towards
different cellular localizations and evolutionary novelty of
the proteins. Assessing such biases, however, currently de-
pends not on direct calibration of the methods themselves
but on comparison of the results with manually curated
databases, although the databases surely have their own
biases [70]. It is reassuring that the intersection of various
experimental results shows significantly improved agree-
ment with the databases, but this comes at the cost of
a substantial drop in coverage of the proteome [100].

In contrast to the case of transcriptional regulation, the
relationship between two interacting proteins is symmet-
ric: if protein A binds to protein B, B also binds to A, so
that the network is described by an undirected graph.Most
of the studies have been focused on binary interactions
that yeast two hybrid and derived approaches can probe,
although spectrometry can detect multiprotein complexes
as well. Estimates of number of links in these networks
vary widely, even in the yeast Saccharomyces cerevisiae:
Krogan et al. [84] directly measure around 7100 interac-
tions (between 2700 proteins), while Tucker et al. [158]
estimate the total to be around 13 000–17 000, and von
Mering et al. [100] would put the lower estimate at about
30 000. Apart from the experimental biases that can in-
fluence such estimates and have been discussed already, it
is important to realize that each experiment can only de-
tect interactions between proteins that are expressed under
the chosen external conditions (e. g. the nutrientmedium);
moreover, interactions can vary from being transient to
permanent, to which various measurement methods re-
spond differently. It will thus become increasingly impor-
tant to qualify each interaction in a graph by specifying
how it depends on context in which the interaction takes
place.

Proteins ultimately carry out most of the cellular pro-
cesses such as transcriptional regulation, signal propaga-
tion and metabolism, and these processes can be modeled
by their respective network and dynamical system abstrac-
tions. In contrast, the interactome is not a dynamical sys-
tem itself, but instead captures specific reactions (like pro-

tein complex assembly) and structural and/or functional
relations that are present in all of the above processes. In
this respect it has an important practical role of annotating
currently unknown proteins through ‘guilt by association,’
by tying them into complexes and processes with a previ-
ously known function.

Metabolic Networks

Metabolic networks organize our knowledge about an-
abolic and catabolic reactions between the enzymes, their
substrates and co-factors (such as ATP), by reducing the
set of reactions to a graph representation where two sub-
strates are joined by a link if they participate in the same
reaction. For model organisms like the bacterium Es-
cherichia coli the metabolic networks have been studied in
depth and are publicly available [77,78], and an increas-
ing number of analyzed genomes offers sufficient sampling
power to make statistical statements about the network
properties across different domains of life [72].

Several important features distinguish metabolic from
protein–protein interaction and transcriptional regulation
networks. First, for well studied systems the coverage of
metabolic reactions is high, at least for the central routes
of energy metabolism and small molecule synthesis; no-
tice that this is a property of our knowledge, not a prop-
erty of the networks (!). Second, cellular concentrations of
metabolites usually are much higher than those of tran-
scription factors, making the stochasticity in reactions due
to small molecular counts irrelevant. Third, knowledge
of the stoichiometry of reactions allows one to directly
write down a system of first order differential equations for
the metabolite fluxes [60], which in steady state reduces
to a set of linear constraints on the space of solutions.
These chemical constraints go beyond topology and can
yield strong and testable predictions; for example, Ibarra et
al. [66] have shown how computationally maximizing the
growth rate of Escherichia coli within the space of allowed
solutions given by flux balance constraints can correctly
predict measurable relationships between oxygen and sub-
strate uptake, and that bacteria can be evolved towards the
predicted optimality for growth conditions in which the
response was initially suboptimal.

Signaling Networks

Signaling networks consist of receptor and signaling pro-
teins that integrate, transmit and route information by
means of chemical transformations of the network con-
stituents. One class of such transformations, for exam-
ple, are post–translational modifications, where targets
are phosphorylated, methylated, acetylated, : : : on spe-
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cific residues, with a resulting change in their enzymatic
(and thus signaling) activity. Alternatively, proteins might
form stable complexes or dissociate from them, again in-
troducing states of differential activity. The ability of cells
to modify or tag proteins (possibly on several residues)
can increase considerably the cell’s capacity to encode its
state and transmit information, assuming that the signal-
ing proteins are highly specific not only for the identity
but also the modification state of their targets; for a review
see [110].

Despite the seeming overlap between the domains of
protein–protein network and signaling networks, the fo-
cus of the analysis is substantially different. The inter-
actome is simply a set of possible protein–protein in-
teractions and thus a topological (or connectivity) map; in
contrast, signaling networks aim to capture signal trans-
duction and therefore need to establish a causal map, in
which the nature of the protein–protein interaction, its
direction and timescale, and its quantitative effect on the
activity of the target protein matter. As an example, see
the discussion by Kolch et al. [83] on the role of protein–
protein interactions in MAPK signaling cascade.

Experiments on some signaling systems, such as
the Escherichia coli chemotactic module, have generated
enough experimental data to require detailed models in
the form of dynamical equations. Molecular processes in
a signaling cascade extend over different time scales, from
milliseconds required for kinase and phosphatase reac-
tions and protein conformational changes, to minutes or
more required for gene expression control, cell movement
and receptor trafficking; this fact, along with the (often es-
sential) spatial effects such as the localization of signaling
machinery and diffusion of chemical messengers, can con-
siderably complicate analyses and simulations.

Signaling networks are often factored into pathways
that have specific inputs, such as the ligands of the G pro-
tein coupled receptors on the cell surface, and specific out-
puts, as with pathways that couple to the transcriptional
regulation apparatus or to changes in the intracellular con-
centration of messengers such as calcium or cyclic nu-
cleotides. Nodes in signaling networks can participate in
several pathways simultaneously, thus enabling signal in-
tegration or potentially inducing damaging “crosstalk” be-
tween pathways; how junctions and nodes process signals
is an area of active research [74].

The components of signaling networks have long been
the focus of biochemical research, and genetic methods al-
low experiments to assess the impact of knocking out or
over-expressing particular components. In addition, sev-
eral experimental approaches are being designed specifi-
cally for elucidating signaling networks. Ab-chips localize

various signaling proteins on chips reminiscent of DNA
microarrays, and stain them with appropriate fluorescent
antibodies [105]. Multicolor flow cytometry is performed
on cells immuno-stained for signaling protein modifica-
tions and hundreds of single cell simultaneous measure-
ments of the modification state of pathway nodes are col-
lected [113]. Indirect inference of signaling pathways is
also possible from genomic or proteomic data.

One well studied signal transduction system is the mi-
togen activated protein kinase (MAPK) cascade that con-
trols, among other functions, cell proliferation and differ-
entiation [32]. Because this system is present in all eu-
karyotes and its structural components are used in mul-
tiple pathways, it has been chosen as a paradigm for the
study of specificity and crosstalk. Similarly, the TOR sys-
tem, identified initially in yeast, is responsible for inte-
grating the information on nutrient availability, growth
factors and energy status of the cell and correspondingly
regulating the cell growth [95]. Another interesting exam-
ple of signal integration and both intra- and inter-cellular
communication is observed in the quorum sensing cir-
cuit of the bacterium Vibrio harveyi, where different kinds
of species- and genus-specific signaling molecules are de-
tected by their cognate receptors on the cell surface, and
the information is fed into a common Lux phosphorelay
pathway which ultimately regulates the quorum sensing
genes [165].

Models of Biological Networks

Topological Models

The structural features of a network are captured by its
connectivity graph, where interactions (reactions, struc-
tural relations) are depicted as the links between the inter-
acting nodes (genes, proteins, metabolites). Information
about connectivity clearly cannot and does not describe
the network behavior, but it might influence and constrain
it in revealing ways, similar to effect that the topology of
the lattice has on the statistical mechanics of systems liv-
ing on it.

Theorists have studied extensively the properties of
regular networks and random graphs starting with Erdös
and Rényi in 1960s. The first ones are characterized by
high symmetry inherent in a square, triangular, or all-to-
all (mean field) lattice; the random graphs were without
such regularity, constructed simply by distributing K links
at random between N nodes. The simple one–point statis-
tical characterization that distinguishes random from reg-
ular networks looks at the node degree, that is the proba-
bility P(k) that any node has k incoming and/or outgoing
links. For random graphs this distribution is Poisson,
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meaning that most of the nodes have degrees very close
to the mean, hki D

P
k k P(k), although there are fluctua-

tions; for regular lattices every node has the same connec-
tivity to its neighbors.

The first analyses of the early reconstructions of large
metabolic networks revealed a surprising “scale free” node
degree distribution, that is P(k) � k�� , with � between
2 and 3 for most networks. For the physics community,
which had seen the impact of such scale invariance on
our understanding of phase transitions, these observations
were extremely suggestive. It should be emphasized that
for many problems in areas as diverse as quantum field
theory, statistical mechanics and dynamical systems, such
scaling relations are much more than curiosities. Power
laws relating various experimentally observable quantities
are exact (at least in some limit), and the exponents (here,
� ) really contain everything onemight want to know about
the nature of order in the system. Further, some of the
first thoughts on scaling emerged from phenomenologi-
cal analyses of real data. Thus, the large body of work on
scaling ideas in theoretical physics set the stage for peo-
ple to be excited by the experimental observation of power
laws in much more complex systems, although it is not
clear to us whether the implied promise of connection to
a deeper theoretical structure has been fulfilled. For diver-
gent views on these matters see Barabási et al. [10] and
Keller et al. [81].

The most immediate practical consequence of a scale
free degree distribution is that – relative to expectations
based on random graphs – there will be an over-represen-
tation of nodes with very large numbers of links, as with
pyruvate or co-enzyme A in metabolic networks [72,163].
These are sometimes called hubs, although another conse-
quence of a scale free distribution is that there is no ‘critical
degree of connection’ that distinguishes hubs from non-
hubs. In the protein–protein interaction network of Sac-
charomyces cerevisiae, nodes with higher degree are more
likely to represent essential proteins [73], suggesting that
node degree does have some biological meaning. On the
theoretical side, removal of a sizable fraction of nodes from
a scale free network will neither increase the network di-
ameter much, nor partition the network into equally sized
parts [3], and it is tempting to think that this robustness
is also biologically significant. The scale free property has
been observed in many non-biological contexts, such as
the topology of social interactions,WorldWideWeb links,
electrical power grid connectivity . . . [144]. A number of
models have been proposed for how such scaling might
arise, and some of these ideas, such as growth by prefer-
ential attachment, have a vaguely biological flavor [11,12].
Finding the properties of networks that actually discrimi-

nate among different mechanisms of evolution or growth
turns out to be surprisingly subtle [173].

Two other revealing measures are regularly computed
for biological networks. The mean path length, hli, is the
shortest path between a pair of nodes, averaged over all
pairs in the graph, and measures the network’s overall
‘navigability.’ Intuitively, short path lengths correspond
to, for example, efficient or fast flow of information and
energy in signaling or metabolic networks, quick spread
of diseases in a social network and so on. The clustering
coefficient of a node i is defined as Ci D 2ni /ki (ki � 1),
where ni is the number of links connecting the ki neigh-
bors of node i to each other; equivalently, Ci is the ra-
tio between the number of triangles passing through two
neighbors of i and node i itself, divided by the maximum
possible number of such triangles. Random networks have
low path lengths and low clustering coefficients, whereas
regular lattices have long path lengths and are locally clus-
tered. Watts and Strogatz [167] have constructed an in-
termediate regime of “small world” networks, where the
regular lattice has been perturbed by a small number of
random links connecting distant parts of the network to-
gether. These networks, although not necessarily scale free,
have short path lengths and high clustering coefficients,
a property that was subsequently observed in metabolic
and other biological networks as well [163].

A high clustering coefficient suggests the existence
of densely connected groups of nodes within a network,
which seems contradictory to the idea of scale invari-
ance, in which there is no inherent group or cluster size;
Ravasz et al. [120] addressed this problem by introducing
hierarchical networks and providing a simple construc-
tion for synthetic hierarchical networks exhibiting both
scale free and clustering behaviors. Although there is no
unique scale for the clusters, clusters will appear at any
scale one chooses to look at, and this is revealed by the
scaling of clustering coefficient C(k) with the node de-
gree k, C(k) � k�1, on both synthetic as well as natural
metabolic networks of organisms from different domains
of life [120]. Another interesting property of some bio-
logical networks is an anti-correlation of node degree of
connected nodes [96], which we can think of as a ‘disso-
ciative’ structure; in contrast, for example, with the asso-
ciative character of social networks, where well connected
people usually know one another.

As we look more finely at the structure of the graph
representing a network, there is of course a much greater
variety of things to look at. For example, Spirin and
Mirny [142] have focused on high clustering coefficients
as a starting point and devised algorithms to search for
modules, or densely connected subgraphs within the yeast
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protein–protein interaction network. Although the prob-
lem has combinatorial complexity in general, the authors
found about 50 modules (of 5–10 proteins in size, some of
which were unknown at the time) that come in two types:
the first represents dynamic functional units (e. g. signal-
ing cascades), and the second protein complexes. A similar
conclusion was reached by Han et al. [57], after having an-
alyzed the interactome in combination with the temporal
gene expression profiles and protein localization data; the
authors argue that nodes of high degree can sit either at the
centers of modules, which are simultaneously expressed
(“party hubs”), or they can be involved in various path-
ways and modules at different times (“date hubs”). The
former kind is at a lower level of organization, whereas the
latter tie the network into one large connected component.

Focusing on even a smaller scale, Shen-Orr et al. [136]
have explored motifs, or patterns of connectivity of small
sets of nodes that are over-represented in a given network
compared to the randomized networks of the same de-
gree distribution P(k). In the transcriptional network of
the bacterium E. coli, three such motifs were found: feed
forward loops (in which gene X regulates Y that regulates
Z, but X directly regulates Z as well), single input modules
(where gene X regulates a large number of other genes in
the same way and usually auto-regulates itself), and dense
overlapping regulons (layers of overlapping interactions
between genes and a group of transcription factors, much
denser than in randomized networks). Themotif approach
has been extended to combined network of transcriptional
regulation and protein–protein interactions [169] in yeast,
as well as to other systems [101].

At the risk of being overly pessimistic, we should con-
clude this section with a note of caution. It would be at-
tractive to think that a decade of work on network topol-
ogy has resulted in a coherent picture, perhaps of the fol-
lowing form: on the smallest scale, the nodes of biologi-
cal networks are assembled into motifs, these in turn are
linked into modules, and this continues in a hierarchical
fashion until the entire network is scale free. As we will
discuss again in the context of design principles, the no-
tion of such discrete substructure – motifs and modules –
is intuitively appealing, and some discussions suggest that
it is essential either for the function or the evolution of
networks. On the other hand, the evidence for such struc-
ture usually is gathered with reference to some null model
(e. g., a random network with the same P(k)), so we don’t
even have an absolute definition of these structures, much
less a measure of their sufficiency as a characterization of
the whole system; for attempts at an absolute definition
of modularity see Ziv et al. [174] and Hofman and Wig-
gins [62]. Similarly, while it is appealing to think about

scale free networks, the evidence for scaling almost always
is confined to less than two decades, and in practice scaling
often is not exact. It is then not clear whether the idealiza-
tion of scale invariance captures the essential structure in
these systems.

Boolean Networks

A straightforward extension of the topological picture that
also permits the study of network dynamics assumes that
the entities at the nodes – for example, genes or signal-
ing proteins – are either ‘on’ or ‘off’ at each moment of
time, so that for node i the state at time t is �i (t) 2 f0; 1g.
Time is usually discretized, and an additional prescrip-
tion is needed to implement the evolution of the sys-
tem: �i (t C 1) D fi(

˚
��(t)

�
), where f i is a function that

specifies how the states of the nodes � that are the in-
puts to node i in the interaction graph combine to de-
termine the next state at node i. For instance, f A might
be a Boolean function for gene A, which needs to have
its activator gene B present and repressor gene C absent,
so that �A(t C 1) D �B(t) ^ �̄C (t). Alternatively, f might
be a function that sums the inputs at state t with some
weights, and then sets �i D 1(0) if the result is above (be-
low) a threshold, as in classical models of neural networks.

Boolean networks are amenable both to analytical
treatment and to efficient simulation. Early on, Kauff-
man [80] considered the family of random boolean net-
works. In these models, each node is connected at random
to K other nodes on average, and it computes a ran-
dom Boolean function of its inputs in which a frac-
tion � of the 2K possible input combinations leads to
�i (t C 1) D 1. In the limit that the network is large, the
dynamics are either regular (settling into a stable fixed
cycle) or chaotic, and these two phases are separated by
a separatrix 2�(1 � �)K D 1 in the phase space (�;K).

Aldana and Cluzel [4] have shown that for connectiv-
ities of K � 20 that could reasonably be expected in e. g.
transcriptional regulatory networks, the chaotic regime
dominates the phase space. They point out, however, that
if the network is scale free, there is no ‘typical’ K as the dis-
tribution P(k) � k�� does not have a well-defined mean
for � � 3 and the phase transition criterion must be re-
stated. It turns out, surprisingly, that regular behavior is
possible for values of � between 2 and 2.5, observed in
most biological networks, and this is exactly the region
where the separatrix lies. Scale free architecture, at least
for Boolean networks, seems to prevent chaos.

Several groups have used Boolean models to look at
specific biological systems. Thomas [150] has established
a theoretical framework in which current states of the
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genes (as well as the states in the immediate past) and
the environmental inputs are represented by Boolean vari-
ables that evolve through the application of Boolean func-
tions. This work has been continued by, for example,
Sanchez and Thieffry [128] who analyzed the gap-gene
system of the fruit fly Drosophila by building a Boolean
network that generates the correct levels of gene expres-
sion for 4 gap genes in response to input levels of 3 mater-
nal morphogens with spatially varying profiles stretched
along the anterior-posterior axis of the fly embryo. Inter-
estingly, to reproduce the observed results and correctly
predict the known Drosophila segmentation mutants, the
authors had to introduce generalized Boolean variables
that can take more than two states, and have identified the
smallest necessary number of such states for each gene.

In a similar spirit, Li et al. [91] studied the skeleton of
the budding yeast cell cycle, composed of 11 nodes, and
a thresholding update rule. They found that the topology
of this small network generates a robust sequence of tran-
sitions corresponding to known progression through yeast
cell-cycle phases G1 (growth), S (DNA duplication), G2
(pause) and M (division), triggered by a known ‘cell-size
checkpoint.’ This progression is robust, in the sense that
the correct trajectory is the biggest dynamical attractor of
the system, with respect to various choices of update rules
and parameters, small changes in network topology, and
choice of triggering checkpoints.

The usefulness of Boolean networks stems from the
relative ease of implementation and simple parametriza-
tion of network topology and dynamics, making them
suitable for studying medium or large networks. In addi-
tion to simplifying the states at the nodes to two (or more)
discrete levels, which is an assumption that has not been
clearly explored, one should be cautious that the discrete
and usually synchronous dynamics in time can induce un-
wanted artifacts.

Probabilistic Models

Suppose one is able to observe simultaneously the activity
levels of several proteins comprising a signaling network,
or the expression levels of a set of genes belonging to the
same regulatory module. Because they are part of a func-
tional whole, the activity levels of the components will
be correlated. Naively, one could build a network model
by simply computing pairwise correlation coefficients be-
tween pairs of nodes, and postulating an interaction, and
therefore a link, between the two nodes whenever their
correlation is above some threshold. However, in a test
case where A! B! C (gene A induces B which induces
C), one expects to see high positive correlation among all

three elements, even though there is no (physical) interac-
tion betweenA and C. Correlation therefore is not equal to
interaction or causation. Constructing a network from the
correlations in this naive way also does not lead to a gen-
erative model that would predict the probabilities for ob-
serving different states of the network as a whole. Another
approach is clearly needed; see Markowetz and Spang [94]
for a review.

In the simple case where the activity of a protein/gene
i can either be ‘on’ (�i D 1) or ‘off’ (�i D 0), the state
of a network with N nodes will be characterized by a bi-
nary word of N bits, and because of interaction between
nodes, not all these words will be equally likely. For exam-
ple, if node A represses node B, then combinations such as
1A0B : : : or 0A1B : : : will be more likely than 1A1B : : :. In
the case of deterministic Boolean networks, having node
A be ‘on’ would imply that node B is ‘off’ with certainty,
but in probabilistic models it only means that there is
a positive bias for node B to be ‘off,’ quantified by the
probability that node B is ‘off’ given that the state of node
A is known. Having this additional probabilistic degree of
freedom is advantageous, both because the network itself
might be noisy, and because the experiment can induce er-
rors in the signal readout, making the inference of deter-
ministic rules from observed binary patterns an ill-posed
problem.

Once we agree to make a probabilistic model, the
goal is to find the distribution over all network states,
which we can also think of as the joint distribution of
all the N variable that live on the nodes of the network,
P(�1; : : : ; �N jC), perhaps conditioned on some fixed set
of environmental or experimental factors C. The activities
of the nodes, �i , can be binary, can take on a discrete set of
states, or be continuous, depending on our prior knowl-
edge about the system and experimental and numerical
constraints. Even for a modest N, experiments of realistic
scale will not be enough to directly estimate the probabil-
ity distribution, since even with binary variable the num-
ber of possible states, and hence the number of param-
eters required to specify the general probability distribu-
tion, grows as� 2N . Progress thus depends in an essential
way on simplifying assumptions.

Returning to the three gene example A! B! C, we
realize that C depends on A only through B, or in other
words, C is conditionally independent of A and hence no
interaction should be assigned between nodes A and C.
Thus, the joint distribution of three variables can be fac-
torized,

P(�A; �B; �C) D P(�Cj�B)P(�Bj�A)P(�A):

One might hope that, even in a large network, these sorts
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of conditional independence relations could be used to
simplify our model of the probability distribution. In gen-
eral this doesn’t work, because of feedback loops which, in
our simple example, would include the possibility that C
affects the state of A, either directly or through some more
circuitous path. Nonetheless one can try to make an ap-
proximation in which loops either are neglected or (more
sensibly) taken into account in some sort of average way;
in statistical mechanics, this approximation goes back at
least to the work of Bethe [19].

In the computer science and bioinformatics literature,
the exploitation of Bethe-like approximations has come to
be known as ‘Bayesian network modeling’ [43]. In prac-
tice what this approach does is to search among possible
network topologies, excluding loops, and then for fixed
topology one uses the conditional probability relationships
to factorize the probability distribution and fit the tables
of conditional probabilities at each node that will best re-
produce some set of data. Networks with more links have
more parameters, so one must introduce a trade-off be-
tween the quality of the fit to the data and this increasing
complexity. In this framework there is thus an explicit sim-
plification based on conditional independence, and an im-
plicit simplification based on a preference for models with
fewer links or sparse connectivity.

The best known application of this approach to a bi-
ological network is the analysis of the MAPK signaling
pathway in T cells from the human immune system [127].
The data for this analysis comes from experiments in
which the phosophorylated states of 11 proteins in the
pathway are sampled simultaneously by immunostaining
[113], with hundreds of cells sampled for each set of exter-
nal conditions. By combining experiments from multiple
conditions, the Bayesian network analysis was able to find
a network of interactions among the 11 proteins that has
high overlap with those known to occur experimentally.

A very different approach to simplification of proba-
bilistic models is based on the maximum entropy princi-
ple [71]. In this approach one views a set of experiments as
providing an estimate of some set of correlations, for ex-
ample the � N2 correlations among all pairs of elements
in the network. One then tries to construct a probability
distribution which matches these correlations but other-
wise has as little structure – as much entropy – as possi-
ble. We recall that the Boltzmann distribution for systems
in thermal equilibrium can be derived as the distribution
which has maximum entropy consistent with a given aver-
age energy, and maximum entropy modeling generalizes
this to take account of other average properties. In fact one
can construct a hierarchy of maximum entropy distribu-
tions which are consistent with higher and higher orders

of correlation [130]. Maximum entropy models for binary
variables that are consistent with pairwise correlations are
exactly the Ising models of statistical physics, which opens
a wealth of analytic tools and intuition about collective be-
havior in these systems.

In the context of biological networks (broadly con-
strued), recent work has shown that maximum entropy
models consistent with pairwise correlations are sur-
prisingly successful at describing the patterns of activity
among populations of neurons in the vertebrate retina as
it responds to natural movies [131,153]. Similar results are
obtained for very different retinas under different condi-
tions [137], and these successes have touched a flurry of
interest in the analysis of neural populations more gen-
erally. The connection to the Ising model has a special
resonance in the context of neural networks, where the
collective behavior of the Ising model has been used for
some time as a prototype for thinking about the dynam-
ics of computation and memory storage [64]; in the max-
imum entropy approach the Ising model emerges directly
as the least structured model consistent with the experi-
mentally measured patterns of correlation among pairs of
cells. A particularly striking result of this analysis is that
the Ising models which emerge seem to be poised near
a critical point [153]. Returning to cell biology, the maxi-
mum entropy approach has also been used to analyze pat-
terns of gene expression in yeast [90] as well as to revisit
the MAPK cascade [151].

Dynamical Systems

If the information about a biological system is detailed
enough to encompass all relevant interacting molecules
along with the associated reactions and estimated reaction
rates, and the molecular noise is expected to play a negligi-
ble role, it is possible to describe the systemwith rate equa-
tions of chemical kinetics. An obvious benefit is the imme-
diate availability of mathematical tools, such as steady state
and stability analyses, insight provided by nonlinear dy-
namics and chaos theory, well developed numerical algo-
rithms for integration in time and convenient visualization
with phase portraits or bifurcation diagrams. Moreover,
analytical approximations can be often exploited produc-
tively when warranted by some prior knowledge, for ex-
ample, in separately treating ‘fast’ and ‘slow’ reactions. In
practice, however, reaction rates and other important pa-
rameters are often unknown or known only up to order-
of-magnitude estimations; in this case the problem usually
reduces to the identification of phase space regions where
the behavior of the system is qualitatively the same, for ex-
ample, regions where the system exhibits limit-cycle oscil-
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lations, bistability, convergence into a single steady state
etc.; see Tyson et al. [159] for a review. Despite the difficul-
ties, deterministic chemical kinetic models have been very
powerful tools in analyzing specific network motifs or reg-
ulatory elements, as in the protein signaling circuits that
achieve perfect adaptation, homeostasis, switching and so
on, described by Tyson et al. [160], and more generally in
the analysis of transcriptional regulatory networks as re-
viewed by Hasty et al. [59].

In the world of bacteria, some of the first detailed com-
puter simulations of the chemotaxis module of Escherichia
coli were undertaken by Bray et al. [29]. The signaling cas-
cade from the Tar receptor at the cell surface to the modifi-
cations in the phosphorylation state of the molecular mo-
tor were captured by Michaelis–Menten kinetic reactions
(and equilibrium binding conditions for the receptor),
and the system of equations was numerically integrated
in time. While slow adaptation kinetics was not studied
in this first effort, the model nevertheless qualitatively re-
produces about 80 percent of examined chemotactic pro-
tein deletion and overexpressionmutants, although the ex-
treme sensitivity of the system remained unexplained.

In eukaryotes, Novak and Tyson [107] have, for in-
stance, constructed an extensive model of cell cycle con-
trol in fission yeast. Despite its complexity (�10 proteins
and �30 rate constants), Novak and colleagues have pro-
vided an interpretation of the system in terms of three
interlocking modules that regulate the transitions from
G1 (growth) into S (DNA synthesis) phase, from G2 into
M (division) phase, and the exit from mitosis, respec-
tively. The modules are coupled through cdc2/cdc13 pro-
tein complex and the system is driven by the interaction
with the cell size signal (proportional to the number of
ribosomes per nucleus). At small size, the control circuit
can only support one stable attractor, which is the state
with low cdc2 activity corresponding to G1 phase. As the
cell grows, new stable state appears and the system makes
an irreversible transition into S/G2 at a bifurcation point,
and, at an even larger size, the mitotic module becomes
unstable and executes limit cycles in cdc2-cdc13 activity
until the M phase is completed and the cell returns to its
initial size. The basic idea is that the cell, driven by the
the size readout, progresses through robust cell states cre-
ated by bistability in the three modules comprising the cell
cycle control – in this way, once it commits to a transi-
tion from G2 state into M, small fluctuations will not flip
it back into G2. The mathematical model has in this case
successfully predicted the behaviors of a number of cell cy-
cle mutants and recapitulated experimental observations
collected during 1970s and 1980s by Nurse and collabora-
tors [108].

The circadian clock is a naturally occurring transcrip-
tional module that is particularly amenable to dynamical
systems modeling. Leloup and Goldbeter [87] have cre-
ated a mathematical model of a mammalian clock (with
�20 rate equations) that exhibits autonomous sustained
oscillations over a sizable range of parameter values, and
reproduces the entrainment of the oscillations to the light–
dark cycles through light-induced gene expression. The
basic mechanism that enables the cyclic behavior is neg-
ative feedback transcriptional control, although the actual
circuit contains at least two coupled oscillators. Studying
circadian clock in mammals, the fruit fly Drosophila or
Neurospora is attractive because of the possibility of con-
necting a sizable cataloge of physiological disorders in cir-
cadian rhythms to malfunctions in the clock circuit and
direct experimentation with light-dark stimuli [171]. Re-
cent experiments indicate that at least in cyanobacteria
the circadian clock can be reconstituted from a surpris-
ingly small set of biochemical reactions, without transcrip-
tion or translation [102,157], and this opens possibilities
for even simpler and highly predictive dynamical mod-
els [126].

Dynamical modeling has in addition been applied to
many smaller systems. For example, the construction of
a synthetic toggle switch [44], and the ‘repressilator’ – os-
cillating network of three mutually repressing genes [38] –
are examples where mathematical analysis has stimulated
the design of synthetic circuits. A successful reaction-
diffusion model of how localization and complex forma-
tion of Min proteins can lead to spatial limit cycle oscilla-
tions (used by Escherichia coli to find its division site) was
constructed by Huang et al. [65]. It remains a challenge,
nevertheless, to navigate in the space of parameters as it
becomes ever larger for bigger networks, to correctly ac-
count for localization and count various forms of protein
modifications, especially when the signaling networks also
couple to transcriptional regulation, and to find a proper
balance between models that capture all known reactions
and interactions and phenomenological models that in-
clude coarse-grained variables.

Stochastic Dynamics

Stochastic dynamics is in principle the most detailed level
of system description. Here, the (integer) count of every
molecular species is tracked and reactions are drawn at
random with appropriate probabilities per unit time (pro-
portional to their respective reaction rates) and executed
to update the current tally of molecular counts. An algo-
rithm implementing this prescription, called the stochas-
tic simulation algorithm or SSA, was devised by Gille-
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spie [47]; see Gillespie [48] for a review of SSA and a dis-
cussion of related methods. Although slow, this approach
for simulating chemical reactions can be made exact. In
general, when all molecules are present in large numbers
and continuous, well-mixed concentrations are good ap-
proximations, the (deterministic) rate dynamics equations
and stochastic simulation give the same results; however,
when molecular counts are low and, consequently, the
stochasticity in reaction timing and ordering becomes im-
portant, the rate dynamics breaks down and SSA needs to
be used. In biological networks and specifically in tran-
scriptional regulation, a gene and its promoter region are
only present in one (or perhaps a few) copies, while tran-
scription factors that regulate it can also be at nanomolar
concentrations (i. e. from a few to a few hundredmolecules
per nucleus), making stochastic effects possibly very im-
portant [97,98].

One of the pioneering studies of the role of noise in
a biological system was a simulation of the phage  lysis-
lysogeny switch by Arkin et al. [7]. The life cycle of the
phage is determined by the concentrations of two tran-
scription factors, cI (lambda repressor) and cro, that com-
pete for binding to the same operator on the DNA. If cI
is prevalent, the phage DNA is integrated into the host’s
genome and no phage genes except for cI are expressed
(the lysogenic state); if cro is dominant, the phage is in
lytic state, using cell’s DNA replication machinery to pro-
duce more phages and ultimately lyse the host cell [115].
The switch is bistable and the fate of the phage depends
on the temporal and random pattern of gene expression of
two mutually antagonistic transcription factors, although
the balance can be shifted by subjecting the host cell to
stress and thus flipping the toggle into lytic phase. The
stochastic simulation correctly reproduces the experimen-
tally observed fraction of lysogenic phages as a function of
multiplicity-of-infection. An extension of SSA to spatially
extended models is possible.

Although the simulations are exact, they are computa-
tionally intensive and do not offer any analytical insight
into the behavior of the solutions. As a result, various
theoretical techniques have been developed for studying
the effects of stochasticity in biological networks. These
are often operating in a regime where the deterministic
chemical kinetics is a good approximation, and noise (i. e.
fluctuation of concentrations around the mean) is added
into the system of differential equations as a perturbation;
these Langevin methods have been useful for the study
of noise propagation in regulatory networks [76,111,149].
The analysis of stochastic dynamics is especially interest-
ing in the context of design principles which consider the
reliability of network function, to which we return below.

Network Properties and Operating Principles

Modularity

Biological networks are said to be modular, although the
term has several related but nevertheless distinct mean-
ings. Their common denominator is the idea that there
exist a partitioning of the network nodes into groups, or
modules, that are largely independent of each other and
perform separate or autonomous functions. Independence
can be achieved through spatial isolation of the module’s
processes or by chemical specificity of its components. The
ability to extract the module from the cell and reconstitute
it in vitro, or transplant it to another type of cell is a pow-
erful argument for the existence of modularity [58]. In the
absence of such strong and laborious experimental verifi-
cations, however, measures of modularity that depend on
a particular network model are frequently used.

In topological networks, the focus is on the mod-
ule’s independence: nodes within a module are densely
connected to each other, while inter-modular links are
sparse [57,120,142] and the tendency to cluster is mea-
sured by high clustering coefficients. As a caveat to this
view note that despite their sparseness the inter-module
links could represent strong dynamical couplings. Mod-
ular architecture has been studied in Boolean networks
by Kashtan and Alon [79], who have shown that mod-
ularity can evolve by mutation and selection in a time-
varying fitness landscape where changeable goals decom-
pose into a set of fixed subproblems. In the example stud-
ied they computationally evolve networks implementing
several Boolean formulae and observe the appearance of
a module – a circuit of logical gates implementing a partic-
ular Boolean operator (like XOR) in a reusable way. This
work makes clear that modularity in networks is plausi-
bly connected to modularity in the kinds of problems that
these networks were selected to solve, but we really know
relatively little about the formal structure of these prob-
lems.

There are also ways of inferring a form of modularity
directly without assuming any particular network model.
Clustering tools partition genes into co-expressed groups,
or clusters, that are often identified with particular mod-
ules [36,133,140]. Ihmels et al. [67] have noted that each
node can belong to more than one module depending on
the biological state of the cell, or the context, and have
correspondingly reexamined the clustering problem. Ele-
mento et al. [37] have recently presented a general infor-
mation theoretic approach to inferring regulatorymodules
and the associated transcription factor binding sites from
various kinds of high-throughput data. While clustering
methods have been widely applied in the exploration of
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gene expression, it should be emphasized that merely find-
ing clusters does not by itself provide evidence for mod-
ularity. As noted above, the whole discussion would be
much more satisfying if we had independent definitions
of modularity and, we might add, clearly stated alternative
hypotheses about the structure and dynamics of these net-
works.

Focusing on the functional aspect of the module, we
often observe that the majority of the components of
a system (for instance, a set of promoter sites or a set of
genes regulating motility in bacteria) are conserved to-
gether across species. These observations support the hy-
pothesis that the conserved components are part of a very
tightly coupled sub-network which we might identify as
a module. Bioinformatic tools can then use the combined
sequence and expression data to give predictions about
modules, as reviewed by Siggia et al. [139]. Purely phyloge-
netic approaches that infer module components based on
inter-species comparisons have also been productive and
can extract candidate modules based only on phylogenetic
footprinting, that is, studying the presence or absence of
homologous genes across organisms and correlating their
presence with hand annotated phenotypic traits [141].

Robustness

Robustness refers to a property of the biological network
such that some aspect of its function is not sensitive to
perturbations of network parameters, environmental vari-
ables (e. g. temperature), or initial state; see de Visser et
al. [162] for a review of robustness from an evolution-
ary perspective and Goulian [53] for mechanisms of ro-
bustness in bacterial circuits. Robustness encompasses two
very different ideas. One idea has to do with a general prin-
ciple about the nature of explanation in the quantitative
sciences: qualitatively striking facts should not depend on
the fine tuning of parameters, because such a scenario just
shifts the problem to understanding why the parameters
are tuned as they are. The second idea is more intrinsic to
the function of the system, and entails the hypothesis that
cells cannot rely on precisely reproducible parameters or
conditions and must nonetheless function reliably and re-
producibly.

Robustness has been studied extensively in the chemo-
tactic system of the bacterium Escherichia coli. The sys-
tematic bias to swim towards chemoattractants and away
from repellents can only be sustained if the bacterium
is sensitive to the spatial gradients of the concentration
and not to its absolute levels. This discriminative ability
is ensured by the mechanism of perfect adaptation, with
which the proportion of bacterial straight runs and tum-

bles (random changes in direction) always returns to the
same value in the absence of gradients [27]. Naively, how-
ever, the ability to adapt perfectly seems to be sensitive to
the amounts of intracellular signaling proteins, which can
be tuned only approximately by means of transcriptional
regulation. Barkai and Leibler [13] argued that there is in-
tegral feedback control in the chemotactic circuit which
makes it robust against changes in these parameters, and
Alon et al. [6] showed experimentally that precision of
adaptation truly stays robust, while other properties of the
systems (such as the time to adapt and the steady state)
show marked variations with intracellular signaling pro-
tein concentrations.

One seemingly clear example of robust biological func-
tion is embryonic development. We know that the spa-
tial structure of the fully developed organism follows
a ‘blueprint’ laid out early in development as a spatial pat-
tern of gene expression levels. von Dassow et al. [34] stud-
ied one part of this process in the fruit fly Drosophila,
the ‘segment polarity network’ that generates striped pat-
terns of expression. They considered a dynamical system
based on the wiring diagram of interactions among a small
group of genes and signaling molecules, with � 50 associ-
ated constants parametrizing production and degradation
rates, saturation response and diffusion, and searched the
parameter space for solutions that reproduce the known
striped patterns. They found that, with their initial guess at
network topology, such solutions do not exist, but adding
a particular link – biologically motivated though uncon-
firmed at the time – allowed them to find solutions by
random sampling of parameter space. Although they pre-
sented no rigorous measure for the volume of parameter
space in which correct solutions exist, it seems that a wide
variety of parameter choices and initial conditions indeed
produce striped expression patterns, and this was taken to
be a signature of robustness.

Robustness in dynamical models is the ability of the
biological network to sustain its trajectory through state
space despite parameter or state perturbations. In circa-
dian clocks the oscillations have to be robust against both
molecular noise inherent in transcriptional regulation, ex-
amined in stochastic simulations by Gonze et al. [52], as
well as variation in rate parameters [143]; in the latter work
the authors introduce integral robustness measures along
the trajectory in state space and argue that the clock net-
work architecture tends to concentrate the fragility to per-
turbations into parameters that are global to the cell (max-
imum overall translation and protein degradation rates)
while increasing the robustness to processes specific to the
circadian oscillator. As was mentioned earlier, robustness
to state perturbations was demonstrated by Li et al. [91] in
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the threshold binary network model of the yeast cell cycle,
and examined in scale-free random Boolean networks by
Aldana and Cluzel [4].

As with modularity, robustness has been somewhat re-
sistant to rigorous definitions. Importantly, robustness has
always been used as a relational concept: function X is
robust to variations in Y . An alternative to robustness is
for the organism to exert precise control over Y , perhaps
even using X as a feedback signal. This seems to be how
neurons stabilize a functional mix of different ion chan-
nels [93], following the original theoretical suggestion of
LeMasson et al. [88]. Pattern formation during embry-
onic development in Drosophila begins with spatial gra-
dients of transcription factors, such as Bicoid, which are
established by maternal gene expression, and it has been
assumed that variations in these expression levels are in-
evitable, requiring some robust readout mechanism. Re-
cent measurements of Bicoid in live embryos, however,
demonstrate that the absolute concentrations are actually
reproducible from embryo to embryo with � 10% preci-
sion [54]. While there remain many open questions, these
results suggest that organismsmay be able to exert surpris-
ingly exact control over critical parameters, rather than
having compensation schemes for initially sloppy mech-
anisms. The example of ion channels alerts us to the pos-
sibility that cells may even ‘know’ which combinations of
parameters are critical, so that variations in a multidimen-
sional parameter space are large, but confined to a low di-
mensional manifold.

Noise

A dynamical system with constant reaction rates, starting
repeatedly from the same initial condition in a stable en-
vironment, always follows a deterministic time evolution.
When the concentrations of the reacting species are low
enough, however, the description in terms of time (and
possibly space) dependent concentration breaks down,
and the stochasticity in reactions, driven by random en-
counters between individual molecules, becomes impor-
tant: on repeated trials from the same initial conditions,
the system will trace out different trajectories in the state
space. As has been pointed out in the section on stochas-
tic dynamics, biological networks in this regime need to
be simulated with the Gillespie algorithm [47], or ana-
lyzed within approximate schemes that treat noise as per-
turbation of deterministic dynamics. Recent experimental
developments have made it possible to observe this noise
directly, spurring new research in the field. Noise in bio-
logical networks fundamentally limits the organism’s abil-
ity to sense, process and respond to environmental and

internal signals, suggesting that analysis of noise is a cru-
cial component in any attempt to understand the design of
these networks. This line of reasoning is well developed in
the context of neural function [20], and we draw attention
in particular to work on the ability of the visual system to
count single photons, which depends upon the precision
of the G-protein mediated signaling cascade in photo re-
ceptors; see, for example, [117].

Because transcriptional regulation inherently deals
with molecules, such as DNA and transcription factors,
that are present at low copy numbers, most noise studies
were carried out on transcriptional regulatory elements.
The availability of fluorescent proteins and their fusions
to wild type proteins have been the crucial tools, enabling
researchers to image the cells expressing these probes in
a controllable manner, and track their number in time and
across the population of cells. Elowitz et al. [39] pioneered
the idea of observing the output of two identical regulatory
elements driving the expression of two fluorescent pro-
teins of different colors, regulated by a common input in
a single Escherichia coli cell. In this ‘two-color experiment,’
the correlated fluctuations in both colors must be due to
the extrinsic fluctuations in the common factors that in-
fluence the production of both proteins, such as over-
all RNA polymerase or transcription factor levels; on the
other hand, the remaining, uncorrelated fluctuation is due
to the intrinsic stochasticity in the transcription of the gene
and translation of the messenger RNA into the fluorescent
protein from each of the two promoters [147]. Ozbudak
et al. [109] have studied the contributions of stochastic-
ity in transcription and translation to the total noise in
gene expression in prokaryotes, while Pedraza and van
Oudenaarden [112] and Hooshangi et al. [63] have looked
at the propagation of noise from transcription factors to
their targets in synthetic multi-gene cascades. Rosenfeld et
al. [124] have used the statistics of binomial partitioning of
proteins during the division of Escherichia coli to convert
their fluorescence measurements into the corresponding
absolute protein concentrations, and also were able to ob-
serve the dynamics of these fluctuations, characterizing the
correlation times of both intrinsic and extrinsic noise.

Theoretical work has primarily been concerned with
disentangling and quantifying the contributions of differ-
ent steps in transcriptional regulation and gene expression
to the total noise in the regulated gene [111,146,149], of-
ten by looking for signatures of various noise sources in
the behavior of the measured noise as a function of the
mean expression level of a gene. For many of the exam-
ples studied in prokaryotes, noise seemed to be primarily
attributable to the production of proteins in bursts from
single messenger RNAmolecules, and to pulsatile and ran-
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dom activation of genes and therefore bursty translation
into mRNA [50]. In yeast [26,119] and in mammalian
cells [116] such stochastic synthesis of mRNA was mod-
eled and observed as well. Simple scaling of noise with the
mean was observed in �40 yeast proteins under different
conditions by Bar-Even et al. [9] and interpreted as origi-
nating in variability in mRNA copy numbers or gene acti-
vation.

Bialek and Setayeshgar [22] have demonstrated theo-
retically that at low concentrations of transcriptional regu-
lator, there should be a lower bound on the noise set by the
basic physics of diffusion of transcription factor molecules
to the DNA binding sites. This limit is independent of
(possibly complex, and usually unknown) molecular de-
tails of the binding process; as an example, cooperativity
enhances the ‘sensitivity’ to small changes in concentra-
tion, but doesn’t lower the physical limit to noise perfor-
mance [23]. This randomness in diffusive flux of factors to
their ‘detectors’ on the DNAmust ultimately limit the pre-
cision and reliability of transcriptional regulation, much
like the randomness in diffusion of chemoattractants to
the detectors on the surface of Escherichia coli limits its
chemotactic performance [17]. Interestingly, one dimen-
sional diffusion of transcription factors along the DNA
can have a big impact on the speed with which TFs find
their targets, but the change in noise performance that one
might expect to accompany these kinetic changes is largely
compensated by the extended correlation structure of one
dimensional diffusion [152]. Recent measurements of the
regulation of the hunchback gene by Bicoid during early
fruit fly development by Gregor et al. [54] have provided
evidence for the dominant role of such input noise, which
coexists with previously studied output noise in produc-
tion of mRNA and protein [156]. These results raise the
possibility that initial decisions in embryonic development
are made with a precision limited by fundamental physical
principles.

Dynamics, Attractors, Stability and Large Fluctuations

The behavior of a dynamical system as the time tends to
infinity, in response to a particular input, is interesting re-
gardless of the nature of the network model. Both discrete
and continuous, or deterministic and noisy, systems can
settle into a number of fixed points, exhibit limit-cycle os-
cillations, or execute chaotic dynamics. In biological net-
works it is important to ask whether these qualitatively dif-
ferent outcomes correspond to distinct phenotypes or be-
haviors. If so, then a specific stable gene expression profile
in a network of developmental genes, for example, encodes
that cell’s developmental fate, as the amount of lambda re-

pressor encodes the state of lysis vs lysogeny switch in the
phage. The history of the system that led to the establish-
ment of a specific steady state would not matter as long
as the system persisted in the same attractor: the dynam-
ics could be regarded as a ‘computation’ leading to the
final result, the identity of the attractor, with the activi-
ties of genes in this steady state in turn driving the down-
stream pathways and other modules; see Kauffman [80]
for genetic networks and Hopfield [64] for similar ideas
in neural networks for associative memory. Alternatively,
such partitioning into transient dynamics and ‘meaning-
ful’ steady states might not be possible: the systemmust be
analyzed as a whole while it moves in state space, and parts
of it do not separately and sequentially settle into their at-
tactors.

It seems, for example, that qualitative behavior of the
cell cycle can be understood by progression through well-
defined states or checkpoints: after transients die away,
the cell cycle proteins are in a ‘consistent’ state that reg-
ulates division or growth related activities, so long as the
conditions do not warrant a new transition into the next
state [33,103]. In the fruit fly Drosophila development it
has been suggested that combined processes of diffusion
and degradation first establish steady-state spatial profiles
of maternal morphogens along the major axis of the em-
bryo, after which this stable ‘coordinate system’ is read out
by gap and other downstream genes to generate the body
segments. Recent measurements by Gregor et al. [55] have
shown that there is a rich dynamics in the Bicoid mor-
phogens concentration, prompting Bergmann et al. [18] to
hypothesize that perhaps downstream genes read out and
respond to morphogens even before the steady state has
been reached. On another note, an interesting excitable
motif, called the “feedback resistor,” has been found in
HIV Tat system – instead of having a bistable switch like
the  phage, HIV (which lacks negative feedback capabil-
ity) implements a circuit with a single stable ‘off’ lysogenic
state, that is perturbed in a pulse of trans activation when
the virus attacks. The pulse probably triggers a threshold-
crossing process that drives downstream events, and sub-
sequently decays away; the feedback resistor is thus again
an example of a dynamic, as opposed to the steady-state,
readout [168]. Excitable dynamics are of course at the
heart of the action potential in neurons, which results from
the coupled dynamics of ion channel proteins, and re-
lated dynamical ideas are now emerging other cellular net-
works [145].

If attractors of the dynamical system correspond to
distinct biological states of the organism, it is important
to examine their stability against noise-induced sponta-
neous flipping. Bistable elements are akin to the ‘flip-flop’
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switches in computer chips – they form the basis of cel-
lular (epigenetic) memory. While this mechanism for re-
membering the past is not unique – for example, a very
slow, but not bistable, dynamics will also retain ‘memory’
of the initial condition through protein levels that per-
sist on a generation time scale [138], it has the potential
to be the most stable mechanism. The naturally occurring
bistable switch of the  phage was studied using stochas-
tic simulation by Arkin et al. [7], and a synthetic toggle
switch was constructed in Escherichia coli by Gardner et
al. [44]. Theoretical studies of systems where large fluctu-
ations are important are generally difficult and restricted
to simple regulatory elements, but Bialek [21] has shown
that a bistable switch can be created with as few as tens of
molecules yet remain stable for years. A full understand-
ing of such stochastic switching brings in powerful meth-
ods from statistical physics and field theory [122,129,164],
ultimately with the hope of connecting to quantitative ex-
periments [1].

Optimization Principles

If the function of a pathway or a network module can be
quantified by a scalar measure, it is possible to explore the
space of networks that perform the given function opti-
mally. An example already given was that of maximizing
the growth rate of the bacterium Escherichia coli, subject to
the constraints imposed by the known metabolic reactions
of the cell; the resulting optimal joint usage of oxygen and
food could be compared to the experiments [66]. If enough
constraints exist for the problem to be well posed, and
there is sufficient reason to believe that evolution drove the
organism towards optimal behavior, optimization princi-
ples allow us to both tune the otherwise unknown parame-
ters to achieve themaximum, and also to compare the wild
type and optimal performances.

Dekel and Alon [35] have performed the cost/benefit
analysis of expressing lac operon in bacteria. On one hand
lac genes allow Escherichia coli to digest lactose, but on
the other there is the incurred metabolic cost to the cell
for expressing them. That the cost is not negligible to the
bacterium is demonstrated best by the fact that it shuts
off the operon if no lactose is present in the environment.
The cost terms are measured by inducing the lac operon
with changeable amount of IPTG that provides no en-
ergy in return; the benefit is measured by fully inducing
lac with IPTG and supplying variable amounts of lactose;
both cost and benefit are in turn expressed as the change in
the growth rate compared to the wild-type grown at fixed
conditions. Optimal levels of lac expression were then pre-
dicted as a function of lactose concentration and bacteria

were evolved for several hundred generations to verify that
evolved organisms lie close to the predicted optimum.

Zaslaver et al. [172] have considered a cascade of
amino-acid biosynthesis reactions in Escherichia coli, cat-
alyzed by their corresponding enzymes. They have then
optimized the parameters of the model that describes the
regulation of enzyme gene expression, such that the to-
tal metabolic cost for enzyme production was balanced
against the benefit of achieving a desired metabolic flux
through the biosynthesis pathway. The resulting optimal
on-times and promoter activities for the enzymes were
compared to themeasured activities of amino-acid biosyn-
thesis promoters exposed to different amino-acids in the
medium. The authors conclude that the bacterium im-
plements a ‘just-in-time’ transcription program, with en-
zymes catalyzing initial steps in the pathway being pro-
duced from strong and low-latency promoters.

In signal transduction networks the definition of an
objective function to be maximized is somewhat more
tricky. The ability of the cell to sense its environment and
make decisions, for instance about which genes to up- or
down-regulate, is limited by several factors: scarcity of sig-
nals coming from the environment, perhaps because of the
limited time that can be dedicated to data collection; noise
inherent in the signaling network that degrades the qual-
ity of the detected signal; (sub-)optimality of the decision
strategy; and noise in the effector systems at the output.
A first idea would be to postulate that networks are de-
signed to lower the noise, and intuitively the ubiquity of
mechanisms such as negative feedback [15,53] is consis-
tent with such an objective. There are various definitions
for noise, however, which in addition are generally a func-
tion of the input, raising serious issues about how to for-
mulate a principled optimization criterion.

When we think about energy flow in biological sys-
tems, there is no doubt that our thinking must at least
be consistent with thermodynamics. More strongly, ther-
modynamics provides us with notions of efficiency that
place the performance of biological systems on an abso-
lute scale, and in many cases this performance really is
quite impressive. In contrast, most discussions of infor-
mation in biological systems leave “information” as a col-
loquial term, making no reference to the formal appara-
tus of information theory as developed by Shannon and
others more than fifty years ago [135]. Although many as-
pects of information theory that are especially important
for modern technology (e. g., sophisticated error-correct-
ing codes) have no obvious connection to biology, there is
something at the core of information theory that is vital:
Shannon proved that if we want to quantify the intuitive
concept that “x provides information about y,” then there
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is only one way to do this that is guaranteed to work un-
der all conditions and to obey simple intuitive criteria such
as the additivity of independent information. This unique
measure of “information” is Shannon’s mutual informa-
tion. Further, there are theorems in information theory
which, in parallel to results in thermodynamics, provide
us with limits to what is possible and with notions of effi-
ciency.

There is a long history of using information theoretic
ideas to analyze the flow of information in the nervous
system, including the idea that aspects of the brain’s cod-
ing strategies might be chosen to optimize the efficiency
of coding, and these theoretical ideas have led directly to
interesting experiments. The use of information to think
about cellular signaling and its possible optimization is
more recent [154,175]. An important aspect of optimiz-
ing information flow is that the input/output relations of
signaling devices must be matched to the distribution of
inputs, and recent measurements on the control of hunch-
back by Bicoid in the early fruit fly embryo [54] seem re-
markably consistent with the (parameter free) predictions
from these matching relations [155].

In the context of neuroscience there is a long tradition
of forcing the complex dynamics of signal processing into
a setting where the subject needs to decide between a small
set of alternatives; in this limit there is a well developed
theory of optimal Bayesian decision making, which uses
prior knowledge of the possible signals to help overcome
noise intrinsic to the signaling system; Libby et al. [92]
have recently applied this approach to the lac operon in
Escherichia coli. The regulatory element is viewed as an
inference module that has to ‘decide,’ by choosing its in-
duction level, if the environmental lactose concentration is
high or low. If the bacterium detects a momentarily high
sugar concentration, it has to discriminate between two
situations: either the environment really is at low over-
all concentration but there has been a large fluctuation;
or the environment has switched to a high concentration
mode. The authors examine how plausible regulatory ele-
ment architectures (e. g. activator vs repressor, cooperative
binding etc.) yield different discrimination performance.
Intrinsic noise in the lac system can additionally compli-
cate such decision making, but can be included into the
theoretical Bayesian framework.

The question of whether biological systems are optimal
in any precise mathematical sense is likely to remain con-
troversial for some time. Currently opinions are stronger
than the data, with some investigators using ‘optimized’
rather loosely and others convinced that what we see today
is only a historical accident, not organizable around such
lofty principles. We emphasize, however, that attempts to

formulate optimization principles require us to articulate
clearly what we mean by “function” in each context, and
this is an important exercise. Exploration of optimization
principles also exposes new questions, such as the nature
of the distribution of inputs to signaling systems, that one
might not have thought to ask otherwise. Many of these
questions remain as challenges for a new generation of ex-
periments.

Evolvability and Designability

Kirschner and Gerhart [82] define evolvability as an or-
ganism’s capacity to generate heritable phenotypic varia-
tion. This capacity may have two components: first, to re-
duce the lethality of mutations, and second, to reduce the
number of mutations needed to produce phenotypically
novel traits. The systematic study of evolvability is hard
because the genotype-to-phenotype map is highly non-
trivial, but there have been some qualitative observations
relevant to biological networks. Emergence of weak link-
age of processes, such as the co-dependence of transcrip-
tion factors and their DNA binding sites in metazoan tran-
scriptional regulation, is one example. Metazoan regula-
tion seems to depend on combinatorial control by many
transcription factors with weak DNA-binding specificities
and the corresponding binding sites (called cis-regulatory
modules) can be dispersed and extended on the DNA.
This is in stark contrast to the strong linkage between
the factors and the DNA in prokaryotic regulation or in
metabolism, energy transfer or macromolecular assembly,
where steric and complementarity requirements for inter-
acting molecules are high. In protein signaling networks,
strongly conserved but flexible proteins, like calmodulin,
can bind weakly to many other proteins, with small mu-
tations in their sequence probably affecting such binding
andmaking the establishment of new regulatory links pos-
sible and perhaps easy.

Some of the most detailed attempts to follow the evo-
lution of network function have been by Francois and
coworkers [41,42]. In their initial work they showed how
simple functional circuits, performing logical operations
or implementing bistable or oscillatory behavior, can be
reliably created by a mutational process with selection by
an appropriate fitness function. More recently they have
considered fitness functions which favor spatial structure
in patterns of gene expression, and shown how the net-
works that emerge from dynamics in this fitness landscape
recapitulate the outlines of the segmentation networks
known to be operating during embryonic development.

Instead of asking if there exists a network of nodes such
that they perform a given computation, and if it can be
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found by mutation and selection as in the examples above,
one can ask howmany network topologies perform a given
computation. In other words, one is asking whether there
is only one (fine tuned?) or many topologies or solutions
to a given problem. The question of how many network
topologies, proxies for different genotypes, produce the
same dynamics, a proxy for phenotype, is a question of
designability, a concept originally proposed to study the
properties of amino-acid sequences comprising functional
proteins, but applicable also to biological regulatory net-
works [106]. The authors examine three- and four-node
binary networks with threshold updating rule and show
that all networks with the shared phenotype have a com-
mon ‘core’ set of connections, but can differ in the vari-
able part, similar to protein folding where the essential set
of residues is necessary for the fold, with numerous varia-
tions in the nonessential part.

Future Directions

The study of biological networks is at an early stage, both
on the theoretical as well as on the experimental side. Al-
though high-throughput experiments are generating large
data sets, these can suffer from serious biases, lack of tem-
poral or spatial detail, and limited access to the component
parts of the interacting system. On a theoretical front, gen-
eral analytical insights that would link dynamics with net-
work topology are few, although for specific systems with
known topology computer simulation can be of great as-
sistance. There can be confusion about which aspects of
the dynamical model have biological significance and in-
terpretation, and which aspects are just ‘temporary vari-
ables’ and the ‘envelope’ of the proverbial back-of-the-
envelope calculations that cells use to perform their bio-
logical computations on; which parts of the trajectory are
functionally constrained and which ones could fluctuate
considerably with no ill-effects; how much noise is tolera-
ble in the nodes of the network and what is its correlation
structure; or how the unobserved, or ‘hidden,’ nodes (or
their modification/activity states) influence the network
dynamics.

Despite these caveats, cellular networks have some ad-
vantages over biological systems of comparable complex-
ity, such as neural networks. Due to technological develop-
ments, we are considerably closer to the complete census
of the interacting molecules in a cell than we are generally
to the picture of connectivity of the neural tissue. Com-
ponents of the regulatory networks are simpler than neu-
rons, which are capable of a range of complicated behav-
iors on different timescales. Modules and pathways often
comprise smaller number of interacting elements than in

neural networks, making it possible to design small but
interesting synthetic circuits. Last but not least, sequence
and homology can provide strong insights or be powerful
tools for network inference in their own right.

Those of us who come from the traditionally quantita-
tive sciences, such as physics, were raisedwith experiments
in which crucial elements are isolated and controlled. In
biological systems, attempts at such isolation may break
the regulatory mechanisms that are essential for normal
operation of the system, leaving us with a system which
is in fact more variable and less controlled than we would
have if we faced the full complexity of the organism. It is
only recently that we have seen the development of exper-
imental techniques that allow fully quantitative, real time
measurements of the molecular events inside individual
cells, and the theoretical framework into which such mea-
surements will be fit still is being constructed. The range
of theoretical approaches being explored is diverse, and it
behooves us to search for those approaches which have the
chance to organize our understanding of many different
systems rather than being satisfied with models of partic-
ular systems. Again, there is a balance between the search
for generality and the need to connect with experiments
on specific networks. We have tried to give some examples
of all these developments, hopefully conveying the correct
combination of enthusiasm and skepticism.
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Glossary

Cellular automaton The classical fine-grained parallel
model introduced by John von Neumann.

Hyperbolic cellular automaton A cellular automaton re-
sulting from a tessellation of the hyperbolic plane.

Parallel Turing machine A generalization of Turing’s
classical model where several control units work co-
operatively on the same tape (or set of tapes).

Time complexity Number of steps needed for computing
a result. Usually a function t : NC ! NC, t(n) being
the maximum (“worst case”) for any input of size n.

Space complexity Number of cells needed for computing
a result. Usually a function s : NC ! NC, s(n) being
the maximum for any input of size n.

State change complexity Number of proper state
changes of cells during a computation. Usually a func-
tion sc : NC ! NC, sc(n) being the maximum for any
input of size n.

Processor complexity Maximum number of control
units of a parallel Turing machine which are simulta-
neously active during a computation. Usually a func-
tion sc : NC ! NC, sc(n) being the maximum for any
input of size n.

NC The set f1; 2; 3; : : : g of positive natural numbers.
Z The set f: : : ;�3;�2;�1; 0; 1; 2; 3; : : : g of integers.
QG The set of all (total) functions from a set G to a set Q.

Definition of the Subject

This article will explore the properties of cellular automata
(CA) as a parallel model.

The Main Theme

We will first look at the standard model of CA and com-
pare it with Turing machines as the standard sequential
model, mainly from a computational complexity point of
view. From there we will proceed in two directions: by
removing computational power and by adding compu-
tational power in different ways in order to gain insight
into the importance of some ingredients of the definition
of CA.

What Is Left Out

There are topics which we will not cover although they
would have fit under the title.

One such topic is parallel algorithms for CA. There are
algorithmic problems which make sense only for parallel
models. Probably the most famous for CA is the so-called
Firing Squad Synchronization Problem. This is the topic of
Umeo’s article (� Firing Squad Synchronization Problem
in Cellular Automata), which can also be found in this en-
cyclopedia.

Another such topic in this area is the Leader election
problem. For CA it has received increased attention in re-
cent years. See the paper by Stratmann and Worsch [29]
and the references therein for more details.

And we do want to mention the most exciting (in our
opinion) CA algorithm: Tougne has designed a CA which,
starting from a single point, after t steps has generated the
discretized circle of radius t, for all t; see [5] for this gem.

There are also models which generalize standard CA
by making the cells more powerful. Kutrib has introduced
push-down cellular automata [14]. As the name indicates,
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in this model each cell does not have a finite memory but
can make use of a potentially unbounded stack of symbols.

The area of nondeterministic CA is also not covered
here. For results concerning formal language recognition
with these devices refer to � Cellular Automata and Lan-
guage Theory.

All these topics are, unfortunately, beyond the scope of
this article.

Structure of the Paper

The core of this article consists of four sections:

Introduction: The main point is the standard definition
of Euclidean deterministic synchronous cellular au-
tomata. Furthermore, some general aspects of paral-
lel models and typical questions and problems are dis-
cussed.

Time and space complexity: After defining the standard
computational complexity measures, we compare CA
with different resource bounds. The comparison of CA
with the TuringMachine (TM) gives basic insights into
their computational power.

Measuring and controlling activities: There are two ap-
proaches to measure the “amount of parallelism” in
CA. One is an additional complexity measured directly
for CA, the other via the definition of so-called parallel
Turing machines. Both are discussed.

Communication: Here we have a look at “variants” of CA
with communication structures other than the one-
dimensional line. We sketch the proofs that some of
these variants are in the second machine class.

Introduction

In this section we will first formalize the classical model
of cellular automata, basically introduced by von Neu-
mann [21]. Afterwards we will recap some general facts
about parallel models.

Definition of Cellular Automata

There are several equivalent formalizations of CA and of
course one chooses the one most appropriate for the top-
ics to be investigated. Our point of view will be that each
CA consists of a regular arrangement of basic processing
elements working in parallel while exchanging data.

Below, for each of the words regular, basic, processing,
parallel and exchanging, we first give the standard defini-
tion for clarification. Then we briefly point out possible
alternatives which will be discussed in more detail in later
sections.

Underlying Grid A Cellular Automaton (CA) consists
of a set G of cells, where each cell has at least one neighbor
with which it can exchange data. Informally speaking one
usually assumes a “regular” arrangement of cells and, in
particular, identically shaped neighborhoods.

For a d-dimensional CA, d 2 NC, one can think of
G D Zd . Neighbors are specified by a finite set N of coor-
dinate differences called the neighborhood. The cell i 2 G
has as its neighbors the cells i C n for all n 2 N. Usually
one assumes that 0 2 N . (Here we write 0 for a vector of d
zeros.)

As long as one is not specifically interested in the
precise role N is playing, one may assume some stan-
dard neighborhood: The von Neumann neighborhood of
radius r is N (r) D f(k1; : : : ; kd ) j

P
j jk jj � rg and the

Moore neighborhood of radius r is M(r) D f(k1; : : : ; kd ) j
max j jk jj � rg.

The choices of G and N determine the structure of
what in a real parallel computer would be called the “com-
munication network”. We will usually consider the case
G D Zd and assume that the neighborhood is N D N (1).

Discussion The structure of connections between cells
is sometimes defined using the concept of Cayley graphs.
Refer to the article by Ceccherini–Silberstein (� Cellular
Automata and Groups), also in this encyclopedia, for de-
tails.

Another approach is via regular tessellations. For ex-
ample the 2-dimensional Euclidean space can be tiled with
copies of a square. These can be considered as cells, and
cells sharing an edge are neighbors. Similarly one can tile,
e. g., the hyperbolic plane with copies of a regular k-gon.
This will be considered to some extent in Sect. “Commu-
nication in CA”. Amore thorough exposition can be found
in the article byMargenstern (�Cellular Automata in Hy-
perbolic Spaces) also in this encyclopedia.

CA resulting, for example, from tessellations of the
2-dimensional Euclidean plane with triangles or hexagons
are considered in the article by Bays (� Cellular Automata
in Triangular, Pentagonal and Hexagonal Tessellations)
also in this encyclopedia.

Global and Local Configurations The basic processing
capabilities of each cell are those of a finite automaton. The
set of possible states of each cell, denoted byQ, is finite. As
inputs to be processed each cell gets the states of all the
cells in its neighborhood.

We will write QG for the set of all functions from G
toQ. Thus each c 2 QG describes a possible global state of
the whole CA. We will call these c (global) configurations.
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On the other hand, functions ` : N ! Q are called
local configurations. We say that in a configuration c
cell i observes the local configuration ciCN : N ! Q where
ciCN(n) D c(i C n). A cell gets its currently observed lo-
cal configuration as input. It remains to be defined how
they are processed.

Dynamics The dynamics of a CA are defined by specify-
ing the local dynamics of a single cell and how cells “oper-
ate in parallel” (if at all). In the first sections we will con-
sider the classical case:

� A local transition function is a function f : QN ! Q
prescribing for each local configuration ` 2 QN the
next state f (`) of a cell which currently observes ` in
its neighborhood. In particular, this means that we are
considering deterministic behavior of cells.

� Furthermore, we will first concentrate on CA where
all cells are working synchronously: The possible tran-
sitions from one configuration to the next one in one
global step of the CA can be described by a function
F : QG ! QG requiring that all cells make one state
transition: 8i 2 G : F(c)(i) D f (ciCN).

For alternative definitions of the dynamic behavior of CA
see Sect. “Measuring and Controlling the Activities”.

Discussion Basically, the above definition of CA is the
standard one going back to von Neumann [21]; he used
G D Z2 and N D f(�1; 0); (1; 0); (0;�1); (0; 1)g for his
construction. But for all of the aspects just defined there
are other possibilities, some of which will be discussed in
later sections.

Finite Computations on CA

In this article we are interested in using CA as devices for
computing, given some finite input, in a finite number of
steps a finite output.

Inputs As the prototypical examples of problems to be
solved by CA and other models we will consider the recog-
nition of formal languages. This has the advantages that
the inputs have a simple structure and, more importantly,
the output is only one bit (accept or reject) and can be for-
malized easily.

A detailed discussion of CA as formal language recog-
nizers can be found in the article by Kutrib (� Cellular
Automata and Language Theory).

The input alphabet will be denoted by A. We as-
sume that A � Q. In addition there has to be a special
state q 2 Q which is called a quiescent state because it

has the property that for the quiescent local configuration
`q : N ! Q : n 7! q the local transition function must
specify f (`q) D q.

In the literature two input modes are usually consid-
ered.

� Parallel input mode: For an input w D x1 � � � xn 2 An

the initial configuration cw is defined as

cw (i) D

(
x j iff i D ( j; 0; : : : ; 0)
q otherwise :

� Sequential input mode: In this case, all cells are in
state q in the initial configuration. But cell (0; : : : ; 0) is
a designated input cell and acts differently from the oth-
ers. It works according to a function g : QN�(A~[fqg).
During the first n steps the input cell gets input symbol
xj in step j; after the last input symbol it always gets q.
CA using this type of input are often called iterative ar-
rays (IA).

Unless otherwise noted we will always assume parallel in-
put mode.

Conceptually the difference between the two input
modes has the same consequences as for TM. If input is
provided sequentially it is meaningful to have a look at
computations which “use” less than n cells (see the defi-
nition of space complexity later on).

Technically, some results occur only for the parallel in-
put mode but not for the sequential one, or vice versa. This
is the case, for example, when one looks at devices with
small time bounds like n or nC

p
n steps. But as soon

as one considers more generally ‚(n) or more steps and
a space complexity of at least ‚(n), both CA and IA can
simulate each other in linear time:

� An IA can first read the complete input word, storing it
in successive cells, and then start simulating a CA, and

� A CA can shift the whole word to the cell holding the
first input symbol and have it act as the designated in-
put cell of an IA.

Outputs Concerning output, one usually defines that
a CA has finished its work whenever it has reached a sta-
ble configuration c, i. e., F(c) D c. In such a case we will
also say that the CA halts (although formally one can con-
tinue to apply F). An input word w 2 AC is accepted, iff
the cell (1; 0; : : : ; 0) which got the first input symbol, is in
an accepting state from a designated finite subset FC � Q
of states. We write L(C) for the set of all words w 2 AC

which are accepted by a CA C.
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For the sake of simplicity we will assume that all deter-
ministic machines under consideration halt for all inputs.
E. g., the CA as defined above always reaches a stable con-
figuration.

The sequence of all configurations from the initial one
for some inputw to the stable one is called the computation
for input w.

Discussion For 1-dimensional CA the definition of par-
allel input is the obvious one. For higher-dimensional CA,
say G D Z2, one could also think of more compact forms
of input for one-dimensional words, e. g., inscribing the
input symbols row by row into a square with side length
d
p
ne. But this requires extra care. Depending on the for-

mal language to be accepted, the special way in which the
symbols are input might provide additional information
which is useful for the language recognition task at hand.

Since a CA performs work on an infinite number of
bits in each step, it would also be possible to consider in-
puts and outputs of infinite length, e. g., as representations
of all real numbers in the interval [0; : : : ; 1]. There is much
less literature about this aspect; see for example chapter 11
of [8].

It is not too surprising that this area is also related to
the view of CA as dynamical systems (instead of comput-
ers); see the contributions by Formenti (� Chaotic Behav-
ior of Cellular Automata) and Kůrka (� Topological Dy-
namics of Cellular Automata).

Example: Recognition of Palindromes As an example
that will also be useful later, consider the formal language
Lpal of palindromes of odd length:

Lpal D fvxvR j v 2 A� ^ x 2 Ag :

(Here vR is the mirror image of v.) For example, if A con-
tains all Latin letterssaippuakauppias belongs to Lpal
(the Finnish word for a soap dealer).

It is known that each T � TM with only one tape and
only one head on it (see Subsect. “Turing Machines” for
a quick introduction) needs time#(n2) for the recognition
of at least some inputs of length n belonging to Lpal [10].

We will sketch a CA recognizing Lpal in time ‚(n).
As the set of states for a single cell we use Q D A [
f g [ Ql � Qr � Qv � Qlr , basically subdividing each
cell in 4 “registers”, each containing a “substate”. The
substates from Ql D f < a; < b; g and Qr D

fa > ;b > ; g are used to shift input symbols to the
left and to the right respectively. In the third register
a substate from Qv D f+;-g indicates the results of com-
parisons. In the fourth register substates from Qlr D

f > ; < ; < + > ; < - > ; g are used to realize

“signals” > and < which identify the middle cell and dis-
tribute the relevant overall comparison result to all cells.

As accepting states one chooses those, whose last com-
ponent is <+>: FC D Ql � Qr � Qv � f<+>g.

There is a total of 3C 3 � 3 � 2 � 5 D 93 states and for
a complete definition of the local transition function one
would have to specify f (x; y; z) for 933 D 804357 triples
of states. We will not do that, but we will sketch some im-
portant parts. In the first step the registers are initialized.
For all x; y; z 2 A:

`(�1) `(0) `(1) f (`)
y z ( < y; y > ;+; > )

x y z ( < y; y > ;+; )
x y ( < y; y > ;+; < )

y ( < y; y > ;+; < + > )

In all later steps, if

`(�1) D

< xl
xr >
vl
dl

`(0) D

< yl
yr >
vm
dm

`(1) D

< zl
zr >
vr
dr

then

f (`) D

< zl
xr >
v0m
d0m

Here, of course, the new value of the third register is com-
puted as

v0m D

(
+ if vm D + ^ zl D xr
- otherwise :

We do not describe the computation of d0m in detail.
Figure 1 shows the computation for the input babbbab,
which is a palindrome. Horizontal double lines sepa-
rate configurations at subsequent time steps. Registers in
state are simply left empty.

As can be seen there is a triangle in the space time
diagram consisting of the n input cells at time t D 0 and
shrinking at both ends by one cell in each subsequent step
where “a lot of activity” can happen due to the shifting of
the input symbols in both directions.

Clearly a two-head TM can also recognize Lpal in lin-
ear time, by first moving one head to the last symbol
and then synchronously shifting both heads towards each
other comparing the symbols read.

Informally speaking in this case the ability of multi-
head TM to transport a small amount of information over
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Cellular Automata as Models of Parallel Computation, Figure 1
Recognition of a palindrome; the last configuration is stable and
the cell which initially stored the first input symbol is in an ac-
cepting state

a long distance in one step can be “compensated” by CA
by shifting a large amount of information over a short dis-
tance. We will see in Theorem 3 that this observation can
be generalized.

Complexity Measures: Time and Space For one-di-
mensional CA it is straightforward to define their time and
space complexity. We will consider only worst-case com-
plexity. Remember that we assume that all CA halt for all
inputs (reach a stable configuration).

Forw 2 AC let time0(w) denote the smallest number �
of steps such that the CA reaches a stable configuration
after � steps when started from the initial configuration
for input w. Then

time: NC ! NC : n 7! maxftime0(w) j w 2 Ang

is called the time complexity of the CA.
Similarly, let space0(w) denote the total number of cells

which are not quiescent in at least one configuration oc-
curring during the computation for input w. Then

space : NC ! NC : n 7! maxfspace0(w) j w 2 Ang

is called the space complexity of the CA. If we want to men-
tion a specific CA C, we indicate it as an index, e. g., timeC .

If s and t are functions NC ! NC, we write
CA � SPC(s) � TIME(t) for the set of formal languages
which can be accepted by some CA C with spaceC � s
and timeC � t, and analogously CA � SPC(s) and
CA � TIME(t) if only one complexity measure is bounded.
Thus we only look at upper bounds. For a whole set of
functions T , we will use the abbreviation

CA � TIME(T ) D
[

t2T
CA � TIME( f ) :

Typical examples will beT D O(n) orT D Pol(n), where
in general Pol( f ) D

S
k2NC

O( f k).
Resource bounded complexity classes for other com-

putational models will be noted similarly. If we want
to make the dimension of the CA explicit, we write
Zd � CA � : : :; if the prefix Zd is missing, d D 1 is to be
assumed.

Throughout this article n will always denote the length
of input words. Thus a time complexity of Pol(n) sim-
ply means polynomial time, and similarly for space, so
that TM � TIME(Pol(n)) D P and TM � SPC(Pol(n)) D
PSPACE.

Discussion For higher-dimensional CA the definition of
space complexity requires more consideration. One possi-
bility is to count the number of cells used during the com-
putation. A different, but sometimes more convenient ap-
proach is to count the number of cells in the smallest hy-
per-rectangle comprising all used cells.

TuringMachines

For reference, and because we will consider a parallel vari-
ant, we set forth some definitions of Turing machines.

In general we allow Turingmachines with kwork tapes
and h heads on each of them. Each square carries a symbol
from the tape alphabet B which includes the blank sym-
bol �. The control unit (CU) is a finite automaton with
set of states S. The possible actions of a deterministic TM
are described by a function f : S � Bkh ! S � Bkh � Dkh ,
where D D f�1; 0;C1g is used for indicating the direction
of movement of a head.

If the machine reaches a situation in which f (s;
b1; : : : ; bkh) D (s; b1; : : : ; bkh , 0; : : : ; 0) for the current
state s and the currently scanned symbols b1; : : : ; bkh , we
say that it halts.

Initially a word w of length n over the input alphabet
A � B is written on the first tape on squares 1; : : : ; n, all
other tape squares are empty, i. e., carry the �. An input is
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accepted if the CU halts in an accepting state from a desig-
nated subset FC � S. L(T) denotes the formal language of
all words accepted by a TM T.

We write kT h � TM � SPC(s) � TIME(t) for the class
of all formal languages which can be recognized by TM
T with k work tapes and h heads on each of them which
have a space complexity spaceT � s and timeT � t. If k
and/or h is missing, 1 is assumed instead. If the whole pre-
fix kT h is missing, T is assumed. If arbitrary k and h are
allowed, we write T.

Sequential Versus Parallel Models

Today quite a number of different computational models
are known which intuitively look as if they are parallel.
Several years ago van Emde Boas [6] observed thatmany of
thesemodels have one property in common. The problems
that can be solved in polynomial time on such a model P,
coincide with the problems that can be solved in polyno-
mial space on Turing machines:

P � TIME(Pol(n)) D TM� SPC(Pol(n)) D PSPACE :

Here we have chosen P as an abbreviation for “parallel”
model. Models P satisfying this equality are by definition
the members of the so-called second machine class.

On the other hand, the first machine class is formed by
all models S satisfying the relation
S�SPC(s)�TIME(t) D TM�SPC(‚(s))�TIME(Pol(t))

at least for some reasonable functions s and t. We delib-
erately avoid making this more precise. In general there
is consensus on which models are in the these machine
classes.

We do want to point out that the naming of the
two machine classes does not mean that they are differ-
ent or even disjoint. This is not known. For example, if
P D PSPACE, it might be that the classes coincide. Fur-
thermore there are models, e. g., Savitch’s NLPRAM [25],
which might be in neither machine class.

Another observation is that in order to possibly classify
a machine model it obviously has to have something like
“time complexity” and/or “space complexity”. This may
sound trivial, but we will see in Subsect. “Parallel Turing
Machines” that, for example, for so-called parallel Turing
machines with several work tapes it is in fact not.

Time and Space Complexity

Comparison of Resource Bounded
One-Dimensional CA

It is clear that time and space complexity for CA are Blum
measures [2] and hence infinite hierarchies of complexity

classes exist. It follows from the more general Theorem 9
for parallel Turing machines that the following holds:

Theorem 1 Let s and t be two functions such that s is fully
CA space constructable in time t and t is CA computable in
space s and time t. Then:

[

�…O(1)

CA � SPC(‚(s/� )) � TIME(‚(t/� ))

¤ CA � SPC(O(s)) � TIME(O(t))

CA � SPC(o(s)) � TIME(o(t))
¤ CA � SPC(O(s)) � TIME(O(t))

CA � TIME(o(t)) ¤ CA � TIME(O(t)) :

The second and third inclusion are simple corollaries of
the first one. We do not go into the details of the def-
inition of CA constructibility, but note that for hierar-
chy results for TM one sometimes needs analogous ad-
ditional conditions. For details, interested readers are re-
ferred to [3,12,17].

We not that for CA the situation is better than for de-
terministic TM: there one needs f (n) log f (n) 2 o(g(n))
in order to prove TM � TIME( f ) ¤ TM� TIME(g).

Open Problem 2 For the proper inclusions in Theorem 1
the construction used in [34] really needs to increase the
space used in order to get the time hierarchy. It is an open
problem whether there also exists a time hierarchy if the
space complexity is fixed, e. g., as s(n) D n. It is even an
open problem to prove or disprove that the inclusion

CA�SPC(n)�TIME(n) � CA�SPC(n)�TIME(2O(n)) :

is proper or not. We will come back to this topic in Sub-
sect. “Parallel Turing Machines” on parallel Turing ma-
chines.

Comparison with TuringMachines

It is well-known that a TM with one tape and one head on
that tape can be simulated by a one-dimensional CA. See
for example the paper by Smith [27]. But even multi-tape
TM can be simulated by a one-dimensional CA without
any significant loss of time.

Theorem 3 For all space bounds s(n) � n and all time
bounds t(n) � n the following holds for one-dimensional
CA and TMwith an arbitrary number of heads on its tapes:

 T  �TM � SPC(s) � TIME(t)
� CA � SPC(s) � TIME(O(t)) :

Sketch of the Simulation We first describe a simulation
for 1T1 � TM.
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In this case the actions of the TM are of the form
s; b! s0; b0; d where s; s0 2 S are old and new state,
b; b0 2 B old and new tape symbol and d 2 f�1; 0;C1g
the direction of headmovement.

The simulating CA uses three substates in each cell,
one for a TM state, one for a tape symbol, and an addi-
tional one for shifting tape symbols: Q D QS � QT � QM .
We use QS D S [ f g and a substate of means, that
the cell does not store a state. Similarly QT D B [
f < ı; ı > g and a substate of < ı or ı > means that
there is no symbol stored but a “hole” to be filled with an
adjacent symbol. Substates from QS D B � f < ; > g,
like < b and b > , are used for shifting symbols from
one cell to the adjacent one to the left or right.

Instead of moving the state one cell to the right or
left whenever the TM moves its head, the tape contents
as stored in the CA are shifted in the opposite direction.
Assume for example that the TM performs the following
actions:

� s0,d! s1, d0, + 1
� s1,e! s2, e0, � 1
� s2,d0! s3, d00,� 1
� s3,c! s4, c0, + 1

Figure 2 shows how shifting the tape in direction d can
be achieved by sending the current symbol in that direc-
tion and sending a “hole” ı in the opposite direction �d.
It should be clear that the required state changes of each
cell depend only on information available in its neighbor-
hood.

A consequence of this approach to incrementally shift
the tape contents is that it takes an arbitrary large num-
ber of steps until all symbols have been shifted. On the
other hand, after only two steps the cell simulating the TM
control unit has information about the next symbol visited
and can simulate the next TM step and initialize the next
tape shift.

Clearly the same approach can be used if one wants to
simulate a TM with several tapes, each having one head.
For each additional tape the CA would use two additional
registers analogously to the middle and bottom row used
in Fig. 2 for one tape. Stoß [28] has proved that kT h � TM
(h heads on each tape) can be simulated by (kh)T � TM
(only one head on each tape) in linear time. Hence there is
nothing left to prove.

Discussion As one can see in Fig. 2, in every second step
one signal is sent to the left and one to the right. Thus, if
the TMmoves its head a lot and if the tape segment which
has to be shifted is already long, many signals are traveling
simultaneously.

Cellular Automata as Models of Parallel Computation, Figure 2
Shifting tape contents step by step

In other words, the CA transports “a large amount of
information over a short distance in one step”. Theorem 3
says that this ability is at least as powerful as the ability of
multi-head TM to transport “a small amount of informa-
tion over a long distance in one step”.

Open Problem 4 The question remains whether some
kind of converse also holds and in Theorem 3 an D sign
would be correct instead of the �, or whether CA are
more powerful, i. e., a ¨ sign would be correct. This is not
known.

The best simulation of CA by TM that is known is the ob-
vious one: states of neighboring cells are stored on adja-
cent tape squares. For the simulation of one CA step the
TM basically makes one sweep across the complete tape
segment containing the states of all non-quiescent cells up-
dating them one after the other. As a consequence one gets

Theorem 5 For all space bounds s(n) � n and all time
bounds t(n) � n holds:

CA�SPC(s)�TIME(t) � TM�SPC(s)�TIME(O(s � t))

� TM � SPC(s) � TIME
�
O
�
t2

:

The construction proving the first inclusion needs only
a one-head TM, and no possibility is known to take ad-
vantage of more heads. The second inclusion follows from
the observation that in order to use an initially blank tape
square, a TM must move one of its heads there, which re-
quires time. Thus s 2 O(t).
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Taking Theorems 3 and 5 together, one immediately
gets

Corollary 6 Cellular automata are in the first machine
class.

And it is not known that CA are in the second machine
class. In this regard they are “more like” sequential mod-
els. The reason for this is the fact, the number of active
processing units only grows polynomially with the num-
ber of steps in a computation. In Sect. “Communication in
CA” variations of the standard CA model will be consid-
ered, where this is different.

Measuring and Controlling the Activities

Parallel TuringMachines

One possible way to make a parallel model from Turing
machines is to allow several control units (CU), but with
all of them working on the same tape (or tapes). This
model can be traced back at least to a paper by Hemmer-
ling [9] who called it Systems of Turing automata. A few
years laterWiedermann [32] coined the term Parallel Tur-
ing machine (PTM).

We consider only the case where there is only one tape
and each of the control units has only one head on that
tape. As for sequential TM, we usually drop the prefix 1T1
for PTM, too. Readers interested in the case of PTM with
multi-head CUs are referred to [33].

PTM with One-Head Control Units The specification
of a PTM includes a tape alphabet B with a blank Cy-
bil � and a set S of possible states for each CU. A PTM
starts with one CU on the first input symbol as a sequential
1T1 � TM. During the computation the number of con-
trol units may increase and decrease, but all CUs always
work cooperatively on one common tape.

The idea is to have the CUs act independently unless
they are “close” to each other, retaining the idea of only
local interactions, as in CA.

A configuration of a PTM is a pair c D (p; b). The
mapping b : Z! B describes the contents of the tape. Let
2S denote the power set of S. The mapping p : Z! 2S de-
scribes for each tape square i the set of states of the finite
automata currently visiting it. In particular, this formal-
ization means that it is not possible to distinguish two au-
tomata on the same square and in the same state: the idea
is that because of that they will always behave identically
and hence need not be distinguished.

The mode of operation of a PTM is determined by the
transition function f : 2Q � B! 2Q�D � B whereD is the
set f�1; 0; 1g of possible movements of a control unit. In

order to compute the successor configuration c0 D (p0; b0)
of a configuration c D (p; b), f is simultaneously com-
puted for all tape positions i 2 Z. The arguments used are
the set of states of the finite automata currently visiting
square i and its tape symbol. Let (M0i ; b

0
i ) D f (p(i); b(i)).

Then the new symbol on square i in configuration c0

is b0(i) D b0i . The set of finite automata on square i is
replaced by a new set of finite automata (defined by
M0i � Q � D) each of which changes the tape square ac-
cording to the indicated direction of movement. Therefore
p0(i) D fq j (q; 1) 2 M0i�1 _ (q; 0) 2 M0i _ (q;�1) 2
M0iC1g. Thus f induces a global transition function Fmap-
ping global configurations to global configurations.

In order to make the model useful (and to come up to
some intuitive expectations) it is required, that CUs can-
not arise “out of nothing” and that the symbol on a tape
square can change only if it is visited by at least one CU. In
other words we require that 8 b 2 B : f (;; b) D (;; b).

Observe that the number of finite automata on the tape
may change during a computation. Automata may vanish,
for example if f (fsg; b) D (;; b) and new automatamay be
generated, for example if f (fsg; b) D (f(q; 1); (q0; 0)g; b).

For the recognition of formal languages we define the
initial configuration cw for an input word w 2 AC as the
one in which w is written on the otherwise blank tape on
squares 1; 2; : : : ; jwj, and in which there exists exactly one
finite automaton in an initial state q0 on square 1.

A configuration (p; b) of aPTM is called accepting iff it
is stable (i. e. F((p; b)) D (p; b)) and p(1) � FC. The lan-
guage L(P) recognized by a PTM P is the set of input words,
for which it reaches an accepting configuration.

Complexity Measures for PTM Time complexity of
a PTM can be defined in the obvious way.

For space complexity, one counts the total number of
tape squares which are used in at least one configuration.
Here we call a tape square i unused in a configuration
c D (p; b) if p(i) D ; and b(i) D �; otherwise it is used.

What makes PTM interesting is the definition of its
processor complexity. Let proc0(w) denote the maximum
number of CU which exist simultaneously in a configu-
ration occurring during the computation for input w and
define proc : NC ! NC : n 7! maxfproc0(w) j w 2 Ang.
For complexity classes we use the notation PTM�SPC(s)�
TIME(t) � PROC(p) etc.

The processor complexity is one way to measure (an
upper bound on) “how many activities” happened simul-
taneously. It should be clear that at the lower end one
has the case of constant proc(n) D 1, which means that
the PTM is in fact (equivalent to) a sequential TM. The
other extreme is to have CUs “everywhere”. In that case
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proc(n) 2 ‚(space(n)), and one basically has a CA. In
other words, processor complexity measures the mount of
parallelism of a PTM.

Theorem 7 For all space bounds s and time bounds t:

PTM � SPC(s)�TIME(t)� PROC(1)
D TM � SPC(s) � TIME(t)

PTM � SPC(s)�TIME(t)� PROC(s)
D CA � SPC(s) � TIME(O(t)) :

Under additional constructibility conditions it is even pos-
sible to get a generalization of Theorem 5:

Theorem 8 For all functions s(n) � n, t(n) � n, and
h(n) � 1, where h is fully PTM processor constructable in
space s, time t, and with h processors, holds:

CA � SPC(O(s)) � TIME(O(t))
� PTM�SPC(O(s))�TIME(O(st/h))�PROC(O(h)):

Decreasing the processor complexity indeed leads to the
expected slowdown.

Relations Between PTM Complexity Classes (part 1)
The interesting question now is whether different upper
bounds on the processor complexity result in different
computational power. In general that is not the case, as
PTM with only one CU are TM and hence computa-
tionally universal. (As a side remark we note that there-
fore processor complexity cannot be a Blum measure. In
fact that should be more or less clear since, e. g., deciding
whether a second CU will ever be generated might require
finding out whether the first CU, i. e., a TM, ever reaches
a specific state.)

In this first part we consider the case where two com-
plexity measures are allowed to grow in order to get a hier-
archy. Results which only need one growing measure are
the topic of the second part.

First of all it turns out that for fixed processor com-
plexity between log n and s(n) there is a space/time hierar-
chy:

Theorem 9 Let s and t be two functions such that s is fully
PTM space constructable in time t and t isPTM computable
in space s and time t and let h � log. Then:

[

�…O(1)

PTM � SPC(‚(s/� )) � TIME(‚(t/� ))
� PROC(O(h))

¤ PTM� SPC(O(s))�TIME(O(t))� PROC(O(h)) :

The proof of this theorem applies the usual idea of diago-
nalization. Technical details can be found in [34].

Instead of keeping processor complexity fixed and let-
ting space complexity grow, one can also do the opposite.
As for analogous results for TM, one needs the additional
restriction to one fixed tape alphabet. One gets the fol-
lowing result, where the complexity classes carry the ad-
ditional information about the size of the tape alphabet.

Theorem 10 Let s, t and h be three functions such that s is
fully PTM space constructable in time t and with h proces-
sors, and that t and h are PTM computable in space s and
time t and with h processors such that in all cases the tape is
not written. Let b � 2 be the size of the tape alphabet. Then:

[

�…O(1)

PTM � SPC(s)� TIME‚(t/� ) � PROC(h/� )
� ALPH(b)

¤ PTM � SPC(s) � TIME(‚(st)) � PROC(‚(h))
� ALPH(b) :

Again we do not go into the details of the constructibil-
ity definitions which can be found in [34]. The impor-
tant point here is that one can prove that increasing time
and processor complexity by a non-constant factor does
increase the (language recognition) capabilities of PTM,
even if the space complexity is fixed, provided that one
does not allow any changes to the tape alphabet. In par-
ticular the theorem holds for the case space(n) D n.

It is now interesting to reconsider Open Problem 2.
Let’s assume that

CA�SPC(n)�TIME(n) D CA�SPC(n)�TIME(2O(n)) :

One may choose � (n) D log n, t(n) D 2n/ log n and
h(n) D n in Theorem 10. Using that together with Theo-
rem 7 the assumption would give rise to

PTM � SPC(n) � TIME

 
2n/ log n

log n

!

� PROC

�
n

log n

�

� ALPH(b)

¤ PTM � SPC(n) � TIME(n2n/ log n) � PROC(n)
� ALPH(b)

D PTM� SPC(n) � TIME(n) � PROC(n)
� ALPH(b) :

If the polynomial time hierarchy for n-space bounded CA
collapses, then there are languages which cannot be rec-
ognized by PTM in almost exponential time with n/ log n
processors but which can be recognized by PTM with n
processors in linear time, if the tape alphabet is fixed.
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Relations Between PTM Complexity Classes (part 2)
One can get rid of the fixed alphabet condition by using
a combinatorial argument for a specific formal language
(instead of diagonalization) and even have not only the
space but also the processor complexity fixed and still get
a time hierarchy. The price to pay is that the range of time
bounds is more restricted than in Theorem 10.

Consider the formal language

Lvv D
n
vcjvjv j v 2 fa;bgC

o
:

It contains all words which can be divided into three seg-
ments of equal length such that the first and third are
identical. Intuitively whatever type of machine is used for
recognition, it is unavoidable to “move” the complete in-
formation from one end to the other. Lvv shares this fea-
ture with Lpal.

Using a counting argument inspired by Hennie’s con-
cept of crossing sequences [10] applied to Lpal, one can
show:

Lemma 11 ([34]) If P is a PTM recognizing Lvv, then
time2P � procP 2 #(n3/ log2 n).

On the other hand, one can construct a PTM recognizing
Lvv with processor complexity na for sufficiently nice a:

Lemma 12 ([34]) For each a 2 Q with 0 < a < 1 holds:

Lvv 2 PTM�SPC(n)�TIME
�
‚
�
n2�a


�PROC

�
‚
�
na

:

Putting these lemmas together yields another hierarchy
theorem:

Theorem 13 For rational numbers 0 < a < 1 and
0 < " < 3/2 � a/2 holds:

PTM � SPC(n) � TIME
�
‚
�
n3/2�a/2�"



� PROC
�
‚
�
na


¤ PTM � SPC(n) � TIME
�
‚
�
n2�a



� PROC
�
‚
�
na

:

Hence, for a close to 1 a “small” increase in time by some
n"0 suffices to increase the recognition power of PTM
while the processor complexity is fixed at na and the space
complexity is fixed at n as well.

Open Problem 14 For the recognition of Lvv there is
a gap between the lower bound of time2P � procP 2
#(n3/ log2 n) in Lemma 11 and the upper bound of
time2P � procP 2 O(n4�a) in Lemma 12. It is not known
whether the upper or the lower bound or both can be im-
proved.

An even more difficult problem is to prove a similar
result for the case a D 1, i. e., cellular automata, as men-
tioned in Open Problem 2.

State Change Complexity

In CMOS technology, what costs most of the energy is to
make a proper state change, from zero to one or from one
to zero. Motivated by this fact Vollmar [30] introduced the
state change complexity for CA.

There are two variants based on the same idea: Given
a halting CA computation for an input w and a cell i one
can count the number of time points � , 1 � � � time0(w),
such that cell i is in different states at times � � 1 and � .
Denote that number by change0(w; i). Define

maxchg0(w) D max
i2G

change0(w; i) and

sumchg0(w) D
X

i2G

change0(w; i)

and

maxchg(n) D maxfmaxchg0(w) j w 2 Ang

sumchg(n) D maxfsumchg0(w) j w 2 Ang :

For the language Lvv which already played a role in the
previous subsection one can show:

Lemma 15 Let f (n) be a non-decreasing function which
is not in O(log n), i. e., limn!1 log n/ f (n) D 0. Then any
CA C recognizing Lvv makes a total of at least #(n2/ f (n))
state changes in the segment containing the n input cells
and n cells to the left and to the right of them.

In particular, if timeC 2 ‚(n), then sumchgC 2

#(n2/ f (n)).
FurthermoremaxchgC 2 #(n/ f (n)).

In the paper by Sanders et al. [24] a generalization of this
lemma to d-dimensional CA is proved.

Open Problem 16 While the processor complexity of
PTM measures how many activities happen simultane-
ously “across space”, state change complexity measures
how many activities happen over time. For both cases we
havemade use of the same formal language in proofs. That
might be an indication that there are connections between
the two complexity measures. But no non-trivial results
are known until now.

Asynchronous CA

Until now we have only considered one global mode of
operation: the so-called synchronous case, where in each



Cellular Automata as Models of Parallel Computation C 751

global step of the CA all cells must update their states syn-
chronously. Several models have been considered where
this requirement has been relaxed.

Generally speaking, asynchronous CA are character-
ized by the fact that in one global step of the CA some
cells are active and do update their states (all according to
the same local transition function) while others do noth-
ing, i. e., remain in the same state as before. There are then
different approaches to specify some restrictions on which
cells may be active or not.

Asynchronous update mode. The simplest possibility is
to not quantify anything and to say that a configu-
ration c0 is a legal successor of configuration c, de-
noted c ` c0, iff for all i 2 G one has c0(i) D c(i) or
c0(i) D f (ciCN).

Unordered sequential update mode. In this special case
it is required that there is only one active cell in each
global step, i. e., card(fijc0(i) 6D c(i)g) � 1.

Since CA with an asynchronous update mode are no
longer deterministic from a global (configuration) point of
view, it is not completely clear how to define, e. g., formal
language recognition and time complexity. Of course one
could follow the way it is done for nondeterministic TM.
To the best of our knowledge this has not considered for
asynchronous CA. (There are results for general nonde-
terministic CA; see for example � Cellular Automata and
Language Theory.)

It should be noted that Nakamura [20] has provided
a very elegant construction for simulating a CA Cs with
synchronous update mode on a CA Ca with one of the
above asynchronous update modes. Each cell stores the
“current” and the “previous” state of a Cs-cell before its
last activation and a counter value T modulo 3 (Qa D

Qs � Qs � f0; 1; 2g). The local transition function f a is
defined in such a way that an activated cell does the fol-
lowing:

� T always indicates how often a cell has already been up-
dated modulo 3.

� If the counters of all neighbors have value T or T C 1,
the current Cs-state of the cell is remembered as previ-
ous state and a new current state is computed accord-
ing to f s from the current and previous Cs-states of the
neighbors; the selection between current and previous
state depends on the counter value of that cell. In this
case the counter is incremented.

� If the counter of at least one neighboring cell is at
T � 1, the activated cell keeps its complete state as it is.

Therefore, if one does want to gain something using asyn-
chronous CA, their local transition functions would have
to be designed for that specific usage.

Recently, interest has increased considerably in CA
where the “degree of (a-)synchrony” is quantified via prob-
abilities. In these cases one considers CA with only a finite
number of cells.

Probabilistic update mode. Let 0 � ˛ � 1 be a probabil-
ity. In probabilistic update mode each legal global step
c ` c0 of the CA is assigned a probability by requiring
that each cell i independently has a probability ˛ of up-
dating its state.

Random sequential update mode. This is the case when
in each global step one of the cells in G is chosen with
even probability and its state updated, while all others
do not change their state. CA operating in this mode
are called fully asynchronous by some authors.

Thesemodels can be considered special cases of what is
usually called probabilistic or stochastic CA. For these CA
the local transition function is no longer a map from QN

to Q, but from QN to [0; 1]Q . For each ` 2 QN the value
f (`) is a probability distribution for the next state (satis-
fying

P
q2Q f (`)(q) D 1). There are only very few papers

about formal language recognition with probabilistic CA;
see [18].

On the other hand, probabilistic update modes have
received some attention recently. See for example [22] and
the references therein. Development of this area is still at
its beginning. Until now, specific local rules have mainly
been investigated; for an exception see [7].

Communication in CA

Until now we have considered only one-dimensional Eu-
clidean CA where one bit of information can reach O(t)
cells in t steps. In this section we will have a look at a few
possibilities for changing the way cells communicate in
a CA.

First we have a quick look at CA where the underlying
grid isZd . The topic of the second subsection is CA where
the cells are connected to form a tree.

Different Dimensionality

InZd � CAwith, e. g., von Neumannneighborhood of ra-
dius 1, a cell has the potential to influence O(td ) cells in t
steps. This is a polynomial number of cells. It comes as no
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surprise that

Zd � CA � SPC(s) � TIME(t)
� TM � SPC(Pol(s)) � TIME(Pol(t))

and hence Zd � CA are in the first machine class. One
might only wonder why for the TM a space bound of‚(s)
might not be sufficient. This is due to the fact that the
shape of the cells actually used by the CA might have an
“irregular” structure and that the TM has to perform some
bookkeeping or simulate a whole (hyper-)rectangle of cells
encompassing all that are really used by the CA.

Trivially, a d-dimensional CA can be simulated on
a d0-dimensional CA, where d0 > d. The question is
how much one loses when decreasing the dimensional-
ity. The currently known best result in this direction is by
Scheben [26]:

Theorem 17 It is possible to simulate a d0-dimensional CA
with running time t on a d-dimensional CA, d < d0 with
running time and space O(t2lddd

0/de ).

It should be noted that the above result is not directly
about language recognition; the redistribution of input
symbols needed for the simulation is not taken into ac-
count. Readers interested in that as well are referred to [1].

Open Problem 18 Try to find simulations of lower
on higher dimensional CA which somehow make use
of the “higher connectivity” between cells. It is probably
much too difficult or even impossible to hope for general
speedups. But efficient use of space (small hypercubes) for
computations without losing time might be achievable.

Tree CA and hyperbolic CA

Starting from the root of a full binary tree one can reach
an exponential number 2t of nodes in t steps. If there are
some computing capabilities related to the nodes, there
is at least the possibility that such a device might exhibit
some kind of strong parallelism.

One of the earliest papers in this respect is Wieder-
mann’s article [31] (unfortunately only available in Slo-
vak). The model introduced there one would now call par-
allel Turing machines, where a tape is not a linear array of
cells, but where the cells are connected in such a way as
to form a tree. A proof is sketched, showing that these de-
vices can simulate PRAMs in linear time (assuming the so-
called logarithmic cost model). PRAMs are in the second
machine class.

So, indeed in some sense, trees are powerful. Below
we first quickly introduce a PSPACE-complete problem

which is a useful tool in order to prove the power of com-
putational models involving trees. A few examples of such
models are considered afterwards.

Quantified Boolean Formula The instances of the
problem Quantified Boolean Formula (QBF, sometimes
also called QSAT) have the structure

Q1x1Q2x2 � � �Qkxk : F(x1; : : : ; xk) :

Here F(x1; : : : ; xk) is a Boolean formula with variables
x1; : : : ; xk and connectives ^, _ and :. Each Qj is one of
the quantifiers 8 or 9. The problem is to decide whether
the formula is true under the obvious interpretation. This
problem is known to be complete for PSPACE. All known
TM, i. e., all deterministic sequential algorithms, for solv-
ing QBF require exponential time.

Thus a proof that QBF can be solved by somemodelM
in polynomial time (usually) implies that all problems in
PSPACE can be solved by M in polynomial time. Often
this can be paired with the “opposite” results that prob-
lems that can be solved in polynomial time on M are in
PSPACE, and hence TM � PSPACE DM � P.

This, of course, is not the case only for models “with
trees”; see [6] for many alternatives.

Tree CA A tree CA (TCA for short) working on
a full d-ary tree can be defined as follows: There is a set
of states Q. For the root there is a local transition func-
tion f0 : (A[ f�g) � Q �Qd ! Q, which uses an in-
put symbol (if available), the root cell’s own state and
those of the d child nodes to compute the next state
of the node. And there are d local transition functions
fi : Q � Q � Qd ! Q, where 1 � i � d. The ith child of
a node uses f i to compute its new state depending the state
of its parent node, its own state and the states of the d
child nodes. For language recognition, input is provided
sequentially to the root node during the first n steps and
a blank symbol � afterwards. A word is accepted if the
root node enters an accepting state from a designated sub-
set FC � Q.

Mycielski and Niwiński [19] were the first to realize
that sequential polynomial reductions can be carried out
by TCA and that QBF can be recognized by tree CA as
well: A formula to be checked with k variables is copied
and distributed to 2k “evaluation cells”. The sequences of
left/right choices of the paths to them determine a valua-
tion of the variables with zeros and ones. Each evaluation
cell uses the subtree below it to evaluate F(x1; : : : ; xk) ac-
cordingly. The results are propagated up to the root. Each
cell in level i below the root, 1 � i � k above an evalua-
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Cellular Automata as Models of Parallel Computation, Figure 3
The first levels of a tree of cells resulting from a tiling of the hyperbolic plane with 6-gons

tion cell combines the results using _ or ^, depending on
whether the ith quantifier of the formula was 9 or 8.

On the other hand, it is routine work to prove that
the result of a TCA running in polynomial time can be
computed sequentially in polynomial space by a depth first
procedure. Hence one gets:

Theorem 19

TCA � TIME(Pol(n)) D PSPACE

Thus tree cellular automata are in the second machine
class.

Hyperbolic CA Two-dimensional CA as defined in
Sect. “Introduction” can be considered as arising from the
tessellation of the Euclidean planeZ2 with squares. There-
fore, more generally, sometimes CA on a grid G D Zd are
called Euclidean CA. Analogously, some Hyperbolic CA
arise from tessellation of the hyperbolic plane with some
regular polygon. They are covered in depth in a separate
article (� Cellular Automata in Hyperbolic Spaces).

Here we just consider one special case: The two-di-
mensional hyperbolic plane can be tiled with copies of
the regular 6-gon with six right angles. If one considers
only one quarter and draws a graph with the tiles as nodes
and links between those nodes who share a common tile
edge, one gets the graph depicted in Fig. 3. Basically it is
a tree with two types of nodes, black and white ones, and
some “additional” edges depicted as dotted lines. The root
is a white node. The first child of each node is black. All
other children are white; a black node has 2 white children,
a white node has 3 white children.

For hyperbolic CA (HCA) one uses the formalism anal-
ogously to that described for tree CA. As one can see, basi-
cally HCA are trees with some additional edges. It is there-
fore not surprising that they can accept the languages from
PSPACE in polynomial time. The inverse inclusion is also
proved similarly to the tree case. This gives:

Theorem 20

HCA � TIME(Pol(n)) D PSPACE

It is also interesting to have a look at the analogs of P,
PSPACE, and so on for hyperbolic CA. Somewhat surpris-
ingly Iwamoto et al. [11] have shown:

Theorem 21

HCA � TIME(Pol(n)) D HCA � SPC(Pol(n))
D NHCA�TIME(Pol(n)) D NHCA� SPC(Pol(n))

whereNHCA denotes nondeterministic hyperbolic CA. The
analogous equalities hold for exponential time and space.

Outlook There is yet another possibility for bringing
trees into play: trees of configurations. The concept of
alternation [4] can be carried over to cellular automata.
Since there are several active computational units, the defi-
nitions are little bit more involved and it turns out that one
has several possibilities which also result in models with
slightly different properties. But in all cases one gets mod-
els from the second machine class. For results, readers are
referred to [13] and [23].

On the other end there is some research on what hap-
pens if one restricts the possibilities for communication
between neighboring cells: Instead of getting information
about the complete states of the neighbors, in the ex-
treme case only one bit can be exchanged. See for exam-
ple [15].

Future Directions

At several points in this paper we have pointed out open
problems which deserve further investigation. Here, we
want to stress three areas which we consider particularly
interesting in the area of “CA as a parallel model”.
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Proper Inclusions and Denser Hierarchies

It has been pointed out several times, that inclusions of
complexity classes are not known to be proper, or that gaps
between resource bounds still needed to be “large” in order
to prove that the inclusion of the related classes is a proper
one. For the foreseeable future it remains a wide area for
further research. Most probably new techniques will have
to be developed to make significant progress.

Activities

The motivation for considering state change complexity
was the energy consumption of CMOS hardware. It is
known that irreversible physical computational processes
must consume energy. This seems not to be the case for
reversible ones. Therefore reversible CA are also interest-
ing in this respect. The definition of reversible CA and re-
sults for them are the topic of the article by Morita (� Re-
versible Cellular Automata), also in this encyclopedia. Sur-
prisingly, all currently known simulations of irreversible
CA on reversible ones (this is possible) exhibit a large state
change complexity. This deserves further investigation.

Also the examination of CA which are “reversible
on the computational core” has been started only re-
cently [16]. There are first surprising results; the impacts
on computational complexity are unforeseeable.

Asynchronicity and Randomization

Randomization is an important topic in sequential com-
puting. It is high time that this is also investigated in much
more depth for cellular automata. The same holds for cel-
lular automata where not all cells are updating their states
synchronously. These areas promise a wealth of new in-
sights into the essence of fine-grained parallel systems.
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Glossary

Cellular automaton For our purposes, a (one-dimen-
sional) cellular automaton (CA) is given by a local map
� : ˙w ! ˙ where ˙ is the underlying alphabet of
the automaton and w is its width. As a data structure,
suitable as input to a decision algorithm, a CA can thus
be specified by a simple lookup table. We abuse nota-
tion and write �(x) for the result of applying the global
map of the CA to configuration x 2 ˙Z.

Wolfram classes Wolfram proposed a heuristic classifica-
tion of cellular automata based on observations of typi-
cal behaviors. The classification comprises four classes:
evolution leads to trivial configurations, to periodic
configurations, evolution is chaotic, evolution leads to
complicated, persistent structures.

Undecidability It was recognized by logicians andmathe-
maticians in the first half of the 20th century that there
is an abundance of well-defined problems that can-
not be solved by means of an algorithm, a mechanical

procedure that is guaranteed to terminate after finitely
many steps and produce the appropriate answer. The
best known example of an undecidable problem is Tur-
ing’s Halting Problem: there is no algorithm to deter-
mine whether a given Turing machine halts when run
on an empty tape.

Semi-decidability A problem is said to be semi-decidable
or computably enumerable if it admits an algorithm
that returns “yes” after finitely many steps if this is
indeed the correct answer. Otherwise the algorithm
never terminates. The Halting Problem is the standard
example for a semi-decidable problem. A problem is
decidable if, and only if, the problem itself and its nega-
tion are semi-decidable.

Universality A computational device is universal it is ca-
pable of simulating any other computational device.
The existence of universal computers was another cen-
tral insight of the early days of computability theory
and is closely related to undecidability.

Reversibility A discrete dynamical system is reversible if
the evolution of the system incurs no loss of informa-
tion: the state at time t can be recovered from the state
at time t C 1. For CAs this means that the global map
is injective.

Surjectivity The global map of a CA is surjective if every
configuration appears as the image of another. By con-
trast, a configuration that fails to have a predecessor is
often referred to as a Garden-of-Eden.

Finite configurations One often considers CA with
a special quiescent state: the homogeneous configura-
tion where all cells are in the quiescent state is required
to be fixed point under the global map. Infinite config-
urations where all but finitely many cells are in the qui-
escent state are often called finite configurations. This
is somewhat of a misnomer; we prefer to speak about
configurations with finite support.

Definition of the Subject

Cellular automata display a large variety of behaviors. This
was recognized clearly when extensive simulations of cel-
lular automata, and in particular one-dimensional CA, be-
came computationally feasible around 1980. Surprisingly,
even when one considers only elementary CA, which are
constrained to a binary alphabet and local maps involv-
ing only nearest neighbors, complicated behaviors are ob-
served in some cases. In fact, it appears thatmost behaviors
observed in automata with more states and larger neigh-
borhoods already have qualitative analogues in the realm
of elementary CA. Careful empirical studies leadWolfram
to suggest a phenomenological classification of CA based
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on the long-term evolution of configurations, see [68,71]
and Sect. “Introduction”. While Wolfram’s four classes
clearly capture some of the behavior of CA it turns out
that any attempt at formalizing this taxonomy meets with
considerable difficulties. Even apparently simple questions
about the behavior of CA turn out to be algorithmically
undecidable and it is highly challenging to provide a de-
tailed mathematical analysis of these systems.

Introduction

In the early 1980’s Wolfram published a collection of 20
open problems in the the theory of CA, see [69]. The first
problem on his list is “What overall classification of cellu-
lar automata behavior can be given?” As Wolfram points
out, experimental mathematics provides a first answer to
this problem: one performs a large number of explicit sim-
ulations and observes the patterns associated with the long
term evolution of a configuration, see [67,71]. Wolfram
proposed a classification that is based on extensive simu-
lations in particular of one-dimensional cellular automata
where the evolution of a configuration can be visualized
naturally as a two-dimensional image. The classification
involves four classes that can be described as follows:

� W1: Evolution leads to homogeneous fixed points.
� W2: Evolution leads to periodic configurations.
� W3: Evolution leads to chaotic, aperiodic patterns.
� W4: Evolution produces persistent, complex patterns

of localized structures.

Thus, Wolfram’s first three classes follow closely concepts
from continuous dynamics: fixed point attractors, peri-
odic attractors and strange attractors, respectively. They
correspond roughly to systems with zero temporal and
spatial entropy, zero temporal entropy but positive spa-
tial entropy, and positive temporal and spatial entropy, re-
spectively. W4 is more difficult to associate with a con-
tinuous analogue except to say that transients are typi-
cally very long. To understand this class it is preferable to
consider CA as models of massively parallel computation
rather than as particular discrete dynamical systems. It was
conjectured by Wolfram that W4 automata are capable of
performing complicated computations and may often be
computationally universal. Four examples of elementary
CA that are typical of the four classes are shown in Fig. 1.
Li and Packard [32,33] proposed a slightly modified ver-
sion of this hierarchy by refining the low classes and in
particular Wolfram’sW2. Much like Wolfram’s classifica-
tion, the Li–Packard classification is concerned with the
asymptotic behavior of the automaton, the structure and

behavior of the limiting configurations. Here is one ver-
sion of the Li–Packard classification, see [33].

� LP1: Evolution leads to homogeneous fixed points.
� LP2: Evolution leads to non-homogeneous fixed points,

perhaps up a to a shift.
� LP3: Evolution leads to ultimately periodic configura-

tions. Regions with periodic behavior are separated by
domain walls, possibly up to a shift.

� LP4: Configurations produce locally chaotic behavior.
Regions with chaotic behavior are separated by domain
walls, possibly up to a shift.

� LP5: Evolution leads to chaotic patterns that are spa-
tially unbounded.

� LP6: Evolution is complex. Transients are long and lead
to complicated space-time patterns which may be non-
monotonic in their behavior.

By contrast, a classification closer to traditional dynamical
systems theory was introduced by Kůrka, see [27,28]. The
classification rests on the notions of equicontinuity, sen-
sitivity to initial conditions and expansivity. Suppose x is
a point in some metric space and f a map on that space.
Then f is equicontinuous at x if

8 " > 0 9 ı > 08 y 2 Bı (x); n 2 N (d( f n(x); f n(y)) < ")

where d(:; :) denotes a metric. Thus, all points in a suf-
ficiently small neighborhood of x remain close to the it-
erates of x for the whole orbit. Global equicontinuity is
a fairly strong condition, it implies that the limit set of the
automaton is reached after finitely many steps. The map is
sensitive (to initial conditions) if

8 x; " > 0 9 ı > 08 y 2 Bı (x)9 n 2 N

(d( f n(x); f n(y)) � ") :

Lastly, the map is positively expansive if

9 " > 08 x ¤ y 9 n 2 N (d( f n(x); f n(y)) � ") :

Kůrka’s classification then takes the following form.

� K1: All points are equicontinuous under the global
map.

� K2: Some but not all points are equicontinuous under
the global map.

� K3: The global map is sensitive but not positively ex-
pansive.

� K4: The global map is positively expansive.

This type of classification is perfectly suited to the analy-
sis of uncountable spaces such as the Cantor space f0; 1gN
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Typical examples of the behavior described byWolfram’s classes among elementary cellular automata

or the full shift space ˙Z which carry a natural metric
structure. For the most part we will not pursue the anal-
ysis of CA by topological and measure theoretic means
here and refer to� Topological Dynamics of Cellular Au-
tomata in this volume for a discussion of these methods.
See Sect. “Definability and Computability” for the connec-
tions between topology and computability.

Given the apparent complexity of observable CA be-
havior one might suspect that it is difficult to pinpoint
the location of an arbitrary given CA in any particular
classification scheme with any precision. This is in con-
trast to simple parameterizations of the space of CA rules
such as Langton’s  parameter that are inherently easy to
compute. Briefly, the  value of a local map is the frac-
tion of local configurations that map to a non-zero value,
see [29,33]. Small  values result in short transients lead-
ing to fixed points or simple periodic configurations. As
 increases the transients grow longer and the orbits be-
come more and more complex until, at last, the dynamics
become chaotic. Informally, sweeping the  value from 0
to 1 will produce CA in W1, then W2, then W4 and lastly
in W3. The last transition appears to be associated with
a threshold phenomenon. It is unclear what the connec-

tion between Langton’s -value and computational prop-
erties of a CA is, see [37,46]. Other numerical measures
that appear to be loosely connected to classifications are
the mean field parameters of Gutowitz [20,21], the Z-pa-
rameter byWuensche [72], see also [44]. It seems doubtful
that a structured taxonomy along the lines of Wolfram or
Li–Packard can be derived from a simple numerical mea-
sure such as the  value alone, or even from a combination
of several such values. However, they may be useful as em-
pirical evidence for membership in a particular class.

Classification also becomes significantly easier when
one restricts one’s attention to a limited class of CA such
as additive CA, see � Additive Cellular Automata. In this
context, additive means that the local rule of the automa-
ton has the form �(Ex) D

P
i ci xi where the coefficients as

well as the states aremodular numbers. A number of prop-
erties starting with injectivity and surjectivity as well as
topological properties such as equicontinuity and sensitiv-
ity can be expressed in terms of simple arithmetic condi-
tions on the rule coefficients. For example, equicontinuity
is equivalent to all prime divisors of the modulus m di-
viding all coefficients ci, i > 1, see [35] and the references
therein. It is also noteworthy that in the linear case meth-
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ods tend to carry over to arbitrary dimensions; in general
there is a significant step in complexity from dimension
one to dimension two.

No claim is made that the given classifications are
complete; in fact, one should think of them as prototypes
rather than definitive taxonomies. For example, one might
add the class of nilpotent CA at the bottom. A CA is nilpo-
tent if all configurations evolve to a particular fixed point
after finitely many steps. Equivalently, by compactness,
there is a bound n such that all configurations evolve to the
fixed point in nomore than n steps. Likewise, we could add
the class of intrinsically universalCA at the top. A CA is in-
trinsically universal if it is capable of simulating all other
CA of the same dimension in some reasonable sense. For
a fairly natural notion of simulation see [45]. At any rate,
considerable effort is made in the references to elaborate
the characteristics of the various classes. For many con-
crete CA visual inspection of the orbits of a suitable sam-
ple of configurations readily suggests membership in one
of the classes.

Reversibility and Surjectivity

A first tentative step towards the classification of a dynam-
ical systems is to determine its reversibility or lack thereof.
Thus we are trying to determine whether the evolution
of the system is associated with loss of information, or
whether it is possible to reconstruct the state of the sys-
tem at time t from its state at time t C 1. In terms of the
global map of the system we have to decide injectivity.
Closely related is the question whether the global map is
surjective, i. e., whether there is no Garden-of-Eden: every
configuration has a predecessor under the global map. As
a consequence, the limit set of the automaton is the whole
space. It was shown of Hedlund that for CA the two no-
tions are connected: every reversible CA is also surjective,
see [24], � Reversible Cellular Automata. As a matter of
fact, reversibility of the global map of a CA implies open-
ness of the global map, and openness implies surjectivity.
The converse implications are both false. By a well-known
theorem by Hedlund [24] the global maps of CA are pre-
cisely the continuous maps that commute with the shift.
It follows from basic topology that the inverse global map
of a reversible CA is again the global map of a suitable CA.
Hence, the predecessor configuration of a given configura-
tion can be reconstructed by another suitably chosen CA.
For results concerning reversibility on the limit set of the
automaton see [61].

From the perspective of complexity the key result con-
cerning reversible systems is the work by Lecerf [30] and
Bennett [7]. They show that reversible Turing machines

can compute any partial recursive function, modulo a mi-
nor technical problem: In a reversible Turing machine
there is no loss of information; on the other hand even
simple computable functions are clearly irreversible in the
sense that, say, the sum of two natural numbers does not
determine these numbers uniquely. To address this issue
one has to adjust the notion of computability slightly in the
context of reversible computation: given a partial recursive
function f : N ! N the functionbf (x) D hx; f (x)i can be
computed by a reversible Turing machine where h:; :i is
any effective pairing function. If f itself happens to be in-
jective then there is no need for the coding device and f can
be computed by a reversible Turing machine directly. For
example, we can compute the product of two primes re-
versibly. Morita demonstrated that the same holds true for
one-dimensional cellular automata [38,40,62], � Tiling
Problem and Undecidability in Cellular Automata: re-
versibility is no obstruction to computational universality.
As a matter of fact, any irreversible cellular automaton can
be simulated by a reversible one, at least on configurations
with finite support. Thus one should expect reversible CA
to exhibit fairly complicated behavior in general.

For infinite, one-dimensional CA it was shown by
Amoroso and Patt [2] that reversibility is decidable.More-
over, it is decidable if the the global map is surjective. An
efficient practical algorithm using concepts of automata
theory can be found in [55], see also [10,14,23]. The fast
algorithm is based on interpreting a one-dimensional CA
as a deterministic transducer, see [6,48] for background.
The underlying semi-automaton of the transducer is a de
Bruijn automaton B whose states are words in ˙w�1

where ˙ is the alphabet of the CA and w is its width.
The transitions are given by ax

c
�! xb where a; b; c 2 ˙ ,

x 2 ˙w�2 and c D �(axb), � being the local map of the
CA. Since B is strongly connected, the product automaton
of B will contain a strongly connected component C that
contains the diagonal D, an isomorphic copy of B. The
global map of the CA is reversible if, and only if, C D D
is the only non-trivial component. It was shown by Hed-
lund [24] that surjectivity of the global map is equivalent
with local injectivity: the restriction of the map to config-
urations with finite support must be injective. The latter
property holds if, and only if, C D D and is thus easily
decidable. Automata theory does not readily generalize to
words of dimensions higher than one. Indeed, reversibility
and surjectivity in dimensions higher than one are unde-
cidable, see [26] and� Tiling Problem and Undecidability
in Cellular Automata in this volume for the rather intricate
argument needed to establish this fact.

While the structure of reversible one-dimensional CA
is well-understood, see � Tiling Problem and Undecid-
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A reversible automaton obtained by applying Fredkin’s construction to the irreversible elementary CA 77

ability in Cellular Automata, [16], and while there is an
efficient algorithm to check reversibility, few methods are
known that allow for the construction of interesting re-
versible CA. There is a noteworthy trick due to Fredkin
that exploits the reversibility of the Fibonacci equation
XnC1 D Xn C Xn�1. When addition is interpreted as ex-
clusive or this can be used to construct a second-order CA
from any given binary CA; the former can then be recoded
as a first-order CA over a 4-letter alphabet. For example,
for the open but irreversible elementary CA number 90 we
obtain the CA shown in Fig. 2.

Another interesting class of reversible one-dimen-
sional CA, the so-called partitioned cellular automata
(PCA), is due to Morita and Harao, see [38,39,40]. One

can think of a PCA as a cellular automaton whose
cells are divided into multiple tracks; specifically Morita
uses an alphabet of the form ˙ D ˙1 � ˙2 � ˙3.
The configurations of the automaton can be written as
(X;Y ; Z) where X 2 ˙1

Z, Y 2 ˙2
Z and Z 2 ˙3

Z. Now
consider the shearing map � defined by �(X;Y ; Z) D
(RS(X);Y ; LS(Z)) where RS and LS denote the right and
left shift, respectively. Given any function f : ˙ ! ˙ we
can define a global map f ı � where f is assumed to be ap-
plied point-wise. Since the shearing map is bijective, the
CA will be reversible if, and only if, the map f is bijective.
It is relatively easy to construct bijections f that cause the
CA to perform particular computational tasks, even when
a direct construction appears to be entirely intractable.
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Definability and Computability

Formalizing Wolfram’s Classes

Wolfram’s classification is an attempt to categorize the
complexity of the CA by studying the patterns observed
during the long-term evolution of all configurations. The
first two classes are relatively easy to observe, but it is dif-
ficult to distinguish between the last two classes. In par-
ticular W4 is closely related to the kind of behavior that
would be expected in connection with systems that are ca-
pable of performing complicated computations, including
the ability to perform universal computation; a property
that is notoriously difficult to check, see [52]. The focus on
the full configuration space rather than a significant sub-
set thereof corresponds to the worst-case approach well-
known in complexity theory and is somewhat inferior to
an average case analysis. Indeed, Baldwin and Shelah point
out that a product construction can be used to design
a CA whose behavior is an amalgamation of the behavior
of two given CA, see [3,4]. By combining CA in different
classes one obtains striking examples of the weakness of
the worst-case approach. A natural example of this mixed
type of behavior is elementary CA 184 which displays class
II or class III behavior, depending on the initial configura-
tion. Another basic example for this type of behavior is the
well-studied elementary CA 30, see Sect. “Conclusion”.

Still, for many CA a worst-case classification seems to
provide useful information about the structural properties
of the automaton. The first attempt at formalizing Wol-
fram’s class was made by Culik and Yu who proposed
the following hierarchy, given here in cumulative form,
see [11]:

� CY1: All configurations evolve to a fixed point.
� CY2: All configurations evolve to a periodic configura-

tion.
� CY3: The orbits of all configurations are decidable.
� CY4: No constraints.

The Culik–Yu classification employs two rather different
methods. The first two classes can be defined by a sim-
ple formula in a suitable logic whereas the third (and the
fourth in the disjoint version of the hierarchy) rely on no-
tions of computability theory. As a general framework for
both approaches we consider discrete dynamical systems,
structures of the formA D hC;�i where C � ˙Z is the
space of configurations of the system and � is the “next
configuration” relation onC. We will only consider the de-
terministic case where for each configuration x there exists
precisely one configuration y such that x � y. Hence we
are really dealing with algebras with one unary function,

but iteration is slightly easier to deal with in the relational
setting. The structures most important in this context are
the ones arising from a CA. For any local map � we con-
sider the structure A� D hC;�i where the next configu-
ration relation is determined by x � �(x).

Using the standard language of first order logic we can
readily express properties of the CA in terms of the sys-
temA�. For example, the system is reversible, respectively
surjective, if the following assertions are valid overA:

8 x; y; z (x � z and y � z implies x D y) ;
8 x 9 y (y � x) :

As we have seen, both properties are easily decidable in
the one-dimensional case. In fact, one can express the ba-
sic predicate x � y (as well as equality) in terms of finite
state machines on infinite words. These machines are de-
fined like ordinary finite state machines but the acceptance
condition requires that certain states are reached infinitely
and co-infinitely often, see [8,19]. The emptiness problem
for these automata is easily decidable using graph theo-
retic algorithms. Since regular languages on infinite words
are closed under union, complementation and projection,
much like their finite counterparts, and all the correspond-
ing operations on automata are effective, it follows that
one can decide the validity of first order sentences over
A� such as the two examples above: the model-checking
problem for these structures and first order logic is decid-
able, see [34]. For example, we can decide whether there
is a configuration that has a certain number of predeces-
sors. Alternatively, one can translate these sentences into
monadic second order logic of one successor, and use well-
known automata-based decision algorithms there directly,
see [8]. Similar methods can be used to handle configura-
tions with finite support, corresponding to weak monadic
second order logic. Since the complexity of the decision
procedure is non-elementary one should not expect to be
able to handle complicated assertions. On the other hand,
at least for weak monadic second order logic practical im-
plementations of the decisionmethod exist, see [17]. There
is no hope of generalizing this approach as the undecid-
ability of, say, reversibility in higher dimensions demon-
strates.

Write x
t
! y if x evolves to y in exactly t steps, x

C
! y

if x evolves to y in any positive number of steps and x
�
! y

if x evolves to y in any number of steps. Note that
t
! is

definable for each fixed t, but
�
! fails to be so definable in

first order logic. This is in analogy to the undefinability of
path existence problems in the first order theory of graphs,
see [34]. Hence it is natural to extend our language so we
can express iterations of the global map, either by adding
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transitive closures or by moving to some limited system of
higher order logic overA� where

�
! is definable, see [8].

Arguably the most basic decision problem associated
with a systemA that requires iteration of the global map is
the Reachability Problem: given two configurations x and
y, does the evolution of x lead to y? A closely related but
different question is the Confluence Problem: will two con-
figurations x and y evolve to the same limit cycle? Conflu-
ence is an equivalence relation and allows for the decom-
position of configuration space into limit cycles together
with their basins of attraction. The Reachability and Con-
fluence Problem amount to determining, given configura-
tions x and y, whether

x
�
! y;

9 z (x
�
! z and y

�
! z) ;

respectively. As another example, the first two Culik–Yu
class can be defined like so:

8 x 9 z (x
�
! z and z � z);

8 x 9 z (x
�
! z and z

C
! z) :

It is not difficult to give similar definitions for the lower Li–
Packard classes if one extends the language by a function
symbol denoting the shift operator.

The third Culik–Yu class is somewhat more involved.
By definition, a CA lies in the third class if it admits
a global decision algorithm to determine whether a given
configuration x evolves to another given configuration y
in a finite number of steps. In other words, we are look-
ing for automata where the Reachability Problem is algo-
rithmically solvable. While one can agree thatW4 roughly
translates into undecidability and is thus properly situated
in the hierarchy, it is unclear how chaotic patterns in W3
relate to decidability. No method is known to translate the
apparent lack of tangible, persistent patterns in rules such
as elementary CA 30 into decision algorithms for Reach-
ability. There is another, somewhat more technical prob-
lem to overcome in formalizing classifications. Recall that
the full configuration space is C D ˙Z. Intuitively, given
x 2 C we can effectively determine the next configuration
y D �(x). However, classical computability theory does
not deal with infinitary objects such as arbitrary config-
uration so a bit of care is needed here. The key insight is
that we can determine arbitrary finite segments of �(x) us-
ing only finite segments of x (and, of course, the lookup
table for the local map). There are several ways to model
computability on ˙Z based on this idea of finite approxi-
mations, we refer to [66] for a particularly appealingmodel
based on so-called type-2 Turing machines; the reference

also contains many pointers to the literature as well as
a comparison between the different approaches. It is easy
to see that for any CA the global map � as well as all its iter-
ates �t are computable, the latter uniformly in t. However,
due to the finitary nature of all computations, equality is
not decidable in type-2 computability: the unequal opera-
torU0(x; y) D 0 if x ¤ y,U0(x; y) undefined otherwise, is
computable and thus unequality is semi-decidable, but the
strongerU0(x; y) D 0 if x ¤ y,U0(x; y) D 1, otherwise, is
not computable. The last result is perhaps somewhat coun-
terintuitive, but it is inevitable if we strictly adhere to the
finite approximation principle.

In order to avoid problems of this kind it has become
customary to consider certain subspaces of the full con-
figuration space, in particular Cfin, the collection of con-
figurations with finite support, Cper, the collection of spa-
tially periodic configurations and Cap, the collection of al-
most periodic configurations of the form : : : uuuwvvv : : :
where u, v and w are all finite words over the alphabet
of the automaton. Thus, an almost periodic configuration
differs from a configuration of the form !u v! in only
finitely many places. Configurations with finite support
correspond to the special case where u D v D 0 is a spe-
cial quiescent symbol and spatially periodic configurations
correspond to u D v, w D ". The most general type of
configuration that admits a finitary description is the class
Crec of recursive configurations, where the assignment of
state to a cell is given by a computable function.

It is clear that all these subspaces are closed under the
application of a global map. Except for Cfin there are also
closed under inverse maps in the following sense: given
a configuration y in some subspace that has a predeces-
sor x in Call there already exists a predecessor in the same
subspace, see [55,58]. This is obvious except in the case
of recursive configurations. The reference also shows that
the recursive predecessor cannot be computed effectively
from the target configuration. Thus, for computational
purposes the dynamics of the cellular automaton are best
reflected in Cap: it includes all configuration with finite
support and we can effectively trace an orbit in both di-
rections. It is not hard to see that Cap is the least such
class. Alas, it is standard procedure to avoid minor tech-
nical difficulties arising from the infinitely repeated spa-
tial patterns and establish classifications over the subspace
Cfin. There is a arguably not much harm in this simplifica-
tion since Cfin is a dense subspace of Call and compactness
can be used to lift properties from Cfin to the full configu-
ration space.

The Culik–Yu hierarchy is correspondingly defined
over Cfin, the class of all configurations of finite support.
In this setting, the first three classes of this hierarchy are
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undecidable and the fourth is undecidable in the disjunc-
tive version: there is no algorithm to test whether a CA
admits undecidable orbits. As it turns out, the CA classes
are complete in their natural complexity classes within the
arithmetical hierarchy [50,52]. Checking membership in
the first two classes comes down to performing an infi-
nite number of potentially unbounded searches and can
be described logically by a ˘2 expression, a formula of
type 8 x 9 y R(x; y) where R is a decidable predicate. In-
deed, CY1 and CY2 are both ˘2-complete. Thus, decid-
ing whether all configurations on a CA evolve to a fixed
point is equivalent to the classical problem of determin-
ing whether a semi-decidable set is infinite. The third
class is even less amenable to algorithmic attack; one can
show that CY3 is ˙3-complete, see [53]. Thus, deciding
whether all orbits are decidable is as difficult as determin-
ing whether any given semi-decidable set is decidable. It is
not difficult to adjust these undecidability results to similar
classes such as the lower levels of the Li–Packard hierarchy
that takes into account spatial displacements of patterns.

Effective Dynamical Systems and Universality

The key property of CA that is responsible for all these
undecidability results is the fact that CA are capable of
performing arbitrary computations. This is unsurprising
when one defines computability in terms of Turing ma-
chines, the devices introduced by Turing in the 1930’s,
see [47,63]. Unlike the Gödel–Herbrand approach using
general recursive functions or Church’s -calculus, Tur-
ing’s devices are naturally closely related to discrete dy-
namical systems. For example, we can express an instanta-
neous description of a Turing machine as a finite sequence

a�l a�lC1 : : : a�1 p a1a2 : : : ar

where the ai are tape symbols and p is a state of the ma-
chine, with the understanding that the head is positioned
at a1 and that all unspecified tape cells contain the blank
symbol. Needless to say, these Turing machine configu-
rations can also be construed as finite support configu-
rations of a one-dimensional CA. It follows that a one-
dimensional CA can be used to simulate an arbitrary Tur-
ing machine, hence CA are computational universal: any
computable function whatsoever can already be computed
by a CA.

Note, though, that the simulation is not entirely trivial.
First, we have to rely on input/output conventions. For ex-
ample, we may insist that objects in the input domain, typ-
ically tuples of natural numbers, are translated into a con-
figuration of the CA by a primitive recursive coding func-
tion. Second, we need to adopt some convention that de-

termines when the desired output has occurred: we fol-
low the evolution of the input configuration until some
“halting” condition applies. Again, this condition must be
primitive recursively decidable though there is consider-
able leeway as to how the end of a computation should
be signaled by the CA. For example, we could insist that
a particular cell reaches a special state, that an arbitrary
cell reaches a special state, that the configuration be a fixed
point and so forth. Lastly, if and when a halting configura-
tion is reached, we a apply a primitive recursive decoding
function to obtain the desired output.

Restricting the space to configurations that have finite
support, that are spatially periodic, and so forth, produces
an effective dynamical system: the configurations can be
coded as integers in some natural way, and the next config-
uration relation is primitive recursive in the sense that the
corresponding relation on code numbers is so primitive
recursive. A classical example for an effective dynamical
system is given by selecting the instantaneous descriptions
of a Turing machineM as configurations, and one-step re-
lation of the Turing machine as the operation of C. Thus
we obtain a systemAM whose orbits represent the com-
putations of the Turing machine. Likewise, given the local
map � of a CA we obtain a systemA� whose operation is
the induced global map.While the full configuration space
Call violates the effectiveness condition, any of the spaces
Cper, Cfin, Cap and Crec will give rise to an effective dynam-
ical system. Closure properties as well as recent work on
the universality of elementary CA 110, see Sect. “Conclu-
sion”, suggests that the class of almost periodic configura-
tions, also known as backgrounds or wallpapers, see [9,58],
is perhaps the most natural setting. Both Cfin and Cap pro-
vide a suitable setting for a CA that simulates a Turing
machine: we can interpret AM as a subspace of A� for
some suitably constructed one-dimensional CA �; the or-
bits of the subspace encode computations of the Turing
machine. It follows from the undecidability of the Halting
Problem for Turing machines that the Reachability Prob-
lem for these particular CA is undecidable.

Note, though, that orbits in AM may well be finite,
so some care must be taken in setting up the simulation.
For example, one can translate halting configurations into
fixed points. Another problem is caused by the worst-
case nature of our classification schemes: in Turing ma-
chines and their associated systemsAM it is only behavior
on specially prepared initial configurations that matters,
whereas the behavior of a CA depends on all configura-
tions. The behavior of a Turing machine on all instanta-
neous descriptions, rather than just the ones that can occur
during a legitimate computation on some actual input, was
first studied by Davis, see [12,13], and also Hooper [25].
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Call a Turing machine stable if it halts on any instanta-
neous description whatsoever. With some extra care one
can then construct a CA that lies in the first Culik–Yu
class, yet has the same computational power as the Tur-
ing machine. Davis showed that every total recursive func-
tion can already be computed by a stable Turing machine,
so membership in CY1 is not an impediment to consider-
able computational power. The argument rests on a partic-
ular decomposition of recursive functions. Alternatively,
one directly manipulate Turing machines to obtain a sim-
ilar result, see [49,53]. On the other hand, unstable Turing
machines yield a natural and coding-free definition of uni-
versality: a Turing machine is Davis-universal if the set of
all instantaneous description on which the machine halts
is˙1-complete.

The mathematical theory of infinite CA is arguably
more elegant than the actually observable finite case. As
a consequence, classifications are typically concerned with
CA operating on infinite grids, so that even a configura-
tion with finite support can carry arbitrarily much infor-
mation. If we restrict our attention to the space of con-
figurations on a finite grid a more fine-grained analysis is
required. For a finite grid of size n the configuration space
has the form Cn D [n]! ˙ and is itself finite, hence any
orbit is ultimately periodic and the Reachability Problem is
trivially decidable. However, in practice there is little dif-
ference between the finite and infinite case. First, compu-
tational complexity issues make it practically impossible
to analyze even systems of modest size. The Reachability
Problem for finite CA, while decidable, is PSPACE-com-
plete even in the one-dimensional case. Computational
hardness appears in many other places. For example, if
we try to determine whether a given configuration on a fi-
nite grid is a Garden-of-Eden the problem turns out to be
NLOG-complete in dimension one and NP -complete in
all higher dimensions, see [56].

Second, it stands to reason that the more interesting
classification problem in the finite case takes the follow-
ing parameterized form: given a local map together with
boundary conditions, determine the behavior of � on all fi-
nite grids. Under periodic boundary conditions this comes
down to the study of Cper and it seems that there is lit-
tle difference between this and the fixed boundary case.
Since all orbits on a finite grid are ultimately periodic one
needs to apply a more fine-grained classification that takes
into account transient lengths. It is undecidable whether
all configurations on all finite grids evolve to a fixed point
under a given local map, see [54]. Thus, there is no algo-
rithm to determine whether

hCn;�i ˆ 8 x 9 z (x
�
! z and z � z)

for all grid sizes n. The transient lengths are trivially
bounded by kn where k is the size of the alphabet of the
automaton. It is undecidable whether the transient lengths
grow according to some polynomial bound, evenwhen the
polynomial in question is constant.

Restrictions of the configuration space are one way to
obtain an effective dynamical system. Another is to in-
terpret the approximation-based notion of computability
on the full space in terms of topology. It is well-known
that computable maps Call ! Call are continuous in the
standard product topology. The clopen sets in this topol-
ogy are the finite unions of cylinder sets where a cylin-
der set is determined by the values of a configuration in
finitely many places. By a celebrated result of Hedlund
the global maps of a CA on the full space are charac-
terized by being continuous and shift-invariant. Perhaps
somewhat counter-intuitively, the decidable subsets of Call
are quite weak, they consist precisely of the clopen sets.
Now consider a partition of Call into finitely many clopen
sets C0;C2; : : : ;Cn�1. Thus, it is decidable which block of
the partition a given point in the space belongs to. More-
over, Boolean operations on clopen sets as well as ap-
plication of the global map and the inverse global map
are all computable. The partition affords a natural pro-
jection � : Call ! ˙n where ˙n D f0; 1; : : : ; n � 1g and
�(x) D i iff x 2 Ci . Hence the projection translates orbits
in the full space Call into a class W of !-words over ˙n ,
the symbolic orbits of the system. The Cantor space ˙Z

n
together with the shift describes all logically possible or-
bits with respect to the given partition andW describes the
symbolic orbits that actually occur in the given CA. The
shift operator corresponds to an application of the global
map of the CA. The finite factors of W provide informa-
tion about possible finite traces of an orbit when filtered
through the given partition. Whole orbits, again filtered
through the partition, can be described by !-words. To
tackle the classification of the CA in terms of W it was
suggested by Delvenne et al., see [15], to refer to the CA
as decidable if there it is decidable whether W has non-
empty intersection with a !-regular language. Alas, decid-
ability in this sense is very difficult, its complexity being
˙1

1 -complete and thus outside of the arithmetical hierar-
chy. Likewise it is suggested to call a CA universal if the
problem of deciding whether the cover ofW, the collection
of all finite factors, is ˙1-complete, in analogy to Davis-
universality.

Computational Equivalence

In recent work, Wolfram suggests a so-called Principle of
Computational Equivalence, or PCE for short, see [71],
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p. 717. PCE states that most computational processes
come in only two flavors: they are either of a very sim-
ple kind and avoid undecidability, or they represent a uni-
versal computation and are therefore no less compli-
cated than the Halting Problem. Thus, Wolfram proposes
a zero-one law: almost all computational systems, and thus
in particular all CA, are either as complicated as a univer-
sal Turing machine or are computationally simple. As evi-
dence for PCE Wolfram adduces a very large collection of
simulations of various effective dynamical systems such as
Turing machines, register machines, tag systems, rewrite
systems, combinators, and cellular automata. It is pointed
out in Chap. 3 of [71], that in all these classes of systems
there are surprisingly small examples that exhibit exceed-
ingly complicated behavior – and presumably are capable
of universal computation. Thus it is conceivable that uni-
versality is a rather common property, a property that is
indeed shared by all systems that are not obviously simple.
Of course, it is often very difficult to give a complete proof
of the computational universality of a natural system, as
opposed to carefully constructed one, so it is not entirely
clear how many of Wolfram’s examples are in fact univer-
sal. As a case in point consider the universality proof of
Conway’s Game of Life, or the argument for elementary
CA 110. If Wolfram’s PCE can be formally established in
some form it stands to reason that it will apply to all ef-
fective dynamical systems and in particular to CA. Hence,
classifications of CA would be rather straightforward: at
the top there would be the class of universal CA, directly
preceded by a class similar to the third Culik–Yu class,
plus a variety of subclasses along the lines of the lower Li–
Packard classes.

The corresponding problem in classical computability
theory was first considered in the 1930’s by Post and is
now known as Post’s Problem: is there a semi-decidable
set that fails to be decidable, yet is not as complicated
as the Halting Set? In terms of Turing degrees the prob-
lem thus is to construct a semi-decidable set A such that
; <T A <T ;

0, or to rule out the existence of any such
set, see [31,47,52] for background on Turing degrees in
general and semi-decidable degrees in particular. Post’s
Problem resisted all attempts at resolution until Fried-
berg and Muchnik independently and almost simultane-
ously discovered a way to construct a set of intermedi-
ate complexity, see [18,41]. The construction is based on
the idea of a so-called priority argument and is signifi-
cantly more complicated than any construction of semi-
decidable sets previously known [52]. Indeed, priority ar-
guments have since become the hallmark of computability
theory and have even engendered some criticism as being
so very technical that, occasionally, the proofs seem to at-

tract more attention than the theorems being established,
see [65]. Be that as it may, it is striking how much more
artificial and ad hoc intermediate sets are, as compared to
natural examples such as the theory of the reals (decid-
able) or of Diophantine equations (equivalent to the Halt-
ing Problem). No natural examples of intermediate semi-
decidable sets are known to date.

Nonetheless, given an intermediate set A one can con-
struct a one-dimensional CA whose Reachability Problem
has the same degree as A. This suggests a degree-based
classification: given any computably enumerable degree d,
define the class Cd to consist of all CA whose Reachabil-
ity Problem has degree exactly d, see [57,59]. The degree
classification is non-trivial in the sense that every class is
non-empty. Note that the first three Culik–Yu classes are
all contained in C0 whereas C00 comprises all computa-
tionally universal CA. Unsurprisingly, it is again undecid-
able whether a CA belongs to any particular class. At the
bottom end of the hierarchy it is ˙3-complete to deter-
mine membership in C0; at the top end it is ˙4-complete
to determine membership in C00 . Thus, it is easier to de-
termine decidability than universality. In general, deciding
membership inCd is˙ d

3 -complete for any semi-decidable
degree d. Similar results hold for the analogous cumulative
classes C�d D

S
e�d Ce.

Unlike the Culik–Yu classification, the structure of
the degree classification between C0 and C00 is exceed-
ingly complicated. For example, the proof of the Fried-
berg–Muchnik theorem shows that there are incompara-
ble semi-decidable degrees d1 and d2. Hence there is are
CA whose orbits are undecidable but not as complicated
as the Halting Problem. Indeed, complete knowledge of
the orbits of one of the two CA will not help in decid-
ing membership in the orbits of the other. Another sur-
prising result in the theory of computably enumerable de-
grees is Sack’s Density Theorem, see [52]: between any two
computably enumerable degrees d1 < d2 there lies a third:
d1 < d < d2. Thus, between any two CA of strictly in-
creasing complexity there is an infinite and dense hier-
archy of other CA. The computably enumerable degrees
form a semi-lattice, so it is natural to try to understand
the complexity of the structure by analyzing its first order
theory. It is well-known that the ˙1-theory of this semi-
lattice is decidable. However, the reason for this decidabil-
ity result lies in the fact that any countable partial order
can be embedded into the semi-lattice so that the relative
computational strength of cellular automata is indeed ar-
bitrarily complicated. On the other hand, the full theory of
the semi-lattice of semi-decidable degrees is known to be
highly undecidable, see [22]; its degree is ;(!) . One might
hope that restriction to reversible CA would simplify the
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situation somewhat. Somewhat surprisingly it turns out
that each class Cd already contains an irreversible CA,
see [60], so the same difficulties arise in the classification
of reversible CA as in the classification of ordinary CA.

While reachability is arguably the most basic relation
between configurations, similar difficulties also arise with
confluence. As a matter of fact, one can construct a CA
whose Reachability Problem has complexity some arbi-
trarily chosen computably enumerable degree d1 while the
Confluence Problem for the same CA has degree d2, an-
other arbitrarily chosen computably enumerable degree.
Thus, a classification according to reachability is entirely
independent of a confluence-based classification.

How do these results relate to PCE? Wolfram would
not accept any of the intermediate classes of CA as a coun-
terexample to PCE. The argument is that though interme-
diate degrees exist, their construction is critically linked to
universal computation. While the universal computation
is invisible when only the output of the system is observed,
the associated computational process includes the whole
computation and is thus universal. As a case in point, con-
sider the standard Friedberg–Muchnik construction for an
intermediate semi-decidable set A. The construction actu-
ally builds two semi-decidable sets A and B that are mu-
tually incomparable with respect to Turing reducibility.
Only A is output and B remains hidden. However, even
ignoring all the intricate technical details of the whole con-
struction, if we consider both A and B as output then the
computation is indeed universal: the disjoint union A˚ B
is˙1-complete, see [51]. It remains to be seen if similar ar-
guments can be put forth in connection with priority-free
constructions of intermediate degrees or if natural exam-
ples of intermediate sets can be found. At any rate, by con-
sidering only the reachability relation instead of a whole
segment of the orbit we also achieve information-hiding,
much as in the classical Friedberg–Muchnik construction.

Conclusion

Classification schemes of cellular automata based on the
long-term evolution of pattern are typically undecidable,
even if the property in question can be expressed in a fairly
week system. While it is easy to construct examples of
CA in particular classes it is usually very difficult to es-
tablish the position of a given CA in a particular classi-
fication. An excellent example for the difficulty of ana-
lyzing a given CA is Cook’s proof of the universality of
elementary CA number 110 whose local rule is given by
�(x; y; z) D (x ^ y ^ z)˚ y ˚ z where ˚ denotes exclu-
sive or, see [9], � Cellular Automata, Universality of. The
argument shows that cyclic tag systems, which are known

to be complete, can be simulated by elementary CA 110
provided one allows an almost periodic background. Re-
cent work by Turlough and Woods has shown that the
whole simulation can be effected with only a polynomial
slow-down, see [42,43]. This result suggests that the ap-
propriate setting for classifications is the space of almost
periodic configurations rather than finite ones.

In light of the successful analysis of elementaryCA 110
it is tempting to ask about the classification of elementary
CA 30. Figure 3 shows a segment of the orbit of a one-
point seed configuration under rule 30. It is striking how
chaotic and apparently random the image is. As a matter
of fact, rule 30 has been used for many years as the default
random number generator in the commercial computer
algebra system Mathematica, see [70]. The underlying lo-
cal map is simply �(x; y; z) D x ˚ (y _ z). Alas, there ap-
pear to be no structures in the evolution of configurations
under rule 30 such as “moving particles” that might be ex-
ploited in a universality argument along the lines of rule
110. On the other hand, it is unclear how a decision pro-
cedure for reachability could be developed. This makes it
tempting to conjecture that rule 30 inCap might be amem-
ber of one of the intermediate classesCd, though at present
there seems to be no way to either establish or refute this
conjecture.

While undecidability results rule out the possibility
of automatic classification mechanisms there is still am-
ple room for the development of sufficient criteria for
membership in certain classes, see [1,64,72]. For example,
a proof of computational universality in a CA that has not
been artificially constructed to simulate some other device
often rests on the presence of “particles” or “gliders” that
can be used to send “signals” between spatially separated
locations. Moreover, one has to be able to process these
signals much in the way of Boolean logic gates, to store
state and so forth. A good example for complicate interac-
tions between signals are the various solutions to the fir-
ing squad problem, albeit not in the context of simulating
arbitrary computations; see Fig. 4, [36]. A more recent ex-
ample is Cook’s ingenious method of using natural glid-
ers in elementary CA 110 to implement a cyclic tag system
in Cap, thereby establishing computational universality of
rule 110, see [9]. Notable here is the fact that the automa-
ton was fixed from the start and the the appropriate cod-
ing mechanisms had to be developed in a very constrained
environment. This is in stark contrast to other hardness
arguments where the CA is carefully constructed to dis-
play the desired behavior. Careful visual inspection of rule
110 orbits was a crucial component in Cook’s proof, it is
difficult to imagine that the result could have been estab-
lished in a purely combinatorial or algebraic fashion. One
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Cellular Automata, Classification of, Figure 3
A pseudo-randompattern generated by elementary CA 30

Cellular Automata, Classification of, Figure 4
Interacting signals in Mazoyer’s optimal solution to the firing
squad problem

can envision an interactive software system that helps to
tackle some algorithmically unsolvable classification prob-
lems in special cases, much as Baumslag’s Magnus project
in group theory, see [5].
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Glossary

Cellular automaton A spatially-extended dynamical sys-
tem in which spatially-discrete cells take on discrete
values, and evolve according to a spatially-localized
discrete-time update rule.

Emergent phenomenon A phenomenon that arises as
a result of a dynamical system’s intrinsic dynamical be-
havior.

Domain A spatio-temporal region of a cellular automa-
tion that conforms to a specific pattern.

Particle A spatially-localized region of a cellular automa-
ton that exists as a boundary or defect in a domain, and
persists for a significant amount of time.

Definition of the Subject

In a dynamical system, an “emergent” phenomenon is one
that arises out of the system’s own dynamical behavior, as
opposed to being introduced from outside. Emergent phe-

nomena are ubiquitous in the natural world; as just one ex-
ample, consider a shallow body of water with a sandy bot-
tom. It often happens that small ridges form in the sand.
These ridges emerge spontaneously, have a characteristic
size and shape, and move across the bottom in a charac-
teristic way – all due to the interaction of the sand and the
water.

In cellular automata (CA), the system’s state consists of
an N-dimensional array of discrete cells that take on dis-
crete values and the dynamics is given by a discrete time
update rule (see below). The “phenomena” that emerge
in CA therefore necessarily consist of spatio-temporal
patterns and/or statistical regularities in the cell values.
Therefore, the study of emergent phenomena is CA is the
study of the spatio-temporal patterns and statistical regu-
larities that arise spontaneously in cellular automata.

Introduction

The study of emergent phenomena in cellular automata
dates back at least to the beginnings of the modern era
of CA investigation inaugurated by Stephen Wolfram
and collaborators. Indeed, it was a central theme of
the landmark paper that introduced the four “Wolfram
classes” [15] shown in Fig. 1. Ever since, emergent phe-
nomena have been the driving force behind a great deal of
CA research.

To be genuinely emergent, a phenomenon must arise
out of configurations in which it is not present; and fur-
thermore, to be of any significance, it must do so with non-
vanishing likehood, and persist for a measurable amount
of time. Thus the proper study of emergent phenomena
in CA excludes from consideration a broad subcategory of
systems in which the initial condition and update rule are
chosen a priori to exhibit some particular structural fea-
ture (lattice gases are a representative example). The fact
that such systems are CA is an implementation detail; the
CA is merely a substrate or means for the simulation of
higher-order structures. Note also that the essential issue
is not whether the phenomena were intentionally designed
into the CA rule; it is whether they arise naturally with any
degree of frequency from configurations in which they are
not present.

Notation and Terminology

A cellular automaton (CA) consists of a discrete N-di-
mensional array of sites or cells and a discrete-time local
update rule � applied to all cells in parallel.

The location of a cell is given by the N integer-valued
coordinates fi; j; k; : : :g. Cells take on values in a discrete
set or alphabet, conventionally written 0; 1; : : : ; k � 1,
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Examples of Wolframs four qualitative classes. a Class 1: Spatio-temporally uniform configuration of ECA 32. b Class 2: Separated
simple or periodic structures of ECA 44. c Class 3: Chaotic space-time pattern of ECA 90. d Class 4: Complex localized structures of
Binary radius-2 CA 1771476584. In all cases the initial condition is random. In this and subsequent figures, cells with value 0 are
shown aswhite squares, cells with value 1 are black

with k the alphabet size. An assignment of values to
cells is called the configuration of those cells. The value
0 is sometimes treated as a special “quiescent” value,
particularly in rules that obey the quiescence condition
�(: : : 0 : : :) D 0.

The local update rule determines the value of a cell at
time t C 1 as a function of the values at time t of the cells
around it. Typical neighborhoods are symmetrical, cen-
tered on the cell to be updated, and are parametrized by the
radius r, which is the greatest distance from the center cell
to any cell in the neighborhood. An assignment of values
to the cells in a neighborhood is called a parent neighbor-
hood, denoted by �, and the value �(�) to which that par-
ent neighborhood is mapped under the local update rule
is its child value. The set of ordered pairs f�; �(�)g is the
rule table. The speed of light of a CA is themaximal rate at
which information about a cell’s value may travel; in gen-
eral it is given by the radius r.

In two dimensions there are two common alternatives
for the neighborhood’s shape: the von Neumann neigh-
borhood includes the center cell and its four neighbors up,
down, left, and right; and theMoore neighborhood, which

also includes the four cells diagonally adjacent to the cen-
ter cell.

The so-called elementary cellular automata (ECA) are
one-dimensional CA with k D 2, r D 1; a cell is denoted
� i, takes on values in f0; 1g and evolves over time accord-
ing to the rule � i

tC1 D �(�
i�1
t ; � i

t ; �
iC1
t ). A neighborhood

consists of three consecutive cells, so there are 8 distinct
parent neighborhoods and 256 different rule tables. It is
convenient to refer to an elementary CA by its rule num-
ber, which is determined as follows. The different parent
neighborhoods � are regarded as numbers in base k and
are arranged in decreasing numerical order, from left to
right. Immediately beneath each parent neighborhood its
child value �(�) is written. The rule number is obtained
by regarding the sequence of child symbols as another
number, again in base k. This numbering scheme may be
used for one-dimensional CA with any k and r, and may
be extended to higher-dimensional CA by the adoption
of a convention for assigning numerical values to parent
neighborhoods.

Different formulations of the local update rule are pos-
sible for CA in which symmetry or other constraints are
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present. For example, one important subclass of CA rules
are the totalistic rules, in which the child value depends
only on the sum of the values in the parent neighborhood,
not on their positions. Totalistic rulesmay also be assigned
a rule number, by writing down the different possible sums
of cell values in the parent neighborhood in order, writing
the child cell beneath each such sum, and interpreting the
sequence of child cells as a number.

In describing patterns in one-dimensional configura-
tions, it is convenient to adopt a simplified form of regular
expression notation, as follows:

� symbols 0, 1, . . . , k � 1 denote literal cell values
� the symbol ˙ denotes a “wild card” that may take on

any value in the alphabet
� the expression x� denotes any number of repetitions of

the pattern x
� [: : :] denotes grouping
� concatenation denotes spatial adjacency.

For example, 0� represents any number of consecutive 0s,
while [10]�1 is any configuration consisting of some num-
ber of repetitions of the pattern 10 followed by a 1: e. g.,
101, 10101, 1010101, and so forth.

Synchronization

Possibly the simplest type of emergent phenomenon in CA
is synchronization, which is the growth of spatial regions
in which all cells have the same value. A synchronized re-
gion remains synchronized over time (except possibly at
its borders) and it may either temporally invariant (i. e.,
the cell values to not change in time) or periodic (the cells
all cycle together through the same temporal sequence of
values). The temporal periodicity in the latter case is not
greater than the alphabet size k.

About the trivial case in which the CA rule maps all
neighborhoods to the same value (e. g., ECA 0 or ECA
255), there is little to be said. However, other cases exist
in which the synchronized regions emerge only gradually.
Characteristic examples in one dimension are shown in
Fig. 1a and c. It is evident from these examples that any
initial condition can be roughly, but usefully, described in
terms of four patterns: (a) pattern 0�, which represents the
synchronized regions; (b,c) boundary regions 0�˙� and
˙�0�; and (d) ˙� for the interior of the non-synchro-
nized regions. The behavior of the boundary regions deter-
mines whether the synchronized regions grow or shrink.
For example, in ECA 32 (Fig. 1a), the parent neighbor-
hoods in the boundary region are � D f0˙˙;˙˙0g, all
of which have child value 0; this means that the synchro-
nized region grows as fast as is possible. Also not that since

Cellular Automata, Emergent Phenomena in, Figure 2
Synchronization and phase defects: a ECA 55. b ECA 17

the only parent neighborhood that is not mapped to 0 is
� D 101. the time taken for a given configuration in ECA
32 to reach a globally synchronized state is governed by the
length of the longest region of pattern [10]�1.

In general, the growth (or shrinkage) of synchronized
regions is determined by the aggregate behavior of the
neighborhoods that occur its boundaries; if they recede
from each other, the region will grow. The boundaries
need not move at the speed of light; the left and right
boundaries need not move at the same speed; and their
motion need not be perfectly uniform over time.

Figure 2a shows ECA 55, in which synchronized re-
gions with temporal period p D 2 emerge from random
initial conditions. Note, however, that multiple distinct
synchronized regions persist indefinitely. This is an exam-
ple of a temporal phase defect, which is a boundary be-
tween spatio-temporal regions that have the same overall
pattern, but one of which is ahead of the other in time.

In general, phase defects need not be stationary: an
example is shown in Fig. 2b. Also note that for CA with
k > 2 it is possible for several different synchronized pat-
terns to emerge and coexist. For example, consider a CA
with k D 3 in which the pattern 0� is temporally invari-
ant, while 1� and 2� are mapped into each other to form
a period-2 cycle.

Domains in One Dimension

Synchronization is a special case of a more general emer-
gent phenomenon, the domain. A domain is spatial region
that conforms to some specific pattern which persists over
time. As has been seen in the case of synchronization, the
emergence of a domain is governed by the behavior of its
boundaries.

An important subclass of domain is the regular do-
main, in which the spatial pattern may be expressed in
terms of a regular language (or equivalently, a finite state
machine) [11]. As defined in [9], a regular domain has two
properties: all spatial sequences of cells in the domain are
in a given regular language; and (2) the set of all sequences
in that regular language is itself temporally invariant or pe-
riodic. Regular domains are a powerful tool for identify-
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Raw and domain-filtered space-time diagrams of ECA 54
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Raw and domain-filtered ECA 18

ing and analyzing emergent phenomena in CA of one di-
mension. Generalization to two or more dimensions has
proven challenging, though [12] made a significant step in
that direction.

In studying domains in CA, it is useful to pass the
space-time data through a domain filter to help visualize
them. A domain filter, which may be constructed for any
regular domain, maps every cell that is in the domain to
a chosen value (0, say) and maps all cells not in the do-
main to other values in a prescribed way. Multi-domain
filters may be constructed in a similar fashion, to map cells
in any of a set of distinct domains�1; �2; : : : onto distinct
values �1; �2; : : :. See [3] for details.

An illustrative example is ECA 54, shown in Fig. 3. On
the left is the unfiltered data; and on the right, the same
dat after passing through the domain filter for ECA 54’s
primary domain. The domain has temporal period p D 2
and alternates between patterns [0001] and [110] The two
patterns line up to form the interlocking white and black
“T” shapes visible in the unfiltered data.

As the filtered plot clearly shows, the cells not in the
domain have patterns of their own; this will be discussed
in the next section. For now, it is sufficient to note that, in
addition to the temporal phase defects seen in the emer-
gence of temporally periodic synchronized regions, do-
mains with nontrivial spatial structure may also show spa-
tial phase defects, in which the pattern, in effect, skips or
slips by a few cells.

The spatial regions that make up a domain may them-
selves contain disorder; such domains are called chaotic.
ECA 90 is the archetypical example of this see Fig. 1c.
From a random initial condition, ECA 90 quickly evolves
so that entire configuration is in the domain [0˙]�. ECA
18 see Fig. 4a, attempts to do the same, except that the
global synchronization is frustrated by long-lived spatial
phase defects. This is clearly visible in the filtered space-
time diagram shown in Fig. 4b. In this case the bound-
aries of the domain are inherently ambiguous: the pattern
[0˙]�[00]�[˙0]� contains exactly one spatial phase de-
fect, but it may be regarded as lying anywhere in the cen-
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Multiple coexisting chaotic domains

Cellular Automata, Emergent Phenomena in, Figure 6
Domain interfaces in the CA of Fig. 5

tral [00]� region. The filter used maps all cells in regions
that contain a spatial phase defect to 1s.

A single CA may support the emergence of multi-
ple different domain patterns. In many cases one domain

dominates and will eventually take over. But this is not
always true. An interesting case in which two domains,
both chaotic, compete on roughly equal status, is binary
radius-2 rule 2614700074, shown in Fig. 5. The two do-
mains have patterns�0 D [0˙]� and�1 D [110˙]�, re-
spectively. In the filtered plot, cells in �0 are shown in
white, cells in �1 are gray, and all other cells are black.
It appears that by about t D 200 �0 appears to be win-
ning, but in fact, by about t D 700, the entire configura-
tion was in�1, where it remained indefinitely. Depending
on the initial condition, one or the other domain was al-
ways found to eventually take over with�0 winning about
80% of the time.

The coexistence of multiple domains, each with its
own spatial structure, gives rise to a large number of possi-
ble interfaces. in general, the number of distinct interface
types is governed by the complexity of the pattern in each
domain; for 2614700074 it turns out that there are 8 dis-
tinct possibilities. Six of these show qualitatively distinct
behavior, and are plotted (in filtered form only) in Fig. 6.
Note that of the six interfaces, two show a quickly grow-
ing region in which defects continually multiply, three of
them appear to remain spatially localized, and one (at bot-
tom left) is ambiguous.

Particles in One Dimension

An immediate consequence of the emergence of domains
is the simultaneous emergence of boundaries between
them. These boundaries may be phase defects, as men-
tioned in Sect. “Synchronization”, but they may also take
the form of particles. A particle is a small region of cells
that separates two domains, persists for a relatively long
period of time and remains spatially localized. Particles
may be stationary or may move; they may themselves ex-
hibit a pattern that is temporally invariant, periodic, or
even disordered.
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Examples of solitons in the one-dimensional Filtering Rule

Solitons

An interesting type of particle emerges in the so-called
soliton CA, shown in Fig. 7. These CA rules received
their name in analogy with the solitons of fluid dynam-
ics, which are solitary traveling waves with the interesting
property that two solitons may collide, interact, and pass
safely through each other, ultimately recovering their orig-
inal form as if no collision had taken place. In soliton CA,
something similar occurs.

In the simplest case, k D 2, the quiescence condition
holds with the usual quiescent symbol 0. The solitons or
particles embedded in a large lattice of 0s are finite se-
quences of 1s and 0s that are both temporally periodic (up
to a spatial shift) and can collide and pass through each
other without being destroyed. A particle consists of a fi-
nite sequence of basic strings of length r C 1 (where r is the
CA radius). The leftmost cell of a particle is always a non-
quiescent cell. A particle is bounded on the right by a se-
quence of r C 1 quiescent cells. Under the action of the CA
rule, a particle may move to the left or right, may grow or
shrink, but ultimately will come back to its original con-
figuration after a finite time p – though possibly shifted by
some number of cells. The ratio of the shift and temporal
period p determines the particle’s velocityV defined in the
obvious way: V D (spatial shift)/(temporal period).

A particle may even temporarily split into two or more
smaller particles, so long as eventually they rejoin to form
the original configuration. And, as the name implies, two
particles with different velocities may collide and pass
through each other without being destroyed.

Particles and Defects Defined by Domains

Given the wide variety of domains that arise in CA, the re-
sultant variety of particles that they support is apparently
limitless. However, two simple examples may suffice to il-
lustrate these phenomena: ECA 18 and ECA 54, both of
which were discussed in the previous section.

Cellular Automata, Emergent Phenomena in, Figure 8
Long-term behavior of ECA 18

Cellular Automata, Emergent Phenomena in, Figure 9
Fundamental particles in ECA54

Particles in ECA 18

The spatial phase defects that occur in the domain of ECA
18 (see Fig. 4b) appear, on casual inspection, to be moving
more or less at random. It turns out that to a very good ap-
proximation, an isolated defect performs a random walk
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Pairwise interactions between fundamental particles in ECA 54

on the lattice [4,7]. When two of them meet, they mutu-
ally annihilate. This behavior is purely deterministic, of
course; it is caused entirely by the iterated action of the
update rule on the initial condition. In effect, the disor-
der in the domains is causing disorder in the motion of
their boundaries. For small systems, and eventually on all
systems, finite-size effects cause departures from statistical
randomness; but otherwise, except for a few highly atyp-
ical system-sizes, the defects’ behavior is statistically in-
distinguishable from random motion. Figure 8 shows the
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Long-term behavior of ECA 54

long-term behavior of a random initial condition on a rel-
atively large lattice.

Particles in ECA 54

ECA 54 represents an interesting case which can serve to
illustrate many the emergent phenomena in one dimen-
sional CA [1,10]. The primary domain gives rise to the
so-called “fundamental particles” ˛, ˇ and � , shown in
Fig. 9. The unfiltered space-time diagrams are shown on
the left, and their filtered counterparts on the right. The
interactions between the fundamental particles are shown
in Fig. 10. In the filtered figures, the numbers inscribed in
the black squares are the different outputs of the domain
filter; each different sequence of numbers represents a dif-
ferent way in which the domain pattern has been violated.

The long-term behavior of the particles can be seen in
Fig. 11. The ˇs decay relatively quickly, leaving only ˛s
and �s – except for rare cases where a ˇ is created by
the interaction in Fig. 10e and persists for a short while,
and rarer cases where some other pattern is momentarily
present. (Note that the scale of the figure is so compressed
that only the ˛s are visible.) It appears, and is borne out
by numerical experiments, that the number of ˛s decays
extremely slowly, and that the system settles into a state
in which the ˛s are roughly equidistant, but move back
and forth slightly in a disordered way. Unlike the case of
ECA 18, the domains are not disordered, so the particle
motion cannot be caused by disorder in the domain. In-
stead, it comes from the ˛–� interactions.

Emergent Phenomena in Two
and Higher Dimensions

As might be expected, the emergent phenomena in CA
of more than one spatial dimension are at once richer
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and less systematically studied. All of the phenomena that
are observed in one dimension have their analogues in
higher dimensions: domains and particle abound. In 2 or
more dimensions, “particle” is no longer synonymous with
“boundary”; one sees particles that are entirely surrounded
by a domain, and spatially-extended boundaries that sepa-
rate domains. Fundamentally new types of emergent phe-
nomena appear as well.

Domains, Particles, and Interfaces

Many of the coherent structures found to exist in Con-
way’s famous Game of Life can be observed to arise spon-
taneously from random initial conditions, so they properly
fall into the category of emergent phenomena. In Fig. 12
a configuration of 100x100 cells is shown at four successive
times t D 0; 50; 900; 1350. From the random initial condi-
tion, a background pattern of 0s quickly emerges, against
which there exist a rich variety of particles and disordered
structures. By t D 1350 the configuration has settled to
its final state, in which only a few particles remain, all of
which are stationary and have temporal period p D 1 or

Cellular Automata, Emergent Phenomena in, Figure 12
Conway’s Game of Life, starting from a random initial condition. a t D 0. b t D 50. c t D 900. d t D 1350

p D 2. At intermediate times, various moving structures
may be identified: see, for example, the “glider” at t D 900,
about halfway between the center and the top. In moving
about, these inevitably collide with each other or with the
stationary particles, eventually leading to the final state.

Interestingly enough, a minor variation on the rule
gives rise to the patterns shown in Fig. 13. Small regions
of horizontal or vertical stripes emerge quickly. Bound-
aries between them settle down. By t D 100, a few non-
striped areas persist, along with a few “dotted lines” that
take the place of a stripe, and in which the “dots” oscillate.
The non-striped areas eventually all disappear. The dotted
lines persist indefinitely.

As these examples suggest, 2-dimensional CA support
the emergence of synchronized regions, “domains”, and
particles in close analogy to 1-D CA. The striped regions in
Fig. 13 are an example of a two-dimensional, temporally-
invariant domain.

Fundamentally new features also appear in two and
higher dimensions as well. The most obvious of these is
the spatially-extended interface or boundary between two
adjacent domains. Unlike the one-dimensional case, in
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Variant on Conway’s Game of Life, starting from the same random initial condition as in Fig. 12. a t D 10. b t D 100

which particles and interfaces are more or less the same
thing, interfaces in two dimensions are themselves one-di-
mensional. A characteristic example is seen in the voting
rule, a 2-D binary CA with von Neumann neighborhood,
in which the child cell is determined by the majority of
the the local update rule maps a the child cell is equal to
the value held by the majority of cells in the parent neigh-
borhood, or if the vote is a tie, by a 0. Figure 14a shows
a snapshot at t D 50 of the voting rule starting from a ran-
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Two variants of voter rule. a Voter rule at t D 50. This configu-
ration is time-invariant. bVoter rulewith random tie-breaking at
t D 50. cVoter rulewith random tie- breaking at tD 250.dVoter
rule with random tie-breaking at t D 750

dom initial condition. The system has organized itself into
regions of two domain patterns. The pattern has stabilized
by this time and does not change thereafter.

A stochastic variation on the voting rule uses a ran-
dom variable to break tie votes, resulting it patterns such as
Fig. 14b, c and d. Over time, the long boundaries gradually
straighten, and small regions of one domain embedded in
the other gradually shrink.

A number of extensive tours of patterns observed in
selected 2-d CA may be found online; see, for exam-
ple, [8,14].

Spiral Waves

Another important class of patterns in 2-D CA are ex-
panding wavelike patterns, as shown in Fig. 15. These are
typical of the class of rules called cyclic CA [5], and gen-
erally evolve to configurations of spirals (as shown). These
patterns are not domains in the usual sense, because they
have a geometric center. The shape of the spiral is closely
related to the shape of the parent neighborhood. Starting
from a random initial condition, eventually some number
of centers form out from which the spiral waves emanate.

Quasiperiodicity

The final phenomenon to be mentioned here is an intrigu-
ing form of emergent phenomenon fundamentally differ-
ent from what has been discussed above: the emergence of
quasiperiodic oscillations in coarse statistical properties of
the configuration (such as, percentage of 1s). [2,6] The ev-
idence consists of return maps, in which the fraction mt
of 1s at time t, is plotted against the fraction mtC1 at time
t C 1. A synchronized system would show a return map
consisting of a single point: mt D mtC1. A periodic sys-
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Spiral waves. a Cyclic CA with k D 16, von Neumann neighbor-
hood. b Cyclic CA with k D 16, Moore neighborhood

tem would show a sequence of points for the different val-
ues of m at the different temporal phases of the sequence,
and would have mt D mtCp , where p is the period. The
observed return plots, however, showed the characteris-
tic shape of quasiperiodic behavior in nonlinear dynamical
systems, which is a sequence of points that eventually map
out a roughly continuous, closed curve in the plane. This
quasiperiodic behavior was found to occur only in CA of
dimension N > 3.

Future Directions

This short survey has only been able to hint at the vast
wealth of emergent phenomena that arise in CA. Much
work yet remains to be done, in classifying the different
structures, identifying general laws governing their behav-
ior, and determining the the causal mechanisms that lead
them to arise.

For example, there are as yet no general techniques for
determining whether a given domain is stable in a given
CA; for characterizing the set of initial conditions that will
eventually give rise to it; or for working out the parti-
cles that it supports. In CA or two or more dimensions,
a large body of descriptive results are available, but these
are more frequently anecdotal than systematic. A signifi-
cant barrier to progress has been the lack of good mathe-
matical techniques for identifying, describing, and classi-
fying domains. One promising development in this area is
an information-theoretic filtering technique that can op-
erate on configurations of any dimension [13].
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Glossary

Groups A group is a set G endowed with a binary
operation G � G 3 (g; h) 7! gh 2 G, called the mul-
tiplication, that satisfies the following properties:

(i) for all g; h and k in G, (gh)k D g(hk) (associativ-
ity); (ii) there exists an element 1G 2 G (necessarily
unique) such that, for all g in G, 1G g D g1G D g (ex-
istence of the identity element); (iii) for each g in G,
there exists an element g�1 2 G (necessarily unique)
such that gg�1 D g�1g D 1G (existence of the in-
verses).
A group G is said to beAbelian (or commutative) if the
operation is commutative, that is, for all g; h 2 G one
has gh D hg.
A group F is called free if there is a subset S � F such
that any element g of F can be uniquely written as a re-
duced word on S, i. e. in the form g D s˛11 s˛22 � � � s

˛n
n ,

where n � 0, si 2 S and ˛i 2 Z n f0g for 1 � i � n,
and such that si ¤ siC1 for 1 � i � n � 1. Such a set S
is called a free basis for F. The cardinality of S is an in-
variant of the group F and it is called the rank of F.
A group G is finitely generated if there exists a fi-
nite subset S � G such that every element g 2 G can
be expressed as a product of elements of S and their
inverses, that is, g D s�11 s�22 � � � s

�n
n , where n � 0 and

si 2 S, �i D ˙1 for 1 � i � n. The minimal n for
which such an expression exists is called the word
length of g with respect to S and it is denoted by
`(g). The group G is a (discrete) metric space with the
distance function d : G � G ! RC defined by setting
d(g; g0) D `(g�1g0) for all g; g0 2 G. The set S is called
a finite generating subset for G and one says that S is
symmetric provided that s 2 S implies s�1 2 S.
The Cayley graph of a finitely generated group G w.r.
to a symmetric finite generating subset S � G is the
(undirected) graph Cay(G; S) with vertex set G and
where two elements g; g0 2 G are joined by an edge if
and only if g�1g0 2 S.
A group G is residually finite if the intersection of all
subgroups of G of finite index is trivial.
A group G is amenable if it admits a right-invari-
ant mean, that is, a map � : P(G)! [0; 1], where
P(G) denotes the set of all subsets of G, satisfying the
following conditions: (i) �(G) D 1 (normalization);
(ii)�(A[ B) D �(A)C �(B) for all A; B 2 P(G) such
that A\ B D ¿ (finite additivity); (iii) �(Ag) D �(A)
for all g 2 G and A 2 P(G) (right-invariance).

Rings A ring is a set R equipped with two binary opera-
tions R � R 3 (a; b) 7! a C b 2 R and R � R 3
(a; b) 7! ab 2 R, called the addition and the multipli-
cation, respectively, such that the following properties
are satisfied: (i) R, with the addition operation, is an
Abelian group with identity element 0, called the zero
element, (the inverse of an element a 2 R is denoted by
�a); (ii) themultiplication is associative and admits an
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identity element 1, called the unit element; (iii) multi-
plication is distributive with respect to addition, that is,
a(bC c) D abC ac and (b C c)a D ba C ca for all
a; b and c 2 R.
A ring R is commutative if ab D ba for all a; b 2 R.
A field is a commutative ring K ¤ f0g where every
non-zero element a 2 K is invertible, that is there ex-
ists a�1 2 K such that aa�1 D 1.
In a ring R a non-trivial element a is called a zero-divi-
sor if there exists a non-zero element b 2 R such that
either ab D 0 or ba D 0.
A ring R is directly finite if whenever ab D 1 then nec-
essarily ba D 1, for all a; b 2 R. If the ring Md (R) of
d � d matrices with coefficients in R is directly finite
for all d � 1 one says that R is stably finite.
Let R be a ring and let G be a group. Denote by R[G]
the set of all formal sums

P
g2G ˛g g where ˛g 2 R and

˛g D 0 except for finitely many elements g 2 G. We
define two binary operations on R[G], namely the ad-
dition, by setting
 
X

g2G

˛g g

!

C

 
X

h2G

ˇhh

!

D
X

g2G

(˛g C ˇg)g ;

and the multiplication, by setting

 
X

g2G

˛g g

! 
X

h2G

ˇhh

!

D
X

g;h2G

˛gˇh gh

�kDgh
X

g;k2G

˛gˇg�1k k:

Then, with these two operations, R[G] becomes a ring;
it is called the group ring of G with coefficients in R.

Cellular automata Let G be a group, called the universe,
and let A be a set, called the alphabet. A configuration
is a map x : G ! A. The set AG of all configurations is
equipped with the right action of G defined by AG �

G 3 (x; g) 7! xg 2 AG , where xg(g0) D x(gg0) for all
g0 2 G.
A cellular automaton over G with coefficients in A is
a map � : AG ! AG satisfying the following condi-
tion: there exists a finite subset M � G and a map � :
AM ! A such that �(x)(g) D �(xg jM) for all x 2 AG ;

g 2 G, where xg jM denotes the restriction of xg to M.
Such a setM is called amemory set and � is called a lo-
cal defining map for � .
If A D V is a vector space over a field K, then a cellu-
lar automaton � : VG ! VG , withmemory setM � G
and local defining map � : VM ! V , is said to be lin-
ear provided that � is linear.

Two configurations x; x0 2 AG are said to be almost
equal if the set fg 2 G; x(g) ¤ x0(g)g at which they dif-
fer is finite. A cellular automaton is called pre-injective
if whenever �(x) D �(x0) for two almost equal config-
urations x; x0 2 AG one necessarily has x D x0.
A Garden of Eden configuration is a configuration
x 2 AG n �(AG ). Clearly, GOE configurations exist if
and only if � is not surjective.

Definition of the Subject

A cellular automaton is a self-mapping of the set of config-
urations of a group defined from local and invariant rules.
Cellular automata were first only considered on the n-di-
mensional lattice group Zn and for configurations taking
values in a finite alphabet set but they may be formally
defined on any group and for any alphabet. However, it
is usually assumed that the alphabet set is endowed with
some mathematical structure and that the local defining
rules are related to this structure in some way. It turns
out that general properties of cellular automata often re-
flect properties of the underlying group. As an example,
the Garden of Eden theorem asserts that if the group is
amenable and the alphabet is finite, then the surjectivity
of a cellular automaton is equivalent to its pre-injectivity
(a weak form of injectivity). There is also a linear version
of the Garden of Eden theorem for linear cellular automata
and finite-dimensional vector spaces as alphabets. It is an
amazing fact that famous conjectures of Kaplansky about
the structure of group rings can be reformulated in terms
of linear cellular automata.

Introduction

The goal of this paper is to survey results related to the
Garden of Eden theorem and the surjunctivity problem for
cellular automata.

The notion of a cellular automaton goes back to John
von Neumann [37] and Stan Ulam [34]. Although cel-
lular automata were firstly considered only in theoretical
computer science, nowadays they play a prominent role
also in physics and biology, where they serve as mod-
els for several phenomena (� Cellular Automata Mod-
eling of Physical Systems, � Chaotic Behavior of Cellu-
lar Automata), and in mathematics. In particular, cellu-
lar automata are studied in ergodic theory (� Entropy in
Ergodic Theory, � Ergodic Theory: Basic Examples and
Constructions, � Ergodic Theory of Cellular Automata,
� Ergodicity and Mixing Properties) and in the theory of
dynamical systems (� Topological Dynamics of Cellular
Automata, � Symbolic Dynamics), in functional and har-
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monic analysis (� Spectral Theory of Dynamical Systems),
and in group theory.

In the classical framework, the universeU is the lattice
Z2 of integer points in Euclidean plane and the alphabet A
is a finite set, typically AD f0; 1g. The set AU D fx : U !
Ag is the configuration space, a map x : U ! A is a con-
figuration and a point (n;m) 2 U is called a cell. One is
given a neighborhood M of the origin (0; 0) 2 U , typi-
cally, for some r > 0, M D f(n;m) 2 Z2 : jnj C jmj � rg
(von Neumann r-ball) or M D f(n;m) 2 Z2 : jnj; jmj �
rg (Moore’s r-ball) and a local map � : AM ! A. One
then “extends” � to the whole universe obtaining a map
� : AU ! AU , called a cellular automaton, by setting
�(x)(n;m) D �(x(n C s;m C t)(s;t)2M). This way, the
value �(x)(n;m) 2 A of the configuration x at the cell
(n;m) 2 U only depends on the values x(nC s;mC s) of x
at its neighboring cells (x C s; y C t) � (x; y) C (s; t) 2
(x; y)CM, in other words, � isZ2-equivariant.M is called
amemory set for � and � a local defining map.

In 1963 E.F. Moore proved that if a cellular automa-
ton � : AZ2

! AZ2 is surjective then it is also pre-injec-
tive, a weak form of injectivity. Shortly later, John Myhill
proved the converse to Moore’s theorem. The equivalence
of surjectivity and pre-injectivity of cellular automata is
referred to as the Garden of Eden theorem (briefly GOE
theorem), this biblical terminology being motivated by the
fact that it gives necessary and sufficient conditions for
the existence of configurations x that are not in the image
of � , i. e. x 2 AZ2

n �(AZ2 ), so that, thinking of (�;AZ2 ) as
a discrete dynamical system, with � being the time, they
can appear only as “initial configurations”.

It was immediately realized that the GOE theorem was
holding also in higher dimension, namely for cellular au-
tomata with universeU D Zd , the lattice of integer points
in the d-dimensional space. Then,Machì andMignosi [27]
gave the definition of a cellular automaton over a finitely
generated group and extended the GOE theorem to the
class of groups G having sub-exponential growth, that is
for which the growth function �G (n), which counts the el-
ements g 2 G at “distance” at most n from the unit ele-
ment 1G of G, has a growth weaker than the exponential,
in formulæ, limn!1

n
p
�G (n) D 1. Finally, in 1999 Cec-

cherini-Silberstein, Machì and Scarabotti [9] extended the
GOE theorem to the class of amenable groups. It is inter-
esting to note that the notion of an amenable group was
also introduced by vonNeumann [36]. This class of groups
contains all finite groups, all Abelian groups, and in fact all
solvable groups, all groups of sub-exponential growth and
it is closed under the operation of taking subgroups, quo-
tients, directed limits and extensions. In [27] two exam-
ples of cellular automata with universe the free group F2 of

rank two, the prototype of a non-amenable group, which
are surjective but not pre-injective and, conversely, pre-
injective but not surjective, thus providing an instance of
the failure of the theorems of Moore and Myhill and so of
the GOE theorem. In [9] it is shown that this examples can
be extended to the class of groups, thus necessarily non-
amenable, containing the free group F2. We do not know
whether the GOE theorem only holds for amenable groups
or there are examples of groups which are non-amenable
and have no free subgroups: by results of Olshanskii [30]
and Adyan [1] it is know that such class is non-empty. In
1999Misha Gromov [20], using a quite different terminol-
ogy, reproved the GOE for cellular automata whose uni-
verses are infinite amenable graphs � with a dense pseu-
dogroup of holonomies (in other words such � s are rich
in symmetries). In addition, he considered not only cel-
lular automata from the full configuration space A� into
itself but also between subshifts X;Y � A� . He used the
notion of entropy of a subshift (a concept hidden in the
papers [27] and [9].

In the mid of the fifties W. Gottschalk introduced
the notion of surjunctivity of maps. A map f : X ! Y
is surjunctive if it is surjective or not injective. We say
that a group G is surjunctive if all cellular automata
� : AG ! AG with finite alphabet are surjunctive. Law-
ton [18] proved that residually finite groups are surjunc-
tive. From the GOE theorem for amenable groups [9] one
immediately deduce that amenable groups are surjunc-
tive as well. Finally Gromov [20] and, independently, Ben-
jamin Weiss [38] proved that all sofic groups (the class
of sofic groups contains all residually finite groups and all
amenable groups) are surjunctive. It is not known whether
or not all groups are surjunctive.

In the literature there is a notion of a linear cellular
automaton. This means that the alphabet is not only a fi-
nite set but also bears the structure of an Abelian group
and that the local defining map � is a group homomor-
phism, that is, it preserves the group operation. These are
also called additive cellular automata (� Additive Cellular
Automata).

In [5], motivated by [20], we introduced another no-
tion of linearity for cellular automata. Given a group G
and a vector space V over a (not necessarily finite)
field K, the configuration space is VG and a cellular au-
tomaton � : VG ! VG is linear if the local defining map
� : VB ! V is K-linear. The set LCA(V ;G) of all linear
cellular automata with alphabet V and universe G natu-
rally bears a structure of a ring.

The finiteness condition for a set A in the classical
framework is now replaced by the finite dimensionality
ofV . Similarly, the notion of entropy for subshifts X � AG
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is now replaced by that of mean-dimension (a notion due
to Gromov [20]). In [5] we proved the GOE theorem for
linear cellular automata � : VG ! VG with alphabet a fi-
nite dimensional vector space and with G an amenable
group. Moreover, we proved a linear version of Gottschalk
surjunctivity theorem for residually finite groups.

In the same paper we also establish a connection with
the theory of group rings. Given a group G and a field K,
there is a one-to-one correspondence between the ele-
ments in the group ring K[G] and the cellular automata
� : KG ! KG . This correspondence preserves the ring
structures ofK[G] and LCA(K;G). This led to a reformu-
lation of a long standing problem, raised by Irving Kaplan-
sky [23], about the absence of zero-divisors in K[G] for G
a torsion-free group, in terms of the pre-injectivity of all
� 2 LCA(K;G).

In [6] we proved the linear version of the Gromov–
Weiss surjunctivity theorem for sofic groups and estab-
lished another application to the theory of group rings.We
extended the correspondence above to a ring isomorphism
between the ring Matd (K[G]) of d � d matrices with coef-
ficients in the group ring K[G] and LCA(Kd ;G). This led
to a reformulation of another famous problem, raised by
Irving Kaplansky [24] about the structure of group rings.
A group ring K[G] is stably finite if and only if, for all
d � 1, all linear cellular automata � : (Kd )G ! (Kd )G are
surjunctive. As a byproduct we obtained another proof of
the fact that group rings over sofic groups are stably finite,
a result previously established by G. Elek and A. Szabó [11]
using different methods.

The paper is organized as follows. In Sect. “Cellular
Automata” we present the general definition of a cellu-
lar automaton for any alphabet and any group. This in-
cludes a few basic examples, namely Conway’s Game of
Life, the majority action and the discrete Laplacian. In the
subsequent section we specify our attention to cellular au-
tomata with a finite alphabet. We present the notions of
Cayley graphs (for finitely generated groups), of amenable
groups, and of entropy for G-invariant subsets in the con-
figuration space. This leads to a description of the set-
ting and the statement of the Garden of Eden theorem
for amenable groups. We also give detailed expositions of
a few examples showing that the hypotheses of amenabil-
ity cannot, in general, be removed from the assumption of
this theorem. We also present the notion of surjunctivity,
of sofic groups and state the surjunctivity theorem of Gro-
mov and Weiss for sofic groups. In Sect. “Linear Cellular
Automata” we introduce the notions of linear cellular au-
tomata and of mean dimension for G-invariant subspaces
in VG. We then discuss the linear analogue of the Garden
of Eden theorem and, again, we provide explicit examples

showing that the assumptions of the theorem (amenability
of the group and finite dimensionality of the underlying
vector space) cannot, in general, be removed. Finally we
present the linear analogue of the surjunctivity theorem of
Gromov and Weiss for linear cellular automata over sofic
groups. In Sect. “Group Rings andKaplansky Conjectures”
we give the definition of a group ring and present a repre-
sentation of linear cellular automata as matrices with co-
efficients in the group ring. This leads to the reformula-
tion of the two long standing problems raised by Kaplan-
sky about the structure of group rings.

Finally, in Sect. “Future Directions” we present a list of
open problems with a description of more recent results
related to the Garden of Eden theorem and to the surjunc-
tivity problem.

Cellular Automata

The Configuration Space

Let G be a group, called the universe, and let A be a set,
called the alphabet or the set of states. A configuration is
a map x : G ! A. The set AG of all configurations is
equipped with the right action of G defined by AG � G 3
(x; g) 7! xg 2 AG , where xg(g0) D x(gg0) for all g0 2 G.

Cellular Automata

A cellular automaton overGwith coefficients inA is a map
� : AG ! AG satisfying the following condition: there ex-
ists a finite subset M � G and a map � : AM ! A such
that

�(x)(g) D �(xg jM) (1)

for all x 2 AG ; g 2 G, where xg jM denotes the restriction
of xg to M. Such a set M is called a memory set and � is
called a local defining map for � .

It follows directly from the definition that every cellu-
lar automaton � : AG ! AG is G-equivariant, i. e., it satis-
fies

�(xg) D �(x)g (2)

for all g 2 G and x 2 AG .
Note that if M is a memory set for � , then any finite

set M0 � G containing M is also a memory set for � . The
local defining map associated with such an M0 is the map
�0 : AM0 ! A given by�0 D � ı � , where � : AM0 ! AM

is the restriction map. However, there exists a unique
memory set M0 of minimal cardinality. This memory set
M0 is called theminimalmemory set for � .

We denote by CA(G;A) the set of all cellular automata
over G with alphabet A.
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Examples

Example 1 (Conway’s Game of Life [3]) The most famous
example of a cellular automaton is theGame of Life of John
Horton Conway. The set of states is AD f0; 1g. State 0
corresponds to absence of life while state 1 indicates life.
Therefore passing from 0 to 1 can be interpreted as birth,
while passing from 1 to 0 corresponds to death.

The universe for Life is the group G D Z2, that is, the
free Abelian group of rank 2. The minimal memory set
is M D f�1; 0; 1g2 � Z2. The set M is the Moore neigh-
borhood of the origin in Z2. It consists of the origin (0; 0)
and its eight neighbors˙(1; 0);˙(0; 1);˙(1; 1);˙(�1; 1).
The corresponding local defining map � : AM ! A given
by

�(y) D

8
ˆ̂
ˆ̂<

ˆ̂̂
:̂

1 if

8
<̂

:̂

P
s2S y(s) D 3

or
P

s2S y(s) D 4 and y((0; 0)) D 1 ;
0 otherwise :

Example 2 (The majority action [21]) Let G be a group,
M a finite subset of G, and AD f0; 1g. The automaton
� : AG ! AG with memory set M and local defining map
� : AM ! A given by

�(y) D

8
<̂

:̂

1 if
P

m2M y(m) > jMj2 ;

0 if
P

m2M y(m) < jMj2 ;

y(1G ) if
P

m2M y(m) D jMj2 ;

for all y 2 AM , is themajority action automaton associated
with G andM.

Example 3 LetG be a group and let A be any alphabet. Let
f : A! A be a map and consider the map � f : AG ! AG

defined by setting � f (x)(g) D f (x(g)) for all x 2 AG and
g 2 G. Then � f is a cellular automaton with memory set
M D f1Gg and the local defining map � : AM ! A given
by y 7! f (y(1G)) for all y 2 AM .When f D �A is the iden-
tity map on A then �A D: I is the identity map on AG. On
the other hand, given c 2 A, if f D fc is the constant map
given by fc(a) D c for all a 2 A, then � fc is the constant
cellular automaton defined by � fc (x) D xc for all x 2 AG ,
where xc(g) D c for all g 2 G.

Example 4 (The discrete Laplacian) Let G be a group,
S a finite subset of G not containing 1G , and AD R, the
field of real numbers. The (linear) map�S : RG ! RG de-
fined by

�S (x)(g) D x(g) �
1
jSj

X

s2S

x(gs)

is a cellular automaton over G with memory set M D

S [ f1Gg and local defining map � : RM ! R given by
�(y) D y(1G) � 1

jSj
P

s2S y(s), for all y 2 RM . It is called
the Laplacian or Laplace operator on G relative to S.

Let �1; �2 2 CA(G;A) be two cellular automata (with
memory sets M1 and M2, respectively). It is easy to see
that their composition �1 ı �2, defined by [�1 ı �2](x) D
�1(�2(x)) for all x 2 AG , is a cellular automaton (admit-
ting M D M1M2 as a memory set). Since the identity
map I : AG ! AG is a cellular automaton, it follows that
CA(G;A) is a monoid for the composition operation.

Cellular Automatawith a Finite Alphabet

The Configuration Space as a Metric Space

LetG be a countable group, e. g., a finitely generated group
(see Subsect. “Cayley Graphs”) and let A be a finite alpha-
bet with at least two elements.

The set AG of all configurations can be equipped with
a metric space structure as follows. Let ; D E1 � E2 �
� � � � En � EnC1 � � � � be an increasing sequence of
finite subsets of G such that [n�1En D G. Then, given
any two configurations x; x0 2 AG , we set:

d(x; x0) D 1/ sup
˚
n 2 N : xjEn D x0jEn

�
(3)

(we use the convention that 1/1D 0). In this way, AG be-
comes a compact totally disconnected space homeomor-
phic to the middle third Cantor set.

We then have Hedlund’s topological characterization
of cellular automata.

Theorem 1 (Hedlund) Suppose that A is a finite set.
A map � : AG ! AG is a cellular automaton if and only
if it is continuous and G-equivariant.

Corollary 1 Suppose that A is a finite set. Let � : AG !

AG be a bijective cellular automaton. Then the inverse map
��1 : AG ! AG is also a cellular automaton.

The Garden of Eden Theorem of Moore andMyhill

Let G be any group and A be any alphabet. Let F � G
be a finite subset. A pattern with support F is a map
p : AF ! A.

Let now � : AG ! AG be a cellular automaton. One
says that � is surjective if �(AG ) D AG . One often thinks
of � as describing time evolution: if x 2 AG is the con-
figuration of the universe at time t, then �(x) is the con-
figuration of the universe at time t C 1. An initial con-
figuration is a configuration at time t D 0. A configura-
tion x which is not in the image of � , namely such that
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x 2 AG n �(AG ), is called a Garden of Eden (briefly GOE)
configuration. This biblical terminology is motivated by
the fact that GOE configurations may only appear as ini-
tial configurations. Analogously, a pattern p with support
F � G is called aGOE pattern if p ¤ �(x)jF for all x 2 AG .
Using topological methods it is easy to see that, when the
alphabet is finite, the existence of GOE patterns for � is
equivalent to the existence of GOE configurations for � ,
i. e., to the non-surjectivity of � .

One says that � is injective if, for x; x0 2 AG , one has
x D x0 whenever �(x) D �(x0).

Two configurations x; x0 2 AG are almost equal, and
we write x �a:e: x0, if they coincide outside a finite subset
ofG, namely jfg 2 G : x(g) ¤ x0(g)gj <1. Finally, using
terminology introduced by Gromov, one says that � is pre-
injective if, for x; x0 2 AG s.t. x �a:e: x0, one has x D x0

whenever �(x) D �(x0).
Two patterns p; p0 with the same support F are mutu-

ally erasable if they are distinct and whenever x; x0 2 AG

are two configurations which extend in the sameway p and
p0 outside of F (i. e. xjF D p, x0jF D p0 and xjGnF D
x0jGnF ), then �(x) D �(x0). The non-existence of mutu-
ally erasable patterns is equivalent to the pre-injectivity of
the cellular automaton. Finally note that injectivity implies
pre-injectivity (but the converse is false, in general).

The following is the celebrated Garden of Eden theo-
rem of Moore and Myhill.

Theorem 2 (Moore and Myhill) Let � 2 CA(Z2;A) be
a cellular automaton with coefficients in a finite set A.
Then � is surjective if and only if it is pre-injective.

The necessary condition is due toMoore, the converse im-
plication to Myhill.

As Conway’s Game of Life is concerned, we have that
this cellular automaton is clearly not pre-injective (the
constant dead configuration and the configuration with
only one live cell have the same image) and by the pre-
vious theorem it is not surjective either. We mention that
the non-surjectivity of the Game of Life is not trivial: the
smallest GOE pattern known up to now has as a support
a rectangle 13 � 12 with 81 live cells.

Cayley Graphs

A group G is said to be finitely generated if there exists a fi-
nite subset S � G such that every element g 2 G can be
expressed as a product of elements of S and their inverses,
that is, g D s�11 s�22 � � � s

�n
n , where n � 0 and si 2 S, �i D ˙1

for 1 � i � n. The minimal n for which such an expres-
sion exists is called the word length of g with respect to S
and it is denoted by `(g). The groupG is a (discrete) metric

Cellular Automata and Groups, Figure 1
The ball B(2;1G) in Z and in Z2, respectively

Cellular Automata and Groups, Figure 2
The ball B(2;1G) in F2

space with the distance function d : G � G ! RC defined
by setting d(g; g0) D `(g�1g0) for all g; g0 2 G. The set S is
called a finite generating subset for G and one says that S is
symmetric provided that s 2 S implies s�1 2 S.

Suppose that G is finitely generated and let S be a sym-
metric finite generating subset of G. The Cayley graph of G
w.r.t. S is the (undirected) graph Cay(G; S) with vertex
set G and two elements g; g0 2 G are joined by an edge
if and only if g�1g0 2 S. The group G becomes a (discrete)
metric space by introducing the distance d : G � G ! RC
defined by d(g; g0) D `(g�1g0) for all g; g0 2 G. Note that
the distance d coincides with the graph distance on the
Cayley graph Cay(G; S). For g 2 G and n 2 N we denote
by B(n; g) D fg0 2 G : d(g; g0) � ng the ball of radius n
with center g.

Amenable Groups

The notion of an amenable group is also due to J. von
Neumann [36]. Let G be a group and denote by P(G)
the set of all subsets of G. The group G is said to be
amenable if there exists a right-invariant mean, that is,
a map � : P(G)! [0; 1] satisfying the following condi-
tions:

1. �(G) D 1 (normalization);
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2. �(A[ B) D �(A)C �(B) for all A; B 2 P(G) such
that A\ B D ¿ (finite additivity);

3. �(Ag) D �(A) for all g 2 G and A 2 P(G) (right-in-
variance).

We mention that if G is amenable, namely such a right-
invariant mean exists, then also left-invariant and in fact
even bi-invariant means do exist. The class of amenable
groups includes, in particular, all finite groups, all Abelian
groups (and, more generally, all solvable groups), and all
finitely generated groups of subexponential growth. It is
closed under the operations of taking subgroups, taking
factors, taking extensions and taking direct limits.

It was observed by von Neumann himself [36] that the
free group F2 based on two generators is non-amenable.
Therefore, all groups containing a subgroup isomorphic
to the free group F2 are non-amenable as well.

However, there are examples of non-amenable groups
which do not contain subgroups isomorphic to F2.
The first examples are due to Olshanski [30]; later
Adyan [1] showed that also the free Burnside groups
B(m; n) D hs1; s2; : : : ; sm : wni of rankm � 2 and odd ex-
ponent n � 665 are non-amenable.

It follows from a result of Følner [16] that a countable
group G is amenable if and only if it admits a Følner se-
quence, i. e., a sequence (Fn)n2N of non-empty finite sub-
sets of G such that

lim
n!1

jFn4gFnj
jFnj

D 0 for all g 2 G; (4)

where Fn4gFn D (Fn [ gFn) n (Fn \ gFn) is the sym-
metric difference of Fn and gFn .

For instance, for G D Z one can take as Følner sets
the intervals [�n; n] where [�n; n] D f�n;�n C 1; : : : ;
�1; 0; 1; : : : ; ng, n 2 N . Analogously, for G D Z2 one can
take as Følner sets the squares Fn D [�n; n] � [�n; n].

Suppose that G is countable and amenable, and fix
a Følner sequence (Fn)n2N . Let A be a finite alphabet.
A subset X � AG is said to beG-invariant if x 2 X implies
that xg 2 X for all g 2 G. The entropy ent(X) of a G-in-
variant subset X � AG is defined by

ent(X) D lim
n!1

log jXFn j

jFnj
(5)

where, for any subset F � G

XF D fxjF : x 2 Xg (6)

denotes the set of restrictions to F of all configurations
in X.

By using a result of Ornstein and Weiss [31], it can be
shown that the above limit in (5) exists and does not de-
pend on the particular Følner sequence (Fn)n2N .

One clearly has ent(AG ) D log jAj and ent(X) �
ent(Y) if X � Y are G-invariant subsets of AG.

Theorem 3 (Ceccherini-Silberstein, Machì and Scara-
botti [9]) Let G be a countable amenable group and let A
be a finite set. Let � : AG ! AG be a cellular automaton.
The following are equivalent:

(a) � is surjective (i. e. there are no GOE configurations);
(b) � is pre-injective;
(c) ent(�(AG )) D log jAj.

Example 5 Let G be a group. LetM be a finite subset of G
with at least three elements. Let AD f0; 1g and consider
the majority action cellular automaton � : AG ! AG asso-
ciated with G and M (see Subsect. “Cellular Automata”).
Clearly � is not pre-injective. Indeed the configurations
x1; x2 2 AG defined by x1(g) D 0 for all g 2 G and

x2(g) D

(
1 if g D 1G
0 otherwise

are almost equal and �(x2) D x1 D �(x1). By applying
Theorem 3 we deduce that � is not surjective when G is
a countable amenable group.

In the example below we show that for the non-amenable
group F2, the free group of rank two, the implication (a)
) (b) fails to hold. In Example 9 in Sect. “Linear Cellu-
lar Automata” we show that also the converse implication
fails to hold, in general, for cellular automata over F2.

Example 6 Let G D F2 be the free group on two gen-
erators a and b. Take A D f0; 1g and M D fa; a�1; b;
b�1g D S. Consider the majority action cellular automa-
ton � : AG ! AG associated with G and M. As observed
above, � is not pre-injective. However, � is surjective. To
see this, let z 2 AG . Let us show that there exists x 2 AG

such that �(x) D z. We first set x(1G) D 0. For g 2 G such
that g 6D 1G , denote by g0 2 G the unique element such
that `(g0) D `(g) � 1 and g D g0s0 for some s0 2 S. Then
set x(g) D z(g0). We clearly have �(x) D z. This shows
that � is surjective (see Fig. 3).

Recently, Laurent Bartholdi [2] proved that if G is a non-
amenable group, then there exists a cellular automaton
� : AG ! AG with finite alphabet which is surjective but
not pre-injective. In other words, the implication “(a) � is
surjective) (b) � is pre-injective” in Theorem 3 (which
corresponds to the generalization of Moore’s theorem)
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Cellular Automata and Groups, Figure 3
The construction of x 2 AG such that �(x) D z

holds true only if the group G is amenable. In particular,
the Garden of Eden Theorem (Theorem 3) holds true if
and only if the universe G is amenable. This clearly gives
a new characterization of amenability for groups in terms
of cellular automata.

However, up to now, it is not known whether the valid-
ity of the implication (b)) (a) in Theorem 3 (which cor-
responds to the generalization of Myhill’s theorem) holds
true only if the group G is amenable.

Surjunctivity

A group G is said to be surjunctive (a terminology due to
Gottschalk [17]) if given any finite alphabet A, every injec-
tive cellular automaton � : AG ! AG is surjective. In other
words, uniqueness implies existence for solutions of the
equation y D �(x). This property is reminiscent of several
other classes of mathematical objects for which injective
endomorphisms are always surjective (finite sets, finite-di-
mensional vector spaces, Artinian modules, complex alge-
braic varieties, co-Hopfian groups, etc.).

Recall that a group G is said to be residually finite if
for every element g 6D 1G in G there exist a finite group F
and a homomorphism h : G ! F such that h(g) 6D 1F .
This amounts to saying that the intersection of all sub-
groups of finite index of G is reduced to the identity ele-
ment. From a dynamical viewpoint we have the following
characterization of residual finiteness. Given a finite set A
a configuration x 2 AG is said to be periodic if its G-or-
bit fxg : g 2 Gg � AG is finite. Then G is residually finite
if and only if the set of periodic configurations is dense
in AG.

The class of residually finite groups is quite large. For
instance, every finitely generated subgroup of GLn(C), the
group of n by n invertible matrices over the complex num-
bers, is residually finite. However, there are finitely gener-
ated amenable groups which are not residually finite.

Lawton [17,18] proved that residually finite groups are
surjunctive.

From Theorem 3 one immediately deduces the follow-
ing

Corollary 2 Amenable groups are surjunctive.

Note that the implication “surjectivity ) injectivity”
fails to hold, in general, for cellular automata with fi-
nite alphabet over amenable groups, even for G D Z.
Take, for instance AD f0; 1g and � : AZ ! AZ defined
by �(x)(n) D x(nC 1) � x(n) for all x 2 AZ and n 2 Z.
This cellular automaton is surjective but not injective. See
also Example 8 below.

Sofic Groups

Let S be a set. An S-labeled graph is a triple (Q; E; ),
where Q is a set, E is a symmetric subset of Q � Q and 
is a map from E to S. The set Q is the set of vertices, E
is the set of edges and  : E ! S is the labeling map of
the S-labeled graph (Q; E; ). We shall view every sub-
graph of a labeled graph as a labeled graph in the obvious
way. Also, for r 2 R and q 2 Q, we denote by B(q; r) D
fq0 2 Q : d(q; q0) � rg the ball of radius r centered at q
(here d denotes the graph distance in Q).

Let (Q; E; ) and (Q0; E0; 0) be S-labeled graphs. Two
vertices q 2 Q and q0 2 Q0 are said to be r-equivalent,
and we write q �r q0, if the balls B(q; r) and B(q0; r)
are isomorphic as labeled graphs (i. e. there is a bijection
' : B(q; r) ! B(q0; r) sending q to q0 such that (q1; q2) 2
E \ (B(q; r) � B(q; r)) if and only if ('(q1); '(q2)) 2
E0 \ (B(q0; r)� B(q0; r)) and (q1; q2) D 0('(q1); '(q2)).

Let G be a finitely generated group and let S be a fi-
nite symmetric (S D S�1) generating subset of G. We de-
note by Cay(G; S) the Cayley graph of G with respect
to S. Its vertex set is G and (g; g0) 2 G � G is an edge if
s :D g�1g0 2 S, if this is the case, its label is (g; g0) D s.

The groupG is said to be sofic if for all " > 0 and r 2 N
there exists a finite S-labeled graph (Q; E; ) such that the
set Q(r) � Q defined by Q(r) D fq 2 Q : q �r 1Gg (here
1G is considered as a vertex in Cay(G; S)) satisfies

jQ(r)j � (1 � ")jQj: (7)

It can be shown (see [38]) that this definition does not
depend on the choice of S and that it can be extended as
follows. A (not necessarily finitely generated) group G is
said to be sofic if all of its finitely generated subgroups are
sofic.

Sofic groups were introduced by M. Gromov in [20].
The sofic terminology is due to B. Weiss [38]. The class
of sofic groups contains, in particular, all residually finite
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groups, all amenable groups, and it is closed under direct
products, free products, taking subgroups and extensions
by amenable groups, and taking direct limits [12].

The following generalizes Lawton’s result mentioned
in Subsect. “Surjunctivity” as well as Corollary 2.

Theorem 4 (Gromov andWeiss [20,38]) Sofic groups are
surjunctive.

We end this section by mentioning that there is no known
example of a non-surjunctive group nor even of a non-
sofic group up to now.

Linear Cellular Automata

Let G be a group and V be a vector space over a field K.
The configuration space VG D fx : G ! Vg is a vector
space over K. Simply set (x C y)(g) D x(g)C y(g) and
(x)(g) D x(g) for all x; y 2 VG , g 2 G and  2 K.
The zero vector is the zero configuration 0(g) D 0 for
all g 2 G. The support of a configuration x 2 AG is the
subset supp(x) D fg 2 G : x(g) ¤ 0g � G. We denote by
V[G] D fx 2 VG : x �a:e: 0g the subspace of all configu-
rations with finite support.

A linear cellular automaton is a cellular automaton
� : VG ! VG which is a linear map, that is, �(x C y) D
�(x) C �(y) and �(x) D �(x) for all x; y 2 VG and
 2 K. This is equivalent to the linearity of the local defin-
ingmap� : VM ! V . We denote by LCA(G;V ) the space
of all linear cellular automata overGwith coefficients inV .

Example 7 The Laplacian (cf. Example 4) is a linear cellu-
lar automaton.

Remark If the field is finite, so that necessarily jKj D pn

with p a prime number, and V has finite dimension over
K, then the vector space V is also finite.

It is easy to see that if � 2 LCA(G;V ) and x 2 VG has
finite support, then �(x) also has finite support (in fact
supp(�(x)) � supp(x)M). In other words �(V [G]) �
V[G]. We denote by �0 D � jV [G] : V [G] ! V[G] the
restriction of � to V[G]. We then have the following char-
acterization of pre-injectivity for linear cellular automata.

Proposition 1 The linear cellular automaton � 2

LCA(G;V ) is pre-injective if and only if �0 : V[G]! V[G]
is injective.

Note that if G is countable, VG admits also a structure
of a metric space (the distance function (3) is defined in
the same way). Then V[G] is dense in VG with respect to
the topology induced by the distance (3). However, VG is
no longer a compact space so that many topological ar-
guments based on compactness need to be obtained with

an alternative method. As an example, the following linear
analogue of Corollary 2 needs an appropriate proof.

Theorem 5 ([6]) Let G be a countable group and let V
be a finite-dimensional vector space over a fieldK. Suppose
that � : VG ! VG is a linear cellular automaton.

(i) �(VG ) is a closed subspace of VG.
(ii) If � is bijective then the inverse map ��1 : VG ! VG is

also a linear cellular automaton.

Mean Dimension and the GOE Theorem

Let G be a countable amenable group and V a finite-di-
mensional vector space over a field K. Fix a Følner se-
quence (Fn)n2N for G. Themean dimension of a G-invari-
ant vector subspace X � VG , which plays the role of en-
tropy used in the finite alphabet case, is the non-negative
number

mdim(X) D lim
n!1

dim(XFn )
jFnj

; (8)

where XFn is defined as in (6).
The result of Ornstein and Weiss [31] already men-

tioned above implies that the limit (8) exists and does not
depend on the particular choice of the Følner sequence
(Fn)n2N for G.

Note that it immediately follows from this defini-
tion that mdim(VG ) D dim(V) and that mdim(X) �
mdim(Y) � dim(V ) for all G-invariant vector subspaces
X � Y of VG.

The linear analogue of the Garden of Eden theorem for
linear cellular automata states as follows.

Theorem 6 (Ceccherini-Silberstein and Coornaert, [5])
Let V be a finite-dimensional vector space over a fieldK and
let G be a countable amenable group. Let � : VG ! VG be
a linear cellular automaton. Then the following are equiva-
lent.

(a) � is surjective (i. e. there are no GOE configurations);
(b) � is pre-injective;
(c) mdim(�(VG )) D dim(V).

As an application we present the following example.

Example 8 Let G be a finitely generated group. Let S � G
be a finite generating subset (not necessarily symmetric)
such that 1G … S, and denote by �S : RG ! RG the cor-
responding Laplacian (cf. Example 4). It follows from the
Maximum Principle, see also Proposition 6.4 in [5], that if
the group G is infinite, then the linear cellular automaton
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�S is pre-injective (though not injective since the constant
configurations are in the kernel of �S).

Thus, as a consequence of Theorem 6, we deduce that
�S is also surjective if G is an infinite amenable group.

Actually, one has that �S is always surjective when-
ever G is infinite. Indeed, denoting by PS D I ��S the
Markov operator associatedwith S, one has that ifG is non-
amenable then G is transient i. e. the series

P1
nD0(PS )

n

converges [39] (in fact, by a profound result of N.
Varopoulos (1986, see, e. g. [35]), G is transient if and only
if it has no finite index subgroup isomorphic to either Z
or Z2). We denote by GS the sum of this series. It is called
the Green operator of G.

But then, for f 2 R[G] the function g D GS f 2 RG

clearly satisfies �S g D (I � PS )g D f . This shows that
�S (RG ) � R[G] and, by virtue of Theorem 5 (i) and the
density of R[G] in RG , one has indeed �S (RG ) D RG ,
that is, �S is surjective. We thank Vadim Kaimanovich
and Nic Varopoulos for clarifying this point to us.

In the example below we show that the implication (b))
(a) in Theorem 6 fails to hold, in general, for linear cellular
automata over the free group of rank two. Note that if the
field is finite, then this example also provides an instance
of the failure of the implication (b)) (a) in Theorem 3
when G D F2.

Example 9 Let G D F2 be the free group on two genera-
tors a and b. LetK be a field and set V D K2. Consider the
endomorphisms p and q of V defined by p(˛; ˇ) D (˛; 0)
and q(˛; ˇ) D (ˇ; 0) for all (˛; ˇ) 2 V . Let � : VG ! VG

be the linear cellular automaton, with memory set M D
fa; b; a�1; b�1g, given by

�(x)(g) D p(x(ga))Cq(x(gb))Cp(x(ga�1)Cq(x(gb�1))

for all x 2 VG , g 2 G. The image of � is contained in
(K � f0g)G . Therefore � is not surjective. Let us show
that � is pre-injective. Assume that there is an element
x0 2 VG with non-empty finite support ˝ � G such that
�(x0) D 0. Consider a vertex g0 2 ˝ at maximal dis-
tance n0 from the identity in the Cayley graph of G. The
vertex g0 has at least three adjacent vertices at distance
n0 C 1 from the identity. It follows from the definition of �
that �(x0) does not vanish at (at least) one of these three
vertices. This gives a contradiction. Thus � is pre-injective.

The following, which is a linear version of Example 6, pro-
vides an instance of the failure of the implication (a)) (b)
in Theorem 6 when G D F2.

Example 10 Let G D F2 be the free group on two gen-
erators a and b. Let K be a field and set V D K2. Con-

sider the endomorphisms p0 and q0 of V defined by
p0(˛; ˇ) D (˛; 0) and q0(˛; ˇ) D (0; ˛) for all (˛; ˇ) 2 V .

Let � : VG ! VG be the K-linear cellular automaton,
with memory set S D fa; b; a�1; b�1g, given by

�(x)(g) D p0(x(ga))C p0(x(ga�1))

C q0(x(gb))C q0(x(gb�1))

for all x 2 VG and g 2 G.
Consider the configuration x0 2 VG defined by

x0(g) D

(
(0; 1) if g D 1G
(0; 0) otherwise :

Then, x0 is almost equal to 0 and �(x0) D 0. This shows
that � is not pre-injective (cf. Proposition 1).

However, � is surjective. To see this, let z D (z1; z2) 2
KG � KG D VG . Let us show that there exists x 2 VG

such that �(x) D z. We define x(g) by induction on the
graph distance, which we denote by jgj, of g 2 G from 1G
in the Cayley graph of G. We first set x(1G ) D (0; 0).

Then, for s 2 S we set

x(s) D

8
<̂

:̂

(z1(1G ); 0) if s D a
(z2(1G ); 0) if s D b
(0; 0) otherwise :

Suppose that x(g) has been defined for all g 2 G with
jgj � n, for some n � 1. For g 2 G with jgj D n, let g0 2
G and s0 2 S be the unique elements such that jg0j D n�1
and g D g0s0. Then, for s 2 S with s0s ¤ 1G , we set

x(gs) D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

(z1(g) � x1(g0); 0) if s0 2 fa; a�1g and s D s0

(z2(g); 0) if s0 2 fa; a�1g and s D b
(z1(g); 0) if s0 2 fb; b�1g and s D a
(z2(g) � x2(g0); 0) if s0 2 fb; b�1g and s D s0

(0; 0) otherwise :

Then one easily checks that �(x) D z. This shows
that � is surjective.

We now show that, for any group, both implications of the
equivalence (a), (b) in Theorem 6 fail to hold, in general,
when the vector space V is infinite-dimensional.

Example 11 Let V be an infinite-dimensional vector
space over a field K and let G be any group. Let us
choose a basis B for V . Every map ˛ : B! B uniquely
extends to a linear map ę: V ! V . The product map
� D ęG : VG ! VG is a linear cellular automaton with
memory set M D f1Gg and local defining map ę. Since B
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is infinite, we can find a map ˛ : B! B which is surjec-
tive but not injective (resp. injective but not surjective).
Clearly, the associated linear cellular automaton � is sur-
jective but not pre-injective (resp. injective but not surjec-
tive).

We say that a groupG is L-surjunctive if for any fieldK and
for any finite dimensional vector spaceV overK, every in-
jective linear cellular automaton � : VG ! VG is surjec-
tive.

The following is the linear analogue of the Gromov–
Weiss theorem (Theorem 4).

Theorem 7 ([6]) Sofic groups are L-surjunctive.

Group Rings and Kaplansky Conjectures

Irving Kaplansky [23,24] posed some famous problems in
the theory of group rings. Here we establish some connec-
tions between these problems and the theory of linear cel-
lular automata.

Group Rings

Let G be a group and K a field. A natural basis for K[G],
the subspace of finitely supported configurations in KG ,
is given by fıg : g 2 Gg, where ıg : G ! K is defined by
ıg(g) D 1 and ıg(g0) D 0 if g0 6D g. Also, K[G] can be en-
dowed with a ring structure by defining the convolution
product xy of two elements x; y 2 K[G] by setting, for all
g 2 G,

[xy](g) D
X

h2G

x(h)y(h�1g): (9)

One has ıgıh D ıgh and ıhx D xh�1 for all g; h 2 G
and x 2 K[G], in particular, ı1G is the unit element in
K[G]. The ring K[G] is called the group ring of G with
coefficients in K. Note that the product map (x; y)! xy
isK-linear so thatK[G] is in fact aK-algebra.

Note also that (9) makes sense for x; y 2 KG and at
least one is finitely supported. Moreover, the group G, via
themapG 3 g 7! ıg 2 K[G], can be identified with a sub-
group of the group of invertible elements in K[G]. This
way, every element x of K[G] can be uniquely expressed
as x D

P
g2G x(g)g.

The Matrix Representation
of Linear Cellular Automata

Let d � 1 be an integer. Denote by Matd (K[G]) theK-al-
gebra of d � d matrices with coefficients in K[G]. For
x D (x1; x2; : : : ; xd ) 2 (KG )d and ˛ D (˛i j)di; jD1 2

Matd (K[G]), we define x˛ D (y1; y2; : : : ; yd ) 2 (KG )d

by setting y j D
Pd

iD1 xi˛i j for all j D 1; 2; : : : ; d, where
xi˛i j is the convolution product of xi 2 KG and ˛i j 2
K[G] defined using (1).

The map Matd (K[G]) 3 ˛ 7! ˛ 2 Matd (K[G]),
where ˛ i j(g) D ˛ ji(g�1) for all g 2 G and i; j D 1; 2; : : : ;
d is an anti-involution of the algebra Matd (K[G]), since
˛ D ˛ and ˛ˇ D ˇ˛, for all ˛; ˇ 2 Matd (K[G]).

Let ˛ 2 Matd (K[G]) and define the map �˛ : (Kd )G

! (Kd )G by setting

�˛(x) D x˛

for all x D (x1; x2; : : : ; xd ) 2 (KG )d D (Kd )G .

Theorem 8 ([6]) For ˛ 2 Matd (K[G]) the map
�˛ : (Kd )G ! (Kd )G is a linear cellular automaton. More-
over, the mapMatd (K[G]) 3 ˛ ! �˛ 2 LCA(G;Kd ) is an
isomorphism of K-algebras.

Remark When G D Z andK is a finite field, linear cellu-
lar automata �˛ 2 LCA(Z;Kd ) with ˛ 2 Matd (K[Z]), are
called convolutional encoders in Sect. 1.6 of [26].

Zero-Divisors in Group Rings

Let R be a ring. A non zero element a 2 R is said to be
a left (resp. right) zero-divisor provided there exists a non
zero element b 2 R such that ab D 0 (resp. ba D 0).

The following result relates the notion of a zero-divi-
sor in a group ringK[G] with the pre-injectivity of one-di-
mensional linear cellular automata over the group G. We
use the same notation as in Theorem 8 (here d D 1).

Lemma 1 ([5]) Let G be a group and let K be a field. An
element ˛ 2 K[G] is a left zero-divisor if and only if the lin-
ear cellular automaton �˛ : KG ! KG is not pre-injective.

Let G be a group and suppose that it contains an element
g0 of finite order n � 2. Then we have

(1G � g0)
�
1G C g0 C g20 C � � � C gn�10


D 0 ;

showing thatK[G] has zero-divisors.
A group is torsion-free if it has no non-trivial element

of finite order. Kaplansky zero-divisor problem [23] asks
whetherK[G] has no zero-divisors wheneverG is torsion-
free. In virtue of Lemma 1 and Theorem 8 we can state it
as follows (see [5]).

Problem 1 (Kaplansky zero-divisor problem reformu-
lated in terms of cellular automata) Let G be a torsion-
free group and letK be a field. Is it true that every non-iden-
tically-zero linear cellular automaton � : KG ! KG is pre-
injective?
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The zero-divisor problem is known to have an affirmative
answer for a wide class of groups including the free groups,
the free Abelian groups, the fundamental groups of sur-
faces and the braid groups Bn.

Combining Lemma 1 with Theorem 6 we deduce the
following.

Corollary 3 Let G be a countable amenable group and
let K be a field. Suppose that K[G] has no zero-divisors.
Then every non-identically-zero linear cellular automaton
� : KG ! KG is surjective.

The class of elementary amenable groups is the smallest
class of groups containing all finite and all Abelian groups
that is closed under taking extensions and directed unions.
It is known, see Theorem 1.4 in [25], that if G is a torsion-
free elementary amenable group, then K[G] has no zero-
divisor for any fieldK. As a consequence, the conclusion of
Corollary 3 holds for all torsion-free elementary amenable
groups.

Stable Finiteness of Group Rings

Recall that a ring R with identity element 1R is said to be
directly finite if one-sided inverses in R are also two-sided
inverses, i. e., ab D 1R implies ba D 1R for a; b 2 R. The
ring R is said to be stably finite if the ring Md (R) of d � d
matrices with coefficients in R is directly finite for all inte-
gers d � 1.

Commutative rings and finite rings are obviously di-
rectly finite. Also observe that if elements a and b of
a ring R satisfy ab D 1R then (ba)2 D ba, that is, ba is an
idempotent. Therefore if the only idempotent of R are 0R
and 1R (e. g. if R has no zero-divisors) then R is directly
finite. The ring of endomorphisms of an infinite-dimen-
sional vector space yields an example of a ring which is
not directly finite.

Kaplansky [24] observed that, for any groupG and any
field K of characteristic 0, the group ring K[G] is stably
finite and asked whether this property remains true for
fields of characteristic p > 0. We have that this holds for
L-surjunctive groups.

Using the matrix representation of linear cellular au-
tomata (Theorem 8) one has the following characteriza-
tion of L-surjunctivity.

Theorem 9 For a group G, a fieldK, and an integer d � 1
the following conditions are equivalent:

(a) Every injective linear cellular automaton � : (Kd )G !
(Kd )G is surjective;

(b) The ringMatd (K[G]) is directly finite.

As a consequence, a group G is L-surjunctive if and only if
the group ringK[G] is stably finite for any fieldK.

From Theorem 7 and Theorem 9 we deduce the following
result previously established by G. Elek and A. Szabó using
different methods.

Corollary 4 ([6,11]) Let G be a sofic group and K any
field. Then the group ringK[G] is stably finite.

Future Directions

We indicate some open problems related to the topics that
we have treated in this article.

Garden of Eden Theorem

As we mentioned in the Subsect. “Amenable Groups”, it
would be interesting to determine whether the Myhill the-
orem (i. e. the implication (b)) (a) in Theorem 3), which
holds for amenable groups, but fails to hold for groups
containing the free group F2 (cf. Example 9), holds or
not for the non-amenable groups with no free subgroups
(such as the free Burnside groups B(m; n), m � 665 odd,
see [1]). Note that a negative answer would give another
new characterization of amenability for groups.

Problem 2 Determine whether the Myhill theorem (pre-
injectivity implies surjectivity) for cellular automata with
finite alphabet holds only for amenable groups.

It turns out that Bartholdi’s cellular automata ([2], see Sub-
sect. “Amenable Groups”) are not linear, so that the ques-
tion whether the linear GOE theorem (Theorem 6) holds
also for non-amenable groups remains an open problem.

Problem 3 Determine whether the GOE theorem for lin-
ear cellular automata over finite-dimensional vector spaces
holds only for amenable groups or not. More precisely, de-
termine whether Moore’s theorem and/or Myhill’s theorem
for linear cellular automata over finite dimensional vector
spaces hold only for amenable groups or not.

In [7] we generalized the GOE theorem to linear cellu-
lar automata over semisimple modules (over a, not nec-
essarily commutative, ring R) of finite length with uni-
verse an amenable group. A vector space is a (semisim-
ple) left module over a field. The finite length condition for
modules (which corresponds to the ascending chain con-
dition (Noetherianity) and to the descending chain condi-
tion (Artinianity)) is the natural analogue of the notion of
finite dimension for vector spaces.

The Garden of Eden theorem can be also generalized
by looking at subshifts. Given an alphabet A and a count-
able group G a subshift X � AG is a subset which is closed
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(in the topology induced by the metric (3)) and G-invari-
ant (if x 2 X then xg 2 X for all g 2 G). If G is amenable
and X � AG is a subshift the quantity (5) is the entropy
of X. Given two subshifts X;Y � AG we define a cellular
automaton � : X ! Y as the restriction to X of a cellular
automaton � : AG ! AG such that �(X) � Y .

Problem 4 Let G be a countable amenable group,
A a finite alphabet and X;Y � AG two subshifts with
ent(X) D ent(Y). Prove, under suitable conditions, the
GOE theorem for cellular automata � : X ! Y.

We mention that the GOE theorem for subshifts over
amenable groups fails to hold in general with no additional
hypotheses on the subshifts.

LetG D Z be the infinite cyclic group and letA be a fi-
nite alphabet. For n;m 2 Z we set [n;m] D fx 2 Z : n �
x � mg. Also, we denote by A� D fa1a2 � � � an : ai 2
A; 1 � i � n; n 2 Ng the set of all words over A. The
length of a word w D a1a2 � � � an 2 A� is `(w) D n. Given
a subset X � AG we denote by W(X) D fw 2 A� : 9x 2
X; s.t. w D xj[0;`(w)]g the language associated with X.
Then one says that a subshift X � AZ is irreducible if, for
any two subwords w1;w2 2 W(X) there exists w3 2 A�

(necessarily inW(X)) such that w1w3w2 2 W(X).
Also it can be shown that, for a subshift X � AZ, there

exists a setF � A� of so-called forbidden words, such that
setting

XF :D fx 2 AZ : xg j[0;n] … F ;8n 2 N;8g 2 Zg ;

one has X D XF . Then a subshift X � AZ is of finite type
if X D XF for some finite set F � A�. Finally, X is sofic
(same etymology but a different meaning from that used
for groups in Subsect. “Sofic Groups” ) if X D �(Y) for
some cellular automaton � : AZ ! AZ and some subshift
Y � AZ of finite type.

In [13], F. Fiorenzi considered cellular automata on ir-
reducible subshifts of finite type inside AZ(A finite). She
proved the GOE theorem for such cellular automata and
provided examples of cellular automata on subshifts of fi-
nite type which are not irreducible and for which both im-
plications of the GOE theorem fail to hold. She also pro-
vided an example of a cellular automaton on an irreducible
subshift which is sofic but not of finite type for which the
Moore theorem (namely the implication (a)) (b) in The-
orem 3) fails to hold. Note that it is well known (cf. 2.1
in [13]) that, under the same hypotheses, the Myhill the-
orem (namely the implication (b) ) (a) in Theorem 3)
always holds true (G D Z).

More generally, for groups G other than the integers
Z, one needs appropriate notions of irreducibility for the
subsets X � AG as investigated by Fiorenzi [14,15].

Surjunctivity

Problem 5 Prove or disprove that all groups are surjunc-
tive.

A positive answer to the previous problem could be de-
rived by positively answering to the following

Problem 6 Prove or disprove that all groups are sofic.

By considering the linear analogue of Problem 5 we have

Problem 7 (Kaplansky’s conjecture on stable finiteness
of group rings) Prove or disprove that all groups are
L-surjunctive. Equivalently (cf. Theorem 9), prove or dis-
prove that the group ring K[G] is stably finite for any
group G and any fieldK.

Also, one could look for surjunctivity results for cellu-
lar automata with alphabets other than the finite ones
and the finite dimensional vector spaces. A ring is called
left Artinian (see [40]) if it satisfies the descending con-
dition on left ideals, namely every decreasing sequence
R � I1 � I2 � � � � In � InC1 � � � � of left ideals eventually
stabilizes (there exists n0 such that In D In0 for all n � n0).

In [4] we showed that if G is a residually finite group
and M is an Artinian left module over a ring R (e. g. if M
is a finitely generated left module over a left Artinian
ring R), then every injective R-linear cellular automaton
� : MG ! MG is surjective.

In [8] we showed that if G is a sofic group (thus
a weaker condition than being residually finite) and M is
a left module of finite length over a ring R (thus a stronger
condition than being just Artinian), then every injec-
tive R-linear cellular automaton � : MG ! MG is surjec-
tive. As a consequence (cf. Theorem 9) we have that the
group ring R[G] is stably finite for any left (or right) Ar-
tinian ring R and any sofic group G.

It is therefore natural to consider the following gener-
alization of Problem 7.

Problem 8 Prove or disprove that the group ring R[G] is
stably finite for any group G and any left (or right) Artinian
ring R.

Problem 9 (Kaplansky’s zero divisor conjecture for
group rings) Prove or disprove that if G is torsion-free
then any non-identically zero linear cellular automaton
� : KG ! KG, where K is a field, is preinjective. Equiva-
lently (cf. Lemma 1 and Theorem 8), prove or disprove that
if G is torsion-free, the group ringK[G] has no zero divisors.

Bibliography
1. Adyan SI (1983) Random walks on free periodic groups. Math

USSR Izvestiya 21:425–434



Cellular Automata in Hyperbolic Spaces C 791

2. Bartholdi L (2008) A converse to Moore’s and Hedlund’s theo-
rems on cellular automata. J Eur Math Soc (to appear). Preprint
arXiv:0709.4280

3. Berlekamp ER, Conway JH, Guy RK (1982) Winning ways for
your mathematical plays, vol 2, Chap. 25. Academic Press,
London

4. Ceccherini-Silberstein T, Coornaert M (2007) On the surjunc-
tivity of Artinian linear cellular automata over residually finite
groups. In: Geometric Group Theory. Trends in Mathematics.
Birkhäuser, Basel, pp 37–44

5. Ceccherini-Silberstein T, Coornaert M (2006) The garden of
eden theorem for linear cellular automata. Ergod Th Dynam
Syst 26:53–68

6. Ceccherini-Silberstein T, Coornaert M (2007) Injective linear
cellular automata and sofic groups. Israel J Math 161:1–15

7. Ceccherini-Silberstein T, Coornaert M (2008) Amenability and
linear cellular automata over semisimple modules of finite
length. Comm Algebra 36:1320–1335

8. Ceccherini-Silberstein T, Coornaert M (2007) Linear cellular au-
tomata over modules of finite length and stable finiteness of
group rings. J Algebra 317:743–758

9. Ceccherini-Silberstein TG, Machì A, Scarabotti F (1999)
Amenable groups and cellular automata. Ann Inst Fourier
49:673–685

10. Ceccherini-Silberstein TG, Fiorenzi F, Scarabotti F (2004) The
garden of eden theorem for cellular automata and for symbolic
dynamical systems. In: Random walks and geometry (Vienna
2001), pp 73–108. de Gruyter, Berlin

11. Elek G, Szabó A (2004) Sofic groups and direct finiteness. J Al-
gebra 280:426–434

12. Elek G, Szabó A (2006) On sofic groups. J Group Theor 9:
161–171

13. Fiorenzi F (2000) The Garden of eden theorem for sofic shifts.
Pure Math Appl 11(3):471–484

14. Fiorenzi F (2003) Cellular automata and strongly irreducible
shifts of finite type. Theor Comput Sci 299(1–3):477–493

15. Fiorenzi F (2004) Semistrongly irreducible shifts. Adv Appl
Math 32(3):421–438

16. Følner E (1955) On groups with full Banach mean value. Math
Scand 3:245–254

17. Gottschalk W (1973) Some general dynamical systems. In: Re-
cent advances in topological dynamics. Lecture Notes in Math,
vol 318. Springer, Berlin, pp 120–125

18. Gottschalk WH, Hedlund GA (1955) Topological dynamics.
In: American Mathematical Society Colloquium Publications,
vol 36. American Mathematical Society, Providence

19. Greenleaf FP (1969) Invariant means on topological groups
and their applications. Van Nostrand, New York

20. Gromov M (1999) Endomorphisms of symbolic algebraic vari-
eties. J Eur Math Soc 1:109–197

21. Ginosar Y, Holzman R (2000) The majority action on infinite
graphs: Strings and puppets. Discret Math 215:59–71

22. Hungerford TW (1987) Algebra, graduate texts inmathematics.
Springer, New York

23. Kaplansky I (1957) Problems in the theory of rings. Report of
a conference on linear algebras, June, 1956, pp 1–3. National
Academy of Sciences-National Research Council, Washington,
Publ. 502

24. Kaplansky I (1969) Fields and rings. Chicago Lectures in Math.
Univ. of Chicago Press, Chicago

25. Kropoholler PH, Linnell PA, Moody JA (1988) Applications of

a new K-theoretic theorem to soluble group rings. Proc Amer
Math Soc 104:675–684

26. Lind D, Marcus B (1995) An introduction to symbolic dynamics
and coding. Cambridge University Press, Cambridge

27. Machì A, Mignosi F (1993) Garden of eden configurations for
cellular automata on Cayley graphs of groups. SIAM J Discret
Math 6:44–56

28. Moore EF (1963) Machine models of self-reproduction. Proc
Symp Appl Math AMS 14:17–34

29. Myhill J (1963) The converse of Moore’s garden of eden theo-
rem. Proc Amer Math Soc 14:685–686

30. Ol’shanskii AY (1980) On the question of the existence of
an invariant mean on a group. Uspekhi Mat Nauk 35(214)4:
199–200

31. Ornstein DS, Weiss B (1987) Entropy and isomorphism theo-
rems for actions of amenable groups. J Anal Math 48:1–141

32. Passman DS (1985) The algebraic structure of group rings.
Reprint of the 1977 original. Robert E. Krieger Publishing, Mel-
bourne, FL

33. Paterson A (1988) Amenability, AMS mathematical surveys
and monographs, vol 29. American Mathematical Society,
Providence

34. Ulam S (1952) Processes and Transformations. Proc Int Cong
Math 2:264–275

35. Varopoulos NT, Saloff-Coste L, Coulhon T (1992) Analysis and
geometry on groups. Cambridge University Press, Cambridge

36. von Neumann J (1930) Zur allgemeinen Theorie des Maßes.
Fun Math 13:73–116

37. von Neumann J (1966) In: Burks A (ed) The theory of self-repro-
ducing automata. University of Illinois Press, Urbana, London

38. Weiss B (2000) Sofic groups and dynamical systems, (Ergodic
theory and harmonic analysis, Mumbai, 1999). Sankhya Ser A
62:350–359

39. Woess W (2000) Random walks on infinite graphs and groups,
Cambridge Tracts in Mathematics 138. Cambridge University
Press, Cambridge

40. Zariski O, Samuel P (1975) Commutative algebra. vol 1 With
the cooperation of IS Cohen. Corrected reprinting of the
1958 edition. Graduate Texts in Mathematics, No. 28. Springer,
New York

Cellular Automata
in Hyperbolic Spaces
MAURICE MARGENSTERN
Université Paul Verlaine, Metz, France

Article Outline

Glossary
Definition of the Subject
Introduction
The Locating Problem in Hyperbolic Tilings
Implementation of Cellular Automata

in Hyperbolic Spaces
Complexity of Cellular Automata in Hyperbolic Spaces
On Specific Problems of Cellular Automata

http://arxiv.org/abs/0709.4280


792 C Cellular Automata in Hyperbolic Spaces

Universality in Cellular Automata in Hyperbolic Spaces
The Connection with Tiling Problems
Future Directions
Acknowledgments
Bibliography

Glossary

Fibonacci sequence A sequence of natural integers, de-
noted by f n and defined by the recurrent equation
fnC2 D fnC1 C fn , for all n 2 IN, and by the initial val-
ues f0 D f1 D 1.

Hyperbolic geometry This geometry was discovered in-
dependently by both Nikolaj Lobachevsky and Jànos
Bolyai around 1830. This geometry satisfies the axioms
of Euclidean geometry, the axiom of parallels being
excepted and replaced by the following one: through
a point out of a line, there are exactly two parallels to
the line. In this geometry, there are also lines which
never meet: they are called non-secant. They are char-
acterized by the existence, for any couple of such lines,
of a unique common perpendicular. Also, in this ge-
ometry, the sum of the interior angles of a triangle
is always less than � . The difference to � defines the
area of the triangle. In hyperbolic geometry, distances
are absolute: there is no notion of similarity. See also
Poincaré’s disc.

Pentagrid The tiling f5; 4g, with five sides and four tiles
around a vertex. The angles are right angles.

Poincaré’s disc A model of the hyperbolic plane inside
the Euclidean plane. The points are the points which
are interior to a fixed disc D. The lines are the trace
in D of diameters or circles which are orthogonal to
the border ofD. The model was first found by Beltrami
and then by Poincaré who also devised the half-plane
model also called after his name. The half-plane model
is a conformal image of the disc model.

Ternary heptagrid The tiling f7; 3g with seven sides and
three tiles around a vertex.

Tessellation A particular case of a finitely generated
tiling. It is defined by a polygon and by its reflections
in its sides and, recursively, of the images in their sides.

Tiling A partition of a geometric space; the closure of the
elements of the partition are called the tiles. An impor-
tant case is constituted by finitely generated tilings:
there is a finite set of tiles G such that any tile is a copy
of an element of G.

Tiling fp; qg This is tessellation based on the regular
polygon with p sides and with vertex angle 2�/q.

Invariant group of a tiling A group of transformations
which define a bijection on the set of tiles. Usually, in

a geometrical space, they are required to belong to the
group of isometries of the space.

Definition of the Subject

Cellular Automata in Hyperbolic Spaces, in short hyper-
bolic cellular automata (abbreviated HCA), consists in
the implementation of Cellular Automata in the environ-
ment of a regular tiling of a hyperbolic space.

The first implementation of such an object appeared in
a paper by the present author and Kenichi Morita in 1999,
see [18]. In this first paper, a first solution to the location
problem in this context was given. The paper also focused
on one advantage of this implementation: it allows to solve
NP-problems in polynomial time. In 2000, a second paper
appeared, by the present author, where a decisive solution
of the location problem was given.

The study of HCA’s is a new domain in computer
science, at the border of mathematics and physics. They
involve hyperbolic geometry as well as elementary arith-
metics and algebra with the connections of polynomials
with matrices, and also some theory of fields. They also in-
volve the theory of formal languages in connection with
their properties of elementary arithmetics.

To be a melting pot of such different techniques is al-
ready something which is very interesting.

But the new field has very striking properties. Their
complexity classes offer a very different landscape than
that of the classical theory of complexity based on the Tur-
ing machine. They also provide a bridge between the clas-
sical theory of computation and super-Turing computa-
tions.

HCA’s are a novel object with rich properties: they
inherit the richness of the infinitely many regular tilings
which live in the hyperbolic plane.We are at the beginning
of the study and still, there are a lot of surprising results.
HCA’s might appear as successful as their Euclidean rel-
atives in various domains as astrophysics, nuclear physics
and computer science.

For many results indicated in this paper, we quote the
book [15], where the results and its proof can be found
there.

Introduction

Before the appearance of HCA’s, there were a few pa-
pers on possible implementations of cellular automata in
abstract contexts, especially in the case of Caley graphs,
see [25]. However, as infinitely many tilings of the hyper-
bolic plane are not Caley graphs of a their invariant group,
this method cannot solve the problem in full generality.
The difficulty was the location of the tiles, the locating
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problem. The problem is already difficult in the simple
case of tessellations. Note that there are infinitely many of
them in the hyperbolic plane.

The study appeared to be possible thanks to a par-
tial solution to the locating problem, see [18,19]. A de-
cisive step was done in [7], where the already mentioned
mixing of various techniques appear. This first solution in
the case of a particular tiling, the pentagrid, is dealt with
in Sect. “The Locating Problem in Hyperbolic Tilings”.
A significant advance was performed at the occasion of the
meetings organized in 2002 for the bicentury of the birth of
Jànos Bolyai, the co-inventor with Nikolaj Lobachevsky of
hyperbolic geometry, and also at the occasion of SCI’2002.
At this conference, seven papers were presented on the
topic of this article, and they had a strong impact on the
later development.

This introduction should contain a paragraph on hy-
perbolic geometry. If the reader is not familiar with this
geometry and has some time, we recommend to him/her
the first chapter of [15], or any other book introducing hy-
perbolic geometry. For a reader which is not familiar and
who has no time, we recommend the following solution.
First, forget everything of Euclidean geometry and try to
remember the few elements given in the glossary. Don’t
worry, the Euclidean objects will always be the first thing to
come to your mind and, most often, they will be mislead-
ing. Second, never forget that in traveling over hyperbolic
spaces, you are in the situation of a pilot of a plane flying
with instruments only. You can see nothing in the usual
sense of these words and, sorry to repeat it again, the usual
intuition ismisleading. The best introduction is to imagine
that when you venture into the hyperbolic plane, always
keep with you the Ariadne thread of the way backwards.
Otherwise you will definitely be lost. With this precaution,
you will never regret the trip. The landscape changes very
quickly and you are always fascinated by its unbelievable
beauty.

The Locating Problem in Hyperbolic Tilings

The Classical Case of the Pentagrid

The method introduced in [18] consists of constructing
a bijection between the tiling and a tree, the spanning tree
of the tiling. The tree is constructed in a recursive way, de-
fined as follows, also see Fig. 1.

Initial step: P0 is the root of the tree; it is called the
leading pentagon of the quarter Q0 it is defined by
its sides 1 and 5;

Induction step: Let P be the current pentagon;
if P is the leading pentagon of a quarter Q, see P0

Cellular Automata in Hyperbolic Spaces, Figure 1
The pentagrid: regular pentagons with vertex angle�/2

in Fig. 1, the complement of P in Q splits into two
quarters, R1 and R3 and a remaining region, R3
which we call a strip;
if P is the leading pentagon of a strip S, see P1 in
Fig. 1, the complement of P in S splits into a quar-
ter S1 and again a strip, S2.

As proved in [15], the set of tiles attached to the tree gen-
erated in this way, the leading pentagons of the above al-
gorithm, is exactly the set of pentagons contained in the
quarterQ0.

With [7,15], a new ingredient is brought in: num-
ber the nodes of the tree from the root, to which we at-
tach 1, and then level by level, from left to right on each
level, see Fig. 2. As already noticed in [18], the number
of nodes of the tree which spans the tiling of a quarter
which are on the same level n is f2nC1, where f fngn2IN with
f (0) D f (1) D 1. For this reason, the spanning tree of the
pentagrid is called the standard Fibonacci tree, illustrated
by Fig. 2.

The above splitting induces a particular structure on
the standard Fibonacci tree. Define white nodes as nodes
which have three sons and black nodes as nodes which
have two sons. Black and white are the two possible values
of the status of a node. Then, there is a rule to define the
status of the sons of a node. We can write them as follows,
in self-explained notations:
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Cellular Automata in Hyperbolic Spaces, Figure 2
The Fibonacci tree

W �! BWW
B �! BW

Now, let us represent the numbers attached to the
nodes of the Fibonacci tree in the numeration basis de-
fined by the Fibonacci sequence itself, starting from f 1.
The representation is not unique. Choose the longest rep-
resentation with respect to the lexicographic order and call
it the coordinate of the node to which the corresponding
number is attached.

First, we have that the set of coordinates is a regular
language, which is a corollary of a well known theorem,
see [2]. Now we have a more interesting property, which
was noticed in [7] and which we call the preferred son
property. Let ˛k ::˛0 be the coordinate of a node � of the
standard Fibonacci tree, with ˛0 as the lightest digit of the
representation. The property says that for each node � of
the standard Fibonacci tree, with coordinate ˛k ::˛0, there
is exactly one son of � whose coordinate is ˛k ::˛000. This
son is called preferred. Moreover, there is a rule to find
out the preferred son from the status of a node: in a black
node, the preferred son is the black son; in a white node,
the preferred son is the middle one.

Generalization: The Splitting Method

The generalization was first announced in [8]. It was then
presented in [9], with a new visit to Poincaré’s theorem,
at the occasion of the second century of the birth of Jànos
Bolyai.

The method defines a basis of splitting and then, the
notion of a combinatoric tiling. Two important conse-

quences can be derived from these very definitions to
which we turn now.

Let S0; : : : ; Sk be finitely many parts of some geometric
metric space X which are supposed to be closed, with non-
empty interior, unbounded and simply connected. Consider
also finitely many closed simply connected bounded sets
P1; : : : ; Ph with h � k. Say that the Si’s and P`’s constitute
a basis of splitting if and only if: (i) X splits into finitely
many copies of S0, (ii) any Si splits into one copy of some
P`, the leading tile of Si, and finitely many copies of Sj’s,
where copy means an isometric image, and where, in the
condition (ii), the copies may be of different Sj’s, Si possi-
bly included. As usual, it is assumed that the interiors of the
copies of P` and of the copies of the Sj’s are pairwise dis-
joint. The set S0 is called the head of the basis and the P`’s
are called the generating tiles and the Si’s are called the
regions of the splitting.

On the example of the pentagrid, a basis of splitting is
given by a quarterQ and a strip S. When there is a basis of
a splitting, we then define:

Say that a tiling of X is combinatoric if X has a basis
of splitting and if the spanning tree of the splitting yields
exactly the restriction of the tiling to the head S0 of the
basis.

In [15,18], the pentagrid is proven to be combinatoric.
A lot of other tilings of the hyperbolic plane are com-
binatoric. In particular, all the tilings fp; qg, with q � 4,
possess this property. In higher dimensions, the following
tilings were proved combinatoric: the 3D tiling f5; 3; 4g,
based on Poincaré’s dodecahedron, see [15,21] and the 4D
tiling f5; 3; 3; 4g, based on the 120-cell, see [11,15].

Once a tiling is combinatoric, from the definition of its
basis of splitting, we can derive a square matrix M called
thematrix of the splitting, see [8,15]. Its lines indicate, for
each column, the number of copies of Sj’s entering in the
splitting of Si. The polynomial of the splitting is the char-
acteristic polynomial of M, divided by the greatest power
of X it contains as a factor. In our cases, this polynomial
has a greatest real root. The polynomial of the splitting in-
duces a recurrent equation which defines the sequence of
the splitting with appropriate initial values. The maximal
representations of numbers in the basis defined by the se-
quence of the splitting constitute the languageof the split-
ting. As proved in [15,20], the language of the splitting of
the tilings fp; qg is regular when q � 4 and p � 4.

Implementation of Cellular Automata
in Hyperbolic Spaces

The implementation of HCA’s is induced by the results
mentioned in the previous section.
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But first, let us go back to the general definition of
CA’s. Three conditions must be fulfilled by a set of cells
to be called a cellular automaton. The cells of the automa-
ton must uniformly be distributed in the considered space.
The neighborhood of each cell is defined in a uniform way.
At each top of the discrete clock, all the cells update their
own state according to the same function applied to the
state of the cell and the sequence of states of its neigh-
bors.

To implement cellular automata, we have to satisfy
these three requirements.

The first two conditions are easily satisfied in a tessel-
lation. Note that this is the standard frame for CA’s in the
Euclidean plane and in the 3D Euclidean space.

The third condition already requires that we have
a system of coordinates for the tiles at our disposal. More
than three centuries after Descartes’ discovery of the sys-
tem of coordinates which everybody uses for the Euclidean
plane, this condition is trivially fulfilled. This is not only
the three-century usage. This is also the case because
the mathematical structure of the group of displacements
which leaves the considered tessellations of the Euclidean
plane globally invariant is a very simple structure.

The situation is very different in the case of hyperbolic
spaces. Before [7], there was no convenient, or at least fast,
procedure to define the coordinates of the tiles in a way
which is in connection with the geometrical properties of
the tiling.

Now, the splitting method gives such a solution. First,
it effectively exhibits a tree which generates the tiling. As
Gormov pointed out, [3], hyperbolic spaces are character-
ized by a tree structure. Second, it provides fast algorithms
to handle these coordinates. By fast, we mean that the ba-
sic algorithms we need are linear in time with respect to
the coordinate of the initial point. Note that nobody really
matters with the fact that addition of vectors in Euclidean
coordinates is linear whilemultiplication of coordinates by
a scalar is not. Here, we have no addition, no multiplica-
tion, no nice formula. We have algorithms only, but they
turn out to work in the best time.

The result of these considerations is that the directions,
north, south, east and west which play a nice role in the
Euclidean case no longer exist. In fact, we have infinitely
many directions, each of which defines an essential direc-
tion in the space: if you follow other directions, you will
never go to the area covered by this one. Of course, an in-
finite amount of information is ruled out in computer sci-
ence. And so, we replace this basic indetermination of the
direction by the direction of the father. Of course, we are
led to a root and a central cell, but nobody complains about
using an origin in the Euclidean case. Moreover, as shown

in [12,15], it is also possible in the case of tessellations of
the hyperbolic plane to get rid of the origin. We just men-
tion this point, here, and refer the interested reader to the
quoted papers for a closer study.

Once again, we illustrate how we proceed by the case
of the pentagrid. It is repeated in the case of the ternary
heptagrid, see [12,14] and in the case of the 3D tiling of
Poincaré’s dodecahedron, see [13].

For the implementation, we first fix a basis of splitting
and the representation of the tiling. As indicated in [7,15],
there are a lot of choices with the same basis of split-
ting. Moreover, in the case of the pentagrid and of the
ternary heptagrid in which the standard Fibonacci tree
is also a spanning tree, we have the choice between us-
ing the Fibonacci sequence, as we did in Sect. “The Lo-
cating Problem in Hyperbolic Tilings”, or using the basis
derived from the polynomial of the splitting. The differ-
ence is that the Fibonacci sequence is defined by the golden
mean (1C

p
5)/2, while the sequence of the splitting is de-

fined by the square of the golden mean, (3C
p
5)/2.

Let us go on with the Fibonacci sequence, as is it used
in the majority of papers.

The preferred son property allows us to compute very
easily the coordinates of the neighbors of a cell � from the
coordinate c of �: the computation is linear in time with re-
spect to the length of c, see [10,15]. Similarly, the path from
a cell c to the root of its tree can be computed in a linear
time with respect to the length of c, again see [10,15]. As
a simple example, if c D ˛k : : : ˛1˛0, the father of � has for
number A(˛k ::˛2)C ˛1, where A(ˇh : : : ˇ0) computes
the numberm whose coordinate is ˇh. . .ˇ0.

What we indicated up to now fixes the coordinates for
a cell whose supporting tile is in a given quarter. Now,
it is enough to number the five initial quarters which lie
around the central pentagon in order to completely define
the coordinates of a cell. The central pentagon has 0 as an
unique coordinate. All other cells are defined by two num-
bers: (˛; �). The first number, ˛ is in f1::5g and defines the
quarter. The second number, �, defines the tile in the in-
dicated quarter. Together with its coordinate, a cell is as-
sociated with other data: the status of its supporting tile,
and the indication of which side is shared with its father.
On one hand, note that the coordinate is a hardware fea-
ture: it is never known by the cell and it cannot: it does not
have a bounded size. Note that this is the same for CA’s in
Euclidean spaces. On the other hand, the status of the sup-
porting node can be known by the cell. As shown in [10],
one can define rules for a cellular automaton to dispatch
this information. As it is a finite information which can
be provided by the hardware, we may assume that the cell
knows it.
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Complexity of Cellular Automata
in Hyperbolic Spaces

Now, we are ready to give the results about the complexity
classes of HCA’s.

SAT and NP-complete Problems

In [18], HCA’s are proved to be able to solve SAT in
polynomial time. Historically, the possibility to solve NP-
complete problems in the hyperbolic plane was first an-
nounced in [24]. Although the authors of [18] were not
aware of paper [24], the latter paper does not involve cel-
lular automata and does not provide a precise descrip-
tion of how SAT can be solved in the new frame. On the
contrary, [18] describes an HCA which is able to solve
the problem. In [18], the computation is estimated as
quadratic. In fact it can be proved to be linear in the size of
the input.

The solution for SAT is easy: it makes use of a Fi-
bonacci tree, in which only two nodes are selected among
the sons of a node. Each level represents the possible as-
signment of true and false values to the variable indexed
by this level. The computation of all possible assignments
until the level n, where n is the number of variables is trig-
gered at initial time. Once it is reached, the information
comes back to the root from the leaves of the tree, i. e. the
nodes which are on the level n of the tree: each node com-
putes the OR on the values of its left-hand side and right-
hand side sons. Accordingly, the root gives true if and only
if there is a branch from it to a leaf along which the value
is always true.

From this, applying classical tools of the theory of
complexity, we obtain that any NP-complete problem can
be solved in polynomial time by an appropriate cellular au-
tomaton of the hyperbolic plane.

P = NP in the Hyperbolic Plane

From what we have seen previously, we have that the clas-
sical class NP is contained in the class of HCA’s which
work in polynomial time, denoted by Ph . Now, it is also
possible to define NPh for HCA’s, taking the classical def-
inition of non-deterministic computations in polynomial
time.

As shown in [6], it turns out that Ph D NPh . The key
point is that the computation of a non-deterministic Tur-
ing machine in time O(t(n)), with t(n) � n, can be com-
puted by a deterministic HCA in time O(t2(n)).

From this theorem, the following surprising result can
easily be derived, see [6]:

Ph D NPh D PSPACE

where PSPACE is the classical class of functions computed
in polynomial space by a Turing machine.

Of course, in these results, a basic ingredient is the pos-
sibility, given by the hyperbolic plane, to occupy a working
space of exponential area within a polynomial time. The
above process for solving SAT is a basic example of such
a possibility.

Other Parts of the Complexity Hierarchy of HCA’s

In fact, if we look at the hierarchy of complexity classes for
HCA’s, we get a landscape which is very different from the
classical situation.

We have the following situation, described in [5]:

DLOGh D NLOGh D Ph D NPh D PSPACE
¨ PSPACEh D EXPTIMEh D NEXPTIMEh

D EXPSPACE

We notice that compared to the Euclidean analogs, the hy-
perbolic hierarchy seems to be very flat. As, by construc-
tion, Ph ¨ EXPTIMEh , there are indeed two classes on
which the hierarchy concentrates.

We also haveNPh ¨ APh , unless PSPACE D NEXP-
TIME, whereAPh denotes the class of alternate HCA’s. As
with classicalmachines, an alternateHCA is defined on the
set of configurations of a non-deterministic HCA. In the
tree of these configurations, certain nodes are called exis-
tential, others are called universal. At an existential node,
the node is accepting if and only if it has at least one ac-
cepting child. At a universal node, the node is accepting if
and only if all its children are accepting. The result about
APh indicates a similar situation with the Euclidean classes
where P ¨ AP, unless P = PSPACE. Accordingly, we may
expect that alternating HCA’s should be more powerful
than HCA’s, either deterministic or non-deterministic.

On Specific Problems of Cellular Automata

Synchronization of an HCA

Although no paper is especially devoted to this problem,
we mention it because it has an analog to the standard
problem of the firing squad in one-dimensional CA’s, and
we shall use it in the next section.

In fact, as mentioned more or less explicitly in papers
devoted to HCA, see [5,16], for instance, it is very easy
to synchronize a disc or a sector inside a disc, defined by
a tree rooted at the center of the disc. The idea is simply
to simulate any classical algorithm of synchronization of
a one-dimensional CA on each branch of the tree or each
radius of the disc.
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The synchronization is linear in the radius of the disc
or the height of the tree.

Communications between HCA’s

Another problem,more specific to HCA’s is the communi-
cation between HCA’s, possibly distant ones. Two papers
study the problem in different settings, see [12] and [14].

In [12] the question is: how to establish a contact be-
tween two cells of a HCA, possibly distant ones? The pa-
per provides a solution based on a new system of coordi-
nates in which there is not an origin. The new system is
based on the possibility to represent the hyperbolic plane
as a union of growing quarters. We fix such a sequence
in an appropriate way. Each term of the sequence is a Fi-
bonacci tree, indexed by an integer n, and it contains all
the trees indexed by m when m > n. Inside a given Fi-
bonacci tree, we use the standard system of coordinates,
indicated in Sect. “The Locating Problem in Hyperbolic
Tilings”. In the construction, the roots of the mentioned
trees belong to a line ı. It is not difficult to see that sending
signals on ımakes it possible for the cell to establish a con-
tact in a linear time with respect to their mutual distance.
Once the signals of each cell reach ı, they send in both di-
rections a new signal at speed 1/2. A pair of such signals
meet, which triggers both the communication signal and
a killing signal, at speed 1, to erase the now useless signals
sent in the wrong directions.

In [14], another problem is considered. This time all
cells may dispatch messages, and each cell forwards the
messages it receives and to which it does not want to re-
ply. Accordingly, the same cell may be an emitter of mes-
sages, a receiver of messages, and a relay in the message
system. The idea is to use the tree property to be in bijec-
tion with the tiling as follows: each emitting cell considers
that it is the center of the hyperbolic plane, and the mes-
sage is accompanied by an address which is updated by the
relays and which is the address in the tree whose root is the
sender of the message. This allows any receiver willing to
answer the message to send it to the right emitter. Again,
the complexity of the computation is linear in the mutual
distance of a sender and a receiver.

Universality in Cellular Automata
in Hyperbolic Spaces

Of course, from the existence of universal cellular au-
tomata on the line, we conclude that there are universal
HCA’s. This means that there are HCA’s which are able
to simulate any universal device, a Turing machine for in-
stance.

Paradoxically, the study of universal HCA’s has very
few results. There is a universal HCA in the hyperbolic
plane with 9 states, see [22], a recent result improving [4]
where the HCA had 22 states. There is a universal HCA
in the hyperbolic 3D space with 5 states, see [13]. At last,
there is an intrinsically universal HCA in the hyperbolic
plane, see [16].

Universal HCA’s with a Small Number of States

First, we have to notice that the just mentioned universal
HCA’s with a small number of states are in fact weakly
universal HCA’s. The term weak refers to two conditions:

� the HCA needs an infinite initial configuration;
� the initial configuration is ultimately periodic.

Note that these conditions are standardly used with
ordinary CA’s where universality with a small number of
states is reached with such conditions in many cases.

The second condition requires some explanation. In
the context of a hyperbolic space, the notion of periodic-
ity is not as clear as it is in the Euclidean case. Accordingly,
wemean, by ultimate periodicity that at a large, i. e. outside
a big enough domain, the configuration is globally invari-
ant under a shift.

The above mentioned universal HCA’s with a small
number of states are obtained by a similar construction.
They both simulate a railway circuit with the kind of
switches, described by [26]. While in [26] a Turing ma-
chine is simulated, in [4,22] and in [13], we simulate a reg-
ister machine. It can be remarked that the bigger number
of states in the hyperbolic plane is due to the management
of crossings of tracks which can be simply replaced by
bridges in the hyperbolic 3D space. Moreover, as a cell in
the hyperbolic 3D space has 12 neighbors, there are much
more combinations of states which can be used to differ-
entiate the relevant steps of the computation.

An Intrinsically Universal HCA

The intrinsically universal HCA is required to simulate
any HCA in the same space. Of course, both the simulating
HCA and the simulated one are required to work starting
from finite configurations only.

In [16], two ingredients are used to achieve the sim-
ulation. One ingredient is the synchronization algorithm
mentioned in Sect. “On Specific Problems of Cellular Au-
tomata”. The second is the construction of scaled trees.
The construction consists of building a new Fibonacci tree
inside the tiling, but with a constant distance k between
two consecutive nodes on a same branch. It is not difficult
to construct such a tree, which is illustrated by Fig. 3.
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Cellular Automata in Hyperbolic Spaces, Figure 3
A scaled tree by a factor 2

The constant k is computed in such a way that a disc of
radius k contains both an encoding of the initial configu-
ration of the HCA to be simulated, say A, and an encoding
of the transition table of A. Figure 4 illustrates the mecha-
nism of propagation of the scaled tree.

Each step of the simulatedHCA A is simulated by a cy-
cle of steps of the simulating HCA U. The number of steps
of U in a cycle is not constant. It may be increasing, es-
pecially if the simulated configuration is growing during
its own computation. The synchronization algorithm of
Sect. “On Specific Problems of Cellular Automata” is used
to delimit the stages into which a cycle is split. These stages
are the reception of the current states of the neighbors of
the simulated cell of A, for each simulating cell ofU. When
this is achieved, possibly at different times for each simu-
lating cell, the new state is determined and it is installed in
the appropriate region, controlled by the simulating cell.
When this is performed, the cell waits until it is informed
by its simulating sons that their step of computation is
completed.When this is the case, the cell informs its father
in the scaled tree that it finished its computation. Accord-
ingly, when the central cell receives the message of com-
pletion from all its neighbors of the scaled tree, it knows
that the computation of this step of A is finished. Then the
comparison with the previous configuration is performed,
thanks to a synchronization. Depending on the result of
the comparison, the computation is stopped if there was
no difference, or it goes on, when a difference was noticed.

The Connectionwith Tiling Problems

As usual, cellular automata have deep connections with
tilings.

This is probably the case with HCA’s, although, up to
now, the single connection is the possibility to implement
them in the tilings, thanks to the coordinate system.

However, this system itself appeared to be useful in or-
der to investigate the properties of tilings in the hyperbolic
plane and in the hyperbolic spaces of higher dimensions,
namely the dimensions 3 and 4.

Indeed, the splitting method could be applied to the
tiling f5; 3; 4g of the hyperbolic 3D space, see [15,21]. It

Cellular Automata in Hyperbolic Spaces, Figure 4
Propagation of a scaled tree

turned out to be possible to use an old tool of the late 19th
century, Schlegel diagrams, to both represent the tiles and
the construction of the tiling as a process which is infinite
in time. The application of the splitting method revealed
an interesting property. The language of the splitting of
this tiling provides us with anatural example of a language
which is neither rational nor context free. As a corollary,
the algorithm to compute the path from a tile to the root
of its tree is cubic in time with respect to the size of the
coordinate of the cell supported by the tile.

The splitting method could also be applied to the
tiling f5; 3; 3; 4g of the hyperbolic 4D space. It provides us
with a simple system of coordinates to explore this tiling
which is the natural extension of the tiling f5; 3; 4g of the
hyperbolic 3D space. Note that the same process which al-
lows to go from the pentagon with right angles to Poicaré’s
dodecahedron also allows to go from that dodecahedron to
the 120-cell. This process is called orthogonal completion
in [11,15]. Together with an appropriate notion of interior
and exterior, it allows to get a correct orientation in the
hyperbolic 4D space and to correctly use the dimensional
analogy with the spaces of lower dimension.

There are also important applications to tilings of the
hyperbolic plane. As already mentioned about the com-
munication between cells of a HCA, these algorithms ben-
efit from the study of the tilings which are made possible
by using the splitting method. The new results which are
obtained in an algorithmic way are indicated in [15], in
particular in its Chapter 4. An important application to the
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study of tilings in the hyperbolic plane is given by the re-
cent result given in [17]: there, it is proved that the tiling
problem of the hyperbolic plane is undecidable.

Future Directions

There are still a lot of problems to investigate about cellular
automata in hyperbolic spaces. Let us look at a few of them.

In the classical study of cellular automata in an Eu-
clidean space, there are well known theorems about the
characterization of cellular automata in terms of mappings
over the space of configurations. There are also well known
studies about properties of the global transition function,
which transforms a given configuration into the next one
which is obtained, for each cell, by application of the tran-
sition table of the automaton. What can be said in the hy-
perbolic spaces? Are these theorems, or their adaptions,
still valid in this new setting?

Another direction is a closer study of HCA in the hy-
perbolic 4D space. The foundation is ready: it is enough,
now, to pave the way.

In the very beginning of this article, we mentioned
possible applications. We think that this is also a promis-
ing direction for future investigations. A few applications
were recently performed, see [1,23], for instance, but noth-
ing significant enough to enter this article. We think that
what was said in Sect. “Communications Between HCA’s”
is a serious foundation for future developments.

At last, the connection with tilings gives us the hope
that themethod initiated by the implementation of cellular
automata in hyperbolic spaces will still help to improve the
study of tilings in hyperbolic spaces.
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Glossary

Cellular automaton A (one-dimensional) cellular auto-
maton is a linear array of cells which are connected to
both of their nearest neighbors. The total number of
cells in the array is determined by the input data. They
are exactly in one of a finite number of states, which
is changed according to local rules depending on the
current state of a cell itself and the current states of its
neighbors. The state changes take place simultaneously
at discrete time steps. The input mode for cellular au-
tomata is called parallel. One can suppose that all cells
fetch their input symbol during a pre-initial step.

Iterative array Basically, iterative arrays are cellular au-
tomata whose leftmost cell is distinguished. This so-
called communication cell is connected to the input
supply and fetches the input sequentially. The cells are
initially empty, that is, in a special quiescent state.

Formal language The data on which the devices operate
are strings built from input symbols of a finite set or
alphabet. A subset of strings over a given alphabet is
a formal language.

Signal Signals are used to transmit and encode informa-
tion in cellular automata. If a cell changes to the state
of its neighbor after some k time steps, and if subse-
quently its neighbors and their neighbors do the same,
then the basic signal moves with speed 1

k through the
array. With the help of auxiliary signals, rather com-
plex signals can be established.

Closure property Closure properties of families of formal
languages indicate their robustness under certain op-
erations. A family of formal languages is closed under
some operation, if any application of the operation on
languages from the family yields again a language from
the family.

Turing machine A Turing machine is the simplest form
of a universal computer. It captures the idea of an ef-
fective procedure or algorithm. At any time the ma-
chine is in any one of a finite number of states. It is
equipped with an infinite tape divided into cells and
a read-write head scanning a single cell. Each cell may
contain a symbol from a finite set or alphabet. Initially,
the finite input is written in successive cells. All other
cells are empty. Dependent on a list of instructions,
which serve as the program for the machine, the ac-
tion is determined completely by the current state and
the symbol currently scanned by the head. The action
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comprises the symbol to be written on the current cell,
the new state of the machine, and the information of
whether the head should move left or right.

Decidability A formal problem with two alternatives is
decidable, if there is an algorithm or a Turing machine
that solves it and halts on all inputs. That is, given an
encoding of some instance of the problem, the algo-
rithm or Turing machine returns the correct answer
yes or no. The problem is semidecidable, if the algo-
rithm halts on all instances for which the answer is yes.

Definition of the Subject

One of the cornerstones in the theory of automata is the
early result of John von Neumann, who solved the logi-
cal problem of nontrivial self-reproduction. He employed
a mathematical device which is a multitude of intercon-
nected identical finite-state machines operating in paral-
lel to form a larger machine. He showed that it is logi-
cally possible for such a nontrivial computing device to
replicate itself ad infinitum [97]. Such devices are com-
monly called cellular automata (abbreviated, CA), and can
be considered as homogeneously structured models for
massively parallel computing systems. The global behavior
of cellular automata is achieved by local interactions only.
While the underlying rules are quite simple, the global
behavior may be rather complex. In general, it is unpre-
dictable.

The data supplied to CAs can be arranged as strings of
symbols. Instances of problems to solve can be encoded as
strings with a finite number of different symbols. Further-
more, complex answers to problems can be encoded as bi-
nary sequences such that the answer is computed bit by bit.
In order to compute one piece of the answer, the set of pos-
sible inputs is split into two sets associated with the binary
outcome. From this point of view, the computational ca-
pabilities of CAs are studied in terms of string acceptance,
that is, the determination to which of the two sets a given
string belongs. These investigations are with respect to and
with the methods of language theory. They originated in
Stephen N. Cole [18,19] and Alvy R. Smith [76,80]. Over
the years substantial progress has been achieved, but there
are still some basic open problems with deep relations to
other fields. So, exploring the capabilities of cellular au-
tomatamay benefit the understanding of the nature of par-
allelism and nondeterminism.

Introduction

In general, the specification of a cellular automaton in-
cludes the type and specification of the cells, their inter-
connection scheme (which can imply a dimension of the

system), the local rules which are formalized as local tran-
sition function, and the input and output modes. With an
eye towards language acceptance, we consider one-dimen-
sional synchronous devices with nearest neighbor connec-
tions whose cells are deterministic finite-state machines.
They are commonly called cellular automata in case of par-
allel input mode, and iterative arrays (abbreviated, IA) if
the input mode is sequential. If each cell is connected to
only one of its neighbors, say to the right one, then the flow
of information through the array is from right to left. The
corresponding device is a one-way cellular automaton (ab-
breviated, OCA). In any case the number of cells is deter-
mined by the length of the input string; there is one cell per
symbol. If the input is in parallel, then all cells fetch their
input symbol during a pre-initial step. To this end, the set
of symbols has to be a subset of the set of states. Some-
times for practical reasons and for the design of systolic
algorithms, a sequential input mode is more convenient
than the parallel one. In iterative arrays the leftmost cell is
distinguished to be the communication cell. It is equipped
with a one-way read-only input tape.

In order to obtain the binary answer of a system we
have to overcome a problem with the end of the compu-
tation. It follows from the definitions that the machines
never halt. A way to cope with the situation is to de-
fine a predicate on configurations. The answer depends
on whether a configuration satisfies the predicate or not.
Here we apply the common predicate that requires a bor-
der cell or the communication cell to be in some state des-
ignated to be an accepting state. Further predicates are
studied, e. g., in [38,82], while more general input modes
are considered in [57]. Due to the bounded number of
cells in a computation, the time complexity is exponen-
tially bounded. After exceeding the bound, the computa-
tion runs into a loop and is rather useless. With respect to
the wide language classes obeying an exponential or poly-
nomial time bound, parallel devices cannot take advan-
tage of their large number of processing elements. They
are just a factor to be multiplied with the size of the input.
So, there is a particular interest in fast computations, that
is, in real-time and linear-time computations. Real time is
determined by the shortest time necessary for nontrivial
computations, whereas linear time is real time multiplied
by an arbitrary but fixed constant greater than or equal to
one. In addition, we consider general computations with-
out time bounds which, actually, are exponentially time
bounded. The following well-known example from [17]
joins several notions. It uses signals in order to construct
the mapping n 7�! 2n in time; i. e., the leftmost cell recog-
nizes the time steps 2n, n� 1. The time constructor is then
extended to a real-time CA and IA.
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Cellular Automata and Language Theory, Figure 1
Space-time diagram showing signals of a real-time two-way ac-
ceptor of the language {a2

n j n � 1}

Example 1 The unary language consisting of the strings
{a2n j n � 1} is accepted by IAs as well as by CAs in real
time.

At initial time the leftmost cell emits a signal which
moves with speed 1

3 to the right; i. e., the signal alternates
from moving one cell to the right and staying for two time
steps in a cell (see Fig. 1). In addition, another signal is
emitted which moves with maximal speed (speed 1). It
bounces between the slow signal and the leftmost cell. It
is easy to see that the signal passes through the leftmost
cell exactly at the time steps 2n, n� 1. Finally, an iterative
array can accept its input when the last input symbol is
read at one of these time steps. Similarly, in a CA com-
putation the rightmost cell can emit a third signal which
moves with maximal speed to the left. This signal arrives
at the leftmost cell at the time step which corresponds to
the length of the input. If it meets the bouncing signal at
its arrival, the input is accepted. �

More results about mappings that are constructible in the
above sense can be found in [13,63,93]. In [27,94] the se-
ries of prime numbers is constructed in real-time devices.

The investigations of iterative arrays and cellular au-
tomata as cellular language acceptors originated in [18,19]
and [76,80]. In [18,19], it is shown that the family of lan-
guages accepted by real-time IAs is closed under intersec-

tion, union, and complementation, but is not closed under
concatenation and reversal; and in [76,80], where among
other results the identity of the sequential complexity class
DSPACE(n) (i. e., the class of languages accepted by deter-
ministic Turing machines whose tape is bounded by the
length of the input n) and the family of languages accepted
by CAs without time bound is shown. A long-standing
open problem is the question whether or not one-way in-
formation flow is a strict weakening of two-way informa-
tion flow for unbounded time. In [16,32] it is proved that
a PSPACE-complete language is accepted by OCAs, from
which one can draw conclusions about the hardness of se-
quential OCA simulations. Furthermore, in the same pa-
pers strong closure properties are derived for the family of
OCA languages. In addition, it is a proper superset of the
context-free languages which, in turn, are of great practical
relevance.

The proofs are based on characterizations of the par-
allel language families by certain types of customized se-
quential machines. Such machines have been developed
for all classes of acceptors which are here under considera-
tion [32,36,37]. In particular, speed-up theorems are given
that allow to speed up the time beyond real time linearly.
Therefore, linear-time computations can be sped up close
to real time. Nevertheless, for OCAs and IAs linear time is
strictly more powerful than real time. The problem is still
open for CAs. In fact, it is an open question whether real-
time CAs are strictly weaker than unbounded time CAs. If
both classes coincide, then a PSPACE-complete language
would be accepted in polynomial time! Apart from that
it is known that linear-time CAs can be simulated by un-
bounded time OCAs [16,32].

The rest of the article is organized as follows. In the
following section (Sect. “Cellular Language Acceptors”),
some basic notions and formal definitions are given. The
problem in connection with the end of computations is
discussed in more detail, and honest time complexities
are derived informally. Then, in Sect. “Tools and Tech-
niques” selected tools and techniques are presented that
can be applied to prove or to disprove that certain lan-
guages are accepted by certain devices. In particular, it is
shown that two-way devices can simulate the data struc-
ture stack without loss of time. It is often much harder
to disprove the acceptance of languages than to prove
it, since the technique of a suitable construction is triv-
ially not applicable. Some techniques based on counting
and pumping arguments are shown and applied in order
to obtain witness languages. In Sect. “Computational Ca-
pacities” computational capacity aspects are investigated.
A basic hierarchy of language families defined by cellu-
lar automata and iterative arrays is established. The levels
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are compared with well-known linguistic families. Next,
Sect. “Closure Properties” is devoted to exploring the clo-
sure properties of the language families in question. For
example, it turns out that the languages accepted by un-
bounded time one-way and two-way cellular automata as
well as iterative arrays share the strong closure proper-
ties of the class DSPACE(n) which characterizes the de-
terministic context-sensitive languages. Decidability prob-
lems are considered in Sect. “Decidability Problems”. By
reductions of Turing machine problems, it follows that
almost all interesting properties are undecidable. In fact,
they are not even semidecidable for the weakest devices in
question. This emphasizes once more the power gained in
parallelism even if the number of cells is bounded. In gen-
eral, their behavior is unpredictable. Finally, in Sect. “Fu-
ture Directions”, some future directions of cellular lan-
guage acceptors are discussed.

Cellular Language Acceptors

We denote the set of nonnegative integers by N . In con-
nection with formal languages, strings are calledwords. Let
A� denote the set of all words over a finite alphabet A. The
empty word is denoted by , and we set AC D A� � fg.
For the reversal of a word w we write wR and for its length
we write |w|. For the number of occurrences of a symbol a
in w we use the notation |w|a. We use � for inclusions
and� for strict inclusions. In order to avoid technical over-
loading in writing, two languages L and L0 are considered
to be equal, if they differ at most by the empty word, i. e.,
L�fg D L0 � fg. Throughout the article, two automata
or grammars are said to be equivalent if and only if they
accept or generate the same language.

The cells of a cellular automaton are identified by pos-
itive integers. In order to handle the application of the lo-
cal transition function to the border cells, we assume that
the missing neighbors are in a permanent so-called border
state. A formal definition is:

Definition 2 A two-way cellular automaton (CA) is a sys-
tem hS; ı;#;A; Fi, where

1. S is the finite, nonempty set of cell states,
2. # … S is the permanent boundary state,
3. A � S is the nonempty set of input symbols,
4. F � S is the set of accepting states, and
5. ı : (S [ f#g)� S � (S [ f#g)! S is the local transition

function.

If the flow of information is restricted to one-way, the re-
sulting device is a one-way cellular automaton (abbrevi-
ated, OCA). In such devices, the next state of each cell de-

Cellular Automata and Language Theory, Figure 2
A (two-way) cellular automaton

Cellular Automata and Language Theory, Figure 3
A one-way cellular automaton

pends on the state of the cell itself and the state of its im-
mediate neighbor to the right.

A configuration of a cellular automaton h S, ı, #,
A, F i at time t� 0 is a description of its global state,
which is formally a mapping ct{1, . . . , n}! S, for n� 1.
The configuration at time 0 is defined by the given in-
put w= a1 � � � an 2A+. We set c0(i) = ai, for 1� i�n. Con-
figurations may be represented as words over the set of
cell states in their natural ordering. For example, the ini-
tial configuration for w is represented by #a1 a2 � � � an#.
Successor configurations are computed according to the
global transition function �. Let ct , t� 0, be a configura-
tion with n� 2, then its successor ct + 1 is defined as fol-
lows:

ctC1 D �(ct)

()

8
ˆ̂̂
<̂

ˆ̂̂
:̂

ctC1(1) D ı(#; ct(1); ct(2))
ctC1(i) D ı(ct(i � 1); ct(i); ct(i C 1)) ;

i 2 f2; : : : ; n � 1g
ctC1(n) D ı(ct(n � 1); ct(n);#)

for CAs, and

ctC1 D �(ct)

()

8
<̂

:̂

ctC1(i) D ı(ct(i); ct(i C 1)) ;
i 2 f1; : : : ; n � 1g

ctC1(n) D ı(ct(n);#)

for OCAs. For n= 1, the next state of the sole cell is ı(#,
ct(1), #). Thus,� is induced by ı.

A computation can be represented as a space-time di-
agram, where each row is a configuration and the rows ap-
pear in chronological ordering.

In order to define iterative arrays formally we have to
provide an initial (quiescent) state for the cells. We assume
that once the whole input is consumed an end-of-input
symbol is supplied permanently.

Definition 3 An iterative array (IA) is a system hS; ı; ı0;
s0;#;G;A; Fi, where
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Cellular Automata and Language Theory, Figure 4
An iterative array

1. S is the finite, nonempty set of cell states,
2. s0 2 S is the quiescent state,
3. # … S is the permanent boundary state,
4. G … A is the end-of-input symbol,
5. A is the finite, nonempty set of input symbols,
6. F � S is the set of accepting states,
7. ı : S� S� (S[f#g)! S is the local transition function

for non-communication cells satisfying ı(s0; s0; s0) D
ı(s0; s0;#) D s0,

8. ı0 : (A[fGg)� S� (S[f#g)! S is the local transition
function for the communication cell.

A configuration of an iterative array h S, ı, ı0, s0, #, G, A,
F i at time t� 0 is a pair (wt ,ct), where wt 2A� is the re-
maining input sequence and ct : {1, . . . , n}! S, for n� 1, is
a mapping that maps the single cells to their current states.
The configuration (w0,c0) at time 0 is defined by the input
word w0 and the mapping c0(i) = s0, 1� i� n. The global
transition function� is induced by ı and ı0 as follows: Let
(wt ,ct), t� 0, be a configuration and i2 {2, . . . , n�1}. Then

(wtC1; ctC1) D �((wt ; ct))

()

8
<̂

:̂

ctC1(1) D ı0(a; ct(1); ct(2))
ctC1(i) D ı(ct(i � 1); ct(i); ct(i C 1))
ctC1(n) D ı(ct(n � 1); ct(n);#)

where a=G, wt + 1 = if wt =, and a= a1, wt + 1 =
a2 � � � an if wt = a1 � � � an.

An input w is accepted by a CA, OCA, or an IAM if at
some time i during its course of computation the leftmost
cell enters an accepting state. The language accepted byM
is denoted by L(M). Let t :N!N , t(n)� n (t(n)� n+ 1
for IAs) be a mapping. If all w2 L(M) are accepted with
at most t(|w|) time steps, then L(M) is said to be of time
complexity t.

Observe that time complexities do not have to meet
any further conditions. This general treatment is made
possible by the way of acceptance. An input w is accepted
if the leftmost cell enters an accepting state at some time
i� t(|w|). But what if afterwards, a final configuration has
been reached? Subsequent states of the leftmost cell are not
relevant.

Cellular Automata and Language Theory, Figure 5
An OCA accepting any unary language. Here + is an accepting
and� a non-accepting state

Following the different approach to gather the result of
a computation at time step t(|w|) by the outside world does
not yield the desired outcome in general. In this case, the
intrinsic computation may be hidden in the determination
of the time step t(|w|). That is, computational power may
be added from the outside world. For example, let L2 {a}+

be an arbitrary language. Then L is accepted by some OCA
with time complexity

t(n) D

(
n if an … L
nC 1 if an 2 L

;

where the local transition function is easily designed to re-
alize the behavior depicted in the space-time diagram of
Fig. 5.

So, it is reasonable to consider only such time com-
plexities t that allow the leftmost cell to recognize the time
step t(n). For example, the identity t(n) = n is an honest
time complexity for OCAs and CAs. A signal which is ini-
tially emitted by the rightmost cell and moves with maxi-
mal speed arrives at the leftmost cell exactly at time step n.
By slowing down the signal to speed x

y , i. e., the signal al-
ternating moves x cells to the left and stays for y�x time
steps in a cell, it is seen that the time complexities x

y � n, for
any positive integers x,y, are also honest. Another exam-
ple are exponential time complexities t(n) = kn, for any in-



Cellular Automata and Language Theory C 805

teger k� 2. Without going too deep into technical details,
a corresponding device can be set up as a kary counter. The
rightmost cell simulates the least significant digit and adds
one to the counter at every time step. The neighboring cell
to the left observes when a carry-over appears, increases
its own digit and so on. Then, the leftmost cell produces
a first carry-over exactly at time step kn.

The family of languages that are accepted by IAs (and
CAs, OCAs) with time complexity t is denoted by Lt(IA)
(and Lt(CA), Lt(OCA), respectively). The index is omit-
ted for arbitrary time. Actually, arbitrary time is exponen-
tial time due to the space bound. If t is the function n+ 1
(the function n), acceptance is said to be in real time and
we write Lrt(IA) (Lrt(CA), Lrt(OCA)). Since for nontriv-
ial computations an IA has to read at least one end-of-
input symbol, real time has to be defined as (n+ 1)-time.
The linear-time languagesLlt(IA) are defined according to
Llt(IA) D

S
k2Q;k�1 Lk�n(IA), and similarly for CAs and

OCAs.

Tools and Techniques

An elementary technique in automata theory is the usage
of multiple tracks. Basically, this means to consider the
state set as Cartesian product of some smaller sets. Each
component of a state is called a register, and the same reg-
ister of all cells together forms a track.

The first goal of this section is to show how to simulate
pushdown stores, i. e., stores obeying the principle last in
first out, by IAs and CAs in real time. Assume without loss
of generality that at most one symbol is pushed onto or
popped from the stack at each time step. We distinguish
one cell that simulates the top of the pushdown store. It
suffices to use three additional tracks for the simulation.
Let the three pushdown registers of each cell be numbered
one, two and three from top to bottom. Each cell prefers to
have only the first two registers filled. The third register is
used as a buffer. In order to reach that charge it obeys the
following rules (cf. Fig. 6).

a) If all three registers of its left (upper) neighbor are
filled, it takes over the symbol from the third register
of the neighbor and stores it in its first register. The old
contents of the first and second registers are shifted to
the second and third register.

b) If there is only the first register of its left (upper) neigh-
bor filled, the cell erases its first register and shifts the
contents of the second and third registers to the first
and second register. Observe that the erased symbol is
taken over by the left neighbor.

c) Possibly, more than one of these actions are superim-
posed.

From the simulation, it follows immediately that real-time
IAs as well as real-time CAs accept all languages accepted
by sequential pushdown automata as long as they work in
real time.

Theorem 4 Given some real-time deterministic pushdown
automaton, an equivalent real-time IA and CA can ef-
fectively be constructed, i. e., every real-time deterministic
context-free language belongs to the families Lrt(IA) and
Lrt(CA).

Now we turn to a technique for disproving that languages
are accepted. In general, the method is based on equiv-
alence classes which are induced by formal languages. If
some language induces a number of equivalence classes
which exceeds the number of classes distinguishable by
a certain device, then the language is not accepted by that
device. First we give the definition of an equivalence rela-
tion which applies to real-time IAs.

Definition 5 Let L � A� be a language and l � 1 be
a constant. Two words w 2 A� and w0 2 A� are l-equiva-
lent with respect to L if and only if

wu 2 L () w0u 2 L

for all u 2 A�; juj � l . The number of l-equivalence classes
with respect to L is denoted by E(L; l).

In [19] the following upper bound for the number of
equivalence classes distinguishable by real-time IA is de-
rived.

Lemma 6 If L 2 Lrt(IA), then there exists a constant
p � 1 such that E(l ; L) � pl .

Proof Let M be a real-time IA with state set S. In or-
der to determine an upper bound for the number of
l-equivalence classes with respect to L(M), we consider the
possible configurations ofM after reading all but l input
symbols. The remaining computation depends on the last
l input symbols and the states of the cells 1, . . . , l +2. For
the l+ 2 states there are at most |S|l+ 2 different possibil-
ities. Setting p= |S|3, we derive |S|l+ 2� |S|3l = pl, and ob-
tain at most pl different possibilities. Since the number of
equivalence classes is not affected by the last l input sym-
bols, there are at most pl equivalence classes. �
Example 7 The language

L D f&xk& � � �&x1?y1& � � �&yk& j k � 1; xRi D yi zi
and xi ; yi ; zi 2 fa; bg�g

does not belong to Lrt(IA).
For a pair of different prefixes w =&xk & � � �& x1?

and w0 =& x0k& � � � & x01 ? with |xi| = |x0i| = k, 1� i� k,
there exists at least one 1� j� k such that xj 6D x0j. This
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Cellular Automata and Language Theory, Figure 6
Principle of a pushdown store simulation. Subfigures are in row-major order

implies w&j�1 xRj &
k�j+ 1 2L and w0 &j�1 xRj &

k�j + 1 62 L.
Since there are 2k2 different prefixes of the given form, lan-
guage L induces at least 2k2 classes.

On the other hand, if L would be accepted by some
real-time IA, then by Lemma 6 there is a constant p� 1
such that E(L,2k)� p2k. Since L is infinite, wemay choose k
large enough such that 2k2 > p2k , which is a contradiction.

�

Nowwe change to real-timeOCAs. The next result is a tool
which allows us to show that languages do not belong to
the family Lrt(OCA). It is based on pumping arguments
for cyclic strings [68].

Lemma 8 Let L be a real-time OCA language. Then there
exists a constant p � 1 such that any pair of a word w and

an integer k that meets the condition wk 2 L and k > pjwj

implies that there is some 1 � q � pjwj such that wkC jq 2

L, for all j � 0.

Proof For a given real-time OCAM= h S, ı,#,A, F i, we
set p= |S|2. Let wk 2L(M), where k> p|w|. Then we con-
sider an accepting computation ofM on inputwk. The ini-
tial configuration is represented by #wk#. Clearly, a cyclic
left part of some configuration leads again to a cyclic left
part, though the new left part gets one cell shorter at any
time step. Therefore, after |w| time steps the left part of the
configuration which still may influence the overall com-
putation result is represented by #wk�1

1 s1, where |w1| = |w|
and s1 2 S. After another |w| time steps, we obtain#wk�2

2 s2,
where |w2| = |w| and s2 2 S. In general, the relevant part of
a configuration at time i � |w|, 1� i� k, is represented by
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#wk�i
i si, where |wi| = |w| and si 2 S. In addition, state sk is

an accepting one.
Since the number of different words wi is bounded by

|S||w|, for wisi there are at most

jSjjwjC1 � jSj2
l
jwjC1

2

m

� pjwj

different possibilities. Now k > pjwj implies that wi si D
wl sl for some 1 � i < l � k. Therefore, there is a loop
and, for q D l � i, the word wkC jq is accepted, for any
j � 0. �

Example 9 The language L D fa2n j n � 1g is not ac-
cepted by any real-time OCA.

Contrarily assume there is a real-time OCA accept-
ing L. Then we set w D a; k D 2p and observe that the
conditions of Lemma 8 are met. Therefore, a2pCq as well
as a2pC2q belong to L. If 2p C q is not a power of two, we
obtain a contradiction. So, let 2p C q D 2pCr , for some
r � 1.We derive 2pCr < 2pCrCq D 2pCrC2pCr�2p D
2pCrC1�2p < 2pCrC1, and conclude that 2pC2q is strictly
in between two consecutive powers of two. Hence, a2pC2q

does not belong to L. �

Nextwe come back to equivalence classes. By a similar idea
as for iterative arrays an equivalence relation can be de-
fined such that the number of equivalence classes distin-
guishable by real-time OCAs is bounded. But due to the
nature of OCA computations, both the prefixes as well as
the suffixes of inputs have to be regarded [84,85]. We con-
tinue with the equivalence relation:

Definition 10 Let L � A� be a language and X � A�

and Y � A� be two sets of words. Two words w 2 A� and
w0 2 A� are (L; X;Y)-equivalent if and only if

xwy 2 L () xw0y 2 L

for all x 2 X and y 2 Y.

The next step is to derive an upper bound for the number
of equivalence classes which can be distinguished by some
real-time OCA.

Theorem 11 Let L � A� be a real-time OCA language
and X D Am1 and Y D Am2 be two sets of words for posi-
tive integers m1 and m2. Then there exists a constant p � 1
such that the number N of (L; X;Y)-equivalence classes is
bounded by

N � pjXjp(m2C1)jY j :

Proof For any word w and any x2X and y2Y the input
xwy implies exactly one real-time OCA configuration at

Cellular Automata and Language Theory, Figure 7
Dependencies in the proof of Theorem 11

time |w| (see Fig. 7). At this time only the leftmost |xy| + 1
cells can still influence the overall computation result, i. e.,
the cells 1, . . . , |xy| + 1. The cells 1, . . . , |x| are not affected
by the cells |xw| + 1, . . . , |xwy| up to time |w|. So, they are
not affected by y up to that time. Furthermore, the cells
|x| + 1, . . . , |xy| + 1 are not affected by the cells 1, . . . , |x|,
that is, not by x. On the other hand, different wmay cause
different configurations for x and y, where x and y are in-
dependent of each other.

It follows that w and w0 are equivalent, if the cells
1, . . . , |xy| + 1 at time step |w| respectively |w0| are in the
same states for all x2X and y2Y . For any y2Y , there are
|S|m2 + 1 different configurations for the cells |x| + 1, . . . ,
|xy| + 1. So, there are altogether at most jSj(m2C1)jY j differ-
ent possibilities to distinguish the words w.

The possibilities for the cells 1, . . . , |x| are as follows.
For a word x = xm1 . . . x1 the state si of cells 1� i�m1 at
time |w| depends only on xi, . . . , x1 and w. So, for si there
are at most |S|jAj

i
different possibilities to distinguish the

words w. Together we obtain
m1Y

iD1

jSjjAj
i
< jSjjAj

m1C1

possibilities. For p= |S||A| this implies jSjjAjm1C1
D

pjAjm1
D pjXj . Thus, the number of equivalence classes

is bounded by pjXjp(m2C1)jY j . �
As an example we show that the language Ld �

f0; 1; (; ); jgC whose words are of the form

x(x1jy1) � � � (xn jyn)y ;

where x,xi,y,yi 2 {0,1}�, for 1� i�n, and (x|y) = (xi|yi) for
at least one i2 {1, . . . , n}, is not a real-time OCA language.
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It can be thought of as a dictionary. The task for the OCA
is to check whether the pair (x|y) occurs in the dictionary
or not.

Example 12 Let X =Y = {0,1}�. Two words w D

(x1jy1) � � � (xn jyn) and w0 D (x01jy
0
1) � � � (x

0
mjy0m) are (Ld ,

X, Y)-equivalent if and only if f(x1jy1); : : : ; (xn jyn)g D
f(x01jy

0
1); : : : ; (x

0
m jy0m)g.

First assume that the two sets are equal. Let x2X
and y2Y , then xwy2Ld implies (x|y) = (xi|yi), for some i.
Since the two sets are equal, we have (x|y) = (x0 j|y0 j), for
some j. Therefore, xwy2 Ld implies xw0y2 Ld and vice
versa, i. e., w and w0 are (Ld ; X;Y)-equivalent.

Now assume the two sets are different. Without loss of
generality, we can assume that there exist x2X and y2Y
with (x|y) = (xi|yi), for some i, but (xjy) ¤ (x0jjy

0
j), for all

j= 1, . . . ,m. Then xwy2 Ld but xw0y 62 Ld and, thus, w and
w0 are not (Ld ,X,Y)-equivalent.

In order to derive a lower bound for the number of (Ld ,
X, Y) equivalence classes induced by Ld , let m1;m2 � 1,
X D f0; 1gm1 and Y D f0; 1gm2 . Then the number N of
(Ld ,X,Y)-equivalence classes is at least 22

m1Cm2 .
For fixed m1� 1 and m2� 1, we consider all words

of the form (x1jy1) � � � (xk jyk) with xi 2 f0; 1gm1 and
yi 2 f0; 1gm2 , for all i 2 f1; : : : ; kg, and (xi jyi) ¤ (x jjy j),
for i 6D j. These words are said to be of type (m1,m2). Fol-
lowing the argumentation above, two words are equiva-
lent if and only if the sets of subwords are equal. There are
22m1Cm2 words of type (m1,m2) which belong to different
equivalence classes with respect to Ld, X D f0; 1gm1 and
Y D f0; 1gm2 .

Now assume that Ld is accepted by some real-time
OCA. For allm1,m2 � 1 there is a constant p such that the
number of equivalence classes is at most p2m1 p(m2C1)2m2 .
For large enough m1 and m2 we obtain a contradiction to
the lower bound 22m1Cm2 . �

Helpful tools of a different nature are speed-up theorems.
Strong results are obtained in [34,36], where the parallel
language families are characterized by certain types of cus-
tomized sequential machines. Such machines have been
developed for all classes of acceptors which are here un-
der consideration. In particular, speed-up theorems are
given that allow to speed up the time beyond real time lin-
early. Therefore, linear-time computations can be sped up
close to real time. The question whether or not real time is
strictly weaker than linear time is discussed in detail later.

Theorem 13 Let M be a CA, OCA, or IA obeying time
complexity rt C r(n), where r : N ! N is a mapping and
rt denotes real time. Then for all k � 1 an equivalent device

M0 of the same type obeying time complexity rt C b r(n)k c

can effectively be constructed.

The next two examples are frequently used applications of
the linear speed-up theorem.

Example 14 Let k0� 1 and M be a device in question
with time complexity rt + k0. Then there is an equivalent
real-time device M0 of the same type. It suffices to set
k = k0 + 1 and to apply Theorem 13 in order to obtain
rt C b k0k c D rt C b k0

k0C1c D rt for the time complexity
ofM0. �

Example 15 Let k0� 1 andM be a device in question with
time complexity rt + k0 � rt. Then for all rational numbers
" > 0 there is an equivalent device M0 of the same type
with time complexity b(1 C �) � rtc. We set k D

˙ k0
�

�

and apply Theorem 13 in order to obtain rt C
j

k0�r t
dk0/�e

k
�

rt C
j
k0�r t
k0/�

k
D rtC b� � rtc D b(1C �) � rtc. �

Computational Capacities

In this section we explore the computational capacities of
real-time, linear-time, and unbounded time devices. The
goal is to establish a hierarchy of language families and to
compare the levels with well-known linguistic families of
the Chomsky hierarchy language family. The properness
of some inclusions are long-standing open problems with
deep relations to sequential complexity problems. In or-
der to establish the hierarchy we start at the upper and
lower end. Straightforward constructions of linearly space-
bounded Turing machines from IAs, of IAs from CAs,
and of CAs from linearly space-bounded Turing machines
show the following lemma [80].

Lemma 16 The familiesL(CA) and (IA) are identical with
the deterministic context-sensitive languages, i. e., with the
complexity class DSPACE(n).

At the lower end we consider the regular languages. Since
already the communication cell is a deterministic finite-
state machine, clearly, the regular languages are a sub-
set of Lrt(IA). In Theorem 4 the stronger result that any
real-time deterministic context-free language belongs to
Lrt(IA) has been shown. So, the properness of the follow-
ing inclusion is obvious.

Corollary 17 The regular languages are a proper subset of
Lrt(IA).

The question arises whether the real-time condition of
Theorem 4 can be relaxed in order to obtain a larger
sub-family of the context-free languages which is accepted
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by real-time IAs. The answer is negative. The follow-
ing lemma marks a sharp boundary between context-
free languages acceptable and non-acceptable by real-time
IAs. Recall that linear context-free languages are accepted
by nondeterministic one-turn pushdown automata. Since
here we deal with deterministic devices, the alternative
grammar characterization is more suitable for our pur-
poses.

A grammar G = hN,T,S,P i is said to be linear con-
text free, if the productions in P are of the forms (X! a),
(X!Ya), or (X! aY), where X,Y 2N are nonterminals
and a2T is a terminal symbol (e. g. [72]).

Lemma 18 There exists a deterministic, linear context-free
language that does not belong to Lrt(IA).

Proof Clearly, language

L D f&xk& � � �&x1?y1& � � �&yk& j k � 1; xRi D yi zi
and xi ; yi ; zi 2 fa; bg�g

is deterministic and linear context free. By Example 7 it
does not belong to Lrt(IA). �
We turn to real-time OCAs. Similar as above, the linear
context-free languages serve as sub-family of the context-
free languages which is contained in Lrt(OCA) [76].

Theorem 19 Given some linear context-free grammar, an
equivalent real-time OCA can effectively be constructed,
i. e., every linear context-free language belongs toLrt(OCA).

Proof LetG D hN; T; S; Pi be a linear context-free gram-
mar, and w D a1a2 � � � an be a word in L(G). If X )�
ai � � � a j , 1 � i < j � n, then there exists a Y 2 N such
that either (Y )� ai � � � a j�1 ^ X ) Yaj) or (Y )�

aiC1 � � � a j ^ X ) aiY). Based on this fact we define sets
of nonterminals for the given word w as follows:

N(i; i) D fX 2 N j (X ! ai) 2 Pg ; 1 � i � n
N(i; j) D N1(i; j) [ N2(i; j) ; 1 � i < j � n ;
where N1(i; j) D fX 2 N j (X ! Yaj) 2 P

^ Y 2 N(i; j � 1)g
and N2(i; j) D fX 2 N j (X ! aiY) 2 P

^ Y 2 N(i C 1; j)g :

So, the word a1 � � � an is generated by G if and only if
S2N(1,n).

A real-time OCA M D hS0; ı;#; T; Fi accepting
L(G) behaves as follows. It analyzes its input a1 � � � an in
such a way that the cells successively compute certain
sets N(i,j). In the first step, all cells 1� i�n compute
N(i,i) and (ai, ai). In subsequent steps k� 2, they com-
puteN(i, i+ k�1) and (ai, ai +k�1) if k�n+ 1�i, and keep

their state otherwise. The new values can be determined
by the state of the cell itself and the state of its right neigh-
bor, i. e., N(i, i+ k�2), (ai, ai+ k�1) and N(i+ 1, i+ k�1),
(ai + 1, ai+ k). Thus, the leftmost cell computes N(1, n) at
time step n. �
Corollary 20 The regular languages are a proper subset of
Lrt(OCA).

Again, the question arises whether the condition of Theo-
rem 19 can be relaxed in order to obtain a larger sub-family
of the context-free languages that is accepted by real-time
OCAs. Again, the answer is negative.

Lemma 21 There exists a two-linear context-free language
that does not belong to Lrt(OCA).

Proof Consider the linear language L D fanbn j n �
1g [ fanbvabn j n � 1; v 2 fa; bg�g. By counting argu-
ments, in [85] it is shown that the two-linear concatena-
tion LL is not accepted by any real-time OCA. �
Beginning with the regular languages at the bottom of the
hierarchy, next we deal with the proper supersets given by
real-time deterministic and linear context-free languages.
Since both families are known to be incomparable with re-
spect to inclusion, the hierarchy splits into two strands.
Unfortunately we have to continue with these two strands
for a moment.

Theorem 22 The families Lrt(OCA) and Lrt(IA) are in-
comparable.

Proof By Lemma 18 there exists a linear context-free
language not accepted by any real-time IA, but by Theo-
rem 19 it belongs to a real-time OCA.

Conversely, one can show that the two-linear language
of Lemma 21 belongs to Lrt(IA). �
The next step is to go beyond Lrt(OCA) and Lrt(IA).
Structurally this concerns CAs, but first we increase the
time complexity. For the proof of infinite hierarchies in
between real time and linear time, it is necessary to con-
trol the lengths of words with respect to some internal
substructures. The following notion of constructibility ex-
presses the idea that the length of a word relative to the
length of a subword should be computable. To this end,
a function f : N ! N is said to be OCA-constructible,
if there exist an -free homomorphism h and a language
L2Lrt(OCA) such that h(L) D fa f (n)�nbn j n � 1g.
Since constructible functions describe the length of the
whole word dependent on the length of a subword, it is
obvious that each constructible function must be greater
than or equal to the identity. At a glance, this notion of
constructibility might look somehow unusual or restric-
tive. However, -free homomorphisms are very powerful,
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so that the family of (in this sense) constructible functions
is very rich. Examples and the next theorem are presented
in [45].

Theorem 23 Let r1; r2 : N ! N be two increasing func-
tions. If r2 � log(r2) 2 o(r1) and r�11 is OCA constructible,
then LnCr2(n)(OCA) � LnCr1(n)(OCA).

Example 24 Let 0� p < q� 1 be two rational numbers.
Clearly, np � log(np) is of order o(nq). Moreover, the inverse
of nq is OCA-constructible. Thus, an application of Theo-
rem 23 yields the strict inclusion

LnCnp (OCA) � LnCnq (OCA) : �

Example 25 Let i < j be two positive integers, then
log[ j](n) � log[ jC1](n) is of order o(log[i](n)). Since the in-
verse of log[i](n) is OCA-constructible, we obtain the strict
inclusion

LnClog[ j](n)(OCA) � LnClog[i](n)(OCA) : �

Similar results are known for iterative arrays. The infinite
strict hierarchies in the range between real time and linear
time are established in [9]. The constructibility is defined
differently. A strictly increasing function f : N ! N is
IA-constructible, if there exists an IA with infinitely many
cells to the right, such that the leftmost cell enters some
state from a distinguished subset of states exactly at all time
steps f (i), 1� i. Example 1 shows that the function 2n is
IA-constructible.

Theorem 26 Let r1; r2 : N ! N be two increasing func-
tions. If r2 2 o(r1) and r�11 is IA-constructible, then
LnCr2(n)(IA) � LnCr1(n)(IA).

The following example is based on natural functions.

Example 27 Since the family of IA-constructible func-
tions is closed under composition and contains 2n and nk,
k� 1, the functions log[i](n), i� 1, and k

p
n are inverses of

constructible functions. Actually, the inverses of 2n and nk

are dlog(n)e and dn
1
k e but for convenience we simplify the

notation. Therefore, an application to the hierarchy theo-
rem yields

Lrt(IA) � � � � � LnClog[iC1](n)(IA) � LnClog[i](n)(IA)

� � � � � Llt(IA)

and

Lrt(IA) � � � � � L
nCn

1
iC1

(IA) � L
nCn

1
i
(IA)

� � � � � Llt(IA) ;

or in combination, e. g.,

Lrt(IA) � � � � � L
nC(log[ jC1](n))

1
iC1

(IA)

� L
nC(log[ jC1](n))

1
i
(IA) � � � � � L

nC(log[ j](n))
1

iC1
(IA)

� L
nC(log[ j](n))

1
i
(IA) � � � � � Llt(IA) :

�

Example 9 reveals a unary language not accepted by any
real-time OCA. Note that the witness language fa2n j n �
1g is not context free. Next, we generalize this observation
and show that evenmassively parallel real-timeOCAs can-
not accept more unary languages than a single determin-
istic finite-state machine [73].

Theorem 28 Each unary real-time OCA language is regu-
lar.

Proof Let A= {a} be an alphabet, L�A+ a language, and
M D hS; ı;#;A; Fi be an OCA accepting L in real time.
We construct an equivalent deterministic finite-state ma-
chine E with state set S × S, initial state s0, set of accepting
states F0, and transition function ı’ as follows.

s0 D (#; a) ; F 0 D f(s1; s2) 2 S � S j s1 2 Fg ;
ı0((s1; s2); a) D (ı(s2; s1); ı(s2; s2)) ;
for all (s1; s2) 2 S � S

In order to give evidence that the construction is correct,
we depict two correspondent computations in Fig. 8. �

Next we can join the two strands of the hierarchy again.
The superfamily is Lrt(CA).

Theorem 29 The family Lrt(OCA) is properly included in
Lrt(CA).

Proof The inclusion follows for structural reasons. For
the properness we argue as follows. Since the language
L D fa2n j n � 1g is not regular, it does not belong to
Lrt(OCA). On the other hand, Example 1 shows that it be-
longs to Lrt(CA). �

Theorem 30 The family Lrt(IA) is properly included in
Lrt(CA).

Proof First we give evidence of the inclusion
Lrt(IA)�Lrt(CA). A real-time CA can be set up in such
a way that it shifts its input successively to the left on
an additional track. So, the leftmost cell receives the in-
put symbol by symbol. Therefore, the CA can simulate
the iterative array, where the leftmost cell simulates the
communication cell.



Cellular Automata and Language Theory C 811

Cellular Automata and Language Theory, Figure 8
A finite-state machine simulating a real-time OCA on unary input

The properness of the inclusion follows by the in-
clusion Lrt(OCA)�Lrt(CA) and the incomparability of
Lrt(OCA) and Lrt(IA). �

Once we know that, in general, a real-time CA language
cannot be accepted by any real-time OCA, the question
arises of how much time is necessary for that, if possi-
ble at all. The next result gives an upper bound for the
time [17,95]. Admittedly, to this end the input has to be re-
versed. Alternatively, one could reverse the neighborhood
of the cells in an OCA. Then the rightmost cell indicates
the result of the computation. In this case the input could
remain as it is. In any case, the condition cannot be relaxed
since it is an open problemwhether the corresponding lan-
guage families are closed under reversal.

Theorem 31 A language is accepted by a linear-time OCA
if and only if its reversal is accepted by a CA in real time.

Proof LetM be a real-time CA. The cells of a linear-time
OCAM0 accepting L(M)R collect the information neces-
sary to simulate one transition of M, in an intermediate
step. Therefore, the first step ofM is simulated in the sec-
ond step ofM0. We obtain a behavior as depicted in Fig. 9.

Cellular Automata and Language Theory, Figure 9
Intermediate steps in the construction of the proof of Theo-
rem 31



812 C Cellular Automata and Language Theory

Cellular Automata and Language Theory, Figure 10
Example of a linear-time OCA simulation of a real-time CA com-
putation on reversed input

Altogether,M0 cannot simulate the last step ofM. So,
the construction has to be extended slightly. Each cell has
an extra register that is used to simulate transitions ofM
under the assumption that the cell is the leftmost one (see
Fig. 10). The transitions of the real leftmost cell now cor-
respond to the missing transitions of the previous simula-
tion. �

Climbing up one level, the hierarchy continues with two-
way linear-time devices.

Theorem 32 A language is accepted by a linear-time IA if
and only if it is accepted by a linear-time CA.

Proof The inclusion Llt(IA)�Llt(CA) follows by the
proof of Theorem 30.

Conversely, a linear-time iterative array can simulate
a linear-time CA as follows. In the first phase, it reads the
input and stores it successively in its cells. Next, the itera-
tive array starts a time optimal firing squad synchroniza-
tion algorithm (see for example [62,98]). That is, an algo-
rithm which is initiated by the communication cell, and
which synchronizes the n cells within 2n � 2 time steps.
Finally, all cells start the simulation of the CA at the same
time. Clearly, the iterative array obeys a linear time bound
if the cellular automaton does. �

Cellular Automata and Language Theory, Figure 11
Basic hierarchy of language families. A solid arrow indicates
a proper inclusion and a dashed arrow an inclusion. In addition,
the linear languages (LIN) are properly included in the context-
free languages (CFL). Deterministic and real-time deterministic
context-free languages are denoted by DCFL and DCFL�, reg-
ular languages by REG, and deterministic context-sensitive lan-
guages by DCSL

The next inclusion does not follow for structural reasons.
It is proved in [16,32] in terms of simulations of equivalent
sequential machines. The properness is an open problem.

Theorem 33 Each linear-time CA language belongs to the
family L(OCA).

The family L(OCA) is very powerful. It contains the
context-free languages as well as a PSPACE-complete lan-
guage [16,32]. Altogether we obtained the hierarchy de-
picted in Fig. 11, where the only known proper inclusions
are at the lower end. Nevertheless, even the real-timeOCA
languages contain important families, e. g., the Dyck lan-
guages [73] and the bracketed context-free languages [26].
Furthermore, the non-semilinear language f(aib)� j i �
0g [73] and the inherently ambiguous language faib j ck j
i D j or j D k for i; j; k � 1g [80] belong to Lrt(OCA).
On the other hand, the context-free languages have been
shown to be incomparable withLrt(OCA).Whether or not
they are a subset of the family Lrt(CA) is an open question
raised in [80].

We conclude this section with a real-time OCA based
characterization of the recursively enumerable languages
and its implication to incomparability [58].

Lemma 34 A language is recursively enumerable if and
only if there exists a homomorphism h and a language L0 2
Lrt(OCA) such that L D h(L0). The same holds for Lrt(IA).
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Proof It is known that the recursively enumerable lan-
guages can be represented by h(L1 \ L2), where h is a ho-
momorphism and L1, L2 are either linear context-free
languages [4] or real-time deterministic context-free lan-
guages [29]. In fact, in the latter paper deterministic
pushdown automata are constructed that use -moves.
But the constructions can easily be modified to obtain
real-time pushdown automata. So, the assertions follow
sinceLrt(OCA) contains the linear context-free languages,
Lrt(IA) contains the real-time deterministic context-free
languages, and both families are closed under intersection
(Theorem 39). �
The homomorphic characterization of the recursively enu-
merable languages reveals the following general incompa-
rability result.

Theorem 35 Both families Lrt(OCA) and Lrt(IA) are in-
comparable to each language family L that contains the
context-free languages, is itself properly contained in the re-
cursively enumerable languages, and is closed under homo-
morphism.

Proof Since there is a context-free language not belong-
ing to Lrt(OCA), we obtain L 6�Lrt(OCA). Conversely, if
Lrt(OCA)�L, then the recursively enumerable languages
are a subset ofL by Lemma 34. This contradicts the proper
containment in the recursively enumerable languages. The
same argumentation applies to Lrt(IA). �
Example 36 The families Lrt(OCA) and Lrt(IA) are in-
comparable to the languages of indexed grammars, cer-
tain grammars with regulated rewriting, certain contextual
grammars, and certain Lindenmayer systems, e. g., ET0L
systems. �

Closure Properties

Closure properties of families of formal languages indicate
their robustness under certain operations. A family of lan-
guages is closed under some operation, if any application
of the operation on languages from the family yields again
a language from the family. It is effectively closed if the re-
sult of the operation can be constructed from the given
language(s). The knowledge of closure properties often re-
veals insights in particular features, structures, and capa-
bilities. Moreover, positive closure properties are a use-
ful tool for modular constructions and decompositions in
a natural way. Negative properties may serve, for exam-
ple, as valuable basis for extensions. That is, for building
the smallest family of languages which is closed under the
operation and contains the family in question. In any case
closure properties are filigree tools for dealing with lan-
guage families.

Boolean Operations

The operations union, intersection, complementation and
set difference are commonly called Boolean operations or
elementary operations.

For deterministic devices, the closure under comple-
mentation is often shown by interchanging accepting and
non-accepting states. But, in general, this requires halting
computations.

Theorem 37 For X 2 fCA;OCA; IAg, the families Lrt(X)
and Llt(X) are effectively closed under complementation.

Proof We show the closure exemplarily for linear-time
OCAs. The other proofs are similar. The reason that the
complementary device cannot be constructed by simply
interchanging accepting and non-accepting states is that
an input is accepted when the leftmost cell enters an ac-
cepting state at some arbitrary time step. So, in general, the
leftmost cell will enter accepting as well as non-accepting
states during a computation. To cope with this problemwe
modify a given linear-time OCAM in the following way.
At initial time a signal is emitted by the rightmost cell. The
signal moves on an extra track with speed 1

2 to the left. It
will arrive at the leftmost cell at twice real time, i. e., linear
time. This is the time step at which we wish to make the
final decision whether to accept or to reject the input. To
this end, the leftmost cell has to remember if it has entered
an accepting state at some time before. So, we use a copy
S0 of the state set S ofM, and modify the local transition
function to drive the leftmost cell into a state of S0 when
it enters an accepting state. Subsequently, the normal be-
havior of the leftmost cell is simulated, except that states
of S0 are used instead of states of S. Now the modified au-
tomatonM0 accepts input if and only if the leftmost cell
is in some state of S0 when the signal arrives. In order to
accept the complement of L(M) =L(M0), it suffices to let
the automaton accept input if and only if the leftmost cell
is in some state of S when the signal arrives. �

Devices without any time bounds are, in fact, exponen-
tially time bounded due to the space limitation.

Lemma 38 For X 2 {CA, OCA, IA}, the families L(X) are
effectively closed under complementation.

Proof The construction of Theorem 37 is modified as fol-
lows. Some device in question with n cells and state set S
may run through atmost |S|n different configurations until
its behavior becomes cyclic. So, it suffices to check whether
the input is accepted during the first |S|n time steps. As
discussed briefly in Sect. “Cellular Language Acceptors”,
exponential time complexities are honest. That is, the left-
most cell can recognize the time step |S|n. To this end, an
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|S|ary counter is set up on an extra track. The rightmost
cell simulates the least significant digit and adds one to the
counter at every time step. The neighboring cell to the left
observes when a carry-over appears, increases its own digit
and so on. The time step at which the first carry-over ap-
pears in the leftmost cell is the desired one. �
Now we turn to intersection, union, and set difference.

Theorem 39 For X 2 fCA;OCA; IAg, the familiesLrt(X),
Llt(X), and (X) are effectively closed under intersection,
union, and set difference.

Proof In order to prove the closures, the well-known
two-track technique is applicable. That is, on two dif-
ferent tracks acceptors for the languages in question are
simulated independently of each other. By the same con-
struction as in the previous proof, the leftmost cell can
remember whether the single tracks accept or not. The
accepting states are composed by the accepting and non-
accepting components for the single tracks in the usual
way. For example, to show intersection both components
have to be accepting ones. �

Reversal

The closure under reversal is of crucial importance. It
is an open problem for Lrt(CA) and, equivalently, for
Llt(OCA). Moreover, it is linked with the open closure
property under concatenation for the same family and,
hence, with the question whether linear-time CAs are
more powerful than real-time CAs. So, it remains open
whether the computational capacities of CAs differ if the
rightmost or the leftmost cell indicates acceptance.

Theorem 40 The family Lrt(OCA) is effectively closed un-
der reversal.

Proof LetM be some real-time OCA. In order to obtain
a real-time OCA M0 for the language L(M)R, the argu-
ments of the local transition function are interchanged.
That is, ı’(s2, s1) = s3 if ı(s1, s2) = s3. In addition, we have
to pay special attention to the boundary state. The further
construction is as in the proof of Theorem 31, with the
exception that we do not need to collect information in in-
termediate steps, since the information flow is one-way in
both devices. (see Fig. 12). �
As mentioned above, the closure under reversal can be in-
terpreted in two different ways. On one hand, one can con-
struct an OCA that accepts the reversal of a given OCA
language. On the other hand, one can construct an OCA
that accepts the same language with the rightmost cell. The
latter point of view yields immediately the closure under
reversal of two-way linear-time cellular automata.

Cellular Automata and Language Theory, Figure 12
Construction showing the closure of real-time OCA languages
under reversal

Theorem 41 The family Llt(CA) D Llt(IA) is effectively
closed under reversal.

Proof LetM be some linear-time CA. In order to obtain
a linear-time CAM0 for the language L(M)R, the first and
third arguments of the local transition function are inter-
changed. That is, ı’(s3, s2, s1) = s4 if ı(s1, s2, s3) = s4. The re-
sulting device accepts L(M)R with the rightmost cell. Then
the result is sent as a signal to the leftmost cell. Altogether,
M0 still obeys a linear time bound. �

The closure under reversal of the devices without time
bounds follows from the known closures of the charac-
terizing linguistic language family, i. e., the deterministic
context-sensitive languages DSPACE(n).

Corollary 42 The family L(CA) D L(IA) is effectively
closed under reversal.

In [16,32] unbounded time OCAs are simulated by a vari-
ant of unbounded time one-way iterative arrays and vice
versa. Moreover, it is shown that the family of accepted
languages forms an AFL, i. e., an abstract family of lan-
guages, (e. g. [72]) which is in addition closed under re-
versal.

Lemma 43 The family L(OCA) is effectively closed under
reversal.

In order to show negative closure properties it is some-
times convenient to have witness languages not belonging
to the family in question. By Example 7 the language

L D f&xk& � � �&x1?y1& � � �&yk& j k � 1; xRi D yi zi
and xi ; yi ; zi 2 fa; bg�g

is known not to belong to Lrt(IA).
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Theorem 44 The family Lrt(IA) is not closed under rever-
sal.

Proof It suffices to show that LR belongs to Lrt(IA). To
this end, a real-time deterministic pushdown automaton
accepting LR is easily constructed. Then by Theorem 4 the
containment LR 2Lrt(IA) follows. �

If the answer to the open reversal closure of Lrt(CA) is
negative, we have to deal with two different language fam-
ilies. Since the properness of the inclusion Lrt(CA) �
Llt(CA) is also open, the problem gains in importance.
A negative answer of the former problem would imply
a proper inclusion. A language L2Lrt(CA) whose rever-
sal does not belong to Lrt(CA) may serve as witness since
Llt(CA) is closed under reversal by Theorem 41. In fact,
the following stronger relation is shown in [33] by a long
proof.

Theorem 45 The family Lrt(CA) is closed under reversal
if and only if Lrt(CA) and Llt(CA) are identical.

Concatenation

Concerning the closure properties under concatenation,
the situation is similar to reversal. Either the properties
are trivial due to the characterizations by well-known
language families, or they are negative, or open prob-
lems. For devices without time bounds we have, again, the
closures of the deterministic context-sensitive languages
DSPACE(n).

Corollary 46 The family L(CA) D L(IA) is effectively
closed under concatenation.

Since any AFL is closed under concatenation and, as men-
tioned before, L(OCA) is an AFL [16,32] whose closure
properties are shown by simulations, the next lemma fol-
lows immediately.

Lemma 47 The family L(OCA) is effectively closed under
concatenation.

In order to show that Lrt(IA) is not closed under concate-
nation, once more the witness is

L D f&xk& � � �&x1?y1& � � �&yk& j k � 1; xRi D yi zi
and xi ; yi ; zi 2 fa; bg�g :

Theorem 48 The family Lrt(IA) is not closed under con-
catenation.

Proof In contrast to the assertion, assume that Lrt(IA) is
closed under concatenation. The language

L1 D f&x(&fa; bgC)k?&k y& j xR D yz; x; y; z 2 fa; bg�g

is clearly a real-time deterministic context-free and, thus,
a real-time IA language. The language

L2 D (&fa; bgC)�

is regular and, therefore, accepted by some real-time IA,
too. Due to the assumption, the language

L3 D L2L1&�

belongs also to Lrt(IA). Next, the language

L4 D f(&fa; bgC)k?(fa; bg�&)k j k � 1g

is a real-time deterministic context-free language and
therefore accepted by some real-time IA. Finally, from the
closure under intersection we obtain

L5 D L3 \ L4 2 Lrt(IA) :

However, the language L5� L contains the words used to
show L 62Lrt(IA). We conclude L5 62Lrt(IA), a contradic-
tion. �

The question whether or not the familyLrt(OCA) is closed
under concatenation was open for a long time. It has been
solved negatively in [84]. Here we utilize the language Ld
of Example 12. Recall that Ld� {0,1,(,),|}+ is the language
whose words are of the form

x(x1jy1) � � � (xn jyn)y ;

where x; xi ; y; yi 2 f0; 1g�, for 1� i�n, and (x|y) =
(xi|yi), for at least one i2 {1, . . . , n}.

The following example will be helpful.

Example 49 The language Lc D fw �w j w 2 f0; 1gCg is
a real-time OCA language.

An acceptor for Lc has several tracks. On one track the
input is preserved. On two different tracks the input is suc-
cessively shifted to the left. The shifting is in such a way
that a symbol moves to the left one cell per time step un-
til it passes through the center cell with input �. Subse-
quently, it moves to the left every other time step. In order
to achieve this slow-down, the second track is used. Sym-
bols are received in the first register, then shifted to the
second one and, finally, send to the left neighbor. In addi-
tion, at initial time a signal is emitted at the right border.
When the signal has passed through the center cell, it starts
to compare the original input symbol with the symbol to
be shifted out of the cell next.

Let the input be am � � � a1 � a0m � � � a01. At time step
m+ 1 + i, 1� i�m, the signal arrives in the cell with input
ai. The symbol a0i takesm+ 1�i time steps to arrive at the
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center, and is to be shifted out of the cell carrying the orig-
inal input ai at time m+ 1�i+2i. So, the signal compares
a0i with ai as required. �

Theorem50 The familyLrt(OCA) is not closed under con-
catenation.

Proof Consider the language L1 whose words are of the
form

x(x1jy1) � � � (xnjyn)(xj;

where x; xi ; yi 2 f0; 1g�, for 1� i�n.
Similar to Example 49 we obtain a simple construction

of a real-time OCA accepting L1. For symmetry reasons
the language L2 whose words are of the form

y)(x1jy1) � � � (xn jyn)y ;

where y; xi ; yi 2 f0; 1g�, for 1� i� n, is a real-time OCA
language, too.

However, the concatenation L1L2 equals Ld , which
does not belong to Lrt(OCA). �

The question whether or not one of the families
Lrt(CA) D LR

lt (OCA) or Llt(CA) D Llt(IA) is closed un-
der concatenation is another famous open problem in this
field. Nevertheless, it is shown in [33] that the closure of
Lrt(CA) under reversal implies its closure under concate-
nation. Since in this case we obtain Lrt(CA) =Llt(CA), the
family of linear-time CA languages were also closed under
concatenation.

Theorem 51 If the familyLrt(CA) is closed under reversal,
then it is closed under concatenation.

Proof If Lrt(CA) is closed under reversal, then by The-
orem 45 we have the identity Lrt(CA) =Llt(CA). So, it
suffices to construct a linear-time CA M for the con-
catenation of two real-time CA languages L1 and L2. By
the closure under reversal, Theorem 31, and the speed-
up theorems, there are 2n-time OCAsM1 andM2 for LR1
and L2.

During a first phase, automatonM reverses its input,
say a1 � � � an, on an extra track. This takes n time steps.

During a second phase, automaton M simulates au-
tomatonM1 on an � � � a1 andM2 on a1 � � � an in parallel.
When some cell enters an accepting state during the sim-
ulations, the cell is marked on the corresponding track. If
a cell at position n+ 1�i carrying the input symbol ai is
marked by the simulation of M1, we have ai � � � a1 2 LR1
and, thus, a1 � � � ai 2 L1. If a cell at position i carrying the
input symbol ai is marked by the simulation of M2, we
have ai � � � an 2L2. So, the input a1 � � � an belongs to the

Cellular Automata and Language Theory, Table 1
Summary of closure properties. Concatenation REG denotes the
concatenation with regular languages at the right, REG concate-
nation at the left, hom denotes homomorphisms, gsm general-
ized sequential machine mappings, and inj. length-pres. abbre-
viates injective length-preserving. A+ indicates closure, a�non-
closure, and a question mark an open problem

Lrt
(OCA)

Lrt
(IA)

Lrt
(CA)

Llt
(CA)

L
(OCA)

L
(CA)

[,\ + + + + + +
complementation,� + + + + + +
reversal + � ? + + +
concatenation � � ? ? + +
�-free iteration � � ? ? + +
concatenation REG + + + ? + +
REG concatenation + � ? ? + +
marked concatenation + + + + + +
marked �-free iteration + + + + + +
hom�1 + + + + + +
deterministic gsm�1 + + + + + +
gsm�1 � ? ? ? + +
inj. length-pres. hom + + + + L2 +
�-free hom � � ? ? + +
�-free gsm � � ? ? + +
�-free substitution � � ? ? + +
hom � � � � � �

concatenation L1 L2 if and only ifM1 marks a cell at posi-
tion n+ 1�i andM2 a cell at position i+ 1, for 1� i <n. In
order to check this condition,M reverses the result of the
simulation ofM1. Now a cell at position i is marked if and
only if previously a cell at position n+ 1�i was marked.
Therefore, it suffices to verify by a signal whether two ad-
jacent cells are marked. �

The concatenation closure for unary real-time CA lan-
guages has been solved in the affirmative [33].

Table 1 summarizes some closure properties of the lan-
guage families in question.

Decidability Problems

It is well known that all nontrivial decidability prob-
lems for Turingmachines are undecidable [69]. Moreover,
many of them are not even semidecidable, e. g., neither
finiteness nor infiniteness. Now we turn to explore unde-
cidable properties for cellular automata and iterative ar-
rays. Most of the early results are shown in [73] by reduc-
tions of the the Post Correspondence Problem. In terms
of trellis automata the undecidability of emptiness, equiv-
alence, and universality is derived in [22]. Here we present
improved results that show the non-semidecidability of the
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properties. Almost all results in this section are obtained
by Andreas Malcher in [58,59].

In [30] large Turing machine computations have been
encoded in small grammars. These encodings and variants
thereof are of tangible advantage for our purposes. To this
end, we consider valid computations of Turing machines.
Roughly speaking, these are histories of accepting Turing
machine computations. It suffices to consider determinis-
tic Turing machines with a single tape and a single read-
write head. Without loss of generality and for technical
reasons, one can assume that any accepting computation
has at least three and, in general, an odd number of steps.
Therefore, it is represented by an even number of configu-
rations. Moreover, it is assumed that the Turing machine
cannot print blanks, and that a configuration is halting if
and only if it is accepting.

Let S be the state set of some Turing machine M,
where s0 is the initial state, T \ S=; is the tape alphabet
containing the blank symbol, A�T is the input alphabet,
and F� S is the set of accepting states. Then a configura-
tion of M can be written as a word of the form T�ST�

such that t1 � � � ti s ti + 1 � � � tn is used to express thatM is
in state s, scanning tape symbol ti + 1, and t1 to tn is the
support of the tape inscription. The set of valid computa-
tions VALC(M) is now defined to be the set of words of
the form w1$w3$ � � � $w2k� 1 ¢wR

2k$ � � � $w
R
4$w

R
2 , where

wi are configurations, $ and ¢ are symbols not appearing
in wi, w1 is an initial configuration of the form s0A�,w2k
is an accepting configuration of the form T� FT�, and
wi + 1 is the successor configuration of wi, for 1� i� 2k.
The set of invalid computations INVALC(M) is the com-
plement of VALC(M) with respect to the coding alphabet
{$,¢}[T [ S. The following lemma shows some of the im-
portant properties of valid computations.

Lemma 52 LetM be some Turing machine.

1. L(M) is empty if and only if VALC(M) is empty.
2. L(M) is finite if and only if VALC(M) is finite.
3. L(M) is finite if and only if VALC(M) is context free.
4. L(M) is finite if and only if INVALC(M) is regular.
5. VALC(M) can be represented by the intersection of two

real-time deterministic, linear context-free languages,
such that both deterministic pushdown automata and
both linear context-free grammars can effectively be con-
structed fromM.

6. INVALC(M) is a linear context-free language, such that
its grammar can effectively be constructed fromM.

Proof Assertions 1 and 2 are immediate observations.
In order to show assertion 3 assume that L(M) is finite.

Then VALC(M) is finite and, clearly, context free. If con-
versely L(M) is infinite, then an application of the pump-
ing lemma shows that VALC(M) is not context free [30].
Now, assertion 4 is shown as follows. If L(M) is finite, then
VALC(M) is finite. Therefore, INVALC(M) is co-finite
and, thus, regular. Conversely, if INVALC(M) is regular,
then VALC(M) is regular since the regular languages are
closed under complementation. Therefore, VALC(M) is
context free which implies that L(M) is finite. The two
deterministic, linear context-free languages for assertion 5
are constructed in [4]. Assertion 6 has been shown in [30]
for a similar definition of invalid computations. The proof
can easily be adapted. �

Lemma 53 Let M be a Turing machine. Then both lan-
guages VALC(M) and INVALC(M) are accepted by real-
time OCAs as well as by real-time IAs.

Proof Given some Turing machine M, by Lemma 52
item 6 we can effectively construct a linear context-free
grammar for the language INVALC(M). Due to Theo-
rem 19, a real-time OCA accepting INVALC(M) can be
constructed from the grammar. Since Lrt(OCA) is effec-
tively closed under complementation, we obtain a real-
time OCA that accepts the valid computations ofM.

Similarly, by Lemma 52 item 5 we can effectively con-
struct two real-time deterministic pushdown automata
whose intersection represents the language VALC(M).
Due to Theorem 4, two real-time IAs can be constructed
from the pushdown automata. Since the family Lrt(IA)
is effectively closed under intersection and complementa-
tion, we obtain real-time IAs that accept the valid and the
invalid computations ofM. �

Now we are prepared to reduce the finiteness and infinite-
ness problems of Turing machines to some of the decid-
ability problems in question.

Theorem 54 For any language family that effectively con-
tains Lrt(OCA) or Lrt(IA), emptiness, universality, finite-
ness, infiniteness, context-freeness, and regularity are not
semidecidable.

Proof Given some Turing machineM, by Lemma 53 we
can effectively construct a real-time OCA and a real-time
IA for the language VALC(M). Therefore, by Lemma 51
item 1, if emptiness were semidecidable for real-time
OCAs or IAs, then emptiness is semidecidable for Turing
machines, too.

Since L(M) =A� if and only if the complement of
L(M) is empty, the non-semidecidability of universality
follows from the effective closure under complementation
and the non-semidecidability of emptiness.
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In the sameway as emptiness and universality the non-
semidecidability of finiteness and infiniteness follows.

Since we have constructed real-time OCAs and IAs for
INVALC(M) as well as for VALC(M), the finiteness prob-
lem for Turing machines immediately reduces to the con-
text-freeness and to the regularity problem for Lrt(OCA)
and Lrt(IA) by Lemma 52 items 3 and 4. �

Theorem 55 For any language family that effectively con-
tains Lrt(OCA) or Lrt(IA) equivalence and inclusion are
not semidecidable.

Proof It is easy to construct a real-time OCA and
a real-time IA that accept the empty language. So, the
semidecidability of equivalence would imply the semide-
cidability of emptiness. Since L(M) =L(M0) if and only
if L(M)� L(M0) and L(M0)�L(M), inclusion is not
semidecidable either. �

Next the question arises whether some structural proper-
ties of cellular language acceptors are (semi)decidable. For
example, whether or not a real-time two-way language is
a real-time one-way language.We also compare sequential
input mode and two-way information flow with parallel
input mode and one-way information flow from a decid-
ability point of view. The questions turn out to be not even
semidecidable. So the resources inherent in the structures
of cellular automata seem to be fairly different.

LetM be some Turing machine. We consider the lan-
guage

LM D fwjwj! j w 2 FVALC(M)Gg ;

where F and G are new symbols not appearing in
VALC(M), and deal with its acceptance.

Lemma 56 Given some Turing machineM, a real-time IA
accepting LM can effectively be constructed from M, i. e.,
the language LM belongs to Lrt(IA).

Proof We set B to be the alphabet of VALC(M), and rep-
resent LM as intersection of the three languages

LM;1 D fw j w 2 (FVALC(M)G)�g ;

LM;2 D fwi j w 2 FB�G; i � 2; i eveng; and
LM;3 D fwu j w 2 FB�G; u 2 (FB�G)�; jwujF D jwj!g:

Since Lrt(IA) is closed under intersection, it remains to
be shown that each of the languages is accepted by some
real-time IA. Language LM;1 is the marked iteration of
FVALC(M) followed by a single G, where G is the mark-
ing symbol. Since VALC(M) 2 Lrt(IA) and due to its clo-
sure under concatenation with single symbols and under
marked iteration [73], we obtain LM;1 2 Lrt(IA).

The copy language fvv j v 2 B�g belongs to Lrt(IA)
[19]. So, L D fvv j v 2 FB�Gg is accepted by some real-
time IA. Since Lrt(IA) is closed under marked iteration
and intersection, the languages L� and FB� G L� F B�G
as well as their intersection are accepted by some real-time
IA. Here the marking is hidden in a regular structure. The
new word starts after the second symbol G, respectively.
Clearly, the intersection equals LM;2.

The construction of a real-time IA accepting the lan-
guage LM;3 makes use of the IA-constructibility of the
factorials (cf. Example 1 and the discussion before The-
orem 26). Recall, that this means that there is an IA which
indicates by states of the leftmost cell the time steps n!, for
n� 1. For further results on IA-constructibility we refer
to [13,27,63].

Since all constructions and closures are effective, the
assertion follows. �

Lemma 57 LetM be some Turing machine. Then LM be-
longs to Lrt(OCA) if and only if L(M) is finite.

Proof We observe that a finite language is regular and
that the regular languages are accepted by real-timeOCAs.
Conversely, if L(M) is infinite, then we apply Lemma 8
in order to show LM 62Lrt(OCA). Assume the contrary,
and let p be the constant of Lemma 8. Clearly, due to
the infinity of L(M) there is some w2FVALC(M)G such
that |w|! > p|w| . We conclude w|w|! 2 LM, and the con-
ditions of Lemma 8 are met with k= |w|!. Therefore,
there is some 1� q� p|w| such that w|w|!+q 2 LM. But
|w|! < |w|!+q< (|w|+1)! and, thus, |w|!+q is not a factorial
which implies the contradiction w|w|!+q 62 LM. �

Now we may obtain the next (un)decidability result.

Theorem 58 For any language family L that effectively
contains Lrt(IA), it is not semidecidable whether L 2 L is
a real-time OCA language.

Proof If the problem in question were semidecidable,
then the finiteness for Turing machines is also semide-
cidable. To this end, given some Turing machine M we
construct a real-time IA for the language LM according
to Lemma 56. If LM is accepted by some real-time OCA,
then LM is finite by Lemma 57. This implies the finiteness
of VALC(M) and, thus, the finiteness of L(M). �

Since the families Lrt(OCA) and Lrt(IA) are incompara-
ble with respect to set inclusion, there is a natural inter-
est to know whether the incomparability is also with re-
spect to the decidability in question. Therefore, we turn
to the converse question of Theorem 58, i. e., whether it is
(semi)decidable that a real-timeOCA language is accepted
by some real-time IA. First we need some preliminaries.
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A Turing machineM is converted into a Turing ma-
chineM0 such that the input alphabetA0 ofM0 contains at
least two symbols and, furthermore,M0 accepts any input
of length n if and only if there is at least one input of length
n accepted byM. Clearly, this conversion is always effec-
tively possible. Extending a frequently used witness lan-
guage, we set

L0M D f&xk& � � �&x1?y1& � � �&yk& j k � 1; xRi D yi zi
and yi zi 2 (A0)� and xi 2 VALC(M0)Rg ;

where & and ? are new symbols not appearing in
VALC(M0).
Lemma 59 LetM be some Turing machine. Then L0M be-
longs to Lrt(IA) if and only if L(M) is finite.

Proof If L(M) is finite, then so is L(M0) and, thus,
VALC(M0)R is finite, say VALC(M0)R = {v1, v2, . . . , vr}.
A real-time deterministic pushdown automaton accept-
ing L0M has r different stack symbols representing the el-
ements in {v1, v2, . . . , vr}. It reads the input until the ? ap-
pears. For any occurring v2VALC(M0)R the correspond-
ing stack symbol is pushed onto the stack. After reading
the ?, the pushdown automaton matches each yi with the
suffix of the v2VALC(M0)R which is identified by the
symbol at the top of the stack. By Theorem 4, we obtain
L0M 2Lrt(IA).

Now let L(M) be infinite. Then L(M0), VALC(M0)R,
and L0M are infinite, as well. In order to show that in this
case L0M does not belong to Lrt(IA) we apply Lemma 6
as follows. Assume in contrast to the assertion that L0M
is accepted by some real-time IA with state set S. Every
v2VALC(M0)R has a suffix of the form $ u s0, where
s0 is the initial state and u = input(v) is the reversal of
the input. Let |u| = k. Moreover, due to the construction
ofM0, for every input word with length k there is an ele-
ment in VALC(M0)R. We denote the set of these elements
by V(k) and conclude |V(k)| = |A0|k. For two different
prefixes w=& xk & � � � & x1 ? andw0 =& x0k & � � � & x01 ?
with xi, x0i 2V(k), 1� i� k, there exists at least one
1� j� k such that xj¤ x0j. Therefore,w &j�1 s0 input(x j)R

&k�j + 1 2 L0M and w0 &j�1 s0 input(xj)R &k�j+ 1 62 L0M.
Since the number of such prefixes is jA0jk2 and |A0|� 2,
we obtain at least 2k2 different 2k-equivalence classes with
respect to L0M. On the other hand, there is a constant
p� 1 such that E(L0M,2k)� p2k. Since L(M) is infinite, we
may choose k large enough such that 2k2 > p2k , which is
a contradiction. �

Lemma 60 Given some Turing machine M, a real-time
OCA accepting L0M can effectively be constructed fromM,
i. e., the language L0M belongs to Lrt(OCA).

Proof The language L0M can be represented as
the intersection of L1 and L2, where L1 = {&xk& � � �
&x1?y1& � � � &yk& | k� 1, xRi = yi zi and xi ; yi ; zi 2 (A0)�g
and L2 D (&VALC(M0)R )�?((A0)�&)�. Since L1 is a linear
context-free language, it belongs to Lrt(OCA). The family
Lrt(OCA) contains VALC(M0), is closed under rever-
sal, marked iteration and right concatenation with regular
sets [73]. Therefore, L2 belongs toLrt(OCA), as well. From
its closure under intersection we derive L0M 2Lrt(OCA).

�

Similarly to Theorem 58 we obtain the next undecidability
of a structural property.

Theorem 61 For any language family L that effectively
contains Lrt(OCA) it is not semidecidable whether L 2 L is
a real-time IA language.

Proof If the problem in question were semidecidable,
then also the finiteness for Turing machines. To this end,
given some Turing machineM, we construct a real-time
OCA for the language L0M according to Lemma 60. If L0M
is accepted by some real-time IA, then L(M) is finite by
Lemma 59. �

In general, a family L of languages possesses a pumping
lemma in the narrow sense if for each L2L there exists
a constant n� 1 computable from L such that each z 2 L
with |z| >n admits a factorization z = uvw, where |v|� 1
and u0vi w0 2L, for infinitely many i� 0. The prefix u0 and
the suffix w0 depend on u,w and i.

Theorem 62 Any language family whose word problem
is semidecidable and that effectively contains Lrt(OCA) or
Lrt(IA) does not possess a pumping lemma (in the narrow
sense).

Proof LetM be a real-time OCA or IA and assume there
is a pumping lemma. Clearly, L(M) is infinite if and only
if it contains some w with |w| > n. So, we can semidecide
infiniteness by first computing n and then verifying for all
words longer than n whether they belong to L(M). If at
least for one word the answer is in the affirmative, then by
pumping infinitely many words belong to L(M). �

Example 63 The families Lrt(OCA) and Lrt(IA) it-
self as well as, e. g., the families Lrt(CA), Llt(OCA),
Llt(CA) =Llt(IA), and L(CA) =L(IA) =DSPACE(n) do
not possess a pumping lemma. �

Theorem 64 There is no minimization algorithm convert-
ing some CA, OCA or IA with arbitrary time complexity to
an equivalent automaton of the same type with a minimal
number of states.
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Proof For a given input alphabet A, we consider a mini-
mal CA or OCA accepting the empty language. It has |A|
states and no accepting states. Assume there is aminimiza-
tion algorithm. Then we can minimize an arbitrary CA
and OCA and check whether the result has |A| states and
no accepting states. In this case the accepted language is
empty. If the minimal automaton has |A| states and at least
one accepting state, there is an input such that the leftmost
cell is initially accepting. So, the input is accepted and the
accepted language is not empty. Hence emptiness is de-
cidable, which is a contradiction to Theorem 54. Similar
arguments apply for IAs. �

It remains to be mentioned that there is a nontrivial de-
cidable property of (unbounded) cellular automata. It is
known that injectivity of the global transition function is
equivalent to the reversibility of the automaton. It is shown
in [3] that global reversibility is decidable for one-dimen-
sional CAs, whereas the problem is undecidable for higher
dimensions [41].

Future Directions

The investigation of cellular language acceptors obeying
a linear space bound reveals the hierarchy of language
families in between the regular and the deterministic con-
text-sensitive languages established in Sect. “Computa-
tional Capacities” (see Fig. 11). If the space bound is omit-
ted, that is, if there is a potentially unlimited number
of cells, then computation universality is achieved by di-
rect simulation of Turing machines [78]. In particular, the
universality can be achieved in spite of additional struc-
tural and computational limitations [2,60,64,66]. Simi-
larly, some space bound supposed for cellular language ac-
ceptors does not yield to new language families. A Tur-
ing machine sweeping back and forth over the nonempty
part of the tape can simulate the parallel device obeying
the same space bound.

On the other hand, if the cellular language acceptor is
simultaneously s(n) space and t(n) time bounded, a Turing
machine simulation takes s(n) � t(n) time. A challenging
question for further investigations is to identify languages
and language classes for which homogeneously structured
massive parallelism can significantly decrease the time
complexity of sequential devices. Of particular interest are
languages which allow a maximal saving. That is, for a se-
quential time complexity t(n), the parallel time complex-
ity is bounded by t(n)/s(n), where s(n) is the parallel space
complexity. For example, in case of unary real-time lan-
guages, OCAs cannot do better than deterministic finite-
state machine. Conversely, it is well known that any one-
tape Turing machine takes at least O(n2) time to accept

the language of palindromes fw j w D wR ;w 2 fa; bg�g.
Since it is a linear context-free language, it is accepted
by some real-time OCA, achieving the maximal saving in
time.

From a more general point of view, central questions
for future studies concern the power of additional limited
resources at the disposal of time or space bounded com-
putations. For example, nondeterminism, dimensions, the
number of bits communicated to neighboring cells, or the
restriction to reversible computations, all these can be seen
as limited resources. We discuss some approaches in more
detail.

Traditionally, nondeterministic devices have been
viewed as having as many nondeterministic guesses as
time steps. The studies of this concept of unlimited non-
determinism led, for example, to the famous open LBA-
problem or the unsolved question whether or not P equals
NP. In order to gain further understanding of the nature
of nondeterminism, in [28,44] it has been viewed as an ad-
ditional limited resource. In [11,46,52] cellular automata
started to be considered from this point of view.

In classical computations the states of the neighbor-
ing cells are communicated in one time step. That is, the
number of bits exchanged is determined by the num-
ber of states. A natural and interesting restriction is to
limit the number of bits to some constant being inde-
pendent of the number of states. Iterative arrays with re-
stricted inter-cell communication have been investigated
in [93,94], where algorithmic design techniques for se-
quence generation are shown. In particular, several impor-
tant infinite, non-regular sequences such as exponential or
polynomial, Fibonacci and prime sequences can be gener-
ated in real time. Connectivity recognition problems are
dealt with in [92], whereas in [99] the computational ca-
pacity of one-way cellular automata with restricted inter-
cell communication is considered. First results concern-
ing formal language aspects of IAs with restricted inter-cell
communication are shown in [53,54].

Finally, we turn to reversibility. Reversibility in the
context of computing devices means that deterministic
computations are also backward deterministic. Roughly
speaking, in a reversible device no information is lost and
every configuration occurring in any computation has at
most one predecessor. Many different formal models have
been studied in connection with reversibility. An early re-
sult on general reversible CAs is the possibility to make
any CA, possibly irreversible, reversible by increasing the
dimension. In detail, in [91] it is shown that any k-dimen-
sional CA can be embedded into a (k + 1)-dimensional re-
versible CA. This result has significantly been improved by
showing how to make irreversible one-dimensional CAs
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reversible without increasing the dimension [65]. Further-
more, it is known that even reversible one-dimensional
one-way CAs are computationally universal [64,66]. These
results concern cellular automata with unbounded space.
Moreover, in order to obtain a reversible device the neigh-
borhood as well as the time complexity may be increased.
In [23] it is shown that the neighborhood of a reversible
CA is at most n�1 when the given reversible CA has n
states. Additionally, this upper bound is shown to be tight.
Cellular language acceptors with bounded space that are
reversible on the core of computation, that is, from ini-
tial configuration to the configuration given by the time
complexity, are introduced in [55,56]. At first glance, such
a setting should simplify matters. However, it is quite the
contrary, and such real-time reversibility is undecidable.
There are many properties and relations still to be discov-
ered in this setting.
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Glossary

Cellular automata Cellular Automata (CA) are discrete,
spatially explicit extended dynamic systems composed
of adjacent cells characterized by an internal state
whose value belongs to a finite set. The updating
of these states is made simultaneously according to
a common local transition rule involving only a neigh-
borhood of each cell.

Memory Standard CA are ahistoric (memoryless): i. e.,
the new state of a cell depends on the neighborhood
configuration only at the preceding time step. The
standard framework of CA can be extended by the con-
sideration of all past states (history) in the application
of the CA rules by implementing memory capabilities
in cells and links when topology is dynamic.

Definition

Cellular Automata (CA) are discrete, spatially explicit ex-
tended dynamic systems. A CA system is composed of ad-
jacent cells characterized by an internal state whose value
belongs to a finite set. The updating of these states is
made simultaneously according to a common local tran-
sition rule involving only a neighborhood of each cell.
Thus, if � (T)i is taken to denote the value of cell i at time
step T, the site values evolve by iteration of the mapping:
�
(TC1)
i D �

�
f�

(T)
j g 2Ni


, where � is an arbitrary func-

tion which specifies the cellular automaton rule operating
onNi , i. e. the set of cells in the neighborhood of the cell i.
Last but not least, standard CA are ahistoric (memoryless):
i. e., the new state of a cell depends on the neighborhood
configuration only at the preceding time step.

The standard framework of CA can be extended
by the consideration of all past states (history) in the
application of the CA rules by implementing mem-
ory capabilities in cells: � (TC1)

i D �
�
fs(T)j g 2Ni


, with

s(T)j D s
�
�
(1)
j ; : : : ; �

(T�1)
j ; �

(T)
j

being a state function of

the series of states of the cell j up to time-step T. Thus,
in CA with memory here: while the transition functions '
of the CA remain unaltered, historic memory of all past it-
erations is retained by featuring each cell by a summary of
its past states.
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Cellular Automata with Memory, Figure 1
The speed of light starting from a single active cell

The memory mechanism considered here is differ-
ent from that of other CA with memory reported in
the literature (e. g., p. 7 in [1], p. 43 in [35], p. 118
in [56]). Typically, these are higher-order-in-time rules
that incorporate memory into the transition rule, deter-
mining the new configuration in terms of the config-
urations at previous time-steps. Thus, in second order
in time rules: � (TC1)

i D ˚
�
f�

(T)
j g 2Ni ; f�

(T�1)
j g 2Ni


.

CA with memory in cells are cited in [58], but just to state
that “CA with memory in cells would result in a qualita-
tively different behavior”. Some authors [55], define rules
withmemory as those with dependence in � on the state of
the cell to be updated. So, one-dimensional rules with no
memory, take the form: � (TC1)

i D �
�
�
(T)
i�1; �

(T)
iC1

. Our use

of the term memory is not any of these.

Introduction

As a simple example, in the two-dimensional, two-state
automaton labeled ahistoric in Fig. 1, a cell becomes (or re-
mains) alive if any cell in its nearest neighborhood is alive,
but becomes (or remains) dead on the contrary case. The
initial single perturbation in Fig. 1 spreads as fast as possi-
ble, i. e. at the speed of light.

The lower series of patterns in Fig. 1 shows the effect of
featuring cells by theirmost frequent state, i. e.modemem-
ory: s(T)i D mode(� (1)i ; : : : ; �

(T)
i ) (with s(T)i D �

(T)
i in case

of a tie) on the speed of light. Memory has a characteristic
inertial effect.

AverageMemory

Cells can be featured by a weighted mean value of all
their previous states through powers of some parameter
˛ 2 [0; 1] acting as a memory factor. Thus, at every time-
step T, the weighted mean of the states up to T is com-
puted for every cell i:

m(T)
i (� (1)i ; : : : ; �

(T)
i ) D

�
(T)
i C

PT�1
tD1 ˛

T�t�
(t)
i

1C
PT�1

tD1 ˛
T�t

�
!
(T)
i

˝(T)

and then, the featuring states s are obtained by rounding
the m ones to 1 for m > 0:5 and to 0 for m < 0:5. If m
is exactly 0.5, then the last state is assigned (s(T)i D �

(T)
i ).

This memory mechanism is accumulative in their demand
of knowledge of past history: to calculate the memory
charge !(T)

i it is not necessary to know the whole
˚
�
(t)
i
�

series, while it can be sequentially calculated as: !(T)
i D

˛!
(T�1)
i C �

(T)
i . It is,˝(T) D (˛T � 1)/(˛ � 1).

The choice of the memory factor ˛ simulates the long-
term or remnant memory effect: the limit case ˛ D 1 cor-
responds to memory with equally weighted records (full
memory, equivalent tomode if k D 2), whereas ˛ 
 1 in-
tensifies the contribution of the most recent states and
diminishes the contribution of the past ones (short term
working memory). The choice ˛ D 0 leads to the ahistoric
model.

In the most unbalanced scenario up to T, i. e.:
�
(1)
i D � � � D �

(T�1)
i ¤ �

(T)
i , it is:

m(0; 0; : : : ; 0; 1) D
1
2
)

˛ � 1
˛T � 1

D
1
2

m(1; 1; : : : ; 1; 0) D
1
2
)

˛T � ˛

˛T � 1
D

1
2
:

Thus, memory is only operative if ˛ is greater than a criti-
cal ˛T that verifies:

˛TT � 2˛T C 1 D 0 ; (1)

in which case cells will be featured at T with state val-
ues different to the last one. Initial operative values
are: ˛3 D 0:61805, ˛4 D 0:5437. When T !1, Eq. 1
becomes: �2˛1 C 1 D 0, thus, in the k D 2 scenario,
˛-memory is not effective if ˛ � 0:5.

AWorked Example: The Parity Rule

The so-called parity rule states: cell alive if the number
of neighbors is odd, dead on the contrary case. Figure 2
shows the effect of memory on the parity rule starting from
a single live cell in the Moore neighborhood. In accor-
dance with the above given values of ˛3 and ˛4: (i) The
pattern at T D 4 is the ahistoric one if ˛ � 0:6, altered
when ˛ � 0:7, and (ii) the patterns at T D 5 for ˛ D 0:54
and ˛ D 0:55 differ.

Not low levels of memory tend to freeze the dynam-
ics since the early time-steps, e. g. over 0.54 in Fig. 2. In
the particular case of full memory small oscillators of short

� Cellular Automata with Memory, Figure 2
The 2D parity rule with memory up to T D 15
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range in time are frequently generated, such as the period-
two oscillator that appears as soon as at T D 2 in Fig. 2.
The group of evolution patterns shown in the [0.503,0.54]
interval of ˛ variation of Fig. 2, is rather unexpected to be
generated by the parity rule, because they are too sophisti-
cated for this simple rule. On the contrary, the evolution
patterns with very small memory, ˛ D 0:501, resemble
those of the ahistoric model in Fig. 2. But this similitude
breaks later on, as Fig. 3 reveals: from T D 19, the parity
rule withminimalmemory evolves producing patterns no-
tably different to the ahistoric ones. These patterns tend to
be framed in squares of size not over T � T , whereas in the
ahistoric case, the patterns tend to be framed in 2T � 2T
square regions, so even minimal memory induces a very
notable reduction in the affected cell area in the scenario of
Fig. 2. The patterns of the featured cells tend not to be far
to the actual ones, albeit examples of notable divergence
can be traced in Fig. 2. In the particular case of the mini-
mal memory scenario of Fig. 2, that of ˛ D 0:501, memory
has no effect up to T D 9, when the pattern of featured live
cells reduces to the initial one; afterward both evolutions
are fairly similar up to T D 18, but at this time step both
kinds of patterns notably differs, and since then the evo-
lution patterns in Fig. 3 notably diverge from the ahistoric
ones.

To give consideration to previous states (historic
memory) in two-dimensional CA tends to confine the dis-
ruption generated by a single live cell. As a rule, full mem-
ory tends to generate oscillators, and less historic informa-
tion retained, i. e. smaller ˛ value, implies an approach to
the ahistoric model in a rather smooth form. But the tran-
sition which decreases the memory factor from ˛ D 1:0

Cellular Automata with Memory, Figure 3
The 2D parity rule with˛ D 0:501memory starting from a single site live cell up to T D 55

(full memory) to ˛ D 0:5 (ahistoric model), is not always
regular, and some kind of erratic effect of memory can be
traced.

The inertial (or conservating) effect of memory dra-
matically changes the dynamics of the semitotalistic LIFE
rule. Thus, (i) the vividness that some small clusters ex-
hibit in LIFE, has not been detected in LIFE with mem-
ory. In particular, the glider in LIFE does not glide with
memory, but stabilizes very close to its initial position as
the tub , (ii) as the size of a configuration increases, of-
ten live clusters tend to persist with a higher number of
live cells in LIFE with memory than in the ahistoric for-
mulation, (iii) a single mutant appearing in a stable agar
can lead to its destruction in the ahistoric model, whereas
its effect tends to be restricted to its proximity with mem-
ory [26].

One-Dimensional CA Elementary rules are one-dimen-
sional, two-state rules operating on nearest neighbors. Fol-
lowing Wolfram’s notation, these rules are characterized
by a sequence of binary values (ˇ) associated with each of
the eight possible triplets

�
�
(T)
i�1; �

(T)
i ; �

(T)
iC1

:

111 110 101 100 011 010 001 000
ˇ1 ˇ2 ˇ3 ˇ4 ˇ5 ˇ6 ˇ7 ˇ8

The rules are conveniently specified by their rule num-
berR DP8

iD1 ˇi28�i . Legal rules are reflection symmetric
(ˇ5 D ˇ2; ˇ7 D ˇ4), and quiescent (ˇ8 D 0), restrictions
that leave 32 possible legal rules.
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Cellular Automata with Memory, Figure 4
Elementary, legal rules withmemory from a single site live cell

Figure 4 shows the spatio-temporal patterns of legal
rules affected by memory when starting from a single live
cell [17]. Patterns are shown up to T D 63, with the mem-
ory factor varying from 0.6 to 1.0 by 0.1 intervals, and
adopting also values close to the limit of its effectivity: 0.5.

As a rule, the transition from the ˛ D 1:0 (fully historic)
to the ahistoric scenario is fairly gradual, so that the pat-
terns becomemore expanded as less historic memory is re-
tained (smaller ˛). Rules 50, 122, 178,250, 94, and 222,254
are paradigmatic of this smooth evolution. Rules 222 and
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Cellular Automata with Memory, Figure 4
(continued)

254 are not included in Fig. 4 as they evolve as rule 94
but with the inside of patterns full of active cells. Rules
126 and 182 also present a gradual evolution, although
their patterns with high levels of memory models hardly
resemble the historic ones. Examples without a smooth ef-
fect of memory are also present in Fig. 4: (i) rule 150 is
sharply restrained at ˛ D 0:6, (ii) the important rule 54
extinguish in [0.8,0.9], but not with full memory, (iii) the

rules in the group {18,90,146,218} become extinct from
˛ D 0:501. Memory kills the evolution for these rules al-
ready at T D 4 for ˛ values over ˛3 (thus over 0.6 in
Fig. 4): after T D 3 all the cells, even the two outer cells
alive at T D 3, are featured as dead, and (iv) rule 22 be-
comes extinct for ˛ D 0:501, not in 0.507, 0.6, and 0.7,
again extinguish at 0.8 and 0.9, and finally generate an os-
cillator with full memory. It has been argued that rules
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Cellular Automata with Memory, Figure 5
Elementary, legal rules withmemory starting at random

18, 22, 122, 146 and 182 simulate Rule 90 in that their
behavior coincides when restricted to certain spatial sub-
sequences. Starting with a single site live cell, the coinci-
dence fully applies in the historic model for rules 90, 18
and 146. Rule 22 shares with these rules the extinction for
high ˛ values, with the notable exception of no extinction
in the fully historic model. Rules 122 and 182 diverge in
their behavior: there is a gradual decrease in the width of
evolving patterns as ˛ is higher, but they do not reach ex-
tinction.

Figure 5 shows the effect of memory on legal rules
when starting at random: the values of sites are initially un-
correlated and chosen at random to be 0 (blank) or 1 (gray)
with probability 0.5. Differences in patterns resulting from

reversing the center site value are shown as black pixels.
Patterns are shown up to T D 60, in a line of size 129
with periodic boundary conditions imposed on the edges.
Only the nine legal rules which generate non-periodic pat-
terns in the ahistoric scenario are significantly affected by
memory. The patterns with inverted triangles dominate
the scene in the ahistoric patterns of Fig. 5, a common ap-
pearance that memory tends to eliminate.

History has a dramatic effect on Rule 18. Even at the
low value of ˛ D 0:6; the appearance of its spatio-tem-
poral pattern fully changes: a number of isolated periodic
structures are generated, far from the distinctive inverted
triangle world of the ahistoric pattern. For ˛ D 0:7; the
live structures are fewer, advancing the extinction found in
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Cellular Automata with Memory, Figure 5
(continued)

[0.8,0.9]. In the fully historic model, simple periodic pat-
terns survive.

Rule 146 is affected by memory in much the same way
as Rule 18 because their binary codes differ only in their ˇ1
value. The spatio-temporal of rule 182 and its equivalent
Rule 146 are reminiscent, though those of Rule 182 look
like a negatives photogram of those of Rule 146.

The effect of memory on rule 22 and the complex rule
54 is similar. Their spatio-temporal patterns in ˛ D 0:6
and ˛ D 0:7 keep the essential of the ahistoric, although
the inverted triangles become enlarged and tend to be
more sophisticated in their basis. A notable discontinuity
is found for both rules ascending in the value of the mem-
ory factor: in ˛ D 0:8 and ˛ D 0:9 only a few simple struc-
tures survive. But unexpectedly, the patterns of the fully
historic scenario differ markedly from the others, showing
a high degree of synchronization.

The four remaining chaotic legal rules (90, 122, 126
and 150) show a much smoother evolution from the ahis-
toric to the historic scenario: no pattern evolves either to
full extinction or to the preservation of only a few isolated
persistent propagating structures (solitons). Rules 122 and
126, evolve in a similar form, showing a high degree of syn-
chronization in the fully historic model.

As a rule, the effect of memory on the differences in
patterns (DP) resulting from reversing the value of its ini-
tial center site is reminiscent of that on the spatio-tempo-
ral patterns, albeit this very much depends on the actual
simulation run. In the case of rule 18 for example, dam-
age is not present in the simulation of Fig. 5. The group
of rules 90, 122, 126 and 150 shows a, let us say canonical,
fairly gradual evolution from the ahistoric to the historic
scenario, so that the DP appear more constrained as more
historic memory is retained, with no extinction for any ˛
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Cellular Automata with Memory, Figure 5
(continued)

value. Figure 6 shows the evolution of the fraction �T of
sites with value 1, starting at random (�0 D 0:5). The sim-
ulation is implemented for the same rules as in Fig. 4, but
with notably wider lattice: N D 500: A visual inspection
of the plots in Fig. 6, ratifies the general features observed
in the patterns in Fig. 5 regarding density. That also stands
for damage spreading: as a rule, memory depletes the dam-
aged region.

In one-dimensional r D 2 CA, the value of a given site
depends on values of the nearest and next-nearest neigh-
bors. Totalistic r D 2 rules with memory have the form:
�
(TC1)
i D �

�
s(T)i�2 C s(T)i�1 C s(T)i C s(T)iC1 C s(T)iC2


. The ef-

fect of memory on these rules follows the way traced in the
r D 1 context, albeit with a rich casuistic studied in [14].

Probabilistic CA So far the CA considered are deter-
ministic. In order to study perturbations to deterministic

CA as well as transitional changes from one deterministic
CA to another, it is natural to generalize the determinis-
tic CA framework to the probabilistic scenario. In the ele-
mentary scenario, the ˇ are replaced by probabilities

p D P
�
�
(TC1)
i D 1

.
�
(T)
i�1; �

(T)
i ; �

(T)
iC1

:

111 110 101 100 011 010 001 000
ˇ1 ˇ2 ˇ3 ˇ4 ˇ5 ˇ6 ˇ7 ˇ8 ˇ 2 f0; 1g
p1 p2 p3 p4 p5 p6 p7 p8 p 2 [0; 1]

As in the deterministic scenario, memory can be
embedded in probabilistic CA (PCA) by featuring cells
by a summary of past states si instead of by their last
state �i : p D P

�
�
(TC1)
i D 1/s(T)i�1; s

(T)
i ; s(T)iC1


. Again, mem-

ory is embedded into the characterization of cells but
not in the construction of the stochastic transition rules,
as done in the canonical approach to PCA. We have
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Cellular Automata with Memory, Figure 6
Evolution of the density starting at random in elementary legal rules. Color code: blue! full memory, black! ˛ D 0:8, red!
ahistoric model

explored the effect of memory on three different sub-
sets

�
0; p2; 0; p4; p2; 0; p4; 0


,
�
0; 0; p3; 1; 0; p6; 1; 0


, and�

p1; p2; p1; p2; p2; 0; p2; 0

in [9].

OtherMemories

A number of average-like memory mechanisms can read-
ily be proposed by using weights different to that im-
plemented in the ˛-memory mechanism: ı(t) D ˛T�t .
Among the plausible choices of ı, we mention the weights
ı(t) D tc and ı(t) D ct , c 2 N , in which the larger the
value of c, the more heavily is the recent past taken
into account, and consequently the closer the scenario to
the ahistoric model [19,21]. Both weights allow for in-
teger-based arithmetics (à la CA) comparing 2!(T) to
2˝(T) to get the featuring states s (a clear computa-
tional advantage over the ˛-based model), and are accu-
mulative in respect to charge: !(T)

i D !
(T�1)
i C Tc�

(T)
i ,

!
(T)
i D !

(T�1)
i C cT� (T)i . Nevertheless, they share the

same drawback: powers explode, at high values of t, even
for c D 2.

Limited trailing memory would keep memory of
only the last � states. This is implemented in the con-

text of average memory as: !(T)
i D

PT
tD> ı(t)�

(t)
i , with

> D max(1; T � � C 1). Limiting the trailing memory
would approach the model to the ahistoric model (� D 1).
In the geometrically discounted method, such an effect is
more appreciable when the value of ˛ is high, whereas at
low ˛ values (already close to the ahistoric model when
memory is not limited) the effect of limiting the trail-
ing memory is not so important. In the k D 2 context,
if � D 3; provided that ˛ > ˛3 D 0:61805; the memory
mechanism turns out to be that of selecting the mode
of the last three states: s(T)i D mode

�
�
(T�2)
i ; �

(T)
i ; �

(T�1)
i


,

i. e. the elementary rule 232.
Figure 7 shows the effect of this kind of memory on

legal rules. As is known, history has a dramatic effect on
Rules 18, 90, 146 and 218 as their pattern dies out as early
as at T D 4: The case of Rule 22 is particular: two branches
are generated at T D 17 in the historic model; the patterns
of the remaining rules in the historic model aremuch rem-
iniscent of the ahistoric ones, but, let us say, compressed.
Figure 7 shows also the effect of memory on some rele-
vant quiescent asymmetric rules. Rule 2 shifts a single site
live cell one space at every time-step in the ahistoric model;
with the pattern dying at T D 4. This evolution is common
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Cellular Automata with Memory, Figure 7
Legal (first row of patterns) and quiescent asymmetric elementary rules significantly affected by themode of the three last states of
memory

to all rules that just shift a single site cell without increasing
the number of living cells at T D 2, this is the case of the
important rules 184 and 226. The patterns generated by
rules 6 and 14 are rectified (in the sense of having the lines
in the spatio-temporal pattern slower slope) bymemory in
such a way that the total number of live cells in the historic
and ahistoric spatio-temporal patterns is the same. Again,
the historic patterns of the remaining rules in Fig. 7 seem,
as a rule, like the ahistoric ones compressed [22].

Elementary rules (ER, noted f ) can in turn act as mem-
ory rules:

s(T)i D f
�
�
(T�2)
i ; �

(T)
i ; �

(T�1)
i



Figure 8 shows the effect of ER memories up to
R D 125 on rule 150 starting from a single site live cell up
to T D 13. The effect of ER memories with R > 125 on
rule 150 as well as on rule 90 is shown in [23]. In the lat-
ter case, complementary memory rules (rules whose rule
number adds 255) have the same effect on rule 90 (regard-
less of the role played by the three last states in � and
the initial configuration). In the ahistoric scenario, Rules
90 and 150 are linear (or additive): i. e., any initial pat-
tern can be decomposed into the superposition of patterns
from a single site seed. Each of these configurations can be
evolved independently and the results superposed (mod-
ule two) to obtain the final complete pattern. The additiv-
ity of rules 90 and 150 remains in the historic model with
linear memory rules.

Figure 9 shows the effect of elementary rules on the 2D
parity rule with von Neumann neighborhood from a singe

site live cell. This figure shows patterns from T D 4, being
the three first patterns: . The consideration of CA
rules as memory induces a fairly unexplored explosion of
new patterns.

CAwith Three Statesk

This section deals with CA with three possible values
at each site (k D 3), noted f0; 1; 2g, so the rounding
mechanism is implemented by comparing the unrounded
weighted mean m to the hallmarks 0.5 and 1.5, assigning
the last state in case on an equality to any of these values.
Thus,

sT D 0 if mT < 0:5; sT D 1 if 0:5 < mT < 1:5; sT D 2

if mT > 1:5; and sT D �T if mT D 0:5 or mT D 1:5 :

In the most unbalanced cell dynamics, historic mem-
ory takes effect after time step T only if ˛ > ˛T , with
3˛TT � 4˛T C 1 D 0, which in the temporal limit becomes
�4˛� C 1 D 0 , ˛� D 0:25. In general, in CA with
k states (termed from 0 to k � 1), the characteristic equa-
tion at T is (2k � 3)˛TT � (2k � 1)˛T C 1 D 0, which
becomes �2(k � 1)˛� C 1 D 0 in the temporal limit. It is
then concluded that memory does not affect the scenario
if ˛ � ˛�(k) D 1/(2(k � 1)).

We study first totalistic rules: � (TC1)
i D �

�
�
(T)
i�1 C

�
(T)
i C �

(T)
iC1

, characterized by a sequence of ternary val-

ues (ˇs) associated with each of the seven possible val-
ues of the sum (s) of the neighbors: (ˇ6; ˇ5; ˇ4; ˇ3; ˇ2;
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Cellular Automata with Memory, Figure 8
The Rule 150with elementary rules up to R D 125 as memory
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Cellular Automata with Memory, Figure 9
The parity rule with elementary rules as memory. Evolution from T D 4� 15 in the Neumann neighborhood starting from a singe
site live cell

ˇ1; ˇ0), with associated rule number R D P6
sD0 ˇs3

s 2

[0; 2186]:
Figure 10 shows the effect of memory on quiescent

(ˇ0 D 0) parity rules, i. e. rules with ˇ1; ˇ3 and ˇ5 non
null, and ˇ2 D ˇ4 D ˇ6 D 0: Patterns are shown up to
T D 26. The pattern for ˛ D 0:3 is shown to test its prox-
imity to the ahistoric one (recall that if ˛ � 0:25 mem-
ory takes no effect). Starting with a single site seed it can
be concluded, regarding proper three-state rules such as
those in Fig. 10, that: (i) as an overall rule the patterns be-
come more expanded as less historic memory is retained
(smaller ˛). This characteristic inhibition of growth effect
of memory is traced on rules 300 and 543 in Fig. 10, (ii)
the transition from the fully historic to the ahistoric sce-
nario tends to be gradual in regard to the amplitude of the
spatio-temporal patterns, although their composition can
differ notably, even at close ˛ values, (iii) in contrast to
the two-state scenario, memory fires the pattern of some
three-state rules that die out in the ahistoric model, and

no rule with memory dies out. Thus, the effect of mem-
ory on rules 276, 519, 303 and 546 is somewhat unex-
pected: they die out at ˛ � 0:3 but at ˛ D 0:4 the pattern
expands, the expansion being inhibited (in Fig. 10) only at
˛ � 0:8. This activation under memory of rules that die
at T D 3 in the ahistoric model is unfeasible in the k D 2
scenario.

The features in the evolving patterns starting from
a single seed in Fig. 10 are qualitatively reflected starting at
random as shown with rule 276 in Fig. 11, which is also ac-
tivated (even at ˛ D 0:3) when starting at random. The ef-
fect of average memory (˛ and integer-based models, un-
limited and limited trailing memory, even � D 2) and that
of themode of the last three states has been studied in [21].

When working with more than three states, it is an in-
herent consequence of averaging the tendency to bias the
featuring state to the mean value: 1. That explains the red-
shift in the previous figures. This led us to focus on a much
more fair memory mechanism: themode, in what follows.
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Cellular Automata with Memory, Figure 10
Parity k D 3 rules starting from a single � D 1 seed. The red cells are at state 1, the blue ones at state

Cellular Automata with Memory, Figure 11
The k D 3;R D 276 rule starting at random

Mode memory allows for manipulation of pure symbols,
avoiding any computing/arithmetics.

In excitable CA, the three states are featured: rest-
ing 0, excited 1 and refractory 2. State transitions
from excited to refractory and from refractory to rest-
ing are unconditional, they take place independently
on a cell’s neighborhood state: � (T)i D 1! �

(TC1)
i D 2,

�
(T)
i D 2! �

(TC1)
i D 0. In [15] the excitation rule adopts

a Pavlovian phenomenon of defensive inhibition: when
strength of stimulus applied exceeds a certain limit the
system ‘shuts down’, this can be naively interpreted as an
inbuilt protection of energy loss and exhaustion. To sim-
ulate the phenomenon of defensive inhibition we adopt
interval excitation rules [2], and a resting cell becomes
excited only if one or two of its neighbors are excited:
�
(T)
i D 0! �

(T)
i D 1 if

P
j2Ni

�
�
(T)
j D 1


2 f1; 2g [3].
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Cellular Automata with Memory, Figure 12
Effect of modememory on the defensive inhibition CA rule

Figure 12 shows the effect of mode of the last three
time steps memory on the defensive-inhibition CA rule
with theMoore neighborhood, starting from a simple con-
figuration. At T D 3 the outer excited cells in the actual
pattern are not featured as excited but as resting cells
(twice resting versus one excited), and the series of evolv-
ing patterns with memory diverges from the ahistoric evo-
lution at T D 4, becoming less expanded. Again, memory
tends to restrain the evolution.

The effect of memory on the beehive rule, a totalistic
two-dimensional CA rule with three states implemented in
the hexagonal tessellation [57] has been explored in [13].

Reversible CA

The second-order in time implementation based on the
subtraction modulo of the number of states (noted �):
�
(TC1)
i D �(� (T)j 2Ni )� � (T�1)i , readily reverses as:
�
(T�1)
i D �(� (T)j 2 Ni ) � �

(TC1)
i . To preserve the re-

versible feature, memory has to be endowed only in the
pivotal component of the rule transition, so: � (T�1)i D

�(s(T)j 2Ni)� �
(TC1)
i .

For reversing from T it is necessary to know not only
�
(T)
i and � (TC1)

i but also !(T)
i to be compared to˝(T), to

obtain:

s(T)i D

8
ˆ̂<

ˆ̂
:

0 if 2!(T)
i < ˝(T)

�
(TC1)
i if 2!(T)

i D ˝(T)

1 if 2!(T)
i > ˝(T) :

Then to progress in the reversing, to obtain s(T�1)i D

round
�
!
(T�1)
i /˝(T � 1)


, it is necessary to calculate

!
(T�1)
i D

�
!
(T)
i � �

(T)
i

/˛. But in order to avoid di-

viding by the memory factor (recall that operations with
real numbers are not exact in computer arithmetic), it is
preferable to work with � (T�1)i D !

(T)
i ��

(T)
i , and to com-

pare these values to � (T � 1) D
PT�1

tD1 ˛
T�t . This leads

to:

s(T�1)i D

8
ˆ̂<

ˆ̂:

0 if 2� (T�1)i < � (T � 1)

�
(T)
i if 2� (T�1)i D � (T � 1)

1 if 2� (T�1)i > � (T � 1) :

In general: � (T��)i D �
(T��C1)
i �˛��1�

(T��C1)
i ; � (T � �)

D � (T � � C 1) � ˛��1 .
Figure 13 shows the effect of memory on the reversible

parity rule starting from a single site live cell, so the sce-
nario of Figs. 2 and 3, with the reversible qualification. As
expected, the simulations corresponding to ˛ D 0:6 or be-
low shows the ahistoric pattern at T D 4, whereasmemory
leads to a pattern different from ˛ D 0:7, and the pattern
at T D 5 for ˛ D 0:54 and ˛ D 0:55 differ. Again, in the
reversible formulation with memory, (i) the configuration
of the patterns is notably altered, (ii) the speed of diffusion
of the area affected are notably reduced, even by minimal
memory (˛ D 0:501), (iii) high levels of memory tend to
freeze the dynamics since the early time-steps.

We have studied the effect of memory in the re-
versible formulation of CA in many scenarios, e. g., total-
istic, k D r D 2 rules [7], or rules with three states [21].

Reversible systems are of interest since they preserve
information and energy and allow unambiguous back-
tracking. They are studied in computer science in order to
design computers which would consume less energy [51].
Reversibility is also an important issue in fundamental
physics [31,41,52,53]. Geraldt ’t Hooft, in a speculative pa-
per [34], suggests that a suitably defined deterministic, lo-
cal reversible CA might provide a viable formalism for
constructing field theories on a Planck scale. Svozil [50]
also asks for changes in the underlying assumptions of
current field theories in order to make their discretization
appear more CA-like. Applications of reversible CA with
memory in cryptography are being scrutinized [30,42].

Heterogeneous CA

CA on networks have arbitrary connections, but, as proper
CA, the transition rule is identical for all cells. This gener-
alization of the CA paradigm addresses the intermediate
class between CA and Boolean networks (BN, considered
in the following section) in which, rules may be different
at each site.

In networks two topological ends exist, random and
regular networks, both display totally opposite geometric
properties. Random networks have lower clustering co-
efficients and shorter average path length between nodes
commonly known as small world property. On the other
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Cellular Automata with Memory, Figure 13
The reversible parity rule with memory

hand, regular graphs, have a large average path length be-
tween nodes and high clustering coefficients.

In an attempt to build a network with characteristics
observed in real networks, a large clustering coefficient and
a small world property, Watts and Strogatz (WS, [54]) pro-
posed a model built by randomly rewiring a regular lattice.
Thus, theWSmodel interpolates between regular and ran-
dom networks, taking a single new parameter, the random
rewiring degree, i. e.: the probability that any node redi-
rects a connection, randomly, to any other. TheWSmodel
displays the high clustering coefficient common to regu-

lar lattices as well as the small world property (the small
world property has been related to faster flow in the in-
formation transmission). The long-range links introduced
by the randomization procedure dramatically reduce the
diameter of the network, even when very few links are
rewired.

Figure 14 shows the effect of memory and topology on
the parity rule with four inputs in a lattice of size 65 � 65
with periodic boundary conditions, starting at random.
As expected, memory depletes the Hamming distance be-
tween two consecutive patterns in relation to the ahistoric
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Cellular Automata with Memory, Figure 14
The parity rule with four inputs: effect of memory and random rewiring. Distance between two consecutive patterns in the ahistoric
model (red) andmemory models of˛ levels: 0.6,0.7.0.8, 0.9 (dotted) and 1.0 (blue)

model, particularly when the degree of rewiring is high.
With full memory, quasi-oscillators tend to appear. As
a rule, the higher the curve the lower the memory factor ˛,
but in the particular case of a regular lattice (and lattice
with 10% of rewiring), the evolution of the distance in the
full memory model turns out rather atypical, as it is main-
tained over some memory models with lower ˛ parame-
ters.

Figure 15 shows the evolution of the damage spread
when reversing the initial state of the 3 � 3 central cells
in the initial scenario of Fig. 14. The fraction of cells
with the state reversed is plotted in the regular and 10%
of rewiring scenarios. The plots corresponding to higher
rates of rewiring are very similar to that of the 10% case
in Fig. 15. Damage spreads fast very soon as rewiring is
present, even in a short extent.

Boolean Networks

In Boolean Networks (BN,[38]), instead of what happens
in canonical CA, cells may have arbitrary connections and
rules may be different at each site. Working with totalistic
rules: � (TC1)

i D �i(
P

j2Ni
s(T)j ).

The main features on the effect of memory in Fig. 14
are preserved in Fig. 16: (i) the ordering of the historic net-
works tends to be stronger with a high memory factor,

(ii) with full memory, quasi-oscillators appear (it seems
that full memory tends to induce oscillation), (iii) in the
particular case of the regular graph (and a lesser extent
in the networks with low rewiring), the evolution of the
full memory model turns out rather atypical, as it is main-
tained over some of those memory models with lower ˛
parameters. The relative Hamming distance between the
ahistoric patterns and those of historic rewiring tends to be
fairly constant around 0.3, after a very short initial transi-
tion period.

Figure 17 shows the evolution of the damage when re-
versing the initial state of the 3 � 3 central cells. As a rule
in every frame, corresponding to increasing rates of ran-
dom rewiring, the higher the curve the lower the memory
factor ˛. The damage vanishing effect induced by memory
does result apparently in the regular scenario of Fig. 17,
but only full memory controls the damage spreading when
the rewiring degree is not high, the dynamics with the
remaining ˛ levels tend to the damage propagation that
characterizes the ahistoric model. Thus, with up to 10%
of connections rewired, full memory notably controls the
spreading, but this control capacity tends to disappear
with a higher percentage of rewiring connections. In fact,
with rewiring of 50% or higher, neither full memory seems
to be very effective in altering the final rate of damage,
which tends to reach a plateau around 30% regardless of
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Cellular Automata with Memory, Figure 15
Damage up to T D 100 in the parity CA of Fig. 14

Cellular Automata with Memory, Figure 16
Relative Hamming distance between two consecutive patterns. Boolean network with totalistic, K D 4 rules in the scenario of Fig. 14

scenario. A level notably coincident with the percolation
threshold in site percolation in the simple cubic lattice,
and the critical point for the nearest neighbor Kaufmann
model on the square lattice [49]: 0.31.

Structurally Dynamic CA

Structurally dynamic cellular automata (SDCA) were sug-
gested by Ilachinski and Halpern [36]. The essential new
feature of this model was that the connections between
the cells are allowed to change according to rules simi-
lar in nature to the state transition rules associated with
the conventional CA. This means that given certain con-
ditions, specified by the link transition rules, links between
rules may be created and destroyed; the neighborhood of
each cell is dynamic, so, state and link configurations of an
SDCA are both dynamic and continually interacting.

If cells are numbered 1 to N, their connectivity is spec-
ified by an N � N connectivity matrix in which i j D
1 if cells i and j are connected; 0 otherwise. So, now:
N (T)

i D f j/(T)i j D 1g and � (TC1)
i D �(� (T)j 2N

(T)
i ). The

geodesic distance between two cells i and j, ıi j , is de-
fined as the number of links in the shortest path be-
tween i and j. Thus, i and j are direct neighbors if
ıi j D 1, and are next-nearest neighbors if ıi j D 2, so
NN (T)

i D f j/ı
(T)
i j D 2g. There are two types of link tran-

sition functions in an SDCA: couplers and decouplers, the
former add new links, the latter remove links. The cou-
pler and decoupler set determines the link transition rule:

(TC1)
i j D  (l (T)i j ; �

(T)
i ; �

(T)
j ).

Instead of introducing the formalism of the SDCA, we
deal here with just one example in which the decoupler
rule removes all links connected to cells in which both val-
ues are zero ((T)i j D 1! 

(TC1)
i j D 0 iff � (T)i C �

(T)
j D 0)
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Cellular Automata with Memory, Figure 17
Evolution of the damage when reversing the initial state of the 3� 3 central cells in the scenario of Fig. 16

Cellular Automata with Memory, Figure 18
The SDCA described in text up to T D 6

and the coupler rule adds links between all next-near-
est neighbor sites in which both values are one ((T)i j D

0 ! 
(TC1)
i j D 1 iff � (T)i C �

(T)
j D 2 and j 2 NN (T)

i ).
The SDCA with these transition rules for connections, to-
gether with the parity rule for mass states, is implemented
in Fig. 18, in which the initial Euclidean lattice with four
neighbors (so the generic cell � has eight next-nearest
neighbors: ) is seeded with a 3 � 3 block of ones. After
the first iteration, most of the lattice structure has decayed
as an effect of the decoupler rule, so that the active value
cells and links are confined to a small region. After T D 6,
the link and value structures become periodic, with a peri-
odicity of two.

Memory can be embedded in links in a similar man-
ner as in state values, so the link between any two cells is
featured by a mapping of its previous link values: l (T)i j D

l((1)i j ; : : : ; 
(T)
i j ). The distance between two cells in the his-

toric model (di j), is defined in terms of l instead of  val-
ues, so that i and j are direct neighbors if di j D 1, and are
next-nearest neighbors if di j D 2. Now: N (T)

i D f j/d
(T)
i j D

1g, and NN (T)
i D f j/d

(T)
i j D 2g. Generalizing the approach

to embedded memory applied to states, the unchanged
transition rules (� and  ) operate on the featured link
and cell state values: � (TC1)

i D �(s(T)j 2 Ni); (TC1)
i j D

 (l (T)i j; s(T)i ; s(T)j ).
Figure 19 shows the effect of ˛-memory on the cellular

automaton above introduced starting as in Fig. 18. The ef-
fect of memory on SDCA in the hexagonal and triangular
tessellations is scrutinized in [11].

A plausible wiring dynamics when dealing with ex-
citable CA is that in which the decoupler rule removes all
links connected to cells in which both values are at refrac-
tory state ((T)i j D 1 ! 

(TC1)
i j D 0 iff � (T)i D �

(T)
j =2)

and the coupler rule adds links between all next-nearest
neighbor sites in which both values are excited ((T)i j D

0! 
(TC1)
i j D 1 iff � (T)i D �

(T)
j D 1 and j 2NN (T)

i ).
In the SDCA in Fig. 20, the transition rule for cell states

is that of the generalized defensive inhibition rule: resting
cell is excited if its ratio of excited and connected to the cell
neighbors to total number of connected neighbors lies in
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Cellular Automata with Memory, Figure 19
The SD cellular automaton introduced in text with weighted memory of factor ˛. Evolution from T D 4 up to T D 9 starting as in
Fig. 18

Cellular Automata with Memory, Figure 20
The k D 3 SD cellular automaton described in text, up to T D 4

Cellular Automata with Memory, Figure 21
The SD cellular automaton starting as in Fig. 20 at T D 20, with no memory (left) andmodememory in both cell states and links
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the interval [1/8,2/8]. The initial scenario of Fig. 20 is that
of Fig. 12 with the wiring network revealed, that of an Eu-
clidean lattice with eight neighbors, in which, the generic
cell � has 16 next-nearest neighbors: . No decoupling
is verified at the first iteration in Fig. 20, but the excited
cells generate new connections, most of them lost, together
with some of the initial ones, at T D 3. The excited cells at
T D 3 generate a crown of new connections at T D 4. Fig-
ure 21 shows the ahistoric and mode memory patterns at
T D 20. The figure makes apparent the preserving effect
of memory.

The Fredkin’s reversible construction is feasible in the
SDCA scenario extending the � operation also to links:

(TC1)
i j D  ((T)i j ; �

(T)
i ; �

(T)
j ) � 

(T�1)
i j . These automata

may be endowed with memory as: � (TC1)
i D �

�
s(T)j 2

N (T)
i

��

(T�1)
i ; 

(TC1)
i j D  

�
l (T)i j ; s

(T)
i ; s(T)j


�

(T�1)
i j [12].

The SDCA seems to be particularly appropriate for
modeling the human brain function—updating links be-
tween cells imitates variation of synaptic connections be-
tween neurons represented by the cells—in which the rele-
vant role of memory is apparent. Models similar to SDCA
have been adopted to build a dynamical network approach
to quantum space-time physics [45,46]. Reversibility is
an important issue at such a fundamental physics level.
Technical applications of SDCA may also be traced [47].
Anyway, besides their potential applications, SDCA with
memory have an aesthetic and mathematical interest on
their own [1,35]. Nevertheless, it seems plausible that fur-
ther study on SDCA (and Lattice Gas Automata with dy-
namical geometry [40]) with memory should turn out to
be profitable.

Memory in Other Discrete Time Contexts

Continuous-Valued CA

The mechanism of implementation of memory adopted
here, keeping the transition rule unaltered but applying it
to a function of previous states, can be adopted in any spa-
tialized dynamical system. Thus, historic memory can be
embedded in:

� Continuous�valued CA (or Coupled Map Lattices in
which the state variable ranges in R, and the transi-
tion rule ' is a continuous function [37]), just by con-
sidering m instead of � in the application of the up-
dating rule: � (TC1)

i D '
�
m(T)

j 2N
(T)
i

. An elementary

CA of this kind with memory would be [20]: � (TC1)
i D

1
3
�
m(T)

i�1 C m(T)
i C m(T)

iC1

.

� Fuzzy CA, a sort of continuous CA with states ranging
in the real [0,1] interval. An illustration of the effect of

memory in fuzzy CA is given in [17]. The illustration
operates on the elementary rule 90 : � (TC1)

i D
�
�
(T)
i�1 ^

(:� (T)iC1)

_ ((:� (T)i�1)^ �

(T)
iC1

, which after fuzzification

(a_b! min(1; aCb); a^b ! ab;:a! 1�a) yields:
�
(TC1)
i D �

(T)
i�1C�

(T)
iC1�2�

(T)
i�1�

(T)
iC1 ; thus incorporating

memory: � (TC1)
i D m(T)

i�1 C m(T)
iC1 � 2m(T)

i�1m
(T)
iC1.

� Quantum CA, such, for example, as the simple 1D
quantum CA models introduced in [32]:

�
(TC1)
j D

1
N1/2

�
iı� (T)j�1 C �

(T)
j C iı�� (T)jC1


;

which would become with memory [20]:

�
(TC1)
j D

1
N1/2

�
iım(T)

j�1 C m(T)
j C iı�m(T)

jC1

:

Spatial Prisoner’s Dilemma

The Prisoner’s Dilemma (PD) is a game played by two
players (A and B), who may choose either to cooperate
(C or 1) or to defect (D or 0). Mutual cooperators each
score the reward R, mutual defectors score the punish-
ment P ; D scores the temptation T against C, who scores
S (sucker’s payoff) in such an encounter. Provided that
T > R > P > S, mutual defection is the only equilibrium
strategy pair. Thus, in a single round both players are to
be penalized instead of both rewarded, but cooperation
may be rewarded in an iterated (or spatial) formulation.
The game is simplified (while preserving its essentials) if
P D S D 0:Choosing R D 1; themodel will have only one
parameter: the temptation T=b.

In the spatial version of the PD, each player occupies
at a site (i,j) in a 2D lattice. In each generation the payoff
of a given individual (p(T)i; j ), is the sum over all interactions
with the eight nearest neighbors and with its own site. In
the next generation, an individual cell is assigned the deci-
sion (d(T)i; j ) that received the highest payoff among all the
cells of its Moore’s neighborhood. In case of a tie, the cell
retains its choice. The spatialized PD (SPD for short) has
proved to be a promising tool to explain how cooperation
can hold out against the ever-present threat of exploita-
tion [43]. This is a task that presents problems in the clas-
sic struggle for survivalDarwinian framework.

When dealing with the SPD, memory can be embed-
ded not only in choices but also in rewards. Thus, in the
historic model we dealt with, at T: (i) the payoffs com-
ing from previous rounds are accumulated (� (T)

i; j ), and
(ii) players are featured by a summary of past decisions
(ı(T)i; j ). Again, in each round or generation, a given cell
plays with each of the eight neighbors and itself, the de-
cision ı in the cell of the neighborhood with the high-
est � being adopted. This approach to modeling memory
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Cellular Automata with Memory, Table 1
Choices at T D 1 and T D 2; accumulated payoffs after T D 1
and T D 2 starting from a single defector in the SPD. b > 9/8

d(1) D ı (1)

1 1 1 1 1
1 1 1 1 1
1 1 0 1 1
1 1 1 1 1
1 1 1 1 1

p(1) D 	 (1)

9 9 9 9 9
9 8 8 8 9
9 8 8b 8 9
9 8 8 8 9
9 9 9 9 9

d(2) D ı(2)
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 0 0 0 1 1
1 1 0 0 0 1 1
1 1 0 0 0 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

	 (2) = ˛p(1) + p(2)

9˛ + 9 9˛ + 9 9˛ + 9 9˛ + 9 9˛ + 9 9˛ + 9 9˛ + 9
9˛ + 9 9˛ + 8 9˛ + 7 9˛ + 6 9˛ + 7 9˛ + 8 9˛ + 9
9˛ + 9 9˛ + 9 8˛ + 5b 8˛ + 3b 8˛ + 5b 9˛ + 9 9˛ + 9
9˛ + 9 9˛ + 9 8˛ + 3b 8˛ 8˛ + 3b 9˛ + 9 9˛ + 9
9˛ + 9 9˛ + 9 8˛ + 5b 8˛ + 3b 8˛ + 5b 9˛ + 9 9˛ + 9
9˛ + 9 9˛ + 8 9˛ + 7 9˛ + 6 9˛ + 7 9˛ + 8 9˛ + 9
9˛ + 9 9˛ + 9 9˛ + 9 9˛ + 9 9˛ + 9 9˛ + 9 9˛ + 9

has been rather neglected, the usual being that of design-
ing strategies that specify the choice for every possible out-
come in the sequence of historic choices recalled [33,39].

Table 1 shows the initial scenario starting from a single
defector if 8b > 9, b > 1:125, which means that neigh-
bors of the initial defector become defectors at T D 2.

Nowak and May paid particular attention in their
seminal papers to b D 1:85, a high but not excessive

Cellular Automata with Memory, Figure 22
Frequency of cooperators (f ) with memory of the last three iterations. a starting from a single defector, b starting at random
(f (1) D 0:5). The red curves correspond to the ahistoric model, the blue ones to the full memory model, the remaining curves to
values of ˛ from 0.1 to 0.9 by 0.1 intervals, in which, as a rule, the higher the˛ the higher the f for any given T

temptation value which leads to complex dynamics. Af-
ter T D 2, defection can advance to a 5 � 5 square or be
restrained as a 3 � 3 square, depending on the compari-
son of 8˛ C 5 � 1:85 (the maximum � value of the recent
defectors) with 9˛ C 9 (the � value of the non-affected
players). As 8˛ C 5 � 1:85 D 9˛ C 9! ˛ D 0:25, i. e., if
˛ > 0:25, defection remains confined to a 3 � 3 square at
T D 3. Here we see the paradigmatic effect of memory: it
tends to avoid the spread of defection.

If memory is limited to the last three iterations: � (T)
i; j D

˛2p(T�2)i; j C˛p(T�1)i; j Cp(T)i; j ; m
(T)
i; j D

�
˛2d(T�2)i; j C˛d(T�1)i; j C

d(T)i; j

/(˛2C˛C 1);) ı

(T)
i; j D round(m(T)

i; j ), with assigna-

tions at T D 2: � (2)
i; j D ˛�

(1)
i; j C �

(2)
i; j ; ı

(2)
i; j D d(2)i; j .

Memory has a dramatic restrictive effect on the ad-
vance of defection as shown in Fig. 22. This figure shows
the frequency of cooperators (f ) starting from a single de-
fector and from a random configuration of defectors in
a lattice of size 400 � 400 with periodic boundary condi-
tions when b D 1:85. When starting from a single defec-
tor, f at time step T is computed as the frequency of co-
operators within the square of size (2(T � 1)C 1)2 cen-
tered on the initial D site. The ahistoric plot reveals the
convergence of f to 0.318, (which seems to be the same
value regardless of the initial conditions [43]). Starting
from a single defector (a), the model with small memory
(˛ D 0:1) seems to reach a similar f value, but sooner and
in a smoother way. The plot corresponding to ˛ D 0:2 still
shows an early decay in f that leads it to about 0.6, but
higher memory factor values lead f close to or over 0.9 very
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Cellular Automata with Memory, Figure 23
Patterns at T D 200starting at random in the scenario of Fig. 22b

soon. Starting at random (b), the curves corresponding to
0:1 � ˛ � 0:6 (thus with nomemory of choices) domimic
the ahistoric curve but with higher f , as ˛ � 0:7 (also
memory of choices) the frequency of cooperators grows
monotonically to reach almost full cooperation: D persists
as scattered unconnected small oscillators (D-blinkers), as
shown in Fig. 23. Similar results are found for any tempta-
tion value in the parameter region 0:8 < b < 2:0, in which
spatial chaos is characteristic in the ahistoric model. It is
then concluded that short-type memory supports cooper-
ation.

As a natural extension of the described binary model,
the 0-1 assumption underlying the model can be relaxed
by allowing for degrees of cooperation in a continuous-
valued scenario. Denoting by x the degree of cooperation
of playerA and by y the degree of cooperation of the player
B, a consistent way to specify the pay-off for values of x and
y other than zero or one is to simply interpolate between
the extreme payoffs of the binary case. Thus, the payoff
that the player A receives is:

GA(x; y) D (x; 1 � x)
�
R S
T P

��
y

1 � y

�
:

In the continuous-valued historic formulation it is ı � m,
including ı

(2)
i; j D

�
˛d(1)i; j C d(2)i; j


/(˛ C 1). Table 2 illus-

trates the initial scenario starting from a single (full) defec-
tor. Unlike in the binary model, in which the initial defec-

tor never becomes a cooperator, the initial defector coop-
erates with degree ˛/(1C ˛) at T D 3: its neighbors which
received the highest accumulated payoff (those in the cor-
ners with � (2) D 8˛ C 5b > 8b˛), achieved this mean de-
gree of cooperation after T D 2. Memory dramatically
constrains the advance of defection in a smooth way, even
for the low level ˛ D 0:1. The effect appears much more
homogeneous compared to the binary model, with no spe-
cial case for high values of ˛, as memory on decisions is al-
ways operative in the continuous-valued model [24]. The
effect of unlimited trailing memory on the SPD has been
studied in [5,6,7,8,9,10].

Discrete-Time Dynamical Systems

Memory can be embedded in any model in which
time plays a dynamical role. Thus, Markov chains
p0TC1 D p0TM become withmemory: p0TC1 D ı0TMwith ıT
being a weighted mean of the probability distributions up
to T: ıT D �(p1; : : : ; pT). In such scenery, even a min-
imal incorporation of memory notably alters the evolu-
tion of p [23]. Last but not least, conventional, non-spa-
tialized, discrete dynamical systems become with memory:
xTC1 D f (mT) with mT being an average of past values.
As an overall rule, memory leads the dynamics a fixed
point of the map f [4].

We will introduce an example of this in the con-
text of the PD game in which players follow the so-
called Paulov strategy: a Paulov player cooperates if and
only if both players opted for the same alternative in the
previous move. The name Paulov stems from the fact
that this strategy embodies an almost reflex-like response
to the payoff: it repeats its former move if it was re-
warded by T or R, but switches behavior if it was pun-
ished by receiving only P or S. By coding cooperation
as 1 and defection as 0, this strategy can be formulated
in terms of the choices x of Player A (Paulov) and y
of Player B as: x(TC1) D 1� j x(T) � y(T) j. The Paulov
strategy has proved to be very successful in its contests
with other strategies [44]. Let us give a simple exam-
ple of this: suppose that Player B adopts an Anti-Paulov
strategy (which cooperates to the extent Paulov defects)
with y(TC1) D 1� j 1 � x(T) � y(T) j. Thus, in an iterated
Paulov-Anti-Paulov (PAP) contest, with T(x; y) D

�
1 �

jx � yj ; 1 � j1 � x � yj

, it is T(0; 0) D T(1; 1) D (1; 0),

T(1; 0) D (0; 1), and T(0; 1) D (0; 1), so that (0,1) turns
out to be immutable. Therefore, in an iterated PAP con-
test, Paulov will always defect, and Anti-Paulov will always
cooperate. Relaxing the 0-1 assumption in the standard
formulation of the PAP contest, degrees of cooperation can
be considered in a continuous-valued scenario. Now x and
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Cellular Automata with Memory, Table 2
Weightedmean degrees of cooperation after T D 2 and degree of cooperation at T D 3 starting with a single defector in the contin-
uous-valued SPD with b D 1:85
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Cellular Automata with Memory, Figure 24
Dynamics of the mean values of x (red) and y (blue) starting from any of the points of the 1� 1 square

y will denote the degrees of cooperation of players A and B
respectively, with both x and y lying in [0,1].

In this scenario, not only (0,1) is a fixed point, but also
T(0:8; 0:6) D (0:8; 0:6). Computer implementation of the
iterated PAP tournament turns out to be fully disrupting
of the theoretical dynamics. The errors caused by the fi-
nite precision of the computer floating point arithmetics
(a common problem in dynamical systems working mod-
ulo 1) make the final fate of every point to be (0,1). With
no exceptions: even the theoretically fixed point (0.8,0.6)
ends up as (0,1) in the computerized implementation.

A natural way to incorporate older choices in the
strategies of decision is to feature players by a summary
(m) of their own choices farther back in time. The PAP
contest becomes in this way: x(TC1) D 1� j m(T)

x �m(T)
y j

; y(TC1) D 1� j 1 � m(T)
x � m(T)

y j. The simplest historic
extension results in considering only the two last choices:
m(z(T�1); z(T)) D (˛z(T�1) C z(T))/(˛ C 1) (z stands for
both x and y) [10].

Figure 24 shows the dynamics of the mean values of
x and y starting from any of the 101 � 101 lattice points
of the 1 � 1 square with sides divided by 0.01 intervals.
The dynamics in the ahistoric context are rather strik-
ing: immediately, at T D 2; both x and y increase from
0.5 up to app. 0:66(' 2/3), a value which remains stable
up to app. T D 100, but soon after Paulov cooperation

plummets, with the corresponding firing of cooperation of
Anti-Paulov: finite precision arithmetics leads every point
to (0,1).Withmemory, Paulov not only keeps a permanent
mean degree cooperation but it is higher than that of Anti-
Paulov; memory tends to lead the overall dynamics to the
ahistoric (theoretically) fixed point (0.8, 0.6).

Future Directions

Embedding memory in states (and in links if wiring is also
dynamic) broadens the spectrum of CA as a tool for mod-
eling, in a fairly natural way of easy computer implemen-
tation. It is likely that in some contexts, a transition rule
with memory could match the correct behavior of the CA
system of a given complex system (physical, biological, so-
cial and so on). A major impediment in modeling with CA
stems from the difficulty of utilizing the CA complex be-
havior to exhibit a particular behavior or perform a par-
ticular function. Average memory in CA tends to inhibit
complexity, inhibition that can be modulated by varying
the depth of memory, but memory not of average type
opens a notable new perspective in CA. This could mean
a potential advantage of CA with memory over standard
CA as a tool for modeling. Anyway, besides their potential
applications, CA with memory (CAM) have an aesthetic
and mathematical interest on their own.
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Thus, it seems plausible that further study on CA with
memory should turn out profitable, and, maybe that as
a result of a further rigorous study of CAM it will be possi-
ble to paraphrase T. Toffoli in presenting CAM—as an al-
ternative to (rather than an approximation of) integro-dif-
ferential equations in modeling— phenomena with mem-
ory.
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Glossary

Agents Ingredients under study occupying the cells in the
grid.

Asynchronous Each cell in turn, at random responds to
a rule.

Cells Sections of the grid in which the agents exist.
Gravity The relative relationship of two agents within the

frame of a grid with opposite bound edges.
Grid The frame containing the cells and the agents.
Movement The simulation of agent movement between

cells accomplished by the disappearance of an agent in
a cell and the appearance of that agent in an adjacent
cell.

Neighborhood The cells immediately touching a given
cell in the grid.

Rules Statements of actions to be taken by an agent under
certain conditions. They may take the form of a prob-
ability of such an action.

Synchronous All cells in a grid exercise a simultaneous
response to a rule.

Definition of the Subject

Cellular automata are discrete, agent-based models that
can be used for the simulation of complex systems [1].
They are composed of:

� A grid of cells.
� A set of ingredients called agents that can occupy the

cells.
� A set of local rules governing the behaviors of the

agents.
� Specified initial conditions.

Once these components are defined, a simulation can be
carried out. During the simulation the system evolves via
a series of discrete time-steps, or iterations, in which the
rules are applied to all of the ingredients of the system
and the configuration of the system is regularly updated.
A striking feature of the cellular automata (CA) models is
that they treat not only the ingredients, or agents, of the
model as discrete entities, as do the traditional models of
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physics and chemistry, but in the CA models time (itera-
tions) and space (the cells) are also regarded as discrete, in
contrast to the continuous forms assumed for these vari-
ables in the traditional, equation-based physical models.
In practice, this distinction usually makes little difference,
since the traditional continuous results appear naturally as
limiting cases of the discrete CA analysis.

Introduction

Cellular automata (CA) were first proposed by the math-
ematical physicist John von Neumann [2] and the math-
ematician Stanislaw Ulam [3,4] more than a half cen-
tury ago, and similar ideas were suggested at about the
same time, in the 1940s, by the German engineer Konrad
Zuse. Von Neumann’s interest was in the construction of
“self-reproducing automata”. His original idea was to con-
struct a series of mechanical devices or “automata” that
would gather and assemble the parts necessary to repro-
duce themselves. A suggestion by Ulam led him to con-
sider more abstract systems consisting of grids with mov-
ing agents, operating under sets of rules. The first such
system proposed by von Neumann consisted of a two-di-
mensional grid of square cells, each having a set of possi-
ble states, along with a set of rules. With the development
of modern digital computers, it has became increasingly
clear that these very abstract ideas could in fact be usefully
applied to the examination of real physical and biological
systems, with interesting and informative results.

A number of research groups have developed different
realizations of the CA paradigm for the study of a broad
range of physical [5,6], chemical [7], biological [8,9], med-
ical [10,11] and even sociological [12,13,14] phenomena.
Thesemodels have contributed important new insights re-
garding the deeper, often hidden, factors underlying a host
of complex phenomena. These diverse CA studies have
been especially important in treating the often-surprising
behaviors of systems where large numbers of diverse inter-
actions between the system agents serve to hide the gen-
eral patterns involved and, in addition, render the conven-
tional, differential-equation-basedmethods difficult to im-
plement or ineffective—i. e., complex systems.

Models and Simulationswith Cellular Automata

Cellular automata can be used to both model and to sim-
ulate real systems. A model is a substitute, usually greatly
simplified, for what is the real thing. A model should cap-
ture from the real system and display in some revealing
way its most important or interesting features.Where pos-
sible it should capture the essence of the system without
being overly cumbersome or complicated. Many models

in the physical sciences take the form ofmathematical rela-
tionships, equations connecting some property with other
parameters of the system. Some of these relationships are
quite simple, while many mathematical relationships are
more complicated, and rely on the techniques of calculus
to describe the rates of change of the quantities involved.
Overall, mathematical models have been exceedingly suc-
cessful in depicting the broad outlines of an enormously
diverse variety of phenomena in nature.

Simulations are active imitations of real things, and
there are generally two different types of simulations, with
different aims. In one approach a simulation is merely de-
signed to match a certain behavior, often in a very limited
context. Thus amechanical noisemakermay simulate a de-
sired sound, and does so through a very different mecha-
nism than the real sound-maker. Such a simulation reveals
little or nothing about the features of the original system,
and is not intended to do so. Only the outcome, to some
extent, matches reality. A hologram may look like a real
object, but it is constructed from interfering light waves.
A second type of simulation is more ambitious. It attempts
tomimic at least some of the key features of the system un-
der study, with the intent of gaining insight into how the
system operates.

The Grid

The grid in a CA model may contain a single cell, or more
commonly a larger collection. The grid might be one-,
two-, or three-dimensional in form, although most stud-
ies have used two-dimensional grids. A moving agent may
encounter an edge or boundary during its response to the
rules. Three general types of two-dimensional grids are
considered relating to the boundaries: (i) a box, (ii) a cylin-
der, and (iii) a torus. In the box grid moving agents en-
counter boundaries on all four sides; in the cylinder they
encounter only top and bottom boundaries; and in the
torus no boundaries restrict the agent movements. An
illustration of a 7 � 7 D 49-cell grid of square cells occu-
pied by two different types of agents, A and B, is shown in
Fig. 1.

The nature of the grid type employed will normally
depend on the boundary characteristics of the system of
interest. For some systems, e. g., when the agents are ei-
ther stationary or confined, a box grid is perfectly suitable.
In other cases, one may need only a constraining top and
bottom (or right and left sides), and a cylindrical grid will
be used. The torus effectively simulates a small segment of
a larger, unrestricted system by allowing cells to move off
the top edge and appear at the bottom, or move off the
bottom edge and appear at the top.
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Cellular Automata Modeling of Complex Biochemical Systems,
Figure 1
A two dimensional cellular automata grid with two different
agents

The Cells

Structure

The cells can take a variety of shapes; they can be trian-
gles, squares, hexagons or other shapes on the two-dimen-
sional grid, with square cells being most common. Each
cell in the grid can normally exist in a number of distinct
states which define the occupancy of the cell. The cell can
be empty or contain a specific agent, representing a par-
ticle, a type of molecule or isomer, a molecular electronic
state, or some other entity pertinent to the study in ques-
tion. The choice of the cell shape is based on the objective
of the study. In the case of studies of water-related phe-
nomena, for example, square cells are especially advanta-
geous since watermolecules, are quadravalent with respect
to their participation in intermolecular hydrogen bonding.
An individual water molecule can employ two hydrogen
atoms and two lone pairs of electrons to form hydrogen

Cellular Automata Modeling of Complex Biochemical Systems, Figure 2
Cellular automata variegated cells

bonds with its neighbors. This leads to the tetrahedral con-
figuration found in ice, a structure that is retained to some
extent in the liquid state. The four faces of a square cell
thus correspond to the four hydrogen-bonding opportu-
nities of a water molecule.

The interactions of an agent with other agents take
place at the cell edges. Originally, cellular automata mod-
els routinely assumed that all of the edges of a given agent
should obey the same rules. More recently, the idea of
a variegated cell, in which each edge can have its own in-
dependent rules for interaction with other agents, has been
introduced and shown to have considerable value in mod-
eling. Examples of some types of variegated cells are shown
in Fig. 2.

Cell Neighborhoods

The movements and other actions of an agent on the grid
are governed by rules, that depend only on the nature of
the cells in close proximity to the agent. This proximate
environment of a cell is called its neighborhood. The most
common neighborhood used in two-dimensional cellular
automata studies is called the von Neumann neighbor-
hood, after the pioneer of the CA method. This neighbor-
hood for a cell A refers to the four B cells adjoining its
four faces (see Fig. 3). Another common neighborhood is
the Moore neighborhood referring to the eight cells com-
pletely surrounding cell A, including those cells on the di-
agonals.

The Rules

Several different types of rules govern the behaviors of the
agents on the grid and thereby the subsequent evolutions
of the CA systems. The key features of all these rules are
that they are local, involving only an agent itself and possi-
bly those agents in its immediate neighborhood, and that
they are uniformly applied throughout a CA study.
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Cellular Automata Modeling of Complex Biochemical Systems,
Figure 3
The von Neumann neighborhood

Movement Rules

Much of the dynamic character of cellular automata mod-
els is developed through the movements of the agents
about the grid. During each time-step interval, or iteration,
in the CA simulation an agent on the grid has the possibil-
ity of moving vertically or horizontally to an adjacent, un-
occupied cell. In the absence of further restrictions, a free
agent would therefore, over time, perform a random walk
about the grid. Normally, however, there are other agents
on the grid and their presence will influence the motion
of the first agent. During each iteration the movement of
every agent on the grid is computed based on rules that in-
volve the status of its neighboring cells, i. e., whether these
cells are empty or occupied, and, if occupied, by what types
of agents. Deterministic cellular automata use a fixed set
of rules, the values of which are immutable and uniformly
applied to the agents. In probabilistic, or stochastic, cel-
lular automata, the movements of the agent are based on
probabilistic rules, embodied as probabilities of moving or
not moving during each iteration.

Free Moving Probability Pm

The free moving probability Pm(A) defines the probabil-
ity that an agent A in a cell i will move to one of the four
adjacent cells, j, in its von Neumann neighborhood if that
space is unoccupied. An example would be the agent in
cell A which might move to any of the unoccupied neigh-
boring B cells. This probability is usually set at Pm D 1:0,
which means that a movement in one of the allowed direc-

tions always happens. However, in some cases Pm can be
set to lower values if certain species in the CA simulation
are to be regarded as moving more slowly than others.

Joining Parameter J

The first of the two trajectory or interaction rules is the
joining trajectory parameter, J(AB), which defines the
propensity of movement of an agent A toward or away
from a second agent B when the two are separated by
a vacant cell. It thus involves the extended von Neumann
neighborhood of agent A, and has the effect of adding
a short-range attraction or repulsion component to the
interaction between agents A and B. J is a non-negative
real number. When J D 1, species A has the same prob-
ability of movement toward or away from B as when the
B cell is not present. When J is greater than 1, agent A
has a greater probability of movement toward a B agent
than when agent B is absent, simulating, in effect, a degree
of short-range attraction. When J lies between 0 and 1,
agent A has a lower probability of such movement, and
this can be considered as a degree of mutual repulsion.
When J D 0, agent A cannot move toward B at all.

Breaking Probability PB

The second trajectory or interaction rule is the breaking
probability, PB. This parameter, in effect, assigns a persis-
tence to the encounter between two agents that are in con-
tact, i. e., adjacent to each other on the grid. The breaking
rule assigns the probability PB(AB) that an agent A, ad-
jacent to an agent B, will break apart from B. The value
for PB necessarily lies within the range 0 to 1. Low values
of PB imply a strong cohesion between A and B, whereas
high values indicate little cohesion. Thus if PB D 0, the
agents will not separate from each other, and if PB D 1
they have no tendency to adhere to one another. If PB
lies between these values there is an intermediate ten-
dency to break apart. When molecule A is bordered two
agents, B and C, the simultaneous probability of A break-
ing away is given by the product PB(AB)  PB(AC). If
agent A has three adjacent agents (B, C, and D), the si-
multaneous breaking probability of agent A, the probabil-
ity that it will move to the remaining adjacent empty cell,
is PB(AB)  PB(AC)  PB(AD). If agent A is surrounded by
four agents, it cannot move.

Transition Rules

Transitions occur constantly in nature; molecules change
from one tautomeric form to another, radioactive nuclei
decay to form other nuclei, acids dissociate, proteins al-
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ter their shapes, molecules undergo transitions between
electronic states, chemicals react to form new species, and
so forth. Transition rules allow the simulation of these
changes. They govern the probability that during each iter-
ation of the simulation an agent will transform to a differ-
ent type of agent. If PT(AB) D 1:0 the transition A! B
is certain to occur; if PT(AB) D 0:0, it will never occur.
But if, for example, PT(AB) D 0:5, then during each itera-
tion there will be a 50% chance that the transition A! B
will occur. The first two cases can be considered deter-
ministic, since they do not allow for different outcomes.
The third case is stochastic, however, since it allows dif-
ferent outcomes, the agent might remain unchanged or it
might transform to a different state. The transition prob-
abilities may, in some cases, depend on the conditions
prevailing in neighboring cells. For example, the trans-
formation probability PT(AB) might depend on the occu-
pancies of neighboring cells. In reaction simulations two
agents A and B that come in contact on the grid will have
a probability PR(AB) of reacting, or transforming, to other
species, say, C and D, during such an encounter. In this
case the reaction probability PR(AB) defines the probabil-
ity that the reaction AC B! CC D will occur when A
and B encounter one another in the course of their mo-
tions. If PR(AB) D 1 the reaction will take place on every
encounter, but if PR(AB) D 0:1, for example, only 10% of
such encounters will lead to reaction.

Relative Gravity Rules

The simulation of a gravity effect can be introduced into
a cellular automaton model in two different ways. Sepa-
ration phenomena like the de-mixing of immiscible liq-
uids can be simulated using a relative gravity rule. For this,
a boundary condition is first imposed at the upper and
lower edges of the grid to apply vertical limits on the mo-
tions of the agents (a cylindrical grid). The differential ef-
fect of gravity on different agents A and B is simulated by
introducing reciprocal rules governing their tendencies to
exchange positions when they come together. When one
agent moves to a position on top of the other the rules are
applied. The first rule, GR(AB), applies when A is above B
and is the probability that agent A will exchange places
with agent B, so that A will appear below, and B above. The
complementary rule is GR(BA), which expresses the prob-
ability that molecule B, originally above A, will exchange
positions with A and end up below.

When GR(AB) is greater than GR(BA) there will be
an overall tendency for the A agents to congregate below
the B agents, and when GR(AB) is less than GR(BA) the
A agents will tend toward the upper part of the grid. In

the first case the A’s can be thought of as forming a more
dense liquid than the B’s, and in the latter case, a less dense
liquid. The GR rules are probabilities that the events will
occur.

Absolute Gravity Rule

In other simulations an absolute gravity rule, denoted
by GA(A), is more appropriate. This rule favors motion in
a preferred direction. For example, one might wish to sim-
ulate the motions of different gas molecules, some heavier
than others, in a gravitational field. The value GA(A) D 0
is the neutral value, so that the movement probabilities are
equal in all four directions. Values greater thanGA(A) D 0
increase the likelihood of downward movements. Thus
a value of GA(A) D 0:2 would impose a slight tendency
of the agents of species A to move downward on the
grid, andGA(A) D 0:5 would impose amuch stronger ten-
dency.

Cell Rotation Rules

In those cases where variegated agents are used it is neces-
sary to insure that there exists a balanced representation of
the possible rotational states of these agents on the grid. To
accomplish this, the variegated cells are rotated randomly,
by 90°, �90°, +180°, or �180°, during every iteration of
the run. Only free cells rotate; when a variegated agent has
a neighboring agent in its von Neumann neighborhood it
does not rotate.

Application of the Rules

A complete time-step (iteration) in a CA model involves
the application of all of the applicable rules to all of the
agents on the grid. During an iteration themovement rules
can be applied either simultaneously (synchronously) or
sequentially (asynchronously). Synchronous application
of the governing movement rules for a CA simulation, as
outlined above, can lead in some instances to conflicts,
e. g., the assigning of two agents tomove to the same empty
cell. As a result, synchronous rule application may not be
practical for cellular automata studies of some kinds. In
asynchronous application of the rules, in contrast, agents
are selected in random order for application of the move-
ment rules, and such potential conflicts are avoided.

Examples

Structure of Bulk Water

The physical properties of water, such as its viscosity, heat
capacity, heat of vaporization, surface tension, dielectric
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constant, etc., are commonly related to temperature under
normal pressure. It is accepted that underlying changes in
the structure of water are responsible for the changes in
the properties, although the precise physical basis for this
relationship has not been established. Cellular automata
models of bulk water in the liquid state at different tem-
peratures produce a series of structural patterns, differ-
ing in the extent of binding between the individual wa-
ter molecules. The fractions of water molecules unbound,
bound to one, two, three or four neighbors, designated, f 0,
f 1, f 2, f 3, and f 4, can be employed as structural descrip-
tors of bulk liquid water at various temperatures. The sig-
nificance of these descriptors can be evaluated by examin-
ing the correlations of these descriptors with these physical
properties. A linkage between the J and PB rules for water
models has been postulated and tested leading to the rela-
tionship [15]:

Log J D �1:5PB C 0:6 : (1)

The temperature of the water has been found to relate with
the PB value as

T
�
ıC

D 100PB : (2)

Using the f x parameters as structure parameters in
regression analysis, correlations arise between them and
a variety of physical properties. Several relationships are
given in Table 1, where r2 is the coefficient of determina-
tion and s is the standard error of the fit. The observed rela-
tionships suggest that the bulk water f x descriptors encode
information allowing them to be used in correlations with
a variety of physical properties. This reveals possibilities of
using these descriptors in analyzing properties and behav-
ior entirely on the basis of structure rather than using an
inter-connected web of physical properties. The relation-
ship between the f x descriptors and the temperature (PB
value) is shown in Fig. 4.

Cellular Automata Modeling of Complex Biochemical Systems, Table 1
Equations relating fx values to properties of water

Property Equation r2 s
Temperature T (ıC)D �490:28f0 C 622:60f1 C 4:46 0.996 1.90
Heat capacity Cp [Cal/g/ıC] D 1:0478 � 0:0488f2 � 0:0620f3 � 0:0446f4 0.995 0.0002
Surface tension � (dynes/cm) D �93:72f1 C 75:33 0.996 1.90
Vapor pressure Log Pv (mmHg) D �24:30f0 C 15:64f1 C 0:90 0.997 0.035
Compressibility � (106/Bar) D 79:60� 43:61f2 � 39; 57f3 � 30:32f4 0.991 0.190
Dielectric constant "D �178:88f1 C 55:84 0.994 0.735
Viscosity � (centipoises)D 1:439f4 C 0:202 0.965 0.045

Cellular Automata Modeling of Complex Biochemical Systems,
Figure 4
The calculated distribution of water bonding states, f(x), and the
modeled temperature using PB(W) values

Solution Phenomena

Solute Rules The solubility of a compound in a particu-
lar solvent reflects the intermolecular interactions between
the molecular species involved. Thus the breaking and
joining rules pertaining to solute-solute and solute-solvent
interactions may be assigned on the basis of some antic-
ipation of the magnitude of these intermolecular terms.
For the solute (S), a large value of J(SS) encodes a high
tendency for its molecules to be attracted to one another.
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The companion rule, PB(SS), encodes the ease or difficulty
of a pair of joined solute molecules to break apart. To il-
lustrate the cooperativity of these two rules for a solute,
a molecule with rules J(SS) D 2:0 and PB(SS) D 0:2 would
be expected to have a strong tendency to remain as an
insoluble aggregate or crystal. Such a solute would likely
have a high melting point. In contrast, a solute with J(SS)
D 0:5 and PB(SS) D 0:8 would be expected to have a lower
melting point and be more soluble. The choice of these
rules govern the general behavior of solute molecules to-
ward themselves [16].

The Hydrophobic Effect The hydrophobic effect refers
to the action of relatively non-polar (hydrophobic) sub-
stances on the organization of the water molecules in
their vicinity. A common expression is that water becomes
“more structured” or organized in the neighborhood of
a hydrophobic solute. This phenomenon has been simu-
lated using a cellular automata model [17]. In this model
the breaking probability of water-solute molecule pairs,
PB(WS), was systematically increased, thus encoding an
increasing hydrophobicity of the solute and a decreasing
probability that the solute molecules would associate with
the water molecules.

It was observed that low PB(WS) values, representing
strong water-solute attractions, produced solution config-
urations in which the solute molecules were heavily sur-
rounded by water molecules. Conversely, at high PB(WS)
values most of the solute molecules were found outside of
the water clusters and within the solution cavities. These
configurations leave the water clusters relatively free of so-
lute and hence more internally structured or organized.
These models thus reflect the molecular system level con-
ditions present in the hydrophobic effect. These results
agree with molecular dynamics simulations and the inter-
pretation presented agrees with recent experimental evi-
dence and models proposed for the hydrophobic effect.

Solute Dissolution Dissolution refers to the breaking
apart of a solute aggregate within a solvent to form a so-
lution. Cellular automata simulations of the dissolution
process have been carried out in which the solute aggre-
gates started as solid blocks surrounded by water [18]. The
solute species were endowed with specific PB(SS), J(SS),
PB(WS) and J(WS) rules. The system attributes recorded
during the ensuing system evolutions were the frac-
tion f0(S) of solutes unbound to other solute molecules,
the average number of solute-solute joined faces T(S),
and the average distance D(S) that solute molecules trav-
eled from the center of the block at a specific iteration.
The f0(S) values were interpreted as representing the ex-

tent of dissolution of the solute, the decrease in the T(S)
values were used to characterize the extent of disruption
of the solute block, and the D(S) values quantified the ex-
tent of diffusion of the solutes into the surrounding water.

The extent and rate of the solute block disruption,
T(S), is primarily a function of the PB(S) rule, with sec-
ondary influence from the PB(WS) rule. A high value
of PB(S) implies a high probability of solute molecules sep-
arating from each other, and hence a strong tendency to-
ward crystal disruption. The f 0 fraction serves as a mea-
sure of the extent of solute solubility. The extent of disso-
lution depends upon both the PB(S) and the PB(WS) rules.
High values of PB(S) and low values of PB(WS) promote
an extensive degree of dissolution. A low value of PB(WS)
characterizes a solute that is relatively hydrophilic. The
simulations also implied that solutes with high PB(WS)
values should diffuse more rapidly than those with low
values of equal size. It was also observed that simula-
tions of higher temperatures led to faster disruption of the
block of solute, and more extensive diffusion of the solute
molecules through the bulk water, in accord with the nor-
mal expectations.

An unexpected observation arises from the graphical
display of the disintegration of the solute block of cells.
The early stages of the disruption occurred as a series of
intrusions of cavities, rather than watermolecules, into the
block. The cavities roamed throughout the block, behaving
as “particles”. The entrance of water into the block struc-
ture appeared much later, after significant disruption and
loss of solute molecules from the block. This behavior is
shown in Fig. 5.

Diffusion in Water

Models of the diffusion process in water have been re-
ported. One study revealed that hydrophobic solutes dif-
fuse faster than hydrophilic ones, comparing molecules of
similar size [19]. A model of diffusion as a function of wa-
ter temperature produced the expected result of greater
diffusion with higher temperature. A series of dilute so-
lutions were modeled where the relative polarity of a so-
lute S1, was varied. A second solute, S2, was introduced
at the center of the grid. The dynamics showed that the
solute, S2, diffused faster when there is no co-solute and
when the polarity of S2 is low. The presence of the co-so-
lute revealed that the diffusion of S2 was fastest when the
co-solvent, S1 was hydrophobic.

In another study, the grid was divided into two halves,
the upper half, containing a solution of a non-polar so-
lute while the lower half contained a solution of a polar
solute [20]. Between these two halves, a thin layer of cells
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Cellular Automata Modeling of Complex Biochemical Systems,
Figure 5
Amodel of the dissolution of a crystal in water

simulated a solution made up of a solute of intermediate
polarity. The dynamics created amodel in which the solute
in the middle layer preferentially diffused into the upper
layer containing the non-polar solute. A second study sim-
ulated an aqueous solution of intermediate polarity in the
middle of the grid. Surrounding this solution were regions
with highly polar, intermediately polar and non-polar so-
lutes in solution. A fourth region around the center was
pure water. The solute in the central section of the grid
was allowed to freely diffuse. It diffused more rapidly into
the pure water, however it secondarily preferred the more
non-polar solution quadrant. The diffusion of a solute is
modeled to be faster when it is hydrophobic and when co-
solutes are also hydrophobic. The rate of diffusion of a so-
lute in water was studied as a function of the water tem-
perature and the hydropathic state of the solute.

Oil-Water Demixing

Models of the separation of two immiscible liquids and
the partitioning of a solute between them have been re-
ported [21]. The emerging configuration is an immiscible,
two phase system. An interface formed with a greater con-
centration of water in the lower half while the second liq-
uid dominated the upper half. The interface was unorga-
nized with large “fingers” of cells from each half projecting
into the other half of the grid. Figure 6 shows the inter-

Cellular Automata Modeling of Complex Biochemical Systems,
Figure 6
Amodel of the de-mixing of immiscible liquids

face in this model. This interface structure and behavior
has been observed using other modeling paradigms. The
simulated events of the demixing process present an in-
triguing model of a phenomenon that might be difficult to
examine experimentally.

Another study tested the ability of this model to sim-
ulate the partitioning of solute molecules between the two
phases, governed by their relative hydrophobicity. The ad-
dition of a small number of solute molecules was made to
the initial, random mixture. As the dynamics proceeded,
it was observed that the solute was associating with the
patches of solvent to which it had the closest parameter-
governed affinity. As a relatively stable configuration de-
veloped, the ratio of the solute molecules among the two
phases became relatively constant. This ratio is the parti-
tion coefficient of the solute between the two phases. The
dominant rules influencing the partition coefficient were
the PB(WS2) and PB(S1S2), the affinity of the solute for the
two liquids, where S2 is the solute molecule.

Observing the course of the dynamics there is a con-
stantly changing pattern from the random configuration
at the outset to the eventual formation of a disturbed in-
terface and separated compartments of the two solvents.
The solute molecules move rapidly to the patches in which
the rules have ordained an affinity. The solute molecules
have essentially partitioned themselves among the patches
long before the two phases and the interface have formed.
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Chemical Kinetics

Acid Dissociation The dissociation of an acid and the
influence of the environment on this process was the sub-
ject of a recent study [22]. A cell modeling an organic acid
molecule was divided into two parts, one face represent-
ing the carboxyl group, Y , and the other three faces, X,
representing the non-dissociating, non-polar parts of the
acid molecule. The strength of the acid, i. e. its propensity
to dissociate, was governed by the probability rule, PD. The
hydronium ion was endowed with greater mobility since it
is known tomove very rapidly from one oxygen to another
within the hydrogen bonded system of water. This was ac-
complished by allowing any of the four possible neighbor-
ing water molecules, relative to H to exchange positions
with the hydronium cell, H.

An initial test of the model was to vary the PD value
and monitor the concentration of products. As expected,
an increase in the PD rule produced an increase in the
calculated acid dissociation constant, Ka. A second study
examined the influence of acid concentration on the ob-
served properties. As expected, the Ka was approximately
constant over a modest concentration range. A study on
solution environment influences modeled the presence
of another molecule in the solution. This co-solute was
endowed with an attribute of non-dissociation. It’s hy-
drophobicity was varied in a series of studies. The disso-
ciation of the acid decreased when the hydrophobicity of
the co-solute decreased. The interaction of two acids of
different strength was also simulated using the same basic
model. The observed dissociations revealed a strong and
unequal influence of the two acids on each other. Both
acids exhibit a suppression in their dissociations relative
to their behavior in pure solution. The weaker acid is sig-
nificantly more suppressed than the stronger acid. The de-
crease in dissociation of the two acids in a mixture can-
not be readily calculated from the acid concentrations and
their individual dissociation constants because of the com-
plicating influences of ionic solvation effects on the water
structure plus temperature factors.

First-Order Kinetics Many important natural processes
ranging from nuclear decay to unimolecular chemical re-
actions, are first-order, or can be approximated as first-
order [23]. This means that these processes depend only
on the concentration to the first power of the transforming
species itself. A cellular automaton model for such a sys-
tem takes on an especially simple form, since rules for the
movements of the ingredients are unnecessary and only
transition rules for the inter-converting species need to
be specified. Recent work described such a general cellu-

lar automaton model for first-order kinetics and tested its
ability to simulate a number of classic first-order phenom-
ena.

The prototype first-order transition is radioactive de-
cay A! B, in which the concentration [A] of a species A
decreases according to the rule that each A ingredient has
a probability Pt(AB) per unit time (here, per iteration)
of converting to some other form B. For small numbers
of A ingredients the actual decay curve observed for [A] is
rather jagged and only roughly exponential, as a result of
the irregular decays expected in this very finite, stochastic
system. However, as the number of decaying ingredients
is increased the decay curve approaches the smooth expo-
nential fall-off expected for a deterministic system obeying
the rate equation

d[A]
dt
D �k[A] : (3)

When a reverse transition probability Pt(BA) for the
transition B! A is included themodel simulates the first-
order equilibrium:

A$ B :

Here too, the finite size of the system causes notable fluc-
tuations, in this case in the value of the equilibrium con-
stant K, which fluctuates with time about the deterministic
value

K D
Pt(AB)
Pt(BA)

: (4)

As an example, for 10 trials with 400 ingredients tak-
ing Pt(AB) D 0:05 and Pt(BA) D 0:04, we found KD 1:27
with a standard deviation of 0.13, compared to the deter-
ministic value of 1.25. As a further test of the model one
can ask whether it is ergodic in the sense that the average
of K over time, i. e., for a single system observed for a long
time after reaching equilibrium, is equal to the average K
for identical systems taken at a particular time in a large
number of trials. When this was tested for 1000 time steps
(separated by 100 iterations) vs. 1000 trials the results were
statistically identical, indicating that the first-order cellular
automaton model is sensibly ergodic [2].

The first-order model can also be used to examine se-
quences of transformations of the form A! B! C : : :.
For the simple example A! B! C the concentration of
the initial reactant A falls exponentially, that of the inter-
mediate species B rises then falls, and that of C builds up
as it is fed from B. These time-dependent changes are illus-
trated in Fig. 7 using specific transformation probabilities.
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Cellular Automata Modeling of Complex Biochemical Systems,
Figure 7
Typical time-dependent variations of the ingredient populations
for a two-step reaction A! B! C

Kinetic and Thermodynamic Reaction Control Paral-
lel competing reactions

A! B
#

C

can also be simulated. An especially interesting example
occurs when the reactions are reversible [24]:

A$ B and A$ C :

With properly chosen transformation probabilities, this
model can be utilized to examine the conditions governing
thermodynamic and kinetic control of reactions. An illus-
tration is shown in Fig. 8 for the conditions Pt(AB)D0:01,
Pt(AC)D0:001, Pt(BA)D0:02, and Pt(CA) D 0:0005, us-
ing a set of 10 000 ingredients. Starting with all species A,
in the initial stages of the reaction the kinetically-favored
product B is produced in excess, whereas at later times
the thermodynamically-favored product C gains domi-
nance. The cellular automata model is in good agree-
ment with those found in a deterministic, numerical so-
lution for the same conditions. For example, the cellular
automata model yields final equilibrium concentrations
for species B and C of [B] D 0:1439˙ 0:0038 and [C]
D 0:5695˙ 0:0048 compared to reported deterministic
values of 0.14 and 0.571, respectively.

Excited-State Kinetics Another important application
of the first-order model is to the examination of
the ground and excited state kinetics of atoms and
molecules [25]. One illustration of the excited-state cellu-
lar automata model is the dynamics of the excited-state
transitions of oxygen atoms [26]. The oxygen atom has

Cellular Automata Modeling of Complex Biochemical Systems,
Figure 8
Typical variations in the ingredient populations for competing
reaction A! B! C

a 3P ground state and 1S and 1D excited states. Emis-
sions from the latter two excited states play an important
role in the dramatic light displays—the Aurora Borealis,
or “Northern lights”—seen under certain conditions in the
northern polar skies, and similar emissions have been de-
tected in the atmospheres of Mars and Venus. The excited
states are believed to be mainly produced by dissociative
recombinations of ionized oxygenmolecules and electrons
generated in the atmosphere by ultraviolet bombardment
during the daylight hours:

OC2 C e� ! O� C O�� :

In this, the species O� and O�� are unspecified atomic
oxygen states, which may be any of the species 3P, 1S,
or 1D. Themost prominent feature in the atmospheric dis-
plays is normally the green spin-allowed 1S! 1D transi-
tion appearing at 5577 angstroms.

Using transition probabilities taken from the compi-
lation of Okabe [27] we have simulated the dynamics as-
sociated with these atomic transitions under both pulse
and steady-state conditions. For the pulse simulations two
starting conditions were examined: the first in which all
ingredients started in the upper 1S excited state, and the
second in which the ingredients started in a distribution
believed characteristic of that produced by the dissocia-
tive recombination process shown above. The simulations
yield excited state lifetimes and luminescence quantum
yields consistent with the experimental observations for
these properties.

Second-Order Kinetics Several groups have developed
cellular automata models for particular reaction-diffusion
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Figure 9
Illustration of the variation with time of the ingredient popula-
tions for an irreversible reaction A! B

systems. In particular, the Belousov–Zhabotinsky oscillat-
ing reaction has been examined in a number of studies. At-
tention has also been directed to the simpler AC B! C
reaction, using both lattice-gas models and a generalized
Margolus diffusion approach. We have recently developed
a simple, direct cellular automaton model [28] for hard-
sphere bimolecular chemical reactions of the form

AC B! CCD :

As before, the different species are assigned different colors
in the visualization. In this model the reactant and prod-
uct species diffuse about the grid in random walks. When
the species A and B encounter each other (come to ad-
jacent cells) on the grid the probability that these species
transform to C and D is determined by an assigned re-
action probability Pr(AB). The simulations take place on
a toroidal space such that ingredients leaving the grid on
one side appear at the opposite edge. Initially the ingredi-
ents are placed randomly on the grid.

The production of species C over time for starting
counts of 100A and 200 B ingredients on a 100 � 100
D 10 000 cell grid provides an example shown in Fig. 9.
The expected second-order rate law

d[C]
dt
D k[A][B] (5)

is found to be obeyed in the simulations, subject to fluc-
tuations expected for a system containing a finite number
of reacting ingredients. When the results from a number
of trials are combined to mimic, in effect, the results for
a much larger system, the fluctuations become relatively
small and the results approach the deterministic forms.

When a back reaction CCD! AC B with probabil-
ity Pr(CD) is included in the automaton rules the equilib-

rium

AC B � CCD

can be simulated. Once the system has stabilized from its
initial non-equilibrium concentrations, fluctuations about
the equilibrium concentrations occur over time, and the
relative size of these fluctuations decreases as the number
of ingredients increases. A variation of this theme occurs
in a pseudo first-order reaction. This type of reaction in-
volves an actual second-order reaction AC B! CCD in
which one of the reactants, say B, is present in sufficient
excess that its variation becomes effectively unnoticeable.
Simulations with 50A ingredients and 1000B ingredients
bear out the expectation that the reaction kinetics are such
that the rate of production of C and D appears to depend
only on the concentration of A.

Enzyme Reactions

A recent study on the kinetics of an enzyme reaction con-
sidered the Michaelis–Menten model [29]. The rules se-
lected for this reaction included a probability of the con-
version, Pc, of an enzyme-substrate pair, ES, to an en-
zyme-product pair, EP. The Michaelis–Menten model was
observed and characteristic Lineweaver–Burk plots were
found from the model. The systematic variation of the
hydrophobicity of substrates and products showed that
a lower affinity between a substrate and water leads to
a greater extent of the reaction at a common point along
the reaction progress curve. This influence is greater than
the influence of the affinity between the substrate and the
enzyme. The water-substrate affinity appears to primar-
ily influence the concentration of the ES complex at the
observed point along the reaction progress curve. A low
affinity between water and substrate favors a high ES con-
centration at this point. A hydrophilic substrate appears
to be more entrapped in the water continuum, hence to be
less available to the enzyme. It was also observed that an
accumulation of product molecules around the enzymes
coincides with a decline in the reaction rate. A biochemi-
cal network was reported to be modeled using cellular au-
tomata [30]. A protein kinase was modeled and studied
using various concentrations of substrates and changes in
enzyme competence.

An Anticipatory Model

An anticipatory enzyme system has been modeled us-
ing the dynamic characteristics of cellular automata [31].
A concentration of an intermediate product influences the
competence of an enzyme down stream. This anticipation
of the future event creates a condition in which the con-
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centration of a later substrate is suppressed, a property
characteristic of the system. The dynamics revealed con-
centrations over time, influenced by the presence or ab-
sence of a feed-forward or pre-adaptation state in the sys-
tem. The concentration of A steadily diminishes as succes-
sive concentrations of B, C and D rise and fall at the same
levels. The concentration of E rises at the end of the run,
eventually becoming the only ingredient in the system.
The concentration of D is approximately 0.25 in a non-an-
ticipatory model. In contrast, with an anticipatory or feed-
forward step in the system there is created an additional
amount of enzyme specific for substrate D. This enzyme,
e2;4, is available at a future time to catalyze the conversion
of D to E. This creates a property of the system in which
the concentration of ingredient, D, is not allowed to accu-
mulate to its normal level. The concentration of D in an
anticipatory model is approximately 0.13, about one half
of the D concentrations for the non-anticipatory models.
The concentration of B therefore serves as a predictor of
the concentration of D at a later time.

Micelle Formation

A micelle is a structure formed from the close interaction
of hydrophobic fragments of amphiphiles plus the elec-
trostatic encounters with the surrounding water. Typically
they often assume a spherical structure with the non-polar
fragments in the interior and the polar fragments on the
periphery, in aqueous solution. The formation of these
structures is a dynamic process which has been modeled
using cellular automata. The model of an amphiphile was
created by treating each face of a square automaton cell
as an independent structure [32]. Each face of this varie-
gated cell can have its own set of PB(X) and J(X) values.
For the micelle study three of the faces were considered as
equivalent and were endowed with rules modeling a hy-
drophobic or non-polar part of the amphiphile. The other
face was treated as a polar fragment of themolecule and as-
signed characteristic rules. The outcome of the dynamics
was the creation of structures in which the non-polar frag-
ments were in the interior of an aggregation of cells while
the polar fragment lay on the periphery. The interpreta-
tion of these organized clusters is that they model a mi-
celle. The dominant influence on the formation of these
structures is the extent of non-polar character of the des-
ignated three sides of the cell. Of secondary influence is the
polarity of the remaining face of the cell. If this is too polar,
the micelle formation is retarded. Both of these influences
produce models that agree with experiment. Other stud-
ies on these variegated cells depicting an amphiphile re-
vealed a temperature effect on the critical micelle concen-

tration (cmc) which was minimal at about PB(W) D 0:25,
corresponding to experiment. The onset of the cmc was
modeled and shown to be dependent upon a modestly po-
lar fragment of the amphiphile.

Membrane Permeability

An extension of the micelle and diffusion models was
a simulation of the diffusion of a solute through a layer
of hydrophobic cells simulating a membrane separating
two water compartments [33]. Amembrane layer five cells
wide membrane was positioned on a grid between two
water compartments. The membrane cells were endowed
with a PB(WS) rule making them hydrophobic. The mem-
brane cells could only move about within the layer accord-
ing to their rule response. The two water cell compart-
ments on either side were assigned identical rules but were
colored differently in order to monitor their origins after
some movement into and through the membrane layer.
The dynamics revealed that water molecules from both
compartments pass into and through the membrane as
expected. To model the behavior of a solute in this envi-
ronment, a few cells simulating solute molecules were po-
sitioned randomly near the lower edge of the membrane
surface. These cells were endowed with rules making them
hydrophilic. As the dynamics proceeded, it was observed
that more water molecules from the upper compartment
passed into and through the membrane than water from
the lower compartment. Since the solute molecules were
hydrophilic, the membrane was relatively impervious to
their passage. The behavior of this model is in agreement
with experimental observations collectively referred to as
an osmotic effect. This model of diffusion was solute con-
centration dependent.

As the hydrophobicity of the solute increased, it was
observed that an increasing number of solute particles
passed through the membrane from the lower aque-
ous compartment. There was no accumulation of so-
lute molecules within the membrane. At a level of hy-
drophobicity midway on the scale, i. e. about PB(WS)
D 0:5, there was a very abrupt change in this behav-
ior. At this critical hydrophobicity the number of so-
lute molecules passing through the membrane dropped
sharply. At higher PB(WS) values the number of cells pass-
ing through the membrane fell to nearly zero. At this crit-
ical hydrophobicity, the accumulation of solute molecules
in the membrane increased sharply.

Chromatographic Separation

Models of chromatographic separation have been re-
ported, derived from cellular automata [34]. The solvent
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cells were randomly distributed over the grid at the initia-
tion of each run. The stationary phase, designated B is sim-
ulated by the presence of cells randomly distributed over
the grid, replacing W cells. These B cells are immobile and
are positioned at least 3 cells from another B cell. The so-
lute cells, usually simulating two different compounds are
represented by a few cells each. The movements of the so-
lutes and mobile phase in the grid were governed by rules
denoting the joining and breaking of like or unlike cells.
The position of each solute cell was recorded at a row in
the column after a certain number of iterations. The po-
sition of the peak maximum was determined by summing
the number of cells found in groups of ten rows on the
column then plotting these averages against the iteration
time.

The gravity parameter for each ingredient in the sim-
ulation defines the flow rate. The polarity of the solvent,
W, is encoded in the relative self-association experienced.
This is governed by the rules, PB(WW) and J(WW). The
migration of the solutes was found to be faster when the
solvent was non-polar. Another study modeled the influ-
ence of the relative affinities of solutes for the stationary
phase, B. This affinity is encoded in the parameters, PB(SB)
and J(SB). High values of PB(SB) and low values of J(SB)
denote a weak affinity. A single solute was used in this
study with five different sets of parameters. These stud-
ies revealed that solutes with a greater affinity for the sta-
tionary phase migrated at a slower rate. These parameters
characterize the structural differences among solutes that
give rise to different migratory rates and separations in
chromatography.

Modeling Biochemical Networks

The Network Dynamic evolutionary networks have re-
cently been recognized as a universal approach to complex
systems including biochemical systems. Network topol-
ogy is generally used in characterizing these, focusing on
their connectivity, neighborhood and distance relation-
ships. Network complexity has also been recently quanti-
tatively characterized [35]. The large size of the metabolic,
protein, and gene regulatory networks makes impractical
many of the traditional methods for dynamic modeling.
A study on theMAPK signaling cascade has recently intro-
duced the potential of cellular automata as a basic method
for the dynamic modeling of networks for biological and
medical applications [30].

The CA Modeling Design Each molecule involved in
the MAPK pathway, Fig. 10, was represented by a num-
ber of cells in the CA grid. The numbers chosen reflect

the relative concentration of that protein. Each of the cells
representing all other proteins move about freely in the
grid. They may encounter each other but this has no con-
sequence. The only encounters that have a consequence
are those between a specific protein (substrate) and a spe-
cific enzyme, as shown in the network. When such an en-
counter occurs, there is modeled a complex (enzyme-sub-
strate). This complex has an assigned probability of con-
verging to a new complex (enzyme-product). Following
this there is a probability assigned for the separation of
these two species.

The studies of the MAPK cascade were performed us-
ing a CA grid of 100 by 100 cells. Each model was obtained
as the average of 50 runs, each of which included 5000 iter-
ations. A network to be studied was represented by groups
of CA cells, each group representing one of the network
species. The number of cells in each group reflects the rel-
ative concentrations of each network ingredient. We have
systematically altered the initial concentrations of several
proteins (MAPKKK, MAPKK, and MAPK) and the com-
petencies of several enzymes (MAPKK- and MAPK-pro-
teases, and the hypothetical enzymes E1 and E2 that affect
the forward and reverse reactions of activation and deac-
tivation of MAPKKK). The basic variable was the concen-
tration of MAPKKK, which was varied within a 25-fold
range from 20 to 500 cells. The concentrations of MAPKK
and MAPK were kept constant (500 or 250 cells) in most
of the models. The four enzymes, denoted by E1, E2, E3,
and E4, were represented in the CA grid by 50 cells each. In
one series of models, we kept the transition probabilities of
three of the enzymes the same, (P D 0:1), and varied the
probability of the fourth enzyme within the 0 to 1 range.
In another series, all enzyme probabilities were kept con-
stant, whereas the concentrations of substrates were var-
ied. The last series varied both substrate concentrations
and enzyme propensities. Recorded were the variations
in the concentrations of the three substrates MAPKKK,
MAPKK, andMAPK, and the products MAPKKK*, MAP-
KK-P, MAPKK-PP, MAPK-P, and MAPK-PP.

Modeling Enzymes Network Activity Upgrading or
downgrading enzymes activity is one of the typical ways
the cell reacts to stress and interactions with pathogens.
A systematic study was made of the variations of one of
the four enzymes E1 to E4 at constant concentrations of
the substrates MAPKKK, MAPKK and MAPK, and con-
stant propensity of the other three enzymes. This is il-
lustrated in Fig. 11 with the variation of the MAPKK-
protease (E3 enzyme in Fig. 10), which reverses the two-
step reaction of MAPKK phosphorilation. It is shown that
the concentration of the MAPKK- and MAPK-diphos-
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Cellular Automata Modeling of Complex Biochemical Systems, Figure 10
The MAPK signaling cascade. The substrates and products are represented by oval contours, reactions by arrows, and the catalysts
action by dashed lines. E3 and E4 areMAPKK-protease andMAPK-protease, respectively. P stands for phosphate, PP for diphosphate

phates (marked as E and H respectively) passes through
a maximum near relatively low enzyme transition proba-
bility (P � 0:02). At the point of its maximum, the con-
centration of MAPK-PP reaches over 80% of its maxi-
mum, whereas that of MAPKK-PP is slightly over 50%.
This shows the potential for a strong influence on the con-
centrations of the two diphosphates in the MAPK cascade
by inhibiting the MAPKK-protease. In contrast, the level
of steady-state concentrations of the twomonophosphates
(marked by D and G in Fig. 11) is not sensitive to the ac-
tivity of the enzyme modeled, except for the extreme case
of very strong inhibition (P ! 0:001).

Future Directions

Applications of cellular automata as a modeling paradigm
in chemistry is in its infancy. Literature searches show little
attention to the use of this method to study chemical phe-
nomena. Chemistry is about dynamic systems, thus a rich
harvest of information is possible using this paradigm.
This potential is illustrated here where primarily solution

systems are modeled. A broader use is clearly on the hori-
zon.

The study of bulk water structure is one example of
this potential. It points to a way of encoding the structure
of an evanescent substance with some degree of validity.
A recent example of this potential is a series of studies of
the influence of protein surface amino acid side chains on
the structure of nearby water [36]. Because of the vary-
ing hydropathic states of the surface side chains, a series
of passageways (chreodes) was postulated to exist through
the water. These chreodes were invoked in the facilitated
2-D diffusion of ligands and substrates to receptors and
enzyme active sites. The interference of these chreodes was
proposed in a theory of the action of general anesthet-
ics. As an extension of this theory, the induction of sleep
was proposed to arise from the interference of these chre-
odes by elemental nitrogen accumulated through respira-
tion over several hours. The remarkable correspondence
of kinetic and enzyme CA models with reality is excellent
and foretells the use of these in many applications. The
treatment of networks, foretells of another area of great
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Cellular Automata Modeling of Complex Biochemical Systems, Figure 11
Influence of the MAPKK-protease propensity P(E3) on the steady-state concentrations of the MAPK cascade species (A =MAPKKK,
B =MAPKKK*, C =MAPKK, D=MAPKK-P, E =MAPKK-PP, F =MAPK, F=MAPK-P, H =MAPK-PP). Enzyme propensities P(E1)D P(E2)
D P(E4) D 0:1, substrate initial concentrations [Ao] D 50; [Co] D [Fo] D 500

possibilities of models with CA. The beginning of this ap-
proach is shown above with the MAPK mode. There is
success here that is not achievable with classical differen-
tial equations.

A noteable advantage and a golden opportunity ex-
ists for any CA chemical model. That is the didactic value
of any CA model. You can see the dissolution of a crys-
tal, the changes of concentration in a CA enzyme model,
the changes in structure as the temperature changes, and
many more. A student will never forget a CA model of
these while an equation is quietly forgotten.

New aspects of CA models are on the horizon. Multi-
dimensional models, nested hierarchies, multi-grid assem-
blies, all are being explored and will soon surface as viable
methods rich in information.
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Cellular automata offer a powerful modeling framework to
describe and study physical systems composed of interact-
ing components. The potential of this approach is demon-
strated in the case of applications taken from various fields
of physics, such as reaction-diffusion systems, pattern for-
mation phenomena, fluid flows and road traffic models.

Glossary

BGKmodels Lattice Boltzmann models where the col-
lision term ˝ is expressed as a deviation from
a given local equilibrium distribution f (0), namely
˝ D ( f (0) � f )/� , where f is the unknown particle dis-
tribution and � a relaxation time (which is a parameter
of the model). BGK stands for Bhatnager, Gross and
Krook who first considered such a collision term, but
not specifically in the context of lattice systems.

CA Abbreviation for cellular automata or cellular au-
tomaton.

Cell The elementary spatial component of a CA. The cell
is characterized by a state whose value evolves in time
according to the CA rule.

Cellular automaton System composed of adjacent cells
or sites (usually organized as a regular lattice) which
evolves in discrete time steps. Each cell is character-
ized by an internal state whose value belongs to a finite
set. The updating of these states is made in parallel ac-
cording to a local rule involving only a neighborhood
of each cell.

Conservation law A property of a physical system in
which some quantity (such as mass, momentum or en-
ergy) is locally conserved during the time evolution.
These conservation laws should be included in the mi-
crodynamics of a CA model because they are essen-
tial ingredients governing the macroscopic behavior of
any physical system.

Collision The process by which the particles of a LGA
change their direction of motion.

Continuity equation An equation of the form @t� C

div �u D 0 expressing the mass (or particle number)
conservation law. The quantity � is the local density of
particles and u the local velocity field.

Critical phenomena The phenomena which occur in the
vicinity of a continuous phase transition, and are char-
acterized by very long correlation length.

Diffusion A physical process described by the equation
@t� D Dr2�, where � is the density of a diffusing
substance. Microscopically, diffusion can be viewed as
a randommotion of particles.

DLA Abbreviation of Diffusion Limited Aggregation.
Model of a physical growth process in which diffusing

particles stick on an existing cluster when they hit it.
Initially, the cluster is reduced to a single seed particle
and grows as more and more particles arrive. A DLA
cluster is a fractal object whose dimension is typically
1.72 if the experiment is conducted in a two-dimen-
sional space.

Dynamical system A system of equations (differential
equations or discretized equations) modeling the dy-
namical behavior of a physical system.

Equilibrium states States characterizing a closed system
or a system in thermal equilibrium with a heat bath.

Ergodicity Property of a system or process for which the
time-averages of the observables converge, in a proba-
bilistic sense, to their ensemble averages.

Exclusion principle A restriction which is imposed on
LGA or CA models to limit the number of parti-
cles per site and/or lattice directions. This ensures
that the dynamics can be described with a cellu-
lar automata rule with a given maximum number of
bits. The consequence of this exclusion principle is
that the equilibrium distribution of the particle num-
bers follows a Fermi–Dirac-like distribution in LGA
dynamics.

FHPmodel Abbreviation for the Frisch, Hasslacher and
Pomeau lattice gas model which was the first serious
candidate to simulate two-dimensional hydrodynam-
ics on a hexagonal lattice.

Fractal Mathematical object usually having a geometrical
representation and whose spatial dimension is not an
integer. The relation between the size of the object and
its “mass” does not obey that of usual geometrical ob-
jects. A DLA cluster is an example of a fractal.

Front The region where some physical process occurs.
Usually the front includes the locations in space that
are first affected by the phenomena. For instance, in
a reaction process between two spatially separated re-
actants, the front describes the region where the reac-
tion takes place.

HPP model Abbreviation for the Hardy, de Pazzis and
Pomeau model. The first two-dimensional LGA aimed
at modeling the behavior of particles colliding on
a square lattice with mass and momentum conserva-
tion. The HPP model has several physical drawbacks
that have been overcome with the FHP model.

Invariant A quantity which is conserved during the evo-
lution of a dynamical system. Some invariants are
imposed by the physical laws (mass, momentum,
energy) and others result from the model used to de-
scribe physical situations (spurious, staggered invari-
ants). Collisional invariants are constant vectors in the
space where the Chapman–Enskog expansion is per-
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formed, associated to each quantity conserved by the
collision term.

Ising model Hamiltonian model describing the ferro-
magnetic paramagnetic transition. Each local classical
spin variables si D ˙1 interacts with its neighbors.

Isotropy The property of continuous systems to be in-
variant under any rotations of the spatial coordinate
system. Physical quantities defined on a lattice and ob-
tained by an averaging procedure may or may not be
isotropic, in the continuous limit. It depends on the
type of lattice and the nature of the quantity. Second-
order tensors are isotropic on a 2D square lattice but
fourth-order tensors need a hexagonal lattice.

Lattice The set of cells (or sites)making up the spatial area
covered by a CA.

Lattice Boltzmann model A physical model defined on
a lattice where the variables associated to each site rep-
resent an average number of particles or the probabil-
ity of the presence of a particle with a given velocity.
Lattice Boltzmann models can be derived from cellu-
lar automata dynamics by an averaging and factoriza-
tion procedure, or be defined per se, independently of
a specific realization.

Lattice gas A system defined on a lattice where particles
are present and follow given dynamics. Lattice gas au-
tomata (LGA) are a particular class of such a system
where the dynamics are performed in parallel over
all the sites and can be decomposed in two stages:
(i) propagation: the particles jump to a nearest-neigh-
bor site, according to their direction of motion and
(ii) collision: the particles entering the same site at the
same iteration interact so as to produce a new particle
distribution. HPP and FHP are well-known LGA.

Lattice spacing The separation between two adjacent
sites of a regular lattice. Throughout this book, it is de-
noted by the symbol�r.

LB Abbreviation for Lattice Boltzmann.
LGA Abbreviation for Lattice Gas Automaton. See lattice

gas model for a definition.
Local equilibrium Situation in which a large system

can be decomposed into subsystems, very small on
a macroscopic scale but large on a microscopic scale
such that each sub-system can be assumed to be in
thermal equilibrium. The local equilibrium distribu-
tion is the function which makes the collision term of
a Boltzmann equation vanish.

Lookup table A table in which all possible outcomes of
a cellular automata rule are pre-computed. The use of
a lookup table yields a fast implementation of a cellular
automata dynamics since however complicated a rule
is, the evolution of any configuration of a site and its

neighbors is directly obtained through a memory ac-
cess. The size of a lookup table grows exponentially
with the number of bits involved in the rule.

Margolus neighborhood A neighborhood made of two-
by-two blocks of cells, typically in a two-dimensional
square lattice. Each cell is updated according to the val-
ues of the other cells in the same block. A different rule
may possibly be assigned dependent on whether the
cell is at the upper left, upper right, lower left or lower
right location. After each iteration, the lattice partition
defining theMargolus blocs is shifted one cell right and
one cell down so that at every other step, information
can be exchanged across the lattice. Can be generalized
to higher dimensions.

Microdynamics The Boolean equation governing the
time evolution of a LGA model or a cellular automata
system.

Moore neighborhood A neighborhood composed of the
central cell and all eight nearest and next-nearest
neighbors in a two-dimensional square lattice. Can be
generalized to higher dimensions.

Multiparticle models Discrete dynamics modeling
a physical system in which an arbitrary number of
particles is allowed at each site. This is an extension of
an LGA where no exclusion principle is imposed.

Navier–Stokes equation The equation describing the ve-
locity field u in a fluid flow. For an incompressible fluid
(@t� D 0), it reads

@tuC (u � r)u D �
1
�
rP C �r2u

where � is the density and P the pressure. The Navier–
Stokes equation expresses the local momentum con-
servation in the fluid and, as opposed to the Euler
equation, includes the dissipative effects with a viscos-
ity term �r2u. Together with the continuity equation,
this is the fundamental equation of fluid dynamics.

Neighborhood The set of all cells necessary to compute
a cellular automaton rule. A neighborhood is usually
composed of several adjacent cells organized in a sim-
ple geometrical structure. Moore, von Neumann and
Margolus neighborhoods are typical examples.

Occupation numbers Boolean quantities indicating the
presence or absence of a particle in a given physical
state.

Open system A system communicating with the environ-
ment by exchange of energy or matter.

Parallel Refers to an action which is performed simulta-
neously at several places. A parallel updating rule cor-
responds to the updating of all cells at the same time as
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if resulting from the computations of several indepen-
dent processors.

Partitioning A technique consisting of dividing space in
adjacent domains (through a partition) so that the evo-
lution of each block is uniquely determined by the
states of the elements within the block.

Phase transition Change of state obtained when varying
a control parameter such as the one occurring in the
boiling or freezing of a liquid, or in the change between
ferromagnetic and paramagnetic states of a magnetic
solid.

Propagation This is the process by which the particles of
a LGA are moved to a nearest neighbor, according to
the direction of their velocity vector vi. In one time
step �t the particle travel from cell r to cell rC vi�t
where rC vi�t is the nearest neighbor in lattice direc-
tion i.

Random walk A series of uncorrelated steps of length
unity describing a random path with zero average dis-
placement but characteristic size proportional to the
square root of the number of steps.

Reaction-diffusion systems Systems made of one or sev-
eral species of particles which diffuse and react among
themselves to produce some new species.

Scaling hypothesis A hypothesis concerning the analyt-
ical properties of the thermodynamic potentials and
the correlation functions in a problem invariant under
a change of scale.

Scaling law Relations among the critical exponents de-
scribing the power law behaviors of physical quantities
in systems invariant under a change of scale.

Self-organized criticality Concept aimed at describing
a class of dynamical systems which naturally drive
themselves to a state where interesting physics occurs
at all scales.

Site Same as a cell, but preferred terminology in LGA and
LB models.

Spatially extended systems Physical systems involving
many spatial degrees of freedom and which, usu-
ally, have rich dynamics and show complex behaviors.
Coupled map lattices and cellular automata provides
a way to model spatially extended systems.

Spin Internal degree of freedom associated to particles in
order to describe their magnetic state. A widely used
case is the one of classical Ising spins. To each particle,
one associates an “arrow” which is allowed to take only
two different orientations, up or down.

Time step Interval of time separating two consecutive it-
erations in the evolution of a discrete time process, like
a CA or a LB model. Throughout this work the time
step is denoted by the symbol�t .

Universality The phenomenon whereby many micro-
scopically different systems exhibit a critical behavior
with quantitatively identical properties such as the crit-
ical exponents.

Updating operation consisting of assigning a new value
to a set of variables, for instance those describing the
states of a cellular automata system. The updating can
be done in parallel and synchronously as is the case
in CA dynamics or sequentially, one variable after an-
other, as is usually the case forMonte–Carlo dynamics.
Parallel, asynchronous updating is less common but
can be envisaged too. Sequential and parallel updating
schemes may yield different results since the interde-
pendencies between variables are treated differently.

Viscosity A property of a fluid indicating how much mo-
mentum “diffuses” through the fluid in a inhomoge-
neous flow pattern. Equivalently, it describes the stress
occurring between two fluid layers moving with differ-
ent velocities. A high viscosity means that the resulting
drag force is important and low viscosity means that
this force is weak. Kinematic viscosity is usually de-
noted by � and dynamic viscosity is denoted by � D ��
where � is the fluid density.

von Neumann neighborhood On a two-dimensional
square lattice, the neighborhood including a central
cell and its nearest neighbors north, south, east and
west.

Ziff model A simple model describing adsorption–
dissociation–desorption on a catalytic surface. This
model is based upon some of the known steps of
the reaction A–B2 on a catalyst surface (for example
CO–O2).

Definition of the Subject

The computational science community has always been
faced with the challenge of bringing efficient numerical
tools to solve problems of increasing difficulty. Nowadays,
the investigation and understanding of the so-called com-
plex systems, and the simulation of all kinds of phenomena
originating from the interaction of many components are
of central importance in many area of science.

Cellular automata turn out to be a very fruitful ap-
proach to address many scientific problems by providing
an efficient way to model and simulate specific phenom-
ena for which more traditional computational techniques
are hardly applicable.

The goal of this article is to provide the reader with
the foundation of this approach, as well as a selection of
simple applications of the cellular automata approach to
the modeling of physical systems. We invite the reader
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to consult the web site http://cui.unige.ch/~chopard/CA/
Animations/img-root.html in order to view short movies
about several of the models discussed in this article.

Introduction

Cellular automata (hereafter termed CA) are an idealiza-
tion of the physical world in which space and time are of
discrete nature. In addition to space and time, the physical
quantities also take only a finite set of values. Since it has
been proposed by von Neumann in the late 1940s, the cel-
lular automata approach has been applied to a large range
of scientific problems (see for instance [4,10,16,35,42,51]).
International conferences (e. g. ACRI) and dedicated jour-
nals (J. of Cellular Automata) also describe current devel-
opments.

When von Neumann developed the concept of CA,
its motivation was to extract the abstract (or algorithmic)
mechanisms leading to self-reproduction of biological or-
ganisms [6].

Following the suggestions of S. Ulam, von Neumann
addressed this question in the framework of a fully dis-
crete universe made up of simple cells. Each cell was char-
acterized by an internal state, which typically consists of
a finite number of information bits. Von Neumann sug-
gested that this system of cells evolves, in discrete time
steps, like simple automata which only know of a simple
recipe to compute their new internal state. The rule de-
termining the evolution of this system is the same for all
cells and is a function of the states of the cell itself and its
neighbors.

Similarly to what happens in any biological system, the
activity of the cells takes place simultaneously. The same
clock is assumed to drive the evolution of every cell and
the updating of their internal state occurs synchronously.

Such a fully discrete dynamical system (cellular space),
as invented by von Neumann, is now referred to as a cel-
lular automaton.

Among the early applications of CA, the game of
life [19] is famous. In 1970, the mathematician John Con-
way proposed a simple model leading to complex behav-
iors. He imagined a two-dimensional square lattice, like
a checkerboard, in which each cell can be either alive (state
one) or dead (state zero). The updating rule of the game of
life is as follows: a dead cell surrounded by exactly three
living cells gets back to life; a living cell surrounded by
less than two or more than three neighbors dies of isola-
tion or overcrowdness. Here, the surrounding cells corre-
spond to the neighborhood composed of the four nearest
cells (North, South, East and West), plus the four second
nearest neighbors, along the diagonals. It turns out that the

game of life automaton has an unexpectedly rich behavior.
Complex structures emerge out of a primitive “soup” and
evolve so as to develop some skills that are absent of the
elementary cells (see Fig. 1).

The game of life is a cellular automata capable of uni-
versal computations: it is always possible to find an initial
configuration of the cellular space reproducing the behav-
ior of any electronic gate and, thus, to mimic any compu-
tation process. Although this observation has little practi-
cal interest, it is very important from a theoretical point of
view since it assesses the ability of CAs to be a nonrestric-
tive computational technique.

A very important feature of CAs is that they provide
simple models of complex systems. They exemplify the
fact that a collective behavior can emerge out of the sum
of many, simply interacting, components. Even if the ba-
sic and local interactions are perfectly known, it is possible
that the global behavior obeys new laws that are not ob-
viously extrapolated from the individual properties, as if
the whole were more than the sum of all the parts. These
properties make cellular automata a very interesting ap-
proach to model physical systems and in particular to sim-
ulate complex and nonequilibrium phenomena.

The studies undertaken by S. Wolfram in the
1980s [50,51] clearly establishes that a CA may exhibit
many of the behaviors encountered in continuous systems,
yet in a much simpler mathematical framework. A further
step is to recognize that CAs are not only behaving sim-
ilarly to some dynamical processes, they can also repre-
sent an actual model of a given physical system, leading
to macroscopic predictions that could be checked experi-
mentally.

This fact follows from statistical mechanics which tells
us that the macroscopic behavior of many systems is often
only weakly related to the details of its microscopic real-
ity. Only symmetries and conservation laws survive to the
change of observation level: it is well known that the flows
of a fluid, a gas or even a granular media are very similar at
a macroscopic scale, in spite of their different microscopic
nature.

When one is interested in the global or macroscopic
properties of a system, it is therefore a clear advantage to
invent a much simpler microscopic reality, which is more
appropriate to the available numerical means of investiga-
tion.

An interesting example is the FHP fluid model pro-
posed by Frisch, Hasslacher and Pomeau in 1986 [18]
which can be viewed as a fully discrete molecular dynamic
and yet behaves as predicted by the Navier–Stokes equa-
tion when the observation time and length scales are much
larger than the lattice and automaton time step.

http://cui.unige.ch/~chopard/CA/Animations/img-root.html
http://cui.unige.ch/~chopard/CA/Animations/img-root.html
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Cellular Automata Modeling of Physical Systems, Figure 1
The game of life automaton. Black dots represent living cells whereas dead cells are white. The figure shows the evolution of a ran-
dom initial configuration and the formation of spatial structures, with possibly some emerging functionalities. The figure shows the
evolution of some random initial configurations

A cellular automata model can then be seen as an ide-
alized universe with its own microscopic reality but, nev-
ertheless, with the same macroscopic behavior as given in
the real system.

The cellular automata paradigm presents nevertheless
some weaknesses inherent to its discrete nature. In the
early 1990s, Lattice Boltzmann (LB)models were proposed
to remedy some of these problems, using real-valued states
instead of Boolean variables. It turns out that LB models
are indeed a very powerful approach which combines nu-
merical efficiency with the advantage of having a model
whose microscopic components are intuitive. LB-fluids
are more and more used to solve complex flows such as
multi-component fluids or complicated geometries prob-
lems. See for instance [10,40,41,49] for an introduction to
LB models.

Definition of a Cellular Automata

In order to give a definition of a cellular automaton, we
first present a simple example, the so-called parity rule.
Although it is very basic, the rule we discuss here exhibits
a surprisingly rich behavior. It was proposed initially by
Edward Fredkin in the 1970s [3] and is defined on a two-
dimensional square lattice.

Each site of the lattice is a cell which is labeled by its
position r D (i; j) where i and j are the row and column
indices. A function  (r; t) is associated with the lattice to
describe the state of each cell r at iteration t. This quantity
can be either 0 or 1.

The cellular automata rule specifies how the states
 (r; t C 1) are to be computed from the states at itera-
tion t. We start from an initial condition at time t D 0 with
a given configuration of the values  (r; t D 0) on the lat-
tice. The state at time t D 1 will be obtained as follows

(1) Each site r computes the sum of the values  (r0; 0)
on the four nearest neighbor sites r0 at north, west,
south, and east. The system is supposed to be periodic
in both i and j directions (like on a torus) so that this
calculation is well defined for all sites.

(2) If this sum is even, the new state  (r; t D 1) is 0
(white) and, else, it is 1 (black).

The same rule (steps 1 and 2) is repeated over to find the
states at time t D 2; 3; 4; : : :.

From a mathematical point of view, this cellular au-
tomata parity rule can be expressed by the following rela-
tion

 (i; j; t C 1) D (i C 1; j; t)˚  (i � 1; j; t)
˚  (i; jC 1; t)˚  (i; j � 1; t)

(1)

where the symbol ˚ stands for the exclusive OR logical
operation. It is also the summodulo 2: 1˚ 1 D 0˚ 0 D 0
and 1˚ 0 D 0˚ 1 D 1.

When this rule is iterated, very nice geometric patterns
are observed, as shown in Fig. 2. This property of generat-
ing complex patterns starting from a simple rule is generic
of many cellular automata rules. Here, complexity results
from some spatial organization which builds up as the rule
is iterated. The various contributions of successive itera-
tions combine together in a specific way. The spatial pat-
terns that are observed reflect how the terms are combined
algebraically.

A computer implementation of this CA can be given.
In Fig. 3 we propose as, an illustration, a Matlab program
(the reader can also consider Octave which is a free version
of Matlab).

On the basis of this example we now give a definition of
a cellular automata. Formally, a cellular automata is a tuple
(A; �; R;N ) where
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Cellular Automata Modeling of Physical Systems, Figure 2
The˚ rule (or parity rule) on a 256� 256 periodic lattice. a Initial configuration; b and c configurations after tb D 93 and tc D 110
iterations, respectively

nx=128; ny=128; % size of the domain: 128x128
a=zeros(nx,ny); % the states are first initialized to 0

north=[ 2:nx,1]; % vectors to access the neighbors
south=[nx, 1:nx-1]; % corresponding to a cyclic permutation
east=[2:ny,1]; % of 1:nx or 1:ny
west=[ny,1:ny-1];

% a central patch is initialized with 1’s
a(nx/2-3:nx/2+2, ny/2-4:ny/2+3)=1;

for t=1:65 % let us do 65 iterations
pcolor(a) % build a graphical representation
axis off
axis square
shading flat
drawnow % display it
somme=a(north,:) + a(south,:) + a(:,west) + a(:,east);
a=mod(somme,2);

end

Cellular Automata Modeling of Physical Systems, Figure 3
A example of a Matlab program for the parity rule

(i) A is a regular lattice of cells covering a portion of
a d-dimensional space.

(ii) A set � (r; t) D f� (1)(r; t); � (2)(r; t); : : : ; � (m)(r; t)g
of m Boolean variables attached to each site r of
the lattice and giving the local state of the cells at
time t.

(iii) A set R of rules, R D fR(1); R(2); : : : ; R(m)g, which
specifies the time evolution of the states � (r; t) in the
following way

� ( j)(r; t C�t) D R( j)(� (r; t); � (r C v1; t);
� (rC v2; t); : : : ; � (rC vq; t))

(2)

where rC vk designate the cells belonging to the
neighborhoodN of cell r.

In the above definition, the rule R is identical for all
sites and is applied simultaneously to each of them, lead-
ing to synchronous dynamics. As the number of configu-
rations of the neighborhood is finite, it is common to pre-
compute all the values of R in a lookup table. Otherwise,
an algebraic expression can be used and evaluated at each
iteration, for each cell, as in Eq. (1).

It is important to notice that the rule is homogeneous,
that is it cannot not depend explicitly on the cell position r.
However, spatial (or even temporal) inhomogeneities can
be introduced anyway by having some� j(r) systematically
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1 in some given locations of the lattice to mark particular
cells on which a different rule applies. Boundary cells are
a typical example of spatial inhomogeneities. Similarly, it
is easy to alternate between two rules by having a bit which
is 1 at even time steps and 0 at odd time steps.

The neighborhood N of each cell (i. e. the spatial re-
gion around each cell used to compute the next state) is
usually made of its adjacent cells. It is often restricted to
the nearest or next to nearest neighbors, otherwise the
complexity of the rule is too large. For a two-dimen-
sional cellular automaton, two neighborhoods are often
considered: the von Neumann neighborhood which con-
sists of a central cell (the one which is to be updated) and
its four geographical neighbors North, West, South, and
East. The Moore neighborhood contains, in addition, the
second nearest neighbor North-East, North-West, South-
West, and South-East, that is a total of nine cells. Another
interesting neighborhood is the Margolus neighborhood
briefly described in the glossary.

According to the above definition, a cellular automa-
ton is deterministic. The rule R is some well-defined func-
tion and a given initial configuration will always evolve
identically. However, it may be very convenient for some
applications to have a certain degree of randomness in the
rule. For instance, it may be desirable that a rule selects one
outcome among several possible states, with a probabil-
ity p. Cellular automata whose updating rule is driven by
some external probabilities are called probabilistic cellular
automata. On the other hand, those which strictly comply
with the definition given above, are referred to as deter-
ministic cellular automata.

Probabilistic cellular automata are a very useful gener-
alization because they offer a way to adjust the parameters
of a rule in a continuous range of values, despite the dis-
crete nature of the cellular automata world. This is very
convenient when modeling physical systems in which, for
instance, particles are annihilated or created at some given
rate.

Limitations, Advantages, Drawbacks,
and Extensions

The interpretation of the cellular automata dynamics in
terms of simple “microscopic” rules offers a very intuitive
and powerful approach to model phenomena that are very
difficult to include in more traditional approaches (such as
differential equations). For instance, boundary conditions
are often naturally implemented in a cellular automata
model because they have a natural interpretation at this
level of description (e. g. particles bouncing back on an ob-
stacle).

Numerically, an advantage of the CA approach is its
simplicity and its adequation to computer architectures
and parallel machines. In addition, working with Boolean
quantities prevent numerical instabilities since an exact
computation is made. There is no truncation or approx-
imation in the dynamics itself. Finally, a CA model is an
implementation of an N-body system where all correla-
tions are taken into account, as well as all spontaneous
fluctuations arising in a systemmade up of many particles.

On the other hand, cellular automatamodels have sev-
eral drawbacks related to their fully discrete nature. An im-
portant one is the statistical noise requiring systematic av-
eraging processes. Another one is the little flexibility to ad-
just parameters of a rule in order to describe a wider range
of physical situations.

The Lattice Boltzmann approach solves several of the
above problems. On the other hand, it may be numerically
unstable and, also, requires some hypotheses of molecular
chaos which reduces the some of the richness of the origi-
nal CA dynamics [10].

Finally, we should remark that the CA approach is not
a rigid framework but should allow for many extensions
according to the problem at hand. The CAmethodology is
a philosophy of modeling where one seeks a description in
terms of simple but essential mechanisms. Its richness and
interest comes from the microscopic contents of its rule
for which there is, in general, a clear physical or intuitive
interpretation of the dynamics directly at the level of the
cell.

Einstein’s quote “Everything should be made as simple
as possible, but not simpler” is a good illustration of the
CA methodology to the modeling of physical systems.

Applications

Many physical situations, like fluid flows, pattern forma-
tion, reaction-diffusion processes, nucleation-aggregation
growth phenomena, phase transition, population dynam-
ics, or traffic processes are very well suited to the cellu-
lar automata approach because both space and time play
a central role in the behavior of these systems.

Below we describe several applications which illustrate
the potential of the approach and that can be extended in
order to address a wide class of scientific problems.

A Growth Model

A simple class of cellular automata rules consists of the so-
calledmajority rules. The updating selects the new state of
each cell so as to conform to the value currently held by
the majority of the neighbors. Typically, in these majority
rules, the state is either 0 or 1.
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Cellular Automata Modeling of Physical Systems, Figure 4
Evolution of the twisted majority. The inherent “surface tension” present in the rule tends to separate the red phases s D 1 from
the blue phase s D 0. The snapshots a, b and c correspond to t D 0, t D 72, and t D 270 iterations, respectively. The other colors
indicate how “capes” have been eroded and “bays” filled: light blue shows the blue regions that have been eroded during the last
few iterations and yellowmarks the red regions that have been filled

A very interesting behavior is observed with the
twisted majority rule proposed by G. Vichniac [44]: in
two-dimensions, each cell considers its Moore neighbor-
hood (i. e. itself plus its eight nearest neighbors) and com-
putes the sum of the cells having a value 1. This sum can be
any value between 0 and 9. The new state s(t C 1) of each
cell is then determined from this local sum, according to
the following table

sum(t) 0 1 2 3 4 5 6 7 8 9
s(t C 1) 0 0 0 0 1 0 1 1 1 1

(3)

As opposed to the plainmajority rule, here, the twomiddle
entries of the table have been swapped. Therefore, when
there is a slight majority of 1 around a cell, it turns to 0.
Conversely, if there is a slight majority of 0, the cell be-
comes 1.

Surprisingly enough this rule describes the interface
motion between two phases, as illustrated in Fig. 4. Vich-
niac has observed that the normal velocity of the interface
is proportional to its local curvature, as required by the
Allen–Cahn [21] equation. Of course, due to its local na-
ture, the rule cannot detect the curvature of the interface
directly. However, as the rule is iterated, local information
is propagated to the nearest neighbors and the radius of
curvature emerges as a collective effect.

This rule is particularly interesting when the initial
configuration is a random mixture of the two phases, with
equal concentration. Otherwise, some pathological behav-
iors may occur. For instance, an initial square of 1’s sur-
rounded by zero’s will not evolve: 90-degree angles are not
eroded and remain stable structures.

Ising-Like Dynamics

The Ising model is extensively used in physics. Its basic
constituents are spins si which can be in one of two states:
si 2 f�1; 1g. These spins are organized on a regular lattice
in d-dimensions and coupled in the sense that each pair
(si ; s j) of neighbor spins contributes an amount �Jsi s j to
the energy of the system. Intuitively, the dynamics of such
a system is that a spin flips (si ! �si) if this is favorable
in view of the energy of the local configuration.

Vichniac [44], in the 1980s, proposed a CA rule, called
Q2R, simulating the behavior of Ising spin dynamics. The
model is as follows:

We consider a two-dimensional square lattice such
that each site holds a spin si which is either up (si D 1)
or down (si D 0) (instead of ˙1). The coupling between
spins is assumed to come from the von Neumann neigh-
borhood (i. e. north, west, south, and east neighbors).

In this simple model, the spins will flip (or not flip)
during their discrete time evolution according to a local
energy conservation principle. This means we are consid-
ering a system which cannot exchange energy with its sur-
roundings. Themodel will be amicrocanonical cellular au-
tomata simulation of Ising spin dynamics, without a tem-
perature but with a critical energy.

A spin si can flip at time t to become 1� si at time
t C 1 if and only if this move does not cause any energy
change. Accordingly, spin si will flip if the number of its
neighbors with spin up is the same as the number of its
neighbors with spin down. However, one has to remember
that the motion of all spins is simultaneous in a cellular
automata. The decision to flip is based on the assumption
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that the neighbors are not changing. If they are allowed
to flip too, (because they obey the same rule), then energy
may not be conserved.

A way to cure this problem is to split the updating in
two phases and consider a partition of the lattice in odd
and even sites (e. g. the white and black squares of a chess-
board in 2D): first, one flips the spins located at odd posi-
tions, according to the configuration of the even spins. In
the second phase, the even sublattice is updated according
to the odd one. The spatial structure (defining the two sub-
lattices) is obtained by adding an extra bit b to each lattice
site, whose value is 0 for the odd sublattice and 1 for the
even sublattice. The flipping rule described earlier is then
regulated by the value of b. It takes place only for those
sites for which b D 1. Of course, the value of b is also up-
dated at each iteration according to b(t C 1) D 1 � b(t),
so that at the next iteration, the other sublattice is con-
sidered. In two-dimensions, the Q2R rule can be then ex-
pressed by the following expressions

si j(tC1) D

8
<

:

1 � si j(t) if bi j D 1 and si�1; j
CsiC1; j C si; j�1 C si; jC1 D 2

si j(t) otherwise
(4)

and

bi j(t C 1) D 1 � bi j(t) (5)

where the indices (i; j) label the Cartesian coordinates and
si j(t D 0) is either one or zero.

The question is now how well does this cellular au-
tomata rule perform to describe an Ising model? Figure 5
shows a computer simulation of the Q2R rule, starting
from an initial configuration with approximately 11% of
spins si j D 1 (Fig. 5a). After a transient phase (figures b
and c), the system reaches a stationary state where do-
mains with “up” magnetization (white regions) are sur-
rounded by domains of “down” magnetization (black re-
gions).

In this dynamics, energy is exactly conserved because
that is the way the rule is built. However, the number of
spins down and up may vary. In the present experiment,
the fraction of spins up increases from 11% in the initial
state to about 40% in the stationary state. Since there is
an excess of spins down in this system, there is a resulting
macroscopic magnetization.

It is interesting to study this model with various ini-
tial fractions �s of spins up. When starting with a random
initial condition, similar to that of Fig. 5a, it is observed
that, for many values of �s , the system evolves to a state
where there is, in the average, the same amount of spin

down and up, that is nomacroscopic magnetization. How-
ever, if the initial configuration presents a sufficiently large
excess of one kind of spins, then amacroscopic magnetiza-
tion builds up as time goes on. This means there is a phase
transition between a situation of zero magnetization and
a situation of positive or negative magnetization.

It turns out that this transition occurs when the to-
tal energy E of the system is low enough (a low energy
means that most of the spins are aligned and that there is
an excess of one species over the other), or more precisely
when E is smaller than a critical energy Ec. In that sense,
the Q2R rule captures an important aspect of a real mag-
netic system, namely a non-zero magnetization at low en-
ergy (which can be related to a low temperature situation)
and a transition to a nonmagnetic phase at high energy.

However, Q2R also exhibits unexpected behavior that
is difficult to detect from a simple observation. There is
a breaking of ergodicity: a given initial configuration of
energy E0 evolves without visiting completely the region
of the phase space characterized by E D E0.

This is illustrated by the following simple 1D example,
where a ring of four spins with periodic boundary condi-
tion are considered.

t : 1001
t C 1 : 1100
t C 2 : 0110
t C 3 : 0011
t C 4 : 1001

(6)

After four iterations, the system cycles back to its original
state. The configuration of this example has E0 D 0. As we
observed, it never evolves to 0111, which is also a config-
uration of zero energy. This nonergodicity means that not
only energy is conserved during the evolution of the au-
tomaton, but also another quantity which partitions the
energy surface in independent regions.

Competition Models and Cell Differentiation

In Sect. “A Growth Model” we have discussed a major-
ity rule in which the cells imitate their neighbors. In some
sense, this corresponds to a cooperative behavior between
the cells. A quite different situation can be obtained if the
cells obey competitive dynamics. For instance, we may
imagine that the cells compete for some resources at the
expense of their nearest neighbors. A winner is a cell of
state 1 and a loser a cell of state 0. No two winner cells can
be neighbors and any loser cell must have at least one win-
ner neighbor (otherwise nothing would have prevented it
to also win).
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Cellular Automata Modeling of Physical Systems, Figure 5
Evolution of a system of spins with the Q2R rule. Black represents the spins down sij D 0 and white the spins up sij D 1. The four
images a, b, c, and d show the system at four different times ta D 0 < tb� tcd

It is interesting to note that this problem has a di-
rect application in biology, to study cell differentiation. It
has been observed in the development of Drosophila that
about 25% of the cells forming the embryo evolve to the
state of neuroblast, while the remaining 75% do not. How
can we explain this differentiation and the observed frac-
tion since, at the beginning of the process all cells can be
assumed equivalent? A possible mechanism [28] is that
some competition takes place between the adjacent bio-
logical cells. In other words, each cell produces some sub-
stance S but the production rate is inhibited by the amount
of S already present in the neighboring cells. Differentia-
tion occurs when a cell reaches a level of S above a given
threshold.

The competition CAmodelwe propose to describe this
situation is the following. Because of the analogy with the
biological system, we shall consider a hexagonal lattice,
which is a reasonable approximation of the cell arrange-
ment observed in the Drosophila embryo (see Fig. 6). We
assume that the values of S can be 0 (inhibited) or 1 (active)
in each lattice cell.
� A S D 0 cell will grow (i. e. turn to S D 1) with proba-

bility pgrow provided that all its neighbors are 0. Other-
wise, it stays inhibited.

� A cell in state S D 1 will decay (i. e. turn to S D 0) with
probability pdecay if it is surrounded by at least one ac-
tive cell. If the active cell is isolated (all the neighbors
are in state 0) it remains in state 1.
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Cellular Automata Modeling of Physical Systems, Figure 6
The hexagonal lattice used for the competition-inhibition CA rule. Black cells are cells of state 1 (winners) and white cells are cells
of state 0 (losers). The two possible final states with a fully regular structure are illustrated with density 1/3 and 1/7 of a winner,
respectively

The evolution stops (stationary process) when no
S D 1 cell feels anymore inhibition from its neighbors and
when all S D 0 cells are inhibited by their neighborhood.
Then, with our biological interpretation, cells with S D 1
are those which will differentiate.

What is the expected fraction of these S D 1 cells in
the final configuration? Clearly, from Fig. 6, the maximum
value is 1/3. According to the inhibition condition we im-
posed, this is the close-packed situation on the hexagonal
lattice. On the other hand, the minimal value is 1/7, cor-
responding to a situation where the lattice is partitioned
in blocks with one active cell surrounded by six inhibited
cells. In practice we do not expect any of these two limits
to occur spontaneously after the automaton evolution. On
the contrary, we should observe clusters of close-packed
active cells surrounded by defects, i. e. regions of low den-
sity of active cells.

CA simulations show indeed that the final fraction s of
active cells is a mix of the two limiting situations of Fig. 6

:23 � s � :24

almost irrespectively of the values chosen for panihil and
pgrowth.

This is exactly the value expected from the biological
observations made on the Drosophila embryo. Thus, cell
differentiation can be explained by a geometrical compe-
tition without having to specify the inhibitory couplings
between adjacent cell and the production rate (i. e. the val-
ues of panihil and pgrowth): the result is quite robust against
any possible choices.

TrafficModels

Cellular automata models for road traffic have received
a great deal of interest during the past few years (see [13,32,
33,36,37,47,48,52] for instance).

One-dimensional models for single lane car motions
are quite simple and elegant. The road is represented as
a line of cells, each of them being occupied or not by
a vehicle. All cars travel in the same direction (say to the
right). Their positions are updated synchronously. During
the motion, each car can be at rest or jump to the near-
est neighbor site, along the direction of motion. The rule
is simply that a car moves only if its destination cell is
empty. This means that the drivers do not know whether
the car in front will move or will be blocked by another car.
Therefore, the state of each cell si is entirely determined by
the occupancy of the cell itself and its two nearest neigh-
bors si�1 and siC1. The motion rule can be summarized by
the following table, where all eight possible configurations
(si�1si siC1)t ! (si )tC1 are given

(111)„ƒ‚…
1

(110)„ƒ‚…
0

(101)„ƒ‚…
1

(100)„ƒ‚…
1

(011)„ƒ‚…
1

(010)„ƒ‚…
0

(001)„ƒ‚…
0

(000)„ƒ‚…
0

:
(7)

This cellular automaton rule turns out to be Wolfram rule
184 [50,52].

These simple dynamics capture an interesting feature
of real car motion: traffic congestion. Suppose we have
a low car density � in the system, for instance something
like

: : : 0010000010010000010 : : : : (8)

This is a free traffic regime in which all the cars are able to
move. The average velocity hvi defined as the number of
motions divided by the number of cars is then

hvfi D 1 (9)

where the subscript f indicates a free state. On the other
hand, in a high density configuration such as

: : : 110101110101101110 : : : : (10)
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only six cars over 12 willmove and hvi D 1/2. This is a par-
tially jammed regime.

If the car positions were uncorrelated, the number of
moving cars (i. e. the number of particle-hole pairs) would
be given by L�(1 � �), where L is the system size. Since the
number of cars is �L, the average velocity would be

hvuncorreli D 1 � � : (11)

However, in this model, the car occupancy of adjacent
sites is highly correlated and the vehicles cannot move un-
til a hole has appeared in front of them. The car distribu-
tion tries to self-adjust to a situation where there is one
spacing between consecutive cars. For densities less than
one-half, this is easily realized and the system can organize
to have one car every other site.

Therefore, due to these correlations, Eq. (11) is wrong
in the high density regime. In this case, since a car needs
a hole to move to, we expect that the number of moving
cars simply equals the number of empty cells [52]. Thus,
the number of motions is L(1 � �) and the average velocity
in the jammed phase is

hv ji D
1 � �
�

: (12)

From the above relations we can compute the so-called
fundamental flow diagram, i. e. the relation between the
flow of cars �hvi as a function of the car density �: for
� � 1/2, we use the free regime expression and �hvi D �.
For densities � > 1/2, we use the jammed expression and
�hvi D 1 � �. The resulting diagram is shown in Fig. 7.
As in real traffic, we observe that the flow of cars reaches
a maximum value before decreasing.

A richer version of the above CA traffic model is due
to Nagel and Schreckenberg [33,47,48]. The cars may have
several possible velocities u D 0; 1; 2; : : : ; umax. Let ui be
the velocity of car i and di the distance, along the road,
separating cars i and i C 1. The updating rule is:

� The cars accelerate when possible: ui ! u0i D ui C 1,
if ui < umax.

� The cars slow downwhen required: u0i ! u00i D di � 1,
if u0i � di .

� The cars have a random behavior: u00i ! u000i D u00i � 1,
with probability pi if u00i > 0.

� Finally, the cars move u000i sites ahead.

This rule captures some important behaviors of real
traffic on a highway: velocity fluctuations due to a non-
deterministic behavior of the drivers, and “stop-and-go”
waves observed in a high-density traffic regime.

We refer the reader to recent literature for the new de-
velopments of this topic. See for instance [24,25].

Cellular Automata Modeling of Physical Systems, Figure 7
Traffic flow diagram for the simple CA traffic rule

Cellular Automata Modeling of Physical Systems, Figure 8
The four central cells represent a roundabout which is traveled
counterclockwise. The gray levels indicate the different traffic
lanes: white is a northbound lane, light gray an eastbound lane,
gray a southbound lane and, finally, dark gray is a westbound
lane. The dots labeled a, b, c, d, e, f , g, and h are cars which will
move to the destination cell indicated by the arrows, as deter-
mined by some local decision rule. Carswithout an arrow are for-
bidden to move

Note that a street network can also be described us-
ing a CA. A possible approach is to model a road intersec-
tion as a roundabout. Cars in the roundabout have prior-
ity over those willing to enter. Figure 8 illustrates a simple
four-way road junction.
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Cellular Automata Modeling of Physical Systems, Figure 9
Traffic configuration after 600 iterations, for a car density of 30%. Streets arewhite, buildings gray and the black pixels represent the
cars. Situation a corresponds to the roundabout junctions, whereas image bmimics the presence of traffic lights. In the second case,
queues are more likely to form and the global mobility is less than in the first case

Cellular Automata Modeling of Physical Systems, Figure 10
Average velocity versus average density for the cellular automata street network, for a time-uncorrelated turning strategies and
b a fixed driver decision. The different curves correspond to different distances L between successive road junctions. The dashed line
is the analytical prediction (see [13]). Junction deadlock is likely to occur in b, resulting in a completely jammed state

Traffic lights can also be modeled in a CA by stop-
ping, during a given number of iterations, the car reaching
a given cell. Figure 9 illustrates CA simulation of a Man-
hattan-like city in which junctions are either controlled by
a roundabout or by a traffic light. In both cases, the desti-
nation of a car reaching the junction is randomly chosen.

Figure 10 shows the fundamental flow diagram ob-
tained with the CA model, for a Manhattan-like city gov-
erned by roundabouts separated by a distance L.

CAmodeling of urban traffic has been used for real sit-
uations by many authors (see for instance [11]) and some
cities in Europe and USA use the CA approach as a way to
manage traffic.

Note finally that crowdmotion is also addressedwithin
the CA framework. Recent results [7,29] show that the ap-
proach is quite promising to plan evacuation strategies and
reproduce several of the motion patterns observed in real
crowds.
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Cellular Automata Modeling of Physical Systems, Figure 11
Example of a configuration of HPP particles

A Simple Gas: The HPPModel

The HPP rule is a simple example of an important class
of cellular automata models: lattice gas automata (LGA).
The basic ingredient of suchmodels are point particles that
move on a lattice, according to appropriate rules so as to
mimic fully discrete “molecular dynamics.”

The HPP lattice gas automata is traditionally defined
on a two-dimensional square lattice. Particles can move
along themain directions of the lattice, as shown in Fig. 11.
The model limits to 1 the number of particles entering
a given site with a given direction of motion. This is the
exclusion principle which is common in most LGA (LGA
models without the exclusion principle are called multi-
particle models [10]).

With at most one particle per site and direction, four
bits of information at each site are enough to describe the
system during its evolution. For instance, if at iteration t
site r has the following state s(r; t) D (1011), it means that
three particles are entering the site along direction 1, 3,
and 4, respectively.

The cellular automata rule describing the evolution of
s(r; t) is often split into two steps: collision andmotion (or
propagation). The collision phase specifies how the parti-
cles entering the same site will interact and change their
trajectories. During the propagation phase, the particles
actually move to the nearest neighbor site they are travel-
ing to. This decomposition into two phases is a quite con-
venient way to partition the space so that the collision rule
is purely local.

Cellular Automata Modeling of Physical Systems, Figure 12
The HPP rule: a a single particle has a ballistic motion until it
experiences a collision; b and c the two nontrivial collisions of
the HPP model: two particles experiencing a head on collision
are deflected in the perpendicular direction. In the other situa-
tions, the motion is ballistic, that is the particles are transparent
to each other when they cross the same site

Figure 12 illustrates the HPP rules. According to our
Boolean representation of the particles at each site, the col-
lision part for the two head on collisions are expressed as

(1010)! (0101) (0101)! (1010) (13)

all the other configurations being unchanged. During the
propagation phase, the first bit of the state variable is
shifted to the east neighbor cell, the second bit to the north
and so on.

The aim of this rule is to reproduce some aspect of the
real interactions between particles, namely that momen-
tum and particle number are conserved during a collision.
From Fig. 12, it is easily checked that these properties are
obeyed: a pair of zero momentum particles along a given
direction is transformed into another pair of zero momen-
tum along the perpendicular axis.
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It is easy to express the HPP model in a mathemati-
cal form. For this purpose, the so-called occupation num-
bers ni(r; t) are introduced for each lattice site r and each
time step t. The index i labels the lattice directions (or the
possible velocities of the particles). In the HPP model, the
lattice has four directions (North, West, South, and East)
and i runs from 1 to 4.

By definition and due to the exclusion principle, the
ni’s are Boolean variables

ni (r; t) D

8
<

:

1 if a particle is entering site r at time t
along lattice direction i

0 otherwise :

From this definition it is clear that, for HPP, the ni’s are
simply the components of the state s introduced above

s D (n1; n2; n3; n4) :

In an LGA model, the microdynamics can be naturally
expressed in terms of the occupation numbers ni as

ni (rC vi�t ; t C�t) D ni (r; t)C˝i (n(r; t)) (14)

where vi is a vector denoting the speed of the particle in
the ith lattice direction. The function ˝ is called the col-
lision term and it describes the interaction of the particles
which meet at the same time and same location.

Note that another way to express Eq. (14) is through
the so-called collision and propagation operators C and P

n(t C�t) D PCn(t) (15)

where n(t) describe the set of values ni (r; t) for all i and r.
The quantities C and P act over the entire lattice. They are
defined as

(Pn)i (r) D ni (r � vi�t) (Cn)i (r) D ni(r)C˝i :

More specifically, for the HPP model, it can be
shown [10] that the collision and propagation phase can
be expressed as

ni (rC vi�t ; t C�t)
D ni � ni niC2(1 � niC1)(1 � niC3)
C niC1niC3(1 � ni)(1 � niC2) : (16)

In this equation, the values i C m are wrapped onto the
values 1 to 4 and the right-hand term is computed at posi-
tion r and time t.

The HPP rule captures another important ingredient
of the microscopic nature of a real interaction: invariance
under time reversal. Figure 12b and c show that, if at some

given time, the directions of motion of all particles are re-
versed, the systemwill just trace back its own history. Since
the dynamics of a deterministic cellular automaton is ex-
act, this fact allows us to demonstrate the properties of
physical systems to return to their original situation when
all the particles reverse their velocity.

Figure 13 illustrates the time evolution of an HPP gas
initially confined in the left compartment of a container.
There is an aperture on the wall of the compartment and
the gas particles will flow so as to fill the entire space avail-
able to them. In order to include a solid boundary in the
system, the HPP rule is modified as follows: when a site is
a wall (indicated by an extra bit), the particles no longer
experience the HPP collision but bounce back from where
they came. Therefore, particles cannot escape a region de-
limited by such a reflecting boundary.

If the system of Fig. 13 is evolved, it reaches an equilib-
rium after a long enough time and no macroscopic trace
of its initial state is visible any longer. However, no in-
formation has been lost during the process (no numerical
dissipation) and the system has the memory of where it
comes from. Reversing all the velocities and iterating the
HPP rule makes all particles go back to the compartment
in which they were initially located.

Reversing the particle velocity can be described by an
operator R which swaps occupation numbers with oppo-
site velocities

(Rn)i D niC2 :

The reversibility of HPP stem from the fact that the colli-
sion and propagation operators obey

PRP D R CRC D R :

Thus

(PC)nPR(PC)n D R

which shows that the system will return to its initial state
(though with opposite velocities) if the first n iterations are
followed by a velocity change vi ! �vi, a propagation and
again n iterations.

This time-reversal behavior is only possible because
the dynamics are perfectly exact and no numerical errors
are present in the numerical scheme. If one introduces ex-
ternally some errors (for instance, one can add an extra
particle in the system) before the direction of motion of
each particle is reversed, then reversibility is lost.

Note that this property has inspired a new symmetric
cryptography algorithm called Crystal [30], which exploits
and develops the existing analogy between discrete phys-
ical models of particles and the standard diffusion-confu-
sion paradigm of cryptography proposed by Shannon [39].
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Cellular Automata Modeling of Physical Systems, Figure 13
Time evolution of an HPP gas. a From the initial state to equilibrium.b Illustration of time reversal invariance: in the rightmost image
of a, the velocity of each particle is reversed and the particles naturally return to their initial position

The FHPModel

The HPP rule is interesting because it illustrates the ba-
sic ingredients of LGA models. However, the capability of
this rule to model a real gas of particles is poor, due to
a lack of isotropy and spurious invariants. A remedy to this
problem is to use a different lattice and a different collision
model.

The FHP rule (proposed by Frisch, Hasslacher, and
Pomeau [18] in 1986) was the first CA whose behavior
was shown to reproduce, within some limits, a two-dimen-
sional fluid.

The FHP model is an abstraction, at a microscopic
scale, of a fluid. It is expected to contain all the salient fea-
tures of a real fluid. It is well known that the continuity and
Navier–Stokes equations of hydrodynamics express the lo-
cal conservation of mass and momentum in a fluid. The
detailed nature of the microscopic interactions does not
affect the form of these equations but only the values of
the coefficients (such as the viscosity) appearing in them.
Therefore, the basic ingredients one has to include in the

microdynamics of the FHP model is the conservation of
particles andmomentumafter each updating step. In addi-
tion, some symmetries are required so that, in the macro-
scopic limit, where time and space can be considered as
continuous variables, the system be isotropic.

As in the case of the HPP model, the microdynamics
of FHP is given in terms of Boolean variables describing
the occupation numbers at each site of the lattice and at
each time step (i. e. the presence or the absence of a fluid
particle). The FHP particles move in discrete time steps,
with a velocity of constant modulus, pointing along one of
the six directions of the lattice.

Interactions take place among particles entering the
same site at the same time and result in a new local distri-
bution of particle velocities. In order to conserve the num-
ber of particles and the momentum during each interac-
tion, only a few configurations lead to a nontrivial colli-
sion (i. e. a collision in which the directions of motion have
changed). For instance, when exactly two particles enter
the same site with opposite velocities, both of them are de-
flected by 60 degrees so that the output of the collision is
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Cellular Automata Modeling of Physical Systems, Figure 14
The two-body collision in the FHPmodel. On the right part of the
figure, the two possible outcomes of the collision are shown in
dark and light gray, respectively. They both occur with probabil-
ity one-half

Cellular Automata Modeling of Physical Systems, Figure 15
The three-body collision in the FHPmodel

still a zero momentum configuration with two particles.
As shown in Fig. 14, the deflection can occur to the right
or to the left, indifferently. For symmetry reasons, the two
possibilities are chosen randomly, with equal probability.

Another type of collision is considered: when exactly
three particles collide with an angle of 120 degrees between
each other, they bounce back (so that the momentum af-
ter collision is zero, as it was before collision). Figure 15
illustrates this rule.

For the simplest case we are considering here, all inter-
actions come from the two collision processes described
above. For all other configurations (i. e. those which are
not obtained by rotations of the situations given in Figs. 14
and 15) no collision occurs and the particles go through as
if they were transparent to each other.

Both two- and three-body collisions are necessary to
avoid extra conservation laws. The two-particle collision
removes a pair of particles with a zero total momentum
andmoves it to another lattice direction. Therefore, it con-
serves momentum along each line of the lattice. On the
other hand, three-body interactions deflect particles by
180 degrees and cause the net momentum of each lattice
line to change. However, three-body collisions conserve
the number of particles within each lattice line.

The FHP model has played a central role in com-
putational physics because it can be shown (see for in-

Cellular Automata Modeling of Physical Systems, Figure 16
Development of a sound wave in a FHP gas, due to an over par-
ticle concentration in the middle of the system

Cellular Automata Modeling of Physical Systems, Figure 17
Flow pattern from a simulation of a FHPmodel

stance [10]) that the density �, defined as the average num-
ber of particles at a given lattice site and u the average ve-
locity of these particles, obey Navier–Stokes equation

@tuC (u � r)u D �
1
�
rpC �r2u (17)

where p D c2s � is the scalar pressure, with cs the speed
of sound and � is the kinematic viscosity. Note that here
both � and cs are quantities that emerge from the FHP
dynamics. The speed of sound reflects the lattice topol-
ogy whereas the viscosity reflects the details of the collision
process.

As an illustration, Fig. 16 shows the propagation of
a density wave in a FHP model. Figure 17 shows the ed-
dies that form when a FHP-fluid flow against an obstacle.
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Cellular Automata Modeling of Physical Systems, Figure 18
A CA snow transport and deposition model

Cellular Automata Modeling of Physical Systems, Figure 19
A lattice Boltzmann snow transport and deposition model. The
three panels show the time evolution of the snow deposit (yel-
low) past a fence. Airborne snowflakes are shown as white dots

More complex models can be built by adding new pro-
cesses on top of a FHP-fluid. For instance, Fig. 18 shows
the result of a model of snow transport and deposition by
wind. In addition to the wind flow, obtained from a FHP
model, snow particles are traveling due to the combined
effect of wind and gravity. Upon reaching the ground, they
pile up (possible after toppling) so as to form a new bound-
ary condition for the wind. In Fig. 19 an extension of the
model (using the lattice Boltzmann approach described in
Sect. “Lattice BoltzmannModels”) shows how a fence with
ground clearance creates a snow deposit.

Lattice Boltzmann Models

Lattice Boltzmann models (LBM) are an extension of the
CA-fluid described in the previous section. The main con-
ceptual difference is that in LBM, the CA state is no longer
Boolean numbers ni but real-valued quantity f i for each

lattice directions i. Instead of describing the presence or
absence of a particle, the interpretation of f i is the density
distribution function of particles traveling in lattice direc-
tions i.

As with LGA (see Eq. (16)), the dynamics of LBM can
be expressed in terms of an equation for the f i’s. The fluid
quantities such as the density � and velocity field u are ob-
tained by summing the contributions from all lattice di-
rections

� D
X

i

fi �u D
X

i

fivi

where vi denotes the possible particle velocities in the lat-
tice.

From a numerical point of view, the advantages of sup-
pressing the Boolean constraint are several: less statistical
noise, more numerical accuracy and, importantly, more
flexibility to choose the lattice topology, the collision op-
erator and boundary conditions. Thus, for many practical
applications, the LBM approach is preferred to the LGA
one.

The so-called BGK (or “single-time relaxation”) LBM

fi(rC�tvi; tC�t) D fi(r; t)C
1
�

�
f eqi (�;u) � fi


(18)

where f eq is a given function, has been used extensively
in the literature to simulate complex flows. The method is
now recognized as a serious competitor of the more tra-
ditional approach based on the computer solution of the
Navier–Stokes partial differential equation.

It is beyond the scope of this article to discuss the LBM
approach in more detail. We refer the reader to several
textbooks on this topic [8,10,40,41,49]. In addition to some
rather technical aspects, one advantage of the LBM over
the Navier–Stokes equation is its extended range of valid-
ity when the Knudsen number is not negligible (e. g. in mi-
croflows) [2].

Note finally that the LBM approach is also applicable
to reaction-diffusion processes [1] or wave equation [10]
by simply choosing an appropriate expression for f eqi .

Diffusion Processes

Diffusive phenomena and reaction processes play an im-
portant role in many areas of physics, chemistry, and bi-
ology and still constitute an active field of research. Sys-
tems in which reactive particles are brought into contact
by a diffusion process and transform, often give rise to very
complex behaviors. Pattern formation [31,34], is a typi-
cal example of such a behavior. CA provide an interesting
framework to describe reaction-diffusion phenomena.
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Cellular Automata Modeling of Physical Systems, Figure 20
How the entering particles are deflected at a typical site, as a re-
sult of the diffusion rule. The four possible outcomes occur with
respective probabilities p0, p1, p2, and p3. The figure shows four
particles, but themechanism is data-blind and any one of the ar-
rows can be removed when fewer entering particles are present

The HPP rule we discussed in the Sect. “A Simple Gas:
The HPP Model” can be easily modified to produce many
synchronous random walks. Random walk is well known
to be the microscopic origin of a diffusion process.

Thus, instead of experiencing a mass and momentum
conserving collision, each particle now selects, at random,
a new direction of motion among the possible values per-
mitted by the lattice. Since several particles may enter the
same site (up to four, on a two-dimensional square lattice),
the random change of directions should be such that there
are never two or more particles exiting a site in the same
direction. This would otherwise violate the exclusion prin-
ciple.

The solution is to shuffle the directions of motion or,
more precisely, to perform a random permutation of the
velocity vectors, independently at each lattice site and each
time step. Figure 20 illustrates this probabilistic evolution
rule for a 2D square lattice.

It can be shown that the quantity � defined as the av-
erage number of particle at site r and time t obeys the dif-
fusion equation [10]

@t�C div
�
�D grad�

�
D 0

where D is the diffusion constant whose expression is

D D
�2

r
�t

�
1

4(pC p2)
�

1
4

�
D
�2

r
�t

�
pC p0

4[1 � (pC p0)]

�

(19)

where �t and �r are the time step and lattice spacing,
respectively. For the one- and three-dimensional cases,
a similar approach can be developed [10].

Cellular Automata Modeling of Physical Systems, Figure 21
Two-dimensional cellular automata DLA-like cluster (black), ob-
tained with ps D 1, an aggregation threshold of 1 particle and
a density of diffusing particle of 0.06 per lattice direction. The
gray dots represent the diffusing particles not yet aggregated.
The fractal dimension is found to be df D 1:78

As an example of the use of the present random walk
cellular automata rule, we discuss an application to growth
processes. In many cases, growth is governed by an ag-
gregation mechanism: like particles stick to each other as
they meet and, as a result, form a complicated pattern with
a branching structure.

A prototype model of aggregation is the so-called DLA
model (diffusion-limited aggregation), introduced byWit-
ten and Sander [46] in the early 1980s. Since its introduc-
tion, the DLA model has been investigated in great detail.
However, diffusion-limited aggregation is a far from equi-
librium process which is not described theoretically by first
principle only. Spatial fluctuations that are typical of the
DLA growth are difficult to take into account and a nu-
merical approach is necessary to complete the analysis.

DLA-like processes can be readily modeled by our dif-
fusion cellular automata, provided that an appropriate rule
is added to take into account the particle-particle aggrega-
tion. The first step is to introduce a rest particle to rep-
resent the particles of the aggregate. Therefore, in a two-
dimensional system, a lattice site can be occupied by up to
four diffusing particles, or by one “solid” particle.

Figure 21 shows a two-dimensional DLA-like cluster
grown by the cellular automata dynamics. At the begin-
ning of the simulation, one ormore rest particles are intro-
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Cellular Automata Modeling of Physical Systems, Figure 22
Automata implementation of the AC B! C reaction process. The reaction takes place with probability k. The Boolean quantity 
determines in which direction the C particle is moving after its creation

Cellular Automata Modeling of Physical Systems, Figure 23
Example of the formation of Liesegang bands in a cellular automata simulation. The red bands correspond to the precipitate which
results from the AC B reaction front (in blue)

duced in the system to act as aggregation seeds. The rest of
the system is filled with particles with average concentra-
tion �. When a diffusing particle becomes nearest neigh-
bor to a rest particle, it stops and sticks to it by transform-
ing into a rest particle. Since several particles can enter the
same site, we may choose to aggregate all of them at once
(i. e. a rest particle is actually composed of several moving
particles), or to accept the aggregation only when a single
particle is present.

In addition to this question, the sticking condition is
important. If any diffusing particle always sticks to the
DLA cluster, the growth is very fast and can be influenced
by the underlying lattice anisotropy. It is therefore more
appropriate to stick with some probability ps.

Reaction-Diffusion Processes

A reaction term can be added on top of the CA diffusion
rule. For the sake of illustration let us consider a process
such as

AC B
K
! C (20)

where A, B, and C are different chemical species, all dif-
fusing in the same solvent, and K is the reaction constant.
To account for this reaction, one can consider the follow-
ing mechanism: at the “microscopic” level of the discrete
lattice dynamics, all the three species are first governed by

a diffusion rule.When anA and a B particle enter the same
site at the same time, they disappear and form a C particle.

Of course, there are several ways to select the events
that will produce a C when more than one A or one B are
simultaneously present at a given site. Also, when Cs al-
ready exist at this site, the exclusion principle may prevent
the formation of new ones. A simple choice is to have A
and B react only when they perform a head-on collision
and when no Cs are present in the perpendicular direc-
tions. Figure 22 displays such a process.

Other rules can be considered if we want to enhance
the reaction (make it more likely) or to deal with more
complex situations (2AC B! C, for instance).

A parameter k can be introduced to tune the reaction
rate K by controlling the probability of a reaction taking
place. Using an appropriate mathematical tool [10], one
can show that the idealizedmicroscopic reaction-diffusion
behavior implemented by the CA rule obeys the expected
partial differential equation

@t�A D Dr2�A � K�A�B (21)

provided k is correctly chosen [10].
As an example of a CA reaction-diffusion model, we

show in Fig. 23 the formation of the so-called Liesegang
patterns [22].

Liesegang patterns are produced by precipitation and
aggregation in the wake of a moving reaction front. Typ-
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Cellular Automata Modeling of Physical Systems, Figure 24
Formation of Liesegang rings in a cellular automata simulation. The red spots correspond to the precipitate created by the AC B
reaction front (in blue)

ically, they are observed in a test tube containing a gel
in which a chemical species B (for example AgNO3) re-
acts with another species A (for example HCl). At the be-
ginning of the experiment, B is uniformly distributed in
the gel with concentration b0. The other species A, with
concentration a0 is allowed to diffuse into the tube from
its open extremity. Provided that the concentration a0 is
larger than b0, a reaction front propagates in the tube.
As this AC B reaction goes on, formation of consecutive
bands of precipitate (AgCl in our example) is observed in
the tube, as shown in Fig. 23. Although this figure is from
a computer simulation [12], it is very close to the picture
of a real experiment.

Figure 24 shows the same process but in a different ge-
ometry. Species A is added in the middle of a 2D gel and
diffuses radially. Rings (a) or spirals (b) result from the in-
terplay between the reaction front and the solidification.

Excitable Media

Excitable media are other examples of reaction processes
where unexpected space-time patterns are created. As op-
posed to the reaction-diffusion models discussed above,
diffusion is not considered here explicitly. It is assumed
that reaction occurs between nearest neighbor cells, mak-
ing the transport of species unnecessary. The main focus
is on the description of chemical waves propagating in the
systemmuch faster and differently than any diffusion pro-
cess would produce.

An excitable medium is basically characterized by
three states [5]: the resting state, the excited state, and the
refractory state. The resting state is a stable state of the sys-

tem. But a resting state can respond to a local perturbation
and become excited. Then, the excited state evolves to a re-
fractory state where it no longer influences its neighbors
and, finally, returns to the resting state.

A generic behavior of excitable media is to produce
chemical waves of various geometries [26,27]. Ring and
spiral waves are a typical pattern of excitations. Many
chemical systems exhibit an excitable behavior. The Selkov
model [38] and the Belousov–Zhabotinsky reaction are ex-
amples. Chemical waves play an important role in many
biological processes (nervous systems, muscles) since they
can mediate the transport of information from one place
to another.

The Greenberg–Hasting model is an example of a cel-
lular automata model of an excitable media. This rule, and
its generalization, have been extensively studied [17,20].

The implementation we propose here for the Green-
berg–Hasting model is the following: the state  (r; t) of
site r at time t takes its value in the set f0; 1; 2; : : : ; n �
1g. The state  D 0 is the resting state. The states
 D 1; : : : ; n/2 (n is assumed to be even) correspond to
excited states. The rest,  D n/2C 1; : : : ; n� 1 are the re-
fractory states. The cellular automata evolution rule is the
following:

1. If  (r; t) is excited or refractory, then  (r; t C 1) D
 (r; t)C 1 mod n.

2. If  (r; t) D 0 (resting state) it remains so, unless there
are at least k excited sites in the Moore neighborhood
of site r. In this case � (r; t C 1) D 1.

The n states play the role of a clock: an excited state evolves
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Cellular Automata Modeling of Physical Systems, Figure 25
Excitable medium: evolution of a configuration with 5% of excited states 
 D 1, and 95% of resting states (black), for n D 8 and
k D 3

Cellular Automata Modeling of Physical Systems, Figure 26
The tube-worms rule for an excitable media

through the sequence of all possible states until it returns
to 0, which corresponds to a stable situation.

The behavior of this rule is quite sensitive to the value
of n and the excitation threshold k. Figure 25 shows the
evolution of this automaton for a given set of the parame-
ters n and k. The simulation is started with a uniform con-
figuration of resting states, perturbed by some excited sites
randomly distributed over the system. Note that if the con-
centration of perturbation is low enough, excitation dies
out rapidly and the system returns to the rest state. In-

creasing the number of perturbed states leads to the for-
mation of traveling waves and self-sustained oscillations
may appear in the form of ring or spiral waves.

The Greenberg–Hasting model has some similarity
with the “tube-worms” rule proposed by Toffoli and Mar-
golus [42]. This rule is intended to model the Belousov–
Zhabotinsky reaction and is as follows. The state of each
site is either 0 (refractory) or 1 (excited) and a local timer
(whose value is 3, 2, 1, or 0) controls the refractory period.
Each iteration of the rule can be expressed by the follow-
ing sequence of operations: (i) where the timer is zero, the
state is excited; (ii) the timer is decreased by 1 unless it is 0;
(iii) a site becomes refractory whenever the timer is equal
to 2; (iv) the timer is reset to 3 for the excited sites which
have two, or more than four, excited sites in their Moore
neighborhood.

Figure 26 shows a simulation of this automaton, start-
ing from a random initial configuration of the timers and
the excited states. We observe the formation of spiral pairs
of excitations. Note that this rule is very sensitive to small
modifications (in particular to the order of operations (i)
to (iv)).

Another rule which is also similar to Greenberg–
Hasting and Margolus–Toffoli tube-worm models is the
so-called forest-fire model. This rule describes the propa-
gation of a fire or, in a different context, may also be used
to mimic contagion in the case of an epidemic. Here we
describe the case of a forest-fire rule.

The forest-fire rule is a probabilistic CA defined on
a d-dimensional cubic lattice. Initially, each site is occu-
pied by either a tree, a burning tree, or is empty. The state
of the system is parallel updated according to the following
rule: (1) a burning tree becomes an empty site; (2) a green
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Cellular Automata Modeling of Physical Systems, Figure 27
The forest fire rule: green sites correspond to a grown tree, blackpixels represent burned sites and the yellow color indicates a burning
tree. The snapshots given here represent three situations after a few hundred iterations. The parameters of the rule are p D 0:3 and
f D 6� 10�5

tree becomes a burning tree if at least one of its nearest
neighbors is burning; (3) at an empty site, a tree grows
with probability p; (4) A tree without a burning neighbor
becomes a burning tree with probability f (so as to mimic
an effect of lightning).

Figure 27 illustrates the behavior of this rule, in a two-
dimensional situation. Provided that the time scales of tree
growth and burning down of forest clusters are well sepa-
rated (i. e. in the limit f /p! 0), this model has self-or-
ganized critical states [15]. This means that in the steady
state, several physical quantities characterizing the system
have a power law behavior.

Surface Reaction Models

Other important reaction models that can be described by
a CA are surface-reaction models where nonequilibrium
phase transitions can be observed. Nonequilibrium phase
transitions are an important topic in physics because no
general theory is available to describe such systems and
most of the known results are based on numerical simu-
lations.

The so-called Ziff model [54] gives an example of the
reaction A–B2 on a catalyst surface (for example CO–O2).

The system is out of equilibrium because it is an open
system in which material continuously flows in and out.
However, after a while, it reaches a stationary state and,
depending on some control parameters, may be in differ-
ent phases.

The basic steps are

� A gas mixture with concentrations XB2 of B2 and XA
of A sits above a surface on which it can be adsorbed.
The surface is divided into elementary cells and each
cell can adsorb one atom only.

� The B species can be adsorbed only in the atomic form.
A molecule B2 dissociates into two B atoms only if two
adjacent cells are empty. Otherwise the B2 molecule is
rejected.

� If two nearest neighbor cells are occupied by different
species they chemically react and the product of the re-
action is desorbed. In the example of the CO–O2 reac-
tion, the desorbed product is a CO2 molecule.

This final desorption step is necessary for the prod-
uct to be recovered and for the catalyst to be regenerated.
However, the gas above the surface is assumed to be con-
tinually replenished by fresh material so that its composi-
tion remains constant during the whole evolution.

It is found by sequential numerical simulation [54] that
a reactive steady state occurs only in a window defined by

X1 < XA < X2

where X1 D 0:389˙ 0:005 and X2 D 0:525˙ 0:001 (pro-
vided that XB2 D 1 � XA). This situation is illustrated in
Fig. 28, though for the corresponding cellular automata
dynamics and XB2 ¤ 1 � XA.

Outside this window of parameter, the steady state
is a “poisoned” catalyst of pure A (when XA > X2) or
pure B (when XA < X1). For X1 < XA < X2, the coverage
fraction varies continuously with XA and one speaks of
a continuous (or second-order) nonequilibrium phase
transition. At XA D X2, the coverage fraction varies dis-
continuously with XA and one speaks of a discontinuous
(or first-order) nonequilibrium phase transition. Figure 30
displays this behavior.

The asymmetry of behavior at X1 and X2 comes from
the fact that A and B atoms have a different adsorption
rule: two vacant adjacent sites are necessary for B to stick
on the surface, whereas one empty site is enough for A.
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Cellular Automata Modeling of Physical Systems, Figure 28
Typical microscopic configuration in the stationary state of the
CA Ziffmodel, where there is coexistence of the two species over
time. The simulation corresponds to the generalized model de-
scribedby rules R1, R2, R3, andR4 below. The blue and greendots
represent, respectively, the A and B particles, whereas the empty
sites are black

In a CA approach the elementary cells of the catalyst
are mapped onto the cells of the automaton. In order to
model the different processes, each cell j can be in one of
four different states, denoted j ji D j0i, jAi, jBi or jCi.

The state j0i corresponds to an empty cell, jAi to a cell
occupied by an atom A, and jBi to a cell occupied by an
atom B. The state jCi is artificial and represents a precur-
sor state describing the conditional occupation of the cell
by an atom B. Conditional means that during the next evo-
lution step of the automaton, jCiwill become jBi or j0i de-
pending upon the fact that a nearest neighbor cell is empty
and ready to receive the second B atom of the molecule B2.
This conditional state is necessary to describe the dissoci-
ation of B2 molecules on the surface.

The main difficulty when implementing the Ziff model
with a fully synchronous updating scheme is to ensure that
the correct stoichiometry is obeyed. Indeed, since all atoms
take a decision at the same time, the same atom could well
take part in a reaction with several different neighbors, un-
less some care is taken.

The solution to this problem is to add a vector field to
every site in the lattice [53], as shown in Fig. 29. A vec-
tor field is a collection of arrows, one at each lattice site,

that can point in any of the four directions of the lattice.
The directions of the arrows at each time step are assigned
randomly. Thus, a two-site process is carried out only
on those pairs of sites in which the arrows point toward
each other (matching nearest-neighbor pairs (MNN)).
This concept of reacting matching pairs is a general way
to partition the parallel computation in local parts.

In the present implementation, the following general-
ization of the dynamics is included: an empty site remains
empty with some probability. One has then two control
parameters to play with: XA and XB2 that are the arrival
probability of an A and a B2 molecule, respectively.

Thus, the time evolution of the CA is given by the fol-
lowing set of rules, fixing the state of the cell j at time t C 1,
j ji(t C 1), as a function of the state of the cell j and its
nearest neighbors (vonNeumannneighborhood) at time t.
Rules R1, R4 describe the adsorption–dissociation mecha-
nism while rules R2, R3 (illustrated in Fig. 29) describe the
reaction–desorption process.
R1: If j ji(t) D j0i then

j ji(t C 1) D

8
<̂

:̂

jAi with probability XA

jCi with probability XB2

j0i with probability 1� XA � XB2

(22)

R2: If j ji(t) D jAi then

j ji(tC1) D

8
<̂

:̂

j0i if the MNN of j
was in the state jBi at time t

jAi otherwise
(23)

R3: If j ji(t) D jBi then

j ji(tC 1) D

8
<̂

:̂

j0i if the MNN of j
was in the state jAi at time t

jBi otherwise
(24)

R4: If j ji(t) D jCi then

j ji(t C 1) D

8
<̂

:̂

jBi if MNN is in the state jCi
at time t

j0i otherwise
(25)

Figure 28 shows typical stationary configurations ob-
tained with a cellular automata version of the Ziff model.
At time t D 0, all the cells are empty and a randomly pre-
pared mixture of gases with fixed concentrations XA and
XB2 sits on top of the surface. The rules are iterated until
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Cellular Automata Modeling of Physical Systems, Figure 29
Illustration of rules R2 and R3. The arrows select which neighbor is considered for a reaction. Dark and white particles represent
the A and B species, respectively. The shaded region corresponds to cells that are not relevant to the present discussion such as, for
instance, cells occupied by the intermediate C species

Cellular Automata Modeling of Physical Systems, Figure 30
Stationary state phase diagram corresponding to the CA Ziff
model

a stationary state is reached. The stationary state is a state
for which themean coverage fractions Xa

A and Xa
B of atoms

of type A or B does not change in time, although micro-
scopically the configurations of the surface changes.

The phase diagram obtained for this generalized CA
Ziff model is given in Fig. 30, with the value XB2 D 0:1.
This phase diagram is topologically similar to the sequen-
tial updating case (with XB2 D 1 � XA) since we observe
a first and a second order transition surrounding a region
of coexistence of both species. However, the locations of

the critical points are different, illustrating the nonuniver-
sal character of these quantities.

Future Directions

Cellular Automata are clearly an active field of research.
CA are easy to implement on personal computers or on
large-scale parallel machines. They are very well suited to
discuss many complex systems and dynamical phenomena
with space inhomogeneities. Thus, CA provide a very in-
teresting framework for modeling and simulating various
processes, for a wide range of application domains where
space and time are playing a central role. One can expect
that such developments will continue in the future.

In addition, to provide numerical predictions, CA also
offer a very intuitive and efficient language to describe var-
ious processes or systems. In a period where interdisci-
plinary applications are very important, it is crucial to be
able to communicate between different scientific commu-
nities and to develop models that incorporate the knowl-
edge of different fields. Partial differential equations are of-
ten an obstacle for several researchers outside Mathemat-
ics or Physics. CA then provide a different tool to describe
new systems, for instance in ecology, social behavior or in
many fields for which a standardmathematical framework
is still missing.

The concept of CA can certainly be extended to corre-
spond better to the future scientific challenges. The Lat-
tice Boltzmann method is a well-known example where
the Boolean nature of the CA state has been removed. As
a result, powerful flow solvers have been obtained.

The nature of the cellular space can also be extended.
Graphs are more and more studied for their ability to de-
scribe many organizations, whether social, economical, or
biological. Therefore, a natural evolution of CA is to be
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able to include irregular and/or dynamic lattices of cells,
so as to capture the behaviors that come from specificities
of the space topology.

Another important direction in computational science
are the so-called multiscale and multiscience simulations,
aiming at coupling several processes spanning very dif-
ferent spatial or temporal scales. Such a combination of
processes is for instance quite common in the simulation
of biomedical problems. Recently, the concept of Com-
plex Automaton [23] was proposed as a way to integrate
in one single simulation many different components, each
described by a different CA.
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Typically, cellular automata (“CA”) are defined in Carte-
sian space (e. g. a square grid). Here we explore character-
istics of CA in triangular and other non-cartesian grids.
Methods for programming CA for these non-cartesian
grids are briefly discussed.

Glossary

Cellular automaton (CA) a structure comprising a grid
with individual cells that can have two or more states;
these cells evolve in discrete time units and are gov-
erned by a rule, which usually involves neighbors of
each cell.

Game of life a particular cellular automaton discovered
by John Conway in 1968.

Neighbor a neighbor of cell “x” is typically a cell that is in
close proximity to (frequently touching) cell “x”.

Oscillator a periodic shape within a specific cellular au-
tomaton rule.

Glider a translating oscillator that moves across the grid
of a CA.

Generation the discrete time unit which depicts the evo-
lution of a cellular automaton.

Rule determines how each individual cell within a cellular
automaton evolves.

Definition of the Subject

A tessellation or tiling is composed of a specific shape that
is repeated endlessly in a plane, with no gaps or overlaps.
Examples of simple tessellations are the square grid, the
triangular grid (a plane completely covered by identical
triangles), etc. Hereafter, we shall also use “grid” when
refering to tessellations.

Cellular automata (CA) can be explained most ef-
fectively with an example. Start with an infinite grid of
squares; each square represents a cell, which is either
“alive” or “dead”. Time progresses in discrete units called
“generations”; at every generation we evaluate simultane-
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Cellular Automata in Triangular, Pentagonal and Hexagonal Tessellations, Figure 1
Top: Each cell in a grid has 8 “neighbors”. The cells containing “n” are neighbors of the cell containing the “X”. Any cell in the grid
can be either “dead” or “alive”. Bottom: Here we have outlined a specific area of what is presumably a much larger grid. At the left
we have installed an initial shape. Shaded cells are alive; all others are dead. The number within each cell gives the quantity of live
neighbors for that cell. (Cells containing no numbers have zero live neighbors.) Depicted are three generations, starting with the
configuration at generation 1. Generations 2 then 3 show the result when we apply the following cellular automata rule: “Live cells
with exactly 2 or 3 live neighbors remain alive (otherwise they die); dead cells with exactly 3 live neighbors come to life (otherwise
they remain dead)”. Let us now evaluate the transition from generation 1 to generation 2. In our diagram, cell “a” is dead. Since it
does not have exactly 3 live neighbors, it remains dead. Cell “b” is alive, but it needs exactly 2 or 3 live neighbors to remain alive;
since it only has 1, it dies. Cell “c” is dead; since it has exactly 3 live neighbors, it comes to life. And cell “d” has 2 live neighbors; hence
it will remain alive. And so on. Notice that the form repeats every two generations. Such forms are called oscillators

ously the fate for each cell at the next generation by exam-
ining neighboring cells (called “neighbors”) – in this case,
we shall consider as neighbors any cell touching the candi-
date cell (eight neighbors in all). This is sometimes called
the Moore neighborhood. We apply a “rule” to determine
the next generation status of our candidate cell. For ex-
ample, our rule might state, (a) “If our candidate cell is
currently alive, then it will remain alive next generation if
it touches either two or three live neighbors, otherwise it
dies”, and (b) “If our candidate cell is not alive then it will
come to life next generation if and only if it is touching
exactly three live neighbors.”

Figure 1 illustrates a simple configuration to which this
CA rule has been applied. Notice that this particular ob-
ject repeats itself indefinitely. Such an object is called an
“oscillator”; this particular oscillator has a “period” of two.
Other configurations can have much larger periods, or can
behave in a more chaotic fashion. Motionless patterns can
be thought of as oscillators whose period is one.

Needless to say, there are a huge number of rules that
can be applied, and each rule will cause a distinct action.
The rule given above – the most famous cellular automa-
ton of all – specifies the “Game of Life”, discovered by John
Horton Conway in 1968. Game of Life (GL) rulesmust sat-
isfy the following informal criteria.

1. All neighbors must be touching the candidate cell and
all are treated the same.

2. There must exist at least one translating oscillator
(called a “glider”).

3. Random configurations must eventually stabilize into
zero or more oscillators..

For a more formal description of GL rule requirements
see [1]. It is important to note that CA can be repre-
sented in one, two, three or higher dimensions, but most
work has been done in one or two. Furthermore, neigh-
bors can be defined in many ways; for example we might
only consider as neighbors those cells touching the sides of
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Cellular Automata in Triangular, Pentagonal and Hexagonal Tes-
sellations, Figure 2
The neighborhoods for cells in the triangular grid. Note that the
candidate cells can have two orientations – “E” and “O”. The
neighbors are indicated by “e” and “o” respectively

Cellular Automata in Triangular, Pentagonal and Hexagonal Tessellations, Figure 3
Examples of expanding rules. The starting configurations are at the top

a candidate cell and not the corners. Or we might expand
our neighborhood to include cells within a given distance
of a candidate cell. This is typically done for one-dimen-
sional CA.

Some Convenient Notation for Describing CA Rules

We shall write CA rules using the following notation,

E1; E2; : : : /F1; F2; : : :

where the Ei specify the number of live neighbors required
to keep a living cell alive, and the Fi give the number re-
quired to bring a non-living cell to life. The Ei and Fi will
be listed in ascending order; hence if i > j then Ei > Ej
etc. Thus the rule for Conway’s Game of Life is written
2,3/3.

We shall also use a convenient shorthand when ap-
propriate: Ei–Ej denotes Ei ; EiC1; : : : ; EiC j�i etc. Thus,
2,3,4,5,6/2,3,4 can also be written 2–6/2–4.

Introduction

Almost all CA research in two dimensions has been done
using rectangular (Cartesian) coordinates, and hence typi-
cally utilizes the square grid. But there is no reason to limit
ourselves to this tessellation; the number of different pos-
sible grids is almost endless. Here we shall briefly investi-
gate CA behavior in only three – triangular, hexagonal and
pentagonal.
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TwoDimensional Cellular Automata
in the Triangular Grid

Throughout this article we shall consider as neighbors
only those cells that touch the candidate cell; hence for
a grid composed of triangles, each cell would have 12
neighbors (Fig. 2). These non-cartesian grids for CA have
been investigated from time to time; most notably by Pre-
ston [3] and Bays [1,2]. Recently work relating to hexago-
nal CA has appeared on the internet occasionally.

With 12 touching neighbors instead of 8 (as in the
square grid), we can write more than 16 million distinct
rules,most of which are probably of onlymarginal interest.
Many however exhibit behavior worthy of investigation.

Some rules will generate a continually expanding col-
lection of live cells – we shall call such rules “expanding” or
“unstable” rules. Thus 2,3/2; 2,3/3,4; 2,3,4/3 each produce

Cellular Automata in Triangular, Pentagonal and Hexagonal Tes-
sellations, Figure 4
An example of a stable rule. The starting random configuration
eventually stabilizes into the shape shown at the lower right; in-
terestingly this shape happens to be an oscillator with a period
of two

an ever increasing area of live cells – even with extremely
small starting configurations (Fig. 3). A few expanding
rules “barely” expand; i. e. several generations are required
and the initial live configuration must be fairly large in or-
der to observe instability. For example 2,3,6/4,5 can pro-
duce unbounded growth, while 2,3,8/4,5 always eventu-
ally stabilizes. The fate of configurations under 2,3,7/4,5
is uncertain, but the rule appears to produce unbounded
growth. Many rules will ultimately lead to a stable pattern
(Fig. 4), or no live cells at all.

For some rules we can start with bounded forms whose
innards churn endlessly forever; these rules can, for exam-
ple, be used to generate random numbers (Fig. 5). Such
rules differ somewhat from expanding rules in that all fi-
nite patterns are bounded and will not expand indefinitely,
but an infinite grid of random live cells will never stabilize.

Game of Life Rules in the Triangular Grid

As mentioned above, the most famous GL rule is Con-
way’s game, which utilizes a square grid. But GL rules are
not limited to squares; quite a few exist in the triangular
grid. Among these are 4,5,6/4; 3,4/4,5; 4,5/4,5,6; 2,3/4,5;
3,4/4,5,6; 2/3; 2,4/4,6; 3,5/4; 2,4,6/4,6; 2,7/3; 2,7,8/3. Fur-
ther information about these and other rules can be found
in [1] and [2].

The Hexagonal Grid

The neighborhood for the hexagonal grid is only half the
size of that for the triangular grid and is symmetric – each
neighbor is identical in the manner of contact with the
cell in question. This symmetry can be important for some
applications. Unfortunately, the hexagonal grid has a lim-
ited number of possible rules – there are only about 4000,
many of which are of little interest. For many years past at-
tempts to find a GL rule in the hexagonal grid have failed,
although gliders were discovered by defining rules where
the spatial relationship between neighbors was a factor [3].
Recently however the GL rule 3/2 was discovered. It sup-
ports the glider shown in Fig. 12. Another glider has also
turned up; its rule is 3/2,4,5. Unfortunately this rule is not
a GL rule, as it will very slowly exhibit unbounded growth,
given a sufficiently large starting pattern.

The Pentagonal Grid

Regular pentagons cannot be formed into a grid, but by
varying the angles and side lengths, we can create several
tessellations from identical convex pentagons. A classifi-
cation system has been devised, wherein 14 different types
of tilings have been identified (Fig. 14). Of these, 12 are
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Cellular Automata in Triangular, Pentagonal and Hexagonal Tessellations, Figure 5
Examples of bounded rules that churn endlessly. The total number of live cells can be employed as pseudorandom numbers that
approximate a normal distribution. Many candidate rules can be used. Naturally the randomlike patterns eventually repeat, but
with a sufficiently large initial shape, the period will be quite large. The plot at the lower left gives the number of live cells at each
generation. These values exhibit a normal distribution (plot “A”). Note however that there are some gaps. This is because the rule
1-8/6-8 tends tohave “clumps” of living (and fairly large “holes” of non-living) cells. Hence, before using this technique for generating
random numbers, the candidate rule should be carefully investigated

Cellular Automata in Triangular, Pentagonal and Hexagonal Tes-
sellations, Figure 6
A simple glider for the GL rule 3,5/4. It has a period of three (in-
dicated in parentheses) after which it will have moved one cell
to the right. Many gliders are not this well behaved, with much
longer periods and irregular structure (see next figure)

Cellular Automata in Triangular, Pentagonal andHexagonal Tes-
sellations, Figure 7
Some gliders exhibit rather spectacular evolution. The period 80
2,7,8/3 glider, swells to 60 live cells during its swaggering trip
across the grid, and at the 81st generation, will have moved
12 cells to the right. The gliders move in the direction given by
the arrows. It should be noted that gliders have also been found
for non-GL rules but since these rules are unstable they have not
been investigated
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Cellular Automata in Triangular, Pentagonal and Hexagonal Tes-
sellations, Figure 8
Hundreds of oscillators exist for the GL (and other) rules in the
triangular grid. A few interesting ones are illustrated here. The
stationary 4,5,6/4 form is representative of an infinite number of
such objects that can be created for this rule by the careful po-
sitioning of live cells. The different oscillators at the lower right
happen to share one identical shape. The oscillator at the upper
right “rotates” clockwise, as does the period 12 oscillator at the
bottom. Unfortunately rule 1,7,8/3 is not a GL rule

topologically distinct; these twelve varieties will behave in
different ways under CA rules. We have chosen to investi-
gate one of the most pleasing, the “Cairo tiling”, so named
because of its alleged use in parts of that city. It’s appeal de-
rives from the fact that the pentagons are both equilateral
and isoseles.

Under the Cairo grid, there are rules that behave in the
manner already described for the triangular grid – some
rules expand, some stabilize, others contain a bounded,
churning mass, etc. Interestingly, a GL rule has been dis-
covered; its glider is depicted in Fig. 15. There is much op-
portunity for discovery in this and other pentagonal grids,
as very little work has been done.

Programming Tips

We can speed up the scan of any grid by storing within
each cell its current number of live neighbors along with
a tag that indicates whether it is alive or not. Thus when
we scan the entire grid for the next generation, we update

Cellular Automata in Triangular, Pentagonal and Hexagonal Tes-
sellations, Figure 9
The GL rule 2,7,8/3 is of special interest. It is the only known
GL rule besides Conway’s rule that supports a “glider gun” –
a configuration that spews out an endless stream of gliders.
In fact, there are probably several such patterns under that
rule. Here we illustrate two guns; the top one generates period
18 gliders and the bottom one creates period 80 gliders. These
configurationsmove in the direction shown, sending a streamof
gliders out behind them (see next figure)

Cellular Automata in Triangular, Pentagonal and Hexagonal Tes-
sellations, Figure 10
After 800 generations, the two guns will have produced the out-
put shown. Motion is in the direction given by the arrows. The
gun at the left yields period 18 gliders, one every 80 generations,
and the gun at the right produces a period 80 glider every 160
generations



898 C Cellular Automata in Triangular, Pentagonal and Hexagonal Tessellations

Cellular Automata in Triangular, Pentagonal and Hexagonal Tes-
sellations, Figure 11
The symmetric hexagonal neighborhood. This rather “natural”
grid can also be illustrated with circles (upper right) and, just as
the square grid can be expanded to cubes in 3 dimensions, the
hexagonal grid lends itself to “densely packed spheres” in three
dimensions, where each sphere has exactly 12 touching neigh-
bors

Cellular Automata in Triangular, Pentagonal and Hexagonal Tes-
sellations, Figure 12
At least two gliders have been found. The GL rule 3/2 supports
a period 5 glider and the non-GL rule 3/2,4,5 supports a period
10 glider. Note that the 3/2 glider also works for GL rules 3,5/2
and 3,5,6/2

the status of cells that have changed since last generation
(by examining their new neighbor counts) and, for each
cell whose status has changed, we fix the neighbor counts
for its neighbors; these cells are candidates for updating
at the next generation iteration. This method employs two
arrays – a “current” array, A, and a “next” array, B. And,
rather than moving B back to A for the next iteration, we
switch between the two; i. e. if array A is the array we are
examining, then we copy it into array B, changing the sta-
tus and neighbor counts of cells as needed. Array B then
becomes array A for the next generation, etc. This trick al-
lows us to rapidly scan over all non-changed cells. For fur-
ther speedwe can utilize hashing techniques and only store

Cellular Automata in Triangular, Pentagonal andHexagonal Tes-
sellations, Figure 13
Several interesting oscillators have been discovered for GL rule
3/2. They have been given rather whimsical names, a custom
dating back to the early days of Conway’s rule. After 65 gener-
ations the “supernova” pattern leaves a period 3 “neutron star”
remnant. These patterns also work under rules 3,5/2 and 3,5,6/2

cells whose status is going to change. For this method, the
speed of evaluation will depend only upon the number of
cells that change between generations, and not the size of
the grid, nor the total number of live cells. Furthermore,
with a clever plotting algorithm, we can get away with re-
plotting only those changed cells and not the entire grid.

We can program practically any grid or tiling in rect-
angular (square) coordinates by using templates to locate
the neighbor cells as depicted in Fig. 16. The operation
of finding the correct neighbors via templates adds a very
small amount of time to the overall “next generation” eval-
uation; hence we would expect calculations on any type of
grid to execute almost as fast as on the standard square
grid.

Future Directions

The triangular grid yields 12 touching neighbors and
hence an ample supply of rules to investigate – many more
than the 8 neighbor square grid. The hexagonal grid af-
fords a more natural approach to CA than does the tradi-
tional 8 neighbor square grid, since neighbors all touch in
the sameway. Furthermore, when we expand this grid into
three dimensions, we obtain a universe of dense packed
spheres, which probably gives the best methodology for
emulating 3D applications, as each cell has 12 touching
neighbors and all touch in the same way. The fact that



Cellular Automata in Triangular, Pentagonal and Hexagonal Tessellations C 899

Cellular Automata in Triangular, Pentagonal and Hexagonal Tessellations, Figure 14
The 14 distinct convex pentagonal tilings [see 1,5]. They are based upon certain relationships between the angles and lengths of the
sides of the particular pentagon that constitutes the tiling. A sample of the pentagon for that tiling is displayed at the right of each.
The tilings have been arranged to depict the number of touching neighbors for each cell. Where more than one number is given,
there are some cells with each of those neighbor counts. For example the “67b” tiling is the second tiling where some cells have
6 neighbors and others 7. The Cairo tiling is at the upper left and is topologically equivalent to 7a and 7b. Note that 7c and 7d are also
topologically equivalent
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Cellular Automata in Triangular, Pentagonal and Hexagonal Tes-
sellations, Figure 15
The GL rule 2,3/3,4,6 supports the period 48 glider shown. It is
asymmetric, though the second half of its period is a mirror im-
age of the first. This characteristic is common amongst many
gliders

Cellular Automata in Triangular, Pentagonal and Hexagonal Tessellations, Figure 16
Templates can be used to simulate any grid with rectangular coordinates. For example, if we are evaluating the neighbors for
a hexagonal cell at (i, j) (see “X”) they would be found at (i � 1; j); (i � 1; j C 1); (i; j C 1); etc. We can even simulate grids made up
of different types of polygons. Here, we determine the polygon type by examining the subscripts of the cell in question. Of course,
appropriate graphics procedures must be employed in order to view our grid

GL rules have been found in a pentagonal grid undoubt-
edly means that other such rules can probably be found in
many different tessellations – pentagonal and otherwise.
The ultimate conclusion is that there is room for much
work in the area of non-cartesian CA.
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Glossary

Cellular automata They are dynamical systems that are
continuous, local, parallel, synchronous and space and
time uniform. Cellular automata are used to model
phenomena where the space can be regularly parti-
tioned and where the same rules are used everywhere,
for example: flow dynamics or percolation in physics,
systolic arrays in computer science, epidemics in
biology. . .
The configurations are infinite arrays of cells. Each cell
has a state chosen inside a finite set. The dynamics is
given by replacing the state of each cell according to
it and the states of the cells at a bounded distance.
Since there are finitely many neighboring cells, there
are finitely many state patterns/inputs. The mapping
to the new state is called the local function. The same
local function is used for all the cells. They are all up-
dated simultaneously.

Computational universality Computability is defined by
Turing machine, �-recursive functions or -calculus.
All these approaches (and many more) end up defin-
ing the same set of functions overN (or on words, i. e.
finite sequences over a finite alphabet): the computable
functions. They defined, according to the Church–
Turing thesis, what can be computed by any reason-
able device.
Amachine is computation universal if it is able to com-
pute any computable function (indicated as a part of
the entry). This corresponds also to the common ap-
proach of computer, the hardware is universal and the
program to be executed is stored in mainmemory (like
the data to process) and is part of the input as far as the
hardware / operating system is concerned.

Intrinsic universality It is the capability to simulate any
machine in a class of machine. If one think of Tur-
ing machines or an equivalent model of computation,
this folds back to the classical computational univer-
sality. The interest of this notion lays with machines
that are not equivalent to Turing machines. This is the
case of cellular automata: they update infinite configu-
rations, there are uncountably many possible configu-
rations thus they cannot be encoded in a countable set,
sayN .
An intrinsically universal CA “represents” all the CA
since it can exhibit any phenomenon any other one
can.

Definition of the Subject

Cellular automata (CA) and the subject are briefly defined
before two kinds of universality are considered: computa-
tional universality and intrinsic universality. A more in-
volving section on advanced topics ends this chapter.

Computational universality deals with the capability
to carry out any computation as defined by Turing ma-
chines (in computability Theory) while intrinsic universal-
ity deals with the capability to simulate any other machine
of the same class (here cellular automata). This distinction
is fundamental here because while computational univer-
sality refers to finite inputs and relates to our understand-
ing of computing with computers, intrinsic universality
encompasses infinite configurations and relates to our un-
derstanding of the physical world. These universalities are
presented as simply as possible and an example of univer-
sal CA is presented in each case. The last section is devoted
to the history and advanced topics such as various defini-
tions of simulation between CA, restriction to reversible
CA and different underlying lattices.

Introduction

A cellular automaton is a discrete dynamical system com-
posed of regularly displayed cells which satisfies the fol-
lowing properties:

1. Local finiteness: the set of states available for any cell is
finite and there is finitely many cells in any bounded
region of space;

2. Locality of computation: the next state of a cell only de-
pends on the cells around it. There is no global data nor
unbounded effect;

3. Uniformity in both space and time: the dynamics of the
cells are identical (space) and never change (time);

4. Parallelism: all cells are updated at each iteration; and
5. Synchrony: all cells are iterated at the same instant.
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Local finiteness and locality of computation ensure that
the next state of any cell can be computed with finite infor-
mation. This and uniformity ensure that a finite descrip-
tion exists. Parallelism and synchrony ensure that the sys-
tem is deterministic.

Locality of computation also means that a finite part of
a configuration can be isolated in order to see how its cen-
tral part evolves. It also means that the system is continu-
ous according to the product topology [21,48]. Uniformity
also means that the date is not relevant and that if, starting
from some local pattern, a phenomenon appends, when
the same pattern appears again, the same phenomenon ap-
pends, whatever the iteration and location.
Universality. Being universal is somehow to represent all,
to be capable to achieve anything possible. This notion is
twofold: on the one hand it can be absolute, not related to
anything in particular, and on the other hand, it can be rel-
ative to a specific domain. In the case of cellular automata,
these two cases are: computational universality and intrin-
sic universality.

The first one deals with the capability to compute
any computable function and relates to simulating Turing
machines. Computability Theory and the Church–Turing
thesis tell that the set of computable functions does not
rely on one specific computing system. On the many text-
books on the subject, (see Part 2 in [51]) is among the best
ones for a computer scientist approach.

The second one deals with the capability to simulate
any other CA starting from any initial configuration. The
distinction is real because since CA do not halt, the notion
of the result of a computation is quite meaningless and be-
cause CA handle infinite configurations. Even if Turing
machines with infinite entries are considered, they only
update a limited part of the tape in finite time while CA
update the whole (infinite) configuration at each iteration!
Since there are computation universal CA in dimension
one and simulation is expected to preserve this property,
all intrinsically universal CA are also computation univer-
sal.

For more information on cellular automata and uni-
versality, the reader might be interested in the following
surveys and books: [11,20,24,26,58,61].
Outline of this chapter. Section “Computational Univer-
sality” deals with computational universality and Sect. “In-
trinsic Universality” deals with intrinsic universality. In
each of these sections, definition and results as well as the
construction of an example of a universal CA are provided.

Section “Advanced Topics” starts with some history on
the subject and then presents advanced and more involv-
ing results on existing definitions of simulations between
CA, results on the restriction to the reversible CA and on

variations on different underlying lattices. Section “Future
Directions” presents some insight on future researches.

Formal Definition of a Cellular Automaton

A configuration is a made of cells regularly displayed on
Zd ; d is called the dimension. Each cell is in a state chosen
among a finite set of states Q. A configuration is then an
element of the set:

C D QZd
;

which is referred to as the set of configurations. The com-
putation is local, each cell evolves according to the states
of the cells whose coordinates differ by at most r (radius)
on any coordinate. The local evolution is given by a lo-
cal transition function f that maps the states of the cell and
the neighboring ones to the new state of the cell. The global
transition function,G, maps configurations into configura-
tions; each state is replaced by the image of the states of the
cell and the neighboring ones by the local transition func-
tion. The subset of Zd ;N D [[�r; r]]d is called the (com-
plete) neighborhood. It represents the relative positions of
neighboring cells. The neighborhood is not necessarily of
this form, in fact it can be any finite subset ofZd . The local
and global functions are defined by:

f G
QN ! Q C ! C

c 7! G(c) s.t. 8x 2 Zd ;

(G(c))x D f (cjxCN ) ;

(1)

where cjxCN denotes the restriction of the configuration c
to the positions in x CN .

Definition 1 A cellular automaton (CA) is designated by:
(d;Q; r; f ). When the (finite) neighborhood does not cor-
respond to some [[�r; r]]d , this is emphasized by usingN
instead of r. The space-time diagram,D : Zd �N ! Q, or
orbit of a CA is just the infinite sequence of the configura-
tions as the CA is iterated.

Examples of space-time diagrams are provided on Figs. 2
(left) and 4. For 1-dimensional CA, the space-time dia-
gram can be seen as a tiling of the plane. In dimension
2, each configuration can be considered as a tiling. This
approach leads to many undecidability results. It is devel-
oped in the � Tiling Problem and Undecidability in Cel-
lular Automata.

Definition 2 If any, the quiescent state of a CA, q#,
is a distinguished state such that the uniform configura-
tion q# is map onto itself (which is equivalent to f (q#;
q#; : : : ; q#) D q#). A configuration is finite if only finitely
many cells are not in the quiescent state.
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Computational Universality

In this section, cellular automaton are proved to be able
to perform any computation in the acceptation of com-
putability Theory and thus that there exist computation
universal CA. Only useful concepts and definitions are
presented.

The computable functions can be defined by �-recur-
sion, -calculus, Turing machines or any other equiva-
lentmodel. The Church–Turing thesis asserts that one gets
the same functions up to some encoding/representation
with any reasonable mean of computation. This is impor-
tant since, for example, recursive functions address func-
tions over natural integers while Turing machines deal
with computations over words (finite sequences over a fi-
nite set of symbols). A model of computation is compu-
tation universal if any computable function can be com-
puted by an instance/machine of the model. A machine is
computation universal if it can compute any computable
function as long as it is provided with the description of
the function to compute along with the corresponding in-
put. Computability Theory guaranties that such a univer-
sal machine exists.

The typical techniques to prove that a model of com-
putation, here cellular automata, is computation universal
are by:
Induction like recursion Theory. This would be proving

that some functions over integer (e. g. n 7! nC1) are
computable and then that the functions computable in
themodel are closed under some operations (e. g. com-
position);

Simulation of a generic instance of a computation uni-
versal model of computation. This would be to prove
that any, say, Turing machine could be simulated by
a cellular automata; and

Simulation of a computation universal instance of
a computation universal model of computation.

These approaches are very different. The first one relies on
defining functions but is not concerned by the way they are
computed. The second one deals with effective means of
computation (allowing the implementation of algorithms
and the measure of complexity). The third one is the mod-
ern vision of the all-purposes computer: a laptop can do
anything from picture manipulation to music playing go-
ing through text edition and programming. There is only
one hardware and according to the need, one uses a pro-
gram or another. This is the duality of data and code in
modern computers.

Generally, the second case is more simple to tackle.
There are mainly two cases when a specific universal ma-
chine is transformed:

� When the situation is so complex that using a specific
machine with few instructions becomes easier; and

� To get a computation universal CA with specific prop-
erties or qualities, typically as few states as possible.

The latter is done by designing a special simulation with
a good property and then applying it to a particularly well
chosen instance.

The term “computation universal” is not synonymous
of “Turing equivalent” which means that whatever com-
putes the model can be computed by, say, a Turing ma-
chine. In the case of cellular automata, this is meaningless
for two reasons:

� The output is not defined since as a dynamical system,
a CA never stops; and

� When considering infinite configurations, there is just
no way to manipulate them with Turing machines
(uncountably many configurations for countably many
words).

The first reason leads to a notion of simulation in an not-
ending computation rather than an input-output function
definition approach. The second reason can be bypassed
when considering restrictions of configurations: finite or
periodic. Another canonical thing is to consider models of
computation able to handle uncountably many different
inputs. . . like cellular automata. This idea leads to intrinsic
universality presented in Sect. “Intrinsic Universality”.

A Computation Universal Cellular Automaton

Here Turing machines and their executions are defined
and a simulation by cellular automata is provided.

A Turing machine is a very simple device: a finite au-
tomaton that can read and write on an unbounded mem-
ory (indexed by N). The memory is organized as an infi-
nite sequence of cells called the tape. Each cell has a value
from a finite set of symbols (the alphabet). Only a finite
part of the tape is not empty at any step of the computa-
tion. The automaton is equipped with a head that can read
or write a single cell of the tape and move the head one
position forward of backward on the tape.

Definition 3 A Turing machine is defined by (˙;#;Q;
qi ; ı), where

� ˙ is a finite alphabet;
� # 2 ˙ is a special symbol use to indicate empty part of

the tape;
� Q is the set of states of the automaton;
� qi 2 Q is the initial state, and
� ı : Q �˙ ! Q �˙ � f ;!g is the transition func-

tion.
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Cellular Automata, Universality of, Figure 1
Transition function of a Turingmachine and the simulating CA

The transition function works as follows: in a state q, read-
ing a symbol a, if ı(q;a) D (r;b;!) then the new state
is r, the symbol b is written instead of a and the head
moves one step on the right/forward.

Definition 4 A computation of a TM starts with the input
written on the tape (completed by #s) and the automaton
in state qi. The computation goes on as defined by the tran-
sition function ı. The computation ends when the head
tries to leave the tape on the left. The result is what is writ-
ten on the tape.

This is not the usual definition which involves an halt-
ing state, although it is correct. This formalization stresses
that stopping is somehow an incident from the dynami-
cal system point of view. As far as cellular automata are
concerned, they do not stop; an operator might stop a CA
when some condition is fulfilled but this is external to
the CA.

The Turing machine considered as an example is very
simple: starting on a word on fa;bg, it replaces each a by
a b and vice-versa. The only symbols on the tape are a;b
and #. There are only two states: qi and r. The transition
function is given on the left of Fig. 1.

This Turing machine is simulated by a CA of radius 1
(i. e. only cells at distance at most 1 are taken into account
for computing the next state of a cell). The set of states of
the CA is ˙ [˙ � Q, that is, a tape symbol alone or to-
gether with a state of the TM. The CA has 9 states, the table
of its local function has 729(D 93) entries! In the table on
the right of Fig. 1 only the cases where the state of the cen-
tral cell changes are indicated. On the far right, the first
transition rule is represented as it appears on space-time
diagrams: the bottom line represents the cell and its two
closest neighbors and on top the next state of the cell (at
the next iteration). In all the space-time diagrams, time is
evolving upward.

The dynamics is presented on Fig. 2. On the left the
whole computation of the Turing machine on the entry
aab is given; the output of the function is bba as written
on the tape when the machine stops. On the right, the cor-
responding iterations of the simulating CA are displayed.
Since the CA works on a bi-infinite lattice, the configura-
tion is completed with # on the left. As mentioned, a CA
never stops so that at some point the computation has been
carried out but the system goes on.

A “halting” condition has to be provided, especially
when one remembers that the halting of a Turing machine
(the famous Halting problem) is not decidable. Usually,
something very simple to test is chosen, for example that
some state appears somewhere. Here this would be the first
time the closest #-cell on the left is not in state #.

This example can easily be extended to a general
method to simulate any Turing machine or specifically
a computation universal one. Starting from a computation
universal TM, a computation universal CA is generated.

Other Ways to Achieve Computational Universality

Among the various systems achieving computational uni-
versality that have been used to prove computational uni-
versality of CA, a brief classification can be made.
Machines. (Turing machines, counter automata and ran-
dom access machines) These systems are very simple, an
automaton together with a memory. In general, the whole
evolution/orbit of the Turing machine is encoded inside
the space-time diagram of the cellular automata like in
the example. For counter automata [36], there are finitely
many counters but they can hold any natural integer, any
counter can be accessed at any time. Random access ma-
chines are like counter automata but with infinitely many
register and an indirect access mode which allows to ac-
cess any register. The random access machines model is
the closest to modern computer architecture, but to sim-
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Cellular Automata, Universality of, Figure 2
Iterations of a Turingmachine and of the simulating CA

ulate it, one has to consider indirect addressing and in-
finitely many register. Counter automata are more sim-
ple to simulate: since there exists a computation universal
2-counter automaton, only 6 instructions have to be im-
plemented.
Boolean circuits. The idea is to encode Boolean logic and
then to say that any value can be encoded in binary and
any function can then be computed with the binary en-
coding. For example, the transition function of a TM (resp.
2-counter automata) can be encoded and the value of the
tape (resp. the counters) stored in an infinite memories.
This is generally done by providing a way to encode bits,
then logical gates and finally wiring to connect them. It
is usually done in dimension 2, since ensuring a correct
wire crossing is more complicated in dimension 1. A typi-
cal example of this is the computational universality of the
Game of Life [6,19]. This is developed in the � Gliders in
Cellular Automata.
Rewriting systems. These systems work on words by re-
moving some sub-word and adding some other sub-word.
Starting with a word encoding an entry, the system is ex-
pected to stop with the output encoded in the final word.
Here are some examples of computation universal sys-
tems:

� Type-0 grammar in Chomsky’s hierarchy: one may re-
place sub-words by others according to rewriting rules;
and

� Tag-systems: a prefix of the word is removed and ac-
cording to it and some rules, a suffix is added.

The proof of the universality of the 2-states 3-neighbors
1-dimension CA referred as the elementary cellular au-
tomaton 110 by Cook [9] is done with some tag-system.
The construction relies on an intermediate level of sim-
ulation that ensures signal transmission and updating. It
is too involving and lengthy to be presented here. Sig-
nals and particles/solitons [1,53] are often used to carry
bits/information around.

Consequences of Computational Universality

To have computation universality provides two things. On
the positive side:

� Any computation can be carried out, so that if some-
thing has to be computed, whether as a final result or to
use in a broader scheme, it can be done;

� Since any computationmay take place, complex and in-
teresting behaviors may appear;

and on negative side: many questions one may ask about
the system become undecidable. The second point comes
from the undecidability of the Halting problem (whether
a given computation of a TM halts). Here are a few ex-
amples of this – many more can be found in, for example
the � Tiling Problem and Undecidability in Cellular Au-
tomata –, given a CA and a finite initial configuration:

� Will some state ever appear?
� Will the CA ever enter a stable configuration?
� Will the configuration grow infinitely?
� Will some given configuration be reached?
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“Quality” of a Computation Universal Cellular
Automata

Computability Theory is rather disappointing: one the one
side what is computing and computable becomes clear but
on the other side it mostly provides negative results like
this and that are not computable. In this subsection slight
differences on computability/simulation are addressed as
well as complexity (of computing) issues.

For Turing machines, the written part of the tape is al-
ways finite. The tape is potentially infinite, it is extended
by # as much as needed, it is never infinite. For computing
with a CA, it can be assumed that only a finite part of the
space is used for computing since otherwise it would take
an infinite time for states to interact (it takes l/2r for cells
at distance l to interact). There is a definition of finiteness
for CA (Def. 2): outside a finite part is it the quiescent state
q# (which plays the same role as #). When an infinite con-
figuration (even if it is periodic after some point) is used to
achieve computational universality, one talks about weak
computational universality; more insights on the weakness
notion on Turing machines can be found in [62].

Another important criterion is the one of the efficiency
of computation. For example, the simulating a Turing ma-
chine by a 2-counter automaton suffers an exponential
slowdown so that onemay not be interested in such a com-
puting device or any device where computational univer-
sality derives from a 2-counter automaton. For example,
the proof of the computational universality of rule 110
by Cook [9] has an exponential slowdown but Neary and
Wood [42] proved that in fact that it can be done with
a polynomial slowdown. Polynomial slowdown is the clas-
sic simulation mode between reasonable models of com-
putation (and this one of the key to the definition – and
stability – of the complexity class P –polynomial time solv-
able problems).

Another thing worth mentioning is that CA are inher-
ently parallel, the universality proofs more or less directly
leads to the Turing machines which is the canonical se-
quential model. Various approaches have been made to
consider CA as a computing system on its own, indepen-
dently of any other model of computation, for example:

� Iterative automatonwhere the input is given symbol by
symbol to a distinguished cell;

� As word recognizers with only one cell per symbol [55]
(this cannot be computation universal because the
memory is bounded);

� If finitely many cells are considered but they are all
equipped with a stack, then any computation can be
made [27];

� A algorithmic on CA based on signals has been devel-
oped [12,32,35]; and

� Martin devised an intrinsically universal CA together
S � m � n theorem for CA (as computing devices over
infinite configurations) to provide a acceptable pro-
gramming system point of view [31].

This directly links to the notion of universality developed
in the next section.

Intrinsic Universality

Definition

Previous section deals with universality as the capability
to perform any computation as defined in computability
Theory. This theory deals with numbers/words and there
exist only countably many configurations. But there are
uncountably many configurations for any CA (unless, of
course, if there is only one state). It is worth inquiring
about another kind of universality that would take this into
account and not involve any other model of computation.
(It can thus be used for any class of dynamical systems.) It
is some kind of inner-universality. The idea behind intrin-
sic universality is somehow the counterpart of universality
for a Turing machine: being able to simulate any other CA
(of the same dimension) on any (infinite) configuration.

Definition 5 A cellular automatonA simulates another
CA B if there is an injective (one-to-one) function, �, from
the configurations of B to the ones ofA and an integer, � ,
such that the following diagram commutes:

CB

�! CA

GB
??
y

??
yG�A

CB

�! CB

A cellular automaton is intrinsically universal if it can sim-
ulate any other CA (of the same dimension).

The injectivity ensures that B-configurations can be dis-
tinguished when mapped into A-configurations. From
this definition, it directly comes that:

8n 2 N ; � ı Gn
B D Gn:�

A ı � :

In an infinite run,A generates one iteration of B every �
iterations. Since the composition of injective functions is
injective, the simulation relation is transitive. The defini-
tion is illustrated by the construction of an example in the
rest of this section.

Other definitions of simulation can be found in Sub-
sect. “Defining Simulation Among CA (For Intrinsic Uni-
versality)”. In every case, a different intrinsic universality
is generated.
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TheWay It Usually Works

It is assumed that the simulated CA has radius 1 and is
1-dimensional (how to deal with higher dimension is ex-
plained at the end of this section). If it is not the case, it
is easy to simulate it by one of radius 1 (and then to use
transitivity). Let A D (1;Q; r; f ) be such that the radius
is greater than 1. The idea is to group cells r by r and de-
fine B D (1;Qr ; 1; fB) such that fB is:

8(c1; c2; : : : ; cr ); (crC1; crC2; : : : ; c2r);

(c2rC1; c2rC2; : : : ; c3r) 2 (Qr)3;
fB((c1; c2; : : : ; cr ); (crC1; crC2; : : : ; c2r );
(c2rC1; c2rC2; : : : ; c3r))

D ( f (c1; c2; : : : ; c2rC1); f (c2; c3; : : : ; c2rC2);
: : : ; f (cr ; crC1; : : : ; c3r)) :

The injection � is the canonical injection where states
are grouped r by r:

8c 2 C ;8i 2 Z ; (�(c))i D (cir ; cirC1; : : : ; c(iC1)r�1) :

This simulation is just a rescaling of space. From now
on, only radius 1 CA are considered. The construction of
an intrinsically universal CA uses two scales:

� Meta-cells scale to manipulate the states and the transi-
tion function of the simulated CA; and

� Bit scale to implement the meta-cells.

A meta-cell gathers copies of the states of its two closest
neighbors. Then it has to use the transition function to
compute the new state. The transition function is tabulated
in the form of a sequence of blocks (a;b;c; f (a;b;c)). (It
could also have been be represented by, e. g., a boolean cir-
cuit with states binary encoded as in [45].)

Meta-Cells Scale Each meta-cell holds one block/entry
of the transition table. The entries are infinitely repeating
on both side and are endlessly shifting on the left so that in
one period, the block corresponding to the update even-
tually appears. When one period has passed a new cycle
starts. The architecture of meta-cells is presented on Fig. 3.

In the upper part of Fig. 4, a space-time diagram gener-
ated by some CA is given as well as the transition function
of the CA in terms of a relation inside the space-time di-
agram between three states (at an iteration) and the state
above (at the next iteration). In the lower part of Fig. 4, the
simulation, at the meta-cell scale is presented. Each meta-
cell corresponds to the presentation in Fig. 3. The transi-
tion table is set inside the initial configuration. The starting
index is used by the meta-cell to detect the end of the cycle.

States (local + neighbors)

Part of the transition table

Starting index in the table

Cellular Automata, Universality of, Figure 3
Meta-cell

As it can be seen on Fig. 4, on the upper part of each
cell; at start (lowest row) there are three copies of the state
of the simulated cell then, copies are exchanged with the
neighbors (first simulating iteration). Then the transition
table starts moving. As soon as the entry is found in the ta-
ble, the three states are replaced by three copies of the new
state. Themeta-cell then waits for its index to appear again
to start this cycle again. The synchrony and uniformity of
CA ensures that all meta-cells stay synchronized.

Bits Scale Since the encoding and simulation must work
for any CA, it must be able to handle any set of states. The
set of states of any CA if finite but unbounded, thus it is
impossible to use a common set of states. A state a is thus
binary encoded (denoted (a)2). This way if the set of states
is larger, then the meta-cell is larger, composed of more
elementary cells.

On Fig. 5, a meta-cell is given and the layers named.
The set of states on each layer for elementary cells are also
given. Some layers are added:

� Structure: to delimit the different parts of the meta-cell,
� Control: to drive the movement, copy and test of bits,

and
� Left and right: to carry bits around (to exchange states

and to shift the transition table).

The left and right layers carry the bits very simply: unless
noted otherwise the new value in left (resp. right) is the
one that on the left (resp. right) layer of the right (resp. left)
cell ensuring a left (resp. right) shift on the layer.When the
simulation starts, s�1 and s1 are equal to s0 and (a; b; c) is
equal to (a0; b0; c0).

The meta-cell implementation works as follows: there
is a single value in the control layer. It moves forth and
back on the entire meta-cell like a signal. It manages bits
from various layers and changes its state accordingly. The
construction is only sketched; the states mentioned below
are in an intermediate level between meta-cells and ele-
mentary cells. The universal CA is not detailed because al-
though this is not complicated it would be quite lengthy
and not very informative.
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Cellular Automata, Universality of, Figure 4
Iteration of a CA and simulation at meta-cell scale of the first iteration

Starting in state q0, a meta-cell first carries out the
states exchange with the meta-cell on the left (the meta-
cell on the right takes care of the other exchange) bit by
bit using the left and right layers. In state q1, the tran-
sition table is shifted by one entry. In state q2, it moves

through the entire meta-cell and checks whether the state
and rule-in layers are identical. If the layers agree, the right
transition is found and the state layer can be updated (the
bits are copied) then it enters q3 otherwise it restarts in q1.
In state q3, the meta-cell has been updated; the transition
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Cellular Automata, Universality of, Figure 5
Binary encoding of a meta-cell with elementary cells

table is still shifted until a full shift has been done. This
is indicated by identical rule-in and index layers. In this
the case it enters q0 and the simulation of a new iteration
starts.

Various technical things like delays are added to keep
meta-cells synchronized. The number of iterations needed
to simulate an iteration is roughly speaking the length
of a cell multiplied by the length of the transition table:
log(jQj):jQj3 :
Higher dimension. It is treated exactly in the same way.
One layer gathers the information, another one deals with
the transition function. The transition table shifting is
done on one dimension only. Extra dimensions can be
used to accelerate the process or to design circuitry for
a more efficient encoding of the transition function.

Intrinsically universal CA are computation univer-
sal by composition (as long as the definitions are robust
enough). There is no notion of semi-weakly simulation
since the whole configuration has to be used to encode an
infinite configuration.

Advanced Topics

This section gathers a brief history of the subject and vari-
ous results on specific approaches. It is more involving and
targeted to a learned reader.

A Bit of History

Since there is a lot of places where the history of CA is pre-
sented (as well as other chapters of this encyclopedia, the
reader might be interested in the following survey: [50]),
only the universality part is developed here.

Cellular automaton were introduced in the 50’s by
Ulam and von Neumann [59] to study self-reproduc-
tion [3,7,60]. Computational universality was used just to
prove that any pattern can be built. Universality was in-
vestigated and proved without any explicit distinction be-
tween computational and intrinsic universality before [5].

The most famous CA is certainly Conway’s Game of
Life [19] from the early 70s. This 2-dimensional CA is both
computation universal [6] and intrinsically universal [14].

Quest for Small Universal CA There have been an on-
going search for more than four decades for universal
CA as small as possible. The interest is to know whether
“small” CA are more simple and thus can be handled or
there is no gap in complexity. Table 1 sums up results in
this quest. Intrinsically universal CA are also computation
universal but the converse is not true.

These results were achieved with various construc-
tions. Some use quite different definitions of CA for com-
modity (but there are indeed CA):

� As partitioned CA [38], and
� As CA with Margolus’s neighborhood (or partition-

ing CA): [30,58] (billiards) and [10] (spin model in
Physics).

Computing universality can also be defined by the
computational complexity of the sets of orbits of a CA as
well as the reachability relation, relating to the Turing de-
grees of undecidability [54].

Defining Simulation Among CA
(For Intrinsic Universality)

The definition used in Sect. “Computational Universality”
is not the only existing one. Many papers prove results on
simulation without providing a formalized definition of it,
but by considering the construction anyone would say that
it is a simulation, in an empirical fashion. There is no abso-
lute definition commonly accepted and none contradicts
the intuition of simulation. In Table 1, no distinction on
the simulation is made and most of the time the construc-
tion fits in more than one definition.

Most of the presented definitions can be amended in
order to cover cases where not all iterations are covered,
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Cellular Automata, Universality of, Table 1
Historic bounds on computation and intrinsically universal CA

Year Reference Dimension jN j jQj Computation Intrinsic
1966 Neumann [60] 2 5 29
1968 Codd [8] 2 5 8
1970 Banks [5] 2 9 2

1 3 18
1 5 2

1971 Smith III [52] 2 7 7
1987 Albert and Culik [2] 1 3 14
1990 Lindgren and Nordahl [28] 1 3 7
2002 Ollinger [45] 1 3 6
2004 Cook [9] 1 3 2
2006 Richard [47] 1 3 4

say for example only the one out of 3. In the following,
A D (QA; rA; fA) and B D (QB; rB; fB) denote cellular
automata of the same dimension d.

Embedding of Hertling The term embedding is to be
understood as simulation. It was introduced in order to
prove that CA that are not onto cannot be simulated by
onto (and specially reversible) ones of the same dimen-
sion.

Definition 6 (Embedding [23]) A mapping � : QZd

A !

QZd

A is said to be amorphism if and only if for any shift of
Zd ; �A, there exists a shift of Zd , �B, such that: � ı �A D
�B ı �.

A can be embedded in B if there are mapping
� : QZd

A ! QZd

A and � : QZd

A ! QZd

A and an integer k
such that:

8t 2 N ; G t
A D � ı Gkt

B ı � : (2)

The embedding is strong if � is a continuous morphism,
weak if it is a just a morphism and set-theoretic otherwise
(i. e. not a morphism).

The interest of the morphism is to enforce the respect of
the structure of Zd . Hertling proved, using the Axiom of
Choice (hence the qualification) that any CA can be set-
theoretically embedded in the one dimensional CA that
does nothing but shift the value on the left. This is of
course highly nonconstructive and contradict the intuition
of what simulation could be.

Comparing to Def. 5, using � to come back allows to
have some garbage produced and discarded by �.

Grouping Relation of Mazoyer and Rappaport This
definition of a grouping relation was introduced to focus

on the importance of space and time structure. It allows to
consider iterations once in a while, periodically.

Definition 7 (Grouping [33,34]) A cellular automa-
tonA is a sub-automaton of B (denotedA � B) if there
is an injection � : QA ! QB such that:

� ı GA D GB ı � ;

where � is the component-wise extension of � toA-con-
figurations. The nth grouping of an automaton is defined
by grouping the cells n by n and consider only every nth
iteration, An D (d;Qn

A; rA; f
(n)
A ). The function GAn is

the nth iterate of GA. Since the cells are grouped by n,
the radius is not changed. The grouping relation is de-
fined by:

A �grouping B
() 9n;m 2 N ; 0 < n;m ; An � Bm :

This is a stronger form of simulation where the space-time
diagrams should be included; up to some rescaling on both
side, all the space-time diagrams of A should be exactly
(up to an injection) generated. There is no shift involved
and the space-time ratio should be preserved.

This relation is a pre-order. The authors proved that
there is a bottom equivalence class for CA: the CA with
only one state (and one configuration). The nilpotent ones
(after a fixed number of iterations any configuration is
turned into the same one: only quiescent state) are just
above. They also proved that there is an unbounded in-
finite ascending chain, so that there is no top and thus no
intrinsically universal CA for this definition.
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Rescaling of Ollinger The previous definition is on the
one hand interesting because it relays on space-time dia-
grams and a natural operation, grouping, over them, but
on the other hand, there is no intrinsically universal CA,
which have been provided for other definition. The fol-
lowing definition is a weakening of the first one that allows
intrinsically universal CA.

Definition 8 (Rescaling [44]) For any k in Zd , let �k de-
notes the shift by k over configurations. For any m in Zd ,
let om denotes the packing of cells into packs of sizem; it is
a mapping from QZd into (Qm)Zd (o�m is the inverse, the
unpacking function).

For n; k 2 Zd and n 2 N , 0 < n, the hm; n; ki-re-
scaling ofA is the cellular automatonAhm;n;ki such that:

GAhm;n;ki D � k ı om ı Gn
A ı o

�m :

A cellular automaton A is simulated by B if there exists
a rescaling of A which is a sub-automaton of a rescaling
of B. (The sub-automaton relation is defined as in Def. 7.)

This definition allows to include a shift and to treat in-
dependently the size of the blocks of cells and the itera-
tion step. Comparing to the grouping definition (Def. 7),
this allows to have enough time to locally mix information
and compute the next state. Intrinsically universal CA ex-
ist (also with a meta-cell approach) and intrinsic univer-
sality of a 1-d CA is undecidable [46]. This result is still
true on captive CA (the transition function may only out-
put a state that is in the input) even though as the number
of states grows larger, almost all captive CA is intrinsically
universal [56,57].

Reversible Case

The reversible subset of cellular automaton (CA such
that the global function is invertible, its inverse is then
the one of a CA) also contains computation universal
CA [13,38,40]. This topic is developed in the � Reversible
Cellular Automata.

There exist reversible CA that are intrinsically univer-
sal inside reversible CA [15,16,18]. Thismeans able to sim-
ulate any other reversible CA (of the same dimension) and
not just any CA. It is a strong embedding (Def. 6) and does
not contradict Hertling’s results [23] that non surjective
CA cannot be simulated by reversible one.

Morita proved the any CA can be simulated over fi-
nite configurations by a reversible in [37,39] but garbage is
produced in order to ensure reversibility and the simula-
tion time varies as the simulation goes on.

There is also a particular result [17] including the
simulation of the non-reversible CA, but the simulation
goes by a different definition. It is centered (like the usual
metric) and the simulated iterated configurations are dis-
played on parabolas. This twisting of space yields an in-
finite space to store the information for reversibility. It is
not possible to recover a simulated iteration from finitely
many simulating ones! The whole simulating space-time
diagram is needed.

Variations on CA

Changing the Underlying Space Other 2-dimensional
spaces have been considered. There exist reversible com-
putation universal CA both on triangular lattices [25] and
hexagonal lattice [41].

Róka studied simulation between CA on different lat-
tices in a very general way: lattices are Cayley graph (it
corresponds to a group, the arrows corresponds to gener-
ators). She proved the existence of simulations in the case
of the existence of an homomorphism with a finite kernel
and that all bi-dimensional planar structure are equivalent
to Z2 [49].

There exist computation universal CA [22] and intrin-
sically universal CA [29] on the hyperbolic plane. This is
more developed in the�Cellular Automata in Hyperbolic
Spaces.

Intrinsic Universality Among Quantum Cellular Au-
tomaton In the past decade, quantum computation the-
ory has been tremendously developing. It relies on uni-
tary gates which are of course reversible. The results on
reversible CA has been “naturally” extended, for exam-
ple, there is a 1-dimension Quantum CA which is intrinsi-
cally universal (among quantum CA) [4]. For more on the
topic, please refer to the�Quantum Cellular Automata.

Variable Neighborhood A new approach is to fix the
states and the transition function and to have only the
neighborhood (i. e. the relative localization of the entries
of the transition function) varying. Somehow it can be
considered that the neighborhood is not defined by the
CA but by the configuration. Some simulation results ex-
ists [43,63]. The transition function of simulated CA is not
given inside the simulating configuration but by the simu-
lating neighborhood.

Future Directions

Asmentioned just above, understanding the role played by
the neighborhood in computing might be very enlighten-
ing.
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It is known that 2 states and 2 neighbors is enough
for computing with polynomial slowdown. It might be
interesting to find constructions with limited slowdown
and very concise encoding. Since CA are inherently par-
allel while Turing machines are sequential, a computing
(and complexity) theory and algorithm that incorporate
the parallelism of CA (local, uniform and synchronous) is
worth enquiring.

As far as intrinsic universality is concerned, it relies on
simulation between CA. The various definitions have to be
linked and investigated.
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Glossary

Cadherins Important class of transmembrane proteins.
They play a significant role in cell-cell adhesion, en-
suring that cells within tissues are bound together.

Chemotaxis Motion response to chemical concentration
gradients of a diffusive chemical substance.

Extracellular matrix (ECM) Components that are extra-
cellular and composed of secreted fibrous proteins
(e. g. collagen) and gel-like polysaccharides (e. g. gly-
cosaminoglycans) binding cells and tissues together.

Fiber tracts Bundle of nerve fibers having a common
origin, termination, and function and especially one
within the spinal cord or brain.

Haptotaxis Directed motion of cells along adhesion gra-
dients of fixed substrates in the ECM, such as integrins.

“Slime trail motion” Cells secrete a non-diffusive sub-
stance; concentration gradients of the substance allow
the cells to migrate towards already explored paths.

Somatic evolution Darwinian-type evolution that occurs
on soma (as opposed to germ) cells and characterizes
cancer progression [1].

Definition of the Subject

Cancer cells acquire characteristic traits in a step-wise
manner during carcinogenesis. Some of these traits are
autonomous growth, induction of angiogenesis, invasion
and metastasis. In this chapter, the focus is on one of the
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late stages of tumor progression: tumor invasion. Tumor
invasion has been recognized as a complex system, since
its behavior emerges from the combined effect of tumor
cell-cell and cell-microenvironment interactions. Cellular
automata (CA) provide simple models of self-organizing
complex systems in which collective behavior can emerge
out of an ensemble of many interacting “simple” compo-
nents. Recently, cellular automata have been used to gain
a deeper insight in tumor invasion dynamics. In this chap-
ter, we briefly introduce cellular automata as models of tu-
mor invasion and we critically review the most prominent
CA models of tumor invasion.

Introduction

Cancer describes a group of genetic and epigenetic dis-
eases characterized by uncontrolled growth of cells, lead-
ing to a variety of pathological consequences and fre-
quently death. Cancer has long been recognized as an evo-
lutionary disease [2]. Cancer progression can be depicted
as a sequence of traits or phenotypes that cells have to ac-
quire if a neoplasm (benign tumor) is to become an inva-
sive and malignant cancer. A phenotype refers to any kind
of observed morphology, function or behavior of a living
cell. Hanahan and Weinberg [3] have identified six can-
cer cell phenotypes: unlimited proliferative potential, envi-
ronmental independence for growth, evasion of apoptosis,
angiogenesis, invasion and metastasis.

In this chapter, we focus on the invasive phase of tu-
mor growth. Invasion is the main feature that allows a tu-
mor to be characterized as malignant. The progression of
a benign tumor and delimited growth to a tumor that is
invasive and potentially metastatic is the major cause of
poor clinical outcome in cancer patients, in terms of ther-
apy and prognosis. Understanding tumor invasion could
potentially lead to the design of novel therapeutical strate-
gies. However, despite the immense amounts of funds in-
vested in cancer research, the intracellular and extracellu-
lar dynamics that govern tumor invasiveness in vivo re-
main poorly understood.

Biomedically, invasion involves the following tumor
cell processes:

� Tumor cell migration, which is a result of down-regu-
lation of cadherins, that is loss of cell-cell adhesion,

� Tumor cell-extracellular matrix (ECM) interactions,
such as cell-ECM adhesion, and ECM degradation or
remodeling, by means of proteolysis. These processes
allow for the penetration of the migrating tumor cells
into host tissue barriers, such as basement and intersti-
tial stroma [4], and

� Tumor cell proliferation.

Cellular Automaton Modeling of Tumor Invasion, Figure 1
Hanahan andWeinberg have identified six possible types of can-
cer cell phenotypes: unlimited proliferative potential, environ-
mental independence for growth, evasion of apoptosis, angio-
genesis, invasion and metastasis (Reprinted from [3], with per-
mission from the authors)

Tumor invasion facilitates the emergence of metastases,
i. e. the spread of cancer cells to another part of the body
and the formation of secondary tumors. Tumor invasion
comprises a central aspect in cancer progression. How-
ever, invasive phenomena occur not only in pathological
cases of malignant tumors but also during normal mor-
phogenesis and wound healing.

Cancer research has been directed towards the under-
standing of tumor invasion dynamics and its implications
in treatment design. In particular, research concentrates
along the following problems:

Invasive tumor morphology: A wealth of empirical evi-
dence links disease progression with tumor morphol-
ogy [5]. The tumor morphology can indicate the de-
gree of a tumor’s malignancy. In particular, it is exper-
imentally and clinically observed that a morphological
instability is related to invasive solid tumors, produc-
ing finger-like spatial patterns. The question is which
molecular and cellular mechanisms are responsible for
this spatial pattern formation.
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Cell migration and influence of the ECM: Important as-
pects of invading tumors are cell motion and the ef-
fect of the surrounding environment, especially the
ECM [4].

Metabolism and acidosis: The multi-step process of car-
cinogenesis is often described by somatic evolution,
wherein phenotypic properties are retained or lost de-
pending on their contribution to the individual tu-
mor cell survival and reproductive potential. One of
the most prominent phenotypic changes involves the
anaerobic glucose metabolism (glycolysis). A side-
product of this metabolic activity is the production
of HC ions that increase the pH of the tumor’s mi-
croenvironment (acidosis). This gives rise to the ques-
tions: (i) Why does tumor evolution lead to this kind
of metabolism, which is energetically deficient in com-
parison with the aerobic one? (ii) What are the advan-
tages for the tumor? (iii) How do glycolytic tumor cells
influence tumor invasion?

Emergence of invasion: Typically, tumor invasion ap-
pears during the late stages of carcinogenesis. Of ul-
timate importance is the question what are the mech-
anisms and the environmental conditions that trigger
the progression from benign neoplasms to malignant
invasive tumors.

Robustness: There are several questions concerning the
stability and the resistance of tumor invasion such as:
(i) Why are malignant tumor so robust (resistant) to
perturbations (i. e. therapies)? (ii) Is it possible to de-
sign intelligent therapies (at the cellular level) that dis-
turb the tumor’s robustness? (iii) How can we investi-
gate the tumor’s robustness?

Mathematical modeling and analysis provide invalu-
able tools towards answering the above questions. Tumor
invasion involves processes which occur at different spa-
tio-temporal scales, including processes at the subcellular,
cellular and tissue level. Mathematical models allow de-
scription and linking of these levels. One can distinguish
molecular, cellular and tissue scales, respectively [6,7]:

� The molecular scale refers to phenomena at the sub-
cellular level and concentrates on molecular interac-
tions and resulting phenomena, such as alterations of
signaling cascades and cell cycle control, gene muta-
tions, etc. In tumor invasion, the down-regulation of
cadherins provides an example of a molecular process.

� The cellular scale refers to cellular interactions and
therefore to the most prominent dynamics of cell
populations, e. g. adhesion, contact inhibition, chemo-
taxis etc.

� The tissue scale focuses on tissue level processes taking
into account macroscopic quantities, such as volumes,
flows etc. Continuum phenomena include cell convec-
tion and diffusion of nutrients and chemical factors,
mechanical stress and the diffusion of metastases.

For example, genetic alterations may lead to invasive cells
(molecular scale) that are able to migrate (cellular scale)
and interact with diffusible or non-diffusible signals (tissue
scale). Models that deal with phenomena at multiple scales
are called multi-scaled.

Recently, a variety of mathematical models have been
proposed to analyze different aspects of tumor invasion.
Deterministic macroscopic models are used to model
the spatio-temporal growth of tumors, usually assum-
ing that tumor invasion is a wave propagation phenom-
enon [8,9,10,11,12]. Computational investigations of the
invasiveness of glioma tumors illustrate that the ratio of
tumor growth and spatial anisotropy in cell motility can
quantify the degree of tumor invasiveness [13,14]. Whilst
these models are able to capture the tumor structure at the
tissue level, they fail to describe the tumor at the cellular
and the sub-cellular levels. Lately, multi-scale approaches
attempt to describe and predict invasive tumor morpholo-
gies, growth and phenotypical heterogeneity [15,16].

Cellular automata (CA), andmore generally cell-based
models, provide an alternative modeling approach, where
a micro-scale investigation is allowed through a stochastic
description of the dynamics at the cellular level [17]. In
particular, CA define an appropriate modeling framework
for tumor invasion since they allow for the following:

� CA rules can mimic the processes at the cellular level.
This fact allows for the modeling of an abundance of
experimental data that refer to cellular and sub-cellular
processes related to tumor invasion.

� The discrete nature of CA can be exploited for in-
vestigations of the boundary layer of a tumor. Bru et
al. [18] have analyzed the fractal properties of tumor
surfaces (calculated by means of fractal scaling anal-
ysis) which can be compared with corresponding CA
simulations to gain a better understanding of the tu-
mor phenomenon. In addition, the discrete structure of
CA facilitates the implementation of complicated envi-
ronments without any of the computational problems
characterizing the simulation of continuous models.

� Motion of tumor cells through heterogeneous me-
dia (e. g. ECM) involves phenomena at various spa-
tial and temporal scales [19]. These cannot be captured
in a purely macroscopic modeling approach. Alterna-
tively, discrete microscopic models, such as CA, can in-
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corporate different spatio-temporal scales and they are
well-suited for simulating such phenomena.

� CA are paradigms of parallelizable algorithms. This fact
makes them computationally efficient.

In the following section, we provide a definition of CA.
In Sect. “Models of Tumor Invasion”, we review the exist-
ing CAmodels for central processes of tumor invasion. Fi-
nally, the discussion, we critically discuss the use of CAs in
tumor invasion modeling and we identify future research
questions related to tumor invasion.

Cellular Automata

The notion of a cellular automaton originated in the works
of John von Neumann (1903–1957) and Stanislaw Ulam
(1909–1984). Cellular automata may be viewed as sim-
ple models of self-organizing complex systems in which
collective behavior can emerge out of an ensemble of
many interacting “simple” components. In complex sys-
tems, even if the basic and local interactions are per-
fectly known, it is possible that the global behavior obeys
new laws that cannot be obviously extrapolated from the
individual properties, as if the whole is more than the
sum of the parts. This property makes cellular automata
a very interesting approach to model complex systems in
physics, chemistry and biology (examples are introduced
in [17,20]). A CA can be defined as a 4-tuple (L;S;N ;F),
where:

� L is an infinite regular lattice of nodes (discrete space),
� S is a finite set of states (discrete states); each cell i 2 L

is assigned a state s 2 S,
� N is a finite set of neighbors,
� F is a deterministic or probabilistic map

F : SjN j ! S (1)

fsigi2N 7! s ; (2)

which assigns a new state to a node depending on the
state of all its neighbors indicated byN (local rule).

The evolution of a CA is defined by applying the func-
tion F synchronously to all nodes of the lattice L (homo-
geneity in space and time).

The above features can be extended, giving rise to sev-
eral variants of the classical CA notion [21]. Some of these
are:
Asynchronous CA: in such CA, the restriction of simul-

taneous update of all the nodes is revoked, allowing for
asynchronous update.

Non-homogeneous CA: this variation allows the transi-
tion rules to depend on node position. Agent-based

models are “relatives” of CA that lost the homogene-
ity property, i. e. each individual-particle may have its
own set of rules.

Coupled-map lattices: in this case the constraint of dis-
crete state space is withdrawn, i. e. the state variables
are assumed to be continuous. An important type of
coupled-map lattices are the so-called Lattice Boltz-
mann models [22].

Structurally dynamic CA: in these systems, the underly-
ing lattice is no longer a passive static object but be-
comes a dynamic component. Therefore, the lattice,
structure evolves depending on the values of the nodes
state variables.

Models of Tumor Invasion

This section reviews the existing cellular automata mod-
els of tumor invasion. Categorizing these models is a non-
trivial task. Moreover, existing CA models describe tumor
invasion at more than one scale (sub-cellular, cellular and
tissue). In this review, we distinguish models that analyze:
(i) the invasive morphology, (ii) tumor cell migration and
the influence of the ECM, (iii) metabolism and acidosis,
and (iv) the emergence of tumor invasion.

Invasive Tumor Morphology

The tumor morphology arising from the spatial pattern
formation of the tumor cell population has been recog-
nized as a very important aspect of tumor growth. Sev-
eral researchers have attempted to reveal the mechanisms
of spatial pattern formation of invasive tumors. Here, we
present the most representative CA models for the inva-
sive tumor morphology.

Effects of Directed Cell Motion Sander et al. [23] devel-
oped a CA model to investigate the branching morphol-
ogy of invasive brain tumors. In the model tumor cell mo-
tion is influenced by two key processes: (i) chemotaxis, and
(ii) “slime trail following”. A typical example of a slime
trail following mechanism is found in the motion of cer-
tain myxobacteria [24].

The authors show that the branching morphology of
tumors can be explained as a result of chemotaxis and
“slime trail following”. In particular, simulations repro-
duce the branching pattern formation observed in vitro
cultures of glioma cells. However, the assumption of slime
trail following has not been proven biologically as yet.

Spatial Structure of InvasiveTumors Anderson [15,25]
proposed a model to examine the effects of tumor cell het-
erogeneity (at the genetic level) on the spatial morphol-
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Cellular Automaton Modeling of Tumor Invasion, Figure 2
Left: Microscopy image of a multicellular tumor spheroid, exhibiting an extensive branching system that rapidly expands into the
surrounding extracellular matrix gel. These branches consist of multiple invasive cells. (Reprinted from [26] with permission). Right:
Simulation of Anderson’s model [15] reproducing the experimentally observed morphology of invasive tumors

ogy and to analyze the importance of cell-cell and cell-
ECM adhesion. The model assumes a non-diffusible, fixed
configuration of ECM. The extracellular matrix can be de-
graded by diffusible enzymes, such as metallo-proteinases,
produced by tumor cells. Moreover, cells are allowed to
mutate and evolve their phenotype from proliferative to
invasive. Finally, an oxygen concentration field plays the
role of nutrients in the model.

Simulations of the model show that: (i) the ECM het-
erogeneity is mainly responsible for the tumor branching
morphology (Fig. 2), (ii) cell-cell adhesion plays an impor-
tant role only in the early stages of tumor development,
(iii) invasive tumor cells are located at the boundary of the
tumor, and (iv) the tumor is a phenotypically heteroge-
neous object.

Tumor Cell Migration and the Influence
of the Extracellular Matrix

Cell migration and cell-ECM interactions are two of the
most crucial invasion-related processes. Cellular automata
provide an appropriate framework to model and analyze
the effect of cellmotility and cell-environment interactions
of tumor cell migration.

The Role of Cell-Cell and Cell-ECM Adhesion Turner
and Sheratt [27] proposed a cellular Potts model [28] to
investigate how cell-cell and cell-ECM adhesion influence
the tumor invasion depth and tumor morphology. A cel-
lular Potts model can be viewed as an extension of the CA
idea allowing to analyze phenomena that take into account

specific cell shapes. Cells are assumed to move accord-
ing to intercellular adhesive interactions and haptotactical
gradients. Moreover, cells are allowed to proliferate, while
mitotic probabilities depend on the strength of the adhe-
sive interaction. Finally, cells are assumed to secrete pro-
teolytic enzymes that degrade the ECM.

The authors show that adhesive dynamics can ex-
plain the “fingering” patterns observed in their simula-
tions. Moreover, the authors demonstrate that the width
of the invasion zone depends less on cell-cell adhesion and
more on cell-ECM adhesion facilitated by haptotaxis and
proteolysis.

Cellular Mechanisms of Glioma Cell Migration In the
work of Aubert et al. [29], a CA model is introduced that
allows for the investigation of tumor cell migration, based
on experimentally observed density profiles of glioma cell
cultures. The goal is to identify the mechanisms of tumor
(glioma) cell motion, which play a crucial role in tumor
invasion. The authors do not consider proliferation of tu-
mor cells. Only the influence of tumor cell migration and
intercellular interactions are studied. The authors intro-
duce and test two distinct cell mechanisms: (i) cell-cell ad-
hesion, and (ii) a kind of “inertia” in cell motion, i. e. the
cells tend to maintain the direction of their motion.

The authors carefully scale the model according to the
experimental setup and calibrate the corresponding model
parameters. The simulation results indicate that cell-cell
adhesion can explain the experimental results. It is con-
cluded that cell-cell adhesion is an important process in
glioma cell migration.
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Cellular Automaton Modeling of Tumor Invasion, Figure 3
The effect of the brain’s fiber tract on glioma growth. a A simulation is shown without taking into account the influence of fiber
tracts. b The fiber tracts in the brain strongly drive the evolution of the tumor growth. c–d Figures display a close up of the tumor
area of the top a–b simulations (Reprinted from [31])

Effects of Fiber Tracts on Glioma Invasion Wurzel et
al. [30] model glioma tumor invasion with a lattice-gas
cellular automaton (LGCA) [17]. The authors address the
question of how fiber tracts found in the brain’s white mat-
ter influence the spatio-temporal evolution and the invad-
ing front morphology of glioma tumors. Cells are assumed
to move, proliferate and undergo apoptosis according to
corresponding stochastic processes. Fiber tracts are repre-
sented as a local gradient field that enhances cell motion in
a specific direction.

The authors develop and analyze different scenarios
of fiber tract influence. A gradient field may increase the

speed of the invading tumor front. For high field inten-
sities the model predicts the formation of cancer islets at
distances away from the main tumor bulk. The simulated
invasion patterns qualitatively resemble clinical observa-
tions.

Effect of Heterogeneous Environments on Tumor Cell
Migration Hatzikirou et al. [31] developed a LGCA
model to investigate the influence of heterogeneous en-
vironments on tumor cell dispersal. This model is a sim-
plified version of [30] which facilitates the mathematical
analysis. In this study no proliferation or death of cells
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Cellular Automaton Modeling of Tumor Invasion, Figure 4
Typically, tumors exhibit abnormal levels of glucose metabo-
lism. Positron emission imaging (PET) techniques localize the
regions of abnormal glycolytic activity and identify the tumor
locus

is considered. The authors distinguish two kinds of cell-
ECM interactions (i) cell-ECM adhesion leading to hap-
totactical motion along integrin concentration gradients
(environment with directional information) and (ii) con-
tact guidance that promotes the alignment along ECM
pores or fibres as seen in Fig. 3 (environment with orien-
tational information).

In this study, it is investigated the impact of both types
of cell-ECM interaction on tumor cell motion. In partic-
ular, macroscopic dispersal measures (such as mean cell
flux) depending on cellular and environmental parameters
are calculated. Accordingly, the models allow for predic-
tion of cell motion in different environments.

Metabolism and Acidosis

In the course of cancer progression, tumor cells un-
dergo several phenotypic changes in terms of motility,
metabolism and proliferative rates. In particular, it is im-
portant to analyze the effect of the anaerobic metabolism
of tumor cells and the acidification of the environment (as
a side-product of glycolysis) on tumor invasion (Fig. 4).

Patel et al. [32] proposed a model of tumor growth to
examine the roles of native tissue vascularity and anaer-
obic metabolism on the growth and invasion efficacy of
tumors. The model assumes a vascularized host tissue.
Anaerobic metabolism involves the consumption of glu-

Cellular Automaton Modeling of Tumor Invasion, Figure 5
The evolving microenvironment of breast cancer. The multiple
stages of breast carcinogenesis are shown progressing from left
to right, along with histological representations of these stages.
As indicated, the pre-invasive stages occur in an avascular envi-
ronment, whereas cancer cells have direct access to vasculature
following invasion. (Reprinted from [33])

cose and the production of HC ions, leading to the acidifi-
cation of the local tissue. The vascular network allows for
the absorption of HC ions. Cells are assumed to be prolif-
erative and non-motile. The pH level, i. e. is the HC con-
centration, and the glucose concentration determine the
survival and death of the cells.

Simulations of the model show: (i) high tumor HC ion
production favors tumor invasion by the acidification of
the neighboring host tissue, and (ii) there is an optimal
density of microvessels that maximizes tumor growth and
invasion, by minimizing the acidification effects on tumor
cell proliferation (absorption of HC ions) andmaximizing
the negative effect of HC ions on the neighboring tissue.

Emergence of Tumor Invasion

Recently, several models have been proposed that concen-
trate on the evolutionary dynamics of tumors (Fig. 5). The
main goal of these models is to understand under which
environmental conditions particular phenotypes appear.
Here, we review those models that focus on the mecha-
nisms that allow the emergence of invasive behavior.

Influence of Metabolic Changes Smallbone et al. [34]
developed an evolutionary CA model to investigate the
cell-microenvironmental interactions that mediate so-
matic evolution of cancer cells. In particular, the authors
investigate the sequence of tumor phenotypes that ulti-
mately leads to invasive behavior. The model considers
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three phenotypes, (i) the hyperplastic phenotype that al-
lows growth away from the basement membrane, (ii) the
glycolytic phenotype that allows anaerobic metabolism
(the “fuel” is glucose), and (iii) the acid-resistant pheno-
type that enables the cell to survive in low pH. Cells are
allowed to proliferate, die or adapt (change their pheno-
type). No cell motion is explicitly considered.

The model predicts three phases of somatic evolution:
(i) Initially, cell survival and proliferation are dependent
on the oxygen concentration. (ii) When the oxygen be-
comes scarce, the glycolytic phenotype confers a signifi-
cant proliferative advantage. (iii) The side-products of gly-
colysis, e. g. galactic acid, increase the microenvironmen-
tal pH and promote the selection of acid-resistant pheno-
types. The latter cell type is able to invade the neighboring
tissue since it takes advantage of the death of host cells,
due to acidification, and proliferates using the available
free space.

The Game of Invasion Recently, Basanta et al. [35] have
developed a game theory inspired CA that addresses the
question of how invasive behavior emerges during tumor
progression (see also [36]). The authors study the cir-
cumstances under which mutations that confer increased
motility to cells can spread through a tumor composed
of rapidly proliferating cells. The model assumes the ex-
istence of only two phenotypes: “proliferative” (high divi-
sion rate and no motility) and “migratory” (low division
rate and high motility). Mutations are allowed for by the
random change of phenotypes. Nutrients are assumed to
be uniformly distributed over the lattice.

Simulations show that low nutrient conditions confer
a reproductive advantage to motile cells over the prolifer-
ative ones. The model suggests novel ideas for therapeutic
strategies, e. g. by increasing the oxygen supply around the
tumor to favor the reproduction of proliferative cells over
the migrating ones. This is not necessarily a therapy since
there are benign tumors that are life threatening even if
they do not become invasive. Despite that, in most cases
a growing but non-aggressive tumor will have a much bet-
ter prognosis than a smaller but invasive one.

Discussion

In this review, we have focused on one of the most im-
portant aspects of cancer progression: tumor invasion.
The main processes involved in tumor invasion are re-
lated to tumor cell migration, cell-ECM interactions, espe-
cially ECM degradation/remodeling and tumor cell pro-
liferation. These processes are evolving at different scales,
e. g. cell-ECM adhesion is the response of tumor cells to

ECM integrins (molecular level) leading to a haptotactical
cell motion (cellular level) and influencing the tumormor-
phology (macroscopic level). Therefore, in order to un-
derstand tumor invasion dynamics, it is important to use
mathematical tools that allow for modeling sub-cellular
or cellular processes and to analyze the emergent macro-
scopic behavior. Individual-based models, especially CA,
are well-suited for this task. Moreover, some types of CA
models, such as lattice-gas cellular automata [17,31], facil-
itate analytical investigations allowing for deeper insight
into the modeled phenomena.

In this chapter, we reviewed the existing CA models of
tumor invasion. The presented models explore central as-
pects of tumor invasion. Some of the models are in good
agreement with biomedical observations for in-vitro and
in-vivo tumors. In the following, we list the most inter-
esting biological insights that can be gained from the re-
viewed models:

� The significance of hypoxia in the process of tumor
progression: Activation of glycolysis and acidification
of the host tissue facilitate tumor invasion. Low nutri-
ent conditions, such as hypoxia, may trigger invasive
behaviors.

� Cell-cell adhesion: It is evident that intercellular adhe-
sion has a great impact in the early stages of tumor
growth. However, in tumor invasion the role of cell-cell
adhesion is minor, since mainly the cell-ECM interac-
tions appear to dictate the tumor cell behavior.

� Cell-ECM adhesion: This is an important process for
tumor invasion. In particular, the heterogeneous struc-
ture of the ECM strongly influences the spatial mor-
phology of invasive tumors.

Mathematical modeling offers potentially significant in-
sight into tumor invasion. Several crucial questions have
not been adequately addressed so far by modeling efforts:
Branching morphology: Several mechanisms have been

proposed that lead to branching patterns, e. g. diffu-
sion-limited aggregation, the interplay of cell-cell and
cell-ECM adhesion, as well as chemotaxis or slime trail
following motion. However, biologists and modelers
have not yet identified a unique mechanism that drives
the branching morphology of invasive tumors.

Go or grow: The mechanisms of invasive tumor cell mi-
gration are still not understood. Recently, Fedotov
et al. [37] have analyzed the effect of a postulated mi-
gration/proliferation dichotomy on cell migration.

Emergence: Concerning the emergence of invasion in tu-
mor progression little is known. Mechanisms related
to tumor cell motion and other cell processes, such
as proliferation (migration/proliferation dichotomy),
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may play an important role for the dominance of in-
vasive phenotypes [35,38].

Angiogenesis: Another open issue is the influence of an-
giogenesis and vasculogenesis on tumor invasion. De-
spite significant efforts to describe the mechanisms of
angio- and vasculogenesis, little is known about the ef-
fect of these processes on tumor invasion [32].

Robustness: The identification of cellular mechanisms
that are responsible for tumor robustness remains sig-
nificant challenge.
Finally, for clinical purposes, future models should be

able to provide accurate and quantitative predictions. Sim-
plified models considering only the essential ingredients
for tumor growth, and especially tumor invasion, but val-
idated with actual clinical data may be helpful in this re-
gard. We sincerely hope that a more profound knowledge
of important tumor characteristics, such as tumor inva-
sion, will eventually lead to the design of more effective
therapeutic strategies.
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Glossary

Cell The biological cell is the smallest self-contained, self-
maintaining, and self-reproducing unit of all living or-

ganisms. Various computing paradigms were inspired
by the biological cell.

Molecular computing A subfield of cellular computing,
where the molecules instead of the cell play a central
functional role.

Computing The science that deals with the manipulation
of symbols. Also refers to the processes carried out by
real or abstract computers.

Computation Synonymous with information processing
or also algorithm. Computations can for example be
performed by abstract machines, real computer hard-
ware, or biological systems. The abstract concept of
the Turing machine separates the class of computable
from the class of non-computable functions.

Parallel computing Parallel computing involves the exe-
cution of a task on multiple processors with the goal to
speed-up the execution process by dividing up the task
into smaller sub-tasks that can be executed simultane-
ously.

Definition of the Subject

The field of cellular computing (abbreviated, CC) defines
both a general computing framework and a discipline con-
cerned with the analysis, modeling, and engineering of real
cellular processes for the purpose of computation. The bi-
ological cell, discovered and coined by R. Hooke in 1665,
is the smallest self-contained, self-maintaining, and self-
reproducing unit of all living organisms. Its understand-
ing and modeling is crucial both for the understanding of
life and for the ability to use, control, and modify its com-
plex bio-chemical processes to perform specific functions
for the purpose of in vivo or in vitro computation. The
cellular metaphor has inspired and influenced numerous,
both abstract computing models and in silico implementa-
tions, such as cellular automata (abbreviated, CA), mem-
brane systems (or P systems), or Field Programmable Gate
Arrays (abbreviated, FPGAs), with the main purpose to
solve algorithmic problems in alternative ways. The cellu-
lar computing approach is appealing because the cell pro-
vides a convenient level of abstraction and functionality,
is reasonably simple with enough abstractions, and can be
used as a building block to compose more complex sys-
tems. On the other hand, a wide range of computational
approaches are used to model and understand the func-
tioning of the inter- and intra-cellular processes of bio-
logical cells on its various levels of complexity. The cell’s
bio-chemical processes can either directly be interpreted
as computations or they can be modified for the specific
purposes of computations through bio-engineering meth-
ods. The hope in using biological cells as computing de-
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vices is to (1) ultimately go beyond complexity and fabri-
cation limits currently encounteredwith traditional silicon
circuits, (2) to embed computing capabilities into living
organisms for autonomous therapeutic and diagnostic ap-
plications, and (3) to realize integrated biological sensing
applications that use living organisms, such as for example
plants and bacteria, as intelligent sensors.

Introduction

The English naturalist Robert Hooke is commonly accred-
ited for the discovery of the cell [7] and the coining of its
term, which he borrowed from the Latin word cella, that
designates a small chamber. Hooke’s work was published
in 1665 in his book Micrographia [45], which contained
observations he madewith a very rudimentarymicroscope
of dead cork cells. Since then, tremendous discoveries have
been made around the cell, ranging from the pioneering
work of German anatomist Walther Flemming [38,75] on
cell division (mitosis) to the discovery of the DNA dou-
ble helix structure by Watson and Crick in 1953 [117].
Nowadays, a sheer endless amount of knowledge and data
on cells is available, originating from genetics, biochem-
istry, and molecular dynamics research. Nevertheless, the
computational modeling at the molecular level of com-
plete cells has been notoriously difficult because of the
enormous complexity of the real cell, a lack of qualitative
understanding, and the large number of unknowns in the
models.

With the advent of modern computer science in the
1940s under pioneering fathers such as John von Neu-
mann and Alan M. Turing, biology and computer sci-
ence started to grow closer together. Biologists increas-
ingly used computers to analyze experimental data and
to model real biological organisms, while computer sci-
entists began to draw inspiration from biology with the
essential goal to engineer better and more “lifelike” ma-
chines. Using computer science, mathematics, statistics,
machine learning, and artificial intelligence as tools to
solve real problems in biology is commonly known under
the term bioinformatics [11], while computational biology
is more concerned with the exploration and discovery of
new knowledge, for example by testing specific hypothe-
ses by means of computer models. Systems biology [48], on
the other hand, focuses on the system level and how the
participating biological components interact. This is typi-
cally done in a combined approach, which involves theory,
computational modeling, and experiments.

Living organisms are complex systems exhibiting
a range of desirable characteristics, such as evolution,
adaptation, and fault tolerance, that have proved difficult

Cellular Computing, Figure 1
Illustration of the various possibilities to implement cellular
models that range from realistic to abstract. Drawing inspira-
tion from biology to build better computing machines is known
under the term bio-inspiration, while using machines to address
problems in biology is known as bioinformatics and computa-
tional biology

to realize using traditional engineering methodologies.
Drawing inspiration from biology to design better and
both more “lifelike” machines and algorithms is gener-
ally known under the term biologically-inspired computer
science [39,59,90] (also nature-inspired, bio-mimetic, or
biologically-motivated). Typically, this approach involves
simulations, algorithms, and classical silicon-based cir-
cuits, but not living matter. The goal is not to copy na-
ture, but to solely draw inspiration from it, while the field
of artificial life [52] is more concerned with understanding
life by building it. Figure 1 illustrates the various possibili-
ties to implement cellular models that range from realistic
to abstract.

The broad and very interdisciplinary field of cellular
computing, in its natural and artificial dimension, defines
both a

� General computing framework [89] and a
� Discipline concerned with the analysis, modeling, and

engineering of real cellular processes for the purpose of
computation [8].



924 C Cellular Computing

As opposed to pure bio-inspired computing, cellu-
lar computing thus also includes the use of real bio-
logical cells for information processing. Cellular com-
puting encompasses abstract theory, simulations, models,
experiments, and includes both the paradigm of “the cell
as a machine” and “the machine as a cell.” Sometimes,
cellular computing is used interchangeably with molecu-
lar computing [86], however, while molecular computing
is concerned with the information processing in which
molecules play a central functional role, cellular comput-
ing looks at the cell as the functional building block for
more complex systems. Naturally, molecules are involved
in cellular information processing as well, so we there-
fore consider molecular computing as a subset of cellular
computing.

The birth hour of connectionism in the 1940s can be
considered as the first occurrence of looking at cells as au-
tomata and modeling them by digital systems. The well
known McCulloch–Pitts neuron [60] simulated a wealth
of research in neural information processing and mod-
eling that continues with increasing activity until to-
day [9]. In 1948 (but first published in 1969, reprinted
in [111]), Alan Turing proposed his own connectionist
ideas [103,110], which were highly influenced by the dig-
ital systems paradigms. His neurons were simple NAND
(not AND) logical gates, which would thus allow in prin-
ciple to compute any logical function, provided enough
neurons are available and that they can be interconnected
in arbitrary ways.

The concept of molecular automata and of cells seen
as information processing devices appeared around the
1960s. In their studies of the control of gene expression
and the synthesis of proteins, Jacob and Monod [46,62],
Davis [26], and others emphasized deterministic opera-
tions at the level of DNA, RNA, and ribosomes. Early work
on protein synthesis, for example by Warner et al. [116],
suggested that ribosomes move along the messenger RNA,
not unlike the head reading the tape of a Turing ma-
chine. In 1961, Pattee [71] used the concept of the Turing
machine computation to explain the generation of grow-
ing macromolecular sequences and rhetorically asked in
the title of a section of his paper “Can molecules com-
pute?” Stahl and Goheen [95] further pioneered the idea of
seeing the cell as an information processor and Turingma-
chine. They considered enzymes as computational prim-
itives whose operations are simulated by a Turing ma-
chine, and are therefore computable in the formal sense
of the term [27]. At about the same time, Sugita consid-
ered some aspects of molecular systems by using a logi-
cal circuit equivalent [98,99,100]. He states: “The mecha-
nism of life shall be clarified by using electronic analogues,

because the chemical system composing the living organ-
ism is nothing but a complicated network of rate processes
from the chemical or physical point of view. Simulation
of such a network may be done either by using an ana-
logue computer or a digital differential analyzer, as has
been done at the laboratory[. . . ]. A digital system com-
posed of some chemical reactions may play the role of
a controlling computer of the living chemical plant, and
the reactions having analogue behavior may be controlled
by that computer as well as by analogue control systems
which can be seen in primitive control” [98]. Schmitt [83]
discussed the biological memory of macromolecular au-
tomata in his 1962 book, while Feynman [36] elaborated
in his famous talk “There’s plenty of room at the bot-
tom” on the possibility to compute with atoms, molecules,
and cells. Feynman was more focused on the miniaturiza-
tion of the computer by storing and processing informa-
tion at atomic levels, but his ideas were pursued by many
others later (e. g. [14,21,86]), and ultimately led to what
we know today as nano- and molecular electronics [24],
but also greatly stimulated the earlier cellular computing
research.

Michael Conrad, a pioneer in biologically-inspired,
molecular, and cellular computing, as well as many oth-
ers observed that living organisms process information in
a very different way than digital computers [20]. Organ-
isms typically exploit the inherent physical properties of
the matter they are made of, while digital computers are
based on multiple levels of abstractions, which are typi-
cally far away from the physical substrate and do not di-
rectly exploit any of its specific physical characteristics for
the purpose of more efficient computation. Cellular com-
puting, both in its natural and artificial dimension, tries to
address these issues by drawing inspiration from real cells
and by using them for the purpose of computation.

The principal reason for the increasing interest in cel-
lular computing paradigms seem twofold. Firstly, Moore’s
Law [63] has dominated the progress of electronic cir-
cuits in the past decades, but fundamental limits of sili-
con-based technology now begin to become serious show-
stoppers [47]. The hope is that cellular computing will
help to go beyond such limits by using alternative comput-
ing paradigms inspired by the cell or by using real cells,
molecules, and atoms as information processing devices.
Secondly, despite lots of progress, Turing’s hope that “ma-
chines will eventually compete with men in all purely in-
tellectual fields” [108] is far from accomplished. Biological
systems outperform their silicon counterparts in various
areas, such as for example with their ability to adapt, to
recognize objects, or to self-repair. Again, by using cellular
computing paradigms, the hope is that such bio-inspired
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approaches will ultimately allow to go beyond existing lim-
its.

Computation and Computability

Both from the perspective of computer science and bio-
logical organisms, a central question is what kind of op-
erations a given system can perform, what kind of prob-
lems it can solve, and how efficiently it can do this. Despite
their ubiquitousness and seemingly endless power, there
are clear and fundamental limitations – that are too often
ignored unfortunately – to what computers can do [43,55].
Two fields of computer science are relevant in this con-
text: computability theory [27,61] deals with what prob-
lems can be solved, while computational complexity the-
ory [68] deals with how efficient they can be solved.

Since Alan M. Turing’s seminal paper on the abstract
concept of the Turing machine (abbreviated, TM) [107],
computability is well defined and we generally know what
classes of problems can be solved by which classes of ma-
chines. The Chomsky hierarchy [94], for example, parti-
tions the formal languages into classes of different expres-
sive power. Each class can be associated a class of abstract
automaton, which is able to generate and recognize the
corresponding language. At the top of this hierarchy sits
the Turing machine, which is able to generate the most ex-
pressive class of languages. Along with other abstract for-
malisms and machines, a Turing machine is able to carry
out any effective computation, i. e., it can simulate any
other machine capable of performing a well-defined com-
putational procedure. In this context, “effective” is syn-
onymous with “mechanical” or “algorithmic.” In its orig-
inal form, the Church–Turing thesis states that there is an
equivalence between Church’s -calculus and Turing ma-
chines. Since then, numerous more general and stronger
forms of the thesis have emerged. For example, David
Deutsch wrote: “Every finitely realizable physical system
can be perfectly simulated by a universal model computing
machine operating by finite means” (p. 99 in [30]). Despite
claims from “hypercomputationalists,” (e. g., see [28,104]
for an overview of this debate) the fact is that no physically
realizable device, which thus necessarily operates on finite
resources and time, was ever able to compute functions (in
the formal sense of the definition) that a Turing machine
could not compute, which means that the Church–Turing
thesis has not been disproved as of today.

It is obviously an interesting question to ask how and
what biological systems “compute,” what their limits are,
and how efficient they can solve problems. Biological or-
ganisms naturally process some information in some way,
but how – if at all – can these processes be described in an

algorithmic manner? What kind of abstract automata are
useful to describe the many computational mechanisms
of a biological cell? Paton describes four general types of
computations in [70] under which the information pro-
cessing capabilities of a cell can be seen:

� Sequential. The most common form of machine, which
usually has a central processor and a global memory.
The instructions are carried out serially, such as for ex-
ample by a Turing machine.

� Parallel. Several processors jointly execute a task.
A wide range of parallel computing paradigms exist.

� Distributed. Similar to parallel computation, but the
processors are usually located at larger distances.

� Emergent. The global behavior of such a computation
emerges from the local interactions between the pro-
cessors. This form is typical of self-organizing systems,
cellular automata, and neural networks.

As he states, “[c]omputational models of the cell
can utilize any of these views,” however, most processes
are best described as a parallel distributed computing
paradigm with emergent properties. Paton also points out
the risk of trying to force biological systems to “fit” into
a certain computational model. Important details might
be ignored and one is forced to think within the existing
computing paradigms. We can conclude that abstract and
formalmodels of computation have been very useful in de-
scribing the information processing capabilities of biolog-
ical systems, however, not every formalism is well suited
for such descriptions, even if his expressiveness matches
that of the corresponding biological system. For example,
modeling the highly parallel processes of a biological cell
by a Turing machine is possible since parallel machines
are not more expressive than sequential machines, how-
ever, the sequential paradigm does not offer a convenient
and useful model in this context.

TheMachine as a Cell

In 1999, Moshe Sipper, used the term “cellular comput-
ing” in a broad sense to introduce a general computing
philosophy and framework. He hypothesized that “[t]his
philosophy promises to provide new means for doing
computation more efficiently – in terms of speed, cost,
power dissipation, information storage, and solution qual-
ity. Simultaneously, cellular computing offers the poten-
tial to addressingmuch larger problem instances than pre-
viously possible, at least for some application domains”
(p. 18 in [89]). Cellular computing consists of three essen-
tial and admittedly very general principles:

� Simplicity,
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Cellular Computing, Figure 2
The “computing cube.” Illustration of the cellular computing paradigm: simple + vastly parallel + local. Redrawn from Sipper [89]
and extended. Cellular computing has been placed further along the parallelism axis to emphasize the “vastness” aspect

� Vast parallelism, and
� Locality.

Figure 2 illustrates these three principles. While most
general-purpose processors are universal machines in the
sense of a Turing machine, the concept of cellular compu-
tation expects the complexity of the basic unit, the cell, to
be significantly lower, which is characterized by simplic-
ity. While “simplicity” is not well or formally defined in
this context, Sipper provides the example of an AND gate
as being simple, while a Pentium processor is not. Most of
today’s computers are either based on a multi-core proces-
sor, which offers several cores that allow to process infor-
mation in parallel. This trend – generally considered as an
elegant way to keep up with Moore’s law – is expected to
continue in the next few years. As of November 2006, the
Top500 supercomputing list [3] is headed by a BlueGene/L
server with 131 072 processors. Cellular computing wants
to be orders of magnitude above this level of complexity
in terms of the number of cells (i. e., the processors) in-
volved. Sipper uses the term vast parallelism to character-
ize systems where the number of cells is measured by the
exponential notation 10x. For example, an Avogadro-scale
system would involve an Avogadro number of cells, i. e.,
1023. As we scale down electronic circuits to molecular and
atomic dimensions and make use of self-assembling tech-
niques, assemblies of this complexity become increasingly
feasible. It is unlikely that systems of such complexity will

ever be built on macroscopic levels. The last principle con-
cerns the interactions among the cells: cellular comput-
ing is based on local interactions only, where no cell has
a global view or control over the entire system. Obviously,
the three principles are related and the cell’s simplicity, for
example, helps to achieve vast parallelism. Similarly, the
vast parallelism makes it hard to implement non-local in-
teractions. These interactions are illustrated in Fig. 2 by the
“computing cube.” Changing a single term in the “equa-
tion” simple + vastly parallel + local results in a different
computing paradigm.

Compared to traditional parallel computing, which
typically makes use of a rather small number of com-
plex nodes, the cellular computing framework is based on
a vast number of simple nodes. Also, parallel computers
often have non-local interconnect topologies or even spe-
cial nodes, which have some sort of global control over
all other nodes, which cellular computing does not allow.
Clearly, while it is already very challenging to find enough
parallelism in applications to exploit the parallelism of-
fered by traditional parallel computers, this problem will
only be aggravated – and further moved to the program-
mer and the software – for fine-grained cellular comput-
ers. It is commonly accepted that such machines will likely
only be more efficient for very specific problem domains
which already offer plenty of inherent parallelism, such as
for example image processing. Obviously, one can always
implement some form of serial computing paradigm on
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a parallel machine (e. g., implementing a Turing machine
on the Game of Life [81]), but that completely defeats the
purpose of such a machine.

This very general framework naturally allows for con-
siderable flexibility in the models. Besides the three basic
principles, a number of other important properties play
a role, such as for example the detailed local interconnect
topology, the cell’s arrangement in space, the mobility, the
uniformity, and the cell’s behavior [89].

� Arrangement. While a majority of abstract cellular
models do not consider explicit physical locations and
spatial dimensions (e. g., the cell dimension of a cellu-
lar automata is not generally considered), more biolog-
ically and physically plausible models do. Regular grids
in 2D (Fig. 3a) or 3D with rectangular or other geome-
tries are most common, but irregular (Fig. 3c) or even
non-rigid grids are possible. In addition, one needs to
specify the boundary conditions of the grid (e. g., fixed
or wrapped around) and whether the grid has a finite
or infinite dimension (open boundary).

� Interconnect topology. Cellular computing is based on
local interactions only, but there are many possibilities
to interconnect neighboring cells in a non-global way.
In case of a regular rectangular grid, purely local four-
(von Neumann, see Fig. 3d) and eight-cell neighbor-
hoods (Moore, see Fig. 3e) are most common [105].
However, interconnect topologies that are completely
random or that have the small-world [118] or power-

Cellular Computing, Figure 3
Illustration of different cell arrangements and interconnect
topologies. a regular and uniform; b regular and non-uniform,
different shadings and sizes indicate different cell programs;
c irregular and uniform; d regular, uniform, vonNeumannneigh-
borhood; e regular, uniform, Moore neighborhood; f irregular,
uniform, randomneighborhood

law [6] property are also possible since no cell has
a global view over the whole system.

� Mobility. Cells can either be physically mobile (e. g.,
for ant colony optimization [32]) or immobile. Alter-
natively, their “program” can also move from one cell
to another (e. g., for self-replicating loops [58]) without
a physical relocation of the cell.

� Uniformity. Both the cell type (i. e, its state and behav-
ior) and it’s interconnections with the neighboring cells
can be uniform (Fig. 3a) or non-uniform (Fig. 3b) to
some degree.Most cellular paradigms use uniform cells
and interconnection schemes.

� State and Behavior. Cells can have internal states that
are either discrete or analog. Based on its internal state
and the internal states read from the neighboring cells,
the cell changes it own state according to some algo-
rithm. This can be as simple as a look-up-table (abbre-
viated, LUT) or a mathematical function, or as compli-
cated as a small program. The cells are usually updated
in discrete time steps, either in a synchronous or asyn-
chronous way. A continuous behavior is also possible,
for example if the cell’s behavior is guided by differ-
ential equations or analog electronics. Finally, both the
behavior and the cell’s updating can be deterministic or
non-deterministic.

Cellular computing does not claim to be a faithful
model of biological cells, however, the framework is gen-
eral and flexible enough to allow for biologically-plausi-
ble models as well. As Toffoli and Margulus point out in
their book [105] with regards to cellular automata, the
generality and flexibility of cellular approaches also comes
with a cost. Instead of only a few variables as typical
in traditional computing models, the cellular computing
paradigm uses at least one variable (or “program”) per cell.
With the vast number of cells involved, the challenging
task is thus to find the right rule(s) which allow to solve
a given task. As already stated above, the cellular comput-
ing paradigm is ideally suited for tasks that already contain
a high degree of parallelism and require local interactions
only.

A large number of computing models have drawn in-
spiration from real cells. While a very large part of the
work is concerned with modeling neural cells, a number
of researchers were also interested in developmental and
other aspects. For example, Astor and Adami [10] used
a developmental model for the growth of neural networks.
Each neuron is an autonomous entity, which behavior
is only determined by its genetic information contained
within the cell. An artificial chemistry is also used tomodel
chemicals and substrates. Fleischer and Barr [37] intro-
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duced a model of multicellular development that com-
bines elements of the chemical, cell lineage, and mechani-
cal models of morphogenesis pioneered by Turing [109],
Lindenmayer [54], and Odell [65]. Cell migration is an
important aspect of development, especially of the neural
development. Compared to previous models, Fleischer’s
approach allows cells to move freely within the environ-
ment. Other pioneers of morphogenetic, developmental,
and growing neural networks models, which necessarily
involve cells in various forms, were for example Dellaert
and Beer [29], Rust [82], Eggenberger [34], Gruau [42].
More abstract models that deal with the self-maintenance,
the self-reproduction, and the self-replication came for ex-
ample from Ono and Ikegami [66], Varela et al. [113],
Langton [51], Mange et al. [58], and various others.

In the following, we will give three more detailed ex-
amples of cellular computing models.

Example: Cellular Automata

Cellular automata (abbreviated, CA) were originally con-
ceived by Ulam and von Neumann in the 1940s to pro-
vide a formal framework for investigating the behavior of
complex, extended systems [115]. CAs are dynamical sys-
tems in which space and time are discrete. In its basic ver-
sion, a cellular automaton [105,120] consists of a regular
grid of cells, each of which can be in one of a finite num-
ber of k possible states, updated synchronously (or asyn-
chronously) in discrete time steps according to a local,
usually identical (uniform, otherwise non-uniform) inter-
action rule. The state of a given cell is determined by the
previous states of a specified neighborhood of cells. Fig-
ure 3d and e show two typical local CA neighborhoods,
the von Neumann and the Moore neighborhood.

In CAs and many other cellular computing systems,
there is a confound between the data and the computing
devices, i. e., the structure, which process it. The abstract
Turing machine and the von Neumann computer archi-
tecture make a clear distinction between these two. The
Turing machine stores data on the tape, however, a CA
cell can both store and process data and the machine can
even extend or modify itself. Although it has been shown
that elementary CAs are universal [22], this is more of the-
oretical than practical interest since most CAs that solve
some real problem cannot – and do not need to – perform
any universal computation.

One of the main challenges with cellular automata is
to find the cell’s rule(s) which allow to obtain a global be-
havior from the local interactions only. For example, given
a specific task, say, detecting the contours of an object in an
image, what are the individual cell rules (either uniform or

non-uniform) that allow to successfully solve that task for
a wide range of inputs? The large – or even vast – num-
ber of cells involved and the local interactions make this
problem very challenging. Thus, most cellular automata
are either programmed by hand – which becomes infeasi-
ble for larger systems and complex problems – or the rules
are for example found by means of an evolutionary algo-
rithm [18,87,88,92].

Example: Membrane Computing

Artificial chemistries [31] are man-made systems that are
a very general formulation of abstract systems of objects
that follow arbitrary rules of interaction. More formally
speaking, an artificial chemistry essentially consists of a set
of molecules S, a set of rules R, and a definition of the re-
actor algorithm A that describes how the set of rules is ap-
plied to the set of molecules. This very broad paradigm,
inspired by bio-chemical systems, allows to describe many
complex natural and artificial systems by means of simple
rules of decentralized, local, and parallel interactions. The
chemical paradigm thus also fits in the bigger framework
of cellular computing.

In 1998, George Paun initiated membrane comput-
ing (also P systems) [72,73] as an abstract computational
model afar inspired by biochemistry and by some of the
basic features of biological membranes. Membrane com-
puting makes use of a hierarchical membrane structure
that is similar to the structure used in the chemical abstract
machine as proposed by Berry and Boudol [15]. The evo-
lution rules that transform the multisets are inspired by
Gamma systems as proposed by Banâtre et al. [12].

A typical membrane system consists of cell-like mem-
branes placed inside a unique “skin” membrane. Multi-
sets of objects – usually strings of symbols – and a set of
evolution rules (or reaction rules) are then placed inside
the regions delimited by the membranes. As an example,
a simplemembrane system is depicted in Fig. 4. The evolu-
tion between system configurations is done nondetermin-
istically but synchronously by applying the rules in paral-
lel for all objects able to evolve. A sequence of transitions
in a membrane system is called a computation. A compu-
tation halts when a halting configuration is reached, i. e.,
when no rule can be applied in any region. In classical
membrane systems, a computation is considered success-
ful if and only if it halts, but other interpretations of in-
puts and outputs are possible. A great feature of mem-
brane systems is their inherent parallelism, which allows
to trade space for time, for example to solve computation-
ally hard problems. Using membrane division, it has been
shown that NP-complete problems can be solved in poly-
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Cellular Computing, Figure 4
An example of a membrane system as given in [73]. The system
generates n2;n � 1, where n is the number of steps before the
first application of the rule a! bı. The rules are applied syn-
chronously and in amaximumparallel manner, i. e., all rules that
can be applied have to be applied. If multiple rules can be ap-
plied, one is picked nondeterministically

nomial and even linear time [73]. Most membrane systems
are also Turing universal.

A wide variety of different membrane system flavors
exist (see [2] for the latest publications), which have been
applied to applications ranging from modeling spiking
neural systems to economics.

Example: Amorphous Computing

In a 1996 white paper, Abelson et al. first described the
amorphous computing (abbreviated, AC) framework [4].
Amorphous computing is the development of organiza-
tional principles and programming languages for obtain-
ing coherent global behavior from the local cooperation
of a myriad of unreliable parts that are interconnected in
unknown, irregular, and time-varying ways. In biology,
this question has been recognized as fundamental in the
context of animals (such as ants and bees) that cooperate
and form organizations. Amorphous computing asks this
question in the field of computer science and engineering.
Using the biological metaphor, the cells cooperate to form
a multicellular organism (also called programmable mul-
titude) under the direction of a genetic program shared
by all members of the colony. Again, the cellular com-
puting philosophy applies particularly well to the amor-
phous computing framework. The properties of an amor-
phous computer can be summarized under the following
assumptions, where processor is used synonymous with
cell:

� individual processors are identical and mass produced;
� processors possess no a priori knowledge of their loca-

tion, orientation, or neighbors’ identities;

� processors operate asynchronously although they have
similar clock speeds;

� processors are distributed densely and randomly;
� processors are unreliable;
� processors communicate only locally and do not have

a precision interconnect;
� the processors are arranged on a 2D surface or in 3D

space;
� it is assumed that the number of particles is very large;

and
� the communication model assumes that all processors

have a circular broadcast of approximately the same
fixed radius (large compared to the fixed size of a pro-
cessor) and share a single channel.

The biggest challenge in amorphous computing – as
with the majority of cellular computing paradigms – is
how related to how to program the individual cells in
order to obtain a consistent and robust global behav-
ior. The amorphous computing research community came
up with several automated approaches, which allow to
compile a global system description into local interac-
tions. Example are Nagpal’s origami shape language [64],
Coore’s growing point language [23], and Butera’s process
fragments [16].

Cellular Computing Hardware

Cells have not only inspired abstract computing models
but also real hardware, which is commonly called biologi-
cally-inspired hardware [93]. On the other hand, both spe-
cialized and non-specialized computers have been used for
the acceleration and the faithful simulation of many bi-
ological processes related to the cell, particularly within
the field of bioinformatics [11]. A biological cell is a mas-
sively parallel system, where thousands of highly complex
processes run concurrently. Simulating these processes on
a sequential von Neumann computer will obviously not
be very efficient and will seriously limit the performance.
Specialized hardware, which offers a high level of inher-
ent parallelism, has thus attracted considerable attention
in this field of cellular computing.

Cellular automata machines (abbreviated, CAMs) are
specialized machines with the goal to very efficiently sim-
ulate cellular automata. For example, Hillis’ connection
machine [44] was the first milestone in that endeavor in
the early 1980s. The processors were extremely simple and
there was a strong emphasis on the interconnectivity, but
not particularly on local topologies because the machines
were targeted for supercomputer applications. Toffoli and
Margolus’ CAM machines [105] represent other exam-
ples of highly specialized machines. Nowadays, because
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of their inherent fine-grained parallelism, reconfigurable
circuits, such as Field Programmable Gate Arrays (abbre-
viated, FPGAs) [41,114], are ideal candidates to simulate
cellular systems. For example, Petreska and Teuscher [77]
proposed a very first hardware realization of membrane
systems using reconfigurable circuits, which was based on
a universal and minimal membrane hardware component
that allowed to very efficiently evolve membrane systems
in hardware. Another example of cellular hardware are cel-
lular neural network (abbreviated, CNN) [19] chips, which
are massively parallel analog processor arrays. The CNN
approach is extremely powerful for specific applications,
such as real-time image and video processing.

In the following, we will provide three more detailed
examples of typical and biologically-inspired hardware,
which is based on cellular paradigms and metaphors.

Example: Embryonics

Biological systems grow, live, adapt, and reproduce, char-
acteristics that are not truly encompassed by any existing
computing system. Sipper et al. [93] proposed the POE
model of bio-inspired hardware systems, which stands for
phylogeny (abbreviated, P), ontogeny (abbreviated, O), and
epigenesis (abbreviated, E). This model allows to partition
the hardware space along three axes, which, in very simpli-
fied terms, correspond to evolution (P), development (O),
and learning (E). Each axis thus represents a different form
of adaption and organization on a different time scale. The
ultimate goal are machines that combine all three forms of
adaption, so called POEtic machines [112].

The embryonics project [57,59] (embryonics stands for
embryonic electronics), is an attempt to design highly-
robust integrated circuits, endowed with the properties
usually associated with the living world: self-repair (cica-
trization) and self-replication. In this context, self-repli-
cation allows for a complete reconstruction of an organ-
ism by making a copy of itself. The approach draws inspi-
ration from the basic processes of molecular biology and
from the embryonic development of living beings, which
is represented by the ontogenetic axis in the POE model.
An embryonic circuit is based on a finite but arbitrarily
large two-dimensional surface of silicon. This surface is
divided into rows and columns, whose intersections de-
fine the cells. Since such cells (i. e., a small processor and
its memory) have an identical physical structure (i. e., an
identical set of logic operators and connections), the cel-
lular array is homogeneous. Embryonics largely draws in-
spiration from the following biological features, which the
majority of living beings (at the exception of unicellular
organisms) share: (1) multicellular organization, (2) cellu-

lar division, and (3) cellular differentiation. Similar to bio-
logical cells, each embryonic cell is “universal” in the sense
that it contains the whole of the organism’s genetic ma-
terial, the genome. This feature allows to implement self-
repair in an elegant way since each cell is potentially able
to replace every other cell within an embryonic organism.
The final embryonics architecture makes use of four hier-
archical levels of organization:

� Molecule. The basic primitive of the system, which es-
sentially consists of a multiplexer associated with a pro-
grammable connection network. Themultiplexer is du-
plicated to allow the detection of faults. The logic func-
tion of each molecule is defined by its molecular code,
theMOLCODE.

� Cell. A finite set of molecules makes up a cell, which is
essentially a processor with an associated memory.

� Organism A finite set of cells makes up an organism
(synonymous with application), an application-specific
multiprocessor system.

� Population.The organism can itself self-replicate, given
rise to a population of identical organisms.

Figure 5 illustrates these four hierarchical levels. As
a showcase of bio-inspired systems and hardware, a com-
plete embryonic machine and application has been im-
plemented in real hardware by using Field Programmable
Gate Arrays (abbreviated, FPGAs) [41] to implement the
basic molecule [102]. The main application, which used
several thousand molecules, was a fault-tolerant electronic
watch, the BioWatch [96]. The project illustrates how bio-
logical organisms, and cells in particular, can help to build
alternative computing machines with properties not truly
encompassed by any existing architecture.

Example: Field Programmable Gate Arrays

A Field Programmable Gate Array (abbreviated,
FPGA) [41] is a reconfigurable device [114] which is
based on a set of configurable logic blocks (abbreviated,
CLBs) that are interconnected by a programmable in-
terconnect fabric. The logic blocks of most FPGAs are
rather simple, consisting typically of some combinational
logic (e. g., a 4-input look-up-table) and some sequential
logic (e. g., a flip-flop). Some CLBs offer additional mem-
ory too. The interconnect fabric is typically organized in
a hierarchical manner with mostly local interconnections
between CLBs, but with the possibility to establish limited
long(er)-distance connections as well. Sophisticated de-
sign tools, compilers, and hardware description languages
allow to map essentially any digital circuit onto such a re-
configurable chip, provided enough CLBs are available.



Cellular Computing C 931

Cellular Computing, Figure 5
The four-level hierarchy of the embryonics landscape. Each level is configured by a part of the genome, which in parallel into all cells
once their cellmembranes havebeen constructed by amechanism similar to cellular division. After this process, the cells differentiate
according to their spatial location in the organism [57]

In accordance with the cellular computing framework,
FPGAs are based on simple basic building blocks (the
CLBs), are locally interconnected (in the sense that no cell
controls the entire system), and today’s high-end circuits
contain hundreds of thousands of CLBs. FPGAs tend to
be slower than full-custom VLSI circuits, but offer more
flexibility at a lower price. The application of FPGA is ob-
viously most interesting where their massive parallelism
can be fully exploited, for example for image processing,
neural networks [67], DNA sequence matching, or cellular
automata. Sipper et al., for example, used FPGAs for their
firefly CA machine [91], which were also used to imple-
ment on-line evolution algorithms to automatically find
solutions to the synchronization task for CAs [25,88].

Example: The Cell Matrix

The Cell Matrix [1,33,56] is an extremely fine-grained and
universal hardware architecture, not unlike the structure
of an FPGA. The reconfigurable device consists of a ho-
mogeneous collection of cells that are interconnected in
a nearest-neighbor scheme (e. g., von Neumann or other
neighborhoods). Each cell performs very basic operations
only that are implemented by a simple look-up table. Un-
like traditional reconfigurable devices that are controlled
by external systems, the Cell Matrix is self-configurable,
i. e., each cell within the matrix can reconfigure other cells.
In order to accomplish this, each cell can operate indepen-

dently in one of two modes: (1) the D mode or (2) the C
mode. In the Dmode (processing mode), incoming data is
processed by the cell’s internal look-up table and used to
generate the output. In the C mode (configuration mode),
on the other hand, incoming data is used to re-write the
cell’s look-up table. A cell can therefore modify one of
its neighbors by placing it in the C mode and by writing
the data into the look-up table. Since a cell’s look-up table
governs the ability to control a neighboring cell’s mode,
a cell X, for example, can configure a neighboring cell Y
in such a way that Y will subsequently configure a third
cell Z. By combining cells to so-called supercells, hierarchi-
cal designs of almost any complexity can be realized. The
small groups of cells then interact with nearby groups to
achieve higher functionalities, which are used to perform
more complex functions, and so on. The Cell Matrix ar-
chitecture was extended in 2004 by Petraglio in his PhD
thesis [76].

The Cell as aMachine

“The brain computes!” This is accepted as a truism by
the majority of neuroscientists engaged in discovering
the principles employed in the design and operation of
nervous systems. What is meant here is that any brain
takes the incoming sensory data, encodes them into vari-
ous biophysical variables, such as the membrane potential
or neural firing rates, and subsequently performs a very
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large number of ill-specified operations, frequently termed
computations, on these variables to extract relevant fea-
tures from the input” (p. 1 in [49]). Further on, Koch
continues by elaborating that any physical process, which
transforms variables, can in principle be thought of as
computation, as long as it can be described by some math-
ematical formulation. As also noted by Conrad [20], liv-
ing organisms process information in a very different way
than digital computers and typically exploit the inherent
physical properties of the matter they are made of. The di-
rect, efficient, and sophisticated ways to process informa-
tion in cells, molecules, and atoms are the results of billions
of years of evolution.

In general, computation in living systems is more
a question of what level is being analyzed and through
which glasses the analyzer looks. A cell has thousands
of information processing mechanisms, some are easy to
map to existing computing paradigms, others are far away
from any existing model and can therefore only be cap-
tured by new paradigms. If we want to use a biologi-
cal cell as a computing device, we essentially have two
possibilities:

� Interpretation. Interpret existing bio-chemical cellular
mechanisms as computation.

� Modification.With the advances in bio-technology and
bio-engineering in the last decade, bio-chemical pro-
cesses at all organization levels of a cell can increasingly
be modified for the specific purposes of computation.

For example, DNA can be described in computational
terms rather easily and the DNA strand interpreted as
data, which is being read by ribosomes is a fairly straight-
forward natural analog to the Turing machine [116]. But
this undertaking becomes more interesting if the analogy
can be reversed and the DNA is used to realize Boolean in
vivo or in vitro logic gates in a well controlled manner.

As stated in the introduction, the concept of molecular
automata and cells seen as information processing devices
appeared around the 1960s and the field has seen impres-
sive developments since then. The field is vast and we shall
only give a very shallow taste here. The books by Amos [8],
Calude and Paun [17], Paton et al. [69], and Sienko et
al. [86] provide excellent overviews from the “cell as a ma-
chine” perspective on more recent work, while Paton [70],
for example, deals with some of the earlier concepts.

Since Adelman’s seminal work on in vitro DNA com-
putation [5], this unconventional computing paradigm
has played a very important role in cellular computation
in both experiment and theory [74]. DNA computation
clearly outperforms traditional silicon-based electronics in
terms of speed, energy efficiency, and information den-

sity. However, while it is rather easy to explore huge
search spaces, it is often non-trivial to find the correct an-
swer within all the generated solutions, which has some-
how limited the practical applications. Other work has fo-
cused on RNA editing as a computational process, which
offers another interesting cellular paradigm for “biolog-
ical software” [50]. Later, Winfree, Weiss, and various
others, pioneered DNA-based and other in vivo logical
circuits [13,84,85,119]. Based on deoxyribozymes, Ste-
fanovic’s group has developed molecular automata and
logic [53,97]. Their circuits include an full adder, three-
input logic gates, and an automaton that plays a version of
the game tic-tac-toe. While such circuits serve as examples
and proof-of-concepts, the group’s long-term goal is to use
engineered molecules to control autonomous therapeutic
and diagnostic devices. These research areas are fast mov-
ing and lots of novel results are to be expected in the next
few years.

Future Directions

“The simplest living cell is so complex that supercom-
puter models may never simulate its behavior perfectly.
But even imperfect models could shake the foundations
of biology” [40]. Gibbs further emphasizes that most at-
tempts to create artificial life or to faithfully model bi-
ological systems suffered from a tremendous number of
degrees of freedom. The high number of unconstrained
system parameters can then lead to almost any desired
behavior. Also, the models are often so complicated that
they have a very limited ability to predict anything at all.
Tomita believes that the study of the cell will never be
complete unless its dynamic behavior on all levels is fully
understood [106]. He suggests that the complex behavior
can only be understood by means of sophisticated com-
puter models that allow to undertake whole cell simula-
tions. Endy and Brent [35] emphasize that “[p]ast efforts
to model behavior of molecular and cellular systems
over absolute time typically were qualitatively incomplete
or oversimplified compared to available knowledge, and
qualitatively incomplete in the sense that key numbers
were unknown.” It is estimated that complete E. coli sim-
ulations could run, perhaps, on a single processor system
by 2020.

But the future not only lies in more faithful cellular
models and in the ability to tweak cells for the purpose of
computation. The construction of realistic living cells in
silico, thought intractable for a long time, has now become
within reach, and so does the possibility to build artificial
living cells. Several efforts with this specific goal in mind
are currently under way in both Europe and the United
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States (see for example [78,79,101]). The question is, how
and under which conditions simple life forms, which are
able to self-maintain and self-replicate, can be synthesized
artificially? Steen Rasmussen’s team has taken one of the
simpler and more artificial routes [79,80], but there is still
a long way to go towards artificial cells that will be able to
truly self-replicate and to hopefully perform some specific
user-defined functions.

Cellular computing is still a very young field and lots
of progress is to be expected in the next few decades, par-
ticularly in the areas of bio-technology, nano-technology,
modeling, and computing. The main challenges in this
interdisciplinary field are mostly related to the remain-
ing wide-open gap between biological systems and ma-
chines [20]. On one hand, a much better understanding of
cellular systems is required, on the other hand, we need to
be able to apply this vast and growing body of knowledge
to build better andmore “lifelike” computing machines by
either drawing inspiration from them or by using real cells
and organisms for the purpose of computation.

The following research directions and challenges need
to be addressed in the next few years:

1. Faithful qualitative and quantitative cellular models
require a better understanding of the biological cell
and its bio-chemical mechanism. For example, better
non-invasive brain imaging techniques are required for
a better understanding of neurons, populations of neu-
rons, and brain regions.

2. Large-scale molecular simulations of cellular processes
and large populations of cells. For example, by using
specialized supercomputers, large-scale brain simula-
tions only become possible now.

3. Novel computing paradigms are required to model and
to understand biological systems. Boolean logic is ap-
propriate for digital systems, where 0s and 1s can easily
be represented by the presence and absence of electrical
current, but alternative representations may be more
appropriate for biological systems.

4. Novel programming paradigms for cellular systems
made up from a vast number of cells. Traditional top-
down design approaches do not typically scale up to
such complexities. Nature-inspired bottom-up design
approaches are required.
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Glossary

Bifurcation Bifurcation is a qualitative change of the
phase portrait. The term “bifurcation” was introduced
by H. Poincaré.

Continuous and discrete dynamical systems
A dynamical system is a mapping X(t; x), t 2 R
or t 2 Z, x 2 E which satisfies the group property
X(t C s; x)D X(t; X(s; x)). The dynamical system is
continuous or discrete when t takes real or integer
values, respectively. The continuous system is gener-
ated by an autonomous system of ordinary differential
equations

ẋ �
dx
dt
D F(x) (1)

as the solution X(t, x) with the initial condition X(0; x)
D x. The discrete system generated by a system of dif-
ference equations

xmC1 D G(xm) (2)

as X(n; x) D Gn(x). The phase space E is the Eu-
clidean or Banach.

Critical part of the spectrum Critical part of the spec-
trum for a differential equation ẋ D Ax is � c = {eigen-
values of A with zero real part}. Critical part of the
spectrum for a diffeomorphism x ! Ax is � c = {eigen-
values of A with modulus equal to 1}.

Eigenvalue and spectrum If for a matrix (linear map-
ping)A the equalityAv D v, v ¤ 0 holds then v and 
are called eigenvector and eigenvalue of A. The set of
the eigenvalues is the spectrum of A. If there exists k
such that (A� I)kv D 0, v is said to be generating
vector.

Equivalence of dynamical systems Two dynamical sys-
tems f and g are topologically equivalent if there
is a continuous one-to-one correspondence (homeo-
morphism) that maps trajectories (orbits) of f on tra-
jectories of g: It should be emphasized that the home-
omorphism need not be differentiable.

Invariant manifold In applications an invariant mani-
fold arises as a surface such that the trajectories starting
on the surface remain on it under the system evolution.

Local properties If F(p) D 0, the point p is an equilib-
rium of (1). If G(q) D q; q is a fixed point of (2). We
study dynamics near an equilibrium or a fixed point of
the system. Thus we consider the system in a neigh-
borhood of the origin which is supposed to be an equi-
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librium or a fixed point. In this connection we use ter-
minology local invariant manifold or local topological
equivalence.

Reduction principle In accordance with this principle
a locally invariant (center) manifold corresponds to
the critical part of the spectrum of the linearized sys-
tem. The behavior of orbits on a centermanifold deter-
mines the dynamics of the system in a neighborhood
of its equilibrium or fixed point. The term “reduction
principle” was introduced by V. Pliss [59].

Definition of the Subject

LetM be a subset of the Euclidean space Rn.

Definition 1 A set M is said to be smooth manifold
of dimension d � n if for each point p 2 M there exists
a neighborhood U � M and a smooth mapping g : U !
U0 � Rd such that there is the inverse mapping g–1 and its
differential Dg–1 (matrix of partial derivatives) is an injec-
tion i. e. its maximal rang is d.

For sphere in R3 which is a two-dimensional smooth man-
ifold the introduction of the described neighborhoods is
demonstrated in [77]. A manifold M is Ck-smooth, k � 1
if the mappings g and g–1 have k continuous deriva-
tives. Moreover, chosing the mappings g and g–1 as C1-
smooth or analytical, we obtain the manifold with the
same smoothness.

Consider a continuous dynamical system

ẋ D F(x) ; x 2 Rn ; (3)

where F : Rn ! Rn is a Ck-smooth vector field, k � 1; i. e.
the mapping F has k continuous derivatives. Let us de-
note the solution of (3) passing through the point p 2 Rn

at t D 0 by X(t, p). Suppose that the solution is deter-
mined for all t 2 R. By the fundamental theorems of
the differential equations theory, the hypotheses imposed
on F guarantee the existence, uniqueness, and smooth-
ness of X(t, p) for all p 2 Rn . In this case the mapping
Xt(p) D X(t; p) under fixed t is a diffeomorphism of
Rn. Thus, F generates the smooth flow Xt : Rn ! Rn ,
Xt(p) D X(t; p). The differential DXt(0) is a fundamen-
tal matrix of the linearized system v̇ D DF(0)v. A tra-
jectory (an orbit) of the system (3) through x0 is the set
T(x0) D fx D X(t; x0); t 2 Rg.

Definition 2 A manifold M is said to be invariant un-
der (3) if for any p 2 M the trajectory through p lies inM.
A manifold M is said to be locally invariant under (3) if
for every p 2 M there exists, depending on p, an interval
T1 < 0 < T2, such that Xt(p) 2 M as t 2 (T1; T2).

It means that the invariant manifold is formed by trajecto-
ries of the system and the locally invariant manifold con-
sists of arcs of trajectories. An equilibrium is 0-dimen-
sional invariant manifold and a periodic orbit is 1-dimen-
sional one. The concept of invariant manifold is a useful
tool for simplification of dynamical systems.

Definition 3 A manifold M is said to be invariant in
a neighborhoodU if for any p 2 M

T
U the moving point

Xt(p) remains onM as long as Xt(p) 2 U . In this case the
manifoldM is locally invariant.

Near an equilibrium point O the system (3) can be rewrit-
ten in the form

ẋ D Ax C f (x) ; (4)

where O D fx D 0g, A D DF(O), f is second-order at the
origin, i. e. f (0) D 0 and D f (0) D 0. Let us show that the
system (4) near O can be considered as a perturbation of
the linearized system

ẋ D Ax : (5)

For this we construct a Ck-smooth mapping g which co-
incides with f in a sufficiently small neighborhood of the
origin and is C1-close to zero.

To construct the mapping g one uses the C1-smooth
cut-off function ˛ : RC ! RC

˛(r) D

8
<̂

:̂

1; r < 1/2 ;
> 0; 1/2 � r � 1 ;
0; r > 1 :

Then set g(x) D ˛(jxj/�) f (x) where " is a parameter. If
jxj > �, g(x) D 0 and if jxj < �/2, g(x) D f (x) and g is
C1-close to zero. Consider the system

ẋ D Ax C g(x) : (6)

It is evident that the dynamics of (4) and (6) is the same on
U D fjxj < �/2g. If the constructed system (6) has an in-
variant manifoldM then M

T
U is locally invariant man-

ifold for the initial system (4) or, more precisely, the man-
ifold M is invariant in U. It should be noted that for
the case of infinite-dimensional phase space the described
construction is more delicate (see details below).

Let us consider a Ck-smooth mapping (k � 1)
G : Rn ! Rn which has the inverse Ck-smooth mapping
G–1. The mapping G generates the discrete dynamical sys-
tem of the form

xmC1 D G(xm) ; m D : : : ;�2;�1; 0; 1; 2; : : : : (7)

Each continuous system X(t, p) gives rise to the discrete
system G(x) D X(1; x) which is the shift operator on unit
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time. Such a system preserves the orientation of the phase
space,where as an arbitrary discrete system may change it.

Hence, the space of discrete systems is more rich than
the space of continuous ones. Moreover, usually investiga-
tion of a discrete system is, as a rule, simpler than study of
a differential equations one. In many instances the inves-
tigation of a differential equation may be reduced to study
of a discrete system by Poincaré (first return) mapping. An
orbit of (7) is the set T D fx D xm ; m 2 Zg;where xm sat-
isfies (7).

Near a fixed point O the mapping x ! G(x) can be
rewritten in the form

x ! Ax C f (x) ; (8)

where O D fx D 0g, AD DG(O), f is second-order at the
origin. It is shown above that nearO (8) may be considered
as a perturbation of the linearized system

x ! Ax : (9)

Motivational Example

Consider the discrete dynamical system
�

x
y

�
!

�
X(x; y) D x C xy
Y(x; y) D 1

2 y C
1
2 x

2 C 2x2y C y3

�
: (10)

The origin (0; 0) is fixed point. Our task is to examine the
stability of the fixed point. The linearized system at 0 is
defined by the matrix
�

1 0
0 1/2

�

which has two eigenvalues 1 and 1/2. Hence, the first ap-
proximation system contracts along y-axis, whereas its ac-
tion along x-axis is neutral. So the stability of the fixed
point depends on nonlinear terms. Let us show that the
curve y D x2 is invariant for the mapping (10). It is
enough to check that if a point (x, y) is on the curve then
the image (X,Y) is on the curve, i. e. Y D X2 as y D x2.
We have

Y jyDx2 D
1
2 y C

1
2 x

2 C 2x2y C y3jyDx2

D x2 C 2x4 C x6 ;

X2jyDx2 D (x C xy)2jyDx2

D x2 C 2x4 C x6 :

(11)

Thus, the curve y D x2 is an invariant one-dimensional
manifold which is a center manifold Wc for the sys-
tem (10), see Fig. 1. The fixed point O is on Wc. The re-
striction of the system on the manifold is

x ! x C xyjyDx2 D x(1C x2) : (12)

Center Manifolds, Figure 1
Dynamics on the invariant curve y D x2

It follows that the fixed point 0 is unstable and xm !1
as m!1, see Fig. 1. Hence, the origin is unstable fixed
point for the discrete system (10). It turns out the sys-
tem (10) near O is topologically equivalent to the system

x ! x(1C x2) ;
y ! 1

2 y
(13)

which is simpler than (10). The center manifold y D x2 is
tangent to the x-axis at the origin and Wc near 0 can be
considered as a perturbed manifold of fy D 0g.

Introduction

In his famous dissertation “General Problem on Stability
of Motion” [41] published at 1892 in Khar’kov (Ukraine)
A.M. Lyapunov proved that the equilibrium O of the sys-
tem (4) is stable if all eigenvalues of matrix A have neg-
ative real parts and O is unstable if there exists an eigen-
value with positive real part. He studied the case when
some eigenvalues of A have negative real part and the rest
of them have zero real one. Lyapunov proved that if the
matrix A has a pair of pure imaginary eigenvalues and
the other eigenvalues have negative real parts then there
exists a two-dimensional invariant surface M through O,
and the equilibrium O is stable if O is stable for the sys-
tem restricted on M. Speaking in modern terms, Lya-
punov proved the existence of “center manifold” and for-
mulated “reduction principle” under the described condi-
tions. Moreover, he found the stability condition by using
power series expansions, which is an extension of his first
method to evaluate stability of systems whose eigenvalues
have zero real part. Now we use the same method to check
stability [10,25,31,36,43,76]. The general reduction princi-
ple in stability theory was established by V. Pliss [59] in
1964, the term “center manifold” was introduced by A.
Kelley at 1967 in the paper [38] where the existence of
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a family of invariant manifolds through equilibrium was
proved in general case.

As we see the center manifold can be considered as
a perturbation of the center subspace of linearized sys-
tem. H. Poincaré [61] was probably the first who perceived
the importance of the perturbation problem and began to
study conditions ensuring the preservation of the equilib-
riums and periodic orbits under a perturbation of differ-
ential equations. Hadamard [26] and Perron [57] proved
the existence of stable and unstable invariant manifolds
for a hyperbolic equilibrium point and, in fact, showed
their preservation. The conditions necessary and sufficient
for the preservation of locally invariant manifolds passing
through an equilibrium have been obtained in [51]. Many
results on the center manifold follow from theory of nor-
mal hyperbolicity [77] which studies dynamics of a system
near a compact invariant manifold. They will be consid-
ered below. The books by Carr [10], Guckenheimer and
Holmes [25], Marsden and McCracken [43], Iooss [36],
Hassard, Kazarinoff and Wan [31], and Wiggins [76] are
popular sources of the information about center mani-
folds.

CenterManifold in Ordinary Differential Equations

Consider a linear system of differential equations

v̇ D Lv ; (14)

where v 2 Rn and L is a matrix. Divide the eigenvalues of
the matrix L into three parts: stable � s = {eigenvalues with
negative real part}, unstable �u = {eigenvalues with posi-
tive real part} and central (neutral, critical) � c = {eigen-
values with zero real part}. If the matrix does not have
the eigenvalues with zero real part, the system is called
hyperbolic. The matrix L has three eigenspaces: the sta-
ble subspace Es, the unstable subspace Eu, and the cen-
tral subspace Ec correspond to these parts of spectrum.
The subspaces Es, Eu, and Ec are invariant under the sys-
tem (14), that is, the solution starting on the subspace stays
on it [33]. The solutions on Es have exponential tending
to 0, the solutions on Eu have exponential growth. The
subspaces Es; Ec; Eu meet in pairs only at the origin and
Es C Ec C Eu D Rn , i. e. we have the invariant decompo-
sition Rn D Es ˚ Ec ˚ Eu. There exists a linear change of
coordinates (see [33]) transforming (14) to the form

ẋ D Ax ;
ẏ D By ;
ż D Cz ;

(15)

where the matrix A has eigenvalues with zero real part, the
matrix B has eigenvalues with negative real part, and the

matrix C has eigenvalues with positive real part. So, (14)
decomposes into three independent systems of differen-
tial equations. It is known [1,23,24] that the system (15) is
topologically equivalent to the system

ẋ D Ax ;
ẏ D �y ;
ż D z :

(16)

Thus, the dynamics of the system (14) is determined by the
system ẋ D Ax which is the restriction of (14) on the cen-
ter subspace Ec. Our goal is to justify a similar “reduction
principle” for nonlinear systems of differential equations.

Summarizing the results of V. Pliss [59,60], A. Kel-
ley [38], N. Fenichel [19], and M. Hirsch, C. Pugh, M.
Shub [34] we obtain the following theorem.

Theorem 1 (Existence Theorem) Consider a Ck-smooth
(1 � k <1) system of differential equations v̇ D F(v),
F(O) D 0 and L D DF(O). Let Es; Eu and Ec be the sta-
ble, unstable, and central eigenspaces of L.

Then near the equilibrium O there exist the following
five Ck-smooth invariant manifolds (see Fig. 2):

� The center manifold Wc, tangent to Ec at O;
� The stable manifold Ws, tangent to Es at O;
� The unstable manifold Wu, tangent to Eu at O;
� The center-stable manifold Wcs, tangent to Ec C Es at

O;
� The center-unstable manifold Wcu, tangent to Ec C Eu

at O;

The stable and unstable manifolds are unique, but center,
center-stable, and center-unstable manifolds are not neces-
sarily unique.

Solutions on Ws have exponential tending to O as
t !1. Solutions on Wu have exponential tending to O as
t ! �1.

Remark 1 The expression “near the equilibrium O”
means that there exists a neighborhood U(O), depending
on F and k, where the statements of the Existence Theorem
hold.

Remark 2 The linearized system v̇ D DF(O)v has the in-
variant subspace Es C Eu whereas the complete system
v̇ D F(v) may not have any smooth invariant manifolds
with the tangent space Es C Eu at O, see [5,30].

Representation of the Center Manifold

At first we suppose that our system does not have the un-
stable eigenspace and is transformed by the linear change
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Center Manifolds, Figure 2
The classical five invariant manifolds

of coordinates mentioned above to the form

ẋ D Ax C f (x; y) ;
ẏ D By C g(x; y) ;

(17)

where Ec D f(x; 0)g, Es D f(0; y)g. Since the center man-
ifold Wc is tangent to Ec D f(x; 0)g at the origin
O D (0; 0), it can be represented nearO in the form

Wc D f(x; y) j jxj < "; y D h(x)g :

In other words the center manifold is represented as the
graph of a smoothmapping h : V � Rc ! Rs, where c and
s are dimensions of the center and stable subspaces, see
Fig. 3. Since Wc goes through the origin and is tangent to
Es, we have the equalities

h(0) D 0 ; Dh(0) D 0 : (18)

The invariance of Wc means that if an initial point (x, y)
is in Wc, i. e. y D h(x) then the solution (X(t; x; y);
Y(t; x; y)) of (17) is inWc, i. e. Y(t; x; y)) D h(X(t; x; y)).
Thus, we get the invariance condition

Y(t; x; h(x))) D h(X(t; x; h(x))) : (19)

Differentiating (19) with respect to t and putting t D 0 we
get

Bh(x)C g(x; h(x)) D Dh(x)(Ax C f (x; h(x))) : (20)

Thus, themapping h have to be a solution of the partial
differential equation (20) and satisfy (18).

Suppose that the system has the form

ẋ D Ax C f (x; y; z) ;
ẏ D By C g1(x; y; z) ;
ż D Cz C g2(x; y; z) ;

(21)

Center Manifolds, Figure 3
Representation of a center manifold

where A has the eigenvalues with zero real part, B has the
eigenvalues with negative real part, C has the eigenvalues
with positive real part. Analogously to the previous case
we can show that the center manifold is represented in the
form

Wc D f(x; y; z) j jxj < �; y D h1(x); z D h2(x)g

where the mappings h1 and h2 satisfy the equations

Bh1(x)C g1(x; h1(x); h2(x))
D Dh1(x)(Ax C f (x; h1(x); h2(x)))

Ch2(x)C g2(x; h1(x); h2(x))
D Dh2(x)(Ax C f (x; h1(x); h2(x)))

(22)

and the conditions

h1(0) D 0 ; Dh1(0) D 0
h2(0) D 0 ; Dh2(0) D 0 :

(23)

Uniqueness and Nonuniqueness of the Center Manifold

The center manifold is nonunique in general.
Let us consider the illustrating example from [38]. The

system has the form

ẋ D x2 ;
ẏ D �y ;

(24)

where (x; y) 2 R2: It is obviously that the origin (0; 0) is
the equilibriumwith single stable manifoldWs D f(0; y)g:
There is a center manifold of the form Wc D f(x; 0)g.
Moreover, there are the center manifolds that can be
obtained when solving the equation

dy
dx
D
�y
x2

: (25)
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Center Manifolds, Figure 4
Nonuniqueness of the center manifold

The solution of (24) has the form

y(x) D a exp
�
1
x

�
(26)

for x ¤ 0 and any constant a 2 R. It follows that

Wc(a) D f(x; y)jy D a exp
�
1
x

�

as x < 0 and y D 0 as x � 0g

is center manifold for each a, being C1-smooth and past-
ing together the curve fy D a exp(1/x)g as x < 0 and the
straight line fy D 0g as x � 0:, see Fig. 4.

However, the center manifolds possess the following
weak uniqueness property. Let U be a neighborhood of
the Wc: It turns out that the maximal invariant set I in U
must be inWc, that follows from the Reduction Theorem,
see below. Consequently, all center manifolds contact on I.
In this case the center manifold is called locally maximal.
Thus, the center manifolds may differ on the trajectories
leaving the neighborhood as t !1 or �1.

For example, suppose that a center manifold is two-
dimensional and a limit cycle is generated from the equi-
librium through the Hopf bifurcation [31,35]. In this case
the invariant set I is a disk bounded by the limit cycle and
all center manifolds will contain this disk, see Fig. 5.

Smoothness

M. Hirsch, C. Pugh, M. Shub [34] proved that the cen-
ter manifold is Ck-smooth if the system is Ck-smooth and
k <1. Moreover if the kth derivative of the vector field is
˛-Hölder or Lipschitz mapping, the center manifold is the
same.

Center Manifolds, Figure 5
Weak uniqueness of the center manifold

However, if the system is C1 or analytic then the cen-
ter manifold is not necessary the same. First consider the
analytic case. It is clear that if the analytic center mani-
fold exists then it is uniquely determined by applying the
Taylor power series expansion. Consider the illustrating
example [31]

ẋ D �x2 ;

ẏ D �y C x2
(27)

which does not have an analytic center manifold. In fact,
applying the Taylor power series expansions we obtain
that the center manifold has to be given by the series y
D
P1

nD2(n � 1)!xn which diverges when x ¤ 0.
If the system is C1-smooth then the Existence Theo-

rem guaranties the existence of a Ck-smooth center man-
ifold for any k <1. However, the center manifold may
not be C1-smooth. Van Strien S.J. [71] showed that the
system

ẋ D �x2 C �2 ;

ẏ D �y � (x2 � �2) ;
�̇ D 0 :

(28)

does not have a C1-smooth center manifold. In fact if the
system is C1-smooth then for each k there is a neighbor-
hood Uk(O) of a Ck-smooth central manifold Wc: There
are the systems for which the sequence fUkg can shrink
to O as k!1 [25,71]. The results of the papers [19,34]



942 C Center Manifolds

show that the smoothness of the invariant manifold de-
pends on the relation between Lyapunov exponents on
the center manifold and on the normal subspace (stable
plus unstable subspaces). This relation � is included in
the concept of the normal hyperbolicity. At an equilib-
rium � D min(Ren/Rec ), where Ren/Rec > 0; c is
the eigenvalue on the center subspace and n is the eigen-
value on the normal subspace. The condition � > 1 is nec-
essary for a persistence of smooth invariant manifold. One
can guarantee degree of smoothness k of the manifold
provided k < � . Moreover, there exists examples show-
ing that the condition k < � is essential. It means that
the system has to contract (expand) along Es(Eu)k-times
stronger than along the center manifold.

If a center manifold to the equilibrium O exists then
Rec D 0 and � D1 atO, but nearOmay be other equi-
librium (or other orbits) on the center manifold where
� <1, and as a consequence, the center manifold may
not be C1-smooth. Let us consider the illustrating exam-
ple [25]

ẋ D �x � x3 ;

ẏ D y C x4 ;
�̇ D 0 :

(29)

The point O D (0; 0; 0) is equilibrium, the system lin-
earized at O has the form

ẋ D 0 ;
ẏ D y ;
�̇ D 0 :

(30)

The system (30) has the following invariant subspace:
Es D f0; 0; 0g, Ec D fx; 0; �g, Eu D f0; y; 0g. The �-axis
consists of the equilibriums (0; 0; �0) for the system (29).
The system linearized at (0; �0; 0) is the following

ẋ D �0x ;
ẏ D y ;
�̇ D 0 :

(31)

The eigenvalues on the center subspace are 0 and �0,
the eigenvalue on the normal (unstable) subspace is 1.
Therefore the degree of smoothness is bounded by
� D 1/�0: Detailed information and examples are given
in [10,25,31,36,43,76].

Reduction Principle

As we saw above, a smooth system of differential equations
near an equilibrium point O can be written in the form

ẋ D Ax C f (x; y; z) ;
ẏ D By C g(x; y; z) ;
ż D Cz C q(x; y; z) ;

(32)

where O D (0; 0; 0), A has eigenvalues with zero real part,
B has eigenvalues with negative real part and C has eigen-
values with positive real part; f (0; 0; 0) D g(0; 0; 0) D q(0;
0; 0) D 0 and D f (0; 0; 0) DDg(0; 0; 0) DDq(0; 0; 0) D 0.
In this case the invariant subspaces at O are Ec D f(x;
0; 0)g, Es D f(0; y; 0)g, and Eu D f(0; 0; z)g. The center
manifold has the form

Wc D f(x; y; z)jx 2 V � Rc; y D h1(x); z D h2(x)g ;
(33)

where c is the dimension of the center subspace Ec, the
mappings h1(x) and h2(x) are Ck-smooth, k � 1, h1(0)
D h2(0) D 0 and Dh1(0) D Dh2(0) D 0. The last equali-
ties mean that the manifoldWc goes throughO and is tan-
gent to Ec at O.

Summarizing the results of V. Pliss [59,60], A. Shoshi-
taishvili [68,69], A. Reinfelds [63], K. Palmer [55],
Pugh C.C., ShubM. [62], Carr J. [10], Grobman D.M. [24],
and F. Hartman [29] we obtain the following theorem.

Theorem 2 (Reduction Theorem) The system of differ-
ential Equations (32) near the origin is topologically equiv-
alent to the system

ẋ D Ax C f (x; h1(x); h2(x)) ;
ẏ D �y ;
ż D z :

(34)

The first equation is the restriction of the system on the
center manifold. The theorem allows to reduce the inves-
tigation of the dynamics near a nonhyperbolic fixed point
to the study of the system on the center manifold.

Construction of the Center Manifold

The center manifold may be calculated by using simple it-
erations [10]. However, this method does not have wide
application and we consider a method based on the Taylor
power series expansion. First it was proposed by A. Lya-
punov in [41]. Suppose that the unstable subspace is 0, that
is the last equation of the system (32) is absent. Such sys-
tems have a lot of applications in stability theory. So we
consider a system

ẋ D Ax C f (x; y) ;
ẏ D By C g(x; y) ;

(35)
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The center manifold is the graph of the mapping y D h(x)
which satisfies the equation

Dh(x)(AxC f (x; h(x)))� Bh(x)� g(x; h(x)) D 0 (36)

and the conditions h(0) D 0 and Dh(0) D 0: Let us try
to solve the equation by applying the Taylor power se-
ries expansion. Denote the left part of (36) by N(h(x)). J.
Carr [10] and D. Henry [32] proved the following theo-
rem.

Theorem 3 Let � : V(0) � Rc ! Rs be a smooth map-
ping, �(0)D0 and D�(0)D0 such that N(�(x))Do(jxjm)
for some m > 0 as jxj ! 0 then

h(x)� �(x) D o(jxjm) as jxj ! 0

where r(x)Do(jxjm)means that r(x)/jxjm!0 as jxj!0.

Thus, if we solve the Eq. (36) with a desired accuracy we
construct h with the same accuracy. Theorem 3 substanti-
ates the application of the described method. Let us con-
sider a simple example from [76]

ẋ D x2y � x5 ;

ẏ D �y C x2 ;
(37)

(x; y) 2 R2, the equilibrium is at the origin (0; 0). The
eigenvalues of the linearized system are 0 and�1. Accord-
ing to the Existence Theorem the center manifold is locally
represented in the form

Wc D f(x; y) j y D h(x); jxj < ı;
h(0) D 0;Dh(0) D 0)g ;

where ı is sufficiently small. It follows that h has the form

h D ax2 C bx3 C � � � : (38)

The equation for the center manifold is given by

Dh(x)(AxC f (x; h(x)))�Bh(x)� g(x; h(x)) D 0 ; (39)

where AD 0, B D �1, f (x; y) D x2y � x5, g(x; y) D x2.
Substituting (38) in (39) we obtain the equality

(2ax C 3bx2 C � � � )(ax4 C bx5 � x5 C � � � )

C ax2 C bx3 � x2 C � � � D 0 : (40)

Equating coefficients on each power of x to zero we obtain

x2 : a � 1 D 0;) a D 1
x3 : b D 0;
:::

::: :

(41)

Therefore we have

h(x) D x2 C 0x3 C � � � : (42)

In this connection we have to decide how many terms
(powers of x) have be computed? The solution depends
on our goal. For example, suppose that we study the Lya-
punov stability of the equilibrium (0; 0) for (37). Accord-
ing to the Reduction Theorem the system (37) is topologi-
cally equivalent to the system

ẋ D x2h(x) � x5 ;
ẏ D �y ;

(43)

where h(x) D x2 C 0x3 C � � � : Substituting h we obtain
the equation

ẋ D x4 C : : : : (44)

Hence the equilibrium is unstable. It should be noted that
the calculation of bx3 is unnecessary, since substituting
h(x) D x2 C bx3 C � � � in the first equation of the sys-
tem (43), we also obtain (44). Thus, it is enough to com-
pute the first term ax2 of the mapping h.

This example brings up the following question. The
system (37) is topologically equivalent to the system

ẋ D x4 C � � � ;
ẏ D �y ;

(45)

which hasmany center manifolds. From this it follows that
the initial system has a lot of center manifolds. Which of
center manifolds is actually being found when approxi-
mating the center manifold via power series expansion?

It turns out [10,70,74] that any two center manifolds
differ by transcendentally small terms, i. e. the terms of
their Taylor expansions coincide up to all existing orders.
For example, the system (24) has the center manifolds of
the form

Wc(a) D
˚
(x; y)jy D a exp

� 1
x


as x < 0 and y D 0 as x � 0
�

for any a. However, eachmanifold has null-expansion at 0.

CenterManifold in Discrete Dynamical Systems

Consider a dynamical system generated by the mapping

v ! Lv C G(v) ; (46)

where v 2 Rn , L is a matrix and G is second-order at the
origin. Without loss of generality we consider the sys-
tem (46) as a perturbation of the linear system

x ! Lx : (47)
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Divide the eigenvalues of L into three parts:
stable �s D feigenvalues with modulus less than 1g,
unstable �u D feigenvalues with modulus greater than 1g,
critical �c D feigenvalues with modulus equal to 1g.
The matrix L has three eigenspaces: the stable subspace
Es, the unstable subspace Eu, and the central subspace Ec,
which correspond to the mentioned spectrum parts re-
spectively, being Es ˚ Eu ˚ Ec D Rn . The next theorem
follows from the theorem on perturbation of �-hyperbolic
endomorphism on a Banach space [34].

Theorem 4 (Existence Theorem) Consider a Ck-smooth
(1 � k <1) discrete system

v ! Lv C G(v) ;

G(0) D 0 and G is C1-close to zero. Let Es; Eu and Ec be the
stable, unstable, and central eigenspaces of the linear map-
ping L.

Then near the fixed point O there exist the following
Ck-smooth invariant manifolds:

� The center manifold Wc tangent to Ec at O,
� The stable manifold Ws tangent to Es at O,
� The unstable manifold Wu tangent to Eu at O,
� The center-stablemanifoldWcs tangent to Ec C Es at O,
� The center-unstable manifold Wcu tangent to Ec C Eu

at O.

The stable and unstable manifolds are unique, but center,
center-stable, and center-unstable manifolds may not be
unique.

The orbits on Ws have exponential tending to O as
m!1. The orbits on Wu have exponential tending to O
as m! �1.

There exists a linear change of coordinates transform-
ing (46) to the form

0

@
x
y
z

1

A!

0

@
Ax C f (x; y; z)
By C g1(x; y; z)
Cz C g2(x; y; z)

1

A ; (48)

where A has eigenvalues with modulus equal 1, B has
eigenvalues with modulus less than 1, C has eigenvalues
with modulus greater than 1. The system (48) at the origin
has the following invariant eigenspaces: Ec D f(x; 0; 0)g,
Es D f(0; y; 0)g, and Eu D f(0; 0; z)g. Since the center
manifold Wc is tangent to Ec at the origin O D (0; 0), it
can be represented near O in the form

Wc D f(x; y; z) j jxj < �; y D h1(x); z D h2(x)g ;

where h1 and h2 are second-order at the origin, i. e.
h1;2(0) D 0; Dh1;2(0) D 0: The invariance of Wc means

that if a point (x; y; z) 2Wc; i. e. y D h1(x); z D h2(x),
then (AxC f (x; y; z); ByC g1(x; y; z);CzC g2(x; y; z)) 2
Wc; i. e. By C g1(x; y; z) D h1(Ax C f (x; y; z)); Cz C
g2(x; y; z) D h2(Ax C f (x; y; z)). Thus, we get the invari-
ance property

Bh1(x)C g1(x; h1(x); h2(x))
D h1(Ax C f (x; h1(x); h2(x)) ;

Ch2(x)C g2(x; h1(x); h2(x))
D h2(Ax C f (x; h1(x); h2(x)) :

(49)

Results on smoothness and uniqueness of center manifold
for discrete systems are the same as for continuous sys-
tems.

Theorem 5 (Reduction Theorem [55,62,63,64]) The dis-
crete system (48) near the origin is topologically equivalent
to the system

x ! Ax C f (x; h1(x); h2(x)) ;
y ! By ;
z! Cz :

(50)

The first mapping is the restriction of the system on the
center manifold. The theorem reduces the investigation of
dynamics near a nonhyperbolic fixed point to the study of
the system on the center manifold.

Normally Hyperbolic Invariant Manifolds

As it is indicated above, a center manifold can be consid-
ered as a perturbed invariant manifold for the center sub-
space of the linearized system. The normal hyperbolicity
conception arises as a natural condition for the persistence
of invariant manifold under a system perturbation. Infor-
mally speaking, an f -invariant manifold M, where f -dif-
feomorphism, is normally hyperbolic if the action of Df
along the normal space ofM is hyperbolic and dominates
over its action along the tangent one. (the rigorous defini-
tion is below). Many of the results concerning center man-
ifold follows from the theory of normal hyperbolic invari-
ant manifolds. In particular, the results related to center
eigenvalues of Df with jj ¤ 1 may be obtained using this
theory.

The problem of existence and preservation for in-
variant manifolds has a long history. Initial results on
invariant (integral) manifolds of differential equations
were obtaned by Hadamard [26] and Perron [57], Bo-
goliubov, Mitropolskii [8] and Lykova [48], Pliss [60],
Hale [28], Diliberto [16] and other authors (for references
see [39,77]). In the late 1960s and throughout 1970s the
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theory of perturbations of invariantmanifolds began to as-
sume a very general and well-developed form. Sacker [66]
and Neimark [50] proved (independently and by differ-
ent methods) that a normally hyperbolic compact invari-
ant manifold is preserved under C1 perturbations. Final
results on preservation of invariant manifolds were ob-
tained by Fenichel [19,20] and Hirsch, Pugh, Shub [34].
The linearization theorem for a normally hyperbolic man-
ifold was proved in [62].

Let f : Rn ! Rn be a Cr-diffeomorphism, 1 � r <1,
and a compact manifoldM is f -invariant.

Definition 4 An invariant manifold M is called r-nor-
mally hyperbolic if there exists a continuous invariant de-
composition

TRn jM D TM ˚ Es ˚ Eu (51)

of the tangent bundle TRn into a direct sum of subbun-
dles TM; Es; Eu and constants a;  > 0 such that for
0 � k � r and all p 2 M,

jDs f n(p)j j(D0 f n(p))�1jk � a exp(�n) for n � 0 ;

jDu f n(p)j j(D0 f n(p))�1jk � a exp(n) for n � 0 :
(52)

Here D0 f ; Ds f and Du f are restrictions ofDf on TM; Es

and Eu, respectively.

The invariance of the bundle E� means that for every
p 2 M0, the image of the fiber E�(p) at p under Df (p) is
the fiber E�(q) at q D f (p): The bundles Es and Eu are
called stable and unstable, respectively. In other words,
M is normally hyperbolic if the differential Df contracts
(expands) along the normal (to M) direction and this con-
traction (expansion) is stronger in r times than a conceiv-
able contraction (expansion) along M: Summarizing the
results of [19,20,34,50,62,66] we obtain the following the-
orem.

Theorem 6 Let a Cr diffeomorphism f be r-normally hy-
perbolic on a compact invariant manifold M with the de-
composition TRn jM D TM ˚ Es ˚ Eu. Then

� there exist invariant manifolds Ws and Wu near M,
which are tangent at M to TM ˚ Es and TM ˚ Eu;

� the manifolds M, Ws and Wu are Cr-smooth;
� if g is another Cr-diffeomorphism Cr-close to f ; then

there exists the unique manifold Mg which is invariant
and r-normally hyperbolic for g;

� near M f is topologically equivalent to D f jEs˚Eu , which
in local coordinates has the form

(x; y; z)! ( f (x);D f (x)y;D f (x)z) ;
x 2 M ; y 2 Es(x) ; z 2 Eu(x) : (53)

Similarly result takes place for flows. Mañé [44] showed
that a locally unique, preserved, compact invariant mani-
fold is necessarily normally hyperbolic. Local uniqueness
means that near M, an invariant set I of the perturba-
tion g is in Mg . Conditions for the preservation of locally
nonunique compact invariant manifolds and linearization
were found by G. Osipenko [52,53].

Applications

Stability

As it was mentioned above, it was Lyapunov who pio-
neered in applying the concept of center manifold to es-
tablish the stability of equilibrium. V. Pliss [59] proved the
general reduction principle in stability theory. According
to this principle the equilibrium is stable if and only if it is
stable on the centermanifold.We have considered themo-
tivating example where the center manifold concept was
used. The system

ẋ D xy ; ẏ D �y C ax2 ; (54)

has the center manifold y D h(x): Applying Theorem 3,
we obtain

h(x) D ax2 C � � � :

The reduced system is of the form

ẋ D ax3 C : : : :

Thus, if a < 0, the origin is stable. The book [25] contains
other examples of investigation of stability.

Bifurcations

Consider a parametrized system of differential equations

ẋ D A(�)x C f (x; �) ; (55)

where � 2 Rk , f is C1-small when � is small. To study the
bifurcation problem near� D 0 it is useful to deal with the
extended system of the form

ẋ D A(�)x C f (x; �) ;
�̇ D 0 :

(56)
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Suppose that (55) has a n-dimensional center manifold for
� D 0. Then the extended system (56) has a nC k-dimen-
sional centermanifold. The reduction principle guarantees
that all bifurcations lie on the center manifold. Moreover,
the center manifold has the form y D h(x; �0) for every
�0 which is a solution of the equation �̇ D 0 and the map-
ping h may be presented as a power series in �. Further
interesting information regarding to recent advancements
in the approximation and computation of center mani-
folds is in [37]. The book [31] deals with Hopf bifurcation
and contains a lot of examples and applications. Invariant
manifolds and foliations for nonautonomous systems are
considered in [3,13]. Partial linearization for noninvertible
mappings is studied in [4].

CenterManifold in Infinite-Dimensional Space

Center manifold theory is a standard tool to study the dy-
namics of discrete and continuous dynamical systems in
infinite dimensional phase space. We start with the dis-
crete dynamical system generated by a mapping of a Ba-
nach space. The existence of the center manifold of the
mappings in Banach space was proved by Hirsch, Pugh
and Shub [34]. Let T : E ! E be a linear endomorphism
of a Banach space E.

Definition 5 A linear endomorphism T is said to be �-hy-
perbolic, � > 0, if no eigenvalue of T has modulus �, i. e.,
its spectrum Spect(T) has no points on the circle of radius
� in the complex plane C. A linear 1-hyperbolic isomor-
phism T is called hyperbolic.

For a �-hyperbolic linear endomorphism there exists
a T-invariant splitting of E D E1 ˚ E2 such that the spec-
trum of the restriction T1 D TjE1 lies outside of the disk of
the radius �, where as the spectrum of T2 D TjE2 lies in-
side it. So T1 is automorphism and T�11 exists. It is known
(for details see [34]) that one can define norms in E1 and
E2 such that associated norms of T�11 and T2 may be esti-
mated in the following manner

jT�11 j <
1
�
; jT2j < � : (57)

Conversely, if T admits an invariant splitting T D T1 ˚ T2
with jT�11 j � a; jT2j � b; ab < 1 then Spect(T1) lies out-
side the disk f 2 C : jj < 1/ag, and Spect(T2) lies in
the disk f 2 C : jj � bg: Thus, T is �-hyperbolic with
b < � < 1/a:

Theorem 7 Let T be a �-hyperbolic linear endo-
morphism, � � 1. Assume that f : E ! E is Cr ; r � 1;
f D T C g; f (0) D 0 and there is ı > 0 such that if g is

a Lipschitz mapping and

Lip(g) D Lip( f � T) � ı ; (58)

then there exists a manifold Wf ; which is a graph of a C1

map ' : E1 ! E2, i. e.

Wf D fx C y j y D '(x); x 2 E1; y 2 E2g ;

with the following properties:

� Wf is f -invariant;
� if kT�11 k

jkT2k < 1; j D 1; : : : ; r then Wf is Cr and de-
pends continuously on f in the Cr topology;

� WT D E1;
� for x 2 Wf

j f�1(x)j � (aC 2") jxj ; (59)

where a < 1/�, and " is small provided ı is small;
� if D f (0) D T then Wf is tangent to E1 at 0.

Suppose that the spectrum of T is contained in A1
S

A2
where

A1 D fz 2 C; jzj � 1g ; A2 D fz 2 C; jzj � a < 1g :

Corollary 1 If f : E ! E is Cr ; 1 � r <1; f (0) D 0
and Lip( f � T) � � is small, then there exists a center-
unstable manifold Wcu D Wf which is the graph of a Cr

function E1 ! E2: The center-unstable manifold is attrac-
tor, i. e. for any x 2 E the distance between f n(x) and Wcu

tends to zero as n!1. The manifold Wf D Wc is center
manifold when A1 D fz 2 C; jzj D 1g.

Apply this theorem to a mapping of the general form

u! AuC f (u) ; (60)

where E is a Banach space, u 2 E, A : E ! E is a linear op-
erator, f is second-order at the origin. The question arises
of whether there exists a smooth mapping g such that g
coincides with f in a sufficiently small neighborhood of
the origin and g is C1-close to zero? The answer is posi-
tive if E admits C1-norm, i. e. the mapping u! kuk is
C1-smooth for u ¤ 0. It is performed for Hilbert space.
The desired mapping g may be constructed with the use
of a cut-off function. To apply Theorem 7 to (60) we have
to suppose Hypothesis on C1-norm: the Banach space E
admits C1-norm.

Thus, Theorem 7 together with Hypothesis on C1-
norm guarantee an existence of center manifold for the
system (60) in a Banach space. A. Reinfelds [63,64] prove
a reduction theorem for homeomorphism in a metric
space from which an analog of Reduction Theorem 5 for
Banach space follows.
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Flows in Banach Space

Fundamentals of center manifold theory for flows and
differential equations in Banach spaces can be found
in [10,21,43,73]. In Euclidean space a flow is generated by
a solution of a differential equation and the theory of or-
dinary differential equations guarantees the clear connec-
tion between flows and differential equations. In infinite
dimensional (Banach) space this connection is more del-
icate and at first, we consider infinite dimensional flows
and then (partial) differential equations.

Definition 6 A flow (semiflow) on a domain D is
a continuous family of mappings Ft : D! D where
t 2 R (t � 0) such that F0 D I and FtCs D FtFs for
t; s 2 R (t; s � 0):

Theorem 8 (Center Manifold for Infinite Dimensional
Flows [43]) Let the Hypothesis on C1-norm be fulfilled
and Ft : E ! E be a semiflow defined near the origin for
0 � t � � , Ft(0) D 0. Suppose that the mapping Ft(x) is
C0 in t and CkC1 in x and the spectrum of the linear
semigroup DFt(0) is of the form et(
1[
2); where et(
1) is
on the unit circle (i. e. �1 is on the imaginary axis) and
et(
2) is inside the unit circle with a positive distance from
one as t > 0 (i. e. �2 is in the left half-plane). Let E D
E1˚E2 be the DFt(0)-invariant decomposition correspond-
ing to the decomposition of the spectrum et(
1[
2) and
dimE1 D d <1.

Then there exists a neighborhood U of the origin and
Ck-submanifold Wc � U of the dimension d such that

� Wc is invariant for Ft in U, 0 2Wc and Wc is tangent
to E1 at 0;

� Wc is attractor in U, i. e. if Fn
t (x) 2 U; n D 0; 1; 2; : : :

then Fn
t (x)! Wc as n!1.

In infinite dimensional dynamics it is also popular no-
tion of “inertial manifold” which is an invariant finite
dimensional attracting manifold corresponding to Wc of
the Theorem 8.

Partial Differential Equations

At the present the center manifold method takes root in
theory of partial differential equations. Applying center
manifold to partial differential equations leads to a num-
ber of new problems. Consider an evolution equation

u̇ D Au C f (u) ; (61)

where u 2 E, E is a Banach space, A is a linear operator,
f is second-order at the origin. Usually A is a differential
operator defined on a domain D � E; D ¤ E. To apply

Theorem 8we have to construct a semiflow Ft definednear
the origin of E. As a rule, an infinite dimensional phase
space E is a functional space where the topology may be
chosen by the investigator. A proper choice of functional
space and its topology may essentially facilitate the study.
As an example we consider a nonlinear heat equation

u0t D �u C f (u) ; (62)

where u is defined on a bounded domain ˝ � Rn

with Dirichlet condition on the boundary uj@˝ D 0,
�u D (@2/@x21 C � � � C @

2/@x2n)u is the Laplace operator
defined on the set

C2
0 D fu 2 C2(˝); u D 0 on @˝g :

According to [49] we consider a Hilbert space E D L2(˝)
with the inner product < u; v >D

R
˝ uvdx. The oper-

ator � may be extended to a self-conjugate operator
A : DA ! L2(˝) with the domainDA that is the closure of
C2
0 in L2(˝). Consider the linear heat equation u0t D �u

and its extension

u0t D Au; u 2 DA : (63)

What do we mean by a flow generated by (63)?

Definition 7 A linear operator A is the infinitisemal gen-
erator of a continuous semigroup U(t); t � 0 if:
U(t) is a linear mapping for each t;
U(t) is a semigroup and kU(t)u � uk ! 0 as t!C0;

Au D lim
t!C0

U(t)u � u
t

(64)

whenever the limit exists.

For Laplace operator we have < �u; u >� 0 for u 2 C2
0 ;

hence the operator A is dissipative. It guarantees [6] the
existence of the semigroupU(t) with the infinitesimal gen-
erator A. The mapping U(t) is the semigroup DFt(0) in
Theorem 8.

The next problem is the relation between the linearized
system u0 D Au and full nonlinear Equation (61). To con-
sider the mapping f in (62) as C1-small perturbation, the
Hypothesis on C1-norm has to be fulfilled. To prove the
existence of the solution of the nonlinear equation with
u(0) D u0 one uses the Duhamel formula

u(t) D Utu0 C
tZ

0

Ut�s f (u(s))ds

and the iterative Picard method. By this way we construct
the semiflow required to apply Theorem 8. The relation
between the spectrum of a semigroup U(t) and the spec-
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trum of its infinitisemal generator gives rise to an essential
problem. All known existence theorems are formulated in
terms of the semigroup as in Theorem 8. The existence of
the spectrum decompositions of a semigroup U(t) and the
corresponding estimations on the appropriate projections
are supposed. This framework is inconvenient for many
applications, especially in partial differential equations. In
finite dimensions, a linear system ẋ D Ax has a solution of
the form U(t)x D eAtx and  is an eigenvalue of A if and
only if e�t is an eigenvalue of U(t). We have the spectral
equality

Spect(U(t)) D eSpect(A)t :

In infinite dimensions, relating the spectrum of the in-
finitesimal generator A to that of the semigroup U(t) is
a spectral mapping problem which is often nontrivial. The
spectral inclusion

Spect(U(t)) � eSpect(A)t

always holds and the inverse inclusion is a problem that is
solved by the spectral mapping theorems [12,18,22,65].

Often an application of center manifold theory needs
to prove an appropriate version of the reduction theo-
rem [7,11,12,14,15,18]. Pages 1–5 of the book [40] give an
extensive list of the applications of center manifold the-
ory to infinite dimensional problems. Here we consider
a few of typical applications. Reaction-diffusion equa-
tions are typical models in chemical reaction (Belousov–
Zhabotinsky reaction), biological systems, population dy-
namics and nuclear reaction physics. They have the form

u0t D (K()C D�)u C f (u; ) ; (65)

where K is a matrix depending on a parameter,D is a sym-
metric, positive semi-definite, often diagonal matrix, � is
the Laplace operator,  is a control parameter. The pa-
pers [2,27,31,67,78] applied center manifold theory to the
study of the reaction-diffusion equation. Invariant man-
ifolds for nonlinear Schrodinger equations are studied
in [22,40]. In the elliptic quasilinear equations the spec-
trum of the linear operator is unbounded in unstable di-
rection and in this case the solution does not generate
even a semiflow. Nevertheless, center manifold technique
is successfully applied in this case as well [45]. Henry [32]
proved the persistence of normally hyperbolic closed lin-
ear subspace for semilinear parabolic equations. It follows
the existence of the center manifold which is a perturbed
manifold for the center subspace. I. Chueshov [14,15]
considered a reduction principle for coupled nonlinear

parabolic-hyperbolic partial differential equations that has
applications in thermoelastisity.Mielke [47] has developed
the center manifold theory for elliptic partial differential
equations and has applied it to problems of elasticity and
hydrodynamics. The results for non-autonomous system
in Banach space can be found in [46]. The reduction prin-
ciple for stochastic partial differential equations is consid-
ered in [9,17,75].

Future Directions

Now we should realize that principal problems in the cen-
ter manifolds theory of finite dimensional dynamics have
been solved and we may expect new results in applica-
tions. However the analogous theory for infinite dimen-
sional dynamics is far from its completion. Here we have
few principal problems such as the reduction principle (an
analogue of Theorem 2 or 5) and the construction of the
center manifold. The application of the center manifold
theory to partial differential equations is one of promising
and developing direction. In particular, it is very impor-
tant to investigate the behavior of center manifolds when
Galerkin method is applied due to a transition from finite
dimension to infinite one. As it was mentioned above each
application of center manifold methods to nonlinear infi-
nite dimensional dynamics is nontrivial and gives rise to
new directions of researches.
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We live in a hierarchically structured, complex Universe
and the articles in this section demonstrate the breadth of
vision required by astrophysicists addressing a vast spec-
trum of problems from dynamical systems to biological
and galactic evolution to cosmology. Fundamentally, as-
tronomical problems present a huge variety of scales of
time, length, mass, and energy. For example, to under-
stand the transport of energy in hot, opaque bodies with-
out which we cannot understand the structure of stars
requires kinetic theory of gases and atomic and molecu-
lar processes (the equation of state for stellar matter, and
opacities), hydrodynamics, (especially turbulence for con-
vective energy transport and circulation), magnetohydro-
dynamics and plasma physics (since stars generate mag-
netic fields by dynamo processes), nuclear and particle
physics (for thermonuclear processing and energy loss),
and even general relativity (for the late stages of evolu-
tion). But stars are formed and die within galaxies, self-
gravitating ensembles of many billions of individual stars
and cold clouds of millions of solar masses that are actu-
ally analogies of ecosystems. Thus the tools developed to
address biological systems can be carried over into cosmic
problems.

At the close of the 1920s, Arthur Eddington quipped
that “someday, perhaps, we shall understand something as
simple as a star”. How wrong he was. Stars are self-gravi-
tating nuclear engines and it is the mass of a gaseous body
that determines whether it will or won’t ignite its central
thermonuclear energy source. Below a few percent of a so-
lar mass, the stellar core never reaches the required tem-
perature even if the densities are high enough to initiate
nuclear reactions. Such a low mass object is called a brown
dwarf if, during its initial contraction from an interstel-
lar dark cloud, it can briefly burn deuterium. If even that
source remains inaccessible, it is called a planet, regardless
of whether it is bound in an orbit to another, more mas-
sive companion. Although various claims had been made

throughout the 20th century for the presence of planetary
systems, especially for the nearby very low mass object
called Barnard’s Star, the first direct detection of a plan-
etary mass body orbiting another star came only in 1995
with the discovery of a massive Jupiter-like companion to
the solar type star 51 Peg. Since then over 300 planets have
been discovered orbiting stars other than the Sun, now in-
cludingmultiple systems and even several in other galaxies
discovered by gravitational lensing. This sample is, how-
ever, currently still biased toward masses much greater
than the Earth and systems that are still rather different
from our solar system. But with the passage of years and
the accumulation of velocity and photometric measure-
ments, systems progressivelymore similar to ours have be-
gun to emerge.

The first discoveries already, however, presented
a paradox: It has generally been thought that the struc-
ture of our system is the product of thermal evaporation
and restructuring the orbiting bodies by the early Sun, the
evaporation of nearby gaseous masses and leaving behind
only their rocky cores.

The detection of planetary mass bodies began, how-
ever, with the discovery of precisely such planets within
a few hundred stellar radii of the central star. This has
stimulated a renaissance in dynamical astronomy of few
bodies and the re-discovery of effects previously thought
to be of only minor importance in the present solar system.
This too is reflected in the articles in this section. And be-
cause it is clear now that there must also be systems like
our own, the study of extraterrestrial environments and
the search for extrasolar Earths and the origin of life has
emerged from the back rooms to take a central stage as
a new sub-discipline: astrobiology (see� Exobiology (the-
oretical), Complexity in, by Brandenburg and � Exobiol-
ogy and Complexity by Chaisson). It is particularly ap-
propriate that this encyclopedia recognizes the immense
promise of this field.

The interplanetarymedium, the solar wind, is the topic
of several articles. This is the supersonic mass outflow
from the only star for which we have virtually all possible
information. The wind, synonymous with the interplane-
tary medium, is the expanding coronal layer of the Sun.
Heated by nonthemal mechanisms seated deep within he
interior dynamo and convective envelope, magnetohydro-
dynamic waves and topological relaxation of the outer
magnetic field (see � Topological Magnetohydrodynam-
ics and Astrophysics by Berger).

This is why several of the articles here deal with dy-
namo processes. This plasma is an ideal laboratory in
which the Sun performs the experiments and we capture
the results with in situ satellite measurements (see � Self-
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-Organization in Magnetohydrodynamic Turbulence by
Veltri et al., and � Space Plasmas, Dynamical Complex-
ity in, by Chang).

Wave phenomena that are inaccessible under terres-
trial laboratory conditions can be studied in detail with
spacecraft, MHD turbulence can be observed on a vast
range of length scales (from meters to astronomical units)
and timescales (from milliseconds to days). We are in
a new age of spacecraft measurement with SOHO and
STEREO providing continuously monitored dynamical
three dimensional imaging of the Sun.

And on the solar surface, in deep in its interior, we see
the cyclic generation and decay of a dynamo whose super-
ficial manifestations are the corona, magnetic loop struc-
tures of sizes comparable to the stellar radius, and dissipa-
tive processes that release high energy particles and locally
heat the outer solar atmosphere. All of these topics show
the complex interplay of many physical processes and are
discussed in many of the articles in this section.

Cosmic rays were discovered at the start of the 20th
century by Hess and others making balloon flights to high
altitudes carrying devices for measuring atmospheric elec-
tricity. They discovered that the ionization increases with
height, which led to the hypothesis of some form of ex-
traterrestrial energetic particles impinging on the atmo-
sphere. Further study showed these to be charged, high
energy particles, protons, alpha particles, and electrons,
whose source was a mystery. For some time, these were
the only particles with which fundamental physics could
be studied. Somehow, the universe is capable of produc-
ing relativistic ions and electrons that traverse the space
between the galaxies, reaching energies well in excess of
TeV. The Sun and solar type stars, during flares, are capa-
ble of accelerating electrons to GeV energies and beyond
in milliseconds or shorter on scales of kilometers, but the
process is still not understood. And on larger scales, the
detection of TeV mission from supernova remnants, the
supersonically ejected debris of stellar explosions, shows
that these shocks can also accelerate particles on length
scales of the size of the solar system throughout the life of
the galaxy. Hyper-relativistic phenomena connected with
stellar collapse and explosion, such as Gamma Ray Bursts,
also demonstrate that complex acceleration processes hap-
pen on many different length and time scales in cosmic
objects (see� Acceleration Mechanisms by Melrose).

Historically, it was in problems arising within dynam-
ical astronomy that chaos was first recognized – in the or-
bital dynamics of the solar system during the 19th cen-
tury – and the richness of this field has extended far be-
yond the confines of the realm of the planets. It was the
source of the analogies used by Boltzmann and Gibbs in

the early stages of the development of statistical mechanics
(see� Astrophysics, Chaos and Complexity in, by Regev).

Beginning with the two body problem, for point
masses the physical solution is almost trivial. The motion
is conservative, the total energy is constant and, except
for effect of general relativity for the most extreme sys-
tems, the problem can be solved in closed orbits knowing
only the total energy and angular momentum. If one or
both objects are extended, or if they are internally compli-
cated, the problem ceases to be tractable in closed form.
The orbits evolve in time, either periodically or secularly
depending on whether or not there are internal dissipative
processes in the constituent bodies. This feature, which
complicates the dynamics of binary star systems and even
planetary moons requires a sophisticated physical treat-
ment ofmicrophysical processes from gas laws to fluidme-
chanics.

Planetary ring systems are even more complex, show-
ing a wealth of dynamical structuring that, from particle
trajectories imaged in natural settings, produce images like
those resulting from numerical models of nonlinear sys-
tems. At the next level, the apparently simple problem of
the lunar orbit becomes almost impossible once tidal in-
teractions and the effect of the Sun are included. This was
the principal discovery of Poincare, Lyapunov, and the dy-
namicists of the late 19th century, that the perturbing in-
fluences on the motion of so small a body a the Moon,
whose mass is negligible with respect to the two principals,
has a complex temporal spectrum of resonances that pro-
duce, even without dissipation, extreme sensitivity of the
predictions to the accuracy of the initial conditions for any
dynamical calculation (see�Orbital Dynamics, Chaos in,
by Hadjidemetriou).

The extension of this complexity to N-body calcula-
tions (see � Stellar Dynamics, N-body Methods for, by
Makino) and the evolution of far more populous systems –
clusters and galaxies (see � Astrophysics: Dynamical Sys-
tems by Contopoulos) – are addressed in articles in this
section.

Moving to the largest scale of all, the Universe as
a whole, we reach the limits of current astronomical ob-
servations. In the last decade, gravitational wave observa-
tories have opened a new type of astronomical observa-
tion, one connected with neither particles nor light and
at the very limits of detection. During the formation of
black holes and neutron stars, at the moment of collapse
of tars either by intrinsic or extrinsic triggering, gravita-
tional waves certainly carry away a significant portion of
the binding energy of the initial system. Such emission
is required by the theory of collapse and the detection of
the secular evolution of binary pulsar orbits assures the
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physical correctness of the fundamentally relativistic phe-
nomenon. However, the Universe is a very big place and
in all galaxies, whatever their evolutionary history and dis-
tance, there must be sources for such waves.

These produce an incoherent signal, unlike the strong,
identifiable signature of a single collapse event, that should
form a stochastic background from the integration of all
such sources. It is also clear that at some stage in the earli-
est stages of the cosmic expansion there were fluctuations
in thematter and fields that were strongly coupled with the
spacetime structure. These were not dissipatively damped
as would happen in a normal fluid.

Instead, their spectrum was systematically altered by
the cosmic expansion to the point of visibility in the
present universe. How this might be found and what it
tells us about the first moments of the Big Bang and the
subsequent evolution of cosmic sources during the Hubble
time is also treated in this section (see � Cosmic Gravita-
tional Background, Stochastic by Ungarelli and � Cosmic
Strings by Achúcarro and Martins).

Finally, because of this huge range of timescales and
multiplicity of processes involved in even some of the ap-
parently simplest phenomena, astronomical observations
present particularly challenging problems of data analysis
(see � Astronomical Time Series, Complexity in, by Scar-
gle).

From dynamical systems to stochastic fluctuations of
spacetime, the problem of finding periods and spectra in
complex, not spatially resolved and partially sampled data
takes us to the limit of current statistical methodology.

In fact, this is a fundamental feature of all astrophysical
research, to stretch all of our human capacities, intellectual
and technological, in an ever-widening panorama.
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Glossary

For simplicity, definitions are given for a continuous
or smooth self-map or diffeomorphism T of a compact
manifoldM.

Entropy, measure-theoretic (or: metric entropy) For an
ergodic invariant probability measure�, it is the small-
est exponential growth rates of the number of orbit
segments of given length, with respect to that length,
after restriction to a set of positive measure. We de-
note it by h(T; �). See � Entropy in Ergodic Theory
and Subsect. “Local Complexity” below.

Entropy, topological It is the exponential growth rates of
the number of orbit segments of given length, with re-
spect to that length.We denote it by htop( f ). See� En-
tropy in Ergodic Theory and Subsect. “Local Complex-
ity” below.

Ergodicity Ameasure is ergodic with respect to amapT if
given any measurable subset S which is invariant, i. e.,
such that T�1S D S, either S or its complement has
zero measure.

Hyperbolicity A measure is hyperbolic in the sense of
Pesin if at almost every point no Lyapunov exponent
is zero. See� Smooth Ergodic Theory.

Kolmogorov typicality A property is typical in the
sense of Kolmogorov for a topological space F of
parametrized families f D ( ft)t2U , U being an open
subset of Rd for some d � 1, if it holds for f t
for Lebesgue almost every t and topologically generic
f 2 F .

Lyapunov exponents
The Lyapunov exponents (� Smooth Ergodic The-
ory) are the limits, when they exist, limn!1

1
n

log k(Tn)0(x):vk where x 2 M and v is a non zero tan-
gent vector to M at x. The Lyapunov exponents of an
ergodic measure is the set of Lyapunov exponents ob-
tained at almost every point with respect to that mea-
sure for all non-zero tangent vectors.

Markov shift (topological, countable state) It is the set
of all infinite or bi-infinite paths on some countable
directed graph endowed with the left-shift, which just
translates these sequences.

Maximum entropy measure It is a measure � which
maximizes the measured entropy and, by the varia-
tional principle, realized the topological entropy.

Physical measure It is a measure � whose basin,
fx 2 M : 8� : M ! R continuous limn!1

1
n
Pn�1

kD0
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�( f kx) D
R
� d�g has nonzero volume.

Prevalence A property is prevalent in some complete
metric, separable vector space X if it holds outside of
a setN such that, for some Borel probability measure�
on X: �(AC v) D 0 for all v 2 X. See [76,141,239].

Sensitivity on initial conditions T has sensitivity to ini-
tial conditions on X 0 � X if there exists a constant
� > 0 such that for every x 2 X 0, there exists y 2 X,
arbitrarily close to x, and n � 0 such that d(Tn y;
Tnx) > �.

Sinai–Ruelle–Bowen measures It is an invariant proba-
bility measure which is absolutely continuous along
the unstable foliation (defined using the unsta-
ble manifolds of almost every x 2 M, which are
the sets Wu(x), of points y such that limn!1

1
n

log d(T�n y; T�nx) < 0).
Statistical stability T is statistically stable if the physical

measures of nearby deterministic systems are arbitrar-
ily close to the convex hull of the physical measures
of T.

Stochastic stability T is stochastically stable if the invari-
ant measures of the Markov chains obtained from T
by adding a suitable, smooth noise with size � ! 0 are
arbitrarily close to the convex hull of the physical mea-
sures of T.

Structural stability T is structurally stable if any S
close enough to T is topologically the same as T:
there exists a homeomorphism h : M ! M such that
h ı T D S ı h (orbits are sent to orbits).

Subshift of finite type It is a closed subset ˙F of ˙ D
AZ or ˙ DAN where A is a finite set satisfying:
˙F D fx 2 ˙ : 8k < ` : xkxkC1 : : : x` … Fg for some
finite set F.

Topological genericity Let X be a Baire space, e. g.,
a complete metric space. A property is (topologically)
generic in a space X (or holds for the (topologically)
generic element of X) if it holds on a nonmeager set
(or set of second Baire category), i. e., on a dense Gı
subset.

Definition of the Subject

Chaotic dynamical systems are those which present un-
predictable and/or complex behaviors. The existence
and importance of such systems has been known at
least since Hadamard [126] and Poincaré [208], how-
ever it became well-known only in the sixties. We refer
to [36,128,226,236] and [80,107,120,125,192,213] for the
relevance of such dynamics in other fields, mathematical
or not (see also� Ergodic Theory: Interactions with Com-
binatorics and Number Theory, � Ergodic Theory: Frac-

tal Geometry). The numerical simulations of chaotic dy-
namics can be difficult to interpret and to plan, even mis-
leading, and the tools and ideas of mathematical dynam-
ical system theory are indispensable. Arguably the most
powerful set of such tools is ergodic theory which pro-
vides a statistical description of the dynamics by attaching
relevant probability measures. In opposition to single or-
bits, the statistical properties of chaotic systems often have
good stability properties. In many cases, this allows an un-
derstanding of the complexity of the dynamical system and
even precise and quantitative statistical predictions of its
behavior. In fact, chaotic behavior of single orbits often
yields global stability properties.

Introduction

The word chaos, from the ancient Greek �˛o� , “shapeless
void” [131] and “raw confused mass” [199], has been used
[�˛o� also inspired Van Helmont to create the word “gas”
in the seventeenth century and this other thread leads to
the molecular chaos of Boltzmann in the nineteenth century
and therefore to ergodic theory itself .] since a celebrated
paper of Li and Yorke [169] to describe evolutions which
however deterministic and defined by rather simple rules,
exhibit unpredictable or complex behavior.

Attempts at Definition

We note that, like many ideas [237], this is not cap-
tured by a single mathematical definition, despite sev-
eral attempts (see, e. g., [39,112,158,225] for some dis-
cussions as well as the monographs on chaotic dynam-
ics [15,16,58,60,78,104,121,127,215,250,261]). Let us give
some of the most well-known definitions, which have been
givenmostly from the topological point of view, i. e., in the
setting of a self-map T : X ! X on a compact metric space
whose distance is denoted by d:

T has sensitivity to initial conditions on X 0 � X if there
exists a constant � > 0 such that for every x 2 X 0, there
exists y 2 X, arbitrarily close to x with a finite separating
time:

9n � 0 such that d(Tn y; Tnx) > � :

In other words, any uncertainty on the exact value of the
initial condition xmakes Tn(x) completely unknown for n
large enough. If X is a manifold, then sensitivity to initial
conditions in the sense of Guckenheimer [120] means that
the previous phenomenon occurs for a setX0 with nonzero
volume.

T is chaotic in the sense of Devaney [94] if it admits
a dense orbit and if the periodic points are dense in X. It
implies sensitivity to initial conditions on X.
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T is chaotic in the sense of Li and Yorke [169] if there
exists an uncountable subset X 0 � X of points, such that,
for all x ¤ y 2 X 0,

lim inf
n!1

d(Tnx; Tn y) D 0 and

lim sup
n!1

d(Tnx; Tn y) > 0 :

T has generic chaos in the sense of Lasota [206] if the
set

f(x; y) 2 X � X : lim inf
n!1

d(Tnx; Tn y) D 0

< lim sup
n!1

d(Tnx; Tn y)g

is topologically generic (see glossary.) in X � X.
Topological chaos is also sometimes characterized by

nonzero topological entropy (� Entropy in Ergodic The-
ory): there exist exponentially many orbit segments of
a given length. This implies chaos in the sense of Li and
Yorke by [39].

As we shall see ergodic theory describes a number of
chaotic properties, many of them implying some or all of
the above topological ones. The main such property for
a smooth dynamical system, say a C1C˛-diffeomorphism
of a compact manifold, is the existence of an invariant
probability measure which is:

1. Ergodic (cannot be split) and aperiodic (not carried by
a periodic orbit);

2. Hyperbolic (nearby orbits converge or diverge at a def-
inite exponential rate);

3. Sinai–Ruelle–Bowen (as smooth as it is possible).

(For precise definitions we refer to � Smooth Ergodic
Theory or to the discussions below.) In particular such
a situation implies nonzero entropy and sensitivity to ini-
tial condition of a set of nonzero Lebesgue measure (i. e.,
positive volume).

Before starting our survey in earnest, we shall describe
an elementary and classical example, the full tent map, on
which the basic phenomena can be analyzed in a very el-
ementary way. Then, in Sect. “Picking an Invariant Prob-
ability Measure”, we shall give some motivations for in-
troducing probability theory in the description of chaotic
but deterministic systems, in particular the unpredictabil-
ity of their individual orbits. We define two of the most
relevant classes of invariant measures: the physical mea-
sures and those maximizing entropy. It is unknown in
which generality these measures exist and can be analyzed
but we describe in Sect. “Tractable Chaotic Dynamics” the
major classes of dynamics for which this has been done.
In Sect. “Statistical Properties” we describe some of the
finer statistical properties that have been obtained for such

good chaotic systems: sums of observables along orbits are
statistically undistinguishable from sums of independent
and identically distributed random variables. Sect. “Orbit
Complexity” is devoted to the other side of chaos: the com-
plexity of these dynamics and how, again, this complexity
can be analyzed, and sometimes classified, using ergodic
theory. Sect “Stability” describes perhaps the most striking
aspect of chaotic dynamics: the unstability of individual
orbit is linked to various forms of stability of the global
dynamics.

Finally we conclude by mentioning some of the most
important topics that we could not address and we list
some possible future directions.

Caveat. The subject-matter of this article is somewhat
fuzzy and we have taken advantage of this to steer our path
towards some of our favorite theorems and to avoid the
parts we know less (some of which are listed below). We
make no pretense at exhaustivity neither in the topics nor
in the selected results and we hope that our colleagues will
excuse our shortcomings.

Remark 1 In this article we only consider compact,
smooth and finite-dimensional dynamical systems in dis-
crete time, i. e., defined by self-maps. In particular, we
have omitted the natural and important variants apply-
ing to flows, e. g., evolutions defined by ordinary dif-
ferential equations but we refer to the textbooks (see,
e. g.,[15,128,148]) for these.

Elementary Chaos: A Simple Example

We start with a toy model: the full tent map T of Fig. 1.
Observe that for any point x 2 [0; 1], T�n(x) D f(�(k;
n)xCk) �2�n : k D 0; 1; : : : ; 2n�1g, where �(k; n) D ˙1.
Hence

S
n�0 T

�n(x) is dense in [0; 1]. It easily follows
that T exhibits sensitive dependence to initial conditions.
Even worse in this example, the qualitative asymptotic be-
havior can be completely changed by this arbitrarily small
perturbation: x may have a dense orbit whereas y is even-
tually mapped to a fixed point! This is Devaney chaos [94].

This kind of unstability was first discovered by
J. Hadamard [126] in his study of the geodesic flow (i. e.,
the frictionless movement of a point mass constrained to
remain on a surface). At that time, such an unpredictabil-
ity was considered a purely mathematical pathology, nec-
essarily devoid of any physical meaning [Duhem quali-
fied Hadamard’s result as “an example of a mathemat-
ical deduction which can never be used by physics” (see
pp. 206–211 in [103])!].

Returning to out tent map, we can be more quan-
titative. At any point x 2 [0; 1] whose orbit never vis-
its 1/2, the Lyapunov exponent limn!1

1
n log j(Tn)0(x)j
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Chaos and Ergodic Theory, Figure 1
The graph of the full tent map f (x) D 1� j1� 2xj over [0;1]

Chaos and Ergodic Theory, Figure 2
jTn(x)� Tn(y)j for T(x) D 1� j1� 2xj, jx � yj D 10�12 and
0 � n � 100. The vertical red line is at n D 28 and shows when
jTnx � Tnyj � 0:5 � 10�4 for the first time

is log 2. (See the glossary.) Such a positive Lyapunov ex-
ponent corresponds to infinitesimally close orbits getting
separated exponentially fast. This can be observed in Fig. 2.
Note how this exponential speed creates a rather sharp
transition.

It follows in particular that experimental or numerical
errors can grow very quickly to size 1, [For simple precision
arithmetic the uncertainty is 10�16 which grows to size 1 in
38 iterations of T.] i. e., the approximate orbit may contain
after a while no information about the true orbit. This casts
a doubt on the reliability of simulations. Indeed, a sim-
ulation of T on most computers will suggest that all or-
bits quickly converge to 0, which is completely false [Such

a collapse to 0 does really occurs but only for a countable
subset of initial conditions in [0; 1] whereas the points with
dense orbit make a subset of [0; 1] with full Lebesgue mea-
sure (see below). This artefact comes from the way num-
bers are represented – and approximated – on the computer:
multiplication by even integers tends to “simplify” binary
representations. Thus the computations involved in draw-
ing Fig. 2 cannot be performed too naively.]. Though some-
what atypical in its dramatic character, this failure illus-
trates the unpredictability and unstability of individual or-
bits in chaotic systems.

Does this mean that all quantitative predictions about
orbits of T are to be forfeited? Not at all, if we are ready
to change our point of view and look beyond a single orbit.
This can be seen easily in this case. Let us start with such
a global analysis from the topological point of view. As-
sociate to x 2 [0; 1], a sequence i(x) D i D i0 i1 i2 : : : of 0s
and 1s according to ik D 0 if Tkx � 1/2, ik D 1 otherwise.
One can check that [Up to a countable set of exceptions.]
fi(x) : x 2 [0; 1]g is the set˙2 :D f0; 1gN of all infinite se-
quences of 0s and 1s and that at most one x 2 [0; 1] can
realize a given sequence as i(x).

Notice how the transformation f becomes trivial in this
representation:

i( f (x)) D i1 i2 i3 : : : if i(x) D i0 i1 i2 i3 : : :

Thus f is represented by the simple and universal “left-
shift” on sequences, which is denoted by � . This repre-
sentation of a rather general dynamical system by the left-
shift on a space of sequences is called symbolic dynamics
(� Symbolic Dynamics), [171].

This can be a very powerful tool. Observe for instance
how here it makes obvious that we have complete combi-
natorial freedom over the orbits of T: one can easily build
orbits with various asymptotic behaviors: if a sequence of
˙2 contains all the finite sequences of 0s and 1s, then the
corresponding point has a dense orbit; if the sequence is
periodic, then the corresponding point is itself periodic, to
give two examples of the richness of the dynamics.

More quantitatively, the number of distinct sub-
sequences of length n appearing in sequences i(x),
x 2 [0; 1], is 2n . It follows that the topological entropy
(� Entropy in Ergodic Theory) of T is htop(T) D log 2.
[For the coincidence of the entropy and the Lyapunov expo-
nent see below.] The positivity of the topological entropy
can be considered as the signature of the complexity of the
dynamics and considered as the definition, or at least the
stamp, of a topologically chaotic dynamics.

Let us move on to a probabilistic point of view. Pick
x 2 [0; 1] randomly according to, say, the uniform law
in [0; 1]. It is then routine to check that i(x) follows
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the (1/2; 1/2)-Bernoulli law: the probability that, for any
given k, ik(x) D 0 is 1/2 and the iks are independent. Thus
i(x), seen as a sequence of random 0 and 1 when x is sub-
ject to the uniform law on [0; 1], is statistically undistin-
guishable from coin tossing! This important remark leads
to quantitative predictions. For instance, the strong law
of large numbers implies that, for Lebesgue-almost every
x 2 [0; 1] (i. e., for all x 2 [0; 1] except in a set of Lebesgue
measure zero), the fraction of the time spent in any dyadic
interval I D [k � 2�N ; ` � 2�N ] � [0; 1], k; `;N 2 N , by
the orbit of x,

lim
n!1

1
n
#f0 � k < n : Tkx 2 Ig (1)

exists and is equal to the length, 2�N , of that interval.
[Eq. (1) in fact holds for any interval I. This implies that
the orbit of almost every x 2 [0; 1] visits all subintervals of
[0; 1], i. e., the orbit is dense: in complete contradiction with
the above mentioned numerical simulation!] More gener-
ally, we shall see that, if � : [0; 1]! R is any continuous
function, then, for Lebesgue almost every-x,

lim
n!1

1
n

n�1X

kD0

�(Tkx) exists and is equal to
Z
�(x) dx :

(2)

Using strong mixing properties (� Ergodicity and Mix-
ing Properties) of the Lebesgue measure under T, one can
prove further properties, e. g., sensitivity on initial condi-
tions in the sense of Guckenheimer [The Lebesgue mea-
sure is weak-mixing: Lebesgue-almost all couples of points
(x; y) 2 [0; 1]2 get separated. Note that it is not true of
every couple off the diagonal: Counter-examples can be
found among couples (x; y) with Tnx D Tn y arbitrarily
close to 1.] and study the fluctuations of the averages
1
n
Pn�1

kD0 �(Tx) by the way of limit theorems.
The above analysis relied on the very special structure

of T but, as we shall explain, the ergodic theory of dif-
ferentiable dynamical systems shows that all of the above
(and much more) holds in some form for rather general
classes of chaotic systems. The different chaotic properties
are independent in general (e. g., one may have topolog-
ical chaos whereas the asymptotic behavior of almost all
orbits is periodic) and the proofs can become much more
difficult. We shall nonetheless be rewarded for our efforts
by the discovery of unexpected links between chaos and
stability, complexity and simplicity as we shall see.

Picking an Invariant ProbabilityMeasure

One could think that dynamical systems, such as those de-
fined by self-maps of manifolds, being completely deter-

ministic, have nothing to do with probability theory. There
are in fact several motivations for introducing various in-
variant probability measures.

Statistical Descriptions

An abstract goal might be to enrich the structure: a smooth
self-map is a particular case of a Borel self-map, hence
one can canonically attach to this map its set of all in-
variant Borel probability measures [From now on all mea-
sures will be Borel probability measures except if it is ex-
plicitly stated otherwise.], or just the set of ergodic [A mea-
sure is ergodic if all measurable invariant subsets have mea-
sure 0 or 1. Note that arbitrary invariant measures are
averages of ergodic ones, so many questions about invari-
ant measures can be reduced to ergodic ones.] ones. By
the Krylov–Bogoliubov theorem (see, e. g., [148]), this set
is non-empty for any continuous self-map of a compact
space.

By the following fundamental theorem� Ergodic The-
orems, each such measure is the statistical description of
some orbit:

Birkhoff Pointwise Ergodic Theorem Let (X;F ; �) be
a space with a �-field and a probability measure. Let
f : X ! X be a measure-preserving map, i. e., f�1(F) �
F and � ı f�1 D �. Assume ergodicity of � (See the glos-
sary.) and (absolute) integrability of � : X ! R with re-
spect to �. Then for �-almost every x 2 X,

lim
n!1

1
n

n�1X

kD0

�( f kx) exists and is
Z
� d� :

This theorem can be interpreted as saying that “time aver-
ages” coincide almost surely with “ensemble averages” (or
“phase space average”), i. e., that Boltzmann’s Ergodic Hy-
pothesis of statistical mechanics [110] holds for dynamical
systems that cannot be split in a measurable and non triv-
ial way. [This indecomposability is however often difficult to
establish. For instance, for the hard ball model of a gas it is
known only under some generic assumption (see [238] and
the references therein).] We refer to [161] for background.

Remark 2 One should observe that the existence of the
above limit is not at all obvious. In fact it often fails from
other points of view. One can show that for the full tent
map T(x) D 1 � j1 � 2xj analyzed above and many func-
tions � , the set of points for which it fails is large both from
the topological point of view (it contains a denseGı set) and
from the dimension point of view (it has Hausdorff dimen-
sion 1 [28]). This is an important point: the introduction of
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invariant measures allows one to avoid some of the wilder
pathologies.

To illustrate this let us consider the full tent map T(x) D
1� j1� 2xj again and the two ergodic invariant measures:
ı0 (the Dirac measure concentrated at the fixed point 0)
and the Lebesgue measure dx. In the first case, we obtain
a complex proof of the obvious fact that the time average at
x D 0 (some set of full measure!) and the ensemble aver-
age with respect to ı0 are both equal to f (0). In the second
case, we obtain a very general proof of the above Eq. (2).

Another type of example is provided by the contract-
ing map S : [0; 1]! [0; 1], S(x) D x/2. S has a unique in-
variant probability measure, ı0. For Birkhoff theorem the
situation is the same as that of T and ı0: it asserts only that
the orbit of 0 is described by ı0.

One can understand Birkhoff theorem as a (first and
rather weak) stability result: the time averages are inde-
pendent of the initial condition, almost surely with respect
to �.

Physical Measures

In the above silly example S, much more is true than the
conclusion of Birkhoff Theorem: all points of [0; 1] are de-
scribed by ı0. This leads to the definition of the basin of
a probability measure � for a self-map f of a spaceM:

B(�) :D
(

x 2 M : 8� :

M ! R continuous lim
n!1

1
n

n�1X

kD0

�( f kx) D
Z
� d�

)

:

If M is a manifold, then there is a notion of volume and
one can make the following definition. A physical mea-
sure is a probability measure whose basin has nonzero vol-
ume in M. Say that a dynamical system f : M ! M on
a manifold has a finite statistical description if there exists
finitely many invariant probability measures �1; : : : ; �n
the union of whose basins is the whole of M, up to a set
of zero Lebesgue measure.

Physical measures are among the main subject of in-
terest as they are expected to be exactly those that are “ex-
perimentally visible”. Indeed, if x0 2 B(�) and �0 > 0 is
small enough, then, by Lebesgue density theorem, a point x
picked according to, say, the uniform law in the ball
B(x0; �0) of center x0 and radius �0, will be in B(�) with
probability almost 1 and therefore its ergodic averages will
be described by �. Hence “experiments” can be expected
to follow the physical measures and this is what is numer-
ically observed in most of the situations (see however the
caveat in the discussion of the full tent map).

The existence of a finite statistical description (or
even of a physical measure) is, as we shall see, not auto-
matic nor routine to prove. Attracting periodic points as
in the above silly example provide a first type of phys-
ical measures. Birkhoff ergodic theorem asserts that ab-
solutely continuous ergodic invariant measures, usually
obtained from some expansion property, give another
class of physical measures. These contracting and expand-
ing types can be combined in the class of Sinai–Ruelle–
Bowen measures [166] which are the invariant measures
absolutely continuous “along expanding directions” (see
for the precise but technical definition � Smooth Er-
godic Theory). Any ergodic Sinai–Ruelle–Bowen mea-
sure which is ergodic and without zero Lyapunov ex-
ponent [That is, the set of points x 2 M such that
limn!1

1
n log k( f n)0(x):vk D 0 for some v 2 TxM has

zero measure.] is a physical measure. Conversely, “most”
physical measures [For counter-examples see [136].] are of
this type [243,247].

Measures of Maximum Entropy

For all parameters t 2 [3:96; 4], the quadratic maps
Qt(x) D tx(1 � x), Qt : [0; 1]! [0; 1], have nonzero
topological entropy [91] and exponentially many periodic
points [134]:

lim
n!1

#fx 2 [0; 1] : Qn
t (x) D xg

enhtop(Qt )
D 1 :

On the other hand, by a deep theorem [117,178] there is
an open and dense subset of t 2 [0; 4], such that Qt has
a unique physical measure concentrated on a periodic or-
bit! Thus the physical measures can completely miss the
topological complexity (and in particular the distribution
of the periodic points). Hence one must look at other mea-
sures to get a statistical description of the complexity of
such Qt . Such a description is often provided by measures
of maximum entropy �M whose measured entropy [The
usual phrases are “measure-theoretic entropy”, “metric en-
tropy”.] (� Entropy in Ergodic Theory) satisfies:

h( f ; �M) D sup
�2M( f )

h( f ; �) D1 htop( f ) :

M( f ) is the set of all invariant measures. [One can restrict
this to the ergodic invariant measures without changing the
value of the supremum (� Entropy in Ergodic Theory).]
Equality 1 above is the variational principle: it holds for
all continuous self-maps of compact metric spaces. One
can say that the ergodic complexity (the complexity of f as
seen by its invariantmeasures) captures the full topological
complexity (defined by counting all orbits).
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Remark 3 The variational principle implies the existence
of “complicated invariant measures” as soon as the topo-
logical entropy is nonzero (see [47] for a setting in which
this is of interest).

Maximum entropy measures do not always exist. How-
ever, if f is C1 smooth, then maximum entropy measures
exist by a theorem of Newhouse [195] and they indeed de-
scribe the topological complexity in the following sense.
Consider the probability measures:

�n;� :D
1
n

n�1X

kD0

X

x2E(n;�)

ı f k x

where E(n; �) is an arbitrary (�; n)-separated subset
[See� Entropy in Ergodic Theory: 8x; y 2 E(n; �) x ¤ y
H) 90 � k < n d(Tkx; Tk y) � �.] of M with maxi-
mum cardinality. Then accumulation points for the weak
star topology on the space of probability measures onM of
�n;� when n!1 and then �! 0 are maximum entropy
measures [185].

Let us quote two important additional properties, dis-
covered by Margulis [179], that often hold for the maxi-
mum entropy measures:

� The equidistribution of periodic points with respect to
some maximum entropy measure �M :

�M D lim
n!1

1
#fx 2 X : x D f nxg

X

xD f n x

ıx :

� The holonomy invariance which can be loosely inter-
preted by saying that the past and the future are inde-
pendent conditionally on the present.

Other Points of View

Many other invariant measures are of interest in var-
ious contexts and we have made no attempt at com-
pleteness: for instance, invariant measures maximiz-
ing dimension [111,204], or pressure in the sense of
the thermodynamical formalism [148,222], or some en-
ergy [9,81,146], or quasi-physical measures describing the
dynamics around saddle-type invariant sets [104] or in
systems with holes [75].

Tractable Chaotic Dynamics

The Palis Conjecture

There is, at this point, no general theory allowing the anal-
ysis of all dynamical systems or even of most of them de-
spite many recent and exciting developments in the theory

of generic C1-diffeomorphisms [51,84]. In particular, the
question of the generality in which physical measures ex-
ist remains open. One would like generic systems to have
a finite statistical description (see Subsect. “Physical Mea-
sures”). This fails in some examples but these look excep-
tional and the following question is asked by Palis [200]:

Is it true that any dynamical system defined by a Cr-
diffeomorphism on a compact manifold can be trans-
formed by an arbitrarily small Cr-perturbation to
another dynamical system having a finite statistical
description?

This is completely open though widely believed [Observe,
however, that such a statement is false for conservative dif-
feomorphisms with high order smoothness as KAM theory
implies stable existence of invariant tori foliating a subset
of positive volume.]. Note that such a good description is
not possible for all systems (see, e. g., [136,194]). Note that
one would really like to ask about unperturbed “typical”
[The choice of the notion of typicality is a delicate issue. The
Newhouse phenomenon shows that among C2-diffeomor-
phisms of multidimensional compact manifolds, one cannot
use topological genericity and get a positive answer. Popu-
lar notions are prevalence andKolmogorov genericity – see
the glossary.] dynamical systems in a suitable sense, but of
course this is even harder.

One is therefore led to make simplifying assump-
tions: typically of small dimension, uniform expansion/
contraction or geometry.

Uniformly Expanding/Hyperbolic Systems

The most easily analyzed systems are those with uni-
form expansion and/or contraction, namely the uniformly
expanding maps and uniformly hyperbolic diffeomor-
phisms, see � Smooth Ergodic Theory. [We require uni-
form hyperbolicity on the so-called chain recurrent set. This
is equivalent to the usual Axiom-A and no-cycle condition.]
An important class of example is obtained as follows. Con-
sider A : Rd ! Rd , a linear map preserving Zd (i. e., A is
a matrix with integer coefficients in the canonical basis) so
that it defines a map Ā : T d ! T d on the torus. If there is
a constant � > 1 such that for all v 2 Rd , kA:vk � �kvk
then Ā is a uniformly expanding map. If A has determi-
nant ˙1 and no eigenvalue on the unit circle, then Ā
is a uniformly hyperbolic diffeomorphism (� Smooth Er-
godic Theory) (see also [60,148,215,233]). Moreover all
C1-perturbations of the previous examples are again uni-
formly expanding or uniformly hyperbolic. [One can de-
fine uniform hyperbolicity for flows and an important class
of examples is provided by the geodesic flow on compact
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manifolds with negative sectional curvature [148].] These
uniform systems are sometimes called “strongly chaotic”.

Remark 4 Mañé Stability Theorem (see below) shows that
uniform hyperbolicity is a very natural notion. One can
also understand on a more technical level uniform hyper-
bolicity as what is needed to apply an implicit function the-
orem in some functional space (see, e. g., [233]).

The existence of a finite statistical description for such
systems has been proved since the 1970s by Bowen, Ru-
elle and Sinai [54,218,235] (the expanding case is much
simpler [162]).

Theorem 1 Let f : M ! M be a C1C˛ map of a compact
manifold. Assume f to be (i) a uniformly expanding map
on M or (ii) a uniformly hyperbolic diffeomorphism.

� f admits a finite statistical description by ergodic and hy-
perbolic Sinai–Ruelle–Bowen measures (absolutely con-
tinuous in case (i)).

� f has finitely many ergodic maximum entropy mea-
sures, each of which makes f isomorphic to a finite state
Markov chain. The periodic points are uniformly dis-
tributed according to some canonical average of these er-
godic maximum entropy measures.

� f is topologically conjugate [Up to some negligible sub-
set.] to a subshift of finite type (See the glossary.)

The construction of absolutely continuous invariant mea-
sures for a uniformly expanding map f can be done
in a rather direct way by considering the pushed for-
ward measures 1

n
Pn�1

kD0 f
k
� Leb and taking weak star limits

while preventing the appearance of singularities, by, e. g.,
bounding some Hölder norm of the density using expan-
sion and distortion of f .

The classical approach to the uniformly hyperbolic dy-
namics [52,222,233] is through symbolic dynamics and
coding. Under the above hypothesis one can build a finite
partition ofM which is tailored to the dynamics (aMarkov
partition) so that the corresponding symbolic dynamics
has a very simple structure: it is a full shift f1; : : : ; dgZ,
like in the example of the full tent map, or a subshifts of
finite type. The above problems can then be solved using
the thermodynamical formalism inspired from the statisti-
cal mechanics of one-dimensional ferromagnets [217]: er-
godic properties are obtained through the spectral proper-
ties of a suitable transfer operator acting on some space of
regular functions, e. g., the Hölder-continuous functions
defined over the symbolic dynamics with respect to the
distance d(x; y) :D

P
n2Z 2�n1xn¤yn where 1s¤t is 1 if

s ¤ t, 0 otherwise.

A recent development [24,43,116] has been to find
suitable Banach spaces to apply the transfer operator tech-
nique directly in the smooth setting, which not only avoids
the complication of coding (or rather replace them with
functional analytic preliminaries) but allows the use of the
smoothness beyond Hölder-continuity which is important
for finer ergodic properties.

Uniform expansion or hyperbolicity can easily be ob-
structed in a given system: a “bad” point (a critical point or
a periodic point with multiplier with an eigenvalue on the
unit circle) is enough. This leads to the study of other sys-
tems and has motivated many works devoted to relaxing
the uniform hyperbolicity assumptions [51].

Pesin Theory

The most general such approach is Pesin theory. Let f be
a C1C˛-diffeomorphism [It is an important open problem
to determine to which extent Pesin theory could be general-
ized to the C1 setting.] f with an ergodic invariant mea-
sure �. By Oseledets Theorem � Smooth Ergodic The-
ory, for almost every x with respect to any invariant mea-
sure, the behavior of the differential Tx f n for n large is
described by the Lyapunov exponents 1; : : : ; d , at x.
Pesin is able to build charts around almost every orbit in
which this asymptotic linear behavior describes that of f
at the first iteration. That is, there are diffeomorphisms
˚x : Ux � M ! Vx � Rd with a “reasonable dependence
on x” such that the differential of ˚ f n x ı f n ı ˚�1x at any
point where it is defined is close to a diagonal matrix with
entries (e(�1˙�)n ; e(�2˙�)n ; : : : ; e(�d˙�)n).

In this full generality, one already obtains significant
results:

� The entropy is bounded by the expansion: h( f ; �) �Pd
iD1 

C
i (�) [219]

� At almost every point x, there are strong stable resp.
unstable manifolds Wss(x), resp. Wuu(x), coinciding
with the sets of points y such that d(Tnx; Tn y)! 0
exponentially fast when n!1, resp. n! �1. The
corresponding holonomies are absolutely continuous
(see, e. g., [59]) like in the uniform case. This allows
Ledrappier’s definition of Sinai–Ruelle–Bowen mea-
sures [166] in that setting.

� Equality in the above formula holds if and only if �
is a Sinai–Ruelle–Bowen measure [167]. More gener-
ally the entropy can be computed as

Pd
iD1 �i (�)

C
i (�)

where the �i are some fractal dimensions related to the
exponents.

Under the only assumption of hyperbolicity (i. e., no zero
Lyapunov exponent almost everywhere), one gets further
properties:
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� Existence of an hyperbolic measure which is not peri-
odic forces htop( f ) > 0 [However h( f ; �) can be zero.]
by [147].

� � is exact dimensional [29,256]: the limit limr!0
log�(B(x; r))/ log r exists �-almost everywhere and is
equal to the Hausdorff dimension of � (the infimum of
the Hausdorff dimension of the sets with full �-mea-
sure). This is deduced from a more technical “asymp-
totic product structure” property of any such measure.

For hyperbolic Sinai–Ruelle–Bowen measures �, one can
then prove, e. g.,:

� local ergodicity [202]: � has at most countably many
ergodic components and �-almost every point has
a neighborhood whose Lebesgue-almost every point
are contained in the basin of an ergodic component
of �.

� Bernoulli [198]: Each ergodic component of � is con-
jugate in a measure-preserving way, up to a period,
to a Bernoulli shift, that is, a full shift f1; : : : ;NgZ

equipped with a product measure. This in particular
implies mixing and sensitivity on initial conditions for
a set of positive Lebesgue measure.

However, establishing even such a weak form of hyper-
bolicity is rather difficult. The fragility of this condition
can be illustrated by the result [44,45] that the topolog-
ically generic area-preserving surface C1-diffeomorphism
is either uniformly hyperbolic or has Lebesgue almost ev-
erywhere vanishing Lyapunov exponents, hence is never
non-uniformly hyperbolic! (but this is believed to be very
specific to the very weak C1 topology). Moreover, such
weak hyperbolicity is not enough, with the current tech-
niques, to build Sinai–Ruelle–Bowen measures or ana-
lyze maximum entropy measures only assuming non-zero
Lyapunov exponents. Let us though quote two conjec-
tures. The first one is from [251] [We slightly strengthened
Viana’s statement for expository reasons.]:

Conjecture 1 Let f be a C1C�-diffeomorphism of a com-
pact manifold. If Lebesgue-almost every point x has well-
defined Lyapunov exponents in every direction and none of
these exponents is zero, then there exists an absolutely con-
tinuous invariant �-finite positive measure.

The analogue of this conjecture has been proved for C3

interval maps with unique critical point and negative
Schwarzian derivative by Keller [150], but only partial re-
sults are available for diffeomorphisms [168].

We turn tomeasures of maximum entropy. As we said,
C1 smoothness is enough to ensure their existence but
this is through a functional-analytic argument (allowed

by Yomdin theory [254]) which says nothing about their
structure. Indeed, the following problem is open:

Conjecture 2 Let f be a C1C�-diffeomorphism of a com-
pact surface. If the topological entropy of f is nonzero then f
has at most countably many ergodic invariant measures
maximizing entropy.

The analogue of this conjecture has been proved for C1C�

interval maps [64,66,70]. In the above setting a classical re-
sult of Katok shows the existence of uniformly hyperbolic
compact invariant subsets with topological entropy arbi-
trarily close to that of f implying the existence of many
periodic points:

lim sup
n!1

1
n
log #fx 2 M : f n(x) D xg � htop( f ) :

The previous conjecture would follow from the follow-
ing one:

Conjecture 3 Let f be a C1C�-diffeomorphism of a com-
pact manifold. There exists an invariant subset X � M,
carrying all ergodic measures with maximum entropy, such
that the restriction f jX is conjugate to a countable state
topological Markov shift (See the glossary.).

Systems with Discontinuities

We now consider stronger assumptions to be able to build
the relevant measures.

The simplest step beyond uniformity is to allow dis-
continuities, considering piecewise expanding maps. The
discontinuities break the rigidity of the uniformly expand-
ing situation. For instance, their symbolic dynamics are
usually no longer subshifts of finite type though they still
retain some “simplicity” in good cases (see [68]).

To understand the problem in constructing the abso-
lutely continuous invariant measures, it is instructive to
consider the pushed forwards of a smooth measure. Ex-
pansion tends to keep the measure smooth whereas dis-
continuities may pile it up, creating non-absolute conti-
nuity in the limit. One thus has to check that expansion
wins. In dimension 1, a simple fact resolves the argument:
under a high enough iterate, one can make the expansion
arbitrarily large everywhere, whereas a small interval can
be chopped into at most two pieces.

Lasota and Yorke [165] found a suitable framework.
They considered C2 interval maps with j f 0(x)j � const >
1 except at finitely many points. They used the Ruelle
transfer operator directly on the interval. Namely they
studied

(L�)(x) D
X

y2T�1x

�(y)
jT 0(y)j
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acting on functions � : [0; 1]! Rwith bounded variation
and obtained the invariant density as the eigenfunction as-
sociated to the eigenvalue 1. One can then prove a Lasota–
Yorke inequality (which might more accurately be called
Doeblin–Fortet since it was introduced in the theory of
Markov chains much earlier):

kL�kBV � ˛k�kBV C ˇk�k1 (3)

where k � kBV, k � k1 are a strong and a weak norm, respec-
tively and ˛ < 1 and ˇ <1. One can then apply general
theorems [143] or [196] (see [21] for a detailed presenta-
tion of this approach and its variants). Here ˛ can essen-
tially be taken as 2 (reflecting the locally simple discon-
tinuities) divided by the minimum expansion: so ˛ < 1,
perhaps after replacing T with an iterate. In particular,
the existence of a finite statistical description then follows
(see [61] for various generalizations and strengthenings of
this result on the interval).

The situation in higher dimension is more complex
for the reason explained above. One can obtain inequal-
ities such as (3) on suitable if less simple functional
spaces (see, e. g., [231]) but proving ˛ < 1 is another mat-
ter: discontinuities can get arbitrarily complex under it-
eration. [67,241] show that indeed, in dimension 2 and
higher, piecewise uniform expansion (with a finite num-
ber of pieces) is not enough to ensure a finite statistical de-
scription if the pieces of the map have only finite smooth-
ness. In dimension 2, resp. 3 or more, piecewise real-ana-
lytic, resp. piecewise affine, is enough to exclude such ex-
amples [65,240], resp. [242]. [82] has shown that, for any
r > 1, an open and dense subset of piecewise Cr and ex-
panding maps have a finite statistical description.

Piecewise hyperbolic diffeomorphisms are more dif-
ficult to analyze though several results (conditioned on
technical assumptions that can be checked in many cases)
are available [22,74,230,257].

Interval Maps with Critical Points

A more natural but also more difficult situation is a map
for which the uniformity of the expansion fails because of
the existence of critical points. [Note that, by a theorem
of Mañé a circle map without critical points or indifferent
periodic point is either conjugate to a rotation or uniformly
expanding [181].]

A class which has been completely analyzed at the
level of the above conjecture is that of real-analytic fam-
ilies of maps of the interval ft : [0; 1]! [0; 1], t 2 I, with
a unique critical point, the main example being the
quadratic family Qt(x) D tx(1 � x) for 0 � t � 4.

It is not very difficult to find quadratic maps with the
following two types of behavior:
(stable) the orbit of Lebesgue-almost every x 2 [0; 1]

tends to an attracting periodic orbit;
(chaotic) there is an absolutely continuous invariant

probability measure�whose basin contains Lebesgue-
almost every x 2 [0; 1].

To realize the first it is enough to arrange the critical point
to be periodic. One can easily prove that this stable be-
havior occurs on an open set of parameters –thus it is sta-
ble with respect to the parameter or the dynamical system.
The second occurs for Q4 with � D dx/

p
�x(1 � x). It is

much more difficult to show that this chaotic behavior oc-
curs for a set of parameters of positive Lebesgue measure.
This is a theorem of Jakobson [145] for the quadratic fam-
ily (see for a recent variant [265]). Let us sketch two main
ingredients of the various proofs of this theorem. The first
is inducing: around Lebesgue-almost every point x 2 [0; 1]
one tries to find a time �(x) and an interval J(x) such that
f �(x) : J(x)! f �(x)(J(x)) is a map with good expansion
and distortion properties. This powerful idea appears in
many disguises in the non-uniform hyperbolic theory (see
for instance [133,262]). The second ingredient is parame-
ter exclusion: one removes the parameters at which a good
inducing scheme cannot be built. More precisely one pro-
ceeds inductively, performing simultaneously the induc-
ing and the exclusion, the good properties of the early stage
of the inducing allowing one to control the measure of the
parameters that need to be excluded to continue [30,145].
Indeed, the expansion established at a given stage allows to
transfer estimates in the dynamical space to the parameter
space.

Using methods from complex analysis and renormal-
ization theory one can go much further and prove the fol-
lowing difficult theorems (actually the product of the work
of many people, including Avila, Graczyk, Kozlovski, Lyu-
bich, de Melo, Moreira, Shen, van Strien, Swiatek), which
in particular solves Palis conjecture in this setting:

Theorem 2 ([117,160,178]) Stable maps (that is, such
that Lebesgue almost every orbit converges to one of finitely
many periodic orbits) form an open and dense set among
Cr interval maps, for any r � 2. [In fact this is even true for
polynomials.].

The picture has been completed in the unimodal case (that
is, with a unique critical point):

Theorem 3 ([19,20,117,159,178]) Let ft : [0; 1]! [0; 1],
t 2 [t0; t1], be a real-analytic family of unimodal maps. As-
sume that it is not degenerate [ ft0 and ft1 are not conju-
gate]. Then:
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� The set of t such that f t is chaotic in the above sense has
positive Lebesgue measure;

� The set of t such that f t is stable is open and dense;
� The remaining set of parameters has zero Lebesgue mea-

sure. [This set of “strange parameters” of zero Lebesgue
measure has however positive Hausdorff dimension ac-
cording to work of Avila andMoreira. In particular each
of the following situations is realized on a set of param-
eters t of positive Hausdorff dimension: non-existence of
the Birkhoff limit at Lebesgue-almost every point, the
physical measure is ıp for p a repelling fixed point, the
physical measure is non-ergodic.]

We note that the theory underlying the above theorem
yields much more results, including a very paradoxical
rigidity of typical analytic families as above. See [19].

Non-uniform Expansion/Contraction

Beyond the dimension 1, only partial results are available.
The most general of those assume uniform contraction or
expansion along some direction, restricting the non-uni-
form behavior to an invariant sub-bundle often one-di-
mensional, or “one-dimensional-like”.

A first, simpler situation is when there is a dominated
decomposition with a uniformly expanding term: there is
a continuous and invariant splitting of the tangent bundle,
T�M D Euu ˚ Ecs, over some � an attracting set: for all
unit vectors vu 2 Euu, vc 2 Ecs,

k( f n)0(x):vuk � Cn and
k( f n)0(x):vck � C�nk( f n)0(x):vuk :

Standard techniques (pushing the Riemannian volume of
a piece of unstable leaf and taking limits) allow the con-
struction of Gibbs u-states as introduced by [205].

Theorem 4 (Alves–Bonatti–Viana [8]) [A slightly differ-
ent result is obtained in [49].] Let f : M ! M be a C2 dif-
feomorphism with an invariant compact subset �. Assume
that there is a dominated splitting T�M D Eu ˚ Ecs such
that, for some c > 0,

lim sup
n!1

1
n
log

n�1Y

kD0

k f 0( f x )jEcsk � �c < 0

on a subset of � of positive Lebesgue measure. Then this
subset is contained, up to a set of zero Lebesgue measure, in
the union of the basins of finitely many ergodic and hyper-
bolic Sinai – Ruelle – Bowen measures.

The non-invertible, purely expansive version of the above
theorem can be applied in particular to the following maps

of the cylinder (d � 16, a is properly chosen close to 2
and ˛ is small):

f (�; x) D (dx mod 2�; a � x2 C � sin(�))

which are natural examples of maps with multidi-
mensional expansion and critical lines considered by
Viana [249]. A series of works have shown that the above
maps fit in the above non-uniformly expanding setting
with a proper control of the critical set and hence can be
thoroughly analyzed through variants of the above theo-
rem [4,249] and the references in [5]. For a; b properly
chosen close to 2 and small �, the following maps should
be even more natural examples:

f (x; y) D (a � x2 C �y; b � y2 C �x) : (4)

However the inexistence of a dominated splitting has pre-
vented the analysis of their physical measures. See [66,70]
for their maximum entropy measures.

Cowieson and Young have used completely differ-
ent techniques (thermodynamical formalism, Ledrappier–
Young formula and Yomdin theory on entropy and
smoothness) to prove the following result (see [13] for re-
lated work):

Theorem 5 (Cowieson–Young [83]) Let f : M ! M be
a C1 diffeomorphism of a compact manifold. Assume
that f admits an attractor � � M on which the tan-
gent bundle has an invariant continuous decomposition
T�M D EC ˚ E� such that all vectors of EC n f0g, resp.
E� n f0g, have positive, resp. negative, Lyapunov expo-
nents. Then any zero-noise limit measure � of f is a Sinai–
Ruelle–Bowenmeasure and therefore, if it is ergodic and hy-
perbolic, a physical measure.

One can hope, that typically, the latter ergodicity and hy-
perbolicity assumptions are satisfied (see, e. g., [27]).

By pushing classical techniques and introducing new
ideas for generic maps with one expanding and one weakly
contracting direction, Tsujii has been able to prove the fol-
lowing generic result (which can be viewed as a 2-dimen-
sional extension of some of the one-dimensional results
above: one adds a uniformly expanding direction):

Theorem 6 (Tsujii [243]) Let M be a compact surface.
Consider the space of C20 self-maps f : M ! M which ad-
mits directions that are uniformly expanded [More pre-
cisely, there exists a continuous, forward invariant cone
field which is uniformly expanded under the differential
of f .]

Then existence of a finite statistical description is both
topologically generic and prevalent in this space of maps.
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Hénon-Like Maps and Rank One Attractors

In 1976, Hénon [130] observed that the diffeomorphism of
the plane

Ha;b(x; y) D (1 � ax2 C y; bx)

seemed to present a “strange attractor” for a D 1:4 and
b D 0:3, that is, the points of a numerically simulated or-
bit seemed to draw a set looking locally like the product
of a segment with a Cantor set. This attractor seems to
be supported by the unstable manifold Wu(P) of the hy-
perbolic fixed point P with positive absciss. On the other
hand, the Plykin classification [207] excluded the existence
of a uniformly hyperbolic attractor for a dissipative surface
diffeomorphism.

For almost twenty years the question of the existence
of such an attractor (by opposition to an attracting peri-
odic orbit with a very long period) remained open. Indeed,
one knew since Newhouse that, for many such maps, there
exist infinitely many such periodic orbits which are very
difficult to distinguish numerically. But in 1991 Benedicks
and Carleson succeeded in proposing an argument refin-
ing (with considerable difficulties) their earlier proof of
Jakobson one-dimensional theorem and established the
first part of the following theorem:

Theorem 7 (Benedicks–Carleson [31]) For any � > 0,
for jbj small enough, there is a set A with Leb(A) > 0 satis-
fying: for all a 2 A, there exists z 2 Wu(P) such that

� The orbit of z is dense in Wu(P);
� lim infn!1 1

n log k( f n)0(z)k > 0.

Further properties were then established, especially by
Benedicks, Viana, Wang, Young [32,34,35,264]. Let us
quote the following theorem of Wang and Young which
includes the previous results:

Theorem 8 ([264]) Let Tab : S1 � [�1; 1]! S1 � [�1; 1]
be such that

� Ta0(S1 � [�1; 1]) � S1 � f0g;
� For b > 0, Tab is a diffeomorphism on its image with

c�1b � j detTab(x; y)j � c � b

for some c > 1 and all (x; y) 2 S1 � [�1; 1] and all
(a; b).

Let fa : S1 ! S1 be the restriction of Ta0. Assume that
f D f0 satisfies:

� Non-degenerate critical points: f 0(c)D0 H) f 00(c)¤0;
� Negative Schwarzian derivative: for all x 2 S1 non-crit-

ical, f 000(x)/ f 0(x) � 3/2( f 00(x)/ f 0(x))2 < 0;

� No indifferent or attracting periodic point, i. e., x such
that f n(x) D x and j( f )0(x)j � 1;

� Misiurewicz condition: d( f n c; d) > c > 0 for all n � 1
and all critical points c; d.

Assume the following transversality condition on f at a D
0: for every critical point c, (d/da)( fa(ca) � pa) ¤ 0
if ca is the critical point of f a near c and pa is the
point having the same itinerary under f a as f (c) under c.
Assume the following non-degeneracy of T : f 00(c) D 0 H)
@T00(c; 0)/@y ¤ 0.

� Tab restricted to a neighborhood of S1 � f0g has a finite
statistical description by a number of hyperbolic Sinai–
Ruelle–Bowen measures bounded by the number of crit-
ical points of f ;

� There is exponential decay of correlations and a Central
Limit Theorem (see below) – except, in an obvious way,
if there is a periodic interval with period> 1;

� There is a natural coding of the orbits that remains for
ever close to S1 � f0g by a closed invariant subset of a full
shift.

Very importantly, the above dynamical situation has been
shown to occur near typical homoclinic tangencies: [190]
proved that there is an open and dense subset of the set of
all C3 families of diffeomorphisms unfolding a first homo-
clinic tangency such that the above holds. However [201]
shows that the set of parameters with a Henon-like attrac-
tor has zero Lebesgue density at the bifurcation itself, at
least under an assumption on the so-called stable and un-
stable Hausdorff dimensions. [95] establishes positive den-
sity for another type of bifurcation. Furthermore [191] has
related the Hausdorff dimensions to the abundance of uni-
formly hyperbolic dynamics near the tangency.

[248] is able to treat situations with more than one
contracting direction. More recently [266] has proposed
a rather general framework, with easily checkable assump-
tions in order to establish the existence of such dynam-
ics in various applications. See also [122,252] for applica-
tions.

Statistical Properties

The ergodic theorem asserts that time averages of inte-
grable functions converge to phase space averages for any
ergodic system. The speed of convergence is quite arbi-
trary in that generality [161] (only upcrossing inequalities
seem to be available [38,132]), however many results are
available under very natural hypothesis as we are going to
explain in this section. The underlying idea is that for suf-
ficiently chaotic dynamics T and reasonably smooth ob-
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servables � , the time averages

An�(x) :D
1
n

n�1X

kD0

� ı Tk(x)

should behave as averages of independent and identically
distributed random variables and therefore satisfy the clas-
sical limit theorems of probability theory.

The dynamical systems which are amenable to current
technology are in a large part [But other approaches are
possible. Let us quote the work [98] on partially hyperbolic
systems, for instance.] those that can be reduced to the fol-
lowing type:

Definition 1 Let T : X ! X be a nonsingular map on
a probability, metric space (X;B; �; d) with bounded di-
ameter, preserving the probability measure �. This map is
said to be Gibbs–Markov if there exists a countable (mea-
surable) partition ˛ of X such that:

1. For all a 2 ˛, T is injective on a and T(a) is a union of
elements of ˛.

2. There exists  > 1 such that, for all a 2 ˛, for all points
x; y 2 a, d(Tx; Ty) � d(x; y).

3. Let Jac be the inverse of the Jacobian of T. There exists
C > 0 such that, for all a 2 ˛, for all points x; y 2 a,
j1 � Jac(x)/Jac(y)j � Cd(Tx; Ty).

4. The map T has the “big image property”: infa2˛
�(Ta) > 0.

Some piecewise expanding and C2 maps are obviously
Gibbs–Markov but the real point is that many dynam-
ics can be reduced to that class by the use of inducing
and tower constructions as in [262], in particular. This in-
cludes possibly piecewise uniformly hyperbolic diffeomor-
phisms, Collet–Eckmannmaps of the interval [21] (typical
chaotic maps in the quadratic family), billiards with con-
vex scatterers [262], the stadium billiard [71], Hénon-like
mappings [266].

We note that in many cases one is led to first ana-
lyze mixing properties through decay of correlations, i. e.,
to prove inequalities of the type [21]:

ˇ
ˇ̌
ˇ

Z

X
� �  ı Tn d� �

Z

X
� d�

Z

X
 d�

ˇ
ˇ̌
ˇ � k�k�k kw �an

(5)

where (an)n�1 is some sequence converging to zero, e. g.,
an D e��n , 1/n˛ , . . . and k � k, k � kw a strong and a weak
norm (e. g., the variation norm and the L1 norm). These
rates of decay are often linked with return times statis-
tics [263]. Rather general schemes have been developed to

deduce various limit theorems such as those presented be-
low from sufficiently quick decay of correlations (see no-
tably [175] based on a dynamical variant of [113]).

Probabilistic Limit Theorems

The foremost limit property is the following:

Definition 2 A class C of functions � : X ! R is said to
satisfy the Central Limit Theorem if the following holds:
for all � 2 C, there is a number � D �(�) > 0 such that:

lim
n!1

�

��
x 2 X :

An�(x)�
R
� d�

�n�1/2
� t

��

D

Z t

�1

e�x
2/2
2 dx
p
2��

(6)

except for the degenerate case when �(x) D  (Tx) �
�(x)C const.

The Central Limit Theorem can be seen in many cases as
essentially a by-product of fast decay of correlations [175],
i. e., if

P
n�0 an <1 in the notations of Eq. (5). It has

been established for Hölder-continuous observables for
many systems together with their natural invariant mea-
sures including: uniformly hyperbolic attractors, piecewise
expanding maps of the interval [174], Collet–Eckmann
unimodal maps on the interval [152,260], piecewise hy-
perbolic maps [74], billiards with convex scatterers [238],
Hénon-like maps [35].

Remark 5 The classical Central Limit Theorem holds for
square-integrable random variables [193]. For maps ex-
hibiting intermittency (e.g, interval maps like f (x) D x C
x1C˛ mod 1 with an indifferent fixed point at 0) the in-
variant density has singularities and the integrability con-
dition is non longer automatic for smooth functions. One
can then observe convergence to stable laws, instead of the
normal law [114].

A natural question is the speed of the convergence in (6).
The Berry–Esseen inequality:

ˇ
ˇ̌
ˇ�
��

An�(x)�
R
� d�

�n�1/2
� t

��
�

Z t

�1

e�x
2/2
2 dx
p
2��

ˇ
ˇ̌
ˇ

�
C
nı/2

for some ı > 0. It holds with ı D 1 in the classical, proba-
bilistic setting.

The Local Limit Theorem looks at a finer scale, assert-
ing that for any finite interval [a; b], any t 2 R,
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lim
n!1

p
n�

�n
x 2 X : nAn�(x) 2 [a; b]C

p
nt

Cn
Z
� d�

o�
D jb � aj

e�t2/2
2

p
2��

:

Both the Berry–Esseen inequality and the local limit theo-
rem have been shown to hold for non-uniformly expand-
ing maps [115] (also [62,216]).

Almost Sure Results

It is very natural to try and describe the statistical prop-
erties of the averages An(x) for almost every x, instead
of the weaker above statements in probability over x.
An important such property is the almost sure invari-
ance principle. It asks for the discrete random walk de-
fined by the increments of � ı Tn(x) to converge, after
a suitable renormalization, to a Brownian motion. This
has been proved for systems with various degrees of hy-
perbolicity [92,98,135,183]. Another one is the almost sure
Central Limit Theorem. In the independent case (e. g.,
if X1; X2; : : : are independent and identically distributed
random variables in L2 with zero average and unit vari-
ance), the almost sure Central Limit Theorem states that,
almost surely:

1
log n

nX

kD1

1
k
ıPk�1

jD0 X j/
p

k

converges in law to the normal distribution. This implies,
that, almost surely, for any t 2 R:

lim
n!1

1
log n

nX

kD1

1
k
ınPk�1

jD0 X j/
p

k�t
o

D

Z t

�1

e�x
2/2
2 dx
p
2��

compare to (6).
A general approach is developed in [73], covering

Gibbs–Markov maps and those that can be reduced to
it. They show in particular that the dynamical properties
needed for the classical Central Limit Theorem in fact suf-
fice to prove the above almost invariance principle and
even the almost sure version of the Central Limit Theorem
(using general probabilistic results, see [37,255]).

Other Statistical Properties

Essentially all the statistical properties of sums of indepen-
dent identically distributed random variables can be estab-
lished for tractable systems. Thus one can also prove large
deviations [156,172,259], iterated law of the logarithm, etc.

We note that the monograph [78] contains a nice intro-
duction to the current work in this area.

Orbit Complexity

The orbit complexity of a dynamical system f : M ! M
is measured by its topological and measured entropies.
We refer to � Entropy in Ergodic Theory for detailed
definitions.

The Variational Principle

Bowen–Dinaburg and Katok formulae can be interpreted
as meaning that the topological entropy counts the num-
ber of arbitrary orbits whereas the measured entropy
counts the number of orbits relevant for the given mea-
sure. In most situations, and in particular for continuous
self-map of compact metric spaces, the following varia-
tional principle holds:

htop( f ) D sup
�2M( f )

h( f ; �)

whereM( f ) is the set of all invariant probability measures.
This is all the more striking in light of the fact that

for many systems, the set of points which are typical from
the point of view of ergodic theory [for instance, those x
such that limn!1

1
n
Pn�1

kD0 �(T
kx) exists for all continu-

ous functions � .] is topologically negligible [A subset of
a countable union of closed sets with empty interior, that
is, meager or first Baire category.].

Strict Inequality For a fixed invariant measure, one can
only assert that h( f ; �) � htop( f ). One should be aware
that this inequality may be strict even for a measure with
full support. For instance, it is not difficult to check that
the full tent map with htop( f ) D log 2, admits ergodic in-
variant measures with full support and zero entropy.

There are also examples of dynamical systems preserv-
ing Lebesgue measure which have simultaneously posi-
tive topological entropy and zero entropy with respect to
Lebesgue measure. That this occurs for C1 surface dif-
feomorphisms preserving area is a simple consequence of
a theorem of Bochi [44] according to which, generically
in the C1 topology, such a diffeomorphism is either uni-
formly hyperbolic or with Lyapunov exponents Lebesgue-
almost everywhere zero. [Indeed, it is easy to build such
a diffeomorphism having both a uniformly hyperbolic com-
pact invariant subset which will have robustly positive topo-
logical entropy and a non-degenerate elliptic fixed point
which will prevent uniform hyperbolicity and therefore force
all Lyapunov exponents to be zero. But Ruelle–Margulis
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inequality then implies that the entropy with respect to
Lebesguemeasure is zero.] Smooth examples also exist [46].

Remark 6 Algorithmic complexity [170] suggests another
way to look at orbit complexity. One obtains in fact in
this way another formula for the entropy. However this
point of view becomes interesting in some settings, like ex-
tended systems defined by partial differential equations in
unbounded space. Recently, [47] has used this approach to
build interesting invariant measures.

Orbit Complexity on the Set of Measures

We have considered the entropies of each invariant mea-
sure separately, sharing only the common roof of topolog-
ical entropy. One may ask how these different complexity
sit together. A first answer is given by the following theo-
rem in the symbolic and continuous setting. Let .

Theorem 9 (Downarowicz–Serafin [102]) Let K be
a Choquet simplex and H : K ! R be a convex function.

Say that H is realized by a self-map f : X ! X and
its set M( f ) of f -invariant probability measures equipped
with the weak star topology if the following holds. There ex-
ists an affine homeomorphism � : M( f )! K such that, if
h : M( f )! [0;1] is the entropy function, H D h ı � .

Then

� H is realized by some continuous self-map of a compact
space if and only if it is an increasing limit of upper semi-
continuous and affine functions.

� H is realized by some subshift on a finite alphabet,
i. e., by the left shift on a closed invariant subset ˙ of
f1; 2; : : : ;NgZ for some N <1, if and only if it is up-
per semi-continuous

Thus, in both the symbolic and continuous settings it is
possible to have a unique invariant measure with any pre-
scribed entropy. This stands in contrast to surface C1C�-
diffeomorphisms for which the set of the entropies of er-
godic invariant measures is always the interval [0; htop( f )]
as a consequence of [147].

Local Complexity

Recall that the topological entropy can be computed as:
htop( f ) D lim�!0 htop( f ; �) where:

htop( f ; �) :D lim
n!1

1
n
log s(ı; n; X)

where s(ı; n; E) is the maximum cardinality of a subset S
of E such that:

x ¤ y H) 90 � k < n d( f k x; f k y) � �

(see Bowen’s formula of the topological entropy � En-
tropy in Ergodic Theory). Likewise, the measure-theoretic
entropy h(T; �) of an ergodic invariant probability mea-
sure � is lim�!0 h( f ; �; �) where:

h(T; �) :D lim
n!1

1
n
log r(ı; n; �)

where r(ı; n; �) is the minimum cardinality of C � X
such that

�

˚

x 2 X : 9y 2 C such that

80 � k < n d( f k x; f k y) < �
��
> 1/2 :

One can ask at which scales does entropy arise for a given
dynamical system?, i. e., how the above quantities h(T; �),
h(T; �; �) converge when � ! 0.

An answer is provided by the local entropy. [This quan-
tity was introduced by Misiurewicz [186] under the name
conditional topological entropy and is called tail entropy
by Downarowicz [100].] For a continuous map f of a com-
pact metric space X, it is defined as:

hloc( f ) :D lim
�!0

hloc( f ; �) with

hloc( f ; �) :D sup
x2X

hloc( f ; �; x) and

hloc( f ; �; x) :D lim
ı!0

lim sup
n!1

1
n
log s



ı; n;

˚
y 2 X :

8k � 0 d( f k y; f kx) < �
��

Clearly from the above formulas:

htop( f ) � htop( f ; ı)C hloc( f ; ı) and
h( f ; �) � h( f ; �; ı)C hloc( f ; ı) :

Thus the local entropy bounds the defect in unifor-
mity with respect to the measure of the pointwise
limit h( f ; �) D limı!0 h( f ; �; ı). An exercise in topol-
ogy shows that the local entropy therefore also bounds the
defect in upper semicontinuity of � 7! h( f ; �). In fact, by
a result of Downarowicz [100] (extended by David Bur-
guet to the non-invertible case), there is a local variational
principle:

hloc( f ) D lim
ı!0

 

sup
�

h( f ; �) � h( f ; �; ı)

!

D sup
�

lim sup
�!�

h( f ; �) � h( f ; �)

for any continuous self-map f of a compact metric space.
The local entropy is easily bounded for smooth maps

using Yomdin’s theory:
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Theorem 10 ([64]) For any Cr map f of a compact
manifold, hloc( f ) � d

r log supx k f
0(x)k. In particular,

hloc( f ) D 0 if r D 1.

Thus C1 smoothness implies the existence of a maximum
entropy measure (this was proved first by Newhouse) and
the existence of symbolic extension: a subshift over a fi-
nite alphabet � : ˙ ! ˙ and a continuous and onto map
� : ˙ ! M such that � ı � D f ı � . More precisely,

Theorem 11 (Boyle, Fiebig, Fiebig [56]) Given a homeo-
morphism f of a compact metric space X, there exists a prin-
cipal symbolic extension � : ˙ ! ˙ , i. e., a symbolic exten-
sion such that, for every �-invariant probability measure �,
h(�; �) D h( f ; � ı ��1), if and only if hloc( f ) D 0.

We refer to [55,101] for further results, including a real-
ization theorem showing that the continuity properties of
the measured entropy are responsible for the properties
of symbolic extensions and also results in finite smooth-
ness.

Global Simplicity

One can marvel at the power of mathematical analysis to
analyze such complex evolutions. Of course another way
to look at this is to remark that this analysis is possible once
this evolution has been fitted in a simple setting: one had to
move focus away from an individual, unpredictable orbit,
of, say, the full tent map to the set of all the orbits of that
map, which is essentially the set of all infinite sequences
over two symbols: a very simple set indeed corresponding
to full combinatorial freedom [[253] describes a weakening
of this which holds for all positive entropy symbolic dynam-
ics.]. The complete description of a given typical orbit re-
quires an infinite amount of information, whereas the set
of all orbits has a finite and very tractable definition. The
complexity of the individual orbits is seen now as coming
from purely random choices inside a simple structure.

The classical systems, namely uniformly expanding
maps or hyperbolic diffeomorphisms of compact spaces,
have a simple symbolic dynamics. It is not necessarily a full
shift like for the tent map, but it is a subshift of finite
type, i. e., a subshift obtained from a full shift by forbid-
ding finitely many finite subwords. What happens outside
of the uniform setting?

A fundamental example is provided by piecewise
monotone maps, i. e., interval maps with finitely many
critical points or discontinuities. The partition cut by
these points defines a symbolic dynamics. This subshift
is usually not of finite type. Indeed, the topological en-
tropy taking arbitrary finite nonnegative values [For in-
stance, the topological entropy of the ˇ-transformation,

x 7! ˇx mod 1, is logˇ for ˇ � 1.], a representation that
respects it has to use an uncountable class of models. In
particular models defined by finite data, like the subshifts
of finite type, cannot be generally adequate. However there
are tractable “almost finite representations” in the follow-
ing senses:

Most symbolic dynamics ˙(T) of piecewise mono-
tone maps T can be defined by finitely many infinite se-
quences, the kneading invariants of Milnor and Thurston:
�C0 ; �

�
1 ; �

C
1 ; : : : ; �

�
dC1 2 f0; : : : ; dg

N if d is the number of
critical/discontinuity points. [The kneading invariants are
the suitably defined (left and right) itineraries of the criti-
cal/discontinuity points and endpoints.] Namely,

˙(T) D
˚
˛ 2 f0; : : : ; dgN : 8n � 0

�C˛n � �
n˛ � ��˛nC1

�

where� is a total order on f0; : : : ; dgN making the coding
x 7! ˛ non-decreasing. Observe how the kneading invari-
ants determine ˙(T) in an effective way: knowing their
first n symbols is enough to know the sequences of length n
which begin sequences of ˙(T). We refer to [91] for the
wealth of information that can be extracted from these
kneading invariants followingMilnor and Thurston [184].

This form of global simplicity can be extended to other
classes of non-uniformly expandingmaps, including those
like Eq. (4) using the notions of subshifts and puzzles of
quasi-finite type [68,69]. This leads to the notion and anal-
ysis of entropy-expanding maps, a new open class of non-
uniformly expanding maps admitting critical hypersur-
faces, defined purely in terms of entropies including the
otherwise untractable examples of Eq. (4).

A generalization of the representation of uniform sys-
tems by subshifts of finite type is provided by strongly pos-
itive recurrent countable state Markov shifts, a subclass of
Markov shifts (see glossary.) which shares many properties
with the subshifts of finite type [57,123,124,224,229].

These “simple” systems admit a classification result
which in particular identifies their measures with entropy
close to the maximum [57]. Such a classification general-
izes [164]. The “ideology” here is that complexity of indi-
vidual orbits in a simple setting must come from random-
ness, but purely random systems are classified by their en-
tropy according to Ornstein [197].

Stability

By definition, chaotic dynamical systems have orbits
which are unstable and numerically unpredictable. It is
all the more surprising that, once one accepts to consider
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their dynamics globally, they exhibit very good stability
properties.

Structural Stability

A simple form of stability is structural stability: a sys-
tem f : M ! M is structurally Cr-stable if any system g
sufficiently Cr-close to f is topologically the same as f ,
formally: g is topologically conjugate, i. e., there is some
homeomorphism [If h were C1, the conjugacy would im-
ply, among other things, that for every p-periodic point:
det(( f p)0(x)) D det((g p)0(h(p))), a much too strong re-
quirement.] h : M ! M mapping the orbits of f to those
of g, i. e., g ı h D h ı f .

Andronov and Pontryaguin argued in the 1930’s that
only such structurally stable systems are physically rele-
vant. Their idea was that the model of a physical system
is always known only to some degree of approximation,
hence mathematical model whose structure depends on
arbitrarily small changes should be irrelevant.

A first question is: What are these structurally stable
systems? The answer is quite striking:

Theorem 12 (Mañé [182]) Let f : M ! M be a C1 dif-
feomorphism of a compact manifold.

f is structurally stable among C1-diffeomorphisms of M
if and only if f is uniformly hyperbolic on its chain recurrent
set. [A point x is chain recurrent if, for all � > 0, there exists
a finite sequence x0; x1; : : : ; xn such that x0 D xn D x and
d( f (xk); xkC1) < �. The chain recurrent set is the set of all
chain recurrent points.]

A basic idea in the proof of the theorem is that failure
of uniform hyperbolicity gives the opportunity to make
an arbitrarily small perturbation contradicting the struc-
tural stability. In higher smoothness the required pertur-
bation lemmas (e. g., the closing lemma [14,148,180]) are
not available.

We note that uniform hyperbolicity without invertibil-
ity does not imply C1-stability [210].

A second question is: are these stable systems dense? (So
that one could offer structurally stable models for all phys-
ical situations). A deep discovery around 1970 is that this
is not the case:

Theorem 13 (Abraham–Smale, Simon [3,234]) For any
r � 1 and any compact manifold M of dimension � 3, the
set of uniformly hyperbolic diffeomorphisms is not dense
in the space of Cr diffeomorphisms of M. [They use the
phenomenon called “heterodimensional homoclinic inter-
sections”.]

Theorem 14 (Newhouse [194]) For any r � 2, for any
compact manifold M of dimension� 2, the set of uniformly

hyperbolic diffeomorphisms is not dense in the space of Cr

diffeomorphisms of M. More precisely, there exists a non-
empty open subset in this space which contains a dense
Gı subset of diffeomorphisms with infinitely many periodic
sinks. [So these diffeomorphisms have no finite statistical
description.]

Observe that it is possible that uniform hyperbolicity could
be dense among surface C1-diffeomorphisms (this is the
case for C1 circle maps by a theorem of Jakobson [145]).

In light of Mañé C1-stability theorem this implies that
structurally stable systems are not dense, thus one can ro-
bustly see behaviors that are topologically modified by
arbitrarily small perturbations (at least in the C1-topol-
ogy)! So one needs to look beyond these and face that
topological properties of relevant dynamical system are
not determined from “finite data”. It is natural to ask
whether the dynamics is almost determined by “sufficient
data”.

Continuity Properties of the Topological Dynamics

Structural stability asks the topological dynamics to re-
main unchanged by a small perturbation. It is probably at
least as interesting to ask it to change continuously. This
raises the delicate question of which topology should be
put on the rather wild set of topological conjugacy classes.
It is perhapsmore natural to associate to the system a topo-
logical invariant taking value in amoremanageable set and
ask whether the resulting map is continuous.

A first possibility is Zeeman’s Tolerance Stability Con-
jecture. He associated to each diffeomorphism the set of all
the closures of all of its orbits and he asked whether the re-
sulting map is continuous on a denseGı subset of the class
of Cr-diffeomorphisms for any r � 0. This conjecture re-
mains open, we refer to [85] for a discussion and related
progress.

A simpler possibility is to consider our favorite topo-
logical invariant, the topological entropy, and thus ask
whether the dynamical complexity as measured by the en-
tropy is a stable phenomenon. f 7! htop( f ) is lower semi-
continuous for f among C0 maps of the interval [On the
set of interval maps with a bounded number of critical
points, the entropy is continuous [188]. Also t 7! htop(Qt)
is non-decreasing by complex arguments [91], though it
is a non-smooth function.] [187] and for f among C1C�-
diffeomorphisms of a compact surface [147]. [It is an im-
portant open question whether this actually holds for C1-
diffeomorphisms. It fails for homeomorphisms [214].] In
both cases, one shows the existence of structurally stable
invariant uniformly expanding or hyperbolic subsets with
topological entropy close to that of the whole dynamics.
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On the other hand f 7! htop( f ) is upper semi-continuous
for C1 maps [195,254].

Statistical Stability

Statistical stability is the property that deterministic pertur-
bations of the dynamical system cause only small changes
in the physical measures, usually with respect to the weak
star topology on the space of measures. When the physi-
cal measure�g is uniquely defined for all systems g near f ,
statistic stability is the continuity of the map g 7! �g thus
defined.

Statistical stability is known in the uniform setting and
also in the piecewise uniform case, provided the expansion
is strong enough [25,42,151] (otherwise there are counter-
examples, even in the one-dimensional case).

It also holds in some non-uniform settings without
critical behavior, in particular for maps with dominated
splitting satisfying robustly a separation condition be-
tween the positive and negative Lyapunov exponents [247]
(see also [7]).

However statistical unstability occurs in dynamics
with critical behaviors [18]:

Theorem 15 Consider the quadratic family Qt(x) D
tx(1� x), t 2 [0; 4]. Let I � [0; 4] be the full measure sub-
set of [0; 4] of good parameters t such that in particular Qt
admits a physical measure (necessarily unique). For t 2 I,
let �t be this physical measure.

Lebesgue almost every t 2 I such that �t is not car-
ried by a periodic orbit [At such parameters, statistical
stability is easily proved.], is a discontinuity point of the
map t 7! �t [M([0; 1]) is equipped with the vague topol-
ogy.]. However, for Lebesgue almost every t, there is a sub-
set It � I for which t is a Lebesgue density point [t is
a Lebesgue density point if for all r > 0, the Lebesgue
measure m(It \ [t � r; t C r]) > 0 and lim�!0 m(It \
[t� �; tC �])/2� D 1.] and such that � : It ! M([0; 1]) is
continuous at t.

Stochastic Stability

A physically motivated and a technically easier approach
is to study stability of the physical measure under stochas-
tic perturbations. For simplicity let us consider a diffeo-
morphism of a compact subset of Rd allowing for a direct
definition of additive noise. Let  (x)dx be an absolutely
continuous probability law with compact support. [Some-
times additional properties are required of the density, e. g.,
 (x) D �(x)1B where 1B is the characteristic function of
the unit ball and C�1 � �(x) � C for some C <1.] For
� > 0, consider the Markov chain f� with state space M
and transition probabilities:

P�(x;A) D
Z

A
 

�
y � f (x)

�

�
dy
�d
:

The evolution of measures is given by: ( f��)(A) DR
M P�(x;A) d�. Under rather weak irreducibility assump-

tions on f , f� has a unique invariant measure �� (con-
trarily to f ) and �� is absolutely continuous. When f has
a unique physical measure �, it is said to be stochastically
stable if lim�!0 �� D � in the appropriate topology (the
weak star topology unless otherwise specified).

It turns out that stochastic stability is a rather common
property of Sinai–Ruelle–Bowen measures. It holds not
only for uniformly expanding maps or hyperbolic diffeo-
morphisms [153,258], but also for most interval maps [25],
for partially hyperbolic systems of the type Eu ˚ Ecs or
Hénon-like diffeomorphisms [6,13,33,40]. We refer to the
monographs [21,41] for more background and results.

Untreated Topics

For reasons of space and time, many important topics have
been left out of this article. Let us list some of them.

Other phenomena related to chaotic dynamics have
been studied: entrance times [77,79], spectral properties
and dynamical zeta functions [21], escape rates [104], di-
mension [204], differentiability of physical measures with
respect to parameters [99,223], entropies and volume or
homological growth rates [118,139,254].

As far as the structure of the setting is concerned,
one can go beyond maps or diffeomorphisms or flows
and study: more general group actions [128]; holomor-
phic and meromorphic structures [72] and the references
therein; symplectic or volume-preserving [90,137] and in
particular the Pugh–Shub program around stable ergod-
icity of partially hyperbolic systems [211]; random itera-
tions [17,154,155].

A number of important problems have motivated the
study of special forms of chaotic dynamics: equidistribu-
tion in number theory [105,109,138] and geometry [236];
quantum chaos [10,125]; chaotic control [227]; analysis of
algorithms [245].

We have also omitted the important problem of ap-
plying the above results. Perhaps because of the lack of
a general theory, this can often be a challenge (see for in-
stance [244] for the already complex problem of verify-
ing uniform hyperbolicity for a singular flow). Liverani has
shown how theoretical results can lead to precise and ef-
ficient estimates for the toy model of piecewise expand-
ing interval maps [176]. Ergodic theory implies that, in
some settings at least, adding noise may make some esti-
mates more precise (see [157]). We refer to [106] and the
reference therein.
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Future Directions

We conclude this article by a (very partial) selection of
open problems.

General Theory

In dimension 1, we have seen that the analogue of the
Palis conjecture (see above) is established (Theorem 2).
However the description of the typical dynamics in Kol-
mogorov sense is only known in the unimodal, non-de-
generate case by Theorem 3. Indeed, results like [63] sug-
gest that the multimodal picture could be more complex.

In higher dimensions, our understanding is much
more limited. As far as a general theory is concerned,
a deep problem is the paucity of results on the generic
dynamics in Cr smoothness with r > 1. The remarkable
current progress in generic dynamics (culminating in the
proof of the weak Palis conjecture, see [84], the references
therein and [51] for background) seems restricted to the
C1 topology because of the lack of fundamental tools (e. g.,
closing lemmas) in higher smoothness. But Pesin theory
requires higher smoothness at least technically. This is
not only a hard technical issue but generic properties of
physical measures, when they have been analyzed are of-
ten completely different between the C1 case and higher
smoothness [45].

Physical Measures

In higher dimensions, Benedicks and Carleson analysis of
the Hénon map has given rise to a rather general theory
of Hénon-like maps and more generally of the dynami-
cal phenomena associated to homoclinic tangencies. How-
ever, the proofs are extremely technical. Could they be
simplified? Current attempts like [266] center on the in-
troduction of a simpler notion of critical points, possibly
a non-inductive one [212].

Can this Hénon theory be extended to the weakly dis-
sipative situation? to the conservative situation (for which
the standard map is a well-known example defying analy-
sis)? In the strongly dissipative setting, what are the typ-
ical phenomena on the complement of the Benedicks–
Carleson set of parameters?

From a global perspective one of the main questions is
the following:

Can infinitely many sinks coexist for a large set of
parameters in a typical family or is Newhouse phe-
nomenon atypical in the Kolmogorov or prevalent
sense?

This seems rather unlikely (see however [11]).

Away from such “critical dynamics”, there are many
results about systems with dominated splitting satisfy-
ing additional conditions. Can these conditions be weak-
ened so they would be satisfied by typical systems satisfy-
ing some natural conditions (like robust transitivity)? For
instance:

Could one analyze the physical measures of volume-
hyperbolic systems?

A more specific question is whether Tsujii’s striking
analysis of surface maps with one uniformly expand-
ing direction can be extended to higher dimensions? can
one weaken the uniformity of the expansion? The same
questions for the corresponding invertible situation is
considered in [83].

Maximum Entropy Measures
and Topological Complexity

As we explained, C1 smoothness, by a Newhouse theo-
rem, ensures the existence of maximum entropy measures,
making the situation a little simpler than with respect to
physical measures. This existence results allow in particu-
lar an easy formulation of the problem of the typicality of
hyperbolicity:

Are maximum entropy ergodic measures of systems
with positive entropy hyperbolic for most systems?

Amore difficult problem is that of the finite multiplicity of
the maximum entropy measures. For instance:

Do typical systems possess finitely many maximum
entropy ergodic measures?

More specifically, can one prove intrinsic ergodicity (ie,
uniqueness of the measure of maximum entropy) for an
isolated homoclinic class of some diffeomorphisms (per-
haps C1-generic)? Can a generic C1-diffeomorphism carry
an infinite number of homoclinic classes, each with topo-
logical entropy bounded away from zero?

A perhaps more tractable question, given the recent
progress in this area: Is a C1-generic partially hyperbolic
diffeomorphisms, perhaps with central dimension 1 or 2,
intrinsically ergodic?

We have seen how uniform systems have simple sym-
bolic dynamics, i. e., subshifts of finite type, and how in-
terval maps and more generally entropy-expanding maps
keep some of this simplicity, defining subshifts or puzzles
of quasi-finite type [68,69]. [264] have defined symbolic
dynamics for topological Hénon-like map which seems
close to that of that of a one-dimensional system.
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Can one describeWang and Young symbolic dynam-
ics of Hénon-like attractors and fit it in a class in
which uniqueness of the maximum entropy measure
could be proved?

More generally, can one define nice combinatorial de-
scriptions, for surface diffeomorphisms? Can one for-
mulate variants of the entropy-expansion condition
[For instance building on our “entropy-hyperbolicity”.]
of [66,70], that would be satisfied by a large subset of the
diffeomorphisms?

Another possible approach is illustrated by the prun-
ing front conjecture of [87] (see also [88,144]). It is an
attempt to build a combinatorial description by trying to
generalize the way that, for interval maps, kneading invari-
ants determine the symbolic dynamics by considering the
bifurcations from a trivial dynamics to an arbitrary one.

We hope that our reader has shared in our fascination
with this subject, the many surprising and even paradoxi-
cal discoveries that have been made and the exciting cur-
rent progress, despite the very real difficulties both in the
analysis of such non-uniform systems as the Henon map
and in the attemps to establish a general (and practical)
ergodic theory of chaotic dynamical systems.
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Glossary

Equicontinuity All points are equicontinuity points (in
compact settings).

Equicontinuity point A point for which the orbits of
nearby points remain close.

Expansivity From two distinct points, orbits eventually
separate.

Injectivity The next state function is injective.
Linear CA A CA with additive local rule.
Regularity The set of periodic points is dense.
Sensitivity to initial conditions For any point x there ex-

ist arbitrary close points whose orbits eventually sepa-
rate from the orbit of x.

Strong transitivity There always exist points which even-
tually move from any arbitrary neighborhood to any
point.

Surjectivity The next state function is surjective.
Topological mixing There always exist points which def-

initely move from any arbitrary neighborhood to any
other.

Transitivity There always exist points which eventually
move from any arbitrary neighborhood to any other.

Definition of the Subject

A discrete time dynamical system (DTDS) is a pair hX; Fi
where X is a set equipped with a distance d and F : X 7! X
is a mapping which is continuous on X with respect to
the metric d. The set X and the function F are called the
state space and the next state map. At the very beginning
of the seventies, the notion of chaotic behavior for DTDS
has been introduced in experimental physics [46]. Suc-
cessively, mathematicians started investigating this new
notion finding more and more complex examples. Al-
though a general universally accepted theory of chaos has
not emerged, at least some properties are recognized as
basic components of possible chaotic behavior. Among
them one can list: sensitivity to initial conditions, tran-
sitivity, mixing, expansively etc. [5,6,21,22,28,29,38,41,42,
58,59,60].

In the eighties, S. Wolfram started studying some
of these properties in the context of cellular automata
(CA) [64]. These pioneering studies opened the way to
a huge amount of successive paper which aimed to com-
plete, precise and further develop the theory of chaos in the
CA context (� Dynamics of Cellular Automata in Non–
compact Spaces, � Topological Dynamics of Cellular Au-
tomata,� Ergodic Theory of Cellular Automata, [7,8,9,10,
11,13,14,15,16,17,35,43,51]). This long quest has also been
stimulated by the advent of more andmore powerful com-
puters which helped researchers in their investigations.
However, remark that most of the properties involved in
chaos definitions turned out to be undecidable [23,34,39,
40,45]. Anyway, there are non-trivial classes of CA for
which these properties are decidable. For this reason in the
present work we focus on linear CA.

Introduction

Cellular automata are simple formal models for complex
systems. They are used in many scientific fields ranging
from biology to chemistry or from physics to computer
science.

A CA is made of an infinite set of finite automata dis-
tributed over a regular lattice L. All finite automata are
identical. Each automaton assumes a value, chosen from
a finite setA, called the alphabet. A configuration is a snap-
shot of the all automata values, i. e., a function fromL toA.
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In the present chapter, we consider the D dimensional lat-
tice L D ZD .

A local rule updates the value of an automaton on
the basis of its current value and the ones of a fixed set
of neighboring automata which are individuated by the
neighborhood frame N D fEu1; : : : ; Eusg � ZD . Formally,
the local rule is a function f : As ! A.

All the automata of the lattice are updated syn-
chronously in discrete time steps. In other words, the local
rule f induces a global rule F : AZD

! AZD , describing the
evolution of the whole system from a generic time t 2 N
to t C 1.

When one equips the configuration space with a met-
ric, a CA can be viewed as a DTDS hAZD

; Fi. The state
space AZD of a CA is also called the configuration space
AZD . From now on, we identify a CA with the dynamical
system induced by itself or with its global rule.

As we have already told, the studies on the chaotic be-
havior of CA have played a central role in the last twenty
years. Unfortunately, most of the properties involved are
undecidable. In this chapter, we illustrate these notions
by means of a particular class of CA in which they turn
out to be decidable constituting a valid source for exam-
ples and understanding. Indeed, we focus on linear CA,
i. e., CA whose local rule is a linear function on a finite
group G. For clarity’s sake, we assume that G is the set
Zm D f0; 1; : : : ;m � 1g of integers modulo m and C the
cell-wise addition.

Despite their simplicity, linear CA exhibit many of the
complex features of general CA ranging from trivial to the
most complicated behaviors.

Definitions

Given a DTDS hX; gi the next state function induces de-
terministic dynamics by its iterated application starting
from a given initial state. Formally, for a fixed state x 2 X,
the dynamical evolution or orbit of initial state x is the se-
quence fFn(x)gn2N . A state p 2 X is a periodic point if
there exists an integer n > 0 such that Fn(p) D p.

Deterministic Chaos

We are particularly interested in the properties which
can be considered as components of “chaotic” behavior.
Among them, sensitivity to initial conditions is the most
intriguing, at least at a level of popular divulgement. It
captures the feature that small errors in experimental mea-
surements lead to large scale divergence in the evolution.

Definition 1 (Sensitivity) A DTDS hX; Fi is sensitive
to the initial conditions (or simply sensitive) if there ex-

ists a constant " > 0 such that for any state x 2 X and
any ı > 0 there is a state y 2 X such that d(y; x) < ı and
d(Fn(y); Fn(x)) > " for some n 2 N.

Intuitively, a DTDS is sensitive if for any state x there ex-
ist points arbitrarily close to x which eventually separate
from x under iteration of F. Sensitivity is a strong form
of instability. In fact, if a system is sensitive to the initial
conditions and we are not able to measure with infinite
precision the initial state, we cannot predict its dynamical
evolution. This means that experimental or casual errors
can lead to wrong results.

The following is another form of unpredictability.

Definition 2 (Positive Expansivity) A DTDS hX; Fi is
positively expansive if there exists a constant " > 0 such
that for any pair of distinct states x; y 2 X we have
d(Fn(y); Fn(x)) � " for some n 2 N.

Remark that in perfect spaces (i. e., spaces without isolated
points), expansive DTDS are necessarily sensitive to initial
conditions.

Sensitivity alone, notwithstanding its intuitive appeal,
has the drawback that, once taken as the unique condition
for characterizing chaos, it appears to be neither sufficient
nor as intuitive as it seems at a first glance.

Indeed, for physicists, a chaotic system must be nec-
essarily nonlinear (the term linear in its classical meaning
refers to the linearity of the equation which governs the
behavior of a system). However, it is easy to find linear
systems (on the reals, for instance) which are sensitive to
initial conditions. Hence, a chaotic system has to satisfy
further properties other than sensitivity.

Definition 3 (Transitivity) A DTDS hX; Fi is (topo-
logically) transitive if for all non empty open subsets U
and V of X there exists a natural number n such that
Fn(U) \ V ¤ ;.

Intuitively, a transitive DTDS has points which eventu-
ally move under iteration of F from one arbitrarily small
neighborhood to any other. As a consequence, the dy-
namical system cannot be decomposed into two disjoint
clopen sets which are invariant under the iterations of F.
Indecomposability is an important feature since, roughly
speaking, it guarantees that the system behaves in the same
way in the whole state space. Finally, note that transitivity
implies surjectivity in the case of compact spaces.

Some DTDSmay exhibit stronger forms of transitivity.

Definition 4 (Mixing) A DTDS hX; Fi is topologically
mixing if for all non-empty open subsets U;V of X there
exists a natural number m such that for every n � m it
holds that Fn(U) \ V ¤ ;.
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The previous notion is the topological version of the well-
known mixing property of ergodic theory. It is particu-
larly useful when studying product of systems. Indeed, the
product of two transitive systems is not necessarily transi-
tive; it is transitive if one of the two systems is mixing [27].

Moreover, remark that any non-trivial (i. e. with at
least two points) mixing system is sensitive to initial con-
ditions [44].

Definition 5 (Strong Transitivity) A DTDS hX; Fi is
strongly transitive if for any nonempty open setU � X we
have that

SC1
nD0 F

n(U) D X.

A strongly transitive map F has points which eventu-
ally move under iteration of F from one arbitrarily small
neighborhood to any other point. As a consequence,
a strongly transitive map is necessarily surjective.

Finally, remark that many well-known classes of tran-
sitive DTDS (irrational rotations of the unit circle, the tent
map, the shift map, etc.) exhibit the following form of tran-
sitivity.

Definition 6 (Total Transitivity) A DTDS hX; Fi is to-
tal transitive if for all integers n > 0, the system hX; Fni is
transitive.

Proposition 1 ([27]) Any mixing DTDS is totally transi-
tive.

At the beginning of the eighties, Auslander and Yorke in-
troduced the following definition of chaos [5].

Definition 7 (AY-Chaos) A DTDS is AY-chaotic if it is
transitive and it is sensitive to the initial conditions.

This definition involves two fundamental characteristics:
the undecomposability of the system, due to transitivity
and the unpredictability of the dynamical evolution, due
to sensitivity.

We now introduce a notion which is often referred
to as an element of regularity a chaotic dynamical system
must exhibit.

Definition 8 (DPO) A DTDS hX; Fi has the denseness of
periodic points (or, it is regular) if the set of its periodic
points is dense in X.

The following is a standard result for compact DTDS.

Proposition 2 If a compact DTDS has DPO then it is sur-
jective.

In his famous book [22], Devaney modified the AY-chaos
adding the denseness of periodic points.

Definition 9 (D-Chaos) A DTDS is said to be D-chaotic
if it is sensitive, transitive and regular.

An interesting result states that sensitivity, despite its pop-
ular appeal, is redundant in the Devaney definition of
chaos.

Proposition 3 ([6]) Any transitive and regular DTDS
with an infinite number of states is sensitive to initial con-
ditions.

Note that neither transitivity nor DPO are redundant in
the Devaney definition of chaos [37]. Further notions of
chaos can be obtained by replacing transitivity or sensitiv-
ity with stronger properties (like expansively, strong tran-
sitivity, etc.).

Stability

All the previous properties can be considered as compo-
nents of a chaotic, and then unstable, behavior for a DTDS.
We now illustrate some properties concerning conditions
of stability for a system.

Definition 10 (Equicontinuous Point) A state x 2 X of
a DTDS hX; Fi is an equicontinuous point if for any " > 0
there exists ı > 0 such that for all y 2 X, d(y; x) < ı im-
plies that 8n 2 N; d(Fn(y); Fn(x)) < ".

In other words, a point x is equicontinuous (or Lyapunov
stable) if for any " > 0, there exists a neighborhood of x
whose states have orbits which stay close to the orbit of x
with distance less than ". This is a condition of local stabil-
ity for the system.

Associated with this notion involving a single state, we
have two notions of global stability based on the “size” of
the set of the equicontinuous points.

Definition 11 (Equicontinuity) ADTDS hX; Fi is said to
be equicontinuous if for any " > 0 there exists ı > 0 such
that for all x; y 2 X, d(y; x) < ı implies that 8n 2 N;
(Fn(y); Fn(x)) < ".

Given a DTDS, let E be its set of equicontinuity points.
Remark that if a DTDS is equicontinuous then the set E of
all its equicontinuity points is the whole X. The converse
is also true in the compact settings. Furthermore, if a sys-
tem is sensitive then E D ;. In general, the converse is not
true [43].

Definition 12 (Almost Equicontinuity) A DTDS is
almost equicontinuous if the set of its equicontinuous
points E is residual (i. e., it can be obtained by a infinite
intersection of dense open subsets).

It is obvious that equicontinuous systems are almost
equicontinuous. In the sequel, almost equicontinuous sys-
tems which are not equicontinuous will be called strictly
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almost equicontinuous. An important result affirms that
transitive systems on compact spaces are almost equicon-
tinuous if and only if they are not sensitive [3].

Topological Entropy

Topological entropy is another interesting property which
can be taken into account in order to study the degree of
chaoticity of a system. It was introduced in [2] as an in-
variant of topological conjugacy. The notion of topologi-
cal entropy is based on the complexity of the coverings of
the systems. Recall that an open covering of a topological
space X is a family of open sets whose union is X. The join
of two open coveringsU andV isU_V D fU\V : U 2
U;V 2 V g. The inverse image of an open coveringU by
a map F : X 7! X is F�1(U) D fF�1(U) : U 2 Ug. On
the basis of these previous notions, the entropy of a system
hX; Fi over an open coveringU is defined as

H(X;F;U)

D lim
n!1

log jU _ F�1(U) � � � _ F�(n�1)(U)j
n

;

where jUj is the cardinality of U.

Definition 13 (Topological Entropy) The topological
entropy of a DTDS hX; Fi is

h(X; F)
D supfH(X; F;U) : U is an open covering of Xg

(1)

Topological entropy represents the exponential growth of
the number of orbit segments which can be distinguished
with a certain good, but finite, accuracy. In other words,
it measures the uncertainty of the system evolutions when
a partial knowledge of the initial state is given.

There are close relationships between the entropy and
the topological properties we have seen so far. For in-
stance, we have the following.

Proposition 4 ([3,12,28]) In compact DTDS, transitivity
and positive entropy imply sensitivity.

Cellular Automata

Consider the set of configurations C which consists of all
functions fromZD intoA. The spaceC is usually equipped
with the Thychonoff (or Cantor) metric d defined as

8a; b 2 C; d(a; b) D 2�n ;

with n D min
Ev2ZD

n
k Evk1 : a(Ev) ¤ b(Ev)

o
;

where k Evk1 denotes the maximum of the absolute value
of the components of Ev. The topology induced by d co-
incides with the product topology induced by the discrete
topology on A. With this topology, C is a compact, perfect
and totally disconnected space.

Let N D
˚
Eu1; : : : ; Eus

�
be an ordered set of vectors of

ZD and f : As 7! A be a function.

Definition 14 (CA) TheD-dimensional CA based on the
local rule f and the neighborhood frame N is the pair
hCi ; F where F : C 7! C is the global transition rule de-
fined as follows:

8c 2 C; 8Ev 2 ZD ;

F(c)(Ev) D f (c(Ev C Eu1); : : : ; c(Ev C Eus )) : (2)

Note that the mapping F is (uniformly) continuous with
respect to the Thychonoff metric. Hence, the pair hCi ; F
is a proper discrete time dynamical system.

Let Zm D f0; 1; : : : ;m � 1g be the group of the inte-
gers modulo m. Denote by Cm the configuration space C
for the special case AD Zm . When Cm is equipped with
the natural extensions of the sum and the product oper-
ations, it turns out to be a linear space. Therefore, one
can exploit the properties of linear spaces to simplify the
proofs and the overall presentation.

A function f : Zs
m 7! Zm is said to be linear if there

exist 1; : : : ; s 2 Zm such that it can be expressed as:

8(x1; : : : ; xs ) 2 Zs
m; f (x1; : : : ; xs ) D

" sX

iD1

i xi

#

m

where [x]m is the integer x taken modulom.

Definition 15 (Linear CA) AD-dimensional linear CA is
a CA hCim ; F whose local rule f is linear.

Note that for the linear CA Equ. (2) becomes:

8c 2 C; 8Ev 2 ZD ; F(c)(Ev) D

" sX

iD1

i c(Ev C Eui )

#

m

:

The Case of Cellular Automata

In this section the results seen so far are specialized to the
CA setting, focusing on dimension one. The following re-
sult allows a first classification of one-dimensional CA ac-
cording to their degree of chaoticity.

Theorem 1 ([43]) A one-dimensional CA is sensitive if
and only if it is not almost equicontinuous.

In other words, for CA the dichotomy between sensitiv-
ity and almost equicontinuity is true and not only under
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the transitivity condition. As a consequence, the family
of all one-dimensional CA can be partitioned into four
classes [43]:

(k1) equicontinuous CA;
(k2) strictly almost equicontinuous CA;
(k3) sensitive CA;
(k4) expansive CA.

This classification almost fits for higher dimensions. The
problem is that there exist CA between the classes K2
and K3 (i. e., non sensitive CA without any equiconti-
nuity point). Even relaxing K2 definition to “CA having
some equicontinuity point”, the gap persists (see, for in-
stance [57]).

Unfortunately, much like most of the interesting prop-
erties of CA, the properties defining the above classifica-
tion scheme are also affected by undecidability.

Theorem 2 ([23]) For each i D 1; 2; 3, there is no algo-
rithm to decide if a one-dimensional CA belongs to the class
Ki.

The following conjecture stresses the fact that nothing is
known about the decidability for the membership in K4.

Conjecture 1 (Folklore) Membership in class K4 is unde-
cidable.

Remark that the above conjecture is clearly false for di-
mensions greater than 1 since there do not exist expansive
CA for dimension strictly greater than 1 [53].

Proposition 5 ([7,11]) Expansive CA are strongly transi-
tive and mixing.

In CA settings, the notion of total transitivity reduces to
the simple transitivity. Moreover, there is a strict relation
between transitive and sensitive CA.

Theorem 3 ([49]) If a CA is transitive then it is totally
transitive.

Theorem 4 ([28]) Transitive CA are sensitive.

As we have already seen, sensitivity is undecidable. Hence,
in view of the combinatorial complexity of transitive CA,
the following conjectures sound true.

Conjecture 2 Transitivity is an undecidable property.

Conjecture 3 [48] Strongly transitive CA are (topologi-
cally) mixing.

Chaos and Combinatorial Properties

In this section, when referring to a one-dimensional CA,
we assume that u1 D minN and us D maxN (see

also Sect. “Definitions”). Furthermore, we call elementary
a one-dimensional CA with alphabet A D f0; 1g and N D
f�1; 0; 1g (there exist 256 possible elementary CA which
can be enumerated according to their local rule [64]).

In CA settings, most of the chaos components are re-
lated to some properties of combinatorial nature like in-
jectivity, surjectivity and openness.

First of all, remark that injectivity and surjectivity are
dimension sensitive properties in the sense of the follow-
ing.

Theorem 5 ([4,39]) Injectivity and surjectivity are decid-
able in dimension 1, while they are not decidable in dimen-
sion greater than 1.

A one-dimensional CA is said to be a right CA (resp., left
CA) if u1 > 0 (resp., us < 0).

Theorem 6 ([1]) Any surjective and right (or left) CA is
topologically mixing.

The previous result can be generalized in dimension
greater than 1 in the following sense.

Theorem 7 If for a given surjective D-dimensional CA
there exists a (D � 1)-dimensional hyperplane H (as a lin-
ear subspace of ZD) such that:

1. all the neighbor vectors stay on the same side of a H, and
2. no vectors lay on H,

then the CA is topologically mixing.

Proof Choose two configurations c and d and a natural
number r. Let U and V be the two distinct open balls of
radius 2�r and of center c and d, respectively (in a metric
space (X; d) the open ball of radius ı > 0 and center x 2
X is the set Bı (x) D fy 2 X j d(y; x) < ıg). For any
integer n > 1, denote by Nn the neighbor frame of the CA
Fn and with dn 2 F�n(d) any n-preimage of d. The values
c(Ex) for Ex 2 O depend only on the values dn(Ex) for Ex 2
O C Nn , where O D fEv j k Evk1 � rg. By the hypothesis,
there exists an integer m > 0 such that for any n � m the
sets O and O C Nn are disjoint. Therefore, for any n � m
build a configuration en 2 C such that en(Ex) D d(Ex) for
Ex 2 O, and en(Ex) D dn(Ex) for Ex 2 O C Nn . Then, for any
n � m, en 2 V and Fn(en) 2 U . �

Injectivity prevents a CA from being strong transitive as
stated in the following

Theorem 8 ([11]) Any strongly transitive CA is not injec-
tive.

Recall that a CA of global rule F is open if F is an open
function. Equivalently, in the one-dimensional case, every
configuration has the same numbers of predecessors [33].
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Theorem9 ([55]) Openness is decidable in dimension one.

Remark that mixing CA are not necessarily open (con-
sider, for instance, the elementary rule 106, see [44]). The
following conjecture is true when replacing strong transi-
tivity by expansively [43].

Conjecture 4 Strongly transitive CA are open.

Recall that the shift map � : AZ 7! AZ is the one-dimen-
sional linear CA defined by the neighborhood N D fC1g
and by the coefficient 1 D 1. A configuration of a one-di-
mensional CA is called jointly periodic if it is periodic both
for the CA and the shift map (i. e., it is also spatially peri-
odic). A CA is said to have the joint denseness of periodic
orbits property (JDPO) if it admits a dense set of jointly pe-
riodic configurations. Obviously, JDPO is a stronger form
of DPO.

Theorem 10 ([13]) Open CA have JDPO.

The common feeling is that (J)DPO is a property of a class
wider than open CA. Indeed,

Conjecture 5 [8] Every surjective CA has (J)DPO.

If this conjecture were true then, as a consequence of The-
orem 5 and Proposition 2, DPO would be decidable in di-
mension one (and undecidable in greater dimensions). Up
to now, Conjecture 5 has been proved true for some re-
stricted classes of one-dimensional surjective CA beside
open CA.

Theorem 11 ([8]) Almost equicontinuous surjective CA
have JDPO.

Consider for a while a CA whose alphabet is an algebraic
group. A configuration is said to be finite if there exists an
integer h such that for any i, jij > k, c(i) D 0, where 0 is
the null element of the group. Denote s(c) D

P
i c(i) the

sum of the values of a finite configuration. A one-dimen-
sional CA F is called number conserving if for any finite
configuration c, s(c) D s(F(c)).

Theorem 12 ([26]) Number-conserving surjective CA
have DPO.

If a CA F is number-conserving, then for any h 2 Z the
CA � h ı F is number-conserving. As a consequence we
have that

Corollary 1 Number-conserving surjective CA have JDPO.

Proof Let F be a number-conserving CA. Choose h 2 Z
in such a way that the CA � h ı F is a (number-conserving)
right CA. By a result in [1], both the CA � h ı F and F have
JDPO. �

In a recent work it is proved that the problem of solving
Conjecture 5 can be reduced to the study of mixing CA.

Theorem 13 ([1]) If all mixing CA have DPO then every
surjective CA has JDPO.

As a consequence of Theorem 13, if all mixing CA have
DPO then all transitive CA have DPO.

Permutivity is another easy-to-check combinatorial
property strictly related to chaotic behavior.

Definition 16 (Permutive CA) A function f : As 7! A is
permutive in the variable ai if for any (a1; : : : ; ai�1; aiC1;

: : : ; as) 2 As�1 the function a 7! f (a1; : : : ; ai�1; a; aiC1;

: : : ; as) is a permutation.

In the one-dimensional case, a function f that is permutive
in the leftmost variable a1 (resp., rightmost as), it is called
leftmost (resp. rightmost) permutive. CA with either left-
most or rightmost permutive local rule share most of the
chaos components.

Theorem 14 ([18]) Any one-dimensional CA based on
a leftmost (or, rightmost) permutive local rule with u1 < 0
(resp., us > 0) is topologically mixing.

The previous result can be generalized to any dimension
in the following sense.

Theorem 15 Let f and N be the local rule and the neigh-
borhood frame, respectively, of a given D-dimensional CA.
If there exists i such that

1. f is permutive in the variable ai, and
2. the neighbor vector Eui is such that kEuik2 D maxfkEuk2 j
Eu 2 Ng, and

3. all the coordinates of Eui have absolute value l, for some
integer l > 0,

then the given CA is topologically mixing.

Proof Without loss of generality, assume that Eui D
(l ; : : : ; l). Let U and V be two distinct open balls of
equal radius 2�r , where r is an arbitrary natural num-
ber. For any integer n � 1, denote with Nn the neigh-
bor frame of the CA Fn, with f n the corresponding lo-
cal rule, and with Nn(Ex) the set fEx C Ev j Ev 2 Nng for
a given Ex 2 ZD . Note that f n is permutive in the vari-
able corresponding to the neighbor vector nEui 2 Nn .
Choose two configurations c 2 U and d 2 V . Let m be
the smaller natural number such that ml > 2r. For any
n � m, we are going to build a configuration dn 2 U
such that Fn(dn) 2 V . Set dn(Ez) D c(Ez) for Ez 2 O where
O D fEv j k Evk1 � rg. In this way dn 2 U . In order to ob-
tain Fn(dn) 2 V , it is required that Fn(dn)(Ex) D d(Ex) for
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each Ex 2 O. We complete the configuration dn by start-
ing with Ex D Ey, where Ey D (�r; : : : ;�r). Choose arbi-
trarily the values dn(Ez) for Ez 2 (Nn(Ey) n O) n fEy C nEui g
(note that O � Nn(Ey)). By permutivity of f n, there ex-
ists a 2 A such that if one set dn(Ey C nEui ) D a, then
Fn(dn)(Ey) D d(Ey). Let now Ex D Ey C Ee1. Choose arbitrar-
ily the values dn(Ez) for Ez 2 (Nn(Ex) n Nn(Ey)) n fEx C nEui g.
By the same argument as above, there exists a 2 A such
that if one set dn(Ex C nEui ) D a, then Fn(dn)(Ex) D d(Ex).
Proceeding in this way one can complete dn in order to
obtain Fn(dn) 2 V . �

Theorem 16 ([16]) Any one-dimensional CA based on
a leftmost (or, rightmost) permutive local rule with u1 < 0
(resp., us > 0) has (J)DPO.

Theorem 17 ([54]) Any one-dimensional CA based on
a leftmost and rightmost permutive local rule with u1 < 0
and us > 0 is expansive.

As a consequence of Proposition 5, we have the following
result for which we give a direct proof in order to make
clearer the result which follows immediately after.

Proposition 6 Any one-dimensional CA based on a left-
most and rightmost permutive local rule with u1 < 0 and
us > 0 is strongly transitive.

Proof Choose arbitrarily two configurations c; o 2 AZ

and an integer k > 0. Let n > 0 be the first inte-
ger such that nr > k, where r D maxf�u1; usg. We are
going to construct a configuration b 2 AZ such that
d(b; c) < 2�k and Fn(b) D o. Fix b(x) D c(x) for each
x D nu1; : : : ; nus � 1. In this way d(b; c) < 2�k . For each
i 2 N we are going to find suitable values b(nus C i) in
order to obtain Fn(b)(i) D o(i). Let us start with i D 0.
By the hypothesis, the local rule f n of the CA Fn is per-
mutive in the rightmost variable nus. Thus, there exists
a value a0 2 A such that, if one sets b(nus ) D a0, we ob-
tain Fn(b)(0) D o(0). By the same reasons as above, there
exists a value a1 2 A such that, if one set b(nus C 1) D a1,
we obtain Fn(b)(1) D o(1). Proceeding in this way one can
complete the configuration b for any position nus C i. Fi-
nally, since f n is permutive also in the leftmost variable nu1
one can use the same technique to complete the configura-
tion b for the positions nu1 � 1, nu1 � 2, . . . , in such a way
that for any integer i < 0, Fn(b)(i) D o(i). �

The previous result can be generalized as follows. Denote
Ee1; Ee2; : : : ; EeD the canonical basis ofRD.

Theorem 18 Let f and N be the local rule and the neigh-
borhood frame, respectively, of a given D-dimensional CA.
If there exists an integer l > 0 such that

1. f is permutive in all the 2D variable corresponding to the
neighbor vectors (˙l ; : : : ;˙l), and

2. for each vector Eu 2 N, we have kuk1 � l ,

then the CA F is strongly transitive.

Proof For the sake of simplicity, we only trait the case
D D 2. For higher dimensions, the idea of the proof is
the same. Let Eu2 D (l ; l), Eu3 D (�l ; l), Eu4 D (�l ;�l),
Eu5 D (l ;�l). Choose arbitrarily two configurations c; o 2
AZ2 and an integer k > 0. Let n > 0 be the first integer
such that nl > k. We are going to construct a configura-
tion b 2 AZ2 such that d(b; c) < 2�k and Fn(b) D o.
Fix b(x) D c(x) for each Ex ¤ nEu2 with k Exk1 � n.
In this way d(b; c) < 2�k . For each i 2 Z we are go-
ing to find suitable values for the configuration b in or-
der to obtain Fn(b)(iEe1) D o(iEe1). Let us start with i D
0. By the hypothesis, the local rule f n of the CA Fn is
permutive in the variable nEu2. Thus, there exists a value
a(0;0) 2 A such that, if one set b(nEu1) D a(0;0), we ob-
tain Fn(b)(E0) D o(E0). Now, choose arbitrary values of b in
the positions (n C 1)Ee1 C j Ee2 for j D �n; : : : ; n � 1. By
the same reasons as above, there exists a value a(0;1) 2 A
such that, if one sets b(nu2 C 1Ee1) D a(0;1), we obtain
Fn(b)(Ee1) D o(Ee1). Proceeding in this way, at each step i
(i > 1), one can complete the configuration b for all the
positions (n C i)Ee1 C jEe2 for j D �n; : : : ; n, obtaining
Fn(b)(iEe1) D o(iEe1). In a similar way, by using the fact
that the local rule f n of the CA Fn is permutive in the
variable nEu3, for any i < 0 one can complete the con-
figuration b for all the positions (�n C i)Ee1 C jEe2 for
j D �n; : : : ; n, obtaining Fn(b)(iEe1) D o(iEe1). Now, for
each step j D 1; 2; : : : , choose arbitrarily the values of b
in the positions iEe1 C (n C j)Ee2 and iEe1 C (n C j)Ee2 with
i D �n; : : : n � 1. The permutivity of f n in the variables
nEu2, nEu3, nEu5, and nEu4 permits one to complete the con-
figuration b in the positions (n C i)Ee1 C (n C j)Ee2 for all
integers i � 0, (�n C i)Ee1 C (�n C j)Ee2 for all integer
i < 0, (�n C i)Ee1 C (�n � j)Ee2 for all integers i � 0,
and (n C i)Ee1 C (�n � j)Ee2 for all integers i < 0, so
that for each step j we obtain 8i 2 Z; Fn(b)(iEe1 C jEe2) D
o(iEe1 C jEe2). �

CA, Entropy and Decidability

In [34], it is shown that, in the case of CA, the definition
of topological entropy can be restated in a simpler form
than (1).

The space-time diagram S(c) generated by a configura-
tion c of a D-dimensional CA is the (DC 1)-dimensional
infinite figure obtained by drawing in sequence the ele-
ments of the orbit of initial state c along the temporal axis.
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Chaotic Behavior of Cellular Automata, Figure 1
N (k; t) is the number of distinctblue blocks that canbeobtained
starting from any initial configuration (orange plane)

Formally, S(c) is a function from N � ZD in A defined as
8t 2 N;8Ev 2 ZD , S(c)(t; Ev) D Ft(c)(Ev). For a given CA,
fix a time t and a finite square region of side of length k in
the lattice. In this way, a finite (DC 1)-dimensional figure
(hyper-rectangle) is identified in all space-time diagrams.
LetN (k; t) be the number of distinct finite hyper-rectan-
gles obtained by all possible space-time diagrams for the
CA (i. e.,N (k; t) is the number of the all space-time dia-
grams which are distinct in this finite region). The topo-
logical entropy of any given CA can be expressed as

h(C; F) D lim
k!1

lim
t!1

N (k; t)

Despite the expression of the CA entropy is simpler than
for a generic DTDS, the following result holds.

Theorem 19 ([34]) The topological entropy of CA is un-
computable.

Nevertheless there exist some classes of CA where it is
computable [20,45]. Unfortunately, in most of these cases
it is difficult to establish if a CA is a member of these
classes.

Results for Linear CA: Everything Is Detectable

In the sequel, we assume that a linear CA on Cm is
based on a neighborhood frame N D Eu1; : : : ; Eus whose
corresponding coefficients of the local rule are 1; : : : ; s .
Moreover, without loss of generality, we suppose Eu1 D E0.
In most formulas the coefficient 1 does not appear.

Decidability Results for Chaotic Properties

The next results state that all chaotic properties introduced
in Section III are decidable. Yet, one can use the formulas
to build samples of cellular automata that has the required
properties.

Theorem 20 ([17,19,47])
Sensitivity a linear CA is sensitive to the initial conditions

if there exists a prime number p such that pjm and
p − gcd f2; : : : ; sg.

Transitivity a linear CA is topologically transitive if and
only if gcd f2; : : : ; sg D 1.

Mixing a linear CA is topologically mixing if and only if it
is topologically transitive.

Strong transitivity a linear CA is strongly transitive if for
each prime p dividing m, there exist at least two coeffi-
cients i ;  j such that p − i and p −  j .

Regularity (DPO) a linear CA has the denseness of peri-
odic points if it is surjective.

Concerning positive expansively, since in dimensions
greater than one, there are no such CA, the following theo-
rem characterizes expansively for linear CA in dimension
one. For this situation we consider a local rule f with ex-
pression f (x�r ; : : : ; xr) D

�Pr
iD�r ai xi

�
m .

Theorem 21 ([47]) A linear one dimensional CA is pos-
itively expansive if and only if gcd fm; a�r ; : : : ; a�1g D
1 and gcd fm; a1; : : : ; arg D 1.

Decidability Results for Other Properties

The next result was stated incompletely in [47] since the
case of non sensitive CA without equicontinuity points is
not treated, tough they exist [57].

Theorem 22 Let F be a linear cellular automaton. Then
the following properties are equivalent

1. F is equicontinuous
2. F has an equicontinuity point
3. F is not sensitive
4. for all prime p such that pjm, p divides gcd(2; : : : ; s ).

Proof 1) H) 2) and 2) H) 3) are obvious. 3) H) 4) is
done by negating the formula for sensitive CA in Theo-
rem 20.

Let us prove that 4) H) 1). Suppose that F is a linear
CA. We decompose F D G C H by separating the term in
1 from the others:

H(x)(Ev) D 1x(Ev) G(x)(Ev) D

" sX

iD2

i c(Ev C Eui )

#

m

:

Letm D p˛11 � � � p
˛l
l be the decomposition in prime factors

and a D lcm f˛ig. The condition 4) gives that for all k,
˘ l

iD1pi jk and then m divides any product of a factors
i.

Let Ev be a vector such that for all i, Eui � Ev has non-
negative coordinates. Classically, we represent local rules
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of linear CA by D-variable polynomials (this representa-
tion, together with the representation of configurations by
formal power series allows to simplify the calculus of im-
ages through the iterates of the CA [36]). Let X1; : : : ; XD
be the variables. For Ey D (y1; : : : ; yD) 2 ZD , we note X Ey

the monomial ˘D
iD1X

yi
i . We consider the polynomial P

associated with G combined with a translation of vector
Ev, P D ˘ s

iD2i X
Eui�Ev . The coefficients of Pa are products

of a factors i hence [Pa]m D 0. This means that the com-
position of G and the translation of vector Ev is nilpotent
and then thatG is nilpotent. As F is the sum of 1 times the
identity and a nilpotent CA, we conclude that F is equicon-
tinuous. �

The next theorem gives the formula for some combinato-
rial properties

Theorem 23 ([36]).
Surjectivity a linear CA is surjective if and only if

gcd f1; : : : ; sg D 1.
Injectivity a linear CA is injective if and only if for each

prime p decomposing m there exists an unique coeffi-
cient i such that p does not divide i.

Computation of Entropy for Linear Cellular Automata

Let us start by considering the one-dimensional case.

Theorem 24 Let us consider a one dimensional linear CA.
Let m D pk11 � � � p

kh
h be the prime factor decomposition ofm.

The topological entropy of the CA is

h(C; F) D
hX

iD1

ki (Ri � Li ) log(pi )

where Li D min Pi and Ri D max Pi , with Pi D f0g [
f j : gcd(a j; pi ) D 1g.

In [50], it is proved that for dimensions greater than one,
there are only two possible values for the topological en-
tropy: zero or infinity.

Theorem 25 A D-dimensional linear CA hC; Fi with
D � 2 is either sensitive and h(C; F) D 1 or equicontin-
uous and h(C; F) D 0.

By a combination of Theorem 25 and 20, it is possible to
establish if a D dimensional linear CA with D � 2 has ei-
ther zero or infinite entropy.

Linear CA, Fractal Dimension and Chaos

In this section we review the relations between strong tran-
sitivity and fractal dimension in the special case of linear

CA. The idea is that when a system is chaotic then it pro-
duces evolutions which are complex even from a (topolog-
ical) dimension point of view.

Any linear CA F, can be associated with itsW-limit set,
a subset of the (DC 1)-dimensional Euclid space defined
as follows. Let tn be a sequence of integers (we call them
times) which tends to infinity. A subset SF (tn) of (DC 1)-
dimensional Euclid space represents a space-time pattern
until time tn � 1:

SF (tn) D
˚
(t; i)s.t.Ft(e1)i ¤ 0; t < tn

�
:

A W-limit set for F is defined by limn!1 SF (tn)/tn if the
limit exists, where SF (tn)/tn is the contracted set of SF (tn)
by the rate 1

tn i. e. SF (tn)/tn contains the point (t/tn ; i/tn)
if and only if SF (tn) contains the point (t; i). The limit
limn!1 SF (tn)/tn exists when lim infn!1 SF (tn)/tn and
lim supn!1 SF (tn)/tn coincide, where

lim inf
n!1

SF (tn)
tn

D

(

x 2 RDC1 : 8 j;

9x j 2
SF (t j)
t j

; x j ! x when j!1

)

and

lim sup
n!1

SF (tn)
tn
D

(

x 2 RDC1 : 9
˚
tn j

�
;8 j; 9xn j

2
SF (tn j )
tn j

; xn j ! x when j!1

)

;

for a subsequence
˚
tn j

�
of ftng.

For the particular case of linear CA, the W-limit set
always exists [30,31,32,56]. In the last ten years, the W-
limit set of additive CA has been extensively studied [61,
62,63]. It has been proved that for most of additive CA, it
has interesting dimensional properties which completely
characterize the set of quiescent configurations [56]. Here
we link dimension properties of a W-limit set with chaotic
properties. Correlating dimensional properties of invari-
ant sets to dynamical properties has become during the
years a fruitful source of new understanding [52].

Let X be a metric space. The Hausdorff dimension DH
of V � X is defined as:

DH(V ) D sup
�
h 2 Rj lim

�!0



inf
X
jUi j

h
�
D 1

�

where the infimum is taken over all countable coveringsUi
of V such that the diameter jUi jof each Ui is less than �
(for more on Hausdorff dimension as well as other defini-
tions of fractal dimension see [24]).
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Given a CA F we denote DH(F) the Hausdorff dimen-
sion of its W-limit set.

Proposition 7 ([25,47]) Consider a linear CA F over Zpk

where p is a prime number. If 1 < DH(F) < 2 then F is
strongly transitive.

The converse relation is still an open problem. It would
be also an interesting research direction to find out similar
notions and results for general CA.

Conjecture 6 Consider a linear CA F over Zpk , where p
is a prime number. If F is strongly transitive then
1 < DH(F) < 2.

Future Directions

In this chapter we reviewed the chaotic behavior of cellu-
lar automata. It is clear from the results seen so far that
there are close similarities between the chaotic behavior of
dynamical systems on the real interval and CA. To com-
plete the picture, it remains only to prove (or disprove)
Conjecture 5. Due to its apparent difficulty, this problem
promises to keep researchers occupied for some years yet.

The study of the decidability of chaotic properties like
expansively, transitivity, mixing etc. is another research di-
rection which should be further addressed in the near fu-
ture. It seems that new ideas are necessary since the proof
techniques used up to now have been revealed as unsuc-
cessful. The solution to these problems will be a source of
new understanding and will certainly produce new results
in connected fields.

Finally, remark that most of the results on the chaotic
behavior of CA are concerned with dimension one. A lot
of work should be done to verify what happens in higher
dimensions.
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43. Kůrka P (1997) Languages, equicontinuity and attractors in cel-
lular automata. Ergo Theor Dyn Sy 17:417–433
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Glossary

Chaotic systems The time evolution of a deterministic
mechanical system defines a trajectory in the phase
space of all the generalized coordinates and general-
ized momenta. Consider two infinitesimally separated
points that lie on two different trajectories in this phase
space. If these two trajectories typically separate expo-
nentially with time, the systems is called chaotic pro-
vided the set of all points with an exponentially sepa-
rating partner is of positive measure.

Chaotic hypothesis The hypothesis that systems of large
numbers of particles interacting with short ranged
forces can be treated mathematically as if the system
were chaotic with no pathologies in the mathematical
description of the systems’ trajectories in phase space.

Dynamical systems theory The mathematical theory of
the time evolution in phase space, or closely related
spaces, of a deterministic system, such as a mechani-
cal system obeying Hamiltonian equations of motion.

Ergodic systems A mechanical system is called ergodic if
a typical trajectory in a phase space of finite total mea-
sure spends a fraction of its time in a set which is equal
to the ratio of the measure of the set to the total mea-
sure of the phase space.

Escape rate formula Consider a chaotic dynamical sys-
tem with a phase space constructed in such a way that

the phase space has some kind of an absorbing bound-
ary. The set of points, R, in the phase space such that
trajectories through themnever escape through the ab-
sorbing boundary either in the forward or the back-
wardmotion is called a repeller. One can define a set of
Lyapunov exponents, i (R) and a Kolmogorov–Sinai
entropy, hKS(R) for motion on the repeller. Dynam-
ical systems theory shows that the rate of escape, � ,
of points, not on the repeller, through the boundary
is given by

� D
X

i

C(R) � hKS(R) ; (1)

where the sum is over all of the positive Lyapunov ex-
ponents on the repeller.

Gaussian thermostats A dynamical friction acting on the
particles in a mechanical system which keeps the to-
tal energy, or the total kinetic energy of the system at
a fixed value. It was invented by Gauss as the simplest
solution to the problem of finding the equations of mo-
tion for a mechanical system with a constraint of fixed
energy.

Gelfand triplet An operator with right and left hand
eigenfunctions, possibly defined in different function
spaces, and an inner product of one function from
the right space and one from the left space. Generally
one of these spaces contains singular functions such
as Schwartz distributions and the other contains suffi-
ciently smooth functions so that the inner product is
well defined. The term rigged Hilbert space is also used
to denote a Gelfand triplet.

Hyperbolic dynamical system A chaotic system where
the tangent space to almost all trajectories in its phase
space can be separated into well-defined stable and
unstable manifolds, that intersect each other transver-
sally.

Kolmogorov–Sinai entropy per unit time A measure of
the rate at which information about the initial point
of a chaotic trajectory is produced in time. The expo-
nential separation of trajectories in phase space, char-
acteristic of chaotic motion, implies that trajectories
starting at very close-by, essentially indistinguishable,
initial points will eventually be distinguishable. Hence
as time evolves we can specify more precisely the ini-
tial point of the trajectory. Pesin has proved that for
closed, hyperbolic systems, the Kolmogorov–Sinai en-
tropy is equal to the sum of the positive Lyapunov
exponents. The Kolmogorov–Sinai entropy is often
called the metric entropy.

Lyapunov exponents Lyapunov exponents, i , are the
rates at which infinitesimally close trajectories separate



990 C Chaotic Dynamics in Nonequilibrium Statistical Mechanics

or approach with time on the unstable and stable man-
ifolds of a chaotic dynamical system. For closed phase
spaces, that is, no absorbing boundaries present, Pesin
theorem states that for hyperbolic dynamical system
the Kolmogorov–Sinai entropy, hKS is given by the
sum of all the positive Lyapunov exponents.

hKS D
X

i

Ci : (2)

Mixing systems Mixing systems are dynamical systems
with stronger dynamical properties than ergodic sys-
tems in the sense that every mixing system is ergodic
but the converse is not true. A system is mixing if
the following statement about the time development
of a set At is satisfied

lim
T!1

�(AT \ B)
�(B)

D
�(A)
�(E) ; (3)

where B is any set of finite measure, and �(E) is the
measure of the full phase space. This statement is the
mathematical expression of the fact that for a mixing
system, every set of finite measure becomes uniformly
distributed throughout the full phase space, with re-
spect to the measure �.

Normal variables Microscopic variables whose values are
approximately constant on large regions of the con-
stant energy surface in phase space.

Pseudo-chaotic systems Apseudo-chaotic system is a dy-
namical system where the separation of nearby tra-
jectories is algebraic in time, rather than exponential.
Pseudo-chaotic systems are weakly mixing as defined
by the relation

lim
T!1

1
T

Z T

0
d�
�
�(A� \ B) �

�(A)�(B)
�(E)

�
D 0: (4)

Sinai–Ruelle–Bowen (SRB) measure SRB measures for
a chaotic system are invariant measures that are
smooth on unstable manifolds and possibly singular
on stable manifolds.

Stable manifold A stable manifold about a point P in
phase space is the set of points that will approach P
at time t approaches positive infinity, that is in the in-
finite future of the motion.

Transport coefficients Transport coefficients character-
ize the proportionality between the currents of par-
ticles, momentum, or energy in a fluid, and the gra-
dients of density, fluid velocity or temperature in the
fluid. The coefficients of diffusion, shear and bulk vis-
cosity, and thermal conductivity are transport coeffi-
cients, and appear as coefficients of the second order
gradients in the Navier–Stokes and similar equations.

Unstable manifold An unstable manifold about a point P
in phase space is the set of points that will approach
P as time approaches negative infinity, that is, as one
follows the motion backwards in time to the infinitely
remote past.

Definition of the Subject

For most of its history, non-equilibrium statistical me-
chanics has produced mathematical descriptions of irre-
versible processes by invoking one or another stochastic
assumptions in order to obtain useful equations. Central to
our understanding of transport in fluids, for example, are
random walk processes, which typically are described by
stochastic equations. These in turn lead to the Einstein re-
lation for diffusion, and its generalizations to other trans-
port processes. This relation, as formulated by Einstein,
states that the mean square displacement of a diffusing
particle grows linearly in time with a proportionality con-
stant given by the coefficient of diffusion. If we assume that
such a description applies to mechanical systems of many
particles, we must explain the origins of irreversibility in
deterministic – and time reversible – mechanical systems,
and we must locate the source of stochasticity that is in-
voked to derive transport equations. For systems of parti-
cles that are chaotic, it is possible to make some progress
on resolving these issues, and to gain some insights into
the analogous properties of systems that are not chaotic
or that have both chaotic and non-chaotic behaviors. This
article summarizes the current status of the application
of dynamical systems theory to non-equilibrium statisti-
cal mechanics, focuses on the behavior of chaotic systems,
and presents some of the important open issues needing
resolution.

Introduction

Statistical mechanics is devoted to the study of the col-
lective properties of large numbers of particles, typically
atoms, molecules, electrons, etc., but can also be stars, or
even galaxies. The mechanical properties of the individ-
ual particles and their mutual interactions are presumed
to be known, and the emphasis is on the statistical prop-
erties of collections of large numbers of them [1,2,3]. The
study of statistical mechanics has always involved both an
examination of its foundations and the devising of meth-
ods to compute thermodynamic, transport, and related
quantities for systems of large numbers of particles. In re-
cent years there has been a great deal of attention focused
on the foundations of statistical mechanics prompted by
developments in: (i) dynamical systems theory, particu-
larly chaotic dynamics, (ii) the mathematics of Anosov
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and hard-ball systems, and in (iii) the computational
physics of systems of particles undergoing processes of
various kinds [4,5,6,7,8,9,10,11,12,13,14].Moreover, mod-
ern developments in quantum physics, particularly those
of some relevance for the foundations of quantum me-
chanics, for cosmology, and for quantum computation
have some bearing on the foundations of quantum statis-
tical mechanics [15].

Non-equilibrium statistical mechanics is faced with
the task of describing the wide range of non-thermo-
dynamic, generally time dependent behaviors of large
systems, such as the transport of particles, momentum,
and/or energy from one region in space to another over
some time interval. Despite a large number of, as yet,
unsolved problems, non-equilibrium statistical mechanics
has been able to explain and provide quantitative predic-
tions for a wide range of transport phenomena. Here we
will discuss some of these applications and describe the
role played by themicroscopic dynamics of the constituent
particles, particularly when the microscopic dynamics is
classical and chaotic [14]. Most of this article will be de-
voted to a study of the role of chaotic dynamics in non-
equilibrium transport for classical, chaotic systems. We
will also consider, to some extent, classical, non-chaotic
systems as well as quantum systems, where the usual no-
tions of chaotic dynamics do not apply but one can never-
theless understand some main features of the behavior of
a quantum system by examining its classical counterpart,
if there is one.

This article is devoted to the role played by chaotic
dynamics in our understanding non-equilibrium statisti-
cal mechanics. It will focus on two main topics: (1) Ba-
sic issues in statistical mechanics, namely the approach of
systems of particles to thermodynamic equilibrium. Here
we give an updated view of the role of ergodic and mix-
ing properties, proposed by Boltzmann and Gibbs, re-
spectively, as the basis for understanding the approach to
equilibrium [1,2,3,4]. (2) Applications of dynamical sys-
tems theory to non-equilibrium statistical mechanics and
the theory of transport processes. Here we show that for
chaotic systems, at least, on can find some very deep rela-
tionships betweenmacroscopic transport andmicroscopic
dynamics [5,6,7,8,9,10,11,12,13]. We also discuss, briefly,
the closely related topic of fluctuation theorems for non-
equilibrium stationary states which apply even in far-from
equilibrium situations [16,17,18,19,20,21].

By way of introduction we begin with some observa-
tions about transport processes in fluids in order to set the
stage for describing the role of chaotic dynamics in trans-
port theory. As we will discuss in more detail below, nor-
mal transport processes in fluids are characterized by a lin-

ear growth in time of the mean square fluctuations of an
appropriate time dependent microscopic variable of the
system. Typical of such a fluctuation formula is the Ein-
stein relation which states that the mean square displace-
ment of a particle undergoing Brownian motion in a fluid
grows linearly in time with a coefficient that is, apart from
a numerical factor, the diffusion coefficient of the Brown-
ian particle [22]. That is

˝
(r(t) � r(0))2

˛
D 2dDt : (5)

Here r(t) is the spatial location of the Brownian particle
at some time t, and d is the number of spatial dimensions
of the system. D is the diffusion coefficient appearing in
the linear relation, known as Fick’s Law, that relates the
probability current, J(r; t) for the Brownian particle to its
probability density, P(r; t),

J(r; t) D �DrP(r; t) : (6)

The angular brackets denote an average over an ensem-
ble of trajectories of time duration t, at least. At the heart
of the Einstein formula is the fact that the Brownian par-
ticle undergoes a random walk on sufficiently long time
scales. The distinguishing feature of a random walk is the
linear growth in time of the mean square displacement.
Thus, normal transport in general is a form of a random
walk process. This was formalized by Helfand in 1960 [23],
who generalized the Einstein formula to other transport
processes such as viscous flow, and heat conduction. By
normal transport we mean transport that can be described
macroscopically by linear relations between the currents of
globally conserved quantities such as mass, energy, and/or
momentum, and the gradients of the densities of these
quantities. The coefficients of proportionality are trans-
port coefficients, such as the coefficients of shear and bulk
viscosity, thermal conductivity, diffusion, and so on. These
coefficients, for normal transport, do not depend on time,
but may depend on the local densities of mass and the local
temperature of the fluid.

Helfand was able to show that each transport pro-
cess may be regarded as a random walk process character-
ized by a linear growth as a function of time of the mean
square fluctuation of a microscopic quantity, M
 (�; t),
called a Helfand moment. The Helfand moments depend
on all of the phase space variables of the system, now de-
noted collectively by � , and time t. For normal transport,
the generalized Einstein relation becomes

˝
(M
 (�; t) � M
 (�; t D 0))2

˛
D �C
 t : (7)

Here � is a transport coefficient appearing in the Navier–
Stokes or diffusion equations, C
 is a constant, and the
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average is over an equilibrium ensemble. For diffusion of
a Brownian particle, for example, the Helfand moment is
simply the spatial location of the particle. This result im-
plies that normal transport processes are essentially ran-
dom walk processes with a generalized “displacement”,
namely the Helfand moment.

If we think of a system of particles, undergoing some
kind of hydrodynamic flow as a deterministic dynamical
system, with, typically but not exclusively, Hamiltonian
dynamics, a deep question immediately presents itself:
Where does the randomness come from that is required
for transport processes to be generalized random-walk pro-
cesses? While there are a variety of answers to this ques-
tion, the main point of this article is to argue that for
chaotic systems the randomness is an intrinsic property
of the dynamics of the system [14], and then to illustrate
some of the results that have been obtained recently which
connect microscopic dynamics to macroscopic transport
for such systems. We emphasize that many chaotic sys-
tems display the kind of randomness needed for good
transport properties even though such systems are deter-
ministic, and time reversible. However chaos is neither
necessary nor sufficient for normal transport. There are
examples of non-chaotic systems that exhibit normal dif-
fusion The wind-tree model to be discussed below is an
example [24,25]. There are also chaotic systems that ex-
hibit abnormal transport. The two dimensional periodic
Lorentz gas with circular scatterers is chaotic and exhibits
both normal and abnormal diffusion, depending upon
the lattice structure and the separation distance between
neighboring scatterers [26,27].

Nevertheless, chaotic systems have sufficiently many
nice properties that for them it is possible to obtain a num-
ber of rather, general connections between microscopic
dynamics and macroscopic transport, and to understand
the approach of systems to thermodynamic equilibrium
from a dynamical standpoint. Such connections, should
they exist, are not yet available for those non-chaotic
systems which exhibit normal transport. The dynamical
properties of most non-chaotic systems are not yet suffi-
ciently well understood for the construction of a more or
less general theory for generic connections between mi-
croscopic dynamics and macroscopic transport. Most re-
alistic dynamical systems have amixed phase space, where
chaotic and non-chaotic regions, to be defined below, are
intermingled [28,29]. It is generally supposed that for sys-
tems of large numbers of particles in macroscopic vol-
umes, the non-chaotic regions occupy a very small part of
phase space and can be ignored for all practical purposes.
However this remains to be proved, and the effects of the
non-chaotic regions require much more elucidation.

The plan of this article is as follows: We begin with
a discussion of the foundations of statistical mechanics
in Sect. “The Roles of Ergodicity and Mixing for the Ap-
proach to Equilibrium”. There we discuss dynamical prop-
erties that are often considered to be important for sta-
tistical mechanics, such as ergodicity and mixing. There
we argue that these properties, by themselves, are not suf-
ficient to explain the approach to equilibrium of systems
of large numbers of particles and that further notions are
required. This will lead us in Sect. “Integrable, Pseudo-
chaotic, and Chaotic Systems” to a discussion of some
of the dynamical systems encountered in classical statis-
tical mechanics, particularly integrable, pseudo-chaotic,
and chaotic systems. In Sect. “Anosov and Anosov-like
Systems; the Chaotic Hypothesis”, we consider chaotic
systems in more detail and show for a simple model of
a chaotic system that the stochastic behavior needed for
diffusion can be seen as a natural consequence of chaotic
dynamics. Despite its simplicity and low dimensionality,
this model will also allow us to provide a dynamical pic-
ture of the approach of a system to equilibrium. These
models are simple examples of classes of dynamical sys-
tems called Anosov and Anosov-like systems. They have
very useful mathematical properties for the description
of non-equilibrium phenomena in simple systems, and
it is convenient to assume, whenever possible, that the
systems of interest to physicists have these good prop-
erties. These properties are then used for the applica-
tions of chaotic dynamics to non-equilibrium statistical
mechanics in Sect. “Applications of Dynamical Systems
Theory to Non-equilibrium”. There we discuss a number
of results that connect microscopic dynamical properties
such as Lyapunov exponents and Kolmogorov–Sinai en-
tropies [4,5,6,7,8,9,10,11,12,13,14] to macroscopic trans-
port coefficients for chaotic systems. In Sect. “Discussion”
we review the previous discussion and give brief com-
ments about quantum systems, where the concepts of
classical chaotic dynamics do not apply, but certain fea-
tures of these systems can be understood in terms of the
chaotic dynamics of their classical counterparts. Finally,
we mention some future directions and open questions in
Sect. “Future Directions”.

The Roles of Ergodicity andMixing
for the Approach to Thermodynamic Equilibrium

Ergodic Systems

Boltzmann invented the notion of ergodicity in an attempt
to reconcile the apparently irreversible behavior of large
systems of particles, especially their approach to thermo-
dynamic equilibrium, with the microscopic reversibility of
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Newton’s equations of motion [1,2,3]. Briefly put, Boltz-
mann argued as follows: Consider an isolated system of
particles, and follow the system’s trajectory on the appro-
priate constant energy surface in phase space. Suppose that
the underlying microscopic dynamics of the system is such
that the phase space trajectory of the system, over a long
time interval, spends an amount of time in every region
of phase space, A, that is proportional to the measure of
that region, �(A). Here the measure is the standard equi-
librium phase space measure on a constant energy surface
given by

�(A) D
Z

A

dS
jrHj

; (8)

where dS is the area of an infinitesimal region of the con-
stant energy surface, and jrHj is the magnitude of the
gradient of the Hamiltonian function for the system at
the point of integration. Boltzmann’s supposition above is
called the ergodic hypothesis, and in mathematical terms it
can be stated as [4]

lim
T!1

�(A)
T
D
�(A)
�(E) : (9)

Here �(A) is the amount of time the system spends in re-
gion A during a time interval T, and �(E) is the measure
of the entire constant energy surface, which we assume to
be finite. If one accepts the hypothesis, then one can eas-
ily show, by approximating integrals by sums, for exam-
ple, that the time average of any well behaved dynamical
quantity approaches its equilibrium, micro-canonical en-
semble average as the time interval over which the average
is taken approaches infinity. Boltzmann’s hypothesis holds
equally well for the time reversed motion of the system,
and is consistent with the reversibility of the microscopic
dynamics.

The kinds of elementary physical systems one studies
in physics courses, such as coupled systems of harmonic
oscillators, are generally not ergodic, although some sim-
ple systems, such as a single, one dimensional harmonic
oscillator, can be shown to be ergodic. Another simple ex-
ample is the discrete time motion of a point particle on the
circumference of a circle, where the particle moves a fixed
irrational fraction of the length of the circumference at
successive time steps. In the long time limit, the circum-
ference is uniformly covered by points visited by the par-
ticle [30]. A great deal of mathematical research over the
past few decades, and longer, has been devoted to a study
of more complicated ergodic systems. The first dramatic
example of a system with ergodic properties, and one that
has influencedmost of themore recent efforts in this direc-

tion is the geodesic motion of a point on a surface of con-
stant negative curvature. This was proved by E. Hopf [31],
and the techniques employed remain useful today. Sinai
and coworkers [32], as well as many other workers, par-
ticularly Simányi [33], have given careful mathematical
proofs of ergodic behavior of various systems composed of
hard disks or hard spheres, generally referred to as hard-
ball systems. Turaev and Rom-Kedar, Donnay and oth-
ers [28,29] have shown that by softening the hard sphere
potential one may change an ergodic system into a non-
ergodic one. Thus, the problem of proving that a system
of interest to physicists is actually ergodic, or ergodic for
practical purposes, is still far from a general solution.

Mixing Systems

Gibbs took a different approach to the problem of ir-
reversibility. He used the analogy of an ink drop being
stirred in a container of glycerin to introduce the stronger
notion of a mixing system in his efforts to understand
the approach of a non-equilibrium ensemble distribution
function to an equilibrium distribution [4,8]. In consider-
ing a non-equilibrium phase space distribution one has to
follow the trajectories of a set of points in phase space, not
just a typical trajectory, as in the study of ergodic behavior.
Gibbs suggested that the an initial set of points concen-
trated in a small region of phase space might spread out
over the entire available phase space in the course of time,
and become finely mixed throughout the phase space in
much the same way as the ink drop will become mixed in
the glycerin, in such a way that a coarse grained observa-
tion of the ink would lead to the conclusion that it is uni-
formly mixed, but a fine grained observation would reveal
the individual threads of ink. Returning to phase space,
Gibbs argued that although the measure of phase space oc-
cupied by the set of points should remain constant in time,
in accordance with Liouville’s theorem, the set eventually
gets distributed over the constant energy surface such that
a coarse grained observation of the phase space would lead
to the conclusion that the set uniformly covers the energy
surface, while a fine grained observation would reveal that
the coverage consists of one long, thin set of total mea-
sure much less than that of the whole energy surface. Of
course, mechanical reversibility ensures that one can re-
cover the initial distribution of points by time reversing
the motion but eventually mixing takes place for the time
reversed motion, as well.

The mathematical definition of a mixing system [30] is
given by looking at the time development of the initial set
of phase points. We denote by A, the initial set of phase
points on which the initial ensemble is concentrated, and
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the set to which this initial set evolves after a time T, by
AT . Then, to examine the mixing of the set in phase space,
we consider some arbitrary set of positive measure B and
consider the intersection B \ AT . If the dynamics of the
system is mixing, then eventually the fraction of the set B
occupied by AT should approach the fraction of A in the
entire phase space, no matter what sets of positive measure
A and B we consider. That is, a system is mixing if for any
sets A and B of positive measure

lim
T!1

�(AT \ B)
�(B)

D
�(A)
�(E) : (10)

Here we used the conservation of phase space measure,
namely that �(A) D �(AT ). One can easily prove that
a mixing system is also ergodic, but the reverse need not
be true [30].

For a system of particles with the mixing property one
can prove that a non-equilibrium phase space distribu-
tion will approach an equilibrium phase space distribution
in a weak, long time limit [8]. That is, average quantities
taken with respect to the non-equilibrium distribution ap-
proach equilibrium averages. The proof can easily be con-
structed by approximating integrals by sums in the usual
way.

Mathematicians have considered proofs of the mix-
ing property for various systems of interest to physicists.
The most important of such systems are hard ball sys-
tems mentioned above, where the proofs of ergodicity and
mixing are consequences of proving a stronger dynami-
cal property, the Bernoulli property of the system, which
implies that the system is mixing and therefore ergodic as
well. We leave a proper definition of a Bernoulli system
to the literature [34] and we will not consider it any fur-
ther here. Needless to say, the class of systems which can
be proved to be mixing is not yet large enough to encom-
pass the typical systems studied in statistical mechanics or
in kinetic theory, although considerable progress has been
made in this direction over the past several years.

What is the Relevance of These Notions
for Statistical Mechanics?

It would appear that with the proof that a system of a large
number of particles in a reasonable container is mixing,
the foundation for the applications of statistical mechanics
to such a system would be secure. That this is not a com-
plete explanation may be seen for the following reasons,
among others:

1. We have assumed that our systems have fixed energies
and that all the forces acting between the particles or

on the system, due to the walls of the container, say, are
conservative and known. Strictly speaking, this is not
true of any laboratory system.

2. We have not examined how long it might take for the
time average to be reasonably close to the ensemble av-
erage for an ergodic system or how long it would take
a reasonable initial set to get uniformly mixed over the
appropriate phase space, for a mixing system. One can
argue that the appropriate times are very long, typically
very much longer than the duration of an experiment.
A partial but useful answer to this objection to the use
of ergodicity and/or mixing properties is to consider
Reduced distribution functions, particularly the single
particle and two-particle distribution functions. These
reduced distribution functions approach equilibrium,
or more generally, local equilibrium forms, on much
more realistic time scales.
The notion of local equilibrium arises in the context of
the decay of a non-equilibrium state in a many parti-
cle system to total equilibrium, through hydrodynamic
processes. In the usual picture, due to Chapman, En-
skog, and Bogoliubov [35,36], the initial state becomes,
on the time scale of the duration of a collision, one
that can be described by reduced distribution functions.
Then on the time scale of the time between collisions,
set by the microscopic properties of the system such as
the density and the size of the particles, the system be-
comes close to a state of local equilibrium with a lo-
cal temperature, density and mean velocity. Finally, on
a time scale set by the physical size of the container, the
system relaxes to total equilibrium. The approach to lo-
cal equilibrium is set by the dynamical interactions be-
tween the particles.
In addition, many non-equilibrium as well as equilib-
rium properties of a many-particle system can be for-
mulated in terms of these reduced functions. This be-
ing the case, the questions are: What is the reason that
reduced distribution functions approach local equilib-
rium forms, and what are the time scales involved in the
approach to local equilibrium, and eventually to total
equilibrium? For chaotic systems, at least, there is rea-
son to believe that one can provide satisfactory answers
to these questions.
Another approach to resolving the issue of time scales
in applying these notions to laboratory systems, and
one closely related to the use of reduced distribution
functions is to focus attention on a set of microscopic
variables called normal variables [1]. These variables
are defined by the requirement that they not vary much
over the constant energy surface. These variables then
have the property that their value is almost the same
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no matter where the phase point happens to be on the
constant energy surface. In this picture an initial non-
equilibrium state would be one where the values of the
normal variables are far from their equilibrium or aver-
age values, but the time evolution of the system leads to
regions where these variables have values closer to their
equilibrium averages. In this picture the relevant time
scale is the average time needed for the system to evolve
to regions of phase space where the normal variables are
close to their average values. Presumably this time will
be much shorter than the time needed for the trajec-
tory to cover the phase space. However, we need a de-
tailed description of these variables and a description of
their behavior as a system approaches local, then total
equilibrium via kinetic and hydrodynamic processes,
respectively. In the absence of such an understanding
of normal variables, in general, the reduced distribution
functions provide a clearer way to address the questions
of time scales for the approach of distribution functions
to their equilibrium values.
One can imagine, that both the reduced distribution
resolution and the normal variable resolution of the
time scale issue become easier to justify as the num-
ber of degrees of freedom, or the number of parti-
cles become large. In either case, although the phase
space measure will also grow, and the time needed to
cover it will increase, the relative fluctuations in the re-
duced distribution functions and normal variables will
become smaller. It should be emphasized that the no-
tions of ergodicity and mixing have an important role
to play in statistical mechanics, despite the issues raised
here concerning the time needed for covering the full
phase space. Using ergodicity one can motivate the use
of the micro-canonical ensemble and ultimately all of
the Gibbs ensembles that provide methods for com-
puting equilibrium properties of systems. Similarly, the
mixing property can be used to show that time corre-
lation functions decay in time, an important property
needed for many applications of non-equilibrium sta-
tistical mechanics, particularly for theGreen–Kubo for-
malism [2,3].

3. We have used classical mechanics as our description of
dynamics, but nature is fundamentally quantum me-
chanical.

In the following sections we will address point (2) in some
detail, and point (3), briefly. It is important to note, how-
ever, that the answers we shall provide, while encour-
aging, are very incomplete and much more work needs
to be done to make these answers believable and secure.
Here we consider point (1). As mentioned in the previ-

ous section, in order to produce a random walk of the
Helfand moments needed for normal transport, some sort
of stochastic or stochastic-like mechanism is required.
Possible sources of stochastic behavior could be random
external influences or some built-in structural random-
ness, however subtle and difficult to identify. Evidence for
the effectiveness of built-in randomness is provided by
a useful model of a statistical system, such as the Ehrenfest
wind-tree model [24] where diamond shaped scatterers
(trees) are placed at random in a plane, with their diag-
onals aligned parallel to the x- and y-axes. Then point par-
ticles (wind) move among the trees with velocities only in
the ˙x and ˙y directions. The random placement of the
trees provides a clear stochasticmechanism leading to nor-
mal diffusion and an approach to equilibrium and thereby
simulate a mixing system. Such systems are not chaotic
and some source of randomness beyond the dynamics is
necessary for normal transport in such non-chaotic mod-
els. Moreover there are periodic versions of the wind-tree
model that also exhibit normal diffusion [12,25], with
more subtle sources of randomness, possibly connected
with the splitting of two nearby trajectories at the corners
of the scatterers. Below we turn our attention to the case
of chaotic systems and argue that for such systems, the dy-
namics can be enough to allow normal transport and the
approach of an ensemble of such systems to equilibrium,
even when the system is spatially periodic.

Integrable, Pseudo-chaotic, and Chaotic Systems

The kind of systems one studies in courses on classi-
cal mechanics are typically integrable system. These are
systems with N canonical coordinates, N canonical mo-
menta, and N independent constants of the motion [2].
The canonical coordinates of such systems can be trans-
formed to a set of action-angle variables, and when ex-
pressed in these variables, the systems become quasi-pe-
riodic in time, and the motion is confined to regions in
phase space called invariant tori. Systems of coupled har-
monic oscillators are good examples of integrable systems.
There is another class of mechanical systems, of which
the Ehrenfest wind-tree model described above is an ex-
ample, called pseudo-chaotic systems [37]. These systems
have the property that two infinitesimally close trajectories
will separate algebraically with time, for sufficiently long
times. For example, two distinct trajectories moving in ini-
tially parallel directions in a wind-tree system will eventu-
ally separate algebraically with time, no matter how close
they are to each other initially, due to the random place-
ment of scatterers and the fact that one of the two trajec-
tories will eventually hit a scatterer that is “just missed” by
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the other one. Pseudo-chaotic systems have a weak mixing
property [30,37], namely that

lim
T!1

1
T

Z T

0
d�
�
�(A� \ B)�

�(A� )�(B)
�(E)

�
D 0 : (11)

Chaotic systems are usually defined by the condition that
two infinitesimally close trajectories will, in the appropri-
ate long time limit, separate exponentially [4]. We will give
a more careful discussion of chaotic systems in the next
section.

Anosov and Anosov-like Systems;
the Chaotic Hypothesis

Earlier in this discussion we argued that the notions of
ergodicity and mixing are not, in themselves, fully suffi-
cient for understanding the approach to thermodynamic
equilibrium for systems of many particles due to prob-
lems of time scales. In addition we argued that in many
cases reduced distribution functions may very well be bet-
ter indicators of the approach to equilibrium than the full
phase space distribution function. We also suggested that
for chaotic systems at least, these observations can be ver-
ified to the extent that we can make some more detailed
statements concerning the approach to equilibrium and
transport properties. Here we will provide some justifica-
tion for these comments.

It is helpful to consider simple model systems that dis-
play the kind of irreversible behavior that we would like to
be able to describe for more realistic, many particle sys-
tems. Two model systems that have this feature are the
baker’s map [31,38] and the Arnold Cat Map, which itself
is an example of more general models called hyperbolic
toral automorphisms [14]. We will explain this terminol-
ogy as we proceed.

The baker’s map is a map of a two dimensional “unit
square”, 0 � x; y � 1 onto itself, given by (see Fig. 1)

Chaotic Dynamics in Nonequilibrium Statistical Mechanics, Figure 1
The baker’smap: The unit square ismapped onto itself by stretching by a factor 2 in the x-direction and by a compression by a factor
of 1/2 in the y-direction. This is followed by cutting and re-arranging the resulting rectangle

�
x0

y0

�
D

�
2x
y/2

�
for 0 � x � 1/2 ;

and D
�

2x � 1
(y C 1)/2

�
for 1/2 < x < 1 :

(12)

This map consists of a stretching of the square in the x-di-
rection by a factor of 2, and squeezing in the y-direction
by a factor of 1/2. The elongated image of the unit square
is then cut in half and the right side is put on top of the left
side so that a unit square is reconstructed, after each ap-
plication of the map. Of course this is an area preserving
map, and it has a discontinuity at x D 1/2.

Suppose the x; y-plane is our (two-dimensional) phase
space and the motion of a phase point is confined to the
unit square.We now apply some of the usual techniques of
statistical mechanics to baker-map distribution functions
defined on the unit square. The phase space distribution
function changes at each time step according to

�n(x; y; ) D �n�1(x/2; 2y) for 0 � y � 1/2 ;
and D �n�1((x C 1)/2; 2y � 1) for 1/2 < y < 1 :

(13)

For statistical mechanics, we often are interested in the re-
duced distribution functions of fewer variables. Here there
are only two variables, so we consider the reduced distri-
bution function, Wn(x) obtained by integrating �n(x; y)
over the y coordinate. Using Eq. (13), we obtain the equa-
tion [38]

Wn(x) D
1
2

"

Wn�1


 x
2

�
CWn�1

�
x C 1
2

�#

: (14)

If one assumes that the initial value,W0(x), of the reduced
distribution function is a reasonably smooth function of
x, for example, if it can be represented by a convergent
Fourier series, then Wn(x) approaches a constant value as
n!1! The reason for this is that Eq. (14) says that the
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reduced distribution at time n at a point x is the average
value of the distribution at two points, x/2 and (x C 1)/2
at the previous time, n � 1. This averaging, if carried on
long enough, produces a function which is constant in x.
One can readily estimate the time it takes to reach this uni-
form state in the following way. Suppose that l < 1 is some
length scale on which W0(x) varies with x. Then since the
baker’s map stretches sets of length l into sets of length 2l
we can estimate the time to reach equilibrium as the time
it takes a set of length l to be stretched to a set of length 1,
which is (� ln l)/(ln 2). This can be much shorter than the
time it takes for the ergodic or mixing properties of the
baker’s map to make themselves manifest, which takes an
additional time of order lnN/ ln 2 to produceN horizontal
strips of unit length, stacked in the y-direction. If we were
to consider the reduced distribution function in the y vari-
able, we would not get a nice equation with a distribution
function that approaches equilibrium. Why that is so will
be clear in a moment.

We have not introduced any stochastic features into
our derivation of Eq. (14), but only integrated the Liou-
ville equation over one of the variables. Thus we have
been able to start from the Liouville equation, and by in-
troducing nothing but an initial condition and integrat-
ing over the appropriate number of unmeasured variables,
obtain an irreversible equation for a reduced distribution
function which approaches equilibrium. Incidentally, the
quantity S D �

R 1
0 dxWn(x) lnWn(x) exhibits a mono-

tonic increase with time n [8].
Our analysis of the approach to equilibrium of the

function Wn(x) made strong use of the stretching nature
of the map in the x-direction. To get some further in-
sight into the importance of the stretching of the phase
space regions, we consider another model, the Arnold Cat
Map [14] (see Fig. 2). Here the unit square, with oppo-
site sides identified, represents a torus. This transforma-
tion maps the torus (that is, there is no cutting and mov-
ing of any section as there is in the baker’s map) onto itself
and may be described by a 2 � 2 matrix with unit deter-
minant and integer elements. Such maps are called toral
automorphisms [14], of which the Cat Map is a specific ex-
ample. This map has an additional, hyperbolic, property,
namely, that one of its eigenvalues be greater than unity.
It follows from the fact that the determinant is unity, that
the other eigenvalue is less than unity, and the product of
the two is 1. The standard version of the map is given by
the symmetric matrix
�

x0

y0

�
D T�

�
x
y

�
D

�
2 1
1 1

�
�

�
x
y

�
; modulo 1:

(15)

Chaotic Dynamics in Nonequilibrium Statistical Mechanics, Fig-
ure 2
The Arnold Cat Map of the unit torus onto itself

The eigenvalues of T are (3˙
p
5)/2. The eigendirections

are perpendicular to each other, and make non-zero an-
gles with the x- and y-axes. There is a stretching direction
which corresponds to the direction of the larger eigen-
value, and a contracting direction which corresponds to
the smaller eigenvalue. While the equation for the projec-
tion of the “phase space” distribution function onto the
x- or y-directions is not as simple as that for Wn(x) given
above, it is not difficult to write a computer programwhich
shows the values of these projections after a few time steps,
starting with some initial distribution on the unit torus.
Figures 3 and 4 show the behavior of the projected distri-
bution functions, Wn(x) and Gn(y), onto the x- and y-di-
rections, respectively, for an initial set of points that is uni-
form over the region 0 � x; y � 0:1 and zero everywhere
else. Both these distribution functions become uniform af-
ter three or four time steps. In Figs. 4 and 5, we show the
evolution of the phase space distribution function at some
of the same times. Here we clearly see the difference on
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Chaotic Dynamics in Nonequilibrium Statistical Mechanics, Fig-
ure 3
The projection of the CatMapdistribution onto the x-axis,Wn(x),
at various times, n. By n D 3;4 the distribution is essentially uni-
form

Chaotic Dynamics in Nonequilibrium Statistical Mechanics, Fig-
ure 4
The projection of the Cat Map distribution onto the y-axis, Gn(y)
at various times, n. By n D 3;4 the distribution is essentially uni-
form

the rate of evolution of projected vs. full phase space dis-
tribution functions, and why, for simple models at least,
the notions of ergodicity and mixing demandmore than is
physically required for an approach to equilibrium for the
reduced distribution functions.

The important feature that both the baker’s map and
the cat map have in common is that they are both area
preserving maps with a stretching direction, or unstable

Chaotic Dynamics in Nonequilibrium Statistical Mechanics, Fig-
ure 5
The initial phase space distribution used to obtain Figs. 3 and 4

direction, and a contracting direction, called a stable di-
rection [14]. These directions are associated with stretch-
ing and contracting factors that depend exponentially
upon time. The logarithms of these factors per unit time
are the Lyapunov exponents [4,6,14,39]. For the baker’s
map the two Lyapunov exponents are ˙ D ˙ ln 2, and
for the cat map above, the two Lyapunov exponents are
˙ D ln[(3˙

p
5)/2]. In general, for higher dimensional

systems, the stable and unstable directions span the so-
called stable and unstable manifolds, respectively. For the
baker’s map the y-axis and the x-axis are stable and unsta-
ble manifolds, respectively, for the baker’s map, as are the
axes in the eigen-directions of the cat map. The impor-
tance of the unstable manifolds resides in the fact that on
them non-uniform functions become smoothedwith time,
if they are not too singular, on a time scale that is deter-
mined by the positive Lyapunov exponents. In order to get
a reduced distribution function that approaches an equi-
librium distribution for long enough times, one clearly
must project the Liouville distribution ontomanifolds that
are not orthogonal to all of the unstable directions. This
is one reason to examine the Cat Map, namely, to show
that projections onto either direction, x or y equally lead to
a uniform distribution after a few time steps. This would
be the case for the baker’s map, if we were to project on
any direction that makes a non-zero angle with the y-di-
rection. Generally, the unstable directions in phase space
are so complex that practically any projected distribution
will not be orthogonal to them. Under time reversal the
unstable and stable manifolds are interchanged, and the
picture remains essentially the same. It is worth mention-
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ing that if we were to project the distribution function
onto a stable manifold we would not obtain an equilib-
rium distribution function, but rather a very complicated
function since any irregularities in the initial distribution
function become more irregular with time, along stable
directions [6,8,40,41]. This is why a projection onto the
y-axis would not lead to an equilibrium distribution for
the baker’s map, without some sort of coarse graining to
“smooth out” an otherwise singular function.

Dynamical systems that have properties similar to the
cat map or the baker’s map are called Anosov or Anosov-
like systems, respectively [6,14,18]. Anosov systems are
continuous dynamical systems such that at every point in
phase space there are stable and unstable directions, with
positive and negative Lyapunov exponents, respectively.
There may also be some neutral directions with zero Lya-
punov exponents, but there must be at least one positive
Lyapunov exponent. The presence of positive Lyapunov
exponents is characteristic of a hyperbolic system. Further-
more there must be at least one trajectory in phase space
that is dense, a requirement which is called transitivity.
Systems of particles with some manageable singularities
such as hard spheres are not strictly Anosov systems but
are close enough to be consideredAnosov-like. The Arnold
Cat Map is an example of an Anosov system, while the
baker’s map is Anosov-like. Of course in a multidimen-
sional Anosov system, there are a number of stable and
unstable directions, and all stable manifolds intersect all
unstable manifolds transversally. Systems with at least one
positive Lyapunov exponents are commonly referred to as
being chaotic. We have chose simple systems to illustrate
the main ideas, but the reader should be aware that it is
possible to define Lyapunov exponents for motion on in-
variant sets in phase space, even for sets of measure zero,
such as periodic orbits, or as we discuss below, fractal re-
pellers.

Returning to statistical mechanics, we see that the sim-
ple examples of the baker’s map and the Cat Map give us
some reason to believe that, for chaotic systems at least,
reduced distribution functions will approach equilibrium
values, or more precisely, local equilibrium values, on rea-
sonable time scales. This conclusion depends, of course,
on the assumption that the underlying microscopic dy-
namics is of the Anosov or Anosov-like variety. It is there-
fore useful to assume that systems of large numbers of
particles with short ranged interactions, of general inter-
est for statistical mechanics, are ergodic, Anosov-like sys-
tems as far as their dynamical properties are concerned.
This assumption has been made a central feature of the
dynamical systems approach to non-equilibrium statisti-
cal mechanics by Gallavotti and Cohen [18], who have

called it the chaotic hypothesis. This hypothesis allows one
to apply the results of chaotic dynamics, such as those dis-
cussed in the next section, to realistic systems. In actu-
ality we know little a priori about the dynamics of such
systems, such as their Lyapunov exponents, or the struc-
ture and properties of unstable and stable manifolds in
phase space. Furthermore, due to the work of Turaev,
Rom-Kedar, Donnay [28,29], and others, we know that if
the intermolecular potential is smooth, there may exist re-
gions in phase space where the dynamics is not chaotic.
For these systems, the chaotic hypothesis implies the addi-
tional statement that the total volume of the non-chaotic
regions in phase space is small enough so that for deter-
mining the important averages, they can be ignored.

Fractal Dimensions

An important concept used in applications of dynami-
cal systems theory to statistical mechanics, among many
other applications, is the notion of fractal dimensions. As
we will mention in the next section, for chaotic systems
many of the connections between macroscopic transport
coefficients and microscopic dynamical quantities such as
Lyapunov exponents can be related to the dimensions of
fractal structures that form in the phase spaces of non-
equilibrium systems. Generally, but not exclusively, frac-
tals are defined by the statement that their dimension is
not an integer. However, this definition is complicated by
the fact that there are many ways to define the dimension
of a set, and some fractals may have a dimension that is
an integer by some definition and non-integer by others.
Fractals that have a variety of different dimensions are re-
ferred to as multifractals. There are also other definitions
of fractals based upon self-similarity at all scales, or upon
differentiability and continuity properties. We refer to the
literature for more details [42].

In order to present one definition of the fractal dimen-
sion of a set, imagine that the set is embedded an a d-di-
mensional space. Cover the set with cubes of length � on
a side, each labeled by an index i and suppose that one
needs at least N(�) of these cubes for a full coverage. Sup-
pose further that we have a way to assign a measure �i to
each cube. We can suppose that the total measure is nor-
malized to some constant, say unity,

N(�)X

1

�i D 1 : (16)

The measure �i may be a normalized Lebesgue measure
of the cube, or it may be the fraction of time that a typical
trajectory on the fractal spends in cube i, for example. In
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terms of this measure we can define a dimension Dq that
depends on a continuous variable q, as

Dq D
�1
1 � q

lim
�!0

I(q; �)
ln �

; (17)

where I(q; �) is given by

I(q; �) D
N(�)X

iD1

�
q
i : (18)

In this construction the quantity, D0 is called the box-
counting dimension, D1 is called the information dimen-
sion, and D2 is called the correlation dimension. The di-
mension Dq is a monotonic non-decreasing function of
q. Other dimensions frequently employed to characterize
fractals include the Hausdorff dimension, and we refer to
the literature for a careful definition and discussion of this
and other dimensions. As an example of a fractal, consider
themiddle third Cantor Set. This set is constructed by tak-
ing a unit interval, discarding the middle third of it, then
take each of the two remaining pieces, discarding the mid-
dle third of each of them, and so on. It is easy to show that
the dimensions, Dq, of the remaining set, are all equal to
ln 2/ln3.

Applications of Dynamical Systems Theory
to Non-equilibriumStatisticalMechanics

The connections between normal transport, random walk
processes, and the generalized Einstein formulae have al-
lowed results from dynamical systems theory to be ap-
plied to non-equilibrium statistical mechanics in a di-
rect way, at least for chaotic systems. However, one must
study transport processes in a way that takes advantage of
the fundamental properties of chaotic dynamics. Among
the useful properties of chaotic systems are the forma-
tion of fractal structures in phase space. If the phase space
is of sufficiently low dimensions then the fractal struc-
tures can be studied both by analytical methods and by
computer simulated molecular dynamics. In addition to
providing some insights into the approach to equilib-
rium for large systems, the dynamical systems approach
gives us deep results of a more practical sort. Among
these results are: (i) relations between transport coeffi-
cients and dynamical quantities, such as Lyapunov expo-
nents and Kolmogorov–Sinai entropies, to be defined be-
low [5,6,7,8,9,12,42,43,44,45,46]; (ii) a theory of entropy
production in non-equilibrium steady states and in the ap-
proach of a system to equilibrium [5,6,7,8,9,10,16,17,18,
20,40,49,50,51,52,53,54]; and (iii) a number of fluctuation
theorems – Evans–Searles–Gallavotti–Cohen theorems –

which describe fluctuations in entropy production in non-
equilibrium steady states [16,17,18,19,20,21,52,55]. Here
we will summarize these results, and we refer the reader
to the literature for a more complete discussion of these
and related topics.

Microscopic Dynamical Quantities
and Macroscopic Transport Coefficients

Among the many reasons dynamical systems theory at-
tracted the attention of workers in non-equilibrium sta-
tistical mechanics were the connections between macro-
scopic transport coefficients of a system of particles and
quantities that characterize the system’s chaotic behavior
discovered by Gaspard and Nicolis [6,8,43,44,45,46,47],
for Hamiltonian systems, and by Evans, Morriss, Hoover,
Posch, and coworkers, for dissipative systems with Gaus-
sian thermostats [5,7,9,12,48,49]. We discuss each case
separately.

The Escape-Rate Formulae for Transport Coefficients
Previously we noted that the Helfand moments related
to transport undergo a random walk motion in phase
space. Gaspard and Nicolis pointed out that if one consid-
ers a random walk in a space with absorbing boundaries
one can combine results from random walk theory and
from dynamical systems theory to obtain very interesting
previously unknown connections between transport coef-
ficients and quantities that characterize the microscopic
chaotic dynamics.

The random walk theory that one needs for this
connection is based on a Fokker–Planck equation for
the probability distribution of the Helfand moments,
P(M
 ; t), where M
 is a Helfand moment. We assume
that the transport process is normal, that is, that the mean
square fluctuations of the Helfand moment grows linearly
with time. In such a situation the Fokker–Planck equation
takes the simple form of a diffusion equation:

@P(M
 ; t)
@t

D ˛
@2P(M
 ; t)
@M2




(19)

Here ˛ is a constant proportional to the transport coef-
ficient � . Suppose now that we solve this diffusion equa-
tion in M-space with boundary conditions that when
M
 reaches the values ˙�/2, P(M
 ; t) D 0. That is, the
Helfand moments undergo a Brownian motion in a space
with absorbing boundaries such that the probability dis-
tribution vanishes whenever jM
 j reaches a specific value
for the first time. Under these conditions, the probability
distribution will decay exponentially, with a decay rate �
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given by

� D ˛

�
�

�

�2
: (20)

A remarkable result from dynamical systems theory is
that for chaotic systems, another expression holds for the
same escape rate in terms of Lyapunov exponents and
a quantity called the Kolmogorov–Sinai entropy per unit
time [6,14,56,57]. This microscopic escape-rate formula
for the escape-rate, �mic is

�mic D
X

i

Ci (R) � hKS(R) : (21)

All of the terms on the right hand side of Eq. (21) require
some explanation. To get some insight into this formula,
we now consider the microscopic dynamics of the system
of particles and imagine that there is a set of initial con-
ditions for all the particles for which the Helfand moment
is in the region ��/2 < M
 < �/2, and such that as the
initial system evolves in time, either forward or backward,
the Helfand moment will never reach the boundary. The
set of all such initial conditions is called a repeller and de-
noted by R. It is typically a fractal set of points in phase
space, usually of measure zero in the set of all initial phase
points, and a highly unstable set since an arbitrarily small
displacement of the initial phase of the system from a point
inR will lead to escape, unless the new initial point is also
on the repeller. Now imagine that we consider an infinites-
imally small set of points in R, and observe how these
points separate in phase space in the course of time. If
the dynamics on R is Anosov-like, there will be a set of
positive Lyapunov exponents which we have denoted by
Ci (R) in Eq. (21). The positive Lyapunov exponents on
the repeller describe the rate with which trajectories on the
repeller move apart. apart. The other term in the escape-
rate formula, hKS(R), is the Kolmogorov–Sinai entropy
per unit time of the trajectories on R, and can be under-
stood in the following way. In general, dynamic entropies
characterize the rate at which information about the ex-
act trajectory of a system is gained or lost in the course
of time. For example, if we know that the initial phase of
a system is within some small region of phase space, then
the stretching of the small region with time due to the dy-
namical instability allows us to locate the initial location
of the trajectory ever more precisely as we follow the mo-
tion of the small initial set. If the system is closed, that is,
there is no possibility of escape, then the amount of in-
formation about the initial location of the trajectory grows
exponentially as the sum of the positive exponents. This
result is known as Pesin’s theorem. On the other hand, if
the system is open and there is a possibility of escape, then

the escaping trajectories lead to a loss of information [58].
Hence a better way to write Eq. (21) is

hKS(R) D
X

i

Ci (R) � �mic : (22)

In any case we now have two expressions for the same es-
cape-rate for a hyperbolic system, and by equating them,
we obtain an expression for the transport coefficient in
terms of microscopic dynamical quantities, as

˛ D lim
�!1

�2

�2

"
X

i

Ci (R) � hKS(R)

#

: (23)

We have taken the large system limit to remove any pos-
sible dependence of the right hand side of Eq. (23) on the
shape of the boundaries or on the size of the system. This
result is due to Gaspard and Nicolis [43].

For two dimensional systems, one can reformulate the
escape rate formula in terms of the information dimen-
sion, d1, of the repeller along the unstable direction [6,59],
which is given by d1 D hKS/C, so that � D C(1 � d1).

The escape-rate formula has been used in molecu-
lar dynamics studies to obtain values for transport coeffi-
cients in a number of cases such as diffusion coefficients
in periodic Lorentz gases, viscosities of simple systems
and chemical reaction rates [27,47,60,61,62]. The results
for the transport coefficients obtained by using the es-
cape-rate methods agree with those obtained by other
methods, often based on the Green–Kubo time correla-
tion method, or, as discussed below, on Gaussian thermo-
stat methods. There are as yet very few theoretical meth-
ods to compute the Kolmogorov–Sinai entropy for the
repeller [6,27,47], while both the transport coefficients,
and, as it turns out, the sumof the positive Lyapunov expo-
nents on the repeller are sometimes amenable to treatment
by the usual methods of statistical mechanics and kinetic
theory [63,64,65].

Transport Coefficients and Phase-Space Contraction
in Gaussian Thermostatted Systems An alternative
method for relating macroscopic transport coefficients to
Lyapunov exponents was developed by Evans, Hoover,
Posch and co-workers in their work on developing com-
puter algorithms to simulate non-equilibrium flows in
many-particle systems [5,7,9,48,49,66,67,68,69,70,71,72,
73,74,75]. A problem arose in these simulations because
the systems tended to heat up considerably due to the pres-
ence of viscous friction or, for charged particle systems,
ohmic heating. To counteract this heating, these authors
introduced a fictitious thermostat which maintains a con-
stant value for either the total energy or the total kinetic
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energy of the system. The thermostat was introduced by
a modification of the equations of motion by the addition
of a frictional force in such a way that the Hamiltonian na-
ture of the system, in the usual coordinate, momentum,
and time variables, is lost. This kind of frictional force was
first introduced by Gauss in his study of mechanical sys-
tems with various constraints.

For systems with Gaussian thermostats, Liouville’s
theorem, which states that the phase space density at
a point moving under the equations of motion does not
change with time, is no longer satisfied. It is replaced by
a conservation equation that relates the time derivative of
the distribution function to the parameters characterizing
the frictional forces. As a consequence phase space vol-
umes for thermostatted systems do not remain constant
in time, but rather, on the average the phase space volume
of a set decreases with time, the system approaches a non-
equilibrium stationary state, and the system’s distribution
function approaches a distribution with fractal properties.
The average rate of decrease of the phase space volume is
given by a negative value of the sum of all of the Lyapunov
exponents of the system. The non-equilibrium stationary
state distribution is characterized by a special type of mea-
sure, called a Sinai–Ruelle–Bowen (SRB) measure, which
describes the probability of finding a system in different
regions of phase space. The SRB measure is characterized
by the fact that it is smooth in the unstable directions in
phase space but typically is fractal in the stable directions
[14]. Simple examples of this type of measure can be found
in the literature [41]. The resulting fractal is called an at-
tractor.

It is important to note that the decrease of the phase
space volume and the concomitant formation of an at-
tractor with a non-trivial SRB measure, does not mean
that the fractal has zero dimension. Indeed due to the de-
crease in phase space volume the Lebesgue measure of the
phase space region where the trajectories are located ap-
proaches zero. However the dimension of the resulting
fractal is not zero. The box counting dimension, D0, of
the fractal may even coincide with the dimension of phase
space, and the information dimension, D1, can often be
expressed in terms of the Lyapunov exponents. For exam-
ple for two-dimensional, thermostatted systems, with one
positive Lyapunov exponent, C and one negative expo-
nent,�j�j, with C � j�j < 0, the information dimen-
sion of the attractor is given by the Kaplan–Yorke–Young
formula [4,42,69,71] for two dimensional ergodic systems,
as D1 D 1C C/jj.

The decrease of the phase space volume can also be re-
lated to the entropy production in the system+thermostat.
This entropy production can also be related to the trans-

port coefficients via the usual macroscopic laws of irre-
versible thermodynamics. Thus one has a way to relate
transport coefficients to the sum of the Lyapunov expo-
nents for these thermostatted systems.

To make this discussion more concrete, we consider
the example of a hard-ball Lorentz gas [53,69,70,74,75].
We assume that the moving particles have a bounded free
path between collisions with the fixed scatterers, and that
the scatterers do not form traps without escape for the
moving particles. We suppose the moving particles have
mass. m, and carry a charge, q, (but still do not inter-
act with each other) and are placed in a constant, exter-
nal electric field, E. Ordinarily, the field will accelerate the
moving particles in such a way that their energy increases
over time. To avoid this we add a frictional force to the
equations of motion of the moving particle, and adjust the
frictional force so as to keep the kinetic energy of the mov-
ing particle constant in time. The equations of motion for
the position, r and velocity, v, of the moving particle be-
tween collisions with scatterers are

ṙ D v (24)

v̇ D
qE
m
� ˛v ; (25)

where ˛ is a dynamical variable defined by the constant
energy condition, v̇ � v D 0. Thus we find that

˛ D
qv � E
mv2

: (26)

The equations of motion given above for the moving par-
ticle must be supplemented by the equations describing
the collisions of the moving particles with the scatterers.
To simplify matters, we will suppose that the particles
make instantaneous, elastic, and specular collisions with
the scatterers.

If we define the Gibbs entropy for this system in terms
of the phase space distribution function, �(r; v; t), by

SG (t) D �kB
Z

dr
Z

dv�(r; v; t)[ln �(r; v; t)�1] ; (27)

where kB is Boltzmann’s constant, one finds that

dSG
dt
D �kB

Z
dr
Z

dv˛� D �kBh˛i : (28)

The average value is taken with respect to the phase space
distribution function for the moving particles, �. This en-
tropy actually decreases with time, since on the average ˛
is positive. This decrease in entropy must be matched, at
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least, by an increase in entropy of the reservoir that is re-
sponsible for the additional frictional force. Thus

dSreservoir
dt

� kBh˛i � 0 : (29)

We now take the entropy production in the reservoir to be
given by the usual macroscopic laws, in particular,

dSreservoir
dt

D
J � E
T
D
�E2

T
; (30)

where J D �E is the electrical current produced by the
moving particles and � is the coefficient of electrical con-
ductivity. Then, by combining Eqs. (29) and (30), and as-
suming that we take the entropy production in the reser-
voir to be exactly kBh˛i, we obtain and expression for � as

� D
kBTh˛i

E2 : (31)

The final step in this process is to relate the average friction
coefficient, h˛i, to the Lyapunov exponents for the trajec-
tories of the moving particles. We note, first of all, that the
volume,V of a small region in phase space will change ex-
ponentially in time with an exponent equal to the sum of
all the Lyapunov exponents, as

V (t) D V (0) exp
X

i

i ; (32)

since the Lyapunov exponents describe the rates of stretch-
ing or of contracting of small distances in phase space.
A simple argument shows that

�
d lnV
dt

	
D �h˛i D

*
X

i

i

+

: (33)

In the non-equilibrium stationary state, all averages re-
main constant with time, so that we can now use Eq. (31)
to obtain the desired connection between a transport co-
efficient, in this case the conductivity � , and the average
Lyapunov exponents,

� D �
kBT
E2

*
X

i

i

+

: (34)

This result has been used to determine the conductivity
and the diffusion coefficient of the moving particles in the
Lorentz gas by means of efficient computer algorithms for
determining the Lyapunov exponents [70,74,75]. Similar
methods have been used to determine the shear viscos-
ity [48] and other transport properties of systems with
short range, repulsive potentials.

One important result of the analysis of these ther-
mostatted systems is the conjugate pairing rule. This is
a generalization of the result for chaotic Hamiltonian sys-
tems that non-zero Lyapunov exponents come in pairs,
with the same magnitude but with opposite signs so that
members of each conjugate pair sum to zero [42]. This
is called the symplectic conjugate pairing rule. For many
chaotic systems with Gaussian thermostats it is possible to
prove another conjugate pairing rule where the Lyapunov
exponents form conjugate pairs which sum to a non-zero
value, independent of which pair of exponents is cho-
sen [48,76,77]. The conjugate pairing rule is very helpful
for analyzing relations such as that given by Eq. (34), since
the right hand side is completely determined by the sum
of any one conjugate pair of exponents. The easiest pair to
use is the pair formed by the positive and negative expo-
nents with the largest magnitude.

Ruelle–Pollicott Resonances and Irreversible Processes

For a Hamiltonian N-particle system, the phase space dis-
tribution function, �(�; t) evolves in time according to the
relation given by the Liouville equation, in terms of a time
evolution operator, S(�t), as

�(�; t) D S(�t)�(�; 0) D exp�tL�(�; 0) D �(� (�t); 0);
(35)

where we indicate that the phase space variables � evolve
as

� (t) D S(t)� D exp tL� : (36)

Here L is the Liouville operator, when acting on differen-
tiable functions, is given, for an isolated system ofN parti-
cles, by

L D
NX

iD1

pi �
@

@r i
C

NX

i

F i �
@

@pi
; (37)

where F i is the total force on particle i due to the other
particles, and external sources such as walls of a container.

If one insists that the functions on which the time dis-
placement operator acts be ordinary functions with well
behaved derivatives, the exponential operators, S appear-
ing in Eqs. (35), (36) are unitary with spectrum on the
unit circle. In view of this observation it is difficult to see
how a satisfactory theory of irreversible behavior, includ-
ing decays in time, might be obtained from such an oper-
ator. The answer is to be found by enlarging the space of
functions to include singular functions such as Schwartz
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distributions [6]. The discussion in the previous subsec-
tion has indicated that distributions may evolve to frac-
tals, which are typically non-differentiable functions, so it
is very natural to include singular functions in the space of
functions onwhich the time evolution operatormay act. In
this enlarged function space, the time evolution operator
may have properties that do not obtain in amore restricted
space of functions. Under these circumstances one studies
the right and left eigenfunctions of the Liouville operator,
L in a structure called a Gelfand triplet or rigged Hilbert
space [78]. There are two sets of such triplets correspond-
ing to forward and time reversed motion.

A Gelfand triplet is an operator, together with the two
spaces spanned by its right and left eigenfunctions, and
an inner product involving one function from each of the
two spaces. If the right eigenfunctions are singular func-
tions, the left eigenfunctions must be sufficiently well be-
haved so that the inner product of a function in the “sin-
gular” space with a function in the “smooth” space is well
defined. The eigenvalues for the time displacement op-
erator appear as two different sets of poles of the resol-
vent operator, (z � L)�1, in the complex plane, one for
forward and one for time-reversed motion. The poles are
called Ruelle–Pollicott resonances [79,80,81,82], and they
give the relaxation rates for various processes that can take
place in the system. The time reversal symmetry of the
motion provides the relation between the two sets of reso-
nances in the complex plane. For simple models it is pos-
sible to construct the functions, singular and smooth, in
a Gelfand triplet and to locate the resonances in the com-
plex plane [83,84,85]. In addition to poles of the resolvent
one may, in general, expect to find branch cuts, etc. in the
complex plane [6]. The existence of these resonances pro-
vides an argument that the rates of relaxation to equilib-
rium found by using traditional methods of statistical me-
chanics, including kinetic theory, are not artifacts of the
approximations made in arriving at these results, but are
reflections of the existence of Ruelle–Pollicott resonances
for the system.

Fractal Forms in Diffusion and a Dimension Formula

For chaotic systems, the relation between the mean square
displacement of a diffusing particle and the diffusion coef-
ficient conceals a fractal function. This can be understood
on the basis of the following observation: Since the actual
displacement of the diffusing particle depends on the ini-
tial phases of the particles in the system, even the slightest
change in these phases will make a large change in the dis-
placement of the Brownian particle. One way to try to cap-
ture some features of this variation of the displacement is

Chaotic Dynamics in Nonequilibrium Statistical Mechanics, Fig-
ure 6
The evolution of the phase space distribution of Figure 5 after
three iterations of the Arnold Cat Map

to consider simplemodels of diffusion that are determinis-
tic, chaotic, and diffusive [86,87]. The process of diffusion
in these models is often referred to as deterministic diffu-
sion, since no stochastic elements are introduced in the dy-
namics of the models. Here we illustrate this idea using the
two dimensional periodic Lorentz gas with finite free paths
of the moving particle between collisions, so that diffusion
is well defined in this system [86,87,88].

It is very convenient to use the van Hove intermedi-
ate scattering function as a way of describing the diffusive
process. This function, denoted by Fk(t), is defined as

Fk(t) D
D
e[ik�(r(t)�r(0))]

E
; (38)

where the average is taken over an equilibrium ensemble.
The vanHove function is related to the probability of find-
ing the diffusing particle at point r at time t, P(r; t) by

P(r; t) D
Z

dk
(2�)d

PkFk(t) ; (39)

where d is the number of spatial dimensions of the system
and Pk is the Fourier transform of the initial probability
distribution for the diffusing particle. One can use a cu-
mulant expansion in the exponent to show that Fk(t) is
given by

Fk(t) D es(k)t ; (40)

where s(k) is the wave-number dependent decay rate for
diffusive motion. Thus, for wave numbers, kmuch smaller
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than the inverse of a lattice spacing, in this case, unity, this
function takes the form

s(k) D �Dk2 C D̃k4 C O(k6) ; (41)

where D is the diffusion coefficient, D̃ is called the su-
per-Burnett diffusion coefficient, etc. In order to see the
physics that is obscured by taking the equilibrium aver-
age, consider the microscopic quantity that is averaged,
namely, exp [ik � (r(t) � r(0))]. If the motion of the par-
ticle is chaotic, the displacement over a time t is a very
rapidly varying function of the initial point r(0). As a re-
sult, the exponential containing this displacement will be
a rapidly oscillating function of the initial point. To cap-
ture these oscillations and to explore the fractal structure
of the exponential function, we consider a partially aver-
aged quantity, which we will call a normalized, incomplete
van Hove function, Fk(�; t), defined by

Fk(�; t) D
R �
0 d� 0e[ik�(r(� 0;t)�r(� 0;0))]
R 2	
0 d� 0e[ik�(r(� 0;t)�r(� 0;0))]

: (42)

Here we take initial points to be uniformly distributed just
outside the surface of one of the scatterers in the periodic
Lorentz gas, with initial velocity directed radially outward.
The point on the surface is indicated by the angle � taken
with respect to some fixed direction. If one waits for a suf-
ficient number of collisions to take place so that the mo-
tion is diffusive, and then plots Im Fk(�; t) vs Re Fk(�; t)
one finds a fractal curve for small values of the wave num-
ber, jkj. Computer results obtained by Claus et al. [89] for
the hard disk Lorentz gas are plotted in Fig. 7 for various
values of the wave number.

It is possible to prove that there exists a striking con-
nection between the fractal Hausdorff dimension, DH ,
of the curve (Re Fk(x); Im Fk(x)), for the incomplete van
Hove function [87,88], for small k, the diffusion coeffi-
cient, D, and the positive Lyapunov exponent, , charac-
terizing the chaotic process underlying the diffusive mo-
tion of the particle. This connection is illustrated in Fig. 8
and given by the equation

DH(k) D 1C
D

k2 C O(k4) : (43)

Also illustrated in Fig. 8 is the analogous curve obtained
from the incomplete van Hove function when the hard
disk potential is replaced by a repulsive Coulomb poten-
tial. For sufficiently high energy of the moving particle,
the motion of the moving particle is chaotic and the van
Hove function also shows fractal properties. Thus the frac-
tal curves are not artifacts of the hard disk potential. Equa-
tion (43) illustrates the fact that for chaotic models such

Chaotic Dynamics in Nonequilibrium Statistical Mechanics, Fig-
ure 7
The incomplete van Hove function for a periodic Lorentz gas
where a point particle of unit mass and velocity undergoes elas-
tic collisions with hard disks of unit radius forming a triangular
lattice with interdisk distance d D 2:3: Curves of the cumulative
functions for wavenumber kx D 0:0, 0.5, and 0.9 with ky D 0.
Note that the fractality increases with the wavenumber

Chaotic Dynamics in Nonequilibrium Statistical Mechanics, Fig-
ure 8
Hausdorff dimension DH of the incomplete van Hove function
versus k2 D k2x (ky D 0) for both periodic Lorentz gases with
hard-disk scatterers (filled circles) and for the case where the
hard disks are replaced by repulsive Coulomb scatterers on
a square lattice, and the energy of the particle is sufficiently high
for the motion to be chaotic (open circles). Both solid lines have
slopes equal to D/� for the respective diffusion coefficient D
and Lyapunov exponent� of the Lorentz gases

as the one discussed here, the incomplete van Hove func-
tion encodes in its structure both a macroscopic property
of the system, the diffusion coefficient, and a microscopic
property, the Lyapunov exponent. Such interesting con-
nections are central to a deeper understanding of the mi-
croscopic foundations of transport processes.
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Entropy Production in Non-equilibrium,
Hamiltonian Systems

One of the subjects of most active research in recent years
has been the theory of entropy production in non-equi-
librium systems. Dynamical systems theory has provided
some new insights into this old problem. Briefly formu-
lated, the problem is to explain the positive, irreversible
production of entropy using the fundamental ideas in sta-
tistical mechanics, particularly the Liouville equation. The
obstacle in this direction that must be overcome somehow
is the fact that the Gibbs entropy

SG (t) D �kB
Z

d��(�; t)[ln �(�; t) � 1] ; (44)

remains constant in time if �(�; t) satisfies the Liouville
equation for Hamiltonian systems

d�(�; t)
dt

D 0 : (45)

Here � represents all of the coordinate and momentum
variables of the system. The usual way around this diffi-
culty is to introduce a coarse grained entropy, obtained by
either defining an entropy in terms of reduced distribution
functions, as is done in Boltzmann’s famous H-theorem,
or by coarse graining the phase space itself, and defining
an entropy in terms of the average phase space distribu-
tion in each of the coarse graining regions [9]. In either
case, it is possible to show that the rate of production of
the redefined entropy is positive, and for the Boltzmann
case at least, is in agreement with the predictions of irre-
versible thermodynamics when the gas is close to a local
equilibrium state.

Ideas from dynamical systems theory have not
changed the fundamental need for coarse graining. Instead
they have provided strong reasons for doing it, reasons
that were lacking in the previous approaches, where the
motivation for coarse graining seemed only to be that it
was necessary to coarse grain in some way to get a posi-
tive entropy production. The central new idea in this area
is that the phase space description of a non-equilibrium
process requires, in the thermodynamic limit at least, the
use of distribution functions that are defined on fractal
sets. A simple example is provided by a system in which
diffusion can take place in a region between two parti-
cle reservoirs, each reservoir being maintained at a differ-
ent density of particles [6,40]. Then if the dynamics that
leads to transport of the particles between the reservoirs
is Anosov-like, one can argue, and in simple enough cases
show explicitly, that the regions in phase space that corre-
spond to regions of different density in the system get so

tangled up and enmeshed that the distribution function is
a wildly varying fractal function. As such, it is no longer
differentiable and the steps that lead to the proof of the
constancy of the Gibbs entropy can no longer be justified.
The only way to treat this kind of fractal behavior of the
distribution function is to smooth the function in one or
another way, typically by defining cumulative distribution
functions over small regions of phase space, leading to the
construction of SRB measures. In simple cases, one can
show that fractal forms appear in the phase space distri-
bution function for systems in non-equilibrium stationary
states produced by particle reservoirs, or in the relaxation
of a system with particle diffusion to equilibrium, and that
the rate of entropy production agrees with the predictions
of irreversible thermodynamics [6,40,50,90,91]. However,
much needs to be done to extend this work to other hy-
drodynamic processes and to understand why the results
of macroscopic theory are obtained in this way. Recently,
Gaspard has presented an expression for the rate of en-
tropy production in chaotic as well as in stochastic sys-
tems as the difference in two dynamical entropies per unit
time, one a form of the Kolmogorov–Sinai entropy per
unit time, and the other, an entropy per unit time for the
time reversed motion but as measured by the measure of
the forward process. It is possible to prove that this rate of
entropy production is positive, and for the cases studied so
far, agrees with the results of irreversible thermodynam-
ics [51,52].

Kinetic Theory Methods
for Analytical Calculations of Lyapunov Spectra

As we demonstrated in the examples given above for the
applications of chaos theory to non-equilibrium processes,
an important role is played by Lyapunov exponents and
Kolmogorov–Sinai entropies per unit time. Apart from
computer simulations, it is not always clear how onemight
obtain expressions and values for these quantities. In some
simple cases such as the baker’s map and toral auto-
morphisms, the calculation of the Lyapunov exponents
is a simple matter. However these cases are very special
and rarely are realistic models for physical systems. Thus
the problem remains of finding general methods for an
analytic determination of Lyapunov exponents and Kol-
mogorov–Sinai entropies. One such method is kinetic the-
ory. Using the Boltzmann and related equations [8,35],
van Beijeren and co workers have been able to obtain ex-
pressions for Lyapunov exponents, and in some cases, Kol-
mogorov–Sinai entropies, for dilute gases with short range
potentials, such as hard ball systems, and for dilute Lorentz
gases [8,63,64,65,92,93]. Results obtained this way are in
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good agreement with the results of computer simulations.
We refer to the literature for details.

Entropy Production in Systems
with Gaussian Thermostats
and the Cohen–Gallavotti Fluctuation Theorem

As a final example of the applications of dynamical sys-
tems theory to non-equilibrium statistical mechanics we
briefly discuss one example of a number of closely related
fluctuation theorems, first obtained by Evans, Searles, and
by Gallavotti, and Cohen, and generalized by Spohn and
Lebowitz, among others [16,17,18,19,20,21]. These fluctu-
ation theorems are very closely related to a class of work-
free energy fluctuation results due to Jarzynski [94], and
Crooks [20], as well as to the expression for entropy pro-
duction given by Gaspard [51,52], as mentioned above. By
now the literature is quite extensive and the reader is di-
rected there for more details. Here we discuss, briefly, the
Gallavotti–Cohen version of a fluctuation theorem appro-
priate for systems with Gaussian thermostats [18]. In the
discussion of systems with energy conserving thermostats,
we have introduced another idea for entropy production,
namely entropy production in a reservoir associated with
phase space contraction of a thermostatted system. Here
the central idea is that the thermostatted dynamics pro-
duces an attractor for the system’s trajectories in phase
space. The friction coefficient, which we have denoted by
˛, is a dynamical function taking on positive or nega-
tive values depending on the trajectory of the system in
phase space. To produce an overall phase space contrac-
tion, the friction coefficient should be positive on aver-
age, but from time to time it may be negative. Loosely
speaking, we might say that the entropy production in the
system is positive when the value of ˛ is positive at the
time, and negative when ˛ is negative. For example, in
the Lorentz gas that we have been discussing, when the
particle moves in the direction of the field, ˛ is positive,
and when it moves opposite to the direction of the field,
˛ is negative, provided the charge q is positive. One might
imagine some time interval � , say, and ask for the proba-
bility that the time-averaged entropy production per unit
time, �� , as measured by the phase space contraction, has
a value a over this time interval. This probability can be ex-
pressed in terms of the SRBmeasure on the attractor of the
steady state system. The fluctuation theorem for this sys-
tem is a result for the ratio of the probability that the time-
average entropy production per unit time over an interval
� will be the value a, to the probability that this value will
be �a. For a reversible, Anosov-like system with a Gaus-
sian thermostat, the theorem is

Prob(�� D a)
Prob(�� D �a)

D ea� (46)

Note that for long times this ratio approaches zero or in-
finity depending upon the sign of a.

This result was first discovered by means of computer
simulations by Evans, Cohen, and Morriss [16], and this
observation was explained on the basis of Anosov-like dy-
namics by Gallavotti and Cohen [18]. A closely related
fluctuation formula was derived by Evans and Searles [17].
By now this class of fluctuation theorems has been general-
ized considerably to include analogous results for stochas-
tic and other kinds of systems. We refer to the literature
mentioned above for further details.

Discussion

Here we described some aspects of the theory of irre-
versible processes, as seen from the point of view of dy-
namical systems theory. We described the notions of er-
godic and mixing properties of a dynamical system and
argued that they alone are insufficient for a full explana-
tion of the approach to equilibrium as seen on laboratory
time scales. However, we tried to argue that if the micro-
scopic system has positive Lyapunov exponents connected
to unstable manifolds in the phase space, then one can ar-
gue that an approach to equilibrium of reduced distribu-
tion functions can occur onmuch shorter times scales than
those needed to establish the mixing of phase space re-
gions throughout the entire phase space. Moreover the ex-
istence of a chaotic microscopic dynamics allows us to de-
rive some very striking connections between macroscopic
transport coefficients and quantities such as Lyapunov ex-
ponents, fractal dimensions, Kolmogorov–Sinai entropies,
that characterize the underlying chaotic, microscopic dy-
namics of the system. Much, but not all, of our discus-
sion was based on some very simple examples of classical
chaotic systems with few degrees of freedom, the baker’s
map and the Arnold Cat Map. These are simple Anosov-
like and Anosov systems where one can analyze many
points in some detail. However, this analysis is still very
far from an analysis of systems of real interest to statisti-
cal mechanics, where the number of degrees of freedom is
generally much, much larger, even for systems of particles
studied on computers, and where the dynamics is not al-
ways chaotic. Therefore, it is very much an open question
to show that this picture persists when the systems stud-
ied are of macroscopic size, and the dynamics is treated in
a more realistic way.

Finally we should say something about the role that
quantum mechanics plays in our understanding of the
approach of a system to equilibrium. “Quantum chaos”
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is a subject that has developed an enormous litera-
ture [15,95,96,97], primarily associated with the quantum
behavior of systems with few degrees of freedom which
are chaotic in the classical limit of „ ! 0. This work is
clearly of great importance for understanding the behav-
ior of mesoscopic quantum devices such as quantum dots
and related materials. However, there is no analog of dy-
namical chaos in quantum mechanics and no direct trans-
lation of the results described here to quantum systems.
This is a result of the fact that the limit as ¯ approaches
zero does not commute with the limit of t approaching in-
finity. Therefore one cannot typically study the asymptot-
ically long time behavior of a quantum system whose clas-
sical counterpart is chaotic, and then by taking the limit of
¯ approaching zero, obtain the correct, chaotic behavior
of the classical system. Instead one may look for some sign
in the quantummotion that the classical system is chaotic.
Typically a quantum system will exhibit some signs of the
chaotic behavior of the classical system in the semi-clas-
sical region of small, but not zero ¯, for some period of
time known as the Ehrenfest time. The Ehrenfest time is
essentially the time that it takes an initially small wave
packet to expand to some characteristic length in the sys-
tem. While the packet is small, the semi-classical behav-
ior is essentially that of a classical system. The rate of the
expansion of the wave packet is determined by the clas-
sical Lyapunov exponents. When the wave packet reaches
a certain size, then the motion of the system is governed by
interference and diffraction effects that have no classical
counterpart. For example, while a classical particle mov-
ing among a random array of fixed scatterers exhibits nor-
mal diffusion, its quantum counterpart can be localized, or
move diffusively, depending upon the spatial dimension of
the system and the particle’s energy.

The comments above suggest that chaotic dynam-
ics has a large role to play in quantum systems when
one looks at the semi-classical regime, namely the regime
where ¯, in proper dimensionless units, can be consid-
ered very small [95,96]. One important result, known as
Schnirelman’s Theorem [98]states that in the semi-classi-
cal limit, most of the wave functions for a quantum sys-
tem, whose classical counterpart is chaotic and ergodic,
become “equidistributed” on the constant energy surface.
This means that the probability of finding of finding the
system in some region becomes equal to the ratio of the
measure of that region to the total measure of the region
available to the system. Nevertheless, there are some wave-
functions for classically chaotic systems that exhibit scars
in the semi-classical limit, where the wave function is con-
centrated on periodic orbits of the classical motion. The
scarred wave functions then form a special class which do

not satisfy Schnirelman’s Theorem. In this connection we
also mention Berry’s conjecture [99] which states that the
high energy wavefunctions for a classically chaotic, ergodic
system can be represented as a Gaussian random func-
tion, such as a superposition of plane waves with random
phases. For further details we refer to the literature listed
above.

The understanding of the approach to equilibrium
in macroscopic systems typically requires a treatment of
quantum systems with a very large number of degrees of
freedom. Such systems are not likely to be in one or in
a superposition of a few energy eigenstates. Instead, such
systems are likely to be in a state that is a superposition
of a huge number of such quantum states, and destruc-
tive interference of the phase relations among the states
is an important ingredient of the behavior of such sys-
tems [100]. In fact there is a large literature that deals with
the phenomenon of the loss of coherence, or decoherence,
of superpositions of large numbers of quantum states for
a macroscopic system, and helps us understand a bit more
clearly why classical mechanics is a good approximation
for describing systems that we know to be intrinsically
quantum mechanical.

Future Directions

We conclude with a list of open questions that will pro-
vide some indication of what directions might be fruitful
further work in the future. This list is far from exhaustive,
but focuses upon the particular issues addressed here.

1. Most of the results described here that connect mi-
croscopic dynamics and macroscopic transport, such
as the escape rate formulae, Eq. (23), the dimension
formula Eq. (43), and the Lyapunov exponents-trans-
port coefficient relations for Gaussian thermostatted
systems Eq. (34), have been proven for purely chaotic,
Anosov or Anosov-like systems, only. The phase spaces
of most realistic systems are not likely to be purely
chaotic. Instead one expects realistic systems to have
mixed phase spaces with both chaotic regions and non-
chaotic regions. So far a satisfactory treatment of trans-
port in mixed systems is in a very rudimentary shape,
except for some models which have been studied ex-
tensively. It would be useful to have estimates of the size
and importance of non-chaotic regions in many-parti-
cle systems and to determine what corrections, if any,
are needed to generalize the results mentioned above to
mixed systems.

2. Most of the results given here have been illustrated,
and in some cases only derived, for low dimensional
systems. How much of this discussion is relevant for
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systems with many particles where the dimension of
phase space is very large? For example, the formula
connecting diffusion and Lyapunov exponents, given
by Eq. (43), has only been derived for diffusion in two
dimensional chaotic systems Lorentz gases.What is the
generalization of this formula to higher dimensions and
to general transport processes?

3. The fact that our detailed understanding of the role of
chaos in non-equilibrium processes is for systems of
low dimensionality suggests that applications of chaos
to nanoscale systems might be very fruitful [52].

4. Pseudo-chaotic systems present a great challenge both
to physicists and to mathematicians [101,102]. Are
there general statements one can make about the mo-
tion of a particle in a collection of scatterers, such as
hard squares or other scatterers where the motion is
not chaotic at all, and the rate of separation of trajec-
tories is at best algebraic? How do these properties de-
pend on the geometrical structure and arrangements
of the scatterers? Are there generalizations of the es-
cape-rate formula, and the others mentioned here, to
pseudo-chaotic systems?

5. There are at least a few logical gaps in the applica-
tions of dynamical systems theory to non-equilibrium
statistical mechanics. One one hand we have argued
that as far as the approach to equilibrium is concerned
it makes sense to look at projected distributions since
these distribution functions reach equilibrium forms
long before the full phase space distribution function
does. This statement itself needs a careful proof for re-
alistic systems. Moreover, the derivations of the formu-
lae that connect transport properties with microscopic
dynamical quantities rely upon the use of the full phase
space. This suggests that there is a fundamental issue
of relevant time scales that needs to be resolved, in or-
der to determine the time scales on which these results
become valid.
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Glossary

Bit Elementary unit of classical information represented
by a binary digit.

Qubit (or quantum bit) Elementary unit of quantum in-
formation. The qubit refers also to the physical system
whose state encodes the qubit of information.

Quantum gate Logical operation performed on one or
a few qubits, that change their state according to a uni-
tary transformation. Quantum gates are reversible by
definition.

Quantum entanglement Property possessed by two or
more quantum systems, when the state of the global
system that includes all of them cannot be described
by the simple composition of their states. Two entan-
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gled systems show quantum correlations between their
states that have no classical analogue.

Bell’s inequality Relation between two sets of measure-
ments performed on two quantum systems spatially
separated. Bell’s inequality can only be violated if the
two systems are entangled.

Quantumwire Metallic or semiconductor wire with
nanometric thickness. While the longitudinal current
carrying states form a continuum in the energy spec-
trum, the transverse component of the carriers wave
functions originates a discrete spectrum.

Two-dimensional electron gas (2DEG) Gas of electrons
that are quantum-confined in one dimension and free
to move in the remaining two. In the confinement di-
rection the single-particle states have a quantized en-
ergy spectrum. 2DEGs are usually obtained through
the modulation of the material conduction band in
a semiconductor heterostructure.

Surface acoustic wave (SAW) Elastic acoustic wave that
propagates on the surface of a material. In piezoelec-
tric materials SAWs couples with electrons through
the SAW-induced piezoelectric field.

Definition of the Subject

The physical implementation of the qubit, the dicotomic
unit of quantum information, has been, and still is, the
starting point of any proposal for a quantum informa-
tion processing device. Its proper definition is a neces-
sary, although not sufficient, condition for a practical sys-
tem to be able to exploit the quite large number of quan-
tum algorithms that have been proven to outperform the
corresponding classical ones. The first period of quan-
tum information processing research saw many propos-
als for qubits based on a large spectrum of systems and
approaches, but later, the focus was put on solid-state de-
vices, mainly due to their promises for scalability and bet-
ter integrability with present-day semiconductor electron-
ics. Furthermore, a deep understanding of the quantum-
based physics of semiconductor devices is available, due
to the long-standing research on the field, mainly driven
by the huge commercial success of semiconductor micro-
processors. In fact, the application of quantum mechan-
ics to solid-state systems has resulted in a large number
of semiconductor devices with novel functionalities, and
the quantum mechanical aspects of the device properties
start to dominate their behavior, as device dimensions get
smaller. While this may become a problem for traditional
electronic devices, it is a prerequisite for the implemen-
tation of quantum technology in general and quantum
information processing in particular. These possibilities

have inspired a number of proposals for creating qubits,
quantum gates and quantum registers from semiconduc-
tor devices and using them for implementing quantum al-
gorithms. Theoretical studies of the device properties have
been undertaken, but the challenging technological hur-
dles have slowed down experimental progress.

Introduction

In what follows, we will describe a class of solid-state
qubits, known as charge flying qubits, whose characteris-
tic is the evolution with time of their spatial localization.
We will first briefly introduce the concept of quantum
information processing and, more specifically, of quan-
tum computing. Then we will focus on the definition of
the qubit and of quantum entanglement, stemming from
the non-separability of the multi-particle state. The logic
transformations that must be applied to the qubit in order
to implement quantum algorithms, namely the quantum
gates, will be described and the requirements for a prac-
tical realization of quantum computing devices, listed by
DiVincenzo in his famous checklist [41], will be reviewed.
Then we will enter into the details of a specific proposal for
the realization of quantum bits and quantum gates, based
on the charge state of electrons in semiconductor quantum
wires.

In the last sections, we will return to the concept of
qubit entanglement and will present specific calculations
for the entanglement creation in a quantum-wire system
and, more general, in a carrier-carrier scattering. In fact
quantum entanglement can be considered both a resource
and a detriment for quantum computing. It is a resource
since any quantum algorithm is based on the entangle-
ment of two or more qubit states, it is a detriment when
a qubit is entangled with a degree of freedom that is out-
side the computational space, i. e. the environment, giving
rise to the phenomenon of decoherence. It is the aim of
the theoretical modeling to identify the proper system pa-
rameters for the controlled production of the first kind of
entanglement, while avoiding, or at leas reducing, the sec-
ond one.

The idea of a solid-state qubit, whose state is encoded
by the localization of one electron traveling in two cou-
pled semiconductor quantum wires, is here anticipated.
The basic qubit structure consists of two parallel quan-
tum wires, close to each other and separated by a potential
barrier. The state of the qubit is represented by the loca-
tion of a single electron traveling in one (state j0i) or the
other (state j1i) of the two wires with a controlled veloc-
ity. If a coupling window is introduced between the wires
through the lowering of the potential barrier that separates
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them, the electronic wave function crossing the coupling
region oscillates between the wires. When the electron
reaches the end of the coupling window, the oscillation
process terminates, and the wave function is eventually di-
vided into two parts running along the left and right wires.
The necessary superposition of quantum states is thus ob-
tained. The introduction of a low potential barrier in one
of the two wires, able to delay the propagation of the wave
function with negligible reflection, delays the propagation
of the part of the wave function in that particular wire
and generates a phase shift between the two components
of the qubit. Combinations of these two transformations
allow for the implementation of a general single-qubit op-
eration.

A two-qubit gate requires two pairs of wires. They are
designed in such a way that only the electron running in
the 1 component of the first qubit and the electron running
in the 0 component of the second qubit feel their Coulomb
interaction, thus generating the necessary entanglement.
As a consequence, the electrons are slowed down, and
the system undergoes a phase shift that originates from
the spatial delay of the two interacting electrons. This last
transformation and the two single-qubit transformations
described above form a universal set of gates for quantum
computing. Numerical simulation of the quantum dynam-
ics of the proposed devices have been performed, in order
to obtain the parameters for the experimental realization
and to estimate the performance and decoherence times
of these systems.

Prototypes of single-qubit devices have been realized
experimentally, based on coupled electron wave guides
obtained from two-dimensional electron gases (2DEGs)
through split-gate or AFM nanolithography techniques.
Their basic functioning is currently under investigation.
The experiments and the different realization strategies
will be mentioned.

Although the electrical properties of quantum wires
are nowadays well established both theoretically and from
the point of view of experimental realization, the feasibility
of complex devices, with a network of coupled quantum
wires, remains a challenge. Some considerations about
the practical realizability of quantum computers based on
solid-state flying qubits will be presented, and an example
of a simple quantum-gate network will be given. A number
of mechanisms of carrier injection into the QWRs, such
as surface acoustic waves (SAW), electron pumps, reso-
nant tunneling devices have been proposed in literature.
We will describe, in particular, surface acoustic waves,
that have demonstrated the ability to inject and drive sin-
gle electrons in quantum wires. Numerical simulations of
a simple model of such systems will be presented. In fact,

surface acoustic waves are also expected to reduce deco-
herence effects due to the quantized energy spectrum in-
duced on the embedded carriers. Concerning the detection
of the final state of the charge qubit, it can be achieved by
single-electron transistors placed at the end of each quan-
tum wire. Different kinds of solid-state flying qubits have
been proposed, as for example, the qubit encoding real-
ized through the spin state of single electrons propagating
in quantum wires [5]. We will not enter into the details of
these proposals.

Quantum Information Processing
and QuantumComputation

Over the few decades following the discovery of quantum
mechanics, the tight link between information theory and
physics has been recognized and, in 1961, Rolf Landauer
pointed out that any irreversible process leading to erasure
of information is necessarily a dissipative process. Lan-
dauer’s statement [28] about the entropy cost of informa-
tion, opened the search for understanding of how physics
constrains the ability to use and manipulate information.
Once recognized that “information is physical” [33], the
next step is to consider that the universe is fundamentally
quantummechanical: the classical theories about informa-
tion need to be revised according to quantum physics.

By taking into account the quantum nature of the in-
formation-storing devices it was clear that also the cor-
responding theory about information processing needed
to include the distinctive feature of quantum physics:
quantum entanglement. The first widespread proposal of
a quantum information processing system was advanced
by Richard Feynman, as a means of simulating a quantum
system. In fact, an exact classical simulation of a quantum
system needs to follow, separately, its possible quantum
states, leading to a growth of the resources needed. On the
other hand, a quantum simulation would follow a super-
position state of the quantum system, with a correspond-
ing superposition of the simulation tool.

However, quantum information processing burst onto
the scene of active research in 1994, when Peter Shor pro-
posed a quantum algorithm for the factorization of inte-
ger numbers that requires a computational time which is
polynomial in log(N), with N the number to be factor-
ized. Since no classical algorithm is known that can per-
form such a task more efficiently, the importance of the
Shor algorithm was immediately realized. In fact, since
many widely used public-key cryptographic methods are
based on the practical impossibility of factorizing large in-
tegers, an “efficient” factorization algorithm could jeopar-
dize their secrecy.
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A number of branches of quantum information theory
are nowadays fertile research topics, whose borders are,
however, not sharp. We mention the fields of quantum
algorithms, quantum cryptography, quantum communi-
cation, quantum teleportation and, finally, quantum com-
putation. The starting point of all of the above tasks, is the
qubit, i. e. the elementary particle of quantum information.
A brief description of its basic properties, the formalism
adopted to describe it, and the differences with classical
bits, are given in the following. Then the specific case of
a qubit based on coherent electron transport in coupled
wires will be analyzed.

The Qubit

Classical computer systems store and process information
in binary encoding. Any integerN is represented by an or-
dered sequence of n bits an ; an�1; : : : ; a1; a0 according to

N D
n�1X

iD0

ai2i (1)

with 0 � N � (2n � 1) and ai 2 f0; 1g. In conventional
computers, single bits are usually stored as the charge or
magnetic state of an electronic device, and transistors are
used to realize logic gates, i. e. the transformation of amul-
tiple bit state according to an established rule. Any bit can
be in one and only one of two possible states: either 0 or 1.
In the quantum case, a bit of information is also repre-
sented by one of two possible states, namely j0i and j1i, of
a given system, but now, since the latter is described by the
laws of quantum mechanics, the bit can be in any super-
position of the two states. In fact, the states are associated
with two specific eigenstates (j 0i and j 1i respectively)
of a suitable observable and now the system can be in any
state

j i D c0j 0i C c1j 1i (2)

with c0 and c1 complex numbers and jc0j2 C jc1j2 D 1.
This means that the quantum analog of a bit, the
qubit [14], can be simultaneously in both states 0 and 1. If
we measure the qubit we will find it with probability jc0j2

with the value 0 and with probability jc1j2 with the value 1.
It is important to underline that Eq. (2) describes a coher-
ent superposition rather than a generic mixture between
0 and 1. The essential point here is that there is always
a base in which the value of the qubit system is well de-
fined, while an incoherent mixture is a mixture whatever
base we choose to describe it. As anticipated, the two states
of a qubit are usually indicated with j0i and j1i, following

the Dirac ket notation used in quantum mechanics. Also,
it must be noted that the space spanned by a single qubit
is isomorphic to the spin space of a spin 1/2 particle. This
will allow us to use the formalism for spin states and spin
rotations when dealing with single qubits.

Let us suppose now to process some information en-
coded in an array of n bits. Classically, an input state must
be chosen from the 2n possibilities given by the array, then
the information is elaborated, finally an output is pro-
duced. To have the output corresponding to a different
input, another elaboration must be performed. Things are
different if the information is encoded in an array of qubits
and if the information is elaborated bymeans of some kind
of “quantum machine” able to preserve the quantum co-
herence of states. In this case it is possible to create an in-
put state that is a linear superposition of q classical inputs
(2n possibilities each), then the output of the elaboration
will be the same linear superposition of the q correspond-
ing classical outputs.

In this case, quantum computation exhibits a kind of
“natural” massive parallelism, but this peculiarity of quan-
tum mechanics can not be easily exploited. In fact, in or-
der to know the output of the elaboration, a measure, in
the quantum mechanical sense, must be performed, this
producing a collapse of the quantum state into a single
component of the linear combination. In our simple ex-
ample this means that only one random result, among the
results of the q classical computations, can be revealed. To
get benefit from quantum processing of information, spe-
cific algorithmsmust be implemented, asmentioned in the
previous section, that exploit the main peculiarity of quan-
tum physics i. e. quantum entanglement.

Quantum Entanglement

The deep difference between classical information and
quantum information becomes evident when a state of two
or more qubits is taken. In this case the whole many-qubit
system can be in a superposition of states in which none
of the qubits has a definite value but there is a fixed cor-
relation between their values. In other terms, an entangled
state is any state that cannot be written as a direct product
of single-qubit states.

For example, in the two-qubit entangled state

1
p
2
(j0i1j1i2 C j1i1j0i2) ; (3)

where j0in (j1in) indicate the zero (one) state of the
qubit n, the probability to obtain the value 0 as the out-
come of a measure on either the first or the second qubit
is 50%. However, once a measure has been performed, the
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outcome of a measure on the remaining qubit is known
with 100% confidence. The correlation between two sys-
tems in a joint quantum state is “stronger” than any clas-
sical correlation and leads to effects that are unknown in
classical physics. This offers the possibility to encode infor-
mation in a completely new way, in which the information
is stored by the multi-qubit system as a whole and no in-
formation is carried by single qubits. In order to compact
our notation, we will follow the usual convention of in-
dicating the state of the qubits, lexicographically ordered,
with a single ket vector and dropping their index. For ex-
ample, j01i will be used to indicate the two-qubit state
j0i1j1i2.

Entanglement is closely related to the issue of non-
locality of quantum measurement. In fact it was evident
since the early days of quantum physics that if two par-
ticles are in an entangled state, quantum theory predicts
that a measurement process performed on a particle is
able to change instantaneously the state of the other, even
if they are spatially separated. It was indeed Schrödinger
that introduced the word entanglement to indicate the
superposition in a multi-particle system. Because of this
“action at distance”, quantum theory was strongly criti-
cized by many physicists. Among them, Albert Einstein,
Boris Podolsky and Nathan Rosen, in a famous paper [16]
dated 1935, refused the non-locality implied by quantum
mechanics and in the epistemological discussion that fol-
lowed, addressed the new theory as incomplete. The dis-
cussion about incompleteness of quantum mechanics was
considered merely philosophical until 1964. In that year
John Bell showed [6] that, for entangled systems, measure-
ments of correlated quantities should yield different results
in the quantum mechanical case with respect to those ex-
pected if one assumes that the properties of the measured
system are present prior to, and independent of, the obser-
vation (reality hypothesis).

In the last section, a proposal for an experimental setup
able to violate Bell inequality, based on coherent elec-
tron transport in coupled quantum wires will be sketched
and the generation of maximally entangled Bell’s states by
means of solid-state flying qubits will be analyzed. Some
results of numerical simulations of such a system will be
presented.

Bell’s states, using the qubit formalism, are two-qubit
states that do not carry any information on the state it-
self on the single qubits. In fact, the usual way is to encode
a bit onto each system separately which gives the follow-
ing four possibilities: j00i, j01i, j10i, j11i. By exploiting
the features of entanglement it is possible to encode the
information using four non-separable states of two qubits,
the so-called Bell states:

j�Ci D
(j01i C j10i)
p
2

; j��i D
(j01i � j10i)
p
2

;

j˚Ci D
(j00i C j11i)
p
2

; j˚�i D
(j00i � j11i)
p
2

:

(4)

Note that in each of the four states, any single qubit has
50% of probability to give 0 or 1 whenmeasured. As a con-
sequence a single-qubit reading does not provide even par-
tial information on the state. Only a measure on the joint
state of two qubits allows to read the stored information.

We finally note that the search for an experimental vio-
lation of Bell’s inequality started straight after its discovery
but it was only in the 1980s that the violation was obtained
experimentally [3] using polarization entangled photons
from a spontaneous parametric down conversion. On the
other hand, the violation of Bell’s inequality in semicon-
ductor-based devices has not been, so far, revealed.

QuantumGates and the Universal Set

In this section, we introduce some of the simplest quan-
tum logic gates that are at the basis of more complex trans-
formations presented in the following and introduce the
concept of a universal set of quantum gates.

For a (classical) digital computer the simplest logic
gate is the single-bit NOT gate. It simply changes the state
of the input bit from 0 to 1 and vice versa. In the quantum
case a NOT gate will perform the transformation

j ini D c0j0i C c1j1i
NOT
�! j outi D c0j1i C c1j0i ; (5)

in which the complex coefficients of states j0i and j1i are
exchanged.

Another useful single-qubit quantum gate that has no
correspondence in classical information processing, is the
Hadamard gate H, that transforms the two qubit states j0i
and j1i according to:

j0i
H
�!
j0i C j1i
p
2

and j1i
H
�!

j0i � j1i
p
2

: (6)

Although the idea of a quantum logic-gate operation is
strictly related to that of classical logic operation, a crucial
difference must be underlined. For many classical gates,
like AND, OR, XOR, the number of input and output bits
is different. In fact the basic logic gates used to implement
digital computers are “many-to-one” operations and are
not logically reversible. Once the input state is given, it is
straightforward to compute the output state, but it is not
possible to identify the input from the output. Thus, the
logical transformations performed by these classical gates
imply a loss of information. Wewill not enter here into the
topic of reversible and non-reversible computation (see,
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Charge-Based Solid-State Flying Qubits, Table 1
Truth table defining the controlled-NOT and Toffoli reversible
gates

CNOT
in out
00 00
01 01
10 01
11 10

Toffoli
in out in out
000 000 100 000
001 001 101 101
010 010 110 111
011 010 111 110

for example, [7,33]), but simply report a fundamental re-
sult of quantum information theory: a quantum logic gate
is a unitary transformation of the input state, therefore any
quantum gate must be reversible. This means that it is not
possible to start from the well-known classical logic gates
and find quantum analogues (as for the NOT gate), but re-
versible transformations must be used instead, in order to
identify a universal set of transformations.

A reversible classical gate of special interest, that will
be described in the framework of solid-state flying qubit
devices in the following section, is the controlled-NOT
(CNOT). It is a two-bit to two-bit gate that has, as the first
bit of output, a copy of the first bit of input, and as the sec-
ond bit of output the XOR between the two input bits. The
truth table for the controlled-NOT gate is given in Table 1.

It is easy to identify the quantum version of the CNOT
gate. The operation performed on a generic two-qubit
state j ini is:

ca j00i C cb j01i C cc j10i C cd j11i
CNOT
�! ca j00i C cb j01i C cc j11i C cd j10i : (7)

Let us introduce here a last reversible classical gate, the
Toffoli gate (sometimes called control-control-NOT). It is
a three-bit to three-bit gate whose operation is: the first
two bits are unchanged, the third bit undergoes a NOT op-
eration if, and only if, first and second bits are both 1. The
truth table for the Toffoli gate is given in Table 1. Even in
this case it is trivial to find the quantum version of the Tof-
foli gate. We will omit the explicit expression for the sake
of brevity.

In strict analogy with the usual quantum mechanics
formalism, an n-qubit state can be written both in ket for-
malism and as a column vector, once a basis is chosen.

Here and in the following the matrix representation of
operators is expressed on the lexicographically ordered ba-
sis, i. e., j0 : : : 00i; j0 : : : 01i; j0 : : : 10i; : : : ; j1 : : : 11i. For
example for a 2-qubit system, the basis will be fj00i; j01i;
j10i; j11ig.

With this notation, vector representation of the 2-
qubit state representing the entangled state aj00iCbj01iC

cj11i results to be
0

BB
@

a
b
0
c

1

CC
A : (8)

This formalism allows a fast calculation of the effect of
a quantum gate on a qubit state, once the transformation
matrix is given. The matrix representation for three quan-
tum gates introduced previously, (NOT, controlled-NOT,
Hadamard) is:

NOT D
�

0 1
1 0

�
;

CNOT D

0

B
B
@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

C
C
A ;

H D
1
p
2

�
1 1
1 �1

�
:

Let us now introduce a compact notation to repre-
sent the action performed by a transformation acting on
a subset composed of n qubits of an m-qubit system (with
n < m). The identity operation on the remaining (m � n)
qubits will be understood. Let us consider a generic basis
ket of the m-qubit system jb1; b2; : : : ; bmi and a generic
basis ket of the n-qubit subsystem ja1; a2; : : : ; ani (with
ai ; bi 2 f0; 1g). If A is a linear operator acting on
ja1; a2; : : : ; ani, we define the operator A(x1;x2;:::;xn)

(with xi � m and xi ¤ x j iff i ¤ j;8i; j � n) acting on
the m-qubit state jb1; b2; : : : ; bmi as the operator that
transforms the n qubits state jbx1 ; bx2 ; : : : ; bxn i, accord-
ing the transformation A and leave the other qubits un-
changed.

For example, the four-dimensional matrices M(1) and
M(2) that represent the action of a generic single-qubit
transformation

M D
�

a b
c d

�

on a two-qubit system, and that will be used in the follow-
ing sections, are:

M(1) D

0

B
B
@

a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d

1

C
C
A ;

M(2) D

0

BB
@

a b 0 0
c d 0 0
0 0 a b
0 0 c d

1

CC
A :

(9)
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In fact, for a 2-qubit system the transformationM(1) corre-
sponds to the transformationM applied on the first qubit,
while M(2) corresponds to the transformation M applied
on the second qubit.

To conclude this section, we introduce the concept of
a universal set of gates, i. e. the set of simple transforma-
tions that can be combined in order to create any possible
complex transformation of bits, (or qubits in the present
case).Wewill show, in the following sections that, by using
three types of coupled quantum wire devices, it is possible,
at least in principle to implement such a universal set.

The concept is analogous to classical computation,
where any given transformation can be obtained, for ex-
ample, using AND and NOT gates. However, as men-
tioned above, the AND gate is not a reversible gate. This
means that the transformations realized using the set
fNOT;ANDg are, in general, not reversible and we need
a different choice for the quantum case.

In 1995 David DiVincenzo [40] showed that, for quan-
tum computation, a universal set formed solely by one-
qubit and two-qubit gates exists. A further simplification
of the set of universal quantum gates was introduced by
Barenco et al. [4]. They proved that a non-universal, clas-
sical two-bit gate can be found that, in conjunction with
a generic quantum one-qubit gate, form a universal set for
quantum computing. On the basis of this last result, we de-
scribe, in the following, the universal set implemented by
the charge flying qubit.

Let us start by analyzing the one-qubit gate. The space
of a two-component vector representing a single flying
qubit is isomorphic to the spin space of a spin 1/2 parti-
cle. This means that a general transformation of one qubit
is represented by a rotation matrix of the SU(2) group, i. e.

U(˛; ˇ; �)

D

0

@
ei(˛/2Cˇ /2) cos



�
2

�
ei(˛/2�ˇ /2) sin



�
2

�

�ei(�˛/2Cˇ /2) sin


�
2

�
ei(�˛/2�ˇ /2) cos



�
2

�

1

A ;

(10)

where˛; ˇ; � are three real numbers representing three ro-
tation angles around two orthogonal axes: ˛ and ˇ are ro-
tations around Z, between them, a rotation around Y of �
is performed [39]. Any transformation U can be obtained
using two of the three basic rotations:

Rx(�) D

0

@
cos



�
2

�
i sin



�
2

�

i sin


�
2

�
cos



�
2

�

1

A ; (11)

around the X axis,

Ry(�) D

0

@
cos



�
2

�
sin


�
2

�

� sin


�
2

�
cos



�
2

�

1

A ; (12)

around the Y axis, and

Rz(�) D

 
ei
�
2 0
0 e�i

�
2

!

; (13)

around Z axis.
In particular, the generic transformation U in the

form (10) can be obtained using only Ry and Rz:

U(˛; ˇ; �) D Rz(˛) Ry(�) Rz(ˇ) : (14)

Furthermore, one of the above three rotations can be
obtained using the other two. In fact

Rx(�) D Rz(�/2) Ry(�) Rz(��/2) (15)

Ry(�) D Rz(��/2) Rx(�) Rz(�/2) (16)

Rz(�) D Rx(��/2) Ry(�) Rx(�/2) : (17)

This means that in order to obtain a generic single-qubit
transformation (the first gate in our universal set) it is suf-
ficient to have two of the rotations (11), (12), (13).

We now consider the two-qubit gate of the set. A typi-
cal choice for the latter is the CNOT introduced above. An-
other possibility is to use a two-qubit conditional phase
shifter. This gate adds a phase factor to a given compo-
nent of the qubit state. The usual form for the conditional
phase shifter present in literature adds a phase ei� to the
state j11i:

j ini D caj00i C cb j01i C cc j10i C cd j11i �!

�! j outi D ca j00i C cb j01i C cc j10i C ei� cd j11i :

For any value of the angle � , not equal to an integer multi-
ple of � , we have a transformation that, together with the
one-qubit gatesU of Eq. (10), form a universal set.

In the following section, the conditional phase shifter
used is slightly different from the one described above. In
fact it adds a phase to the j10i component of the state. Its
matrix representation is:

T(� ) D

0

BB
@

1 0 0 0
0 1 0 0
0 0 ei� 0
0 0 0 1

1

CC
A (18)

and forms, together with the one-qubit gatesU, a universal
set.
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The DiVincenzo Criteria

The concrete realization of quantum-computing capable
hardwaremust face a number of general tasks and require-
ments that have been listed by David DiVincenzo [41] in
the form of a checklist. Five criteria were listed, that must
be met by physical systems that are to form the basis of
a useful quantum computer.

For the sake of completeness, we report in the follow-
ing the checklist, as given in [2]:

1. A scalable physical system of well-characterized qubits.
2. The ability to initialize the state of the qubits to a simple

fiducial state.
3. Long relative decoherence times, much longer than the

gate-operation time.
4. A universal set of quantum gates.
5. A qubit-specific measurement capability.

The above criteria are largely qualitative, but more quan-
titative bounds have been proposed [27,34]. A universally
accepted criterion is the number of gate operations that
can be executed before decoherence processes have de-
graded the quantum information significantly. This num-
ber is often estimated as the ratio of the decoherence time
by the single gate operation time. However, additional
mechanisms leading to the loss of quantum information
must also be considered, such as the accuracy of the logic
operation performed by the quantum gate. In fact, a prob-
lem that is often present in the design of quantum infor-
mation devices is that optimization of one of the relevant
parameters conflicts with the requirements for another op-
eration. As an example, good readout sensitivity and fast
gate operations require strong coupling to the classical ap-
paratus that drives the device. However, strong interac-
tions with the environment increases the speed of decoher-
ence. Optimizing performance of the full system, i. e. from
initialization through computation and readout, therefore
forces one to make choices and to accept some additional
decoherence if this results in improved readout sensitivity.

In addition to the above points, two additional points
have been added in order to consider the issues related to
the transfer of quantum information between different de-
vices implementing the quantum operations:

6. The ability to interconvert stationary and flying qubits.
7. The ability to faithfully transmit flying qubits between

specified locations.

The latter criteria, related to quantum computer network-
ability, are automatically met by proposals whose qubit
definition is based on flying qubits. In fact, in order to
perform a quantum computation the qubits must undergo

a sequence of logical operations, represented by unitary
transformations on the multi-qubit state. Two classes of
proposals can be identified, according to the kind of qubit
encoding [8]. The first one is characterized by qubits that
are defined by the quantum state of given physical sys-
tems, fixed into space, with quantum gates implemented
by changing in time the coupling between the qubits.
Quantum computation based on charge and spin degrees
of freedom of semiconductor quantum dots are an exam-
ple of these implementations, where a logic operation is
performed by a proper time-dependent tuning of inter-
dot coupling. The second class is represented by the fly-
ing qubits, where, contrary to the previous case, quantum
gates are fixed, while the position of the qubits changes in
time. At each stage, the outputs of a quantum transforma-
tion, i. e. the state of a qubit register, must be moved to the
inputs of the following quantum gate. This process, over-
looked in the early times of quantum information process-
ing research, results to be critical in viable practical real-
izations and strictly connected to the problem of quantum
communication [41].

Flying Qubits Based on Coherent Electron Transport
in Coupled QuantumWires

In this section, a physical system able to perform the basic
operations needed for quantum computation is proposed
and investigated theoretically. As anticipated in the Intro-
duction, the elementary qubit is defined as the state of an
electron running along a couple of quantumwires.We will
not enter into the details of the modeling of a realistic de-
vice, for which we refer to recent literature [1,29,32,38,42].
We will use hard-wall confining potentials and simple
models in order to focus on the functioning principles of
the quantum gates. However, we will use GaAs-AlGaAs
heterostructure parameters in the simulations presented in
the following. Wewill show that a proper design of the sys-
tem, together with the action of Coulomb interaction be-
tween electrons, allows the implementation of basic one-
qubit and two-qubit quantum logic gates.

Let us consider the quantumwell formed by a modula-
tion-doped heterostructure. If we assume low free carrier
density, less than 1010/cm2, in the so-formed two-dimen-
sional electron gas (2DEG), the confining potential profile
along the direction orthogonal to the layers can be consid-
ered as a narrow triangular well (see, for example, [19]).
Along this direction the wave function is quantized and
has, for the lower, bound states, a discrete energy spec-
trum. The motion of the carriers in the plane parallel to
the interfaces is free, so that, for any transverse energy,
there exist a continuum of two-dimensional states called
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Charge-Based Solid-State Flying Qubits, Figure 1
Schematic transverse potential profile of two weakly coupled
quantum wires (double well). The dark and light solid lines show
the two lower eigenfunctions: j ei and j oi, with even andodd
parity, respectively. The dashed and dotted lines represent their
sum (j0i state, localized in the left well) and difference (j1i state,
localized in the right well), respectively

subbands. Such a 2DEG system is the basis from which
quantum wire structures can be realized by lithographic
process or electrostatic confinement. In the following, the
confined direction, i. e. thematerial growth direction, is ig-
nored since it is supposed that a single electron, injected in
the system, will remain in the lowest subband.

The basic device consists of two parallel quantum
wires [10]. It is supposed to operate at very low temper-
ature in order to have a negligible number of electrons
in the conduction band and to minimize the decoherence
due to the interactions of the electrons with lattice vibra-
tions. The transverse potential profile of the two-wire sys-
tem is shown in Fig. 1 together with its ground eigenfunc-
tion j ei, that has even parity, and the first excited state
j oi, that has odd parity.

Figure 1 shows also that the sum and difference of
the two lower eigenfunctions are almost fully localized in
the left and right well, respectively. The widths of the two
wires are equal and constant along the whole device. This
avoids any effect due to unalignment of subbands in the
two quantum wires [24].

Let us consider a single electron injected into one of
the two wires and assume that the injection process is able
to keep the electron in the transverse ground state, and

that, in the longitudinal direction along the wire, it is well
described by a minimum uncertainty wave packet.

 (x; y) D
r

2
L
cos

h�
L
(x � x0)

i

1
p
�
p
2�

e�
�

y�y0
2�

2
ei k0 y ;

(19)

where, L is the width of the quantum wire, whose center
is x0, � is the standard deviations of the Gaussian function
and gives an estimate of the wave function extension in
space along the wire direction, y0 is the coordinate of the
center of the wave function, k0 is the wave number, rep-
resenting the kinetic energy of the electron along the y di-
rection. This is the initial condition for the following time-
dependent numerical simulations.

The state of the qubit is defined as j0i if the electron is
in the left wire, j1i if it is in the right wire. This means, in
terms of transverse wave functions:

hxj0i D
1
p
2
(hxj ei C hxj oi) D

r
2
L
cos


�
L
(x � x0)

�

hxj1i D
1
p
2
(hxj ei � hxj oi) D

r
2
L
cos


�
L
(x � x1)

�

(20)

where x0(x1) is the central point of the left (right) well
formed by the potential in the direction orthogonal to the
wires.

The time evolution of the states defined by Eq. (20), as
regards the x component, is simply given by a multiply-
ing factor e�i! t with ! frequency of the two degenerate
eigenstates.

One-Qubit Gates

If a coupling window is introduced between the wires,
a significant lowering of the symmetric transverse state en-
ergy !e is produced. It can be easily shown that, with good
approximation the energy of the anti-symmetric state is
unchanged (!o D !). It is well known (and it has been
verified experimentally, see for example [18]) that the elec-
tronic wave function crossing this coupling region, oscil-
lates between the wires with a period � D 2�/(! � !e).
When the electron reaches the end of the coupling win-
dow, the oscillation process terminates and the wave func-
tion is eventually separated in two parts running along the
left and the right wires, as shown in Fig. 2.

If T is the time that the electron spends in the coupling
region, the transverse states in Eq. (20) evolve according
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Charge-Based Solid-State Flying Qubits, Figure 2
Numerical solution of the time-dependent Schrödinger equation
for one electron injected in a system of two coupled quantum
wires [10]. The model potential profile and the square modulus
of thewave function are shown at three different time steps. The
width of thewires is L D 6nm and the couplingwindow is 10 nm
long. Note that different scales have been used for the two axes.
The initial condition (in the upper image) is the wave function in
Eq. (19) with � D 20nm and k0 corresponding to an energy of
50meV. The effective mass for GaAs has been used

to:
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e�i!T
p
2
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(21)

where � D (! � !e)T . The length of the coupling win-
dow, the height of the barrier in it and the velocity of
the electron, can be properly chosen to perform a given

transfer of the electronic wave function between the wires.
It is easy to see that, using the matrix formalism intro-
duced in the previous section, the transformation S per-
formed is represented by the rotation matrixRx multiplied
by a phase factor:

S(�) D ei
�
2

0

@
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�
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�
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�
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�
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A D ei
�
2 Rx(�) :

(22)

The global phase factor e�i!T , due to the time evolu-
tion of the state, is ignored for simplicity: it is present in
each of the transformations proposed and also in the free
propagation of the electron, therefore it can be considered
a global multiplying factor for the many-qubit system that
gives no contribution.

Similarly, the exponential ei
�
2 of Eq. (22) results to be

a global phase factor and can be neglected. Thus, in the
following, the operation performed by the geometry de-
scribed in this section (coupling window), will be indicated
by either S(�) or Rx(�).

A second kind of transformation on a single qubit can
be obtained with the introduction of a potential barrier
able to delay the propagation of the wave function in one
of the two wires (but low enough to avoid reflections [9]).
This induces a phase shift between the two components of
the qubit.

Let us suppose to have a qubit in a state aj0i C bj1i
(with a and b complex numbers and ja2 C b2j D 1). This
means that the initial wave function  i(x; y): (a) in the
longitudinal direction along the wires still has the form
of a minimum uncertainty wave packet, (b) in the trans-
verse x direction it is split in two parts, one in each wire,
i. e., according to Eq. (20):
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or, as a column vector,
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a e�(
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b e�(
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!

: (23)

It is known, from elementary quantum mechanics [30],
that the effect of a potential barrier on a propagating wave
function (like the one described in Eq. (19)) can be re-
duced, with good approximation, to a spatial delay 
S,
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provided either that (i) the mean kinetic energy of the
wave packet is much higher than the barrier, or that (ii)
k0L is a multiple of � and the broadening in momentum
space is small (� is large).

If the delaying potential barrier is inserted on the 0
wire, only the j0i component of the wave function will un-
dergo the spatial delay 
S. The state of Eq. (23) will be
transformed in

 f (x; y) D
1

p
�
p
2�

0

@ a e�
�

yC	S�y0
2�

2
ei k0(yC�S)

b e�
�

y�y0
2�

2
ei k0 y

1

A :

(24)

The delay
S is small compared to the parameter � of the
enveloping Gaussian function, thus the difference induced
by the substitution y! y C
y in the real exponential,
is small compared to the variation of the imaginary expo-
nential representing the enveloped plane wave. As a con-
sequence it is possible to make the approximation

e�
�

yC	S�y0
2�

2
ei k0(yC�S) � e�

�
y�y0
2�

2
ei k0(yC�S) (25)

and to rewrite the state of Eq. (24) as

 f (x; y) �
1
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�
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�
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�
a ei k0�S

b

�
:

(26)

We introduce, now, an angle � defined as

� D k0
S : (27)

It is easy to verify that the transformation  i �!  f on
the qubit state is given by

R0(�) D
�

ei� 0
0 1

�
; or R1(�) D

�
1 0
0 ei�

�
;

(28)

if the delay is realized on the wire representing the 0 or 1
component, respectively. The value of � depends on the
delay 
S that depends, in turn, on the height and length
of the potential barrier.

The transformations R0 and R1 can be combined to
obtain a transformation Rz, i. e. the rotation around the ẑ
axis defined in Eq. (13), that is rewritten here for conve-
nience:

R0(˛/2)R1(�˛/2) D Rz(˛) D

 
ei
˛
2 0
0 e�i

˛
2

!

: (29)

Charge-Based Solid-State Flying Qubits, Figure 3
Schematic representation of the three devices that constitute
the universal set of quantum gates: a a delaying potential bar-
rier (red) along the 0wire realizes the R0 transformation; b a cou-
pling window between the wires realizes the Rx transformation;
c a two-qubit Coulomb coupler is able to entangle the two qubit
states and to realize a T transformation (see Eq. (18))

As described in the previous section, Rz together with
Rx, gives any rotation of the group SU(2). Thus, the two
basic transformations proposed are able to realize the gen-
eral rotation U of Eq. (10) that is the single-qubit gate of
the universal set for the proposed qubit system.

A schematic representation of the two devices imple-
menting the R0 and Rx transformations are reported in
Fig. 3 (a) and (b), respectively.

It is straightforward to note that the transformations
Rx and Rz for the electronic wave function are analogues
to the transformations induced, in a two-path interfero-
meter, by a photon beam splitter and a photon phase
shifter. Furthermore, a simple calculation, that we omit for
brevity, shows that the Hadamard gate of Eq. (6) can be
obtained by using the above transformations.

Two-Qubit Gate

In order to implement the conditional phase shifter gate T,
whose operation is described in Eq. (18), two qubits must
be considered. Figure 3c represents the geometry of the
two-qubit device. In the following we will call “first” the
qubit represented by the left couple of wires, “second” the
one represented by the right couple. In the two-qubit bi-
nary encoding of the state of the system, the second qubit
is the less significant bit.

The device is designed as follows [10]. The four wires
of the two qubits run parallel to each other and, in a small
region, the wire 1 of the first qubit and the wire 0 of the
second qubit get close to each other, enough to give rise
to a significant Coulomb coupling between two electrons
running along them. In fact, when the two electrons ap-
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proach each other, part of their kinetic energy is trans-
formed into a repulsive coupling potential and the velocity
along the wires is reduced. Then, when the distance be-
tween them increases again to the original value, the po-
tential energy is transformed back into kinetic energy and
the initial velocity is restored. As a result of this process,
the two electrons running along the right wire (state j1i)
of the first qubit and the left wire (state j0i) of the second
qubit, will suffer a delay in their propagation compared to
the case in which either the first or the second qubit are not
in one of the two central wires. This delay depends on the
length of the coupling region and on the distance between
the two central wires, and corresponds to a phase factor in
front of the j10i component of the two-qubit system.

The transformation T induced by the described geom-
etry (shown in Fig. 3c) can be also understood by analyzing
the effect on the two electrons separately. If the first elec-
tron is in state j1i (the electron is in the wire near the sec-
ond qubit), the slowing down caused on the second qubit
is similar to the slowing down caused by a delaying po-
tential barrier and the transformation on the second qubit
is of the kind R0; similarly, if the second qubit is j0i the
transformation on the first qubit is R1. As can be easily
seen by direct inspection, if the whole two-qubits system
is considered, the behavior described above gives rise to
the two-qubits transformation T.

This proposal for the physical realization of a two-
qubit gate is alternative to the one advanced in [25], where
a CNOT gate was proposed (instead of the T gate proposed
here) exploiting the difference in the oscillation period, in-
duced by the Coulomb interaction between two electrons.
It must be noted that, together with single qubit rotations,
the conditional phase shifter is the basic transformation
for the quantum discrete Fourier transform, needed to im-
plement Shor’s algorithm [17]. Starting from the CNOT
gate, a quantum network is needed to implement a T
transformation:

T(� ) D R1
(1)

�
2

�
R1

(2)


�
�

2

�
CNOT R1

(2)

�
2

�
CNOT :

(30)

This network is simple, but the present proposal can avoid
this step and directly realize the conditional phase shifter.

Electrons Driven by Surface Acoustic Waves

As an alternative to the ballistic propagation of electrons
along the quantumwires, the use of surface acoustic waves
(SAW) has been proposed. The SAW technology presents
the drawback of some local heating near the SAW trans-
ducer. However, Barnes et al. [5] have successfully applied

Charge-Based Solid-State Flying Qubits, Figure 4
Electron wave function (red) driven along a double wire device
by the time-dependent sinusoidal potential of the SAW (blue)
that are propagating from left to right

Charge-Based Solid-State Flying Qubits, Figure 5
Electron wave function (red) of Fig. 4 after the Rx transformation
induced by the inter-wire coupling window at y D 1000nm

the SAW technique for the electron injection and trans-
port along quantum wires. Within this approach a num-
ber of electrons are captured from a 2DEG and placed into
the minima of a sinusoidal acoustic wave that propagates
along the device. The 2DEG region is connected to the
quantum-wire region in which a single electron must be
injected. When the SAW minimum reaches the 1D chan-
nel, the trapped electrons undergo a further confinement
due to the lateral potential that constitutes the wire, so that
a moving quantum dot is formed.With a suitable choice of
the SAW parameters it is possible to create a dot that car-
ries a single electron. The electron moving inside the 1D
channel is embedded in the minimum of the dot and, like
in the free-propagation case, it experiences the cascade of



Charge-Based Solid-State Flying Qubits C 1023

quantum gates. In this way, the wave-packet could bemore
immune to decoherence effects, as it is confined along the
three dimensions.

Figures 4 and 5 show the results, at initial and final
time, respectively, of a time-dependent numerical simu-
lation of a Rx gate device with SAW. Because of the long
wave length of the SAWs (about 500 nm here), the spatial
spreading of the electron wave function is large. Further-
more, the coupling window, located at y D 1000 nm, is
small and hardly visible. However, the system parameters
have been tuned in order to obtain a NOT operation and
the electron wave function embedded in the SAW min-
imum is transferred from the wire 1 to the wire 0, thus
confirming the proper functioning of the device.

Charge-Based Solid-State Flying Qubits, Figure 6
One-dimensional time-dependent simulation of an electron
wave function trapped inside a minimum of a surface acoustic
wave (sinusoidal solid line), propagating from the left to the right.
The square modulus of the wave function is shown at four dif-
ferent time steps (shaded regions). The coupled-wire device has
two single-qubit rotations Rx(�/2) (represented by dashed-dot-
ted lines). In the lower graph aphase shifter Rz(�) (small potential
around 200–300nm) is inserted in the wire 0 between the rota-
tions, leading to a different final state of the qubit

While the action of the coupling window (Rx trans-
formation) is not altered in the SAW approach, the func-
tioning of the gates Rz and T need to be revised [12]. In
fact, the confinement along the wire, due to the SAW, pre-
vents the spatial delay of the wave packet, since the ve-
locity of the electron is fixed by the SAW velocity. How-
ever, also in this case the Rz transformation can be real-
ized by means of a potential barrier along the wire. Now
the phase shift originates from the change of the energy
levels of the moving dot, caused by the additional poten-
tial of the barrier. The Rz and T transformations in the
frame of the SAW approach have been validated by nu-
merical simulations and an example is shown in Fig. 6,
where two 1D simulations for a SAW-driven electron are
reported [8]. The wave function, shown at four different
time steps, is initialized in the ground state of the sinu-
soidal SAW potential, inside the j1i-state wire. Two quan-
tum gate networks are simulated, namely Rx(�/2)Rx(�/2)
(with two coupling windows) and Rx(�/2)Rz(�)Rx(�/2)
(with a coupling window, a potential barrier and a second
coupling window) in the two uppermost and the two low-
ermost plots, respectively. In the second case the presence
of a small potential barrier between the two splitting win-
dows is able to change the final state of the qubit, as in the
case of free propagation of the carrier. The use of SAW-
induced electron interferometry in QWRs is being actively
investigated both theoretically [13,23,37] and experimen-
tally [15].

Entangled States and Estimation
of Quantum Entanglement

The simulation presented in the previous section, is the re-
sult of a time-dependent Schrödinger solver that evolves
the electrons in a single particle approximation. This is
necessary due to the high computational effort that is
needed for a ballistic evolution, with Coulomb interac-
tion, in two dimensions. In the above approach, each elec-
tron wave-function  (x; y) is represented, at a given time
step, by a two-dimensional array. This means that no en-
tanglement between electrons can be simulated. Neverthe-
less, the simulations performed validated the devices us-
ing a base of factorizable qubit states: the effect on en-
tangled states can be easily deduced once the behavior
on the given basis is known, thanks to the superposi-
tion principle. For example, the result of a transformation
Rx

(2)(�/2)T(�)Rx
(2)(�/2) on a state (j00i C j10i) is an en-

tangled state:

Rx
(2)(�/2)T(�)Rx

(2)(�/2)(j00i C j10i)

D �(j01i C ij10i) : (31)
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The condition of separability imposed on the wave func-
tion will be dropped in this section. In fact, the possibil-
ity to simulate an entangled two-electron state allows the
study of the physical system proposed in [26] for the test
of Bell inequality using quantum-wire semiconductor de-
vices.

Since the straightforward numerical simulation, in two
dimensions, of the time evolution of (x1; y1; x2; y2; t) re-
sults to be too expensive from a computational point of
view, a simpler semi-1D model can be used to study the
proposed quantum wire system [11]. Let us consider, for
the moment, a single qubit, i. e. an electron running along
a couple of QWRs, with its wave function  (x1; y1) even-
tually split between the wires. If the transverse component
(orthogonal to the wires) of the electron wave function re-
mains in the ground state of the transverse potential, i. e.
the inter-subband scattering is negligible, then, along the
device, the transverse dynamics can be neglected. This is
obviously false in the regions of the Rx coupling windows,
which will be considered in the following.

Two possible states of the qubit can be used to label
the two possible forms for the transverse wave function,
a cosine centered either in the wire 0 or 1:

x1 D 0 �! hxj0i D
r

2
L
cos


�
L
(x � X0)

�

x1 D 1 �! hxj1i D
r

2
L
cos


�
L
(x � X1)

�
;

(32)

where X0 and X1 are the central points of wires 0 and 1,
respectively, and L is their width.

Concerning the Rx(�) transformation, within this
semi-1D model, it is not possible to simulate directly
the wave function splitting induced by the coupling win-
dow. In fact the wave function evolution that originates
the transformation comes from the transverse dynamics
whose detailed description is now lost. It is, however, pos-
sible to directly use the analytical expression of Rx in or-
der to account for the coupling window, once it has been
validated through numerical simulations [11]. The above
considerations allow one to include the effect of an Rx(�)
transformation, directly by the application of the proper
transformation matrix. A similar approach has been used
to include the two beam-splitters in the simulations of
Fig. 6.

Let us consider now the third gate, namely the two-
qubit conditional phase shifter sketched in Fig. 3c. As for
the single-qubit case, it is possible to associate to each wire
of the first or second qubit, a given value (either 0 or 1)
of the x coordinate, considered now as a parameter. This
is done for both the first and second qubit. With this ap-

proach, the model is strongly simplified: from a time-de-
pendent Schrödinger equation for the five-variable wave
function  (x1; y1; x2; y2; t), to four equations:
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(33)

with x1; x2 2 f0; 1g. During the time evolution, the four
different components of the wave function

 x1;x2 (y1; y2; t) with x1; x2 2 f0; 1g ; (34)

are coupled by the Rx
(1) and Rx

(2) transformations, given
by (see Eq. (9) for the notation):
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The geometry of the system is contained in the two-
particle potential Vx1;x2 (y1; y2). It consists of three terms:
the two structure potentials along the wires 0 and 1 of each
qubit, and the Coulomb interaction between the electrons:

Vx1;x2 (y1; y2) D Ux1 (y1)CVx2 (y2)C
e2

�Dx1;x2
�
y1; y2

 :

(37)

where Dx1;x2 (y1; y2) represents the distance between point
y1 in x1 wire of the first qubit and point y2 in x2 wire of the
second qubit and is given explicitly by

Dx1;x2
�
y1; y2


D

q
[px1 (y1) � qx2 (y2)]2 C [y1 � y2]2

(38)

where px1 (y1) is the x coordinate of a point that has y co-
ordinate y1 on the wire representing the x1 state of the first
qubit.
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Charge-Based Solid-State Flying Qubits, Figure 7
QWRs network that realizes the transformation Rx(2)(�/2)T(�)
Rx(2)(�/2)Rx(1)(�/2). The geometry shown is able to produce the
four maximally entangled two-qubit Bell states [11]

Since the phase shift R0 of the first qubit is obtained
with a delaying potential barrier inserted along a wire,
its functioning is not altered with respect to the full-2D
model. The potential barrier is accounted for in potential
U0(y1). Similarly, for the second qubit the potential is in-
serted in V0(y1). We stress that, within the proposed uni-
versal set of gates, the conditional phase shifter is the only
two-qubit gate and, as a consequence, the only one able to
produce an entangled state.

In conclusion, let us present the result of a numerical
simulation of a simple gate network able to produce amax-
imally entangled Bell’s state. The transformation is

Rx
(1)(�/2)Rx

(2)(�/2)T(�)Rx
(2)(�/2) ; (39)

and the network obtained is schematized in Fig. 7. Two
electrons are injected in the device. One electron is in-

jected in the wire 1 of the first qubit and one in the wire
0 of the second qubit. The initial state is j10i. It is easy to
verify that the network described will perform the trans-
formation:

Rx
(2)(�/2)T(�)Rx

(2)(�/2)Rx
(1)(�/2)j10i

D
1 � i
2

(j01i C j10i) : (40)

The numerical simulations performed, and shown in
Fig. 8, confirm the good functioning of the device and the
production of the entangled Bell’s state

j�Ci D
(j01i C j10i)
p
2

: (41)

Future Directions

The devices presented in this work have, in principle, the
full potentiality to create entangled states of electrons and
to perform the logic operations of the universal quantum
set of gates. For the modeling of realistic structures, we re-
fer to the literature [1,29,32,38,42].

Concerning experimental realizations of prototypes of
the single-qubit gates, we note that Pingue et al. [31] ob-
tained the evidence of switching capabilities of the cou-
pled-wire device, but the presence of occupied localized
states in a quantum wire near the coupling window, also
predicted in [29], and the Coulomb blockade regime of
the experiment, made the device not suitable as a quantum
gate.

Both vertical [20,22] and planar [35,36] double-chan-
nel structures are currently under investigation. In partic-
ular, Ramamoorty et al. [36] obtained switching character-
istics whose temperature dependence show a clear signa-
ture of coherent behavior of a coupling-window device. It
is also worth noting that Fischer et al. demonstrated that
the control of the coupling between two modes of two 1D
channels is feasible. The twomodes were obtained exploit-
ing the two minima of the conduction-band edge in the
growth direction of a GaAs 2DEG [21] of two vertically
coupled 2DEGs [22]: in both cases clear signatures of co-
herent coupling have been observed.
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Charge-Based Solid-State Flying Qubits, Figure 8
Square modulus of the two-particle wave function (red) at the final time step of the simulation represented in Eq. (40). The four
graphs represent the cases: x1 D 0; x2 D 0; x1 D 0; x2 D 1; x1 D 1; x2 D 0; x1 D 1; x2 D 1, as indicated in the upper left corners (see
Eq. (33)). The vertical and horizontal axes of each graph represent the position y1 of the first electron and y2 of the second electron,
respectively. Thewhite region along the diagonals represent the electron–electron potential given by Eq. (37) [11]
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Glossary

Controllability A control system is controllable if for ev-
ery pair of points (states) p and q there exists an ad-
missible control such that the corresponding solution
curve that starts at p ends at q. Local controllability
about a point means that all states in some open neigh-
borhood can be reached.
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Pontryagin Maximum Principle of optimal control
Optimality of a control-trajectory pair geometrically is
a property dual to local controllability in the sense that
an optimal trajectory (endpoint) lies on the boundary
of the reachable sets (after possibly augmenting the
state of the system by the running cost). The maxi-
mum principle is a necessary condition for optimality.
Geometrically it is based on analyzing the effect of
families of control variations on the endpoint map.
The chronological calculus much facilitates this analy-
sis.

E(M) D C1(M) The algebra of smooth functions on
a finite dimensional manifold M, endowed with the
topology of uniform convergence of derivatives of all
orders on compact sets.

� 1(M) The space of smooth vector fields on the mani-
foldM.

Chronological calculus An approach to systems theory
based on a functional analytic operator calculus, that
replaces nonlinear objects such as smooth manifolds
by infinite dimensional linear ones, by commutative
algebras of smooth functions.

Chronological algebra A linear space with a bilinear
product F that satisfies the identity a ? (b ? c) � b ?
(a ? c) D (a ? b)? c� (b ? a)? c. This structure arises
naturally via the product ( f ? g)t D

R t
0 [ fs ; g

0
s ]ds of

time-varying vector fields f and g in the chronological
calculus. Here [ ; ] denotes the Lie bracket.

Zinbiel algebra A linear space with a bilinear product
that satisfies the identity a  (b  c) D (a  b) 
c C (b  a)  c. This structure arises naturally in the
special case of affine control systems for the product
(U V)(t) D

R t
0 U(s)V 0(s)ds of absolutely continuous

scalar valued functions U and V .
The name Zinbiel is Leibniz read backwards, reflecting
the duality with Leibniz algebras, a form of noncom-
mutative Lie algebras. There has been some confusion
in the literature with Zinbiel algebras incorrectly been
called chronological algebras.

IIF(UZ ) For a suitable space U of time-varying scalars,
e. g. the space of locally absolutely continuous real-val-
ued functions defined on a fixed time interval, and an
indexing set Z, IIF(UZ) denotes the space of iterated
integral functionals from the space of Z-tuples with
values inU to the spaceU.

Definition of the Subject

The chronological calculus is a functional analytic oper-
ator calculus tool for nonlinear systems theory. The cen-
tral idea is to replace nonlinear objects by linear ones, in

particular, smooth manifolds by commutative algebras of
smooth functions. Aside from its elegance, its main virtue
is to provide tools for problems that otherwise would ef-
fectively be untractable, and to provide new avenues to in-
vestigate the underlying geometry. Originally conceived to
investigate problems in optimization and control, specifi-
cally for extending Pontryagin’s Maximum Principle, the
chronological calculus continues to establish itself as the
preferred language of geometric control theory, and it is
spawning new sets of problems, including its own set of al-
gebraic structures that are now studied in their own right.

Introduction, History, and Background

This section starts with a brief historical survey of some
landmarks that locate the chronological calculus at the in-
terface of systems and control theory with functional anal-
ysis. It is understood that such brief survey cannot possi-
bly do justice to themany contributors. Selected references
given are meant to merely serve as starting points for the
interested reader.

Many problems in modern systems and control theory
are inherently nonlinear and e. g., due to conserved quan-
tities or symmetries, naturally live on manifolds rather
than on Euclidean spaces. A simple example is the problem
of stabilizing the attitude of a satellite via feedback con-
trols. In this case the natural state space is the tangent bun-
dle TSO(3) of a rotation group. The controlled dynam-
ics are described by generally nonautonomous nonlinear
differential equations. A key characteristic of their flows
is their general lack of commutativity. Solutions of non-
linear differential equations generally do not admit closed
form expressions in terms of the traditional sets of ele-
mentary functions and symbols. The chronological calcu-
lus circumvents such difficulties by reformulating systems
and control problems in a different setting which is infinite
dimensional, but linear. Building on well established tools
and theories from functional analysis, it develops a new
formalism and a precise language designed to facilitate
studies of nonlinear systems and control theory.

The basic plan of replacing nonlinear objects by linear
ones, in particular smooth manifolds by commutative al-
gebras of smooth functions, has a long history. While its
roots go back even further, arguably this approach gained
much of its momentum with the path-breaking innova-
tions by John von Neumann’s work on the “Mathemati-
cal Foundations of Quantum Mechanics” [104] and Mar-
shall Stone’s seminal work on “Linear Transformations in
Hilbert Space” [89], quickly followed by Israel Gelfand’s
dissertation on “Abstract Functions and Linear Opera-
tors” [34] (published in 1938). The fundamental concept of
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maximal ideal justifies this approach of identifying mani-
folds with commutative normed rings (algebras), and vice
versa. Gelfand’s work is described as uniting previously
uncoordinated facts and revealing the close connections
between classical analysis and abstract functional analy-
sis [102]. In the seventy years since, the study of Banach
algebras, C�-algebras and their brethren has continued to
develop into a flourishing research area.

In the different arena of systems and control theory,
major innovations at formalizing the subject were made
in the 1950s. The Pontryagin Maximum Principle [8] of
optimal control theory went far beyond the classical calcu-
lus of variations. At roughly the same time Kalman and
his peers introduced the Kalman filter [51] for extract-
ing signals from noisy observations, and pioneered state-
space approaches in linear systems theory, developing the
fundamental concepts of controllability and observabil-
ity. Linear systems theory has bloomed and grown into
a vast array of subdisciplines with ubiquitous applications.
Via well-established transform techniques, linear systems
lend themselves to be studied in the frequency domain.
In such settings, systems are represented by linear oper-
ators on spaces of functions of a complex variable. Start-
ing in the 1970s new efforts concentrated on rigorously
extending linear systems and control theory to nonlin-
ear settings. Two complementary major threads emerged
that rely on differential geometric methods, and on op-
erators represented by formal power series, respectively.
The first is exemplified in the pioneering work of Brock-
ett [10,11], Haynes and Hermes [43], Hermann [44], Her-
mann and Krener [45], Jurdjevic and Sussmann [50], Lo-
bry [65], and many others, which focuses on state-space
representations of nonlinear systems. These are defined
by collections of vector fields on manifolds, and are ana-
lyzed using, in particular, Lie algebraic techniques. On the
other side, the input-output approach is extended to non-
linear settings primarily through a formal power series ap-
proach as initiated by Fliess [31]. The interplay between
these approaches has been the subject of many successful
studies, in which a prominent role is played by Volterra
series and the problem of realizing such input-output de-
scriptions as a state-space system, see e. g. Brockett [11],
Crouch [22], Gray andWang [37], Jakubczyk [49], Krener
and Lesiak [61], and Sontag andWang [87].

In the late 1970s Agrachëv and Gamkrelidze intro-
duced into nonlinear control theory the aforementioned
abstract functional analytic approach, that is rooted in the
work of Gelfand. Following traditions from the physics
community, they adopted the name chronological calcu-
lus. Again, this abstract approach may be seen as much
unifying what formerly were disparate and isolated pieces

of knowledge and tools in nonlinear systems theory. While
originally conceived as a tool for extending Pontryagin’s
Maximum Principle in optimal control theory [1], the
chronological calculus continues to yield a stream of new
results in optimal control and geometry, see e. g. Ser-
res [85], Sigalotti [86], Zelenko [105] for very recent re-
sults utilizing the chronological calculus for studying the
geometry.

The chronological calculus has led to a very differ-
ent way of thinking about control systems, epitomized in
e. g. the monograph on geometric control theory [5] based
on the chronological calculus, or in such forceful advoca-
cies for this approach for e. g. nonholonomic path finding
by Sussmann [95]. Closely related are studies of nonlin-
ear controllability, e. g. Agrachëv and Gamkrelidze [3,4],
Tretyak [96,97,98], and Vakhrameev [99], including ap-
plications to controllability of the Navier–Stokes equation
by Agrachëv and Sarychev [6]. The chronological calcu-
lus also lends itself most naturally to obtaining new re-
sults in averaging theory as in Sarychev [83], while Cortes
and Martinez [20] used it in motion control of mechan-
ical systems with symmetry and Bullo [13,68] for vibra-
tional control of mechanical systems. Noteworthy ap-
plications include locomotion of robots by Burdick and
Vela [100], and even robotic fish [71]. Instrumental is its
interplay with series expansion as in Bullo [12,21] that uti-
lize affine connections of mechanical systems. There are
further applications to stability and stabilization Caiado
and Sarychev [15,82], while Monaco et.al. [70] extended
this approach to discrete-time dynamics and Komleva and
Plotnikov used it in differential game theory [60].

Complementing such applications are new subjects of
study such as the abstract algebraic structures that underlie
the chronological calculus. The chronological algebra it-
self has been the subject of study as early as Agrachëv and
Gamkrelidze [2]. The closely related structure of Zinbiel
structures has recently found more attention, see work by
Dzhumadil’daev [25,26], Kawski and Sussmann [57] and
Kawski [54,55]. Zinbiel algebras arise in the special case
when the dynamics (“time-varying vector fields”) splits
into a sum of products of time-varying coefficients and
autonomous vector fields. There is an unfortunate confu-
sion of terms in the literature as originally Zinbiel algebras
had also been called chronological algebras. Recent usage
disentangles these closely related, but distinct, structures
and reflects the primacy of the latter term coined by Lo-
day [66,67] who studies Leibniz algebras (which appear in
cyclic homology). Zinbiel is simply Leibniz spelled back-
wards, a choice which reflect that Leibniz and Zinbiel are
dual operands in the sense of Koszul duality as investigated
by Ginzburg and Kapranov [36].
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Fundamental Notions of the Chronological Calculus

From a Manifold to a Commutative Algebra

This and the next sections very closely follow the introduc-
tory exposition of Chapter 2 of Agrachëv and Sachkov [5],
which is also recommended for the full technical and ana-
lytical details regarding the topology and convergence.

The objective is to develop the basic tools and formal-
ism that facilitate the analysis of generally nonlinear sys-
tems that are defined on smooth manifolds. Rather than
primarily considering points on a smooth manifoldM, the
key idea is to instead focus on the commutative algebra
of E(M) D C1(M;R) of real-valued smooth functions
onM. Note that E(M) not only has the structure of a vec-
tor space over the field R, but it also inherits the structure
of a commutative ring under pointwise addition and mul-
tiplication from the codomainR.

Every point p 2 M gives rise to a functional
p̂ : E(M) 7! R defined by p̂(') D '(p). This functional is
linear and multiplicative, and is a homomorphism of the
algebras E(M) and R: For every p 2 M, for '; 2 E(M)
and t 2 R the following hold

p̂(' C  ) D p̂' C p̂'; p̂(' �  ) D (p̂') � (p̂ ) ;
and p̂(t') D t � (p̂') :

Much of the power of this approach derives from the
fact that this correspondence is invertible: For a nontrivial
multiplicative linear functional � : E(M) 7! R consider
its kernel ker � D f' 2 E(M) : �' D 0g. A critical obser-
vation is that this is a maximal ideal, and that it must be of
the form f' 2 E(M) : '(p) D 0g for some, uniquely de-
fined, p 2 M. For the details of a proof see appendix A.1.
of [5].

Proposition 1 For every nontrivial multiplicative linear
functional � : E(M) 7! R there exists p 2 M such that
� D p̂.

Note on the side, that there may be maximal ideals in the
space of all multiplicative linear functionals on E(M) that
do not correspond to any point on M – e. g. the ideal of
all linear functionals that vanish on every function with
compact support. But this does not contradict the stated
proposition.

Not only can one recover the manifoldM as a set from
the commutative ring E(M), but using the weak topology
on the space of linear functionals on E(M) one also recov-
ers the topology onM

pn �! p if and only if 8 f 2 E(M) ; p̂n f �! p̂ f : (1)

The smooth structure on M is recovered from E(M) in
a trivial way: A function g on the space of multiplicative

linear functionals p̂ : p 2 M is smooth if and only if there
exists f 2 E(M) such that for every p̂; g(p̂) D p̂ f .

In modern differential geometry it is routine to iden-
tify tangent vectors to a smooth manifold with either
equivalence classes of smooth curves, or with first order
partial differential operators. In this context, tangent vec-
tors at a point q 2 M are derivations of E(M), that is, lin-
ear functionals f̂q on E(M) that satisfy the Leibniz rule.
Using q̂, this means for every '; 2 E(M),

X̂q(' ) D (X̂q')(q̂ )C (q̂')(X̂q ) : (2)

Smooth vector fields on M correspond to linear function-
als f̂ : E(M) 7! E(M) that satisfy for all '; 2 E(M)

f̂ (' ) D ( f̂') �  C ' � ( f̂ ) : (3)

Again, the correspondence between tangent vectors and
vector fields and the linear functionals as above is invert-
ible. Write �1(M) for the space of smooth vector fields
onM.

Finally, there is a one-to-one correspondence be-
tween smooth diffeomorphisms ˚ : M 7! M and auto-
morphisms of E(M). The map ˆ̊ : E(M) 7! E(M) de-
fined for p 2 M and ' 2 E(M) by ˆ̊ (')(p) D '(˚(p))
clearly has the desired properties. For the reverse direc-
tion, suppose � : E(M) 7! E(M) is an automorphism.
Then for every p 2 M the map p̂ ı � : E(M) 7! R is
a nontrivial linear multiplicative functional, and hence
equals q̂ for some q 2 M. It is easy to see that the map
˚ : M 7! M is indeed a diffeomorphism, and � D ˆ̊ .

In the sequel we shall omit the hats, and simply write,
say, p for the linear functional p̂. The role of each object is
usually clear from the order. For example, for a point p,
a smooth function ', smooth vector fields f ; g; h, with
flow eth and its tangent map

�
eth

�
, what in traditional

format might be expressed as (
�
eth

�
g)'(e� f (p)) is sim-

ply written as pe� f geth', not requiring any parentheses.

Frechet Space and Convergence

The usual topology on the space E(M) is the one of uni-
form convergence of all derivatives on compact sets, i. e.,
a sequence of functions f'kg1kD1 � E(M) converges
to � 2 E(M) if for every finite sequence f1; f2; : : : ; fs of
smooth vector fields on M and every compact set K � M
the sequence f fs : : : f2 f1'kg1kD1 converges uniformly on K
to fs : : : f2 f1'.

This topology is also obtained by a countable family of
semi-norms k � ks;K defined by

k'ks;K D supf jp fs : : : f2 f1'j :

p 2 K; fi 2 �1(M); s 2 ZC g (4)
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where K ranges over a countable collection of compact
subsets whose union is all of M. In an analogous way de-
fine semi-norms of smooth vector fields f 2 �1(M)

k f ks;K D supf k f 'ks;K : k f 'ksC1;K D 1 g : (5)

Finally, for every smooth diffeomorphism˚ ofM, s 2 ZC

and K � M compact there exist Cs;K;˚ 2 R such that for
all ' 2 E(M)

k˚'ks;K � Cs;K;˚k'ks;'(K) : (6)

Regularity properties of one-parameter families of vec-
tor fields and diffeomorphisms (“time-varying vector
fields and diffeomorphisms”) are understood in the weak
sense. In particular, for a family of smooth vector fields
ft 2 �1(M), its integral and derivative (if they exist) are
defined as the operators that satisfy for every ' 2 E(M)

�
d
dt

ft
�
' D

d
dt
�
ft'


and
 Z b

a
ftdt

!

' D

Z b

a

�
ft'

dt : (7)

The convergence of series expansions of vector fields and
of diffeomorphisms encountered in the sequel are to be in-
terpreted in the analogous weak sense.

The Chronological Exponential

This section continues to closely follow [5] which contains
full details and complete proofs. On a manifold M con-
sider generally time-varying differential equations of the
form d

dt qt D ft(qt). To assure existence and uniqueness
of solutions to initial value problems, make the typical reg-
ularity assumptions, namely that in every coordinate chart
U � M ; x : U 7! Rn the vector field (x� ft) is (i) measur-
able and locally bounded with respect to t for every fixed x
and (ii) smooth with locally bounded partial derivatives
with respect to x for every fixed t. For the purposes of this
article and for clarity of exposition, also assume that vec-
tor fields are complete. This means that solutions to ini-
tial value problems are defined for all times t 2 R. This is
guaranteed if, for example, all vector fields considered van-
ish identically outside a common compact subset ofM.

As in the previous sections, for each fixed t interpret
qt : E(M) 7! R as a linear functional on E(M), and note
that this family satisfies the time-varying, but linear differ-
ential equation, suggestively written as

q̇t D qt ı ft : (8)

on the space of linear functionals on E(M). It may be

shown that under the above assumptions it has a unique
solution, called the right chronological exponential of the
vector field f t as the corresponding flow. Formally, it sat-
isfies for almost all t 2 R

d
dt

�
�!
exp

Z t

0
f� d�

�
D

�
�!
exp

Z t

0
f� d�

�
ı ft : (9)

Analogously the left chronological exponential satisfies

d
dt

�
 �
exp

Z t

0
f� d�

�
D ft ı

�
 �
exp

Z t

0
f� d�

�
: (10)

Formally, one obtains a series expansion for the chrono-
logical exponentials by rewriting the differential equation
as an integral equation and solving it by iteration

qt D q0 C
Z t

0
q(�) ı f� d� (11)

D q0 C
Z t

0

�
q0 C

Z �

0
q(�) ı f
 d�

�
ı f� d� (12)

to eventually, formally, obtain the expansion

�!
exp

Z t

0
f� d� � IdC

1X

kD1

Z t

0

Z tk

0
� � �

Z t2

0

� f�k ı � � � ı f�2 ı f�1 d�k : : : d�2 d�1 (13)

and analogously for the left chronological exponential

 �
exp

Z t

0
f� d� � IdC

1X

kD1

Z t

0

Z tk

0
� � �

Z t2

0

� f�1 ı f�2 ı � � � ı f�k d�k : : : d�2 d�1 : (14)

While this series never converges, not even in a weak
sense, it nonetheless has an interpretation as an asymptotic
expansion. In particular, for any fixed function � 2 E(M)
and any semi-norm as in the previous section, on any com-
pact set one obtains an error estimate for the remainder
after truncating the series at any order N which estab-
lishes that the truncation error is of order O(tN ) as t ! 0.
When one considers the restrictions to any f t-invariant
normed linear subspace L � E(M), i. e. for all t, ft(L) � L,
on which f t is bounded, then the asymptotic series con-
verges to the chronological exponential and it satisfies for
every ' 2 L
���
�

�
�!
exp

Z t

0
f� d�

�
'

���
� � e

R t
0 k f�kd� k' k : (15)

In the case of analytic vector fields f� and analytic func-
tions ' one obtains convergence of the series for suffi-
ciently small t.
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While in general there is no reason why the vector
fields f t should commute at different times, the chrono-
logical exponentials nonetheless still share some of the
usual properties of exponential and flows, for example
the composition of chronological exponentials satisfies for
all ti 2 R

�
�!
exp

Z t2

t1
f� d�

�
ı

�
�!
exp

Z t3

t2
f� d�

�
D

�
�!
exp

Z t3

t1
f� d�

�
:

(16)

Moreover, the left and right chronological exponentials
are inverses of each other in the sense that for all t0; t1 2 R

�
�!
exp

Z t1

t0
f� d�

��1
D
�!
exp

Z t0

t1
f� d�

D
 �
exp

Z t1

t0
(� f� )d� :

(17)

Variation of Parameters
and the Chronological Logarithm

In control one rarely considers only a single vector field,
and, instead, for example, is interested in the interaction
of a perturbation or control vector field with a reference or
drift vector field. In particular, in the nonlinear setting, this
is where the chronological calculus very much facilitates
the analysis. For simplicity consider a differential equation
defined by two, generally time varying, vector fields (with
the usual regularity assumptions)

q̇ D ft(q)C gt(q) : (18)

The objective is to obtain a formula for the flow of the field
( ft C gt) as a perturbation of the flow of f t . Writing

˚t D
�!
exp

Z t

0
f� d� and 	t D

�!
exp

Z t

0
( f�Cg� )d�; (19)

this means one is looking for a family of operators � t such
that for all t

	t D �t ı ˚t : (20)

Differentiating and using the invertibility of the flows one
obtains a differential equation in the standard form

�̇ (t) D �t ı ˚t ı gt ı ˚�1t D �t ı (Ad˚t) gt

D �t ı

�
�!
exp

Z t

0
ad f� d�

�
gt ; (21)

which has the unique solution

�t D
�!
exp

Z t

0

�
�!
exp

Z �

0
ad f
 d�

�
g� d� ; (22)

and consequently one has the variations formula

�!
exp

Z t

0
( f� C g� )d� D

�
�!
exp

Z t

0

�
�!
exp

Z �

0
ad f
 d�

�

� g� d�

ı

�
�!
exp

Z t

0
f� d�

�
: (23)

This formula is of fundamental importance and used ubiq-
uitously for analyzing controllability and optimality: One
typically considers f t as defining a reference dynamical
system and then considers the effect of adding a control
term gt . A special application is in the theory of averaging
where gt is considered a perturbation of the field f t , which
in the most simple form may be assumed to be time-peri-
odic. The monograph [81] by Sanders and Verhulst is the
classical reference for the theory and applications of aver-
aging using traditional language. The chronological calcu-
lus, in particular the above variations formula, have been
used successfully by Sarychev [83] to investigate in par-
ticular higher order averaging, and by Bullo [13] for av-
eraging in the context of mechanical systems and its in-
terplay with mechanical connections. Instrumental to the
work [83] is the notion of the chronological logarithm,
which is motivated by rewriting the defining Eqs. (9)
and (10) [2,80] as

ft D
�
�!
exp

Z t

0
f� d�

��1
ı

d
dt

�
�!
exp

Z t

0
f� d�

�

D
d
dt

�
 �
exp

Z t

0
f� d�

�
ı

�
 �
exp

Z t

0
f� d�

��1
: (24)

While in general the existence of the logarithm is a del-
icate question [62,83], under suitable hypotheses it is in-
strumental for the derivation of the nonlinear Floquet the-
orem in [83].

Theorem 1 (Sarychev [83]) Suppose ft D ftC1 is a pe-
riod-one smooth vector field generating the flow ˚ t and
� D log˚1, then there exists a period-one family of diffeo-
morphisms �t D �tC1 such that for all t ˚t D et� ı �t .

The logarithm of the chronological exponential of a time-
varying vector field " ft may be expanded as a formal
chronological series

log
�!
exp

�Z 1

0
" f� d�

�
D

1X

jD1

" j� j : (25)
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The first three terms of which are given explicitly [83] as

�1 D

Z 1

0
f� d� ; �2 D

1
2

Z 1

0

�Z �

0
f
 d� ; f�

�
d�;

and �3 D �
1
2
[�1; �2]

C
1
3

Z 1

0
ad2

�Z �

0
f
 d�

�
f� d� : (26)

Aside from such applications as averaging, the main use
of the chronological calculus has been for studying the
dual problems of optimality and controllability, in par-
ticular controllability of families of diffeomorphisms [4].
In particular, this approach circumvents the limitations
encountered by more traditional approaches that use
parametrized families of control variations that are based
on a finite number of switching times. However, since [52]
it is known that a general theory must allow also, e. g., for
increasing numbers of switchings and other more general
families of control variations. The chronological calculus
is instrumental to developing such general theory [4].

Chronological Algebra

When using the chronological calculus for studying con-
trollability, especially when differentiating with respect to
a parameter, and also in the aforementioned averaging
theory, the following chronological product appears almost
everywhere: For two time-varying vector fields f t and gt
that are absolutely continuous with respect to t, define
their chronological product as

( f ? g)t D
Z t

0
[ fs ; g0s]ds (27)

where [�; �] denotes the Lie bracket. It is easily verified that
this product is generally neither associative nor satisfies
the Jacobi identity, but instead it satisfies the chronolog-
ical identity

x ? (y ? z)� y ? (x ? z) D (x ? y)? z� (y ? x)? z : (28)

One may define an abstract chronological algebra (over
a field k) as a linear space that is equipped with a bilin-
ear product that satisfies the chronological identity (28).
More compactly, this property may be written in terms
of the left translation  that associates with any element
x 2A of a not-necessarily associative algebraA the map
x : y 7! xy. Using this , the chronological identity (28)
is simply

[x;y] D [x ; y ] ; (29)

i. e., the requirement that the map x 7! x is a homo-
morphism of the algebra A with the commutator prod-

uct (x; y) 7! xy � yx into the Lie algebra of linear maps
fromA intoA under its commutator product.

Basic general properties of chronological algebras have
been studied in [2], including a discussion of free chrono-
logical algebras (over a fixed generating set S). Of partic-
ular interest are bases of such free chronological algebras
as they allow one to minimize the number of terms in se-
ries expansions by avoiding redundant terms. Using the
graded structure, it is shown in [2] that an ordered basis of
a free chronological algebra over a set S may be obtained
recursively from products of the form b1b2 � � �bk s
where s 2 S is a generator and b1 4 b2 4 � � � 4 bk are pre-
viously constructed basis elements. According to [2], the
first elements of such a basis over the single-element gen-
erating set S D fsg may be chosen as (using juxtaposition
for multiplication)

b1 D s ; b2 D b1 s D s2 ; b3 D b2 s D s2s ;

b4 D b1b1 s D ss2 ; b5 D b3 s D (s2s)s ;

b6 D b4 s D (ss2)s ; b7 D b1b2 s D s(s2s) ;

b8 D b2b1 s D s(ss2) ; : : : (30)

Using only this algebraic and combinatorial structure, one
may define exponentials (and logarithms) and analyze the
group of formal flows [2]. Of particular interest systems
and control is an explicit formula that allows one to ex-
press products (compositions) of two or more exponen-
tials (flows) as a single exponential. This is tantamount to
a formula for the logarithm of a product of exponentials
of two noncommuting indeterminates X and Y . The clas-
sical version is known as the Campbell–Baker–Hausdorff
formula [16], the first few terms being

eX � eY D eXCYC 1
2 [X;Y]C

1
12 [X�Y;[X;Y]]�

1
24 [X;[Y;[X;Y]]]�::: :

(31)

A well-known short-coming of the classical formula is that
the higher-order iterated Lie brackets appearing in this
formula are always linearly dependent and hence the coef-
ficients are never well-defined. Hence one naturally looks
for more compact, minimal formulas which avoid such re-
dundancies. The chronological algebra provides one such
alternative and has been developed and utilized in [2]. The
interested reader is referred to the original reference for
technical details.

Systems That Are Affine in the Control

Separating Time-Varying Control and Geometry

The chronological calculus was originally designed for
work with nonstationary (time-varying) families of vec-
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tor fields, and it arguably reaps the biggest benefits in that
setting where there are few other powerful tools available.
Nonetheless, the chronological calculus alsomuch stream-
lines the analysis of autonomous vector fields. The best
studied case is that of affine control systems in which the
time-varying control can be separated from the geometry
determined by autonomous vector fields. In classical nota-
tion such control systems are written in the form

ẋ D u1(t) f1(x)C � � � C um(t) fm(x) : (32)

where f i are vector fields on a manifoldM and u is a mea-
surable function of time taking values typically in a com-
pact subset U � Rm . This description allows one to also
accommodate physical systems that have an uncontrolled
drift term by simply fixing u1 � 1. For the sake of clarity,
and for best illustrating the kind of results available, as-
sume that the fields f i are smooth and complete. Later we
specialize further to real analytic vector fields. This set-up
does not necessarily require an interpretation of the ui as
controls: they may equally well be disturbances, or it may
simply be a dynamical system which splits in this conve-
nient way.

As a starting point consider families of piecewise con-
stant control functions u : [0; T] 7! U � Rm . On each
interval [t j ; t jC1] on which the control is constant
u[t j ;t jC1] D u( j) , the right hand side of (32) is a fixed vec-

tor field g j D u( j)1 f1 C : : : u
( j)
m fm . The endpoint of the so-

lution curve starting from x(0) D p is computed as a di-
rected product of ordinary exponentials (flows) of vector
fields

pe(t1�t0)g1 ı e(t2�t1)g2 ı � � � e(T�ts�1)gs : (33)

But even in this case of autonomous vector fields the
chronological calculus brings substantial simplifications.
Basically this means that rather than considering the ex-
pression (33) as a point on M, consider this product as
a functional on the spaceE(M) of smooth functions onM.
To reiterate the benefit of this approach [5,57] consider
the simple example of a tangent vector to a smooth curve
� : (�"; ") 7! M which one might want to define as

�̇(0) D lim
t!0

1
t
(� (t)� � (0)) : (34)

Due to the lack of a linear structure on a general manifold,
with a classical interpretation this does not make any sense
at all. Nonetheless, when interpreting � (t) ; � (0) ; � 0(0),
and 1

t (� (t) � � (0)) as linear functionals on the space
E(M) of smooth functions on M this is perfectly mean-
ingful. The meaning of the limit can be rigorously justified
as indicated in the preceding sections, compare also [1].

A typical example to illustrate how this formalism
almost trivializes important calculations involving Lie
brackets is the following, compare [57]. Suppose f and g
are smooth vector fields on the manifold M, p 2 M,
and t 2 R is sufficiently small in magnitude. Using that
d
dt pe

t f D pet f f and so on, one immediately calculates

(d/dt)(pet f etge�t f e�tg)

D pet f f etge�t f e�tg C pet f etg ge�t f e�tg

� pet f etge�t f f e�tg � pet f etge�t f e�tg g :

(35)

In particular, at t D 0 this expression simplifies to
p f C pg � p f � pg D 0. Analogously the second deriva-
tive is calculated as

d2

dt2
(pet f etge�t f e�tg) D pet f f 2etge�t f e�tg C pet f f

� etg ge�t f e�tg � pet f f etge�t f f e�tg � pet f f etge�t f

� e�tg g C pet f f etg ge�t f e�tg C pet f etg g2e�t f e�tg

� pet f etg ge�t f f e�tg � pet f etg ge�t f e�tg g � pet f f

� etge�t f f e�tg � pet f etg ge�t f f e�tg C pet f etge�t f

� f 2e�tg C pet f etge�t f f e�tg g � pet f f etge�t f e�tg g

� pet f etg ge�t f e�tg g C pet f etge�t f f e�tg g C pet f

� etge�t f e�tg g2

(36)

which at t D 0 evaluates to

p f 2 C p f g � p f 2 � p f g C p f g C pg2 � pg f � pg2

� p f 2 � pg f C p f 2 C p f g � p f g � pg2 C p f g C pg2

D 2p f g � 2pg f D 2p[ f ; g] :

While this simple calculation may not make sense on
amanifold with a classical interpretation in terms of points
and vectors on a manifold, it does so in the context of
the chronological calculus, and establishes the familiar for-
mula for the Lie bracket as the limit of a composition of
flows

pet f etge�t f e�tg D pCt2p[ f ; g]CO(t2) as t ! 0: (37)

Similar examples may be found in [5] (e. g. p. 36), as well
as analogous simplifications for the variations formula for
autonomous vector fields ([5] p. 43).

Asymptotic Expansions for Affine Systems

Piecewise constant controls are a starting point. But
a general theory requires being able to take appropriate
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limits and demands completeness. Typically, one consid-
ers measurable controls taking values in a compact sub-
space U � Rm , and uses L1([0; t];U) as the space of ad-
missible controls. Correspondingly the finite composition
of exponentials as in (33) is replaced by continuous formu-
lae. These shall still separate the effects of the time-varying
controls from the underlying geometry determined by the
autonomous vector fields. This objective is achieved by the
Chen–Fliess series which may be interpreted in a number
of different ways. Its origins go back to the 1950s when
K. T. Chen [18], studying geometric invariants of curves in
Rn , associated to each smooth curve a formal noncommu-
tative power series. In the early 1970s, Fliess [30,31] recog-
nized the utility of this series for studying control systems.
Using a set X1; X2; : : : ; Xm of indeterminates, the Chen–
Fliess series of a measurable control u 2 L1([0; t];U) as
above is the formal power series

SCF(T; u) D
X

I

Z T

0
uis (ts )

Z ts�1

0
� � �

Z t3

0
ui2 (t2)

�

Z t2

0
ui1 (t1) dt1 : : : dts � Xi1 : : : Xis (38)

where the sum ranges over all multi-indices I D (i1; : : : ;
is); s � 0 with i j 2 f1; 2 : : :mg. This series gives rise to an
asymptotic series for solution curves of the system (32).
For example, in the analytic setting, following [91], one
has:

Theorem 2 Suppose f i are analytic vector fields on
Rn � : Rn 7! R is analytic and U � Rm is compact. Then
for every compact set K � Rn, there exists T > 0 such that
the series

SCF; f (T; u; p)(') D
X

I

Z T

0
uis (ts)

Z ts�1

0
� � �

Z t3

0
ui2 (t2)

�

Z t2

0
ui1 (t1) dt1 : : : dts � p fi1 : : : fi s' (39)

converges uniformly to the solution of (32) for initial condi-
tions x(0) D p 2 K and u : [0; T] 7! U measurable.

Here the series SCF; f (T; u; p) is, for every fixed triple
( f ; u; p), interpreted as an element of the space of linear
functionals onE(M). But onemay abstract further. In par-
ticular, for each fixed multi-index I as above, the iterated
integral coefficient is itself a functional that takes as in-
put a control function u 2 Um and maps it to the corre-
sponding iterated integral. It is convenient to work with
the primitivesUj : t 7!

R t
0 uj(s) ds of the control functions

uj rather than the controls themselves. More specifically,
if e. g.U D AC([0; T]; [�1; 1]) then for every multi-index

I D (i1; : : : ; is) 2 f1; : : : ;mgs as above one obtains the it-
erated integral functional $I : Um 7! U defined by

$I : U 7!
Z T

0
U 0i s (ts )

Z ts�1

0
� � �

Z t3

0
U 0i2 (t2)

�

Z t2

0
U 0i1 (t1) dt1dt2 : : : dts : (40)

Denoting by IIF(UZ ) the linear space of iterated integral
functionals spanned by the functionals of the above form,
the map$ mapsmulti-indices to IIF(UZ). The algebraic
and combinatorial nature of these spaces and this map will
be explored in the next section.

On the other side, there is the map F that maps
a multi-index (i1; i2; : : : ; is) to the partial differential op-
erator fi1 : : : fi s : E(M) 7! E(M), considered as a linear
transformation of E(M). In the analytic case one may go
further, since as a basic principle, the relations between the
iterated Lie brackets of the vector fields f j completely de-
termine the geometry and dynamical behavior [90,91]. In-
stead of considering actions on E(M), it suffices to con-
sider the action of these partial differential operators, and
of the dynamical system (32) on a set of polynomial func-
tions. In a certain technical sense, an associative algebra (of
polynomial functions) is dual to the Lie algebra (generated
by the analytic vector fields f j). However, much further
simplifications and deeper insights are gained by appropri-
ately accounting for the intrinsic noncommutative struc-
ture of the flows of the system. Using a different product
structure, the next section will lift the system (32) to a uni-
versal system that has no nontrivial relations between the
iterated Lie brackets of the formal vector fields and which
is modeled on an algebra of noncommutative polynomials
(and noncommutative power series) rather than the space
E(M) of all smooth functions on M. An important fea-
ture of this approach is that it does not rely on polynomial
functions with respect to an a-priori chosen set of local co-
ordinates, but rather uses polynomials which map to in-
trinsically geometric objects.

Zinbiel Algebra and Combinatorics

Just as the chronological calculus of time-varying vector
fields is intimately connected to chronological algebras,
the calculus of affine systems gives rise to its own alge-
braic and combinatorial structure. This, and the subse-
quent section, give a brief look into this algebra structure
and demonstrate how, together with the chronological cal-
culus, it leads to effective solution formulas for important
control problems and beyond.

It is traditional and convenient to slightly change
the notation and nomenclature. For further details see
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[78] or [57]. Rather than using small integers 1; 2; : : : ;m
to index the components of the control and the vector
fields in (32), use an arbitrary index set Z whose elements
will be called letters and denoted usually by a; b; c; : : : For
the purposes of this note the alphabet Z will be assumed to
be finite, but much of the theory can be developed for in-
finite alphabets as well. Multi-indices, i. e. finite sequences
with values in Z are called words, and they have a natu-
ral associative product structure denoted by juxtaposition.
For example, if w D a1a2 : : : ar and z D b1b2 : : : bs then
wz D a1a2 : : : arb1b2 : : : bs . The empty word is denoted e
or 1. The set of all words of length n is Zn, Z� D [1nD0Z

n

and ZC D [1nD1Z
n are the sets of all words and all non-

empty words. Endow the associative algebra A(Z), gener-
ated by the alphabet Z with coefficients in the field k D R,
with an inner product h�; �i so that Z� is an orthonormal
basis. Write Â(Z) for the completion of A(Z) with respect
to the uniform structure in which a fundamental system of
basic neighborhoods of a polynomial p 2 A(Z) is the fam-
ily of subsets fq 2 A(Z) : 8w 2 W; hw; p � qi D 0g in-
dexed by all finite subsetsW � Z�.

The smallest linear subspace of the associative alge-
bra A(Z) that contains the set Z and is closed under the
commutator product (w; z) 7! [w; z] D wz � zw is iso-
morphic to the free Lie algebra L(Z) over the set Z. On the
other side, one may equip AC(Z) with a Zinbiel algebra
structure by defining the product  : AC(Z) � AC(Z 7!
AC(Z) for a 2 Z and w; z 2 ZC by

w  a D wa and w  (za) D (w  z C z  w)a (41)

and extending bilinearly to AC(Z) � AC(Z). One easily
verifies that this product satisfies the Zinbiel identity for
all r; s; t 2 AC(Z)

r  (s  t) D (r  s)  t C (s  r)  t : (42)

The symmetrization of this product is the better known
associative shuffle product w 9 z D w  z C z  w which
may be defined on all of A(Z) � A(Z). Algebraically, the
shuffle product is characterized as the transpose of the co-
product� : A(Z) 7! A(Z)˝ A(Z) which is the concatena-
tion product homomorphism that on letters a 2 Z is de-
fined as

� : a 7! a˝ 1C 1˝ a : (43)

This relation between this coproduct and the shuffle is that
for all u; v;w 2 A(Z)

h�(w); u ˝ vi D hw; u 9 vi : (44)

After this brief side-trip into algebraic and combina-
torial objects we return to the control systems. The shuf-
fle product 9 has been utilized for a long time in this

and related contexts. But the Zinbiel product structure
was only recently recognized as encoding important in-
formation. Its most immediate role is seen in the fact
that the aforementioned map $ from multi-indices to it-
erated integral functionals, now easily extends to a map
(using the same name) $ : A(Z) 7! IIF(UZ) is a Zin-
biel algebra homomorphism when the latter is equipped
with a pointwise product induced by the product  on
U D AC([0; T]; [�1; 1]) defined by

(U  V)(t) D
Z t

0
U(s)V 0(s)ds : (45)

It is straightforward to verify that this product in-
deed equips U with a Zinbiel structure, and hence also
IIF(UZ). On the side, note that the map $ maps the
shuffle product of words (noncommuting polynomials) to
the associative pointwise product of scalar functions. The
connection of the Zinbiel product with differential equa-
tions and the Chen–Fliess series is immediate. First lift
the system (32) from the manifold M to the algebra A(Z),
roughly corresponding to the linear space of polynomial
functions in an algebra of iterated integral functionals.
Formally consider curves S : [0; T] 7! A(Z) that satisfy

Ṡ D S
X

a2Z

aua(t) : (46)

Using the Zinbiel product (45), and writing Ua(t) DR t
0 ua(�)d� for the primitives of the controls, the inte-
grated form of the universal control system (46)

S(t) D 1C
Z t

0
S(�)F 0(�)d� with F D

X

a2Z

Ua ; (47)

is most compactly written as

S D 1C S  F : (48)

Iteration yields the explicit series expansion

S D 1C (1C S  F)  F
D 1C F C ((1C S  F)  F)  F
D 1C F C (F  F)C (((1C S  F)  F)  F)  F
D 1C F C (F  F)C ((F  F)  F)

C ((((1C S  F)  F)  F)  F)  F
:::

D 1C F C (F  F)C ((F  F)  F)
C (((F  F)  F)  F) : : :
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Using intuitive notation for Zinbiel powers this solution
formula in the form of an infinite series is compactly writ-
ten as

S D
1X

nD0

F�n D 1CFCF�2CF�3CF�4CF�5CF�6C� � �

(49)

The reader is encouraged to expand all of the terms
and match each step to the usual computations involved
in obtaining Volterra series expansions. Indeed this for-
mula (49) is nothing more than the Chen–Fliess series (38)
in very compact notation. For complete technical details
and further discussion we refer the interested reader to the
original articles [56,57] and the many references therein.

Application: Product Expansions and Normal Forms

While the Chen–Fliess series as above has been extremely
useful to obtain precise estimates that led to most known
necessary conditions and sufficient conditions for local
controllability and optimality, compare e. g. [53,88,94],
this series expansion has substantial shortcomings. For ex-
ample, it is clear from Ree’s theorem [77] that the series
is an exponential Lie series. But this is not at all obvious
from the series as presented (38). Most detrimental for
practical purposes is that finite truncations of the series
never correspond to any approximating systems. Much
more convenient, in particular for path planning algo-
rithms [47,48,63,64,75,95], but also in applications for nu-
merical integration [17,46] are expansions as directed infi-
nite products of exponentials or as an exponential of a Lie
series.

In terms of the map F that substitutes for each let-
ter a 2 Z the corresponding vector field f a, one finds that
the Chen–Fliess series (39) is simply the image of a natu-
ral object under the map $ ˝F . Indeed, under the usual
identification of the space Hom(V ;W) of linear maps be-
tween vector spaces V and W with the product V� ˝W ,
and noting that Z� is an orthonormal basis for A(Z), the
identitymap fromA(Z) toA(Z) is identified with the series

IdA(Z) �
X

w2Z�
w ˝ w 2 A(Z)˝ Â(Z) : (50)

Thus, any rewriting of the combinatorial object on the
right hand side will, via the map $ ˝F , give an alterna-
tive presentation of the Chen–Fliess series. In particular,
from elementary consideration, using also the Hopf-alge-
braic structures of A(Z), it is a-priori clear that there exist

expansions in the forms

X

w2Z�
w ˝ w D exp

 
X

h2H
�h ˝ [h]

!

D

 Y

h2H
exp (�h ˝ [h]) (51)

whereH indexes an ordered basis f[h] : H 2 H g of the
free Lie algebra L(Z) and for each h 2 H ; �h and �h are
polynomials in A(Z) that are mapped by $ to correspond-
ing iterated integral functionals. The usefulness of such
expression depends on the availability of simple formulas
forH , �h and �h.

Bases for free Lie algebras are well-known since
Hall [42], and have been unified by Viennot [101]. Specif-
ically, a Hall set over a set Z is any strictly ordered subset
H̃ � T (Z) from the setM(Z) labeled binary trees (with
leaves labeled by Z) that satisfies

(i) Z � H̃
(ii) Suppose a 2 Z. Then (t; a) 2 H̃ iff t0 2 H̃ ; t0 < a

and a < (t0; a).
(iii) Suppose u; v;w; (u; v) 2 H̃ . Then (t0; (t000; t0000)) 2 H̃

iff t000 � t0 � (t000; t0000) and t0 < (t0; (t000; t0000)).

There are natural mappings � : T (Z) 7! L(Z) � A(Z)
and # : T (Z) 7! A(Z) (the foliage map) that map la-
beled binary trees to Lie polynomials and to words, and
which are defined for a 2 Z, (t0; t00) 2 T (Z) by �(a) D
#(a) D a and recursively �((t0; t00)) D [�(t0); �(t00)] and
#((t0; t00)) D #(t0)#(t00). The image of a Hall set under the
map � is a basis for the free Lie algebra L(Z). Moreover, the
restriction of the map # to a Hall-set is one-to-one which
leads to a fundamental unique factorization property of
words into products of Hall-words, and a unique way of
recovering Hall trees from the Hall words that are their
images under # [101]. This latter property is very conve-
nient as it allows one to use Hall words rather than Hall
trees for indexing various objects.

The construction of Hall sets, as well as the proof that
they give rise to bases of free Lie algebras, rely in an essen-
tial way on the process of Lazard elimination [9] which is
intimately related to the solution of differential Eqs. (32)
or (46) by a successive variation of parameters [93]. As
a result, using Hall sets it is possible to obtain an extremely
simple and elegant recursive formula for the coefficients �h
in (51), whereas formulas for the �h are less immediate, al-
though they may be computed by straightforward formu-
las in terms of natural maps of the Hopf algebra structure
on A(Z) [33]. Up to a normalization factor � in terms of
multi-factorials, the formula for the �h is extremely simple
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in terms of the Zinbiel product on A(Z). For letters a 2 Z
and Hall words h; k; hk 2H one has

�a D a and �hk D �hk � �h  �k : (52)

Using completely different notation, this formula ap-
peared originally in the work of Schützenberger [84], and
was later rediscovered in various settings by Grayson and
Grossman [38], Melancon and Reutenauer [69] and Suss-
mann [93]. In the context of control, it appeared first
in [93].

To illustrate the simplicity of the recursive formula,
which is based on the factorization of Hall words, con-
sider the following normal form for a free nilpotent sys-
tem (of rank r D 5) using a typical Hall set over the al-
phabet Z D f0; 1g. This is the closest nonlinear analogue
to the Kalman controller normal form of a linear system,
which is determined by Kronecker indices that classify the
lengths of chains of integrators. For practical computa-
tions nilpotent systems are commonly used as approxima-
tions of general nonlinear systems – and every nilpotent
system (that is, a system of form (32) whose vector fields
f a generate a nilpotent Lie algebra) is the image of a free
nilpotent system as below under some projection map. For
convenience, the example again uses the notation xh in-
stead of �h.

ẋ0 D u0
ẋ1 D u1
ẋ01 D x0 � ẋ1 D x0 u1
ẋ001 D x0 � ẋ01 D x20 u1

using #�1(001) D (0(01))
ẋ101 D x1 � ẋ01 D x1x0 u1

using #�1(101) D (1(01))

ẋ0001 D x0 � ẋ001 D x30 u1
using #�1(0001) D (0(0(01)))

ẋ1001 D x1 � ẋ001 D x1x20 u1
using #�1(1001) D (1(0(01)))

ẋ1101 D x1 � ẋ101 D x21x0 u1
using #�1(1101) D (1(1(01)))

ẋ00001 D x0 � ẋ001 D x40 u1
using #�1(00001) D (0(0(0(01))))

ẋ10001 D x1 � ẋ0001 D x1x30 u1
using #�1(10001) D (1(0(0(01))))

ẋ11001 D x1 � ẋ1001 D x21x
2
0 u1

using #�1(11001) D (1(1(0(01))))

ẋ01001 D x01 � ẋ001 D x01x30 u1
using #�1(01001) D ((01)(0(01)))

ẋ01101 D x01 � ẋ101 D x01x21x0 u1
using #�1(01101) D ((01)(1(01))) :

This example may be interpreted as a system of form (32)
with the xh being a set of coordinate functions on the man-
ifold M, or as the truncation of the lifted system (46) with
the xh being a basis for a finite dimensional subspace of
the linear space E(M). For more details and the technical
background see [56,57].

Future Directions

The chronological calculus is still a young methodology.
Its intrinsically infinite dimensional character demands
a certain sophistication from its users, and thus it may take
some time until it reaches its full potential. From a differ-
ent point of view this also means that there are many op-
portunities to explore its advantages in ever new areas of
applications. A relatively straightforward approach simply
checks classical topics of systems and control for whether
they are amenable to this approach, and whether this will
be superior to classical techniques. The example of [70]
which connects the chronological calculus with discrete
time systems is a model example for such efforts. There are
many further opportunities, some more speculative than
others.

Control The chronological calculus appears ideally suited
for the investigation of fully nonlinear systems – but in
this area there is still much less known than in the case
of nonlinear control systems that are affine in the con-
trol, or the case of linear systems. Specific conditions
for the existence of solutions, controllability, stabiliz-
ability, and normal forms are just a few subjects that,
while studies have been initiated [1,2,4], deserve fur-
ther attention.

Computation In recent years much effort has been de-
voted to understanding the foundations of numeri-
cal integration algorithms in nonlinear settings, and to
eventually design more efficient algorithms and even-
tually prove their superiority. The underlying mathe-
matical structures, such as the compositions of non-
commuting flows are very similar to those studies in
control, as observed in e. g. [23], one of the earlier pub-
lications in this area. Some more recent work in this
direction is [17,46,72,73,74]. This is also very closely
related to the studies of the underlying combinatorial
and algebraic structures – arguably [27,28,29,76] are
some of the ones most closely related to the subject
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of this article. There appears to be much potential for
a two-way exchange of ideas and results.

Geometry Arguably one of the main thrusts will continue
to be the use of the chronological calculus for studying
the differential geometric underpinnings of systems
and control theory. But it is conceivable that such stud-
ies may eventually abstract further – just like after the
1930s – to studies of generalizations of algebras that
stem from systems on classical manifolds, much in the
spirit of modern noncommutative geometry with [19]
being the best-known proponent.

Algebra and combinatorics In general very little is
known about possible ideal and subalgebra struc-
tures of chronological and Zinbiel algebras. This work
was initiated in [2], but relatively little progress has
been made since. (Non)existence of finite dimensional
(nilpotent) Zinbiel algebras has been established, but
only over a complex field [25,26]. Bases of free chrono-
logical algebras are discussed in [2], but many other
aspects of this algebraic structure remain unexplored.
This also intersects with the aforementioned efforts in
foundations of computation – on one side there are
Hopf-algebraic approaches to free Lie algebras [78]
and nonlinear control [33,40,41], while the most re-
cent breakthroughs involve dendriform algebras and
related subjects [27,28,29]. This is an open field for un-
covering the connections between combinatorial and
algebraic objects on one side and geometric and sys-
tems objects on the other side. The chronological cal-
culus may well serve as a vehicle to elucidate the corre-
spondences.
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Glossary

Agent-based models Systems composed of individuals
who act purposely in making locational/spatial deci-
sions.

Bifurcation A process whereby divergent paths are gen-
erated in a trajectory of change in an urban system.

City size distribution A set of cities ordered by size, usu-
ally population, often in rank order.

Emergent patterns Land uses or economic activities
which follow some spatial order.

Entropy maximizing The process of generating a spatial
model by maximizing a measure of system complexity
subject to constraints.

Equilibrium A state of the urban system which is bal-
anced and unchanging.
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Exponential growth The process whereby an activity
changes through positive feedback on itself.

Fast dynamics A process of frequent movement between
locations, often daily.

Feedback The process whereby a system variable influ-
ences another variable, either positively or negatively.

Fractal structure A pattern or arrangement of system el-
ements that are self-similar at different spatial scales.

Land use transport model A model linking urban activi-
ties to transport interactions.

Life cycle effects Changes in spatial location which are
motivated by aging of urban activities and populations.

Local neighborhood The space immediately around
a zone or cell.

Logistic growth Exponential growth capacitated so that
some density limit is not exceeded.

Lognormal distribution A distribution which has fat and
long tails which is normal when examined on a loga-
rithmic scale.

Microsimulation The process of generating synthetic
populations from data which is collated from several
sources.

Model validation The process of calibrating and testing
a model against data so that its goodness of fit is opti-
mized.

Multipliers Relationships which embody nth order ef-
fects of one variable on another.

Network scaling The in-degrees and out-degrees of
a graph whose nodal link volumes follow a power
law.

Population density profile A distribution of populations
which typically follows an exponential profile when ar-
rayed against distance from some nodal point.

Power laws Scaling laws that order a set of objects accord-
ing to their size raised to some power.

Rank size rule A power law that rank orders a set of ob-
jects.

Reaction-diffusion The process of generating changes as
a consequence of a reaction to an existing state and in-
teractions between states.

Scale-free networks Networks whose nodal volumes fol-
low a power law.

Segregation model A model which generates extreme
global segregation from weak assumptions about local
segregation.

Simulation The process of generating locational distribu-
tions according to a series of sub-model equations or
rules.

Slow dynamics Changes in the urban system that take
place over years or decades.

Social physics The application of classical physical prin-

ciples involving distance, force and mass to social situ-
ations, particularly to cities and their transport.

Spatial interaction The movement of activities between
different locations ranging from traffic distributions to
migration patterns.

Trip distribution The pattern of movement relating to
trips made by the population, usually from home to
work but also to other activities such as shopping.

Urban hierarchy A set of entities physically or spatially
scaled in terms of their size and areal extent.

Urban morphology Patterns of urban structure based on
the way activities are ordered with respect to their lo-
cations.

Urban system A city represented as a set of interacting
subsystems or their elements.

Definition of the Subject

Cities have been treated as systems for fifty years but only
in the last two decades has the focus changed from aggre-
gate equilibrium systems to more evolving systems whose
structure emerges from the bottom up.We first outline the
rudiments of the traditional approach focusing on equi-
librium and then discuss how the paradigm has changed
to one which treats cities as emergent phenomena gener-
ated through a combination of hierarchical levels of de-
cision, driven in decentralized fashion. This is consistent
with the complexity sciences which dominate the simula-
tion of urban form and function. We begin however with
a review of equilibrium models, particularly those based
on spatial interaction, and we then explore how simple dy-
namic frameworks can be fashioned to generate more re-
alistic models. In exploring dynamics, nonlinear systems
which admit chaos and bifurcation have relevance but re-
cently more pragmatic schemes of structuring urban mod-
els based on cellular automata and agent-based modeling
principles have come to the fore. Most urban models deal
with the city in terms of the location of its economic and
demographic activities but there is also amove to link such
models to urban morphologies which are clearly fractal in
structure. Throughout this chapter, we show how key con-
cepts in complexity such as scaling, self-similarity and far-
from-equilibrium structures dominate our current treat-
ment of cities, how we might simulate their functioning
and how we might predict their futures. We conclude with
the key problems that dominate the field and suggest how
these might be tackled in future research.

Cities were first conceived as complex systems in the
1960s when architects and urban planners began to change
their perceptions that cities be treated as ‘works of art’
to something much more akin to a functioning economic
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system that required social engineering. Since the time of
Newton, social scientists had speculated that social sys-
tems could be described using concepts from classical
physics and the notion that interrelationships between
the component parts of such systems might be articu-
lated using concepts of mass, force and energy established
a rudimentary framework that came to be known as so-
cial physics. Together with various macro-economic theo-
ries of how economies function based on Keynesian ideas
of input, output and economic multipliers, cities were as-
sumed to be equilibrium systems in which their interac-
tions such as traffic, trade flows, and demographic migra-
tion could be modeled in analogy to gravitation. These
flows were seen as complementary to the location of em-
ployment and population which reflected costs of travel
and land rent, in turn the product of micro-economic the-
ories of how agents resolved their demand for and the sup-
ply of space through the land market. Operational models
for policy analysis were initially built on this basis and used
for testing the impact of different plans for making cities
more efficient, locationally and in terms of their move-
ment/traffic patterns.

This early work did not emphasize the dynamics of
urban change or the morphology of cities. Thus theories
and models were limited in their ability to predict pat-
terns of urban growth as reflected in sprawl and the re-
generation of urban areas. The first wave of models which
treated the city system in aggregate, static and top down
fashion, fell into disrepute due to these limitations. To ad-
dress them, the focus moved in the 1980s to more theo-
retical considerations in which static social physics types
of model were embedded in nonlinear dynamic frame-
works built around ideas in chaos, and bifurcation theory.
A parallel development in simulating urban morphology
was built around treating cities as fractals which evolved
from the bottom up and operational models in which such
morphologies were governed using cellular automata were
developed. Developments in moving from aggregate to
disaggregate or bottom-up individual-based models were
spawned from these developments with agent-basedmod-
eling providing a new focus to the field. There is now amo-
mentum for treating urban aggregates through new ideas
about growth and form through scaling while new forms
of representing cities through networks linking these to
fractal morphologies are being developed through net-
work science at different scales. These will ultimately lead
to operational urban and transport models built from the
bottom up which simulate spatial processes operating on
networks and other morphologies. These have the poten-
tial to address key problems of urban growth and evolu-
tion, congestion, and inequality.

Introduction

Cities were first treated formally as systems when Gen-
eral System Theory and Cybernetics came to be applied to
the softer social sciences in the 1950s. Ludwig von Berta-
lanffy [67] in biology and Norbert Wiener [73] in engi-
neering gave enormous impetus to this emerging interdis-
ciplinary field that thrust upon us the idea that phenom-
ena of interest in many disciplines could be articulated in
generic terms as ‘systems’. Moreover the prospect that the
systems approach could yield generic policy, control and
management procedures applicable to many different ar-
eas, appeared enticing. The idea of a general systems the-
ory was gradually fashioned from reflections on the way
distinct entities which were clearly collections of lower or-
der elements, organized into a coherent whole, displaying
pattern and order which in the jargon of the mid-twenti-
eth century was encapsulated in the phrase that “the whole
is greater than the sum of the parts”. The movement be-
gan in biology in the 1920s, gradually eclipsing parts of
engineering in the 1950s and spreading to the manage-
ment and social sciences, particularly sociology and polit-
ical science in the 1960s. It was part of a wave of change in
the social sciences which began in the late 19th century as
these fields began to emulate the physical sciences, espous-
ing positivist methods which had appeared so successful in
building applicable and robust theory.

The focus then was on ways in which the ele-
ments comprising the system interacted with one another
through structures that embodied feedbacks keeping the
system sustainable within bounded limits. The notion that
such systems have controllers to ‘steer’ them to meet cer-
tain goals or targets is central to this early paradigm and
the science of “. . . control and communication in the an-
imal and the machine” was the definition taken up by
Norbert Wiener [73] in his exposition of the science of
cybernetics. General system theory provided the generic
logic for both the structure and behavior of such sys-
tems through various forms of feedback and hierarchical
organization while cybernetics represented the ‘science of
steersmanship’ which would enable such systems to move
towards explicit goals or targets. Cities fit this character-
ization admirably and in the 1950s and 1960s, the tradi-
tional approach that articulated cities as structures that re-
quired physical and aesthetic organization, quickly gave
way to deeper notions that cities needed to be understood
as general systems. Their control and planning thus re-
quired much more subtle interventions than anything that
had occurred hitherto in the name of urban planning.

Developments in several disciplines supported these
early developments. Spatial analysis, as it is now called,
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began to develop within quantitative geography, linked to
the emerging field of regional science which represented
a synthesis of urban and regional economics in which
location theory was central. In this sense, the economic
structure of cities and regions was consistent with classical
macro and micro economics and the various techniques
andmodels that were developed within these domains had
immediate applicability. Applications of physical analo-
gies to social and city systems, particularly ideas about
gravitation and potential, had been explored since the mid
19th century under the banner of ‘social physics’ and as
transportation planning formally began in the 1950s, these
ideas were quickly adopted as a basis for transport mod-
eling. Softer approaches in sociology and political science
also provided support for the idea of cities as organiza-
tional systems while the notion of cybernetics as the basis
for management, policy and control of cities was adopted
as an important analogy in their planning [26,53].

The key ideas defined cities as sets of elements or com-
ponents tied together through sets of interactions. The
archetypal structure was fashioned around land use ac-
tivities with economic and functional linkages between
them represented initially in terms of physical movement,
traffic. The key idea of feedback, which is the dynamic
that holds a general system together, was largely repre-
sented in terms of the volume and pattern of these inter-
actions, at a single point in time. Longer term evolution
of urban structure was not central to these early concep-
tions for the focus was largely on how cities functioned as
equilibrium structures. The prime imperative was improv-
ing how interactions between component land uses might
be made more efficient while also meeting goals involv-
ing social and spatial equity. Transportation and housing
were of central importance in adopting the argument that
cities should be treated as examples of general systems and
steered according to the principles of cybernetics.

Typical examples of such systemic principles in action
involve transportation in large cities and these early ideas
about systems theory hold as much sway in helping make
sense of current patterns as they did when they were first
mooted fifty or more years ago. Different types of land use
with different economic foci interact spatially with respect
to how employees are linked to their housing locations,
how goods are shipped between different locations to ser-
vice the production and consumption that define these ac-
tivities, how consumers purchase these economic activi-
ties which are channeled through retail and commercial
centers, how information flows tie all these economies to-
gether, and so on: the list of linkages is endless. These
activities are capacitated by upper limits on density and
capacity. In Greater London for example, the traffic has

reached saturation limits in the central city and with few
new roads being constructed over the last 40 years, the fo-
cus has shifted to improving public transport and to road
pricing.

The essence of using a systems model of spatial inter-
action to test the impact of such changes on city structure
is twofold: first such a model can show how people might
shift mode of transport from road to rail and bus, even
to walking and cycling, if differential pricing is applied to
the road system. The congestion charge in central London
imposed in 2003 led to a 30 percent reduction in the use of
vehicles and this charge is set to increase massively for cer-
tain categories of polluting vehicles in the near future. Sec-
ond the slightly longer term effects of reducing traffic are
to increase densities of living, thus decreasing the length
and cost of local work journeys, also enabling land use to
respond by changing their locations to lower cost areas. All
these effects ripple through the system with the city sys-
tem models presented here designed to track and predict
such nth order effects which are rarely obvious. Our fo-
cus in this chapter is to sketch the state-of-the-art in these
complex systems models showing how new developments
in the methods of the complexity sciences are building on
a basis that was established half century ago.

Since early applications of general systems theory, the
paradigm has changed fundamentally from a world where
systems were viewed as being centrally organized, from the
top down, and notions about hierarchy were predominant,
to one where we now consider systems to be structured
from the bottom up. The idea that one or the other – the
centralized or the decentralized view – are mutually ex-
clusive of each other is not entirely tenable of course but
the balance has certainly changed. Theories have moved
from structures and behaviors being organized according
to some central control to theories about how systems re-
tain their own integrity from the bottom up, endorsing
what Adam Smith over 300 years ago, called “the hidden
hand”. This shift has brought onto the agenda the notion
of equilibrium and dynamics which is now much more
central to systems theory than it ever was hitherto. Sys-
tems such as cities are no longer considered to be equilib-
rium structures, notwithstanding that many systems mod-
els built around equilibrium are still eminently useful. The
notion that city systems are more likely to be in disequi-
librium, all the time, or even classed as far-from-equilib-
rium continually reinforcing the move away from equilib-
rium, is comparatively new but consistent with the speed
of change and volatility in cities observed during the last
fifty years.

The notion to that change is nowhere smooth but dis-
continuous, often chaotic, has become significant. Equi-
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librium structures are renewed from within as unantic-
ipated innovations, many technological but some social,
change the way people make decisions about how they lo-
cate and move within cities. Historical change is impor-
tant in that historical accidents often force the system onto
a less than optimal path with such path dependence being
crucial to an understanding of any current equilibria and
the dynamic that is evolving. Part of this newly emerg-
ing paradigm is the idea that new structures and behav-
iors that emerge are often unanticipated and surprising. As
we will show in this chapter, when we look at urban mor-
phologies, they are messy but ordered, self-similar across
many scales, but growing organically from the bottom up.
Planned cities are always the exception rather than the rule
and when directly planned, they only remain so for very
short periods of time.

The new complexity sciences are rewriting the the-
ory of general systems but they are still founded on the
rudiments of structures composed of elements, now often
called actors or agents, linked through interactions which
determine the processes of behavior which keep the system
in equilibrium and/or move it to new states. Feedback is
still central but recently has beenmore strongly focused on
how system elements react to one another through time.
The notion of an unchanging equilibrium supported by
such feedbacks is no longer central; feedback is now largely
seen as the way in which these structures are evolved to
new states. In short, system theory has shifted to consider
such feedbacks in positive rather than negative terms al-
though both are essential. Relationships between the sys-
tem elements in terms of their interactions are being en-
riched using new ideas from networks and their dynam-
ics [56]. Key notions of how the elements of systems scale
relative to one another and relative to their system hier-
archies have become useful in showing how local actions
and interactions lead to global patterns which can only be
predicted from the bottom up [54]. This new view is about
how emergent patterns can be generated usingmodels that
grow the city from the bottom up [37], and we will discuss
all these ideas in the catalog of models that we present be-
low.

We begin by looking at models of cities in equilib-
riumwhere we illustrate how interactions between key sys-
tem elements located in space follow certain scaling laws
reflecting agglomeration economies and spatial competi-
tion. The network paradigm is closely linked to these ideas
in structural terms. None of these models, still important
for operational simulation modeling in a policy context,
have an internal dynamic and thus we turn to examine
dynamics in the next section. We then start with simple
exponential growth, showing how it can be capacitated as

logistic growth from which nonlinear behaviors can re-
sult as chaos and bifurcation. We show how these models
might be linked to a faster dynamics built around equilib-
rium spatial interaction models but to progress these de-
velopments, we present much more disaggregate models
based on agent simulation and cellular automata princi-
ples. These dynamics are then generalized as reaction-dif-
fusion models.

Our third section deals with howwe assemblemore in-
tegrated models built from these various equilibrium and
dynamic components or sub-models. We look at large-
scale land use transport models which are equilibrium in
focus. We then move to cellular automata models of land
development, concluding our discussion with reference to
the current development of fine scale agent-based mod-
els where each individual and trip maker in the city sys-
tem is simulated. We sprinkle our presentation with vari-
ous empirical applications, many based on data for Greater
London showing how employment and population densi-
ties scale, how movement patterns are consistent with the
underling infrastructure networks that support them, and
how the city has grown through time. We show how the
city can be modeled in terms of its structure and the way
changes to it can be visualized. We then link these more
abstract notions about how cities are structured in spatial-
locational terms to their physical or fractal morphology
which is a direct expression of their scaling and complex-
ity. We conclude with future directions, focusing on how
such models can be validated and used in practical policy-
making.

Cities in Equilibrium

Arrangements of Urban Activities

Cities can usually be represented as a series of n locations,
each identified by i, and ordered from i D 1; 2; : : : ; n.
These locations might be points or areas where urban ac-
tivity takes place, pertaining either to the inter-urban scale
where locations are places not necessarily adjacent to one
another or at the intra-urban scale where a city is exhaus-
tively partitioned into a set of areas. We will use both
representations here but begin with a generic formulation
which does not depend on these differences per se.

It is useful to consider the distribution of locations
as places where differing amounts of urban activity can
take place, using a framework which shows how differ-
ent arrangements of activity can be consistently derived.
Different arrangements of course imply different physi-
cal forms of city. Assume there is N amount of activ-
ity to be distributed in n locations as N1;N2; : : : Begin-
ning with N1, there are N!/[N1!(N � N1)! allocations of
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N1, (N � N1)!/[N2!(N � N1 � N2)! allocations of N2,
(N �N1�N2)!/[N3!(N �N1�N2�N3)! of N3 and so on.
To find the total number of arrangementsW, we multiply
each of these quantities together where the product is

W D
N!

Q

i
Ni !

: (1)

This might be considered a measure of complexity of the
system in that it clearly varies systematically for different
allocations. If all N activity were to be allocated to the first
location, then W D 1 while if an equal amount of activity
were to be allocated to each location, then W would vary
according to the size of N and the number of locations n.
It can be argued that the most likely arrangement of ac-
tivities would be the one which would give the greatest
possibility of distinct individual activities being allocated
to locations and such an arrangement could be found by
maximizing W (or the logarithm of W which leads to the
same). Such maximizations however might be subject to
different constraints on the arrangements which imply dif-
ferent conservation laws that the system must meet. This
would enable different types of urban form to be examined
under different conditions related to density, compactness,
sprawl and so on, all of which might be formalized in this
way.

To show how this is possible, consider the case where
we now maximize the logarithm ofW subject to meaning-
ful constraints. The logarithm of Eq. (1) is

lnW D ln(N!)�
X

i

ln(Ni !) ; (2)

which using Stirling’s formula, simplifies to

lnW � N C ln(N!) �
X

i

Ni lnNi : (3)

Ni which is the number of units of urban activity allocated
to location i, is a frequency that can be normalized into
a probability as pi D Ni /N . Substituting for Ni D Npi in
Eq. (3) and dropping the constant terms leads to

lnW / �
X

i

pi ln pi D H ; (4)

where it is now clear that the formula for the number of ar-
rangements is proportional to Shannon’s entropy H. Thus
the process of maximizing lnW is the well-known process
of maximizing entropy subject to relevant constraints and
this leads to many standard probability distributions [66].
Analogies between city and other social systems with sta-
tistical thermodynamics and information theory were de-
veloped in the 1960s and represented one of the first for-
mal approaches to the derivation of models for simulating

the interaction between locations and the amount of ac-
tivity attracted to different locations in city, regional and
transport systems. As such, it has become a basis on which
to build many different varieties of urban model [74].

Although information or entropy has been long re-
garded as a measure of system complexity, we will not take
this any further here except to show how it is useful in de-
riving different probability distributions of urban activity.
Readers are however referred to the mainstream literature
for both philosophic and technical expositions of the re-
lationship between entropy and complexity (for example
see [42]). The measureH in Eq. (4) is at a maximumwhen
the activity is distributed evenly across locations, that is
when pi D 1/n and H D ln n while it is at a minimum
when pi D 1 and p j D 0; j D 1; 2; : : : ; n; i ¤ j, and
H D 0. It is clear too that H varies with n; that is as the
number of locations increases, the complexity or entropy
of the system also increases. However what is of more im-
port here is the kind of distribution that maximizing en-
tropy generates whenH is maximized subject to appropri-
ate constraints. We demonstrate this as follows for a sim-
ple but relevant case where the key constraint is to ensure
that the system reproduces the mean value of an attribute
of interest. Let pi be the probability of finding a place i
which has Pi population residing there. Thenwemaximize
the entropy

H D �
X

i

pi ln pi ; (5)

subject to a normalization constraint on the probabilities
X

i

pi D 1 ; (6)

and a constraint on the mean population of places P̄ in the
system, that is

X

i

pi Pi D P̄ : (7)

The standard method of maximizing Eq. (5) subject to
constraint Eqs. (6) and (7) is to form a Langrangian L –
a composite of the entropy and the constraints

L D �
X

i

pi ln pi�ˇ

 
X

i

pi � 1

!

�#

 
X

i

pi Pi � P̄

!

(8)

where ˇ and # are multipliers designed to ensure that
the constraints are met. Maximizing (8) with respect to pi
gives

@L
@pi
D ln pi � 1 � ˇ � #Pi D 0 ; (9)
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leading directly to a form for pi which is

pi D exp(�ˇ � 1) exp(�Pi ) D K exp(�#Pi) : (10)

K is the composite constant of proportionality which en-
sures that the probabilities sum to 1. Note also that the
sign of the parameters is determined from data through
the constraints. If we substitute the probability in Eq. (10)
into the Shannon entropy, the measure of complexity of
this systemwhich is at amaximum for the given set of con-
straints, simplifies to H D ˇ C 1C # P̄. There are various
interpretations of this entropy with respect to dispersion of
activities in the system although these represent a trade-off
between the form of the distribution, in this case, the neg-
ative exponential, and the number of events or objects n
which characterize the system.

Distributions and Densities of Population

The model we have derived can be regarded as an approx-
imation to the distribution of population densities over
a set of n spatial zones as long as each zone is the same
size (area), that is, Ai D A;8i where nA is the total size
(area) of the system. A more general form of entropy takes
this area into account by maximizing the expected value
of the logarithm of the density, not distribution, where the
‘spatial’ entropy is defined as

S D �
X

i

pi ln
pi
Ai
; (11)

with the probability density as pi /Ai . Using this formula,
the procedure simply generalizes themaximization to den-
sities rather than distributions [10] and the model we have
derived simply determines these densities with respect to
an average population size P̄. If we order populations over
the zones of a city or even take their averages over many
cities in a region or nation, then they are likely to be dis-
tributed in this fashion; that is, we would expect there to
be many fewer zones or cities of high density than zones or
cities of low density, due to competition through growth.

However the way this method of entropy-maximizing
has been used to generate population densities in cities
is to define rather more specific constraints that relate to
space. Since the rise of the industrial city in the 19th cen-
tury, we have known that population densities tend to de-
cline monotonically with distance from the center of the
city. More than 50 years ago, Clark [29] demonstrated
quite clearly that population densities declined exponen-
tially with distance from the center of large cities and in
the 1960s with the application of micro-economic the-
ory to urban location theory following von Thünen’s [68]

model, a range of urban attributes such as rents, land val-
ues, trip densities, and population densities were shown
to be consistent with such negative exponential distribu-
tions [5]. Many of these models can also be generated us-
ing utility maximizing which under certain rather weak
constraints can be seen as equivalent to entropy-maximiz-
ing [6]. However it is random utility theory that has been
much more widely applied to generate spatial interaction
models with a similar form to the models that we generate
below using entropy-maximizing [20,46].

Wewill show how these typical micro-economic urban
density distributions can be derived using entropy-maxi-
mizing in the following way. Maximizing S in Eq. (11) or
H in Eq. (5) where we henceforth assume that the prob-
ability pi is now the population density, we invoke the
usual normalization constraint in Eq. (6) and a constraint
on the average travel cost C̄ incurred by the population
given as

P
i pi ci D C̄ where ci is the generalized travel

cost/distance from the central business district (CBD) to
a zone i. This maximization leads to

pi D K exp(��ci ) (12)

where � is the parameter controlling the rate of decay of
the exponential function, sometimes called the ‘friction’ of
distance or travel cost.

Gravitational Models of Spatial Interaction

It is a simple matter to generalize this framework to gener-
ate arrangements of urban activities that deal with interac-
tion patterns, that is movements or linkages between pairs
of zones. This involves extending entropy to deal with two
rather than one dimensional systems where the focus of
interest is on the interaction between an origin zone called
i; i D 1; 2; : : : ; I and a destination zone j; j D 1; 2; : : : ; J
where there are now a total of IJ interactions in the sys-
tem. These kinds of model can be used to simulate routine
trips from home to work, for example, or to shop, longer
termmigrations in search of jobs, moves between residen-
tial locations in the housing market, as well as trade flows
between countries and regions. The particular application
depends on context as the generic framework is indepen-
dent of scale.

Let us now define a two-dimensional entropy as

H D �
X

i

X

j

pi j ln pi j : (13)

pi j is the probability of interaction between origin i and
destination j where the same distinctions between distri-
bution and density noted above apply. Without loss of
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generality, we will assume in the sequel that these vari-
ables pi j covary with density in that the origin and desti-
nation zones all have the same area. The most constrained
system is where we assume that all the interactions origi-
nating from any zone i must sum to the probability pi of
originating in that zone, and all interactions destined for
zone jmust sum to the probability p j of being attracted to
that destination zone. There is an implicit constraint that
these origin and destination probabilities sum to 1, that is

X

i

X

j

pi j D
X

i

pi D
X

j

p j D 1 ; (14)

but Eq. (14) is redundant with respect to the origin and
destination normalization constraints which are stated ex-
plicitly as

P

j
pi j D pi

P

i
pi j D p j

9
>=

>;
: (15)

There is also a constraint on the average distance or cost
traveled given as

X

i

X

j

pi j ci j D C̄ : (16)

The model that is derived from the maximization of
Eq. (13) subject to Eqs. (15) and (16) is

pi j D KiKj pi p j exp(�� ci j) (17)

where Ki and Kj are normalization constants associated
with Eq. (15), and � is the parameter on the travel cost cij
between zones i and j associated with Eq. (16). It is easy to
compute Ki and Kj by substituting for pij from Eq. (17) in
Eq. (15) respectively and simplifying. This yields

Ki D
1P

j
K j p j exp(�� c i j)

Kj D
1P

i
K i p i exp(�� c i j)

9
>=

>;
; (18)

equations that need to be solved iteratively.
These models can be scaled to deal with real trips or

population simply by multiplying these probabilities by
the total volumes involved, T for total trips in a trans-
port system, P for total population in a city system, Y for
total income in a trading system and so on. This system
however forms the basis for a family of interaction mod-
els which can be generated by relaxing the normalization
constraints; for example by omitting the destination con-
straint, Kj D 1;8 j , or by omitting the origin constraint,

Ki D 1;8i or by omitting both where we need an ex-
plicit normalization constraint of the form

P
i j pi j D 1

in Eq. (14) to provide an overall constant K . Wilson [74]
refers to this set of four models as: doubly-constrained –
the model in Eqs. (17) and (18), the next two as singly-con-
strained, first when Ki D 1;8i , the model is origin con-
strained, and second when Kj D 1;8 j , the model is des-
tination constrained; and when we have no constraints on
origins or destinations, we need to invoke the global con-
stant K and the model is called unconstrained. It is worth
noting that these models can also be generated in nearly
equivalent form using random utility theory where they
are articulated at the level of the individual rather than
the aggregate trip-maker and are known as discrete choice
models [20].

Let us examine one of these models, a singly-con-
strained model where there are origin constraints. This
might be a model where we are predicting interactions
from work to home given we know the distribution of
work at the origin zones. Then noting that Kj D 1;8 j ,
the model is

pi j D Ki pi p j exp(�� ci j) D pi
p j exp(�� ci j)P

j
p j exp(�� ci j)

: (19)

The key issue with this sort of model is that not only are we
predicting the interaction between zones i and j but we can
predict the probability of locating in the destination zone
p0j , that is

p0j D
X

i

pi j D
X

i

pi
p j exp(�� ci j)P

j
p j exp(�� ci j)

: (20)

If we were to drop both origin and destination constraints,
the model becomes one which is analogous to the tradi-
tional gravity model from which it was originally derived
prior to the development of these optimization frame-
works. However to generate the usual standard gravita-
tional form of model in which the ‘mass’ of each origin
and destination zone appears, given by Pi and Pj respec-
tively, then we need to modify the entropy formula, thus
maximizing

H D �
X

i

X

j

pi j ln
pi j
Pi Pj

; (21)

subject to the normalization

X

i

X

j

pi j D 1 ; (22)
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and this time a constraint on the average ‘logarithmic’
travel cost lnC

X

i

X

j

pi j ln ci j D lnC : (23)

The model that is generated from this system can be writ-
ten as

pi j D K
PiPj
c�i j

; (24)

where the effect of travel cost/distance is now in power law
form with � the scaling parameter. Besides illustrating the
fact that inverse power forms as well as negative exponen-
tial distributions can be generated in this way according to
the form of the constraints, one is also able to predict both
the probabilities of locating at the origins and the destina-
tions from the traditional gravity model in Eq. (24).

Scaling, City Size, and Network Structure: Power Laws

Distance is a key organizing concept in city systems as we
have already seen in the way various urban distributions
have been generated. Distance is an attribute of nearness
or proximity to the most accessible places and locations.
Where there are the lowest distance or travel costs to other
places, themore attractive or accessible are those locations.
In this sense, distance or travel cost acts as an inferior good
in that we wish to minimize the cost occurred in overcom-
ing it. Spatial competition also suggests that the number
of places that have the greatest accessibilities are few com-
pared to the majority of places. If you consider that the
most accessible place in a circular city is the center, then
assuming each place is of similar size, as the number of
places by accessibility increases, the lower the accessibility
is. In short, there are many places with the same accessibil-
ity around the edge of the city compared to only one place
in the center. The population density model in Eq. (12)
implies such an ordering when we examine the frequency
distribution of places according to their densities.

If we now forget distance for a moment, then it is
likely that the distribution of places at whatever scale fol-
lows a distribution which declines in frequency with at-
tributes based on size due to competition. If we look at
all cities in a nation or even globally, there are far fewer
big cities than small ones. Thus the entropy-maximizing
framework that we have introduced to predict the proba-
bility (or frequency) of objects of a certain size occurring,
is quite applicable in generating such distributions.We de-
rived a negative exponential distribution in Eq. (10) but to
generate a power law, all we need to do is to replace the

constraint in Eq. (7) with its logarithmic equivalent, that is
X

i

pi ln Pi D ln P ; (25)

and then maximize Eq. (5) subject to (6) and (25) to give

pi D KP�'i D exp(�ˇ � 1) exp(�' ln Pi ) ; (26)

where ' is the scaling parameter. Equation (26) gives the
probability or frequency – the number of cities – for a zone
(or city) with Pi population which is distributed according
to an inverse power law. It is important to provide an in-
terpretation of the constraint which generates this power
law. Equation (25) implies that the system conserves the
average of the logarithm of size which gives greater weight
to smaller values of population than to larger, and as such,
is recognition that the average size of the system is un-
bounded as a power function implies. With such distribu-
tions, it is unlikely that normality will prevail due to the
way competition constrains the distribution in the long
tail. Nevertheless in the last analysis, it is an empirical
matter to determine the shape of such distributions from
data, although early research on the empirical distribu-
tions of city sizes following Zipf’s Law [81] by Curry [34]
and Berry [21] introduced the entropy-maximizing frame-
work to generate such size distributions.

The power law implied for the probability pi of a cer-
tain size Pi of city or zone can be easily generalized to
a two-dimensional equivalent which implies a network of
interactions. We will maximize the two-dimensional en-
tropy H in Eq. (13) subject to constraints on the mean
logarithm of population sizes at origins and destinations
which we now state as

P

i

P

j
pi j ln Pi D

P

i
pi ln Pi D P̄origins

P

i

P

j
pi j ln Pj D

P

j
p j ln Pj D P̄destinations

9
>=

>;
; (27)

where pi D
P

j pi j and p j D
P

i pi j . Note however that
there are no constraints on these origins and destination
probabilities pi and p j per se but the global constraints in
Eq. (14) must hold. This maximization leads to the model

pi j D KP��i
i P�� j

j D
P��i
i

P

i
P��i
i

P�� j
j

P

j
P�� j
j

; (28)

where it is clear that the total flows from any origin node
or location i vary as

p0i / P��i
i ; (29)
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and the flows into any destination zone vary as

p0j / P�� j
j ; (30)

with the parameters i and  j relating to the mean of the
observed logarithmic populations associated with the con-
straint Eq. (27). Note that the probabilities for each origin
and destination node or zone are independent from one
another as there is no constraint tying them together as
in the classic spatial interaction model where distance or
travel cost is intrinsic to the specification.

These power laws can be related to recent explorations
in network science which suggest that the number of in-
degrees – the volume of links entering a destination in our
terms – and the number of out-degrees – the volume em-
anating from an origin, both follow power laws [2]. These
results have been widely observed in topological rather
than planar networks where the focus is on the numbers
of physical links associated with nodes rather than the vol-
ume of traffic on each link. Clearly the number of physical
links in planar graphs is limited and the general finding
from network science that the number of links scales as
a power law cannot apply to systems that exist in two-di-
mensional Euclidean space [24]. However a popular way
of transforming a planar graph into one which is non-
planar is to invoke a rule that privileges some edges over
others merging these into long links and then generating
a topology which is based on the merged edges as consti-
tuting nodes and the links between the new edges as arcs.
This is the method that is called space syntax [47] and
it is clear that by introducing order into the network in
this way, the in-degrees and out-degrees of the resulting
topological graph can be scaling. Jiang [48] illustrates this
quite clearly although there is some reticence tomake such
transformations and where planar graphs have been ex-
amined using new developments in network science based
on small worlds and scale-free graph theory, the focus has
beenmuchmore on deriving new network properties than
on appealing to any scale-free structure [33].

However to consider the scale-free network properties
of spatial interaction systems, each trip might be consid-
ered a physical link in and of itself, albeit that it represents
an interaction on a physical network as a person making
such an interaction is distinct in space and time. Thus
the connections to network science are close. In fact the
study of networks and their scaling properties has not fol-
lowed the static formulations which dominate our study
of cities in equilibrium for the main way in which such
power laws are derived for topological networks is through
a process of preferential attachment which grows networks
from a small number of seed nodes [8]. Nevertheless, such

dynamics appear quite consistent with the evolution of
spatial interaction systems.

These models will be introduced a little later when ur-
ban dynamics are being dealt with. For the moment, let
us note that there are various simple dynamics which can
account not only for the distribution of network links fol-
lowing power laws, but also for the distribution of city
sizes, incomes, and a variety of other social (and phys-
ical) phenomena from models that grow the number of
objects according to simple proportionate growth consis-
tent with the generation of lognormal distributions. Suffice
it to say that although we have focused on urban densi-
ties as following either power laws or negative exponential
functions in this section, it is entirely possible to use the
entropy-maximizing framework to generate distributions
which are log-normal, another alternative with a strong
spatial logic. Most distributions which characterize urban
structure and activities however are not likely to be nor-
mal and to conclude this section, we will review albeit very
briefly, some empirical results that indicate the form and
pattern of urban activities in western cities.

Empirical Applications: Rank-Size Representations
of Urban Distributions

The model in Eq. (26) gives the probability of location in
a zone i as an inverse power function of the population
or size of that place which is also proportional to the fre-
quency

f (pi) / pi D KP�'i : (31)

It is possible to estimate the scaling parameter ' in many
different ways but a first test of whether or not a power
law is likely to exist can be made by plotting the loga-
rithms of the frequencies and population sizes and noting
whether or not they fall onto a straight line. In fact a much
more preferable plot which enables each individual obser-
vation to be represented is the cumulative function which
is formed from the integral of Eq. (31) up to a given size;
that is Fi / P�'C1

i . The counter-cumulative F � Fi where
F is the sum of all frequencies in the system – that is the
number of events or cities – also varies as P�'C1

i and is in
fact the rank of the city in question. Assuming each popu-
lation size is different, then the order of fig is the reverse of
the rank, andwe can nowwrite the rank r of i as r D F�Fi .
The equation for this rank-size distribution (which is the
one that is usually used to fit the data) is thus

r D GP�'C1
r (32)

where G is a scaling constant which in logarithmic form is
ln r D G � (' � 1) ln Pr . This is the equation that is im-
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plicit in the rank-size plots presented below which reveal
evidence of scaling.

First let us examine the scaling which is implicit in ur-
ban size distributions for the largest world city populations
over 1million in 2005, for cities over 100,000 in the USA in
2000, and for the 200 tallest buildings in the world in 2007.
We could repeat such examples ad nauseum but these pro-
vide a good selection which we graph in rank-size logarith-
mic form in Fig. 1a, noting that we have normalized all the
data by their means, that is by <Pr> and <r>, as Pr/<Pr>
and r/<r>. We are only examining a very small number
at the very top of the distribution and this is clearly not
definitive evidence of scaling in the rest of the distribu-
tion but these plots do show the typical distributions of
city size activities that have been observed in this field for
over 50 years. As we will imply later, these signatures are
evidence of self-organization and fractal structure which
emerge through competition from the bottom up [15].

To illustrate densities in cities, we take employment
and working population in small zones in Greater Lon-
don, a city which has some 4.4 million workers. We rank-
order the distribution in the same way we have done for
world cities, and plot these, suitably normalized by their
means, logarithmically in Fig. 1b. These distributions are
in fact plotted as densities so that we remove aerial size
effects. Employment densities ei D Ei /Ai can be inter-
preted as the number of work trips originating in employ-
ment zones ei D

P
j Ti j – the volume of the out-degrees

of each employment zone considered as nodes in the graph
of all linkages between all places in the system, and popula-
tion densities hj D Pj/Aj as the destination distributions
hj D

P
i Ti j – the in-degrees which measure all the trips

destined for each residential zone from all employment
zones. In short if there is linearity in the plots, this is evi-
dence that the underlying interactions on the physical net-
works that link these zones are scaling. Figure 1b provides
some evidence of scaling but the distributions are more
similar to lognormal distributions than to power laws. This
probably implies that the mechanisms for generating these
distributions are considerably more complex than growth
through preferential attachment which we will examine in
more detail below [15].

Lastly, we can demonstrate that scaling in city sys-
tems also exists with respect to how trips, employment
and population activities vary with respect to distance. In
Fig. 1c, we have again plotted the employment densities
ei D Ei /Ai at origin locations and population densities
hj D Pj/Aj at destination locations but this time against
distances dCBD!i and dCBD! j from the center of Lon-
don’s CBD in logarithmic terms. It is clear that there is
significant correlation but also a very wide spread of val-

Cities as Complex Systems: Scaling, Interaction, Networks, Dy-
namics and UrbanMorphologies, Figure 1
Scaling distributions in world cities and in Greater London

ues around the log-linear regression lines due to the fact
that the city is multi-centric. Nevertheless the relation-
ships appears to be scaling with these estimated as ei D
0:042d�0:98CBD!i , (r

2 D �0:30), and hj D 0:029d�0:53CBD! j ,
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Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and UrbanMorphologies, Figure 2
Employment, population and accessibilities in Greater London (greatest extent is 55kms east to west; 45kms north to south)

(r2 D �0:23). However more structured spatial relation-
ships can be measured by accessibilities which provide in-
dices of overall proximity to origins or destinations, thus
taking account of the fact that there are several compet-
ing centers. Accessibility can be measured in many differ-
ent ways but here we use a traditional definition of poten-
tial based on employment accessibility Ai to populations
at destinations, and population accessibility Aj to employ-
ment at origins defined as

Ai /
P

j

h j
c i j

A j /
P

i

e i
c i j

9
>=

>;
; (33)

where cij is, as before, the generalized cost of travel
from employment origin i to population destination j. In
Fig. 2a, b, we compare the distribution of employment
densities ei with accessibility origins Ai and in Fig. 2c, d,
population densities hj with accessibility destinations Aj.
Each set of maps is clearly correlated with higher asso-
ciations than in Fig. 1c which take account of only the
single CBD. Regressing fln eig on flnAig and fln p jg on
flnAjg gives an approximate scaling with 31% of the vari-
ance accounted for in terms of origin accessibility and 41%
for destination accessibility. These relations appear linear
but there is still considerable noise in the data which un-
doubtedly reflects the relative simplicity of the models and
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the fact that accessibility is being measured using current
transport costs without any reference to the historical evo-
lution of the city’s structure. It is, however, building blocks
such as these that constitute the basis for operational land
use transport models that have developed for comparative
static and quasi-dynamic forecasting that we will discuss
below.

Urban Dynamics

Aggregate Development

Models of city systems have largely been treated as static
for at first sight, urban structure in terms of its form and
to some extent its function appears stable and long-lasting.
During the industrial era, cities appeared to have a well-
defined structure where land uses were arranged in con-
centric rings according to their productivity and wealth
around a central focus, usually the central business district
(CBD), the point where most cities were originally located
and exchange took place. Moreover data on how cities had
evolved were largely absent and this reinforced the focus
on statics and equilibria.Where the need to examine urban
change was urgent, models were largely fashioned in terms
of the simplest growth dynamics possible and we will be-
gin with these here.

The growth of human populations in their aggregate
appears to follow an exponential law where the rate of
change � is proportional to the size of the population it-
self P(t), that is

dP(t)
dt
D �P(t) : (34)

It is easy to show that starting from an initial population
P(0), the growth is exponential, that is

P(t) D P(0) exp(� t) ; (35)

which is the continuous form of model. When formulated
discretely, at time steps t D 1; 2; : : : ; T , Eq. (34) can be
written as P(t) � P(t � 1) D ˇP(t � 1) which leads to

P(t) D (1C ˇ)P(t � 1) : (36)

Through time from the initial condition P(0), the trajec-
tory is

P(t) D (1C ˇ)tP(0) : (37)

1 C ˇ is the growth rate. If ˇ > 0, Eq. (37) shows expo-
nential growth, if ˇ < 0, exponential decline, and if ˇ D 0,
the population is in the steady state and simply reproduces
itself.

This simple growth model leads to smooth change, and
any discontinuities or breaks in the trajectories of growth
or decline must come about through an external change
in the rate from the outside environment. If we assume
the growth rate fluctuates around a mean of one with ˇ
varying randomly, above � 1, then it is not possible to
predict the trajectory of the growth path. However if we
have a large number of objects which we will assume to
be cities whose growth rates are chosen randomly, then we
can write the growth equation for each city as

Pi (t) D [1C ˇi(t)]Pi (t � 1) ; (38)

which from an initial condition Pi (0) gives

Pi (t) D
tY

�D1

[1C ˇi(�)]Pi (0) : (39)

This is growth by proportionate effect; that is, each city
grows in proportion to its current size but the growth rate
in each time period is random. In a large system of cities,
the ultimate distribution of these population sizes will be
lognormal. This is easy to demonstrate for the logarithm
of Eq. (39) can be approximated by

ln Pi (t) D ln Pi (0)C
tX

�D1

ˇi(�) ; (40)

where the sum of the random components is an approx-
imation to the log of the product term in Eq. (39) us-
ing Taylor’s expansion. This converges to the lognormal
from the law of large numbers. It was first demonstrated
by Gibrat [43] for social systems but is of considerable in-
terest here in that the fat tail of the lognormal can be ap-
proximated by an inverse power law. This has become the
default dynamicmodel which underpins an explanation of
the rank-size rule for city populations first popularized by
Zipf [81] and more recently confirmed by Gabaix [41] and
Blank and Solomon [23] among others. We demonstrated
this in Fig. 1a for the world city populations greater than 1
million and for US city populations greater than 100,000.
As such, it is the null hypothesis for the distribution of ur-
ban populations in individual cities as well as population
locations within cities.

Although Gibrat’s model does not take account of in-
teractions between the cities, it does introduce diversity
into the picture, simulating a system that in the aggregate
is non-smooth but nevertheless displays regularity. These
links to aggregate dynamics focus on introducing slightly
more realistic constraints and one that is of wide relevance
is the introduction of capacity constraints or limits on the
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level to which a population might grow. Such capacitated
growth is usually referred to as logistic growth. Retaining
the exponential growth model, we can limit this by mod-
erating the growth rate � according to an upper limit on
population Pmax which changes the model in Eq. (34) and
the growth rate � to

dP(t)
dt
D

�
�

�
1 �

P(t)
Pmax

��
P(t) : (41)

It is clear that when P(t) D Pmax, the overall rate of change
is zero and no further change occurs. The continuous ver-
sion of this logistic is

P(t) D
Pmax

1C


Pmax
P(0) � 1

�
exp(�� t)

; (42)

where it is easy to see that as t !1, P(t)! Pmax.
The discrete equivalent of this model in Eq. (41) fol-

lows directly from P(t) � P(t � 1) D ˇ[1 � (P(t � 1)/
Pmax)]P(t � 1) as

P(t) D
�
1C ˇ

�
1 �

P(t � 1)
Pmax

��
P(t � 1) ; (43)

where the long term dynamics is too intricate to write out
as a series. Equation (43) however shows that the growth
component ˇ is successively influenced by the growth of
the population so far, thus preserving the capacity limit
through the simple expedient of adjusting the growth rate
downwards. As in all exponential models, it is based on
proportionate growth. As we noted above, we can make
each city subject to a random growth component ˇi (t)
while still keeping the proportionate effect.

P(t) D
�
1C ˇi(t)

�
1 �

P(t � 1)
Pmax

��
P(t � 1) : (44)

This model has not been tested in any detail but if ˇi(t) is
selected randomly, the model is a likely to generate a log-
normal-like distribution of cities but with upper limits be-
ing invoked for some of these. In fact, this stochastic equiv-
alent also requires a lower integer bound on the size of
cities so that cities do not become too small [14]. Within
these limits as long as the upper limits are not too tight,
the sorts of distributions of cities that we observe in the
real world are predictable.

In the case of the logistic model, remarkable and un-
usual discontinuous nonlinear behavior can result from its
simple dynamics. When the ˇ component of the growth
rate is ˇ < 2, the predicted growth trajectory is the typical
logistic which increases at an increasing rate until an in-

flection point after which the growth begins to slow, even-
tually converging to the upper capacity limit of Pmax. How-
ever when ˇ Š 2, the population oscillates around this
limit, bifurcating between two values. As the value of the
growth rate increases towards 2.57, these oscillations get
greater, the bifurcations doubling in a regular but rapidly
increasing manner. At the point where ˇ Š 2:57, the oscil-
lations and bifurcations become infinite, apparently ran-
dom, and this regime persists until ˇ Š 3 during which
the predictions look entirely chaotic. In fact, this is the
regime of ‘chaos’ but chaos in a controlled manner from
a deterministic model which is not governed by externally
induced or observed randomness or noise.

These findings were found independently byMay [52],
Feigenbaum [38], Mandelbot [51] among others. They re-
late strongly to bifurcation and chaos theory and to frac-
tal geometry but they still tend to be of theoretical impor-
tance only. Growth rates of this magnitude are rare in hu-
man systems although there is some suggestion that they
might occur in more complex coupled biological systems
of predator-prey relations. In fact one of the key issues in
simulating urban systems using this kind of dynamics is
that although these models are important theoretical con-
structs in defining the scope of the dynamics that define
city systems, much of these dynamic behaviors are sim-
plistic. In so far as they do characterize urban systems, it
is at the highly aggregate scale as we demonstrate a little
later. The use of these ideas in fact is much more applica-
ble to extending the static equilibrium models of the last
section and to demonstrate these, we will now illustrate
how these models might be enriched by putting together
logistic behaviors with spatial movement and interaction.

One way of articulating urban dynamics at the intra-
urban level is to identify different speeds of change. In par-
ticular we can define a fast dynamics that relates to how
people might move around the city on daily basis, for ex-
ample, in terms of the journey to work, and a slower dy-
namics that relates to more gradual change that relates to
the size of different locations affected by residential migra-
tions. We can model the fast dynamics using a singly-con-
strained spatial interaction which distributes workers to
residential locations which we define using previous nota-
tion where all variables are now time scripted by (t): Ti j(t)
trips between zones i and j, employment Ei (t) at origin
zone i, population Pj(t) at destination zone j, the friction
of distance parameter � (t), and the travel cost ci j(t) be-
tween zones i and j. The model is defined as

Ti j(t) D Ei (t)
Pj(t) exp[�� (t)ci j(t)]P

j
Pj(t) exp[�� (t)ci j(t)]

; (45)
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from which we can predict residential population P0j(t) as

P0j(t) D
X

i

Ti j(t)

D
X

i

Ei (t)
Pj(t) exp[�� (t)ci j(t)]P

j
Pj(t) exp[�� (t)ci j(t)]

: (46)

This is the fast dynamics but each zone is capacitated by
an unchanging upper limit on population where the zonal
population changes slowly in proportion to its existing size
through internal migration and in response to the upper
limit Pjmax. The change in terms of this slower dynamic
from t to t C 1 is modeled as


Pj(t C 1) D ˇ[Pjmax � P0j(t)]P
0
j(t) (47)

with the long term trajectory thus given as

Pj(t C 1) D


1C ˇ[Pjmax � P0j(t)]

�
P0j(t) : (48)

Clearly Pj(t) will converge to Pjmax as long as P0j(t) is in-
creasing while the fast dynamics is also updated in each
successive time period from

P0j(t C 1) D
X

i

Ti j(t C 1)

D
X

i

Ei (tC1)
Pj(t C 1) exp[�� (t C 1)ci j(t C 1)]
P

j
Pj(t C 1) exp[�� (t C 1)ci j(t C 1)]

:

(49)

We may have an even slower dynamics relating to techno-
logical or other social change which changes Pjmax while
various other models may be used to predict employment
for example, which itself may be a function of another
fast dynamics relating to industrial and commercial inter-
actions. The time subscripted variables travel ci j(t C 1)
and the friction of distance parameter � (t C 1) might
be changes that reflect other time scales. We might even
have lagged variables independently introduced reflecting
stocks or flows at previous time periods t � 1, t � 2 etc.
Wilson [75,76] has explored links between these spatial in-
teraction entropy-maximizing models and logistic growth
and has shown that in a system of cities or zones within
a city, unusual bifurcating behavior in terms of the emer-
gence of different zonal centers can occur when parameter
values, particularly the travel cost parameter � (tC1), cross
certain thresholds.

There have been many proposals involving dynamic
models of city systems which build on the style of nonlin-
ear dynamics introduced here and these all have the po-
tential to generate discontinuous behavior. Although Wil-
son [75] pioneered embedding dynamic logistic change

into spatial interaction models, there have been impor-
tant extensions to urban predator-prey models by Den-
drinos and Mullaly [36] and to bifurcating urban systems
by Allen [3,4], all set within a wider dynamics linking
macro to micro through master equation approaches [45].
A good summary is given by Nijkamp and Reggiani [57]
but most of these have not really led to extensive empiri-
cal applications for it has been difficult to find the neces-
sary rich dynamics in the sparse temporal data sets avail-
able for cities and city systems; at the macro-level, a lot of
this dynamics tends to be smoothed away in any case. In
fact, more practical approaches to urban dynamics have
emerged at finer scale levels where the agents and activi-
ties are more disaggregated and where there is a stronger
relationship to spatial behavior.We will turn to these now.

Dynamic Disaggregation: Agents and Cells

Static models of the spatial interaction variety have been
assembled into linked sets of sub-models, disaggregated
into detailed types of activity, and structured so that they
simulate changes in activities through time. However, the
dynamics that is implied in such models is simplistic in
that the focus has still been very much on location in
space with time added as an afterthought. Temporal pro-
cesses are rarely to the forefront in such models and it is
not surprising that a more flexible dynamics is emerging
from entirely different considerations. In fact, the mod-
els of this section come from dealing with objects and in-
dividuals at much lower/finer spatial scales and simulat-
ing processes which engage them in decisions affecting
their spatial behavior. The fact that such decisions take
place through time (and space) makes them temporal and
dynamic rather through the imposition of any predeter-
mined dynamic structures such as those used in the aggre-
gate dynamicmodels above. The models here deal with in-
dividuals as agents, rooted in cells which define the space
they occupy and in this sense, are highly disaggregate as
well as dynamic. These models generate development in
cities from the bottom up and have the capability of pro-
ducing patterns which are emergent. Unlike the dynamic
models of the last section, their long term spatial behavior
can be surprising and often hard to anticipate.

It is possible however to use the established nota-
tion for equilibrium models in developing this framework
based on the generic dynamic Pi (t) D Pi (t � 1)C
Pi (t)
where the change in population 
Pi (t) can be divided
into two components. The first is the usual proportion-
ate effect, the positive feedback induced by population on
itself which is defined as the reactive element of change
!Pi(t � 1). The second is the interactive element, change
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that is generated from some action-at-a-distance which is
often regarded as a diffusion of population from other lo-
cations in the system. We can model this in the simplest
way using the traditional gravitymodel in Eq. (24) but not-
ing that we must sum the effects of the diffusion over the
destinations from where it is generated as a kind of acces-
sibility or potential. The second component of change is
�Pi(t � 1)K

P
j Pj(t � 1)/c�i j from which the total change

between t and t � 1 is


Pi (t) D !Pi(t�1)C�Pi (t�1)K
X

j

Pj(t � 1)
c�i j

C"i(t�1):

(50)

We have also added a random component "i(t � 1) in the
spirit of our previous discussion concerning growth rates.
We can now write the basic reaction-diffusion equation, as
it is sometimes called, as

Pi (t)
D Pi (t � 1)C
Pi (t)

D Pi (t � 1)

0

@1C ! C �K
X

j

Pj(t � 1)
c�i j

C "i(t � 1)

1

A :

(51)

This equation looks as though it applies to a zonal sys-
tem but we can consider each index i or j simply a marker
of location, and each population activity can take on any
value; for single individuals it can be 0 or 1 while it might
represent proportions of an aggregate population or total
numbers for the framework is entirely generic. As such, it
is more likely to mirror a slow dynamics of development
rather than a fast dynamics of movement although move-
ment is implicit through the diffusive accessibility term.

We will therefore assume that the cells are small
enough, space-wise, to contain single activities – a single
household or land use which is the cell state – with the cel-
lular tessellation usually forming a grid associated with the
pixel map used to visualize data input and model output.
In terms of our notation, population in any cell i must be
Pi (t) D 1 or 0, representing a cell which is occupied or
empty with the change being
Pi (t) D �1 or 0 if Pi (t�
1) D 1 and 
Pi (t) D 1 or 0 if Pi(t � 1) D 0. These
switches of state are not computed by Eq. (51) for the way
these cellular variants are operationalized is through a se-
ries of rules, constraints and thresholds. Although consis-
tent with the generic model equations, these are applied in
more ad hoc terms. Thus these models are often referred
to as automata and in this case, as cellular automata (CA).

The next simplification which determines whether or
not a CA follows a strict formalism, relates to the space
over which the diffusion takes place. In the fast dynamic
equilibrium models of the last section and the slower ones
of this, interaction is usually possible across the entire
space but in strict CA, diffusion is over a local neighbor-
hood of cells around i, ˝i , where the cells are adjacent.
For symmetric neighborhoods, the simplest is composed
of cells which are north, south, east and west of the cell in
question, that is ˝i D n; s; e;w – the so-called von Neu-
mann neighborhood, while if the diagonal nearest neigh-
bors are included, then the number of adjacent cells rises
to 8 forming the so-called Moore neighborhood. These
highly localized neighborhoods are essential to processes
that grow from the bottom up but generate global pat-
terns that show emergence. Rules for diffusion are based
on switching a cell’s state on or off, dependent upon what
is happening in the neighborhood, with such rules being
based on counts of cells, cell attributes, constraints onwhat
can happen in a cell, and so on.

The simplest way of showing how diffusion in local-
ized neighborhoods takes place can be demonstrated by
simplifying the diffusion term in Eq. (50) as follows. Then
�K

P
j Pj(t � 1) D �K

P
j Pj(t � 1)c��i j as ci j D 1 when

˝i D n; s; e;w. The cost is set as a constant value as each
cell is assumed to be small enough to incur the same (or
no) cost of transport between adjacent cells. Thus the dif-
fusion is a count of cells in the neighborhood i. The overall
growth rate is scaled by the size of the activity in i but this
activity is always either Pi (t � 1) D 1 or 0, presence or
absence. In fact this scaling is inappropriate in models that
work by switching cells on and off for it is only relevant
when one is dealing with aggregates. This arises from the
way the generic equation in (51) has been derived and in
CA models, it is assumed to be neutral. Thus the change
Eq. (50) becomes


Pi (t) D ! C �K
X

j

Pj(t � 1)C "i(t) ; (52)

where this can now be used to determine a threshold Zmax
over which the cell state is switched. A typical rule might
be

Pi (t) D

8
<

:

1; if [! C �K
P

j
Pj(t � 1)C "i(t)] > Zmax

0; otherwise :

(53)

It is entirely possible to separate the reaction from the dif-
fusion and consider different combinations of these effects
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sparking off a state change. As we have implied, different
combinations of attributes in cells and constraints within
neighborhoods can be used to effect a switch, much de-
pending on the precise specification of the model.

In many growth models based on CA, the strict lim-
its posed by a local neighborhood are relaxed. In short,
the diffusion field is no longer local but is an information
or potential field consistent with its use in social physics
where action-at-distance is assumed to be all important. In
the case of strict CA, it is assumed that there is no action-
at-a-distance in that diffusion only takes place to physi-
cally adjacent cells. Over time, activity can reach all parts
of the system but it cannot hop over the basic cell unit.
In cities, this is clearly quite unrealistic as the feasibility
of deciding what and where to locate does not depend on
physical adjacency. In terms of applications, there are few
if any urban growth models based on strict CA although
this does rather beg the question as to why CA is being
used in the first place. In fact it is more appropriate to call
such models cell-space or CS models as Couclelis [32] has
suggested. In another sense, this framework can be consid-
ered as one for agent-based modeling where the cells are
not agents and where there is no assumption of a regular
underlying grid of cells [12,13]. There may be such a grid
but the framework simply supposes that the indices i and
j refer to locations that may form a regular tessellation but
alternatively may be mobile and changing. In such cases, it
is often necessary to extend the notation to deal with spe-
cific relations between the underlying space and the loca-
tion of each agent.

Empirical Dynamics: Population Change and City Size

We will now briefly illustrate examples of the models in-
troduced in this section before we then examine the con-
struction of more comprehensive models of city systems.
Simple exponential growth models apply to rapidly grow-
ing populations which are nowhere near capacity limits
such as entire countries or the world. In Fig. 3, we show the
growth of world population from 2000 BCE to date where
it is clear that the rate of growth may be faster than the
exponential model implies, although probably not as fast
as double exponential. In fact world population is likely
to slow rapidly over the next century probably mirror-
ing global resource limits to an extent which are clearly
illustrated in the growth of the largest western cities. In
Figs. 4a, b, we show the growth in population of New York
City (the five boroughs) and Greater London from 1750
to date and it is clear that in both cases, as the cities de-
veloped, population grew exponentially only to slow as the
upper density limits of each city were reached.

Cities as Complex Systems: Scaling, Interaction, Networks, Dy-
namics and UrbanMorphologies, Figure 3
Exponential world population growth. The fitted exponential
curve is shown in grey where for the most part it is coincident
with the observed growth, except for the very long period be-
fore the Industrial Revolution (before 1750)

Subsequent population loss and then a recent return
of population to the inner and central city now dominate
these two urban cores, which is reminiscent of the sorts
of urban dynamic simulated by Forrester [39] where vari-
ous leads and lags in the flow of populations mean that the
capacity limit is often overshot, setting up a series of oscil-
lations which damp in the limit. Forrester’s model was the
one of the first to grapple with the many interconnections
between stocks and flows in the urban economy although
these relationships were predicated hypothetically in sim-
ple proportionate feedback terms. Together they gener-
ated a rich dynamics but dominated by growth which was
capacitated, thus producing logistic-like profiles with the
leads and lags giving damped oscillations which we illus-
trate from his work in Fig. 5 [11]. We will see that the
same phenomena can be generated from the bottom up as
indeed Forrester’s model implies, using cellular automata
within a bounded spatial system.

Dynamics which arise from bottom-up urban pro-
cesses can be illustrated for a typical CA/CSmodel, DUEM
(Dynamic Urban Evolutionary Model) originally devel-
oped by Xie [78]. In the version of the model here,
there are five distinct land uses – housing, manufactur-
ing/primary industry, commerce and services, transport in
the form of the street/road network, and vacant land. In
principle, at each time period, each land use can generate
quantities and locations of any other land use although in
practice only industry, commerce and housing can gener-
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Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and UrbanMorphologies, Figure 4
Logistic population growth

Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and UrbanMorphologies, Figure 5
Oscillating capacitated growth in a version of the Forrester Urban Dynamicsmodel (from [11])

ate one another as well as generating streets. Streets do not
generate land uses other than streets themselves. Vacant
land is regarded as a residual available for development
which can result from a state change (decline) in land use.
The way the generation of land uses takes place is through
a rule-based implementation of the generic Eq. (51) which
enables a land use k; Pk

i (t), to be generated from any other
land use `; P`j (t � 1). Land uses are also organized across
a life cycle from initiating through mature to declining.
Only initiating land uses which reflect their relative new-
ness can spawn new land use. Mature remain passive in

these terms but still influence new location while declin-
ing land uses disappear, thus reflecting completion of the
life cycle of built form.

We are not able to present the fine details of the model
here (see Batty, Xie and Sun [19], and Xie and Batty [79])
but we can provide a broad sketch. The way initiating land
uses spawn new ones is structured according to rule-based
equations akin to the thresholding implied in Eq. (53). In
fact, there are three spatial scales at which these thresh-
olds are applied ranging from themost local neighborhood
through the district to the region itself. The neighborhood
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exercises a trigger for new growth or decline based on the
existence or otherwise of the street network, the district
uses the densities of related land uses and distance of the
new land use from the initiating use to effect a change,
while the region is used to implement hard and fast con-
straints on what cells are available or not for development.
Typically an initiating land use will spawn a new land use
in a district only if the cells in question are vacant and if
they are not affected by some regional constraint on de-
velopment with these rules being implemented first. The
probability of this land use occurring in a cell in this dis-
trict is then fixed according to its distance from the ini-
tiating location. This probability is then modified accord-
ing to the density of different land uses that exist around
each of these potential locations – using compatibility con-
straints – and then in the local neighborhood, the density
of the street network is examined. If this density is not suf-
ficient to support a new use, the probability is set equal to
zero and the cell in question does not survive this process
of allocation. At this point, the cell state is switched from
‘empty’ or ‘vacant’ to ‘developed’ if the random number
drawn is consistent with the development probability de-
termined through this process.

Declines in land use which are simply switches from
developed to vacant in terms of cell state are produced
through the life cycling of activities. When a mature land
use in a cell reaches a certain age, it moves into a one pe-
riod declining state and then disappears at the end of this
time period, the cell becoming vacant. Cells remain vacant
for one time period before entering the pool of eligible lo-
cations for new development. In the model as currently
constituted, there is no internal migration of activities or
indeed anymutation of uses but these processes are intrin-
sic to the model structure and have simply not been in-
voked. The software for this model has been written from
scratch in Visual C++ with the loosest coupling possible
to GIS through the import of raster files in different pro-
prietary formats. The interface we have developed, shown
below, enables the user to plant various land use seeds into
a virgin landscape or an already developed system which
is arranged on a suitably registered pixel grid which can
be up to 3K x 3K or 9 million pixels in size. A map of this
region forms the main window but there are also three re-
lated windows which show the various trajectories of how
different land uses change through time with the map and
trajectories successively updated in each run.

A feature which is largely due to the fact that the model
can be run quickly through many time periods, is that the
system soon grows to its upper limits with exponential
growth at first which then becomes logistic or capacitated.
In Fig. 6, we show how this occurs from planting a random

selection of land use seeds in the region and then letting
these evolve until the system fills. Because there are lags in
the redevelopment of land uses in the model due to the life
cycle effects, as the system fills, land is vacated. This in-
creases the space available for new development leading
to oscillations of the kind reflected in Forrester’s model
shown in Fig. 5 and more controversially in the real sys-
tems shown for New York City and Greater London in
Fig. 4. In this sense, a CA model has a dynamics which is
equivalent to that of the more top-down dynamics where
growth ismodeled by exponential or logistic functions. CA
models however generate this as an emergent phenomena
from the bottom up.

Our last demonstration of CA really does generate
emergent phenomena. This is a model of residentialmove-
ment that leads to extreme segregation of a population
classified into two distinct groups which we will call red
R and green G. Let us array the population on a square
grid of dimension 51 x 51 where we place an R person
next to a G person in alternate fashion, arranging them in
checker board style as in Fig. 7a. The rule for being satis-
fied with one’s locational position viz a viz one’s relation-
ship to other individuals is as follows: persons of a different
group will live quite happily, side by side with each other,
as long as there are as many persons of the same persua-
sion in their local neighborhood. The neighborhood in this
instance is the eight cells that surround a person on the
checkerboard in the n, s, e, w, and nw, se, sw, and ne po-
sitions. If however a person finds that the persons of the
opposing group outnumber those of their own group, and
this would occur if there were more than 4 persons of the
opposite persuasion, then the person in question would
change their allegiance. In other words, they would switch
their support to restore their own equilibrium which en-
sures that they are surrounded by at least the same number
of their own group. There is a version of this model that is
a little more realistic in which a person would seek another
location –move – if this condition were not satisfied rather
than change their support, but this is clearly not possible
in the completely filled system that we have assumed; we
will return to this slightly more realistic model below.

In Fig. 7a, the alternative positioning shown in the
checker board pattern meets this rule and the locational
pattern is in ‘equilibrium’: that is, no one wants to change
their support to another group. However let us suppose
that just six persons out of a total of 2601 (51 x 51 agents
sitting on the checker board) who compose about 0.01 per-
cent of the two populations, change their allegiance. These
six changes are easy to see in Fig. 7a where we assume that
four R persons of the red group, change in their allegiance
to support the green group, and two Gs change the op-
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Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and UrbanMorphologies, Figure 6
Cellular growth using the DUEMmodel
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Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and UrbanMorphologies, Figure 7
Emergent segregation: A fragile equality (a) gives way to segregation (b); A randommix with available space (c) gives way to segre-
gation (d)

posite way. What then happens is the equilibrium is up-
set in these locations but instead of being quickly restored
by local changes, this sets off a mighty unraveling which
quickly changes the locational complexion of the system
to one where the Rs are completely and utterly segregated
from the Gs. We show this in Fig. 7b. From a situation
where everyone was satisfied and mixed completely, we
get dramatic segregation which is a most unusual conse-
quence. At first sight, one would never imagine that with
so mild a balance of preferences, such segregation would
take place. The ultimate pattern implies that Rs will live
nowhere near Gs unless they really have to and there is

nowhere else to live and vice versa. If an R or a G could
not tolerate more than one person of a different kind living
near them, then such segregation would be understand-
able but this is not the case: Rs are quite content to live in
harmony with Gs as long as the harmony is equality.

This model was first proposed more than 30 years by
Schelling [61,62]. In fact we can make this a little more re-
alistic if we provide some free space within the system. In
this case, we assume that 1/3 of the lattice is empty of per-
sons of any kind, 1/3 composed of Rs, and 1/3 of Gs, and
wemix these randomly as we show in Fig. 7c. Now the rule
is slightly different in that if there aremore opposition per-
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sons around a person of one persuasion, then that person
will try to move his or her location to a more preferen-
tial position. This sets up a process of shuffling around the
checker board but as we show in Fig. 7d, quite dramatic
shifts take place in location which leads to the segrega-
tion shown. This is the kind of effect that takes place in
residential areas in large cities where people wish to sur-
round themselves with neighbors of their own kind. What
is surprising about the phenomena which makes it ‘emer-
gent’ is that for very mild preferential bias, dramatic seg-
regation can take place. Of course if the preferences for
like neighbors are very strong anyway, then segregation
will take place. But in reality, such preferences are usu-
ally mild rather than strong, yet extreme segregation takes
place anyway. The conclusion is that cities often lookmore
segregated around racial and social lines than the attitudes
of their residents might suggest.

Comprehensive SystemModels of Urban Structure

Integrated Land Use Transport Models

The various components used to model cities in equi-
librium were quickly assembled into structures that at-
tempted to simulate urban structure and growth from the
1960s onwards. These models were referred to as land use
transport models in that their aimwas to simulate the loca-
tions of different land uses and their consequent patterns
of traffic generation, usually according to spatial interac-
tion principles based on gravitational assumptions. But
they usually represented cities as demographic and eco-
nomic activities – population, households, employment
and so on – rather than as residential, commercial or in-
dustrial land use. In short the city system was seen to op-
erate at the level of the location of activities which then
consumed space through land use from which traffic was
generated, and once urban activities and their interactions
were predicted, appropriate translations were made into
land use. As we shall see, this is not as unproblematic as
was originally thought.

The integration of urban activities and their interac-
tions – land use and transport – can be accomplished us-
ing a variety of economic frameworks built around eco-
nomic relationships between activities. Traditionally these
have been represented as input-output models where one
activity is linked to another and it is possible to predict
the chain of linkages between all the activities using multi-
pliers. We will illustrate this for two activities: we assume
that employment E is divided into an unpredictable com-
ponent, sometimes considered as employment that is basic
B and export orientated in the economy, and employment
that is non-basic S where E D B C S. Non-basic employ-

ment services the population P from which it is derived
as S D bP. If we then consider that population can be
generated by applying an activity rate a to employment as
P D aE, we have the rudiments of a generative sequence
that forms a structure for predicting activities and their lo-
cations which are highly interdependent. Simple manipu-
lation of these relationships shows that E D B(1 � ba)�1

where (1 � ba)�1 is the multiplier central to traditional
macro-economic theory.

If we now consider that employment and population
are related spatially through their interactions, we model
the relationship between employment as population using
a singly-constrained sub-model

Pj D a
X

i

Ti j D a
X

i

Ei
Fj c
� 
i j

P
k Fkc

� 
i k

; (54)

where Ti j are work trips between i and j, Fj is some mea-
sure of attraction at residential location j, and  is the
friction of distance/travel cost parameter. Employment is
modeled in reverse direction as

Ei D b
X

j

S ji D b
X

j

Pj
Fi c�$jiP
k Fkc

�$
ki

; (55)

where Sji are employment demands in j from i, Fi is some
measure of attraction at residential location i, and$ is the
friction of distance/travel cost parameter. These two equa-
tions for the two sectors are not usually solved simulta-
neously but the chain is broken in that we start with ba-
sic employment B in Eq. (54), predicting basic population,
then using this basic population in Eq. (55) to produce an
increment of non-basic employment which in turn is used
to predict the next increment of non-basic population in
Eq. (54). This iteration converges to the multiplier rela-
tionships E D B(1 � ba)�1 and P D bB(1 � ba)�1.

This kind of sequence can be disaggregated indefinitely
with respect to population and employment types and
linked demands to other sectors. Education, leisure and
so on can be added to the framework making the model
ever more comprehensive. This was the model first devel-
oped by Lowry [50]. It is still the most widely applied of
all operational urban models and has been elaborated in
various ways, some of them dealing with partial dynam-
ics [11]. Their theoretical pedigree is rooted largely in re-
gional economics, location theory and the new urban eco-
nomics which represent the spatial equivalents of classi-
cal macro andmicro economics. Themost coherent recent
statement in this vein is based on applications of trade the-
ory to the urban economy as reflected in the work of Fujita,
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Krugman and Venables [40] but there is a long heritage of
empirical models in the Lowry [50] tradition which con-
tinue to be built [71].

These models now incorporate the four-stage trans-
portation modeling process of trip generation, distribu-
tion, modal split and assignment explicitly and they are
consistent with discrete choice methods based on utility
maximizing in their simulation of trip-making [20]. They
have been slowly adapted to simulate dynamic change al-
though they still tend to generate the entire activity pattern
of the city in one go, and they remain parsimonious in that
the assumption is that all the outcomes from the model

Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and UrbanMorphologies, Figure 8
Visualization of outputs from a Greater London land use transport model

can be tested in terms of their goodness of fit. They have
also become more disaggregate and there are now links to
physical land use although they still remain at the level of
activity allocation despite their nomenclature as land use
transport models. In short, this class of models is the most
operational in that newer styles tend to be less comprehen-
sive in their treatment of urban activities and transporta-
tion. Probably the most highly developed of these models
currently is the UrbanSim model [69] although the ME-
PLAN, TRANUS and IRPUD models, whose most recent
versions were developed in the EU Propolis [60] project,
also represent the state-of-the-art.
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To conclude this section, it is worth showing a visual-
ization from one of these land use transport models which
we have recently built for the London region as part of an
integrated assessment of climate change in the metropolis.
The component we show is a residential location model
which predicts the flow of workers from employment lo-
cations to residential areas using four different modes of
transport and disaggregated into five employment and five
household types. In Fig. 8a, we show some outputs from
the model – the observed employment distribution, the
pattern of population density, and total work trips from
the airport (Heathrow) zone in the base year simulation
2005. This kind of model assumes that employment and
the travel cost network are exogenously determined and
thus ‘what-if’ style questions can be thrown at the model
to be evaluated in terms of the impact of changes in the
transport network and employment volumes on the loca-
tion of population. We illustrate such a scenario builder
for changes in the transport routes and costs in Fig. 8b
which provides some sense of how such complexity can
be visualized. These are key issues in planning policy for
the future growth of London, particularly with respect to
flooding in the Thames Estuary which is likely to be af-
fected by climate change. These kinds of models are hardly
routine but they are being developed now in many places.

Agent-Based and Cellular Automata Models
of Land Development

The first bottom-up CA models applicable to urban struc-
ture and growth can be traced back to the 1960s. Chapin
and Weiss [27] used cell-space (CS) simulation whose lo-
cational attractions were based on linear regression, in
their models of urban growth in Greensboro, North Car-
olina. Lathrop and Hamburg [49] used gravitational mod-
els to effect the same in simulating growth in the Buffalo-
Niagara region while from a rather different perspective,
Tobler [65] used CA-like simulation to generate a movie
of growth in the Detroit region. All these applications were
on the edge of the mainstream which 30 years ago was
based not on formal dynamics but on cross-sectional equi-
libriummodels of the variety presented above. In the inter-
vening years, CA insofar as it was considered a simulation
tool, was regarded as important mainly for its pedagogic
and analytical value [32]. It was not until the early 1990s
that models began to emerge which were considered to be
close enough to actual urban growth patterns to form the
basis for simulation and prediction. In fact, there still ex-
ists a recurrent debate about whether or not CA models
are more important for their pedagogic value rather than
for their abilities to simulate real systems. These require

gross simplifications of model processes and spatial units,
sometimes rendering them further from reality than the
static cross-sectional models that came before.

The three earliest attempts at such modeling were
geared to simulating rapid urban growth for metropolitan
regions, medium-sized towns, and suburban areas. Batty
and Xie [18] developed simulations of suburban residen-
tial sprawl in Amherst, New York, where a detailed space-
time series of development was used to tune the model.
Clarke and Gaydos [31] embarked on a series of simula-
tions of large-scale metropolitan urban growth in the Bay
Area and went on to model a series of cities in the US
in the Gigalopolis project. White and Engelen [72] devel-
oped a CA model for Cincinnati from rather crude tem-
poral land use data and in all these cases, the focus was
on land development, suburbanization, and sprawl. Since
then, several other groups have developed similar mod-
els focusing on suburbanization in Australian cities [70],
‘desakota’ – rapid urban growth in rural areas in China –
specifically in the Pearl River Delta [80], diffused urban
growth in Northern Italy [22], and rapid urbanization in
Latin American cities [35]. Other attempts at modeling
and predicting sprawl have beenmade by Papini et al. [58]
for Rome and Cheng [28] for Wuhan, while Engelen’s
group at RIKS in the Netherlands has been responsible for
many applications of their model system to various Euro-
pean cities [9].

There are at least four applications which do not fo-
cus on urban growth per se. Wu and Webster [77] have
been intent on adding spatial economic processes and
market clearing to such models, while Portugali and Be-
nenson [59] in Tel-Aviv have focused their efforts on in-
tra-urban change, particularly segregation and ghettoiza-
tion. Semboloni [64] has worked on adding more classical
mechanisms to his CA models reflecting scale and hierar-
chy as well as extending his simulations to the third di-
mension, while there have been several attempts by physi-
cists to evolve a more general CA framework for urban de-
velopment which links to new ideas in complexity such as
self-organized criticality and power law scaling [7,63].

It is worth showing some graphics from such CAmod-
els as they are being applied to real cities. In Fig. 9, we
show how the DUEM model can be used to simulate the
pattern of development change in the Detroit region of
South East Michigan. In a sense because we live in world
dominated by a somewhat unhealthy interest in growth, it
might be assumed that all the models we have presented
here are only geared to simulating new development. In
fact, each of these models can simulate decline or repro-
duce the steady state because CA models can solely deal
with transitions and change in the existing fabric as we il-
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Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and UrbanMorphologies, Figure 9
Simulating very slow growth and rapid decline in the Detroit region using the CA DUEMmodel

lustrated earlier in the Schelling segregation model. This
is the case in Detroit where the population has rapidly ad-
justed and segregated its locations in the last 50 years but
in a context where the overall growth has been extremely
modest with many areas growing very fast in the suburbs
but the central areas declining at similar rates. The profile
in Fig. 9 is akin to a steady state rather than the overall ex-
ponential growth or decline shown in previous examples.

There are some agent-based models at the land use
or activities level which enable predictions of future ur-
ban patterns but the main focus is at the very micro-level
where local movements in terms of traffic are being sim-
ulated [25]. Several models that approach the agent-based
ideal originate from other areas. TRANSIMS is a hybrid
in that its roots are in agent-based simulation of vehi-
cles but it has been scaled to embrace urban activities [55]
and even UrbanSim can be interpreted through the agent
paradigm. A parallel but significant approach to individ-
ualistic modeling is based on micro-simulation which es-
sentially samples individual behavior frommore aggregate
distributions and constructs synthetic agent-based models
linked to spatial location [30]. This is a rapidly changing
field at the present time with no agreement about termi-
nology. The term agent is being used to describe many dif-

ferent types of models with some focusing on unique ob-
jects ranging from cells or points in space where activities
or individuals exist to models of institutions and groups
with only implicit spatial positioning [44].

Models of Urban Morphology

The models introduced above do not capture many of the
physical features of cities and regions in terms of their
morphology. Cities are highly organized with respect to
their form, displaying as we have already seen in terms
of city size, clusters of activity on all scales, in short, frac-
tals [16]. Insofar as static equilibrium models are able to
reproduce this form and to an extent they are able to do
so, this is largely because some of the structure of the city
is input into these models through existing employment
and population distributions which have already captured
elements of the morphology. There are competitive effects
in these models too that are intrinsic to these simulations
with the dynamic models based on cellular automata clos-
est to reflecting these processes in urban form. This is be-
cause the process of development is generated from the
bottom up and agglomeration is a key feature of the pro-
cesses of development that are simulated as in some of the
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Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and UrbanMorphologies, Figure 10
The growth of Las Vegas from 1907 to 1995 (from [1])

models discussed in the last section. Here we will simply il-
lustrate some of the evolving forms that various combina-
tions of the models already discussed are able to simulate.
This shows how various processes of land development
and travel behavior can come together to generate struc-
tures that are close to what we observe in the real world.

A good example of the urban growth which has been
rapid over the last 50 years is Las Vegas, the fastest grow-
ing metropolitan area in the United States which is illus-
trated in Fig. 10 [1]. The sprawl does not look very differ-
ent from time period to time period although it is clear that
growth is clustered and these clusters tend to merge as the
city grows. In this sense, the pattern always looks likemore
of the same from time period to time period but inside the
city, things have changed rather more dramatically as the
place has moved from desert oasis and staging post prior
to 1950 to the entertainment and gambling capital of the
US. Exponential growth of population, employment and
tourism is implied by this volume of urban development
mirroring the simplest ‘un-capacitated’ growth model in
Eqs. (36) and (37). The fact that the city has grown in some
directions rather than others is largely due to a combina-
tion of physical and accidental historical factors and does
not imply any differences in the way growth has occurred
from one time period to the next.

Cellular automata models can generate such growth
where entirely local development rules are operated uni-
formly across the space to grow a city from a single seed.

This can lead to fractal patterns, patterns that are self-sim-
ilar in form with respect to scale, of the kind observed in
real cities. In Fig. 11a, we show how the operation of deter-
ministic rules where a cell is developed if there is one and
only one cell already developed in its immediate neigh-
borhood, leads to a growing structure. This is a typical
example of a modular principle that preserves a certain
level of density and space when development occurs but
when operated routinely and exhaustively leads to cellular
growth that is regular and self-similar across scales, hence
fractal. In Fig. 11b, the shape of the structure generated is
now circular in that development eventually occurs every-
where. The city fills up completely but the order in which
this takes place is a result of development taking place at
each time period with random probability. This is the ef-
fect of introducing ‘noise’ or ‘diversity’ into themodel used
to generate the sequence in Fig. 11a.

If urban growth is modular and scales in the simplis-
tic way that is portrayed in these models of fractal growth,
then it is not surprising that there is a tendency to ex-
plain such patterns generically, without regard to growth
per se; to study these as if they represent systems with an
equilibrium pattern that simply scales through time. But
this is a trap that must be avoided. Dig below the sur-
face, and examine the processes of growth and the activ-
ities that occupy these forms, disaggregate the scale and
change the time interval, and this image of an implied sta-
bility changes quite radically. During the era pictured in
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Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and UrbanMorphologies, Figure 11
Growth from the bottom up. a deterministic growth based on developing cells if one and only one cell is already developed in their
8 cell adjacent neighborhood, and b stochastic growth based on developing cell if any cell is developed in the adjacent neighbor-
hood according to a random probability

Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and UrbanMorphologies, Figure 12
Greater London: self-similar clusters and the connectivity network within the sprawl

Fig. 10, technology has changed dramatically. Las Vegas
did not acquire its gambling functions until the 1950s but
by then it was already growing fast and the subsequent in-
jection of cash into its local economy, the largest per capita
in the western world for those who reside there, did little
to change the pattern of explosive growth that followed.
The manner in which people moved in the early Las Ve-
gas was by horse and wagon but the city could only grow
with the car, the plane and air-conditioning, not to say the
incredible information technologies that now dictate how
one gambles, wins, and loses.

Our six frame ‘movie’ of the growth of Las Vegas does
reveal that the established pattern of adding to the periph-

ery is not entirely the complete story for small blobs of
development seem to attach themselves and then are ab-
sorbed back into the growing mass as growth catches them
up. In this case, this is simply housing being constructed
a little beyond the edge due to the mechanics of the de-
velopment process. In older, more established settlement
patterns such as those inWestern Europe for example, this
might be the absorption of older villages and freestand-
ing towns into the growing sprawl. Consider the picture of
population density in London recorded in 1991 and illus-
trated in Fig. 12a. Here there are many towns and villages
that existed long before London grew to embrace them. If
we define the metropolis as the connected network of set-
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tlement that fills an entire space where everyone can con-
nect to everybody else either directly or indirectly, the pic-
ture is similar as we show in Fig. 12b.

One could envisage London being connected in this
way with a much sparser network of links while at the
other extreme the entire space could be filled. In fact,
it would seem that the level of connectivity which has
evolved with respect to the density of the space filled is
just enough for the city to function as a whole. It is this
morphology and degree of connectivity that marks the fact
that the city has reached a level of self-organization which
is regarded as critical. If connectivity were greater, more
space would be filled and many more connections put in
place but the structure would contain a certain degree of
redundancy making it inefficient. Below this, the system
would not be connected at all and it would not function as
a metropolis. In fact there are strong relationships to this
characterization of urban settlement as a porous media in
which a phase transitionmight take place as the systemfills
up which in network terms, is like a percolation thresh-
old [13]. The models that we have sketched above all pro-
vide ways of generating these kinds of morphology, albeit
through somewhat different mechanisms than the obvious
way in which growth in physical systems takes place. The
forms generated constitute an essential check on the ade-
quacy or otherwise of these system models.

Future Directions

The biggest problems facing the development of complex
systems models in general and those applied to cities in
particular involve validation. The move from articulat-
ing systems as organized entities structured from the top
down based on some sort of centralized control mecha-
nisms to systems that grow in an uncoordinated way from
the bottom up have also shifted our perspective from de-
veloping systems model in a parsimonious way to devel-
oping much richer models requiring more detailed data.
In short, complexity theory has changed the basis for the-
ory and model selection from an insistence that all mod-
els must be testable against data to an acceptance that if
there is a strong reason why some non-testable proposi-
tions should be included in a model (as models with very
rich behaviors and processes imply), then these should be
included even if they cannot be tested. This is consistent
with the shift from aggregate to disaggregate modeling,
from the focus on equilibrium to dynamics, and on pro-
cesses and behaviors rather than simply outcomes.

This changes the entire basis of validation and com-
bined with the difficulties of articulating processes which
are clearly relevant but often unobservable, the way in

which models might be useful in policy making in com-
plex systems is changing too. Modeling is nowmuch more
contingent on context and circumstance than at any time
in the past. The use of multiple models, counter mod-
eling and the synthesis of different and often contradic-
tory model structures is now taken for granted in systems
where we consider there may be no optimal solutions and
where there will always be dissent from what is regarded
as acceptable. Many newer models such as those based on
cellular and agent-based structures and those which pos-
tulate a dynamics that involves bifurcations that are often
of only theoretical interest until one such dynamic is ob-
served, are unlikely to meet the canons of parsimony in
which unambiguous tests can be made against data. These
limits to validation begin to suggest that complex system
models need to be classified on a continuum of ways in
which they can be tested and used in practice which will
depend on the type of model, the context, and the users
involved [17].

In terms of more substantive developments, the ques-
tion of dynamics is still of burning importance in develop-
ing better models of cities. There is an intrinsic problem
of articulating urban processes of change from sparsely
populated data bases which often contain only the aggre-
gate outcomes of multiple processes. The way in which our
commonsense observations of decision making in cities
can be linked to more considered outcomes represented in
data has barely been broached in developing good mod-
els of urban spatial behavior. In agent-based modeling,
the role of cognition is important while the question of
defining agents at appropriate levels is a major research
focus, particularly when it comes to aggregates which are
of a more abstract nature, such as groups and institutions.
However what is of clear importance is the fact that as
our focus becomes finer and as we disaggregate to ever
more detailed levels, we then begin to represent policy pro-
cesses into which these models might be nested in more
detailed ways, implying that policy making and planning
itself might be simply one other feature of these system
models.

In short in our quest for more detail and for embrac-
ing a wider environment, city models have come to en-
capsulate the control mechanisms themselves as intrinsic
to their functioning. It is at this point that we need much
better ways of showing how such models can be used in
practice. To an extent, this implies that we need to link
these system models to their wider context of use and ap-
plication, showing how other conceptions, other systems
models, might be related to them in less formal ways than
in terms of the science we have presented here. This has
always been a challenge for the application of complex-
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ity theory to human and social systems, and it will remain
the cutting edge of this field whose rationale is the predic-
tion and design of more efficient, equitable, and sustain-
able cities.
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Glossary

Anthropogenic emissions Greenhouse gas emissions
that are produced as a result of humans through such
developments as industry or agriculture.

Greenhouse gases The gases of the atmosphere that cre-
ate the greenhouse effect, which keeps much of the
heat from the sun from radiating back into outer space.
Greenhouse gases include, in order of relative abun-
dance: Water vapor, carbon dioxide, methane, nitrous
oxide, ozone, and CFCs. Greenhouse gases come from
natural sources and human activity; present CO2 levels
are �380 ppmv, approximately 100 ppmv higher than
they were in pre-industrial times.

Soybean cyst nematode Heterodera glycines, a plant-par-
asite that infects the roots of soybean, with the female
becoming a cyst. Infection causes various symptoms,
including a serious loss of yield.

El Niño-southern oscillation (ENSO) A phenomenon in
the equatorial Pacific Ocean characterized by a pos-
itive sea-surface temperature departure from normal
(for the 1971–2000 base period) in the Niño 3.4 region
greater than or equal in magnitude to 0.5°C, averaged
over three consecutive months.

North atlantic Oscillation (NAO) A hemispheric, me-
ridional oscillation in atmospheric mass with centers
of action near Iceland and over the subtropical At-
lantic.

Vegetative index A simple numerical indicator used to
analyze remote sensing measurements, often from
space satellites, to determine how much photosynthe-
sis is occurring in an area.

Soil organic carbon All the organic compounds within
the soil without living roots and animals.

Introduction

The term climate change refers to an overall shift of mean
climate conditions in a given region. The warming trend
associated with anthropogenic emissions of greenhouse
gases and the enhanced greenhouse effect of the atmo-
sphere can and should be regarded as a “climate change”
when viewed on the time scale of decades or a few cen-
turies.

Climate change exacerbates concerns about agricul-
tural production and food security worldwide. At global
and regional scales, food security is prominent among the
human concerns and ecosystem services under threat from
dangerous anthropogenic interference in the earth’s cli-
mate [17,29,50]. At the national scale, decision-makers are
concerned about potential damages that may arise in com-
ing decades from climate change impacts, since these are
likely to affect domestic and international policies, trading
patterns, resource use, regional planning, and human wel-
fare.

While agro-climatic conditions, land resources and
their management are key components of food produc-
tion, both supply and demand are also critically affected by
distinct socio-economic pressures, including current and
projected trends in population and income growth and
distribution, as well as availability and access to technology
and development. In the last three decades, for instance,
average daily per capita intake has risen globally from
2,400 to 2,800 calories, spurred by economic growth, im-
proved production systems, international trade, and glob-
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alization of food markets [12]. Feedbacks of such growth
patterns on cultures, personal tastes, and lifestyles have in
turn led to major dietary changes – mainly in develop-
ing countries – where shares of meat, fat, and sugar in to-
tal food intake have increased significantly [13]. Thus, the
consequences of climate change on world food demand
and supply will depend on many interactive dynamic pro-
cesses.

Agriculture plays two fundamental roles in human-
driven climate change. It is one of the key human sec-
tors that will be affected by climate change over the com-
ing decades, thus requiring adaptation measures. Agricul-
ture is also a major source of greenhouse gases to the
atmosphere, including carbon dioxide (CO2) due to land-
use change and farm operations; methane (CH4) from rice
production and livestock husbandry, and nitrous oxide
(N2O) from application of nitrogen fertilizer. As climate
changes as well as socio-economic pressures shape future
demands for food, fiber and energy, synergies can be iden-
tified between adaptation andmitigation strategies, so that
robust options that meet both climate and societal chal-
lenges can be developed. Ultimately, farmers and others
in the agricultural sector will be faced with the dual task
of contributing to global reductions of carbon dioxide and
other greenhouse gas emissions, while coping with an al-
ready-changing climate.

A changing climate due to increasing anthropogenic
emissions of greenhouse gases will affect both the pro-
ductivity and geographic distribution of crop and pasture
species. The major climate factors contributing to these
responses include increasing atmospheric carbon dioxide,
rising temperature, and increasing extreme events, espe-
cially droughts and floods. These factors in turn will affect
water resources for agriculture, grazing lands, livestock,
and associated agricultural pests. Effects will vary, depend-
ing on the degree of change in temperature and precipita-
tion and on the particular management system and its lo-
cation. Several studies have suggested that recent warming
trends in some regions may have already had discernible
effects on some agricultural systems [17].

Climate change projections are uncertain in regard to
both the rate and magnitude of temperature and precip-
itation variation in the coming decades. This uncertainty
arises from a lack of precise knowledge of how climate sys-
tem processes will change and of how population growth,
economic and technological developments, and land-use
patterns will evolve in the coming century [16,17]. Despite
these uncertainties, the ultimate significance of the climate
change issue is related to its global reach, affecting agricul-
tural regions throughout the world in complex ways. After
approximately two decades of research, ten major conclu-

sions may be drawn in regard to climate change and agri-
culture.

Effects on Agricultural Systems Will Be Heterogeneous

Global studies on projected climate change effects on agri-
culture show that negative and positive effects will occur
both within countries and across the world. In large coun-
tries such as the United States, Russia, Brazil, and Aus-
tralia, agricultural regions will likely be affected quite dif-
ferently. Some regions will experience increases in produc-
tion and some declines (see, e. g., [34]). At the interna-
tional level, this implies possible shifts in comparative ad-
vantage for production of export crops. This also implies
that adaptive responses to climate change will necessarily
be complex and varied. Due to differences in global climate
model projections and decadal variability, it is impossible
to project exact effects in any one location for any given
decade.

Developing Countries Are More Vulnerable

Despite general uncertainties about the rate and magni-
tude of climate change and especially about consequent
hydrological changes, regional and global studies have
consistently shown that agricultural production systems
in the mid and high latitudes are more likely to bene-
fit in the near term (to mid-century), while production
systems in the low-latitudes are more likely to decline
(Fig. 1) [17]. In biophysical terms, rising temperatures
will likely push many crops beyond their limits of optimal
growth and yield. Higher temperatures will intensify the
evaporative demand of the atmosphere, leading to greater
water stress, especially in semi-arid regions. Since most
developing countries are located in lower-latitude regions
(some which are indeed semi-arid) while most developed
countries are located in the more humid mid- to high lat-
itudes, this finding suggests a divergence in vulnerability
between these groups of nations, with far-reaching impli-
cations for future world food security [31,37].

Furthermore, developing countries often have fewer
resources with which to devise appropriate adaptation
measures to meet changing agricultural conditions. The
combination of potentially greater climate stresses and
lower adaptive capacity in developing countries creates
different degrees of vulnerability between rich and poor
nations as they confront global warming. This difference
is due in part to the potentially greater detrimental im-
pacts of a changing climate in areas that are already warm
(particularly if such areas are also dry), and in part to the
generally lower levels of adaptive capacity in developing
countries.
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Climate Change and Agriculture, Figure 1
Potential changes (%) in national cereal yields for the 2050s (compared with 1990) under the HadCM3 SRES A1FI with (left) and
without (right) CO2 effects [31]

Development Path Matters

Since climate is not the only driving force on agriculture,
researchers now conduct scenario analysis that include
linked sets of population projections, economic growth
rates, energy technology improvements, land-use changes,
and associated emissions of greenhouse gases [31]. Re-
gional patterns related to economic development and
adaptive capacity contribute to differing levels of climate
change impacts [17]. Scenarios with higher economic
growth rates and less attention to environmental issues
lead to high temperatures and reduced adaptive capacity,
which in turn lead to pronounced decreases in yields both
regionally and globally. Scenarios with lower greenhouse
gas emissions and greater attention to environmental is-
sues lead to lower amounts of temperature rise and crop
production declines.

Long-Term Effects Are Negative
for Both Developed and Developing Countries

If the effects of climate change are not abated, produc-
tion in the mid- and high-latitudes is likely to decline in
the longer term (i. e., above � 3°C warming) (Fig. 2) [16].
These results are consistent over a range of temperature,
precipitation, and direct CO2 effects tested, and are due
primarily to the detrimental effects of heat and water stress
as temperatures rise. While the beneficial effects of CO2
may eventually level out, the detrimental effects of warmer
temperatures and greater water stress are more likely to be
progressive in all regions. Although the precise levels of
CO2 effects on crops and their contribution to global crop
production are still active areas of research [47], global im-
pacts are likely to turn negative in all regions sometime

during the second half of the century, and perhaps before
then for some major crops. For instance, by 2050 climate
change is projected to have a downward pressure on yields
of almonds, walnuts, avocados, and table grapes in Califor-
nia. Opportunities for expansion into cooler regions have
been identified, but this adaptation would require substan-
tial investments and may be limited by non-climatic con-
straints [24].

Water Resources Are Key

Recent flooding and heavy precipitation events in the US
and worldwide have caused great damage to crop produc-
tion. If the frequency of these weather extremes were to
increase in the near future, as recent trends for the US in-
dicate and as projected by global climate models [17,48],
the cost of crop losses in the coming decades could rise
dramatically. US corn production losses due to excess
soil moisture, already significant under current climate,
may double during the next thirty years, causing addi-
tional damages totaling an estimated $3 billion per year
(Fig. 3) [41]. These costs may either be borne directly by
those farmers affected or may need to be transferred to
private or governmental insurance and disaster relief pro-
grams. There is also concern for tractability in the spring
and water-logging in the summer in mid and high lati-
tudes where precipitation is projected to increase.

Changes in crop water demand and water availabil-
ity will affect the reliability of irrigation, which competes
for growing municipal and industrial demands [42]. Stud-
ies link climate change scenarios with hydrologic, agricul-
tural, and planning models to estimate water availability
for agriculture under changing climate conditions, to ex-
plore changes in ecosystem services, and to evaluate adap-
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Climate Change and Agriculture, Figure 2
Change in food production potential in relation to severity of climate change [13]

Climate Change and Agriculture, Figure 3
Number of events causingdamage tomaize yields due to excess soilmoisture conditions, averagedover all study sites, under current
baseline (1951–1998) and climate change conditions. The Hadley Center (HC) and Canadian Center (CC) scenarios with greenhouse
gas and sulfate aerosols (GS) were used. Events causing a 20% simulated yield damage are comparable to the 1993 US Midwest
floods [41]
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tation strategies for the water resources and agriculture
sectors. Major irrigated agricultural regions are very likely
to be affected by changing supplies of and demands for wa-
ter due a changing climate especially under conditions of
expansion of irrigated lands [42].

Cultivars are available for agricultural adaptation to
the projected changes, but their demand for water may
be higher than currently adapted varieties. Thus, even in
relatively water-rich areas, changes in water demand due
to climate change effects on agriculture and increased de-
mand from urban growth will require timely improve-
ments in crop cultivars, irrigation and drainage technol-
ogy, and water management. In tropical regions, the use of
agroforestry may be an economically feasible way to pro-
tect crop plants from extremes in microclimates and soil
moisture [22].

Agricultural Pests and Diseases May Spread

Increased pest damage arises from changes in production
systems, enhanced resistance of some pests to pesticides,
and the production of crops in warmer and more humid
climatic regions where crops are more susceptible to pests.
Changes in crop management techniques, particularly the
intensification of cropping, reduction in crop rotations,
and increase in monocultures, have increased the activity
of pests. The expansion of worldwide trade in food and
plant products has also increased the impact of weeds, in-
sects, and diseases on crops. The geographical ranges of
several important insects, weeds, and pathogens in the US
have recently expanded, including soybean cyst nematode
(Heterodera glycines) and sudden death syndrome (Fusar-
ium solani f. sp. glycines) (Fig. 4) [15,39,43].

Current climate trends and extreme weather events
may be directly and indirectly contributing to the in-
creased pest damage [17,39,52]. Downy mildew (Plasmo-
para viticola) epidemics on grape, the most serious
grapevine disease in northern Italy, may increase under
climate change, even though reduced precipitation may
have a counterbalancing effect on disease pressure [44].

Such changes need to be put in the context of the
global increases in pest-induced losses of crops in all re-
gions since the 1940s [30,33] and the more than 33-fold
increase in both the amount and toxicity of pesticide used
over the same period [33]. Climate change thus may ex-
acerbate environmental and public health issues related to
agricultural chemicals [39], since increased applications of
agricultural chemicals are likely to be needed in response
to increasing disease pressure. Improved knowledge of the
effects of climate on host–pathogen interactions will con-
tribute to the adaptive capacity of agro-ecosystems.

Climate Change and Agriculture, Figure 4
Range expansion of soybean cyst nematode (Heterodera gly-
cines) from 1971 to 1989 (top) and soybean sudden death syn-
drome (Fusarium solani f. sp. Glycines) from 1973 to 1998 (bot-
tom) in North America [40]

Current Climate Stress Is a Key Entry Point
for Climate Change

There is an important interplay between current and fu-
ture climate stresses. Since farmers have dealt with cli-
matic fluctuations since the advent of agriculture, improv-
ing strategies for dealing with present climate extremes –
such as droughts, floods, and heatwaves – is an impor-
tant way to prepare for climate change. Many agricul-
tural regions are affected by the major climate variability
systems, including the processes known as the El Niño-
Southern Oscillation (ENSO) and the North Atlantic Os-
cillation (NAO) [36]. The El Niño phase of the ENSO cycle
tends to bring rainfall to Uruguay, while La Niña brings
drought, as shown in Fig. 5 for 1998, an El Niño year, and
2000, the following La Niña.

In terms of prediction tools, ENSO models provide
the opportunity for testing and validation of climate pre-
diction and assessment on shorter seasonal-to-interan-
nual time-scales. Skill in predicting climate changes on
shorter time-scales, particularly the ENSO periods of the
last twenty years when good observations exist, may lend
credence to projections of global warming over the longer-
term. As global climate models are further developed with
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Climate Change and Agriculture, Figure 5
Vegetative Index (NDVI) for El Niño (1998) and La Niña (2000) years in Uruguay. Green= adequate water conditions;
red/purple=drought conditions [2]

improved parametrizations and higher spatial resolution,
they are likely to improve simulations of ENSO and other
large-scale variability processes. The interaction of these
systems with underlying anthropogenic trends caused by
increasing greenhouse gas concentrations in the atmo-
sphere is an active area of contemporary climate science.
For regions directly affected by ENSO and other systems,
such changes, if they do indeed occur, may become impor-
tant manifestations of global warming.

Adaptation Is Necessary

‘Coping range’ is a useful paradigm for improving re-
sponses to climate stresses of today and preparing for the
climate changes of tomorrow [20]. An agricultural system
may currently exist within a ‘coping range’ of climate vari-
ability thatmay be exceeded as incidence of extreme events
increases under changing climate conditions (Fig. 6). The
goal is to increase the coping range over which an agricul-
tural system may thrive under such changes through the
process of adaptation.

Adaptation can help farmers to minimize negative im-
pacts of climate on human activities and ecosystems and
to take advantage of potential beneficial changes. Adapta-
tion to climate change can be defined as the range of ac-
tions taken in response to changes in local and regional
climatic conditions [45]. Adaptation responses include
both autonomous adaptation actions (i. e., those taken
spontaneously and independently by individual farmers),

and planned adaptation actions (i. e., those facilitated by
climate-specific regulations and incentives put in place
by regional, national and international policies) (see Ta-
ble 1) [17]. In terms of the multiple factors impinging on
agriculture, however, system responses to socio-economic,
institutional, political or cultural pressures may outweigh
response to climate change alone in driving the evolution
of agricultural systems. The adaptive capacity of a system,
in the context of climate change, can be viewed as the full
set of system skills – i. e., technical solutions available to
farmers in order to respond to climate stresses – as deter-
mined by the socio-economic and cultural settings, plus
institutional and policy contexts, prevalent in the region
of interest [17].

While current agronomic research confirms that at the
field level crops would respond positively to elevated CO2
in the absence of climate change (e. g., [1,17,19,21], the as-
sociated impacts of high temperatures, altered patterns of
precipitation, and possibly increased frequency of extreme
events (such as drought and floods) are likely to require
a range of adaptation responses, some of which are listed
in Table 2.

Mitigation Reduces Long-Term Risk

Agriculture has an important role to play in mitigation
of climate change. Mitigation is defined as intervention
aimed at reducing the severity of climate change by reduc-
ing the atmospheric concentration of greenhouse gases, ei-
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Climate Change and Agriculture, Figure 6
Coping range of climate variability (adapted from [20])

Climate Change and Agriculture, Table 1
Adaptation approaches to climate impacts on agriculture

Approach Definition Operation
Autonomous Adaptation that does not constitute a conscious response to climatic stimuli

but is triggered by ecological changes in natural systems and by market or
welfare changes in human systems. Also referred to as spontaneous
adaptation.

Crop calendar shifts
(planting, input schedules, harvesting)
Cultivar changes
Crop-mix changes

Planned Adaptation that is the result of a deliberate policy decision, based on an
awareness that conditions have changed or are about to change and that
action is required to return to, maintain, or achieve a desired state.

Land-use incentives
Irrigation infrastructure
Water pricing
Germplasm development programs

Climate Change and Agriculture, Table 2
Key agronomic impacts and adaptation responses

Agricultural impacts Adaptation response
Biomass increase under elevated CO2 Cultivar selection and breeding to maximize yield
Acceleration of maturity due to higher temperature Cultivar selection and breeding of slower maturing types
Heat stress during flowering and reproduction Early planting of spring crops
Crop losses due to increased droughts and floods Changes in cropmixtures and rotations; warning systems; insurance
Increased pest damage Improved management; increased pesticide use; biotechnology

ther by reducing emissions or by enhancing sinks. There
are severalmajor ways that the agricultural sector can con-
tribute to climate change mitigation.

Soil Carbon Sequestration Of the approximately 150
GT of carbon that were lost in the last century due to
land conversion to agriculture and subsequent produc-
tion, about two thirds were lost due to deforestation and
one-third, roughly 50 GT, due to cultivation of current
agricultural soils and exports as food products [50]. The
latter figure represents the maximum theoretical amount
of carbon that could be restored in agricultural soils. In
practice, as long as 40–50% of total above-ground grain or
fruit production is exported as food to non-agricultural ar-
eas, the actual carbon amount that can be restored in agri-
cultural soils is much lower.

Efforts to improve soil quality and raise soil organic
carbon (SOC) levels include crop management and con-
servation tillage techniques. These practices have evolved
as means to enhance sustainability and resilience of agri-
cultural systems, rather than with soil carbon sequestra-
tion as primary motivation. They include so-called “best
practice” agricultural techniques, such as use of cover
crops and/or nitrogen fixers in rotation cycles, judicious
use of fertilizers and organic amendments, soil waterman-
agement improvements to irrigation and drainage, and
improved varieties with high biomass production.

Conventional tillage is defined [27] as the mechani-
cal manipulation of the topsoil that leaves no more than
15% of the ground surface covered with crop residues. In
contrast, no-till management is defined as the avoidance
of mechanical manipulation of the topsoil so as to leave it
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undisturbed and covered with surface residues from har-
vesting the prior crop to planting the new crop.

Best agricultural practices can result in a net augmen-
tation of soil carbon and in enhanced productivity due to
better soil structure and soil moisture management. The
relevant practices include precise and timely applications
and spatial allocation of fertilizers, use of slow-release fer-
tilizers, prevention of erosion, shortening or elimination of
fallow periods, use of high-residue cover crops and green-
manure crops, and minimized mechanical disturbance of
soil (e. g., zero tillage). Altogether, such practices may lead
to partial or even complete restoration of the soil’s organic
carbon content where it had been depleted. In some cases,
it might even be possible to store more carbon than had
originally been present in the “virgin” soil. Where the soils
had been severely degraded and their agricultural produc-
tivity greatly impaired, they may be converted to grassland
or afforested so as to serve as carbon sinks.

The overall potential for carbon storage depends in
each case on such factors as climate, type of vegetation, to-
pography, depth and texture of the soil, past use (or abuse),
and current management.

Along with sequestering carbon, these practices have
the potential to improve soils in developing countries. In
areas such as West Africa, soil fertility depletion has been
described as the single most important constraint to food
security [4]. Studies in smallholder agricultural farms in
Africa have already illustrated significant increases in sys-
tem carbon and productivity through organic-inorganic
resources management (Roose and Barthes [35])

Biofuels Agriculture may help to mitigate anthro-
pogenic greenhouse emissions through the production of
biofuels. As has been demonstrated by ethanol based on
corn production, issues involved with biofuel production
include potential competition with food production, in-
creased pollution from fertilizers and pesticides, and loss
of biodiversity. Biofuels derived from low-input high-di-
versity mixtures of native grassland perennials can pro-
vide more usable energy, greater greenhouse gas reduc-
tion, and less agrichemical pollution per hectare than corn
grain ethanol or soybean biodiesel [46]. The higher net en-
ergy results arise because perennial grasses require lower
energy inputs and produce higher bioenergy yield. Fur-
thermore, all aboveground biomass of the grasses can be
converted to energy, rather than just the seed of either corn
or soybean. These perennial grasses also sequester carbon
at significant rates [46].

Other Greenhouse Gases Because of the greater global
warming potential (GWP) ofmethane (21) and nitrous ox-

ide (310) compared to carbon dioxide (1), reductions of
non-CO2 greenhouse gas emissions from agriculture can
be quite significant and achieved via the development of
more efficient rice (for methane) and livestock production
systems (for both methane and nitrous oxide). In inten-
sive agricultural systems with crops and livestock produc-
tion, direct CO2 emissions are predominantly connected
to field crop production and are typically in the range of
150–200 kg C ha�1 yr�1 [14,51]. Recent full greenhouse
gas analysis of different farm systems in Europe showed
that such CO2 emissions represent only 10–15% of the
farm total, with emissions of CH4 contributing 25–30%
and emissions of N2O accounting for as much as 60%
of total CO2-equivalent greenhouse gas emissions from
farm activities. The N2O contribution arises from substan-
tial nitrogen volatilization from fertilized fields and ani-
mal waste, but it is also a consequence of its very high
GWP.

In Europe, methane emissions aremostly linked to cat-
tle digestive pathways; its contribution also dominates that
of CO2, due in part to methane’s high GWP. Mitigation
measures for methane production in livestock include im-
proved feed and nutrition regimes, as well as recovery of
bio-gas for on-farm energy production. Effective reduc-
tion of N2O emissions is more difficult, given the largely
heterogeneous nature of emissions in space and time and
thus the difficulty of timing fertilizer applications and/or
manure management. Large uncertainties in emission fac-
tors also complicate the assessment of efficient N2O-re-
duction strategies. Current techniques focus on reduction
of absolute amounts of fertilizer nitrogen applied to fields,
as well as on livestock feeding regimes that reduce animal
excreta.

Climate Change Effects on Agriculture
Are Occurring Already

Agricultural effects of observed climate changes are be-
ing documented in many regions of the world (Fig. 7).
Changes in crop phenology provide important evidence of
responses to recent regional climate change. Such changes
are apparent in perennial crops, such as fruit trees and
wine-making varieties of grapes, which are less dependent
on yearly management decisions by farmers than annual
crops and are also often easier to observe.

Phenological changes are often observed in tandem
with changes in management practices by farmers. Be-
tween 1951 and 2004 in Europe, agricultural crops have
advanced 2.1 days/decade in response to recent warming
in spring [28]. In Sahelian countries, increasing temper-
ature in combination with rainfall reduction has led to
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Climate Change and Agriculture, Figure 7
Locations of observed changes in agriculture in response to climate changes

a reduced length of vegetative period, no longer allowing
present varieties to complete their cycle [5].

A negative effect of warming for local rice produc-
tion has been observed by the International Rice Research
Institute (IRRI) in the Philippines (yield loss of 15% for
1°C increase of growing-season minimum temperature in
the dry season) [32]; a similar effect has been noted on
hay yield in the UK (1°C increase in July–August led to
a 0.33 t/ha loss) [6]. At the county level, US maize and
soybean yields are demonstrating a positive effect of cooler
and wetter years in the Midwest and hotter and drier years
in the North-west plains [23]. In the case of the Sahel re-
gion of Africa, warmer and drier conditions have served
as a catalyst for a number of other factors that have accel-
erated a decline in groundnut production [49]. For live-
stock, one study in Tibet reports a significant relationship
of improved performance with warming in high moun-
tainous conditions [9], while pasture biomass in Mongolia
has been negatively affected by the warmer and drier cli-
mate, as observed at a local station [3] or at the regional
scale by remote sensing [10].

Conclusions

Climate change brings both challenges and opportuni-
ties to agriculture. Farmers and researchers are being

called on to simultaneously adapt to and mitigate climate
change through a myriad of activities involving manage-
ment practices, crop breeding, and new production sys-
tems. Some of these can be mutually re-enforcing, espe-
cially in view of the projected increased climate variabil-
ity under climate change. This is because, most mitigation
techniques currently considered in agriculture, including
reduced tillage, were originally designed as “best practice”
management strategies, aimed at enhancing the long-term
stability and resilience of cropping systems in the face of
climate variability or of increased cultivation intensity. By
increasing the ability of soils to hold soil moisture and
to better withstand erosion, and by enriching ecosystem
biodiversity through the establishment of more diversi-
fied cropping systems,mitigation techniques implemented
locally for soil carbon sequestration may also help crop-
ping systems to better withstand droughts and/or floods,
both of which are projected to increase in frequency and
severity in future warmer climates. As climate change pro-
gresses, agriculture will continue to play a leading role in
responding to a dynamic environment.

Future Directions

The time has come to incorporate climate as an essential
factor in development planning and implementation. In
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the past, responses to climate variability were often too
narrowly focused and lacking in institutional fit. Develop-
ment programs are now beginning to include recommen-
dations to mainstream responses to climate variability and
change.

Magalhães [25] gave as an example of the need for
a broad focus when considering climate in planning the
early drought policies in Northern Brazil. Responses had
focused on improving the water-supply infrastructure
(e. g. building dams and digging wells) rather than on re-
dressing the social and economic vulnerabilities and the
need to build human capital by means of education, insti-
tutions, and market incentives for sustainability. Adaptive
policies should be broadly conceived so as to increase and
secure household entitlements, to change land-use pat-
terns that lead to degradation, and to develop means of
support for inhabitants that are less sensitive to the va-
garies of climate.

At what levels or scales of organization (national, re-
gional, household, and individual) can the variability of
climate and the sustainability of agricultural production
be addressed effectively? Becausemany nations encompass
several and often most numerous climatic zones, the chal-
lenge faced by national agricultural managers and policy
make is to foster sustainability at the regional level while
building a foundation from the bottom-up at the individ-
ual as well as at the household and community levels. Dil-
ley [8] believes that greater benefits of food security could
be realized if knowledge were made more readily avail-
able at the household level, thereby improving the ability
of more people to make even small adjustments based on
anticipated climatic conditions. Multiple-scale efforts are
clearly needed, with pathways of communication among
the various levels and sectors of society.

Regions do not exist in isolation, as evidenced by the
effects that extreme climate events occurring along the At-
lantic coast of South America have on the sustainability
of the inland Amazon rainforest. At least part of the pres-
sure to deforest the Amazon region arises from the west-
ward migration of farmers from Northern Brazil who suf-
fer from ENSO-related droughts there (Magalhães [25]).
Thus, policies related to sustainability and climate issues
need to take regional interactions and their direct and in-
direct linkages into account.

Beyond interconnections among regions within a na-
tion, there are the larger national concerns of economics,
finance, and international relations that may affect the
range of climate-adaptation policy choices. Engaging with
the international community on issues of climate variabil-
ity and change can lead to capacity building in both de-
veloped and developing countries, as climate and soci-

etal processes are studded and as improved understand-
ing is incorporated into policies. This can be accomplished
through interactions with international bodies dealing
with climate variability and change, such as theWorldMe-
terological Organization and the United Nations Frame-
work Convention on Climate Change. There is a growing
realization that climate plays an important role in sustain-
able development: It is a component of natural capital, an
occasional trigger to socio-economic crises caused by ex-
treme events, and a long-term component of global envi-
ronmental change.
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Glossary

Direct costs The direct cost equals quantity times price.
Discount factor The discount factor t years into the fu-

ture equals one over one plus the discount rate, raised
to the power t.

Discount rate The discount rate is the annual rate of de-
cline of the value of consumption. It is roughly equal to
the rate of interest, or the opportunity cost of capital.
The discount rate consists of two components: the rate
at which consumers get better off, and the rate of pure
time preference (or impatience). The discount rate is

not related to the rate of inflation, which is the annual
rate of decline of the value of money.

Economics Economics is the social science which stud-
ies human behavior with regard to the relationship be-
tween ends and scarce means which have alternative
uses.

Equity weights Equity weights are applied to aggregate
national impacts to a global total. Equity weights are
often set to unity, but sometimes equity weights equal
the ratio of nationally average per capita income over
global average per capita income.

Indirect costs The indirect costs equal all costs that are
not direct costs. This includes the price change in-
duced by the change in quantity (partial equilibrium
effects), the changes in other markets (general equilib-
rium effects), and the changes at later times (dynamic
effects).

Marginal costs The marginal cost of greenhouse gas
emissions equals the first partial derivative of the net
present value of the total costs of climate change to
emissions.

Monetary valuation Monetary valuation is a set of tech-
niques and their application that attempts to express in
monetary terms the value to humans of changes in en-
vironmental goods and services. Negative impacts are
typically expressed as an income loss that would give
an equivalent loss in welfare.

Neo-classical economics Although historians would re-
fer to neo-classical economics as the dominant form
of economic research between 1860 and 1910, com-
mon usage has neo-classical economics as a synonym
for mainstream or orthodox economics. In that sense,
neo-classical economics is a style of research, charac-
terized by empirical rigour, mathematical rigour, and
micro-founded macro-relationships.

Net present value The net present value is the sum of all
future costs and benefits, weighted by the discount fac-
tor.

Total costs The total cost of climate change equals the di-
rect and the indirect costs of climate change, that is,
the difference in welfare between a scenario with cli-
mate and a scenario without.

Definition of the Subject

The economic costs of climate change include all positive
and negative impacts of the enhanced greenhouse effect
and the resulting changes in the atmosphere and ocean on
all human consumers and producers. Total costs refer to
the difference in human welfare between a scenario with
climate change and a scenario without climate change.
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Marginal costs refer to the difference in humanwelfare be-
tween two scenarios with a slightly different climate, nor-
malized by the amount of greenhouse gas emissions that
would induce that difference. Estimates of the economic
costs of climate change are important to assess the size
of the climate problem relative to other problems, and to
compare the costs of climate change to the costs of green-
house gas emission reduction.

Introduction

Calls for greenhouse gas emission reduction are often
phrased as a moral imperative. While tempting, this is
wrong. Firstly, there is no moral agreement. Emission
reduction could save polar bears but it would cost coal
miner’s jobs and raise the price of food for the malnour-
ished. Moral imperatives are easy if a policy has only ben-
efits. As soon as a policy has both costs and benefits, one
has to make trade-offs and choose the lesser evil. Secondly,
there is no avoiding dangerous interference with the cli-
mate system. Emission reduction would slow down the
melting of the Greenland ice cap, and reduce the prob-
ability of a collapse of the West-Antarctic Ice Sheet –
but it would not stop the melting or bring the change to
zero. Thirdly, we have no obligations to future generations
or poor people. Such duties are self-imposed. And even
if we choose to help others, there are many ways to do
this. Would our grandchildren prefer a richer but warmer
world, or a poorer but colder one? Would the grandchil-
dren of the Bangladeshis like us to reduce greenhouse gas
emissions, help them to adapt to climate change, or help
their grandparents grow rich?

This chapter looks into such questions. It is written
from the thoroughly relativistic perspective of a neo-classi-
cal economist. The basic principles of the economic theory
of climate change are quite simple. Greenhouse gas emis-
sions are an externality. Externalities are unintended – we
burn coal to make electricity, not to emit carbon dioxide –
and uncompensated – carbon dioxide is freely dumped in
the atmosphere – consequences of economic activity. Ex-
ternalities should be internalized, that is, emitters should
pay for their emissions. The price of emissions should
equal the damage done by the emissions. That is all.

There is now a vast literature on the economics of cli-
mate change – started by Nordhaus [73,74]. A large part
of that literature is about the deviation between the simple
policy prescription of economic theory and the complexi-
ties of actual policy. Another large part of the literature is
about the costs of greenhouse gas emission reduction. The
literature on the economic costs of climate change is only
a small one. It is reviewed here.

Section “Issues” discusses the methodological, concep-
tual, and moral issues one has to confront when estimat-
ing the economic impacts of climate change. Section “To-
tal Costs” reviews estimates of the total economic im-
pact. Section “Marginal Costs” surveys estimates of the
marginal impacts. Section “Policy Implications” concludes
by assessing the policy implications.

Issues

Scenarios

A scenario is a set of assumptions on future conditions that
is coherent, internally consistent, and not implausible [70].
Climate scenarios are usually derived from modeling ex-
periments with General Circulation Models (GCM). Cli-
mate scenarios include simple statistics such as the global
mean surface air temperature, and complex results such
as spatial patterns of rainfall extremes. Climate scenarios
may also include low-probability events, such as a disrup-
tion of the thermohaline circulation in the Atlantic Ocean,
or the collapse of the West Antarctic Ice Sheet.

Scenarios also include population, economic activity,
greenhouse gas emissions, and land use. Besides driving
the climate models, these components are also important
as they determine the vulnerability of social and economic
systems to climate change over time. Although poorer so-
cieties are generally believed to be more vulnerable to cli-
mate change, this is by no means a simple relationship.
Some impacts tend to fall with economic growth. The im-
pacts of climate change on infectious diseases are a prime
example. Malaria does not kill middle income people, be-
cause they can afford prevention and (if necessary) cure.
Some impacts tend to rise with economic growth. The im-
pact of climate change on biodiversity and species loss is
one example. People tend to care more about thesematters
as their income grows, and further developed economies
put more pressure on nature. Other impacts may rise first
and then fall with economic growth. Urban air quality is
one example. The very poor have nothing to foul the air
with, and the very rich do not like foul air and have the
wherewithal to prevent it. Climate change is likely to in-
crease malaria, reduce biodiversity and worsen air quality.
In some case, climate change and economic growth work
together to increase the impacts, while in other cases they
pull in opposite directions.

Valuation Approach

There are various techniques for the monetary valuation
of climate change impacts. Some values of impacts are
directly based on observed prices. Agriculture and dike
building are examples. Other values can be indirectly mea-
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sured on the basis of observed market prices for surro-
gate products or services. One example is human health,
which is not traded directly but indirectly through safety
measures, labor markets, and health care. The challenge in
these instances is to model future market prices that are
consistent with the underlying socioeconomic scenario.
For yet other impacts, no market values exist, and hypo-
thetical prices are needs.Notable impacts are on non-com-
mercial ecosystems and biodiversity.

Because it is practically impossible to estimate each ex-
posure-response relationship or value at the respective ge-
ographical location of a climate change impact, data from
previous studies focusing on different locations and dif-
ferent policy contexts are inevitable. Furthermore, most
climate change impacts will take place in the future, for
which by definition no data are available. Therefore it is
important to know when data from other studies can be
used and under what conditions, and how to extrapolate
values from today to tomorrow.

The majority of recent studies still adopt benefit trans-
fer methods for the evaluation of climate impacts. How-
ever, benefit transfer is not very reliable [91]. For this rea-
son, more attention should be given to original valuation
research in the context of climate change.

An example of such a study is Li et al. [54] who analyze
the willingness-to-pay (WTP) of American citizens for cli-
mate policy by means of the contingent valuation method.
They find that the median American citizen is willing to
pay about $ 15/tC. Berrens et al. [7] find a willingness-to-
pay between $ 200 and $ 1760 per US household per year
(0.2–2.3% of income) for US ratification of the Kyoto Pro-
tocol. (Manne and Richels [60] estimate that the costs of
US ratification would be 0.75% of GDP in 2010.) Hersch
and Viscusi [46] find that Europeans are willing to pay
up to 3.7% more for petrol if that helps combat climate
change. Viscusi and Zeckhauser [117] find that Harvard
students are willing to pay $ 0.50/gallon (a 25% price in-
crease) or 3% of their expected annual income for green-
house gas emission reduction. (This study also showed
that these students underestimate projected warming in
Boston by about 50%, while the authorsmade them believe
that carbon dioxide emission reduction would be effective
for slowing climate change in the next 30 years.) There is
scope for similar applications of WTP techniques, mainly
to account for spatial and socio-economic differences in
individuals’ preferences.

Direct and Higher Order Impacts

Most studies to date have estimated the direct costs of cli-
mate change. Direct costs equal the physical change (e. g.,

the dikes to be reinforced) times their price (in this ex-
ample, the costs per dike length and dike height). Direct
costs are easy to compute (but see Subsect. “Valuation Ap-
proach”), but probably underestimate the real economic
costs.

The higher order impacts come in three kinds. Firstly,
climate change may impact the market under consider-
ation. For example, if dikes are being reinforced every-
where, then the costs of dike building is likely to go up as
materials, machinery, and skilled labour is difficult to get.
Secondly, the impact of climate change on onemarketmay
spill over into other markets. For example, dike building
may increase the costs of construction, as the same mate-
rials and skills are used. Dike building is capital intensive
and may drive up the interest rate. Thirdly, the impact of
climate change may affect economic growth. For example,
money invested in dike building is not invested elsewhere.

A number of recent studies have examined the econ-
omy-wide implications of sea level rise [10], tourism [8],
and health [9]. While it is perhaps too early to draw firm
conclusions from this body of research, the studies sug-
gest that the indirect effects of climate change impacts can
both enlarge and diminish the direct economic impacts of
climate change. The distribution of gains and losses is an-
other difference between direct costs and general equilib-
rium effects. Whereas direct costs are limited to those di-
rectly affected, markets would spread the impact to their
suppliers, clients, and competitors as well as to financial
markets.

Fankhauser and Tol [35] show that the economic
growth impact of climate change is as large as the direct
impact of climate change. Acemoglu et al. [1] and Mas-
ters and McMillan [62] show that differences in climate
explain part of observed differences in economic develop-
ment. Easterly and Levine [28] show that the link is at most
weak and indirect, and it is not clear whether the mecha-
nisms that may have been active in the past, still hold for
present and future.

Adaptation

One cannot study the costs of climate change impact with-
out also studying, or at least making assumptions about
the costs of adaptation [109]. Studies focusing on costs
of the impacts make widely differing assumptions about
the amount of adaptation that will take place. While some
studies completely ignore adaptation, other studies con-
sider arbitrary levels of adaptation, or assume optimal
adaptation. No studies use realistic models of adapta-
tion [109]. There is little research that shows how adapta-
tion costs compare to the potential damages of not adapt-
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ing. The impacts of climate change and the capacity to
adapt would be affected with the level of development and
flexibility of the economy [123]. Hence, the future success
and nature of adaptation depends on the assumed socio-
economic scenario.

Aggregation: Temporal

Climate change is a slow process. Today’s emissions will
affect the climate for decades to centuries, and sea level for
centuries to millennia. As cause and effect are separated
in time, so are costs (of emission reduction) and benefits
(of avoided climate change). The procedure to make com-
mensurate costs and benefits at different points in time is
called discounting. Discounting is as common as it is con-
troversial. See [3] for an excellent discussion.

Individuals discount future gains or losses because of
two reasons. (People may also discount the future because
it is more uncertain than the present, but in this case dis-
counting is used as a shortcut for an uncertainty analysis.)
First, money earns interest. Second, people are impatient.
The first reason is widely accepted. Davidson [26] is one
of the few exceptions. On the second reason, there is vir-
tual consensus too. All ethical arguments show that peo-
ple should not discount (e. g., [12]). All empirical evidence
shows that people do nonetheless (e. g., [79,80]).

Climate change is a large-scale problem. Therefore, the
discount rate of society is more relevant than the individ-
ual discount rate. The appropriate measure of the growth
rate of money is the average growth rate of per capita con-
sumption. Again, there is little dispute on this. But should
the social rate of discount also include a measure of impa-
tience? Again, philosophers agree: Impatience is immoral.
However, this implies that a government would deviate
from the will of the people. This may be defended with
the argument that the government is the guardian of fu-
ture, yet unborn people. However, the empirical evidence
is clear in this case too: Governments are impatient [31].

Discounting is more profound over long periods than
over short ones. Discounting implies that climate change
damages that occur in a century or so are largely irrelevant.
This realization has led people to rethink the fundamental
principles of discounting, particularly

(a) the notion that the procedure of discounting results
from the intertemporal allocation of resources of an
individual agent; and

(b) the assumption that discounting is exponential.

To start with the individual perspective, Lind [56] and
Lind and Schuler [55] argue that earmarked investment

is a crucial assumption in discounting. The discount fac-
tor measures the trade-off between consumption now and
consumption later, where consumption later is contingent
on a specific investment plan. As the current generation
cannot commit near-future generations to maintain their
investments for the benefit of far-future generations, dis-
counting breaks down between generations. Schelling [95]
agrees. The alternative is to decide explicitly on the re-
source allocation between generations. Chichilnisky [19]
shows that discounting coincides with a dictatorship of
the present generation over future generations. Gerlagh
and Keyzer [38] show that discounting is equivalent to the
present generation owning all future resources. This is ob-
jectionable from a moral standpoint, but it is reality. This
line of research has not led to practical alternatives to dis-
counting.

Conventional discounting is exponential: The dis-
count factor is (1C r)�t , where r is the discount rate and t
is time. Some people argue that the functional specification
of conventional discounting is wrong. The first compo-
nent is empirical. Conventional exponential discounting
has that the relative difference between two years is always
equal, regardless of their distance from the present. That
is, the difference between year 10 and 11 is the same as the
distance between year 100 and 101. However, many peo-
ple would in fact argue that the difference between year 10
and 11 is equal to the difference between year 100 and 110.
Such hyperbolic discounting [22] is very similar to expo-
nential discounting for short periods, but the difference is
substantial for long periods. The similarity between expo-
nential and hyperbolic discounting in the short run is im-
portant, because a switch to hyperbolic discounting would
imply a drastic overhaul of long-term decisions only.

There are two further arguments for hyperbolic dis-
counting cf. Dasgupta and Maskin [25]. The first is due to
Weitzman [118]. He shows that, if one is uncertain what
discount rate to use, then the lowest discount rate becomes
increasingly dominant over time. The certainty-equivalent
discount rate falls with time, and the difference between
years shrinks in the more distant future. Consider the fol-
lowing example. After one year, the average of a 1% and
a 10% discount rate is

1 �

 �
1:01�1 C 1:10�1



2

!1/1

D 5:0%

(and not 5.5%). After 100 years,

1 �
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2

!1/100

D 1:7% :

That is, the average approaches the minimum as time pro-
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gresses. One may criticize this as a short cut for a full un-
certainty analysis. However, Gollier [39,40] shows that the
same is true if a government somehow aggregates the in-
dividual discount rates of its citizens. In the long run, the
preferences of the person with the lowest discount rate
become increasingly important, and the discount rate de-
clines over time.

Guo et al. [41] and Newell and Pizer [71] show that hy-
perbolic discounting leads to higher estimates of the social
cost of carbon. However, the quantitative effect is limited
by the fact that hyperbolic discount rates are high for the
first decades.

Aggregation: Spatial

Climate change is a global problem. Carbon dioxide and
other greenhouse gases mix uniformly in the atmosphere.
This implies most of the impacts of one country’s emis-
sions fall on other countries. The same is true for the ben-
efits of emission reduction. The impacts on different coun-
tries need to be aggregated somehow.

Two methods dominate the literature. In the first
and oldest method, regional impacts are quantified in
local currencies, converted to dollars, say, and added
up [33,103]. This is simple, but the disadvantage is that
similar impacts are treated differently. Most disturbingly,
climate-change-induced deaths in rich countries receive
a greater weight than climate-change-induced deaths in
poor countries. The second method, known as equity
weighing, corrects for this [6,36]. Rather than simply
adding regional estimates, the regional utility-equivalents
are added and then converted back to money according
to an assumed global welfare function. A big disadvantage
of this method is that climate-change-induced deaths are
treated differently than deaths by other, national causes.
The reason for this discrepancy is that equity weighing, as
practiced in the literature, explicitly assumes a global deci-
sion maker.

In the meta-analysis of Tol [107], the median estimate
of the marginal damage costs of carbon dioxide is $ 10/tC
without equity weights, and $ 54/tC with equity weights.
So, equity weighing is obviously important. The reason
is simple. Poor countries are more vulnerable to climate
change. Poor countries have little economic weight. Equity
weights correct for this.

Morally, this may be the right thing to do. However,
national governments also have a certain obligation to
defend the interests of their citizens. A narrow interpre-
tation of self-interest would suggest that impacts abroad
be ignored (unless they spill over, e. g., through interna-
tional migration). Then, climate change policy would be

very limited, as most impacts will be abroad. However, the
principle of good neighborhood is well established, both
morally and legally. This entails that one should avoid do-
ing harm to others; and should pay compensation if harm
is done nonetheless (e. g., [113]).

A rational actor would avoid doing harm if that is
cheaper than the compensation paid. From a national per-
spective, the relevant damages are then the impacts on the
own country plus the compensation paid to other coun-
tries. Schelling [93] forcefully argues that compensation
should equal the welfare loss of the victim rather than the
welfare loss that the culprit would have experienced had
she been the victim. This argues for aggregation of mone-
tized impact estimates without equity weighing.

However, compensation would need to be paid only
once. Furthermore, a country would also reasonably ex-
pect to be compensated itself. This implies that the dam-
age to a country equals the global damage times its share in
causing the problem. Defining the latter is a thorny issue,
as the cause-effect chain is long, complex, and uncertain.
One would need to make arbitrary decisions on cause, ef-
fect and their connection.

Uncertainty

Climate change is plagued by uncertainty [16]. Partly, this
is because our understanding of climate change and its
impacts is incomplete. For the larger part, however, this
is because climate change will take place in the future,
partly driven by future emissions, and impacting a future
world. Future research and observations may reduce the
uncertainty, although surprises may increase the uncer-
tainty just as well, but uncertainty will never disappear.
Learning and irreversibility play a crucial role in how to
deal with uncertainty. Events that may ormay not occur in
some distant future, but whose consequences can be allevi-
ated once it becomes clear if they would occur, should not
worry us too much. On the other hand, if an effect is irre-
versible (e. g., species extinction), we may want to prevent
it regardless of how uncertain it is and regardless of what
future research will show (according to the “precaution-
ary principle”). Another crucial part of dealing with un-
certainty is risk aversion. Essentially, this determines how
much weight we place on negative surprises. A risk neutral
decision maker would cancel negative surprises against
positive ones, but a risk adverse decisionmaker would not.
Recent work has shown that the marginal damage costs of
carbon dioxide are indeed very sensitive to the assumed
degree of risk aversion. Although uncertainty and risk are
often emphasized – often in a casual way – only few studies
seek to quantify its implications (e. g., [51]).
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In a recent paper, Weitzman [120] shows that, un-
der a wide range of standard assumptions, the uncertainty
about climate change is so large that the expected value
of the social costs of climate change is infinite. Earlier,
Tol [106] showed this for a specific model. This implies
that uncertainty should take central stage in the analysis
of climate policy. The Weitzman result throws up a num-
ber of methodological issues that will need to be resolved
before the policy implications of this work become clear.

Completeness

The impacts of climate change that have been quantified
and monetized include the impacts on agriculture and
forestry, water resources, coastal zones, energy consump-
tion, air quality, and human health. Obviously, this list
is incomplete. Also within each impact category, the as-
sessment is incomplete. Studies of the impacts of sea level
rise on coastal zones, for instance, typically omit saltwa-
ter intrusion in groundwater [72]. Furthermore, studies
typically compare the situations before and after climate
change, but ignore that there will be a substantial period
during which adaptation is suboptimal – the costs of this
are not known.

Some of the missing impacts are most likely negative.
Diarrhoea impacts have been quantified recently [57]. Like
malaria, diarrhoea is a disease that is driven by poverty but
sensitive to climate. Including diarrhoea tightens the link
between development and climate policy. Increasing wa-
ter temperatures would increase the costs of cooling power
plants [101]. Redesigning urban water management sys-
tems, be it for more or less water, would be costly [4],
as would implementing the safeguards against the in-
creased uncertainty about future circumstances. Roads
and bridges would suffer from weather conditions for
which they were not designed; this would imply either
disruption of traffic or expensive retrofits. Extratropical
storms may well increase, leading to greater damage and
higher building standards [27]. Expenditures on these
things are relatively small. Even if climate change would
double or triple the cost, the impact would be small. Ocean
acidification would reduce marine biodiversity, and may
well harm fisheries [52]. Ocean fisheries are only a small,
and declining fraction of GDP, while there are ready sub-
stitutes for wild fish protein (notably fish farming). The
value of biodiversity is unclear (see below).

Other missing impacts are probably positive. Higher
wind speeds in the mid-latitudes would decrease the costs
of wind and wave energy [11,44]. Less sea ice would im-
prove the accessibility of arctic harbours, would reduce the
costs of exploitation of oil and minerals in the Arctic, and

may even open up new transport routes between Europe
and East Asia [121]. Warmer weather would reduce ex-
penditures on clothing and food, and traffic disruptions
due to snow and ice [15]. Also in these cases, the impact of
climate change is likely to be small relative to the economy.

Some missing impacts are positive in some places, and
negative in others. Tourism is an example. Climate change
may well drive summer tourists towards the poles and up
the mountains [42,43]. People, however, are unlikely to
change the time and money spent on holiday making. The
effect is a redistribution of tourist revenue [8]. The global
impact is close to zero, but regional impacts are measured
in tens of billions of dollars – positive in temperate, rich
countries, and negative in tropical, poor countries. This
exacerbates the already skewed distribution of climate im-
pacts. Some ski resorts may go out of business, and oth-
ers would need expensive snowmaking equipment [29,97].
Other ski resorts would profit from the reduced competi-
tion. Although regional impacts may be substantial, at the
global scale positives and negatives cancel.

Other impacts are simply not known. Some rivers may
see an increase in flooding, and others a decrease [53]. At
the moment, only a limited number of rivers have been
studied in detail, and it is unclear how to extrapolate to
other rivers. It is clear though, that land use and water
management may greatly increase or reduce impacts. Al-
though river floods wreak substantial havoc and damages
of a single event can reach substantial numbers, average
flood damage is in fact small relative to the economy [112].
Tropical storms do more damage, although a substantial
share of the impact is due to bad planning rather than bad
weather [14]. Nonetheless, tropical storms may prevent
capital accumulation and the plantation of lucrative crops
such as banana [30,69]. Unfortunately, it is not known
how climate change would alter the frequency, intensity,
and spread of tropical storms [63,89].

The missing impacts discussed above are probably
small. There are also bigger gaps in the coverage of cli-
mate change impact studies. Climate change is likely to
have a profound impact on biodiversity, but quantita-
tive predictions are rare [13]. Although the economic im-
pact of a small change in biodiversity is known to be
small [88], the value of large biodiversity changes is un-
known but could well be substantial [18]. There is a small
but unknown chance that climate change will be more
dramatic than is typically assumed in the impacts litera-
ture. This may be because of shutdown of the thermoha-
line circulation [61], a collapse of the Greenland or West-
Antarctic Ice Sheet [84], or a release of large amounts of
methane [45]. The economic analysis of such scenarios
has only just begun [57]. It may be that climate change
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would lead to large-scale migration [64] and violent con-
flict, although there is only weak empirical support for
this [49,124]. Finally, climate change impact studies stop
at the end of the 21st century. In 2100, impacts are nega-
tive, and getting more negative at an accelerating pace. It
is not known how rapidly things would get worse in the
22nd century without emission abatement.

Although the sign of the aggregate unknown impacts
is not known, risk aversion would lead one to conclude
that greenhouse gas emission reduction should be more
stringent than suggested by a cost-benefit analysis based
on the quantified impacts only. However, the size of the
bias is unknown too – so the main policy implication is
that more research is needed.

Total Costs

The first studies of the welfare impacts of climate change
were done for the USA [21,74,98,102]. Although Nord-
haus [74] (see also Ayres and Walter [5]) extrapolated
his US estimate to the world, the credit for the first se-
rious study of the global welfare impacts goes to Fank-
hauser [32,33], althoughHohmeyer andGaertner [48] ear-
lier published some low quality estimates. Other global
estimates include those by Nordhaus [76,77], Tol [103],
Nordhaus and Yang [82], Plambeck and Hope [90], Nord-
haus and Boyer [81], Mendelsohn et al. [66,68], Tol [105],
Maddison [59], Hope [50], Rehdanz and Maddison [92]
and Nordhaus [78]. Note that Stern et al. [100] is based on
Hope [50].

This is a rather short list of studies, and an even
shorter list of authors. This problem is worse if one con-
siders that Nordhaus and Mendelsohn are colleagues; that
Fankhauser, Maddison and Tol are students of Pearce;
and that Rehdanz is a student of Maddison and Tol;
while Hope’s (and Stern’s) estimates are averages of
Fankhauser’s and Tol’s. Although most fields are dom-
inated by a few people, dominance is here for want of
challengers. The effect of this is hard to gauge. The rea-
sons are lack of funding (this work is too applied for aca-
demic sources, while applied agencies do not like the typ-
ical results and pre-empt this by not funding it), lack of
daring (this research requires making many assumptions,
and taking on well-entrenched incumbents), and lack of
reward (the economics profession frowns on the required
interdisciplinarity). In addition, many people, including
many economists, would argue that climate change is be-
yond cost-benefit analysis and that monetary valuation is
unethical.

Table 1 shows some characteristics of these studies.
A few insights emerge. First, the welfare impact of a dou-

bling of the atmospheric concentration of carbon diox-
ide on the current economy is relatively small. Although
the estimates differ, impacts are not more than a few per-
cent of GDP. The estimates of Hope [50], Mendelsohn et
al. [66,68] and Tol [105] even point to initial benefits of
climate change. (Studies published after 1995 all have re-
gions with net gains and net losses due to global warm-
ing, whereas earlier studies only find net losses.)With such
estimates, it is no surprise that cost-benefit analyses of
climate change recommend only limited greenhouse gas
emission reduction – for instance, Nordhaus [75] argues
that the optimal rate of emission reduction is 10–15%, one
of the more contentious findings of the climate economics
literature.

Second, although the impact is relatively small, it is
not negligible. A few per cent of GDP in annual damage
is a real concern.

Third, climate change may initially have positive im-
pacts. This is partly because the higher ambient concen-
tration of carbon dioxide would reduce water stress in
plants and may make them grow faster – although this
effect is now believed to be weaker [58]. Another reason
is that the global economy is concentrated in the temper-
ate zone, where a bit of warming may well be welcomed
because of reductions in heating costs and cold-related
health problems. At the same time, the world population
is concentrated in the tropics, where the impacts of initial
climate change are probably negative. Even though initial
economic impacts are positive, it does not necessarily fol-
low that greenhouse gas emissions should be subsidized.
The climate responds rather slowly to changes in emis-
sions, so the initial impacts cannot be avoided. Impacts
start falling – that is, additional climate change reduces
global welfare – roughly at the same time as climate change
can be influenced by present and future emission reduc-
tion [47].

The fourth insight is that relative impacts are higher
in poorer countries (see also Yohe and Schlesinger [122]).
This is because poorer countries have a lower adaptive ca-
pacity [2], particularly in health [108], and have a greater
exposure to climate change, particularly in agriculture and
water resources. Furthermore, poorer countries tend to be
hotter and therefore closer to temperature limits and short
on spatial analogues should it get warmer still. At the same
time, there are fewer studies on the impacts of climate
change on developing countries than on developed coun-
tries. Although research is scarce [83], there is little reason
to assume that climate change impacts would be homoge-
neous within countries; certainly, certain economic sectors
(e. g., agriculture), regions (e. g., the coastal zone) and age
groups (e. g., the elderly) are more heavily affected than
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Econonic impact estimates of climate change; numbers in brackets are either standard deviations or confidence intervals

Study Warming Impact Minimum Region Maximum Region
Nordhaus [76] 3.0 �1.3
Nordhaus [77] 3.0 �4.8

(�30.0 to 0.0)
Fankhauser [33] 2.5 �1.4 �4.7 China �0.7 Eastern Europe and the

former Soviet Union
Tol [103] 2.5 �1.9 �8.7 Africa �0.3 Eastern Europe and the

former Soviet Union
Nordhaus and
Yang [82]a

2.5 �1.7 �2.1 Developing
countries

0.9 Former Soviet Union

Plambeck and
Hope [60]a

2.5 �2.5
(�0.5 to�11.4)

�8.6
(�0.6 to�39.5)

Asia (w/o China) 0.0
(�0.2 to 1.5)

Eastern Europe and the
former Soviet Union

Mendelsohn et
al. [66]a,b,c

2.5 0.0 0.1 �3.6�0.5 Africa 4.0 1.7 Eastern Europe and the
former Soviet Union

Nordhaus and
Boyer [81]

2.5 �1.5 �3.9 Africa 0.7 Russia

Tol [105] 1.0 2.3 (1.0) �4.1 (2.2) Africa 3.7 (2.2) Western Europe
Maddison [59]a,d,e 2.5 �0.1 �14.6 South America 2.5 Western Europe
Rehdanz and
Maddison [92]a,c

1.0 �0.4 �23.5 Sub-Saharan
Africa

12.9 South Asia

Hope [50] a 2.5 0.9
(�0.2 to 2.7)

�2.6
(�0.4 to 10.0)

Asia (w/o China) 0.3
(�2.5 to 0.5)

Eastern Europe and the
former Soviet Union

Nordhaus [78] 2.5 �0.9 (0.1)

aNote that the global results were aggregated by the current author.
bThe top estimate is for the “experimental” model, the bottom estimate for the “cross-sectional” model.
cNote that Mendelsohn et al. only includemarket impacts.
dNote that the national results were aggregated to regions by the current author for reasons of comparability.
eNote that Maddison only considers market impacts on households.

others. This has two policy implications. Firstly, recall that
greenhouse gas mix uniformly in the atmosphere. It does
not matter where they are emitted or by whom, the effect
on climate change is the same. Therefore, any justification
of stringent emission abatement is an appeal to consider
the plight of the poor and the impacts imposed on them by
the rich [94,95]. While this makes for wonderful rhetoric
and fascinating research (e. g., [104]), reality shows little
compassion for the poor by the rich. Secondly, if poverty is
the root cause for vulnerability to climate change, one may
wonder whether stimulating economic growth or emis-
sion abatement is the better way to reduce impacts. In-
deed, Tol and Yohe [115] argue that the economic growth
foregone by stringent abatement more than offsets the
avoided impacts of climate change, at least for malaria,
while Tol [108] shows that development is a cheaper way
of reducing climate-change-induced malaria than is emis-
sion reduction. Moreover, richer countries may find it eas-
ier and cheaper to compensate poorer countries for the cli-
mate change damages caused, than to reduce greenhouse
gas emissions. Such compensation may be explicit and fi-

nancial, but would more likely take the shape of technical
and financial assistance with adaptation (cf. [85]).

The agreement between the studies is remarkable if
one considers the diversity in methods. The studies of
Fankhauser, Hope, Nordhaus, and Tol all use the enumer-
ative method: ‘physical’ impact estimates are obtained one
by one, from ‘natural science’ papers based on ‘process-
based’ models or ‘laboratory experiments’. These physi-
cal impacts are multiplied with their respective prices, and
added up. The ‘prices’ are obtained by benefit transfer.
In contrast, Mendelsohn’s work is based on direct, em-
pirical estimates of the welfare impacts, using observed
variations in prices and expenditures to discern the ef-
fect of climate (e. g., [67]). Mendelsohn estimates are done
per sector and then added up, but physical modelling and
benefit transfer are avoided. Nordhaus [78] uses empiri-
cal estimates of the aggregate climate impact on income,
while Maddison [59] looks at patterns of aggregate house-
hold consumption. LikeMendelsohn,Nordhaus andMad-
dison rely exclusively on observations, but they assume
that all climate effects are aggregated by the economy into
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incomes and expenditures. Rehdanz and Maddison [92]
also empirically estimate the aggregate impact, but use
self-reported happiness as an indicator; their approach is
similar to that of Nordhaus and Maddison, but the in-
dicator is subjective rather than objective. The enumera-
tive studies of Fankhauser etc rely on controlled experi-
ments (albeit with detailed, process-based models in most
cases). This has the advantages of ease of interpretation
and physical realism, but the main disadvantage is that
certain things are kept constant that would change in re-
ality; adaptation is probably the key element. The statisti-
cal studies of Mendelsohn etc rely on uncontrolled exper-
iments. This has the advantage that everything varies as
in reality, but the disadvantages are that the assessment is
limited to observed variations (which may be small com-
pared to projected changes, particularly in the case of car-
bon dioxide concentration) and that effects may be spuri-
ously attributed to climate. Therefore, the variety of meth-
ods enhances confidence, not in the individual estimates,
but in the average.

The shortcomings of the estimates are at least as inter-
esting. Welfare losses are approximated with direct costs,
ignoring general equilibrium and even partial equilibrium
effects (see below). In the enumerative studies, impacts
are assessed independently of one another, even if there
is an obvious overlap as between water resources and agri-
culture. Estimates are often based on extrapolation from
a few detailed case studies, and extrapolation is to climate
and levels of development that are very different from the
original case study. Valuation is based on benefit trans-
fer, driven only by difference in per capita income. Real-
istic modelling of adaptation is problematic, and studies
either assume no adaptation or perfect adaptation. Many
impacts are unquantified, and some of these may be large
(see below). The uncertainties are unknown – only 4 of
the 14 estimates in Table 1 have some estimate of uncer-
tainty. These problems are gradually solved, but progress
is slow. Indeed, the above list of caveats is similar to that in
Fankhauser and Tol [34].

Marginal Costs

Although the number of studies of the total costs of cli-
mate change is small, a larger number of studies estimate
the marginal costs. The marginal damage cost of carbon
dioxide is defined as the net present value of the incre-
mental damage due to an infinitesimally small increase in
carbon dioxide emissions. If this is computed along the
optimal trajectory of emissions, the marginal damage cost
equals the Pigou tax. Marginal damage cost estimates de-
rive from total cost estimates – the fact that there are more

estimates available, does not imply that we know more
about the marginal costs than we do about the total costs.
In fact, some of the total cost estimates [59,66,68,78,92]
have yet to be used for marginal cost estimation, so that
the empirical basis is actually smaller.

Tol [110] gathers 211 estimates of the SCC from 47
studies. The studies were grouped in those that were peer-
reviewed and those that were not. Some studies are based
on original estimates of the total costs of climate change,
while other studies borrow total costs estimates from other
studies. Most studies use incremental or marginal calculus
to estimate the SCC, as they should, while a few others use
average impacts or an unspecified method. Some studies
assume that climate changes but society does not, while
other studies include a dynamic model of vulnerability.
A few studies use entirely arbitrary assumptions about fu-
ture climate change, while most studies are based on inter-
nally consistent scenarios. These classifications are used as
quality indicators. More recent studies were given a higher
weight. Many studies report multiple estimates. Most of
the estimates are sensitivity analyses around a central es-
timate, and some estimates are only included to (approx-
imately) reproduce an earlier study. Tol [110] introduces
additional weights to account for this.

Tol [110] adjusts a Fisher–Tippett kernel density esti-
mator to 211 data points, weighted as describe above. The
211 estimates provide the modes. Only a few of the stud-
ies provide an estimate of the uncertainty. Therefore, the
standard deviation is set equal to the sample standard de-
viation.

Table 2 shows selected characteristics of the kernel dis-
tribution for the whole sample and selected sub-samples.

Splitting the sample by discount rate used has the ex-
pected effect: A higher discount rate implies a lower esti-
mate of the SCC and a thinner tail. Table 2 also shows that
estimates in the peer reviewed literature are lower and less
uncertain than estimates in the gray literature.

Splitting the sample by publication date, shows that
the estimates of the SCC published before AR2 [87] were
larger than the estimates published between AR2 and
AR3 [99], which in turn were larger than the estimates
published since. Note that these differences are not sta-
tistically significant if one considers the means and stan-
dard deviation. However, the kernel distribution clearly
shifts to the left. Therefore, AR4 [96] were incorrect to
conclude that the economic estimates of the impact of
climate change have increased since 2001. In their words
(pp. 781): “There is some evidence that initial new market
benefits from climate change will peak at a lower magni-
tude and sooner than was assumed for the TAR, and it is
likely that there will be higher damages for larger magni-
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Climate Change, Economic Costs of, Table 2
Selected characteristics (mode,mean, standarddeviation,median, 90-percentile, 95-percentile, 99-percentile, percentile of the Stern
estimate) of the joint probability density of the social cost of carbon for the whole sample (all) and selected subsamples (pure rate of
time preference, review process, and publication date)

All PRTP Review Publication date
0% 1% 3% peer gray <1996 96–01 >2001

Mode 35 129 56 14 20 53 36 37 27
Mean 127 317 80 24 71 196 190 120 88
St.Dev. 243 301 70 21 98 345 392 179 121
Median 74 265 72 21 48 106 88 75 62
90% 267 722 171 51 170 470 397 274 196
95% 453 856 204 61 231 820 1555 482 263
99% 1655 1152 276 82 524 1771 1826 867 627
Stern 0.92 0.56 1.00 1.00 0.97 0.84 0.86 0.92 0.96

tudes of global mean temperature increases than was esti-
mated in the TAR.” It is unclear how Schneider et al. [96]
reached this conclusion, but it is not supported by the data
presented here.

The SCC estimate by Stern et al. [100] is almost an out-
lier in the entire sample (excluding, of course, the Stern es-
timate itself). Depending on the kernel density, the Stern
estimate lies between the 90th and the 94th percentile.
It fits in better with estimates that use a low discount
rate and were not peer-reviewed – characteristics of the
Stern Review – but even in comparison to those studies,
Stern et al. [100] are on the high side. The Stern estimate
also fits in better with the older studies. This is no sur-
prise, as the PAGE model (e. g., [50]) is calibrated to [87]
and [99]. Other criticism of the Stern Review can be found
in [24,65,79,80,115,119,120].

Policy Implications

The policy implications of the above findings are several,
and not necessarily in line with the conceived wisdom
of climate policy. First and foremost, the economic im-
pacts literature points out that climate change is a prob-
lem. Initial climate change may be beneficial, but it cannot
be avoided. This is a sunk benefit. The avoidable part of
climate change is in all likelihood negative. This justifies
greenhouse gas emission reduction.

Second, the estimates of the marginal damage costs
justify some emission abatement, but not too much. For
instance, the future price of carbon dioxide emission per-
mits in the European Trading System is around $ 100/tC.
Using the market rate of discount, the expected social cost
of carbon is only $ 24/tC. This climate policy has a ben-
efit-cost ratio of 0.24. EU climate policy is therefore too
stringent. Of course, European climate policy does pass
the cost-benefit test according to CEC [17], but this study

does not meet conventional standards of academic qual-
ity [111]. Earlier, Pearce [89] similarly concluded that the
UK cost-benefit analysis [20] is deficient, while also the
Stern Review [100] has been criticized in the academic lit-
erature (e. g., [80,119]).

Third, climate policy is about ethics rather than about
economics [37,116]. The judgment what to do about
greenhouse gas emissions rests on the values one attaches
to far-flung countries and distant futures. The ethics are
not straightforward, however. If one places a lot of weight
on the future, one should make a trade-off between in-
creasing investment in capital goods, education, emission
reduction, or technology. If one places a lot of weight on
people in poor countries, one should make a trade-off be-
tween adaptation, development, emission reduction, and
trade reform.

Fourth, the uncertainties about the economic impact
of climate change are profound. Partly, this is because the
subject is complex. A large share of the uncertainty can
be explained, however, by the dearth of research funding.
Although climate change is often said to be the largest (en-
vironmental) challenge of our times, very few researchers
are funded to substantiate or refute that claim.

Future Directions

Further research is therefore needed. Several problems
with past and present research are identified above. Firstly,
research into the economic impact of climate change is
rightly classified as “applied research”. This implies, how-
ever, that research funding comes from bodies with a stake
in the result, and that quality and independence are not
necessarily overriding concerns. The Stern Review is the
most prominent example in the recent past of a study that
started with the conclusions and worked back to iden-
tify the required assumptions. The new Centre for Climate
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Change Economics and Policy at the London School of Eco-
nomics may fall into the same trap. Because the stakes in
climate policy are large, academic quality of research must
be guaranteed.

Secondly, there are only two groups of independent
academics who study the economic impact of climate
change. These groups are not sufficiently funded. More
importantly, these groups are rarely challenged. Com-
binedwith the first problem, it is therefore important to es-
tablish a third group of independent, academic economists
to study the impact of climate change.

Thirdly, research on the impact of climate change, eco-
nomic and otherwise, has been lamp-posting. After the
groundbreaking work in the early 1990s, researchers have
refined previous estimates. Little attention has been paid to
those impacts for which no previous estimates exist. While
this is the normal procedure of gradual progress in scien-
tific research, the study of the impact of climate change is
still in its formative stages. Not just more, but particularly
different research is needed – into the economic effects of
climate change on biodiversity, on violent conflict, on ice
shelves and ocean current, and on economic development
in the long term.
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Glossary

Health As defined by the World Health Organization
(WHO) health is the state of complete physical, men-
tal and social well-being and not merely the absence of
disease or infirmity.

Human bioclimate The fundamental issue in human
biometeorology is the assessment of the direct health
effects of the atmospheric environment from heat ex-
change, to solar radiation and air pollution.

Climate change related direct health effects Climate
change always impacts on human bioclimate, presently
it leads to increased heat stress and heat stress fre-
quency, higher ultraviolet radiation doses especially in
summer, longer allergic pollen seasons and new aller-
gens as well as intensified photo-smog.

Thermal stress andmortality Summer heat waves in
mid-latitudes and elsewhere increase without doubt
mortality; hence also highlight lack of correct adaptive
measures, i. e. heat waves impact most strongly in so-
cieties with lack of social cohesion.

Global expansion of tropical diseases The observed re-
cent global warming has increased the incidence and
enlarged the distribution of some tropical diseases due
to the expansion of suitable conditions for both vec-
tors and pathogens. A northward spread has been ob-
served for West Nile fever, Leishmaniasis and Chikun-
gunya fever and a climate-driven spread has in parts
also been recorded for malaria, dengue fever and other
vector-borne infectious diseases.

Vector-borne diseases In epidemiology a vector is an or-
ganism transmitting a pathogen from one of its reser-
voirs (e. g. ruminants, birds) to another one (e. g. hu-
man) without falling ill. Such vectors for tropical dis-
eases are: mosquitoes, biting flies, bugs, lice, flea’s and
mites. Typical vector-borne diseases are malaria, yel-
low fever, dengue fever, West Nile fever, Leishmani-
asis, Chikungunya fever. For some of these diseases
global warming is the cause of the observed expan-
sion or intensification. The complex web of reservoir
organism, pathogens, vectors and infected organisms
with different dependence on climate parameters of-
ten hinders a full understanding. Hence, surprises are
and will be common.

Arbo viruses Arbo viruses are transmitted by arthropods
(arthropod-borne) to vertebrates and hence in parts
also to humans. Besides yellow fever, tick borne en-
cephalitis and dengue fever about 150 other diseases
are due to virus infections by insects and spiders
(arthropods). In very complex transmission cycles cli-
matic conditions play a central role. The occurrence
of unusual arbo virus infections is often related to
changes in climatic conditions. Therefore, the partly
dramatic global increase of some arbo virus infections
is also driven at least in part by the ongoing global an-
thropogenic climate change.

Arbo viruses transmitted by Aedes mosquitoes Aedes
mosquitoes and Aedes-transmitted arbo viruses such
as the dengue and yellow fever viruses are a grow-
ing global threat. The primary vector of these diseases,
Aedes aegypti, has re-emerged throughout the tropics,
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but also Aedes albopictus has emerged as one of the
worst invasive species taking the role of Aedes aegypti.
Direct human activities like global trade are mainly re-
sponsible for the spread of these vectors and global
warming – indirectly anthropogenic as well – cannot
be ruled out as a contributor. With further warming
temperate regions like Central Europe could also be-
come areas for Aedes albopictus.

Malaria and global warming Although the Anopheles
mosquitoes transmitting the protozoae (e. g. Plasmod-
ium falciparum) causing malaria are strongly depen-
dent on temperature and suitable small water reser-
voirs for the larvae, the spread of malaria in recent
years is more a consequence of deficiencies in public
health systems of many countries rather than due to
the observed global warming and concomitant precip-
itation changes.

Blue-tongue disease in Europe Since August 2006 the
blue-tongue-disease of cattle and sheep (serotype 8
from South Africa) spread within months from the
Netherlands to Belgium, Luxembourg, France and
Germany alone at the end of 2006. The vector car-
rying the virus is the ceratopogonid, biting midge,
Culicoides obsoletus. The new disease for ruminants
in Western and Central Europe is primarily a conse-
quence of globalization but the extremely warmwinter
2006/2007 in Western and Central Europe supported
further spreading.

Carbon dioxide fertilization and quality of food From
field experiments at elevated carbon dioxide concen-
trations (close to a doubling of preindustrial values) it
is known that agricultural yield increases for C3 plants
by 10 to 30 percent; however, frequently also reduced
nitrogen content in plant tissue including seeds is ob-
served. Hence, food quality may be lowered.

Changes in the pollen season and new pollen The onset
of flowering of plants in mid and high latitudes is
mainly triggered by temperature. Therefore, warming
in recent decades has caused an earlier start of pollen
in the air, often also leading to a longer pollen season
and for some pollen also to higher abundance stimu-
lated by higher carbon dioxide concentration. Hence,
susceptible individuals will suffer from pollen allergy
longer and even perennial allergic symptoms may be-
come possible.

Introduction

The basis of our life is energy from the sun, water from the
skies and biomass production by plants on land and in the
oceans. If we ask for the key climate parameters – given the

size of the planet and its mean distance to the sun – we get
a very similar answer: energy flux density of the sun, pre-
cipitation and land surface parameters, mostly determined
by vegetation. Hence, climate is the key natural resource.
If this resource changes rapidly, as it does now, life in all
its forms is affected as well. Therefore, it is a must for de-
cision makers to deal with climate change. Here only one
facet of climate change is discussed: the health of humans.
It is rather astonishing that it has not already been studied
intensively since the beginning of the climate change de-
bate, as other environmental policy decisions were nearly
totally driven by health consequences for humans [12].

The consequences of climate change for the health
of humans, animals and plants are complex with direct
and indirect relations between causes and impacts. As any
organism on land is in permanent struggle with the lo-
cal weather a rather strong capacity for adaptation ex-
ists; however, the organisms are trained only with exist-
ing weather and climate variability during the life-time
of an organism. For new weather extremes accompany-
ing any climate change this adaptation capability is no
longer given. Hence, a changing climate will often become
a threat to health. As several health related factors may
change simultaneously, “multiplying” impacts, which – if
alone – would not have gone beyond existing adaptive ca-
pability, may do so. An example is heat stress during heat
waves accompanied not only by high ultraviolet radiation
levels but also by high near surface concentrations of the
strong oxidant ozone, exacerbating the heat stress.

According to the World Health Organization (WHO)
“Health” is defined as “the state of complete physical, men-
tal and social well being and not merely the absence of dis-
ease or infirmity”. This comprehensive and also ambitious
understanding of the term health can also be applied to an-
imals and plants as well as ecosystems (the terms ecosys-
tem health and environmental health have been used very
often in recent literature). Therefore, consequences of cli-
mate change on health are not confined to diseases but also
include reduced well-being or reduced strength of an or-
ganism as well as weakened functions in an ecosystem or
a socio-economic system.

This contribution to the Encyclopedia of Complex-
ity does not focus exclusively on climate change and hu-
man health (see Sect. “Climate Change Impact on Hu-
man Health”) because climate change impacts on animals
and plants (see Sect. “Climate Change Impacts on Plants
with Consequences for Human Health”) also have con-
sequences for human well-being and human health. An
example of the complexity is the changed composition
of nutrients in grains as a consequence of higher car-
bon dioxide levels in the atmosphere, in addition mod-
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ulated by changed climate parameters that may in turn
enhance infestations of plant diseases with consequences
for the composition of our food. The section on Climate
Change Impacts on Plants with Consequences for Human
Health tries to collect known knowledge, reports on po-
tential threats and chances for political reactions as well as
pointing out major open research questions.

Climate Change Impact on Human Health

Whenever climate changes all ecosystems have to react,
i. e. they try to adapt to changed climate that must also
include new weather extremes. Typical reactions are shift
of biomes, altered ecosystem composition, new geograph-
ical patterns of animal and plant diseases, new relations
between predator and prey. As major so-called natural cli-
mate changes have occurred also in the recent few mil-
lion years the first major question in the present anthro-
pogenic climate change era is: Can earlier so-called abrupt
climate changes be used as an example for projections into
the future? The answer is no, because the mean global
temperature change rate to occur in the 21st century ex-
ceeds by far even the most rapid natural ones. The largest
and most rapid global mean temperature change rates in
the recent few million years have been the collapses of
the large northern hemisphere ice sheets that have led to
a mean global warming of up to 5°C and a sea level rise
of about 120m in roughly 10,000 years. Projections for the
21st century without stringent climate policy [4] range be-
tween 1.5°C and about 4°C, i. e. an acceleration of at least
a factor 30. Hence, the past cannot be used as an ana-
logue. In other words: The key goal of the United Nations
Framework Convention on Climate Change (UNFCCC)
that speaks of avoidance of a dangerous interference with
the climate system, cannot be met without globally coor-
dinated climate policy. It requests, in addition, a climate
policy helping to stabilize greenhouse gas concentrations
within a time frame that firstly natural ecosystems are able
to adapt to climate change, secondly food production is
not generally threatened and a sustainable economic de-
velopment remains possible.

In this situation with ill-adapted forests, rapidly
changed patterns of infectious diseases for plants, ani-
mals and humans looking back through climatic history
does also not help directly. Besides intensified research on
changed disease patterns in the very recent past a stringent
globally coordinated climate policy under UNFCCC is the
best insurance against massively altered disease patterns.

This paper will concentrate on climate change impacts
on human health but will not exclude totally impacts on
food production. Major points will be “thermal stress” be-

fore “vector-borne diseases” and also prolonged allergen
seasons and new allergens are discussed.

Changed Thermal Stress

Heat or cold stress forces our body to adapt to keep the
core body temperature within a narrow temperature inter-
val of about five degrees centigrade (35 to a maximum of
slightly above 40°C).While extreme cold stress events have
diminished and will further diminish as a consequence
of ongoing global warming, extreme heat stress will in-
crease dramatically (see Fig. 1), when the frequency dis-
tributions of temperature at a certain location are shifted
by only a few degrees centigrade and may be broadened.
Up to now only very few places on the Earth’s surface ex-
ist where survival of a human being is nearly impossible.
This would certainly happen if the wet bulb temperature
(roughly equivalent to a ventilated sweating naked body)
surmounts about 35°C. Under present climate conditions
such areas do not exist, but coastal areas of the Red Sea
come closest to it during on-shore winds after a sunny day
that was heating surface waters to about 35°C. Hence, heat
strokes can in principle be avoided by adequate behav-
ior, if buildings are well insulated and properly ventilated
and if an individual behaves. Therefore, the huge death toll
caused by major heat waves, namely about 55,000 people
that died during the heat wave in summer 2003 in Eu-
rope [5] is rather an indication for “social freeze” and ill-
adapted buildings in our industrialized or developing soci-
eties than for really intolerable thermal conditions. Many
have died because of lack of care. New weather extremes
always demask weaknesses in our security-related infras-
tructure. A famous example is the large difference in the
number of people dying during a summer heat wave in
1995 in two US cities (Chicago and Philadelphia) just be-
cause of intensified public care in Philadelphia where the
weak and poor citizens where brought by the city admin-
istration to the cooled malls during daytime.

As Fig. 2 clearly demonstrates the mortality anom-
aly caused by heat waves is a fact observed over sev-
eral decades (here in a developed country). Lowering the
anomalymeans not only investment in better warning sys-
tems but also enhanced social care in general.

Both heat and cold stress increase mortality as under-
lined by Fig. 3 for European countries. In the future heat
stress category 3 will occur much more often and the low-
ering of the increased mortality will also be a sign of an
improved public health system.

A further point to be made with respect to enhanced
thermal stress as a consequence of climate change is the
rapidly mounting heat stress in the inner tropics, where



1098 C Climate Change and Human Health

Climate Change and Human Health, Figure 1
Observed (upper panel) and modeled summer mean temperatures for the Swiss Plateau both for present climate (1961 to 1990)
(central panel) and the last three decades of the 21st century for scenario A2. Please note that the exceptional summer 2003 would
occur every second year, if globally coordinated climate policy would not exist. From [13]

Climate Change and Human Health, Figure 2
Mean relative mortality in percent for different thermal stress
categories observed in Europe during 1986 to 1996. Please note
that the mortality increases by more than a factor 2 when heat
stress category 2 is replaced by category 3. From [5]

dew points of about 25°C will more often occur, if global
warming also continues there. The ability to work with
high efficiency is shrinking there rapidly with rising tem-
peratures and dew points. As is well known economic de-
velopment of developing countries needs a cooled or well-
ventilated work place.

Impact on Photochemical Smog

Photochemical smog is formed if solar radiation stimu-
lates chemical reactions in a polluted atmosphere. Emis-
sions of non-methane hydrocarbons and nitrogen oxides
(NO + NO2) lead to the formation of ozone and other
oxidizing toxic trace gases as well as aerosol particles. In
mid-latitudes photochemical smog is typically strongest
in late spring and summer and it has been the reason for
some environmental policy making. Heat waves with in-
tense solar radiation lead to major photochemical smog
episodes. The higher frequency and longer duration of
heat waves during recent and foreseen global warming
will intensify health problems already existing during heat
waves. As Tables 1 and 2 demonstrate the hot summer in
Germany in 2003 has increased the number of days for
both ozone and aerosol load (PM10) where limit values
have been surmounted in Germany dramatically [14,15],
e. g. by a factor of 2 or more both for PM10 in rural areas
and ozone in all areas.

Fighting against photochemical smog will become
even more demanding in a warming world.

Changed Ultraviolet Radiation

Ozone protects us to a large extent from the danger-
ous part of ultraviolet solar radiation through absorp-
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Climate Change and Human Health, Figure 3
Meanmortality anomaly during a heat wave (30 days before and after its maximum) resulting from nine observed heat waves in the
state of BadenWürttemberg (Germany) for the period 1968 to 1997. Source: [5]

Climate Change and Human Health, Table 1
Days with 8-hour mean ozone concentration above 120µgm�3 since 1990 for all stations in the German network

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
22 22 28 23 32 29 20 22 19 21 19 21 19 51 19

Climate Change and Human Health, Table 2
Days with PM10 values above 50µgm�3 for the years 2001 to
2004

2001 2002 2003 2004
Stations with highest values
117 103 132 73
Stations in cities (average)
65 75 83 55
Remote stations in cities (average)
22 30 38 16
Rural stations (average)
7 12 17 5

tion in the ultraviolet (UV-B) range from 0.28 to 0.32 μm
wavelength. The observed latitude-dependent reduction of
stratospheric ozone (from 8 to 50 km height in high lati-
tudes), which constitutes about 90% of the total ozone col-
umn content and which is caused by chlorine compounds
stemming from decay products of chlorofluorocarbons
(CFCs) and other halocarbons, has increased UV-B radi-
ation especially in spring of both hemispheres at higher
latitudes. This stratospheric ozone decrease is strongest in
Antarctic spring in the so-called ozone hole. This ozone
depletion has certainly increased and still will increase the
skin cancer and cataract incidence that has dramatically
grown in recent decades. However, the ozone depletion

contribution is largely buried in the variability and change
of exposure of our body to UV radiation, which is due to
changed behavior, especially in developed countries. The
key question for the forthcoming decades is: How fast will
ozone column content recovery be after the banning of
CFCs and other chlorine and bromine containing com-
pounds? Present knowledge says: Full recovery after sev-
eral decades with a chance of a super-recovery caused by
a further increase of the greenhouse effect of the atmo-
sphere, which lowers stratospheric temperatures.

Health Effects
Caused by Other Changed Climate Parameters

Climate change shifts and reshapes frequency distri-
butions of meteorological and hydrological parameters,
thereby multiplying the occurrence of known extremes
and leading to new ones (see Fig. 1, where this is demon-
strated for temperature). Therefore, the health of many
more millions is affected by intensified flooding, higher
storm surges, and many other weather-related disasters.

While the highest death toll of weather-related dis-
asters was – for thousands of years – due to droughts,
with up to 10 million people dying per decade around
1930, the highest death toll is now caused by flooding and
wind damage due to tropical cyclones and hurricanes (Red
Cross, . . . ). The main reason for this change is – besides



1100 C Climate Change and Human Health

more dwellings in flood-prone areas, often already lying
slightly belowmean sea level – the international aid bring-
ing food and seeds into the drought-affected areas; as long
as civil war does not prevent this help.

Hence, climate change also calls – irrespective of glob-
ally coordinated climate change mitigation policies – for
a coordinated climate change adaptation policy in the
coming decades, because we have to adapt to the already
unavoidable climate change. Mitigation measures meant
to avoid the un-tolerable climate change will only become
effective in decades due to the inertia of the climate sys-
tem caused by the slow reaction of oceans and ice sheets.
In other words: If flooding is prevented by strengthened
dikes, anticipating shifted frequency distributions of pre-
cipitation, cholera epidemics will not occur. Diking has to
become an international activity, as the emitters in indus-
trialized countries are causing more flooding and sea level
rise on a global scale, co-financed by the already existing
but strongly to be increased adaptation fund under the
UNFCCC, its Kyoto Protocol and the follow-up protocol
envisaged to be signed in 2009.

As an aside I will here report on reactions of our body
to high carbon dioxide levels in the atmosphere. Very of-
ten if many people are gathered in the same closed room
and breathe the same air some will ask for fresh air (i. e.
they require more oxygen). The need for fresh air is be-
cause of too high carbon dioxide levels. Regulations in
some German states concerning ventilation in classrooms
provide ventilation rules to avoid carbon dioxide concen-
trations above 1,500 ppm, a level after which concentra-
tion diminishes and some studentsmay even develop signs
of a beginning headache. The oxygen content of air has
fallen by a bit more than a tenth of a percent only to about
20.84 percent at which point ventilation by opening win-
dows becomes a must. Hence, ventilation of our living
rooms means pushing out carbon dioxide.

Transmission of Infectious Diseases
from Birds to Humans

In recent yearsmigratory birds have been named as a cause
for the transmission of bird flu (avian influenza) to hu-
mans because they can in principle transmit the influenza
virus to chickens, geese, turkeys and ducks in our farms
from where the virus infects humans that come into close
contact with the fowl or their products. However, very
often the cause for the long-range transmission is global
trade and tourism on the one hand plus industrialized an-
imal husbandry in developed and emerging countries on
the other. The latter has been found as the principal cause
for the comparably rapid mutation of slightly pathogenic

bird flu viruses to highly pathogenic ones (Bairlein and
Metzger, 2008). These in turn can reach wild bird species
which then can rapidly transmit them to new areas, if
the viruses are only slightly pathogenic for them. But also
pathogens, vectors or reservoir species can inadvertently
be introduced by globalization to regions where no longer-
term co-evolution could have taken place. Further global
warming will intensify the shift of pathogens with the shift
of (migratory) birds, but will only add to the further rapid
distribution of pathogens caused by globalization (Smith
et al., 2007).

Allergies Caused by Pollen

In most countries allergies have recently increased dra-
matically. In Germany, for example, 20 to 30% of the pop-
ulation suffers from allergies.Most abundant is the allergic
rhino conjunctivitis (hay fever), often turning into asthma
bronchiale, caused by allergic pollen in air. Climate change
has led to longer pollen seasons, in parts to more pollen,
changed pollen spectrum and also new pollen [9].

From studies in Europe, North America and Japan an
earlier flowering of 1 to 3 days per decade has been re-
ported during the recent decades [11]. For some species,
especially the late flowering ones a prolonged pollen sea-
son has been found [2,3], in parts caused also by long-
range transport of the pollen. Consequently, for many
people in mid-latitudes suffering from several pollen the
pollen season became longer, sometimes already starting
in December and ending only in October after the flower-
ing of the neophyte ragweed (Ambrosia artemisiifolia) for
Europe.

From differences between cities and rural areas as well
as from laboratory studies it became known that pollen
abundance increases with carbon dioxide concentration
for some species.

In combination with air pollution allergic reactions
have been shown to intensify [3].

Invasion of Allergenic Neophytes With ongoing global
warming two processes combine for the spread of neo-
phytes: Firstly, global trade and tourism transmitting
plants and their seeds within days and weeks around the
globe to all inhabited places and into ocean basins and sec-
ondly, increased temperatures allowingmore andmore of-
ten establishment of exotic species in new areas. A famous
example where both mentioned processes work in combi-
nation is the invasion of the strongly allergenic ragweed
(Ambrosia artemisiifolia) from North America to Europe
in the 19th century with a large spread after the Second
WorldWar. Ragweed flowers from late August to Septem-
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ber and its pollen also undergo long-range transport [1]. In
recent decades it spread strongly in Central Europe facili-
tated by agricultural practice and by inadvertent transport
with bird food as well as higher temperatures.

Indirect Health Effects Caused by Climate Change

Many infectious diseases are transmitted by vectors, i. e. by
animals (very often insects) transferring a pathogen from
another animal and/or human without suffering from
the pathogen themselves. The complicated web of hosts,
pathogens, reservoirs and vectors is dependent on many
factors, among them climate variables, foremost temper-
ature and precipitation. Therefore, distribution patterns
and incidence of infectious diseases will also be modi-
fied by climate change; however, disentangling the cause
and effect relationships is often extremely difficult. Since
tropical infectious diseases are the most common of these
diseases and especially temperature sensitive they will be
a focus in this section. The World Health Organization
(WHO) points to a highly probable increase of morbidity
and mortality due to higher prevalence and a pole-ward
shift of tropical infectious diseases due to further global
warming.

Increase of Vector-Borne Tropical Infectious Diseases
As always in scientific investigations it is especially difficult
to derive long-term trends of certain variables influenced
by many parameters like changes in land use, socio-eco-
nomic conditions and climate or weather patterns. This is
also true for tropical infectious diseases. Hence, only few
trend analyses exist, e. g. for malaria reaching higher ele-
vations in Africa.

The main vectors for infectious diseases are mosqui-
toes, biting flies, bugs, lice, fleas, and mites. Of about more
than a million insect species roughly 17,000 have adapted
to a blood-sucking mode of life. A small minority of these
are vectors of pathogens. The pathogens are viruses, bac-
teria, protozoa or filarioses. Pathogens are either mul-
tiplied within the vectors without change of form (Ar-
boviruses, Rickettsiae, Bacteria), multiplied with change
of form (Protozoa) or changed without multiplication (Fi-
laria). From uptake of a pathogen during a blood meal un-
til the infective stage temperature is the factor determining
duration, hence, higher temperatures can lead to enhanced
spread of vector-borne diseases as for example observed
for dengue fever.

According to number of people infected by blood-
sucking insectsmalaria comes first with 300 to 500million
cases per year of which 1 to 2 million die, especially chil-
dren. About 70 mosquito species of the genera Anopheles

transmit four different protozoa (Plasmodium falciparum,
Plasmodiumvivax, Plasmodiumovale,Plasmodiummalar-
iae). The mosquito Anopheles gambiae in Africa is the
most important vector. Because malaria has been eradi-
cated in many developed countries in Europe an enhanced
potential for malaria must not lead to a re-introduction
there. However, in countries with a weak public health sys-
tem higher prevalence and new malaria infected areas are
highly probable.

About 120 million people in Asia, Africa, South and
Central America are infected by lymphatic filariasis (ele-
phantiasis) transmitted by different genera of mosquitoes.
The larvae of the worm develop (from 0.4 to about
1.5mm) in the vector and can be transmitted during the
next blood meal to humans. The development period
is temperature-dependent. Hence, a potential for a fur-
ther spread exists, but the Global Program to Eliminate
Lymphatic Filariasis (WHO, 2006) may reduce incidence
strongly.

Dengue fever affects about 50 million persons per year
and it is a clearly growing threat to human health in about
100 tropical and subtropical countries. The virus belong-
ing to the flaviviruses is transmitted mainly by the Aedes
aegypti mosquito. Vector and virus show strong tempera-
ture dependence in their development. But the disappear-
ance of Aedes aegypti from Europe around 1950 points to
the probably strong application of the insecticide DDT. As
often, measures taken against infectious diseases can easily
off-set climate influences.

Onchocerciasis (in severe cases leading to river blind-
ness) affects about 37 million persons, mainly in Africa,
the microfilaria of the worm “Onchocerca volvulus” are
taken up from the human skin by the vector, a simuliidae
species, during a first blood meal, they develop through
two skinnings within the vector and are transmitted back
to a human being during a further blood meal after about
7 to 10 days. Whether the vector, developing in running
water and sucking blood during daylight, is already react-
ing to climate change is not known although a temperature
and precipitation dependence clearly exists.

Many other tropical vector-borne infectious diseases
exist, like loiasis affecting about 13 million people in trop-
ical Africa, “Schlafkrankheit” with about 60,000 new cases
per year orWest Nile fever that has reached the USA. In all
cases it is a complex mix of influencing factors with pos-
itive and negative feedbacks, which inhibits a clear sepa-
ration of a climate contribution to changed patterns and
severity. Hence, there will be many surprises often based
both on transport of vectors by growing trade and tourism
and better survival conditions in higher latitudes due to
higher temperatures and/or changed moisture conditions.
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The best means to cope with changed disease distri-
bution patterns is a strong public health system and links
between the systems in different countries.

Climate Change Impacts on Plants
with Consequences for Human Health

Our food is produced by plants on land and in the ocean,
even if we eat meat or fish because animals also feed ul-
timately on plants. Hence, a climate change impact on
plants may have strong indirect effects on human health.
However, even if the climate change impact were small on
certain plants, their way of reacting to enhanced CO2 con-
centration could still have consequences for food produc-
tion. In reality climate change and elevated CO2 concen-
tration act together and both have largely different impacts
on plant types and species. The temperature dependence
of photosynthesis rate as presented in Fig. 4 for very dif-
ferent plants, shows the rather steep decline of this rate
for maize, a C4-plant, at high temperatures above about
40°C. Adding to this finding that there is nearly no pos-
itive feedback to higher CO2 levels for C4-plants, yield
in tropical areas would be reduced if plants have to as-
similate at leave temperatures of about 40°C. Therefore,
Working Group II of IPCC concluded [4]: “Crop pro-
ductivity is projected to increase slightly at mid- to high
latitudes for local mean temperature increases of up to
1–3°C depending on the crop, and then decrease beyond
that in some regions. At lower latitudes, especially season-
ally dry and tropical latitudes, crop productivity is pro-
jected to decrease for even small local temperature in-
creases (1–2°C), which would increase the risk of hunger.”

Climate Change and Human Health, Figure 4
Temperature dependence of photosynthesis rate for an alpine
grass, wheat and maize. Please note the strongly differing opti-
mal temperature ranges. From [10]

If C3-plants (e. g. wheat, rice, potato, sugar beet) live at
higher CO2-concentrations their photosynthesis rate in-
creases rather linearly with CO2-concentration, if water
stress and nutrient scarcity are not limiting their photo-
synthesis rate. Consequently, the delay of decades between
CO2-concentration rise and full expression of the warm-
ing, to which we are already committed, is a “window
of opportunity” for high crop yields of C3-plants. This
may in the long-term also have global consequences, be-
cause the CO2-concentration could rise additionally if the
(high latitude) forests (C3-plants), acting as a sink for an-
thropogenic CO2 presently, would lose this capacity under
higher climate change stress. Whether and when this will
occur is not yet known.

Changes in Food Composition for Main Crops
at Elevated CO2-Concentration

An important consequence of elevatedCO2-concentration
would be changed composition of plant tissue, and espe-
cially of seeds, as it could have immediate health conse-
quences for animals and humans eating them. The sparse
body of published studies is nearly unanimously pointing
to a loss of nitrogen content in leaves and stems as well
as in seeds (see Fig. 5 and [6] for an overview). The re-
sults of so-called Free Air Carbon Dioxide Enrichment
(FACE) studies at roughly doubled CO2-concentrations
(� 550 ppm) are all reporting higher nitrogen content for
plant tissue and a bit less for seeds. This negative conse-
quence for our food is not yet fully acknowledged in the
public, because of the very different impacts for different
parts of society. For a grain-producing farmer the CO2 fer-
tilization effect leads to higher yields of C3-plants, a damp-
ening of photo-smog yield reductions, higher water use ef-
ficiency for both C3- and C4-plants and thus less drought
impact while for the baker the wheat quality for baking
bread declines, and the cattle as well as the consumer get
less healthy food.

Shift of Biomes andMigration

As already observed, precipitation is redistributed due to
rather different warming patterns. And projections of pre-
cipitation changes in the 21st century, as published in the
Fourth Assessment Report of [4], can be summarized in
the following sentence: Rather humid areas will on av-
erage get more precipitation, especially in high latitudes,
while semi-arid areas will get on average less (with strongly
lowered soil moisture at higher temperatures). This is bad
news for many millions of people in semi-arid zones of the
tropics and subtropics. The main impact on plants is water
stress, hence lower crop yields. But also less food for cat-
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Climate Change and Human Health, Figure 5
Changes in nitrogen content in plant tissue under elevated CO2-concentration (� 550ppm) depending on nitrogen fertilizer and
water availability (50 or 100%). From [16]

tle in pasture lands, continued or enhanced malnutrition
for the poor, aggravation of existing deficiencies in pub-
lic health care systems in these areas will be the negative
consequences of climate change impact on the biomes of
these areas. In other words: Undermined public health sys-
tems, loss of livelihoods and finally migration will be the
dire consequences of anthropogenic climate change. The
socio-economic and political reactions to this threat can-
not be foreseen in detail. However, the international eco-
nomic cooperation between developing and industrialized
countries has to take as a priority adaptation to unavoid-
able climate change as the best means to lower impacts on
public health.

Concluding Remarks

Although threat to human health was often the cause for
environmental policy making, e. g. in the case of desulfu-
rization of power plant exhaust, the manifold threats to
human health as a consequence of global anthropogenic
climate change have rarely been named as a key reason for
climate change policy measures.What else is the partly still
growing mal-nutrition of subsistence farming communi-
ties in the desertification-prone semi-arid tropics and sub-
tropics than a threat to human health? On the other hand
most new threats to our health caused by the spread of vec-
tor-borne infectious diseases due to higher temperatures
or those caused by new weather extremes can be strongly
reduced by proper health system up-grading and pre-cau-
tionary measures that strengthen security-related infras-

tructure. However, this will probably not be the case in
developing countries already suffering from (very) weak
public health systems; unless the preliminary decisions of
the 13th Conference of the Parties to the UNFCCC lead
to a new international and binding protocol in 2009 as
a follow-on to the Kyoto Protocol that then stipulates that
a fixed portion of the revenues of international greenhouse
gas emission trading should be used for adaptation mea-
sures in developing countries. A large share has to be in-
vested in public health systems in poor developing coun-
tries in order to help the poorer parts of societies typically
suffering most from epidemics and weather-related catas-
trophes.

If earlier tropical vector-borne infectious diseases, like
theWest Nile fever, reach developed countries, research to
get proper vaccines will be stimulated within large phar-
maceutical companies. If the threat remains confined to
the poor South, this research effort will often not exist,
because developing countries’ normal population cannot
afford the expensive new drugs or vaccines that remain
property right protected for years. It is high time that po-
litical summits deal with this problem and WHO helps to
circumvent this barrier as pointed out recently by the No-
bel Prize laureate for economics (Stiglitz, 2006).
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All systems operating away from thermodynamic equi-
librium develop structures. The planet Earth will always
be far away from thermodynamic equilibrium because of
the strongly differing solar radiation input as a function
of latitude and season. Hence, the differential heating of
the surface and also the atmosphere must lead to tempera-
ture gradients, in turn causing pressure gradients that cre-
ate currents in the ocean and the wind in the atmosphere.
On a rotating sphere (in reality the geoid, which is close
to a rotational ellipsoid) these flows form low and high
pressure systems both in the ocean and the atmosphere
which are able to reduce latitudinal gradients but never
come close to thermodynamic equilibrium because of con-
tinuing differential heating. The average temperatures and
flow fields, as well as their strong spatial and temporal vari-
ability, are a function of land/sea distribution and atmo-
spheric composition, especially depending on water and
ice in clouds. The strongly climatically relevant gases in
the atmosphere are, to a large extent, a consequence of life
on Earth.

Ranking all radiatively active gases in the atmosphere
according to their influence on weather and climate shows
the exceptional composition of the atmosphere: Water va-
por (H2O) in all three phases but largely as a gas, car-
bon dioxide (CO2), ozone (O3), nitrous oxide (N2O) and
methane (CH4) constitute only three thousandths of the
atmospheric mass, yet they largely determine how much
solar radiation reaches the surface, e. g., through clouds,
and how much thermal or terrestrial radiation leaves from
there to space, again a strong function of clouds and the
above-mentioned gases. The average surface temperature
is thus strongly depending on the concentration of the
gases mentioned, which are all greenhouse gases. They do
not strongly absorb solar radiation but do absorb terres-
trial radiation, thereby forcing the surface and the lower
atmosphere to warm in order to reach nearly equilibrium
between absorbed and emitted energy. Any growth or re-
duction of greenhouse gas concentrations increases or de-
creases average surface temperature and thus changes cli-
mate.

The climate system, i. e., its interacting components at-
mosphere, ocean, land, vegetation, soils and crust, shows

http://www.env-it.de/luftdaten/download/public/docs/pollutant/03/Jahr/Ozberi06.pdf
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both a remarkable stability and high sensitivity. Over
manymillion years the greenhouse effect of about 30K has
varied only by about C/ � 5K with respect to present in-
terglacial temperatures, thus has been stable in terms of
temperature varying only from 283 to 293K. C5K how-
ever meant melting of all inland ice sheets and�5K a new
strong glaciation with major ice sheets reaching 40 to
50°N (see � Cryosphere Models).

The observed strong increases of all long-lived natu-
rally occurring greenhouse gases (+35% for CO2, +120%
for methane, and +10% for N2O since 1750) have stim-
ulated a mean global warming which now has emerged
from strong climate variability. In 2007, the Fourth Assess-
ment Report of the Intergovernmental Panel on Climate
Change concluded: “The understanding of anthropogenic
warming and cooling influences has improved . . . leading
to very high confidence that the global average net effect of
human activities since 1750 has been one of warming”. On
the other hand, the high sensitivity of the climate system
is demonstrated in so called abrupt climate change events
(see� Abrupt Climate Change Modeling).

The strongest global one of these – besides the impact
of celestial bodies – is deglaciation after an intense glacia-
tion in about 5000 to 10 000 years with a concomitant tem-
perature increase of 4 to 5K, caused by the slow latitudinal
redistribution of solar radiation due to Earth orbit param-
eter changes as a consequence of slowly changing gravita-
tional forcing by the neighboring planets, mainly Venus,
Jupiter and Saturn. Because climate is a key natural re-
source for plants, animals and humans, any rapid climate
change threatens life on Earth. Therefore agriculture (see
� Climate Change and Agriculture), forestry and all eco-
nomic activities (see � Climate Change, Economic Costs
of ) will be impacted by anthropogenic climate change in
the 21st century, leading to strong consequences in soci-
etal behavior vis-a-vis this challenge, e. g., the one caused
by growing inequity between those societies causing cli-
mate change, the industrialized countries, and those suf-
fering first or more strongly such as subsistence farmers
in semi-arid tropical areas. Climate Models developed so
far include many physical processes (see � Single Col-
umn Modeling of Atmospheric Boundary Layers and the
Complex Interactions with the Land Surface as an exam-

ple), parts of atmospheric chemistry, and vegetated land
surface atmosphere interactions, but still lack reaction of
ocean biomass production to enhanced CO2 levels. Fi-
nally, it is apparent that global warming will have an ef-
fect on human health and that this will include effects on
food crops and animals (see � Climate Change and Hu-
man Health).

The low horizontal resolution of global climate models
has stimulated nested regional climate models (see � Re-
gional Climate Models: Linking Global Climate Change
to Local Impacts) delivering enhanced output in areas
with strong topography or sea/land contrasts. The slowly
emerging Earth System Models are no longer driven by
changed atmospheric composition alone but by emissions,
i. e., they can calculate resulting greenhouse gas concen-
trations. However they are still not advanced enough to
answer the question: When will growing climate change
stress turn the present uptake of anthropogenic CO2 into
forests through the CO2-fertilization into an additional
CO2 source for the atmosphere due to a generally weak-
ened vegetation? It is common knowledge that weather,
for example the passage of a coldfront at a certain loca-
tion, can be forecast only for up to two weeks because of
the intrinsically chaotic behavior of atmospheric flow. The
accuracy of present day weather forecast models, which
are very similar to the atmospheric component of climate
models, has advanced strongly, driven by higher spatial
resolutions and better parametrizations of sub-grid scale
processes in the models, assimilation of more (and espe-
cially satellite data) into themodels and ensemble forecast-
ing. This has recently led to the same forecast accuracy up
to about 10 days in the southern hemisphere, where an in
situ observing system for the starting fields of the model is
largely lacking.

The increased attention the topic climate change has
finally attracted in the political arena will certainly accel-
erate progress in this field, despite the complex nature of
the functioning of the Earth system.

There are two additional articles on climate change
which were recruited for other sections. These articles
are: � Dynamic Games with an Application to Climate
Change Models and � System Dynamics Models of En-
vironment, Energy and Climate Change.
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Glossary

Amygdala Amygdala consists of almond-shaped groups
of neurons located within the limbic lobe in the brain.
The amygdale performs primary roles in the formation
and storage of memories associated with emotions and
is said to have a substantial role in mental states.

Basal ganglia Basal Ganglia are a collection of subcorti-
cal neuronal group and have a significant role in the
control of movement.

Central executive agent (CEA) CEA is a cognitive or
compound agent responsible for high-level executive
control, such as reasoning, task switching and realiza-
tion of internal rehearsal, e. g. within the ISAC cogni-
tive architecture.

Chinese room argument
John Searle developed a thought experiment called
the “Chinese Room” argument against what he calls
“strong AI”. Searle describes a scenario in which a per-
son who knows no Chinese is locked in a room full
of boxes of Chinese symbols together with a book of
instructions for manipulating symbols. This person re-
ceives questions in Chinese from under the door. If the
person in the room is able to pass out Chinese symbols
using the instruction book to produce correct answers
to the questions, he passed the Turing Test for intelli-
gence in Chinese, but he does not understand a word
of Chinese.

Connectionist models Connectionist models of cogni-
tion are structured on the concept of neural networks.
Connectionist networks provide an account for the
complex behavior in a way parallel distributed process-

ing (PDP) does. There is no way to distinguish between
simple and complex representations in connectionist
models. In this sense, they are considered to be sub-
symbolic.

Cortex Cortex (or cerebral cortex) is a surface struc-
ture in the brain responsible for many brain functions
including attention, sensory processing, motor func-
tions, awareness, language processing and arguably
consciousness. The human cortex is 2–4mm thick and
consists of large sheets of mostly layered neurons.

First-order cybernetics First-order cybernetics considers
control and communication in the animal and ma-
chine, where the agent receives feedback, including
utility of its actions, from the environment.

Cartesian theater A centered locus in the brain called
Cartesian materialism, because it is the view one ar-
rives at when one discards Descartes’ dualism, but fails
to discard the associated imagery of a central (but ma-
terial) theater where it all comes together.

Global workspace Multiple parallel specialist processes
compete and co-operate for access to a global
workspace. If granted access to the global workspace,
the information a process has to offer is broadcast back
to the entire set of specialists.

Humanoid robots There is no universally accepted def-
inition for a humanoid robot today. However, it is
widely accepted that a humanoid robot must have
a body somewhat resembled to a human body, ex-
hibit human-like behavior, and be able to interact with
humans using human-level intelligence. As of today,
no existing humanoid robots satisfy all these require-
ments.

ISAC ISAC stands for Intelligent Soft Arm Control. The
name arises from the fact that the arm is highly compli-
ant and safe for working with and around people. In its
multiagent architecture called the Intelligent Machine
Architecture (IMA), human andmanymodules within
the humanoid are represented as distinct agents within
a common computational framework.

Minimum robust representationalism (MRR) MRR is
a notion, rather than a formal definition, put for-
ward by Clark and Grush that addresses the problem
of internal representation when addressing cognitive
phenomena. The emphasis on emulators differs from
the classical ideas of cognitivism and representational-
ism. Transparent (i. e. analytically traceable) emulator
circuitry is the minimal needed to usefully consider
representations of external states.

Multiagent systems (MAS) A multiagent system (MAS)
is a software system composed of multiple agents and
collectively capable of reaching goals that are difficult
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to achieve by an individual agent. An agent within
MAS can be autonomous in the sense that it has own
decision-making capability or non-autonomous like
a simple input-output device. MAS agents can include
human agents like the case study in this section.

Neural networks Neural networks, or artificial neural
networks, are a class of networks of simple process-
ing units which can exhibit complex behavior. They
were inspired by the way biological nerve systems,
such as the brain, process information. Simple neu-
ral networks consist of three layers, input, hidden and
output.

Production systems Production systems are symbolic ar-
tificial intelligence systems, i. e. they manipulate sym-
bols, instead of numbers. Production systems are com-
posed three parts: a global database, production rules
and a control structure. Production rules (or produc-
tions) are called if-then rules.

Second-order cybernetics Second-order cybernetics rec-
ognizes that the agent has an important effect back
on the environment and the two systems affect each
other.

Definition of the Subject

Cognitive Robotics is an emerging field of robotics, which
will continue to evolve for the years to come. The field
of cognitive robotics generally comprises the design and
use of robots with human-like intelligence in perception,
motor control and high-level cognition. To realize cogni-
tive robots many overlapping disciplines are needed, e. g.
robotics, artificial intelligence, cognitive science, neuro-
science, biology, philosophy, psychology, and cybernetics.
Thus attempting to tightly define the subject is not con-
structive as often its nature is amorphous, growing and
a strict definition could exclude future relevant work.

Work by Clark and Grush [1] towards a cognitive
robot definition is well respected. We quote some impor-
tant considerations below:

� We hold that fluent, coupled real-world action-taking
is a necessary component of cognition.

� Cognition, we want to say, requires both fluent real-
world coupling and the capacity to improve such en-
gagements by the use of de-coupled, off-line reasoning.

� Cognizers, on our account, must display the capacity
for environmentally decoupled thought and the con-
templation of options. The cognizer is thus a being who
can think or reason about its world without directly en-
gaging those aspects of the world that its thoughts con-
cern.

In 2006 international researchers representingmany of
the above disciplines attended the Cognitive Robotics, In-
telligence and Control Workshop (COGRIC) [2], which
discussed the future of cognitive robotics. Important con-
cepts in cognitive robotics were held to be the ability to
form internal states or models for reasoning and deci-
sion making (consequently planning), learning from ex-
perience, self reflection, embodiment and situatedness,
perception to measure world, external behavior/internal
representation and importing ideas from human cogni-
tion including perception and learning (the entire system)
whilst understanding brains andminds. From discussions,
it was concluded that it was not worth debating boundaries
between consciousness, cognition and intelligence. Future
opportunities included lifelong adaptability and develop-
mental learning.

Other researchers have considered this topic, with dif-
ferent list of key features that a cognitive robot should/
would possess. Key features that participants identified in
the workshop are:

� Ability to perceive the world in a similar way to humans
(or better) (e. g., “active perception”, Dana Ballard [3],
“ecological approach to perception”, JJ Gibson [4])

� Ability to communicate with humans using natural
language and mental models (robust human-robot in-
teraction, such as overcoming the frame of reference
problem, Alan Schultz [5])

� Ability to develop cognition through sensory-motor
coordination (e. g., “morphological computation”, Rolf
Pfeifer [6])

� Ability to have a sense of self awareness (internal states,
machine consciousness: Igor Alexander [7], OwenHol-
land [8] vs. Kevin O’Reagan [9])

� Ability to use attention and emotion (not in a sense of
social robots) to control behaviors (K. Kawamura [10])

Robots may be justified in terms of ameliorating a labor
shortage, working in hazardous environments, and under-
taking repetitive tasks. However, the importance of cogni-
tive robotics is in enabling robots to work autonomously
in real-world environments. Currently, robots are not in-
telligent enough to operate without supervision in real-
world situations, e. g. due to difficulties in applying exist-
ing knowledge to new situations, selecting between com-
peting goals, coping with multiple sensory input and com-
pleting multiple tasks each with subtle variations. Delib-
erative robots may be able to weld a car, but higher order
cognition (Fig. 1) is needed to care for the elderly as the
environment is much more unstructured, dynamic, sen-
sory rich, noisy, multitask, varied input/communication,
emotive and interactive.
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Cognitive Robotics, Figure 1
A spectrum of cognition in robotics. Adapted from [11]

Finally we quote Pentti Haikonen, Nokia Research
Center:

“The next big push in robotics may well be machine
cognition. Cognitive robotics, that are able to perceive and
move as well as we humans do, are the focus of several
national and international research programs in EU, Japan
and USA. The emerging cognitive technology (as opposed
to cognitive science) tries to emulate human information
processing and in doing so utilizes experience, affordance
(in terms of meaning), attention and even emotion” [2].

Introduction

Humans have sought to create human-like artificial crea-
tures for menial tasks, for coworkers and for the intellec-
tual challenge. Historical stories of Golems raised by reli-
gious rituals from mud have lead to the science-fiction of
androids assisting or terrorizing the human race. Fiction
has now been replaced by increasingly serious attempts by
industry and academics, which is treated here as it relates
to complexity.

Complexity covers systems where the interaction of
multiple components leads to behaviors unachievable by
any individual component alone. Cognitive robots require
multiple components to function, often in parallel and in
harmony, with the goal to produce intelligent human-like
behavior and skills.

The origin of modern cognitive robotics comes from
the field of cybernetics, the study of control and commu-
nication in living organisms, machines and organizations.
The term cybernetics was popularized by Norbert Wiener
in his 1948 book [12]. Cybernetics had a crucial influence
on many important concepts, such as goal-directed behav-
ior generation, self organization and situated nature of in-
telligence, which are now commonly used in the intelligent
robotics community.

In the 1960s, researchers in artificial intelligence (AI)
pursued the concept of intelligence from a more deter-
ministic point of view. AI, or commonly known as strong
AI, was predicated on the presumption that intelligence
or knowledge can be represented as production systems

and stored inside of a machine, i. e. computer. However,
researchers in cybernetics claim that intelligence is an at-
tribute of an interaction with the environment rather than
a commodity stored in a computer and must be actively
constructed by a machine itself (e. g., [13]).

The concept of strong AI is that a machine’s proces-
sors can become amind, exhibitingmany aspects of intelli-
gent behavior, especially sapience and insight into its inner
workings. WeakAI, on the other hand, maintains that ma-
chines can only reproduce human attributes through the
interaction with the environment, which sets constraints
on cognitive robots. The best known example of a counter
argument to claims made by the strong AI approach is the
Chinese Room argument made by John Searle [14]. The
debate Searle caused continues today.

In 1999, Clark and Grush [1] pointed out the problem
with the notion of internal knowledge or world representa-
tion (a part of strong AI argument) and offered a solution
called the Minimal Robust Representationalism (MRR).
According to MRR, “Cognition, we want to say, requires
both fluent real-world coupling and the capacity to im-
prove such engagements by the use of de-coupled, off-line
reasoning” ([1], p. 13). We will revisit this notion later in
Sect. “Case Study”.

As the opening paragraph stated, building a humanoid
robot with which to embody human-level intelligence has
been a dream of many AI and robotic researchers. In 1993,
Rodney Brooks began to work on a first generation cogni-
tive robot [15], which was an upper-torso humanoid and
used to generate human-like behaviors. His effort led to
a number of government and commercial humanoid de-
velopment projects in Japan, such as Honda’s ASIMO [16]
and Toyota’s personal assistant humanoid robot [17] dur-
ing the 1990s and early 2000s. One of the strong arguments
for humanoid robot developmentwas that there is a strong
desire to replicate human behavior within embedded arti-
ficial agents and humanoid robots are the best embedded
system to do so. Other researchers consider the field too
new to draw this conclusion, thus the jury is still out, e. g.
no one knows whether an elderly person prefers a human-
like robotic companion to a robotic wheelchair that pro-
vides specific needs for the person.

Recently, a number of international projects aimed to
develop humanoid robot capabilities that can be used to
test developmental theories of cognitive development and
language acquisition were initiated (e. g. RoboGroup [18],
RobotCub [19], Synergistic Intelligence [20]). The over-
all objectives of these projects are to study the percep-
tual, representational, reasoning and learning capabilities
of embodied systems in human-centered environments. In
particular, these projects propose to use humanoid robots
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to study mental development processes through robots’
interaction with the environment similar to children’s
mental development processes. For example, RobotCub
project, one of the most ambitious among them, aims to
develop a set of fully functional humanoid cub robots the
size of a 2-year old child.

The aim of this chapter is to provide an overview of
the emerging field of cognitive robotics that will evolve
over the years into a truly interdisciplinary field. The or-
ganization of the rest of the chapter is: Sect. “What Is
Cognition?” covers the concept and definition of cogni-
tion. Section “Cognitive Architectures” covers major ap-
proaches to cognition: symbolic, connectionist and hybrid.
Section “Cognitive Robotics” gives an overview of various
cognitive robots in terms of important aspects and for-
mative examples. Section “Case Study” summarizes Kawa-
mura’s attempt to realize a humanoid robot emphasizing
the cognitive task of internal rehearsal. Finally Sect. “Fu-
ture Directions” provides future directions for the field of
cognitive robotics.

What Is Cognition?

This section explores cognition in its influence on con-
structing advanced robots, rather than debating philo-
sophical insights into its nature. By investigating the
brain’s functionality, we can gain insight into how to form
an artificial cognitive mind.

A goal of advanced/cognitive robots is to endow a level
of intelligence and cognitive skills typically associated
with people or animals. Although the goal may be based
on nature, the methods do not have to be naturally in-
spired. Much of the early classical symbolic AI-type cogni-
tion work (details in Sect. “Cognitive Architectures”) were
based on computer science techniques, such as production
rules, finite state machines and functional programming.
Due to issues with scalability, generality, robustness, dis-
turbance rejection and coping with environmental proper-
ties (such as uncertainty, noise, nonlinearities, non-deter-
minism and epistasis), biologically inspired methods, such
as connectionism became popular in the 1980s.

Although robotic cognition often takes inspiration
from biological evidence, it does not guarantee that the
outcomes will be equivalent due to discrepancies in evi-
dence and implementation. Investigative techniques, from
cell straining to functional magnetic resonance imagin-
ing or fMRIs, have been used to ‘map’ the brain. How-
ever, there is much debate on the accuracy and interpre-
tation of the results, with the caveat that the brain’s struc-
ture/functionality is “not as simple as it appears” often
stated. It is argued that a boxology (where functional boxes

are connected by lines), which may be easily represented
in a computer program, could not replicate the biological
evidence.

Mapping brain activity in awake, functioning animals
is considered more valuable for cognitive research than
when the animal is sleeping, e. g. sensory–motor coordina-
tion requires interaction with an environment. Insight can
also be gained into self organizing and self reflection dur-
ing sub-conscious processes using modern neuroscience
methods.

Tests for cognition have a tradition in animal as well
as human studies, e. g. maze exploration (path planning),
T-maze latent learning, mirror test, and relational stud-
ies. These are being adapted for robots, e. g. recognition
of own mirror image by a small robot [21].

The above tests identify key features and attributes for
cognition, but individually do not represent a definition
for recognizing cognition. Cognition may be considered
as ill-defined due to many alternative definitions. A simple
definition came from the foresight initiative by the United
Kingdom Department of Trade and Industry (UKDTI)
that states:

“Cognitive systems are natural or artificial information
processing systems, including those responsible for per-
ception, learning, reasoning and decision-making and for
communication and action” [22].

Applying definitions is also controversial, e. g. at what
point does something stop being cognitive? (e. g. are ants
cognitive as an individual and/or do they display collective
cognition?).

Cognitive Architectures

The task of developing a general cognitive architecture and
subsequent computational models is greatly complicated
by the lack of a clear definition of cognition as discussed in
Sect. “What is Cognition?”. Nevertheless, cognitive archi-
tectures are designed to propose structural properties of
the modeled cognitive systems such as humans. Cognitive
architectures are classified as symbolic, connectionist, or
hybrid (i. e. symbolic-connectionist). As John Anderson,
one of the pioneers of the unified theory of cognition, ob-
served, “it is difficult to answer a question regarding which
(architecture) might be the correct one or the most correct
one since these architectures are often quite removed from
empirical phenomena that they are supposed to account
for” [23]. Nonetheless, cognitive architectures generally
implement cognition as a whole as opposed to cognitive
models (the topic of Sect. “Cognitive Robotics”), which fo-
cus on particular problems or applications. The aim of this
section is to provide the reader a short summary and the
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important aspects of symbolic, connectionist and hybrid
approaches using representative cognitive architectures in
the fields of cognitive science, artificial intelligence, cogni-
tive neuroscience, and machine cognition.

Symbolic Approach to Cognition

The symbolic approach to cognition can be best seen
in Newell and Simon’s physical-symbol system hypothe-
sis [24] which states that “a physical symbol system has
the necessary and sufficient means of general intelligent
action”. It means that any system that manipulates sym-
bols is sufficient for producing intelligent behavior, and
further that all intelligent systems are necessarily imple-
mentations of physical-symbol systems. The symbolic ap-
proach to cognition dominated the filed of cognitive sci-
ence and artificial intelligence during the 1970s and 80s.
Well-known examples of architectures that fall within this
paradigm include ACT-R, Soar and EPIC.

ACT-R (Adaptive Character of Thought-Rational)
ACT-R is a cognitive architecture for analyzing human
cognitive performance which was developed by John R.
Anderson and his group at Carnegie Mellon Univer-
sity [25]. ACT-R has been inspired by the work of Allen
Newell and also inspired by the progresses of cognitive
neuroscience. It is not a computational model, rather it is
a framework for modeling specific human cognitive abili-
ties whose predictions can be compared with human per-
formance. That is, models of assumptions in cognitive pro-
cesses can be created using ACT-R, allowing results to
be easily observed, visualized, and compared with human
performance data.

ACT-R makes use of symbolic processing and a sub-
symbolic network. Symbolic processing is done through
a set of production rules of the classic IF . . . THEN form.
The sub-symbolic level runs concurrently with the sym-
bolic level and consists of parallel processes that influence
the performance of the symbolic system, such as conflict
resolution, data retrieval, and rule execution. This allows
the designer to have extra control over various conditions
that affect the system performance without having to cre-
ate explicit production rules. The central feature of the
architecture is that all processing depends upon the cur-
rent goal of the system. Functionally, ACT-R consists of
three basic components: modules, buffers, and a pattern
matcher as shown in Fig. 2.

There are two types of modules: perceptual-motor, and
memory modules. Perceptual-motor modules (i. e., Visual
and Motor Modules in Fig. 2 Declarative Memory) inter-
face with the real world by perceiving environment and

Cognitive Robotics, Figure 2
Functional structure of ACT-R. Adapted from [25]

generating actions. Memory modules represent ACT-R’s
most important assumption, i. e. human knowledge can be
divided into two kinds of representations: declarative and
procedural. Declarative memory consists of facts which
can be used to represent goals. Procedural memory de-
scribes tasks in the form of production rules. Each pro-
duction rule consists of a condition in which it should be
executed, and an instructional component describing what
to do.

Buffers hold declarative memory modules to be used
by ACT-R and are somewhat analogous to the human
working memory system [26]. Declarative information
that is relevant to that goal is activated and considered to
be in the focus of attention. The contents of the buffers
are analyzed and a production rule is matched by the Pat-
ternMatching module. A production rule is selected based
on how well the conditions of execution associated with
the production rule are met. The reader is referred to the
ACT-R web site [25] for further information on the archi-
tecture and useful links.

SOAR (State, Operator And Result) Soar is another ex-
ample of a production system-based cognitive architecture
that implements goal-directed human behavior. It was cre-
ated by John Laird, Allen Newell, and Paul Rosenbloom
at Carnegie Mellon University [27]. Soar has been widely
used by AI researchers to model different aspects of hu-
man behavior. Initially, Soar had been presented as a prob-
lem-solving architecture for artificial intelligence. Since
then, Soar has been applied both within artificial intelli-
gence and psychology for modeling human cognition.

Similar to ACT-R, underlying the Soar architecture is
that knowledge representations can be made in forms of
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Cognitive Robotics, Figure 3
Soar cognitive architecture. Adapted from [28]

procedural, declarative and episodic. Also Soar tries to ad-
dress a collection of mechanisms of mind. Figure 3 illus-
trates a high-level Soar architecture showing major mech-
anisms.

Soar represents all tasks as collections of problem
spaces, following Newell’s problem space principle [29].
Problem spaces aremade up of a set of states and operators
that manipulate the states. Soar begins work on a task by
choosing a problem space, then an initial state in the space.
Soar represents the goal of the task as some final state in
the problem state. There is a single current state that repre-
sents the information about the problem or task being pro-
cessed, including information about the current situation,
the current state of the model, the goal toward which the
model is working, and information relevant to that goal.
This information is brought into the Soar’s dynamicmem-
ory (SDM). All productions that match the current con-
tents of dynamic memory then fire in parallel. The results
usually cause changes in the dynamic memory, so other
productions may now match. Those productions are then
allowed to fire causing further matching. This process con-
tinues until no new productions fire. At this time, there
may be a set of possible actions available as results from
the productions firing. Action decision is processed by the
preference system. When an action is performed, this usu-
ally results in a new state, and thus the operation can be
repeated.

All learning in Soar occurs through the “chunking”
mechanism, which is a form of explanation-based learn-

ing and a by-product of impasse resolution [30]. When an
impasse is resolved and results in a change in the contents
of dynamic memory, information about the resolution is
stored as a new production rule. Impasses occur frequently
during problem solving in Soar therefore, so does learning.
The reader is referred to the Soar web site [28] for com-
plete documentations and useful inks.

EPIC (Executive-Process/Interactive-Control) EPIC is
a cognitive architecture developed by David E. Kieras and
David E. Meyer at the University of Michigan [31]. While
ACT-R and Soar focus primarily on the internal infor-
mation processing of humans, EPIC extends to include
the perceptual and motor aspects of human cognition.
A schematic overview of the EPIC architecture is shown
in Fig. 4. It consists of a cognitive processor in the form of
a production system, a set of perceptual andmotor proces-
sors and a simulated task environment allowing interac-
tion with the surroundings. EPIC has three types of simu-
lated sensory organs: visual, auditory, and tactile. For each
sensory organ, there is a perceptual processor that works
in parallel to each other. These processors receive infor-
mation from the sensory organs, convert it into a symbolic
form, and send the symbolic representation into working
memory.

There are motor processors for each of the three sen-
sory processors: ocular, vocal, and manual. The inputs
to the motor processors are abstract symbolic representa-
tions of responses, which are then translated into explicit
responses and passed to the motor processors. Informa-
tion from the motor processors is passed to the working
memory as a feedback.

Overall control of this architecture is attained through
the use of task-specific control processes. There is no cen-
tral control structure. Instead, production rules are used
that are of the same form, but functionally separate from
those used to encode information. Limitations in the EPIC
architecture are postulated to be in the capacity of percep-
tual-motor processes.

The most important issue being pursued with EPIC is
said to be the nature of humanmultiple-task performance.
Major applications are user interface design to telephone
operator workstations and cockpit systems, in which op-
eration speed is critical and multiple perceptual and mo-
tor modalities are involved. The reader is referred to the
EPIC web site [33] for complete documentations and use-
ful inks.

Connectionist Approach
The connectionist approach to cognition provides an al-
ternative theory of mind to the symbolic approach. It be-



Cognitive Robotics C 1115

Cognitive Robotics, Figure 4
EPIC architecture. Adapted from [31,32] with kind permission from Professor David Meyer

came popular in the 1980s and its popularity has not been
diminished. The connectionist approach differs from the
symbolic approach in almost all major dimensions. Con-
nectionist (or parallel distributed processing) models of-
fer many attractive features when compared with standard
symbolic models. They include a level of biological plausi-
bility, parallel distributed representations, pattern gener-
alization performance, and adaptive learning.

Connectionist models represent information through-
out a network of simple, but highly interconnected units
or nodes. In some connectionist networks, each unit has
a particular meaning. In others, such as neural networks,
the nodes are individually meaningless and information is
represented as a function of the simultaneous activation
of multiple nodes. Neural networks [34] are one of the
most popular connectionist models used in many fields,
including artificial intelligence and robotics. The number
of different connectionist architectures available today is
large; to discuss them all is beyond the scope of this sec-
tion. Instead, this section will focus on two unique archi-
tectures, which the authors believe generic enough to give
the reader a good sense how to design connectionist-based
cognitive robots. For more general discussion of connec-
tionist approach, the reader is referred to an excellent re-
view [35]. For more technical details, the reader is referred

to, e. g. the Handbook on Parallel andDistributed Process-
ing [36].

Connectionist Cognitive Machine Architecture Pentti
Haikonen of Nokia Research Center takes a connectionist
approach to build an embodied cognitive architecture. In-
stead of creating specialized models that reproduce cogni-
tive processes directly at higher representational level like
ACT-R, Haikonen proposes a cognitive architecture based
on a distributed signal representation as a building block
as shown in Fig. 5. In Fig. 5, “the preprocessed sensory in-
formation in the form of distributed signal representation
is forwarded to feedback neurons, which also accept feed-

Cognitive Robotics, Figure 5
Perception/response loopmodule. Reprinted from [37]with kind
permission from Dr. Pentti Haikonen
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Cognitive Robotics, Figure 6
Haikonen’s cognitive machine architecture. Reprinted from [37]
with kind permission from Dr. Pentti Haikonen

back signals from the system”. The feedback and the sen-
sory information are compared with each other and the
eventual match, mismatch and novelty conditions are in-
dicated by respective signals. The internal feedback indi-
cates also the intended act that is to be executed subse-
quently by the effector andwill therefore be expected as the
corresponding sensory percept. In that case, “the feedback
signal is comparable to the so-called corollary discharge
which is forwarded from the motor area to sensory areas
in the brain” [37].

Figure 6 illustrates a schematic diagram of Haikonen’s
cognitive architecture. The cognitive architecture deter-
mines the cross-connections between the sensory percep-
tion/response loop modules of the Fig. 5. The architecture
allows the association of complex additional meanings
with percepts and also allows the generation of emotional
significance, the “emotional soundtrack” to be associated
with memorized entities and episodes. This emotional sig-
nificance is then used to control attention. Each module
works on its own and produces streams of percepts about
environment and the module’s own internal states. This
output is then fed back to the feedback neurons and via
this route becomes a percept.

Cognitive Robotics, Figure 7
Typical neuronal unit model used in SNMs. Reprinted from [40]
with kind permission from Dr. Jeffrey Krichmar

Synthetic Neural Modeling The synthetic neural mod-
eling approach is a general method of testing theories of
brain function at the system level [38]. It was developed by
a group of researchers at the Neurosciences Institute over
the last two decades. Thesemodels are designed to demon-
strate the theory of neuronal group selection (TNGS) pro-
posed by Edelman [39]. That is, it is based on the premise
that neuronal circuits in the brain, formed with functional
properties, the value of which is not knowable a priori,
compete with one other to participate in the determination
of behavior via strengthening of their connections with
other brain circuits. Basic unit of selection in the TNGS
are neuronal group, collections of dozens, or hundreds
of neurons that are strongly connected to each other via
synapses. A synthetic neuralmodel (SNM) comprises a de-
vice, an environment and a neural system simulation [40].
Figure 7 shows a typical SNMunit (a) and its output (b). In
(a), neuronal unit i receives input from N neuronal units
via synaptic connections labeled cij, j D 1; 2; : : : ;N . Each
connection has a relative strength that can be either ex-
citatory (e. g. ci1 and ciN are positive) or inhibitory (e. g.
ci2 is negative). In (b), the output of a neuron is subject to
a function based on its current activity and the input from
other neurons. Below a specific threshold 'i, the output is
0. SNMs have been embedded in a series of mobile robots
called Darwin [38]. Section “Cognitive Robotics” includes
a short description of such a Darwin model.

Hybrid Approach

The hybrid architecture is intended to capitalize on the
complementary strengths of production-systems and con-
nectionist architectures to implement a human dual pro-
cessing theory of controlled and automatic processing.

CAP2 (Controlled andAutomatic Processing 2) CAP2
is a hybrid cognitive architecture, incorporating both sym-
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Cognitive Robotics, Figure 8
Microstructure of a CAP2 module. Reprinted from [41] with kind
permission from Professor Walter Schneider

bolic (e. g., ACT-R) and connectionist (e. g., PDP) ele-
ments. It was developed by Walter Schneider and others
at the University of Pittsburgh [41]. It is based on a hu-
man dual processing theory of automatic and controlled
processing [42]. The CAP2 architecture is implemented
with entirely connectionist components, but has networks
that operate as sequential control structures to behave like
a production system. The basic module of the CAP2 ar-
chitecture is shown in Fig. 8. It involves two layers of
units and five control signals. It is modeled after the cor-
tical columns in the human cortex. An input vector of
activation enters the module from below, passes through

Cognitive Robotics, Figure 9
TheCAP2 architecture showing three regionswith four levels in each region. Reprinted from [41]with kind permission fromProfessor
Walter Schneider

a connection matrix that reflects prior learning and evokes
a new activation pattern in the input layer. The input layer
then activates the output layer through a second connec-
tion matrix and sends a vector of activation to other mod-
ules.

A schematic overview of the CAP2 architecture, which
implements a hierarchy of modules or modular processors
is shown in the Fig. 9. At the top of this hierarchy is an ex-
ecutive control network, which is responsible for the con-
trol of the flow of information betweenmodules. This con-
trol of information flow is conducted according to the cur-
rent goal of the system, thusmaking it conceptually similar
to the ARC-R architecture.

Cognitive Robotics

Now that the relevant aspects of cognition have been iden-
tified and the formative architectures in the field have been
outlined, this section explores cognitive robotics. It does
not attempt to provide necessary and sufficient measures
for determining if a device is a cognitive robot as the field
is still maturing and such definitions are likely to prove
limiting when exploring the still somewhat unknown na-
ture of cognition. Nor will this section present a history
of cognitive robots as it is more insightful to detail impor-
tant aspects of the field illustrating concepts with features
of individual robots.
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The first aspect is that a cognitive robot is embodied,
which is commensurate with the situated nature of intelli-
gence. It is noted thatmost robots have self-contained pro-
cessing relating to a single environment often with a sin-
gle objective. Increased wireless data transfer rates have
resulted in the possibility of the processing being remote
from the sensing and action. Furthermore, a single proces-
sor could now be embodied in multiple locations simulta-
neously, whilst communicating with other embodied and
remotely embodied processes. Note: a disembodied pro-
cessor has no online environmental interaction, which is
employed occasionally where an offline agent is used to
quickly develop promising strategies based on the model
of the real environment built or learnt from embodied in-
teractions.

Arguably the first robots exploring cognition were
built by the cyberneticist Grey Walter in the late 1940s.
The idea of cognitive robotics had not been developed in
1948 when the first tortoise was designed. The legacy of
Grey Walter [43] is such that some of his ideas have influ-
enced biologically inspired robotics and are still relevant
today. The tortoises were based on analogue electronics as
digital electronics barely existed at the time. They relied
on relays – threshold devices – to implement behavioral
transitions. Phototaxis behaviors were obtained as well as
touch-controlled behavior and results were reported on
the mirror test [44].

Walter was also an eminent neuroscientist, a field that
continues to have much input and importance into cogni-
tive robotics. This highlights the equal support of all the
associated fields. This support is a two-way process, e. g.
the intellectual challenge of creating cognitive robotics in-
cludes testing insights into natural cognition. One unique
robot, or a design study, along this line is CRONOS robot
(Fig. 10) being developed by Owen Holland [45]. Holland
calls his approach anthropomimetric robotics.

Cybernetics arose from the realization that many
seemingly diverse fields share similar properties; namely
the importance of feedback from the environment to a sys-
tem. This feedback is central to communication and con-
trol in order to achieve efficacy of action. The theoretical
insight from cybernetics into dynamical systems is very
relevant to cognitive robots.

First-order cybernetics considers the effect of the envi-
ronment through feedback on the robot, whilst second-or-
der cybernetics acknowledges that the robot can also affect
the environment and thus the meta-system must be taken
into account. Consequently, the environment can deter-
mine the level of cognition that any robot can display. An
example is where an exploratory robot has to learn only
not to collide with obstacles, so the robot learns to stay

Cognitive Robotics, Figure 10
CRONOS robot. Reprinted with kind permission from Professor
Owen Holland

away from obstacles by staying still. Braitenberg, a cyber-
netician and a neuroanatomist, originated the Braitenberg
Vehicles as a thought experiment to “illuminate the key
issues of what we may call cybernetics or artificial intel-
ligence or cognitive science” [46] based on adjusting the
morphology of a vehicle in order to respond differently to
similar environmental stimuli [47].

Morphological computation is an important modern
research field where the robot is designed to complement
the environment. Whereas evolution has had millennia to
adapt creatures to their environment in order to exhibit
cognition, robots must be designed to fit their environ-
ment. An example is the robot Puppy designed by Iida
and Pfeifer [48], where stable gates are obtained through
efficient mechanical design and simple processing rather
than convoluted cognitive learning. A morphological de-
sign guide, adapted from Pfeifer and Scheier [49], is shown
in Fig. 11.

Perception interfaces with the environment, so the
sensor set-up of the robot is core to cognition. Human eyes
are tuned to the wavelengths of primary colors so will have
a stronger reaction to these colors (e. g. red) than a robot
with a CCD camera that treats visible frequencies equally.
Humans have multiple types of sensors (more than the
anecdotal five), whilst robots may have many more (such
as laser range finding). Thus robot cognition of an envi-
ronment will differ, subtly or significantly, from human
cognition.

Even if a human and a robot could be instantaneously
given the same perceptions there is the explanatory gap,
where the quality of the experience is important. Smelling
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Cognitive Robotics, Figure 11
Morphological design guide. Adapted from [49]

a red rose will bring a deeper quality of experience to a hu-
man due to past associations. Humans also utilize active
perception, where the perception of an object is deliber-
ately manipulated in order to experience it to a greater ex-
tent. Thus a cognitive robot will need to perceive by exer-
cising a skill, rather than passively receiving information.

The perceptions need to be represented internally
within a robot in order to manipulate them to determine
the appropriate action. Either connectionist or symbolic
representationsmay be utilized. Connectionist approaches
reputedly mimic the representation in the human brain,
which is difficult to understand. Symbols have proved use-
ful when transparency for human readability and under-
standing of cognitive processing is required. The symbolic
grounding problem [50] addresses how symbols get their
meaning and in a deeper sense, what it is to experience
the symbol. The word ‘red’ is very emotive to humans, but
storing the letter sequence ‘r e d’ in amemory address does
not have the same connotations. Themore symbols are ex-
perienced, the greater the grounding.

A connectionist architecture based on the biological
evidence has been successfully used by Krichmar [40] to
replicate the behavior of rats in a Morris Water Maze
(a simple water-based maze where a rat is required to
use memory and path planning in order to locate a safe
platform) (Fig. 12). Through much post processing of
the learned artificial neuronal links an additional artificial

pathway was deemed necessary, which was subsequently
found to exist in nature. This is an example where cogni-
tive studies can be enhanced through cognitive robotics.

Although it is possible to perceive and represent amul-
titude of external information it would be too slow and
take too much memory if every detail was processed and
stored. Thus a cognitive robot must have attention on
the salient features of the domain, whilst ignoring others.
This reasoning continues as the actions are available to the
agent (affordances) within a domain must be determined
for analysis/selection. Classical search is too slow so key
feature selection is required. Once an action has been se-
lected the frame problem (Frame Problem in Artificial In-
telligence) occurs as the cognitive robot must determine
what to update dependent on the results of effecting this
action.

It has been argued that the mind has a central execu-
tive that acts as a librarian for memories [51]. Although
this may provide a practical solution, it is undetermined
what tells the central executive how to act. As an alterna-
tive approach, Noelle proposes that:

“Since working memory is employed extensively dur-
ing cognitive processing in humans and animals, it is rea-
sonable to conjecture that robots could benefit from the
capabilities provided by a working memory system. Ben-
efits could include the focusing of attention on the most
relevant features of the current tasks” [52].
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Cognitive Robotics, Figure 12
Darling robot exploring dry version of Morris Water Maze. Reprinted with kind permission from Dr. Jeffrey Krichmar

It is worth noting here that memory is not considered
uniform in humans, with types such as episodic, procedu-
ral and semantic being identified [53]. Episodic memory
encodes individual events, whilst semantic memory ex-
presses the essence of memories. It is argued that a mech-
anism, such as abstraction, is required to transfer between
episodic and semantic memory. Memory is also tempo-
ral in nature, which has caused much debate into its cat-
egorization. Long-term, short-term and working memory
are hypothesized, but it is the ability to recall appropri-
ate past events/lessons in a timely manner and compare
these with prescient events that is important to cognitive
robotics.

Learning from feedback encompasses one of the most
active areas of AI research, so it will not be detailed here.
Instead, a few important aspects for cognitive robotics are
highlighted. To map the vast world into memory requires
compactness as well as the recall of salient features. States,
actions and feedback can be imprinted, which although re-
liable is memory intensive. The ability to generalize, i. e.
remove irrelevant information, improves performance but
more steps are necessary. Abstraction is where patterns,
both spatial and temporal, are identified independent of
their associations, e. g. the concept of a tree without recall-
ing specific instances. The ability to scale learning is amain
challenge in the field of AI.

Many advanced robotic platforms exist or are emerg-
ing, such as ASIMO [16] and iCub [19]. Unfortunately,
many modern actuators require much power, space and
advanced control. Lack of compliance, which is inherent
in most animals and other material properties, can limit
the behavior in a cognitive robot. CRONOS [45] is an ex-
ample of a platform with natural actions to mimic human

cognition. Thus a new ‘breed’ of robots will require new
control methods as their nonlinear nature results in many
existing control methods being invalid.

Now that we have considered an embodied robot with
the rudiments of cognition, there are aspects of cognition,
behavior and social interaction that need to be considered.

A cognitive robot will need to plan a series of ac-
tions over time. This will require a series of state-action
links, an internal world model, or a method that uti-
lizes the world itself as a model. Cartesian theater, global
workspace [54] and other architectures have been pro-
posed for such a model.

Despite the ability to memorize and learn from situa-
tions, a robot will need to react to unknown/unfamiliar sit-
uations. Interpolation and extrapolation are popular tech-
niques, but are often hard to compute and cannot be guar-
anteed to be effective. Instead, artificial emotions are being
considered as action modifiers, goal setters and decision
makers. Emotions are also useful to aid human robotic in-
teraction, but their cognitive uses are much wider [55].

Most previous robots were designed to achieve a sin-
gle or limited number of similar tasks and goals. Increasing
the range of competencies of a robot will require it to select
between goals, so a value system will be needed on which
to base decision-making. Science fiction may suggest hard-
coded laws for robotics [56], but this could lead to conflicts
and contradictions. Debates have begun on the ethics and
legal aspects of giving robots autonomy in goal setting, es-
pecially if this enables new goals to be determined.

Robots operating in a domestic or social setting will
need to assess the intentions of others to aid collaboration
and prevent destructions/accidents. Humans have inher-
ited neural circuitry to recognize faces and use body lan-
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guage/gestures as important communication tools. Much
work is required in this field and it is unproven on how
humans will react to robots in a social setting [5].

Work in the 1970s by Masahiro Mori on the Uncanny
Valley hypothesizes that a robot must appear and behave
very humanlike to be acceptable [57]. Alternatively it is
better to make the robot mechanical in appearance, so it
would be acceptable as a mechanoid.

After considering what future cognitive robots may
need it is worth noting that their processing is unlikely
to be serial, silicon-based digital systems. Parallel systems
are more timely when processing large quantities of data.
Analog systems could encompass non-linear and possibly
nondeterministic behavior. Finally, biological substrates,
which exhibit both the above properties, are being devel-
oped for use in robot control [58].

Case Study

Introduction

This section presents a case study on the humanoid robot
ISAC [59] that one of the authors (Kawamura) is devel-
oping. Specifically, the task of reaching for a named ob-
ject involving internal rehearsal is explored as sense, mem-
ory and planning are all required and the implementation
of an ‘inner sense’ where sensory experiences and conse-
quences of different behaviors may be anticipated is devel-
oped.

The first lesson is that humanoid robots are indeed
complex systems due to the number of components that
must interact. Figure 13 shows ISAC that is an upper bod-
ied humanoid robot incorporating stereo vision, audio and
touch sensors with pneumatic actuation for multiple arm

Cognitive Robotics, Figure 13
ISAC reaching to Barney with left arm

and hand movement. Sensing inputs are mapped to non-
linear and flexible actuators through parallel, distributed
processing that represent perception, reasoning and learn-
ing.

Architecture

During earlier development it was realized that enhance-
ment and maintenance of such robotic software systems
could benefit from domain-specific guidelines that pro-
mote code reuse and integration through software agents.
This led his group to develop a multiagent-based robot
control architecture based on the Intelligent Machine Ar-
chitecture (IMA) [60,61]. IMA allows for modular design
and the development of subsystems from perception mod-
eling to behavior control through the collections of soft-
ware agents and associated memories. Figure 14 was con-
figured using IMA agents and associated memory struc-
tures. It consists of a number of IMA agents and a set of
memory structures. Within the cognitive architecture, the
Self Agent represents the robot’s self [62] and is respon-
sible for multiple aspects of cognition including internal
rehearsal.

In the ISAC architecture, the Self Agent handles the
dual sensory-motor loops as shown in Fig. 15. The First–
Order Response Agent (FRA) is responsible for the reac-
tive and routine responses of the system while the Cen-
tral Executive Agent (CEA) is responsible for the cogni-
tive response. The Internal Rehearsal System (IRS) takes
the working memory chunks as the motor commands,
the current situation as the external state and sends a re-
hearsed result to CEA. If IRS produces a poor prediction,
CEA will suppress the Activator Agent, replace the work-
ing memory chunks, and tell the Activator Agent to switch
action.

It is known that humans are able to have sensory ex-
periences in the absences of external stimuli as illustrated
by experimental results of, e. g. Lee and Thompson [63].
It thus seemed reasonable to assume the existence of an
‘inner sense’ where sensory experiences and consequences
of different behaviors may be anticipated. The idea of
the existence of such an inner sense (or model) does not
necessary go against the theory of embedded intelligence
advocated by a number of researchers e. g., Brooks [64],
Clancy [65], Clark [66], Pfeifer [49] who de-emphasize the
role of internal world models and instead emphasize the
situated and embodied nature of intelligence. An alterna-
tive to internal world models is the ‘simulation hypothe-
sis’ by Hesslow [67] which accounts for the ‘inner world’
in terms of internal simulation of perception and behav-
ior. Kawamura’s approach may be termed as a “grounded
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Cognitive Robotics, Figure 14
IMA-based cognitive robot architecture

Cognitive Robotics, Figure 15
ISAC self agent cognitive cycle
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internal simulation” utilizing one type of internal repre-
sentation of perception and behavior.

Design of the Internal Rehearsal System (IRS)

Brain-inspired internal simulation research has now
moved into the robotics field. For example, Shanahan [68]
proposed a cognitive architecture for a mobile robot,
shown in Fig. 16, involving two sensory-motor loops: the
reactive or first-order loop and the cognitive or higher-
order loop. The first-order loop involves the sensory cor-
tex (SC), motor cortex (MC), and basal ganglia (BG). This
loop directly maps sensory input to motor actuation. The
higher-order loop internally rehearses the decision from
the first-order loop and changes the output of the sys-
tem based on the observation of this rehearsal through the
Amygdala (Am) or the emotion system.

Cognitive Robotics, Figure 16
A top-level schematic diagram of two interacting sensory-motor
loops in the brain. Adapted from [68]

Cognitive Robotics, Figure 17
ISAC simulator displaying a Barney doll as a sphere

When IRS is invoked by CEA, it takes the current be-
havior chunk as themotor command and the current envi-
ronment ISAC is in as the current state. After CEA selects
a behavior to perform the skill described by the task, IRS
internally rehearses the behavior with the percept corre-
sponding to the current. If a collision occurs with the per-
cept during the rehearsal, IRS returns the percept, the step
in interpolation where the collision occurred, and the total
number of joint steps in the interpolated motion to CEA.

The following experiment is designed to evaluate how
FRA, CEA, and IRS work together. The experiment in-
volves two percepts: Barney (target) and a Lego toy (ob-
stacle) (Fig. 17).

1. A task to reach-to-Barney is given to ISAC. FRA imme-
diately places ReachRight and Barney into the working
memory (WM) as chunks.

2. Using the chunks, IRS will try to reach to the Barney
with the right arm, but predicts a collision with the Lego
toy.

3. CEA will suppress the Activator Agent based on this
prediction from IRS.

4. CEA will use the episodic retrieval technique and re-
place the chunk ReachRight to ReachLeft.

5. IRS will reach to the Barney with the virtual left arm.
This reach will be successful.

6. CEA will let the Activator Agent proceed to reach to the
Barney using the left arm.

Performance

When ISAC was given a command to reach to the Barney,
FRA placed two chunks “ReachRight” and “Barney” into
the workingmemory (Note: ISAC normally begins with its
right arm). Both the Activator Agent and IRS began to pro-
cess these chunks. IRS completed the computation within
3.2 s and sent its results to CEA. At the same time, the Ac-
tivator Agent sent a motion command to the Right Arm
Agent to perform the reaching motion. The Right Arm
Agent would take 11 s to perform this type of reach if no
obstacle exists. When IRS finished, the following output
was sent to CEA: [15 68 lego_toy]. This means that during
the simulation, IRS determined a collision with the Lego
toy in the fifteenth step of the interpolated reach behavior
out of the total of 68 interpolated steps. Figure 18 shows
the trajectories of the right arm collision points during the
rehearsal. CEA took this result and determined that it did
not reach to the Barney. CEA then suppressed the Activa-
tor Agent and prevented the right arm from further action.

CEA then decided to use the left arm and replaces the
working memory chunks with “ReachLeft” and “Barney”.
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Cognitive Robotics, Figure 18
Right arm internal rehearsal

Cognitive Robotics, Figure 19
Left arm internal rehearsal

IRS and the Activator Agent were once again initiated, and
IRS internally rehearsed the reach skill and determined no
collision with the Lego toy (Fig. 19). Both the wrist and
end effector points entered the Barney percept sphere on
the sixteenth step out of the total of 69 interpolation steps.
CEA determines this as a success and did not impede the
Activator Agent thus allowing ISAC to reach to Barney us-
ing the left arm (Fig. 13).

Summary

This section illustrated how dual mechanisms of coupled
real world of action-taking loop and off-line inner reason-
ing loop can work together to improve cognitive skills for
a robot using internal rehearsal.

Future Directions

Cognitive robotics is still an evolving field with many
possible and exciting future directions. To date, much
progress has beenmade in architecture, perception, mobil-
ity, reasoning, learning from environmental embodiment,
and advanced actuators. However, it will take years before
we will see truly integrated cognitive robots in everyday
life.

A few of the challenges to cognitive robots are listed
below:

� Developing flexible systems, with ability to cope with
multiple tasks, environments and disturbances

� Design strategies for learning by taking into account
morphological and material constraints

� Cognitive skills development through social interaction
� Robots with mental states and emotions
� Modeling consciousness and its interaction with cogni-

tion
� Built in sensation and communication.

As robotic technology continues to penetrate every aspect
of human society, the importance of social acceptance,
such as trustworthiness and ethics, will become important.
The field of cognitive robotics is expected to play a leading
role in this area in the future. It is our hope that within
decades, we will see true cognitive robots that will be ac-
cepted by the general public.
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Glossary
Elastic manifold An elastic manifold is a spatially ex-

tended object whose energy is given by a quadratic
function of the gradients of its transverse displace-
ments. In statistical physics, it is used as a coarse-
grained description of the low-energy modes in an or-
dered structure.

Pinning Pinning is a common phenomenon in con-
densed systems where the relevant degrees of freedom
are trapped to an energy minimum and hence respond
dynamically only when the external driving exceeds
a certain threshold. Pinning is often caused by defects
or impurities in the system but it may also be due to
intrinsic properties such as the existence of a periodic
lattice that breaks the translational symmetry of space.

Scaling Scaling describes power-law relationships among
two or more physical quantities. Physical systems at
continuous phase transitions are often found to exhibit
scale invariance, i. e., structural and dynamic proper-
ties on different length and time scales can be mapped
onto each other through suitable scale transforma-
tions. Such properties are characterized by a set of
scaling exponents. The renormalization group theory,
through its flow equations under a scale transforma-
tion, provides a systematic method to compute these
exponents.

Universality Universality is a key concept in the classifi-
cation of systems which exhibit scale invariance. Mod-
els in the same universality class have identical scal-
ing properties and are described by the same set of
scaling exponents. Therefore the identification of pos-
sible universality classes is one of the key issues in
the study of, e. g., critical phenomenon at continuous
phase transitions. The origin of universality is best il-
lustrated by the fixed-point structure of the renormal-
ization group flow equations. Studies have shown that
dimensionality, symmetry, and conservation laws are
the key factors that determine a particular universal-
ity class. There is, however, a great deal of theoretical
interest to identify new principles that determine uni-
versality classes, or exceptions to the above rule, par-
ticularly in driven nonequilibrium systems.

http://eecs.vanderbilt.edu/CIS/CRL
http://eecs.vuse.vanderbilt.edu/cis/concepts/ima.shtml


Collective Transport and Depinning C 1127

Definition of the Subject

Collective transport takes place in systems which exhibit
highly correlated response to external driving. This is in
contrast to, e. g., electrical conduction in a normal metal,
where free electrons drift independently under an applied
electric field, leading to Ohm’s law. Collective motion of
microscopic degrees of freedom, on the other hand, of-
ten yields a nonlinear response or even threshold behav-
ior, where steady-state transport sets in only when the
driving exceeds a certain critical strength. In the subcrit-
ical regime, the collective modes are pinned by defects
or impurities in the system. An increasing degree of cor-
relation and corporation takes place as the threshold is
approached. The subject plays an important role in the
study of a broad class of solid state phenomena, includ-
ing charge and spin density wave transport, hysteresis in
dirty magnets, and nonlinear current-voltage characteris-
tics in type-II superconductors. It has also found interest-
ing applications outside physics, such as in crack prop-
agation and earthquake modeling. Important theoretical
developments that took place in the early 1990s culmi-
nated in the formulation of a functional renormalization
group theory for the nonequilibrium depinning transition.
The analytical framework enables systematic computation
of the critical properties and, perhaps more importantly,
elucidation of universality through its fixed point struc-
tures. Subsequent work by many research groups have es-
tablished a close link between driven depinning and the
sandpile models of self-organized criticality (SOC). This
connection has been fruitfully explored to gain a better
understanding of the long-range spatial correlations and
intermittent temporal activities in the two classes of prob-
lems.

Introduction

The motion of a water drop down a glass window un-
der gravity illustrates many salient features of collective
transport and depinning, although the phenomenon itself
is surprisingly rich in physics and chemistry when exam-
ined in microscopic detail [18,51,73]. The size of the drop
is governed by the so called capillary length (typically of
the order of a few millimeters) from elementary physics:
On this scale the surface tension that makes a water drop
spherical competes with the gravity which acts to deform
the droplet. The actual descent of the droplet, which usu-
ally follows a zigzag path with an ever changing speed, is
a result of many factors, not least the random force set
by the local wettability of the glass surface. With a micro-
scope, one may observe the hysteric advancement of the
contact line separating wet and dry regions on the sub-

strate. The interplay between the surface tension, the pin-
ning force on the contact line, and the driving force pro-
vided by gravity gives rise to a complex and intermittent
dynamical behavior encompassing a wide range of length
and time scales.

Similar types of collective and intermittent transport
exist in solids. In certain low-dimensional materials such
as NbSe3, periodic modulation of the electronic density,
known as the charge-density-wave (CDW) [33], develops
spontaneously at sufficiently low temperatures through
the Peierls instability. An applied electric field in the di-
rection of the charge modulation exerts a body force on
the CDW much the same way as gravity does on the wa-
ter droplet. However, in the presence of impurity atoms or
crystal defects, the CDW does not move unless the electric
field exceeds a certain threshold value, as seen in experi-
ments [33,85]. The vortex lattice in type-II superconduc-
tors is another example of modulated electronic structures
within a solid [44]. Pinning of the vortex lattice by intrinsic
or artificial defects is essential for achieving a high critical
supercurrent in these materials.

Yet another class of collective pinning phenomena in
solids involves the dynamics of topological defects such as
crystal dislocations [31] or magnetic domain walls [10].
These objects have internal dimensions lower than that
of the embedding medium, and hence can explore inho-
mogeneities in the surrounding environment. The driven
motion of these objects has a great effect on the physical
properties of their host system, e. g. plastic deformation of
a solid due to glide and climb motion of dislocations, and
hysteresis effect [78,80,88] related to the pinning of do-
main walls separating regions of opposite magnetization.

The development of quantitative theories for impu-
rity pinning and the driven depinning transition began in
the 1970s after fundamental breakthroughs in many-body
physics and equilibrium critical phenomena [29,44,45,50].
Research in this area has traditionally followed two sepa-
rate approaches: The microscopic approach that attempts
to explain the observed behavior starting from the fun-
damental laws of physics, and the phenomenological ap-
proach that focuses on the large-scale properties using the
simplest models possible. The second approach, which is
popular in the field of statistical physics, has the advan-
tage of mathematical simplicity and clarity. It facilitates
identification of the underlying symmetries of the origi-
nal problem, and the establishment of universality classes
through which model systems can be classified and com-
pared. However, real physical systems often contain com-
plications that prevent a direct comparison betweenmodel
predictions and experimental observations (see, e. g. [85]).
This is where the microscopic approach, popular among
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condensed matter theorists, comes to aid. In the best stud-
ied cases, a microscopic theory allows one to derive or
estimate system-specific parameters and properties, and
to suggest correct phenomenological models and possible
improvements when discrepancies are found.

The present article focuses on the recent theoretical de-
velopments in the statistical physics of this class of prob-
lems. This is partly motivated by the significant progress
that has been achieved in a quantitative characterization of
the depinning transition over the past two decades. Simi-
lar to the critical phenomena in thermal equilibrium sys-
tems, static and dynamic fluctuations exhibit scaling prop-
erties with exponents that fall into well-defined universal-
ity classes determined by the symmetry and dimensional-
ity of the problem. These concepts allow one to establish
precise relationships among models proposed under dif-
ferent physical contexts. The successful application of the
renormalization group methods to the depinning transi-
tion has led to a deeper analytical understanding of the ob-
served critical phenomena. Our choice is alsomotivated by
the close connection between depinning and the subject of
self-organized criticality [5], which enjoys broad interest
in the complexity community.

We shall start with a brief review of systems, mostly
from solid state physics, where collective modes and de-
pinning play an important role in the interpretation of
the observed transport phenomenon. A generic mathe-
matical formulation of this class of problems, known as
the elastic manifold in a disordered potential, is intro-
duced, along with a discussion of the complex energy land-
scape underlying its equilibrium and dynamic properties.
This is followed by a description of the critical properties
at the driven depinning transition and numerical results.
The basic analytic structure of the threshold solution can
be seen in a mean-field theory. We then summarize the
main results of functional renormalization group calcu-
lations which provide a systematic and quantitative char-
acterization of the depinning transition. The relationship
between driven depinning and self-organized criticality is
explained. The influence of medium anisotropy on the de-
pinning transition is briefly discussed. Finally, we mention
a few open problems in the field for future work.

Elastic Manifolds and Impurity Pinning

Elasticity, Order, and Symmetry Breaking

Although long-range spatial correlations that underlie col-
lective transport can be generated dynamically under cer-
tain conditions, we shall focus on systems for which such
correlations are already present before external driving is
applied. In particular, we shall assume that the system is in

a low temperature ordered state and responds elastically to
external perturbations. This assumption allows us to con-
centrate on the large scale properties of the system in the
depinning process, while leaving the microscopic, system-
specific behavior to a separate discussion.

Elasticity is a familiar concept in macroscopic physics.
An object is said to be elastic if it deforms under an applied
force in a continuous and reversible manner. Microscop-
ically, elasticity is intimately related to the existence of an
ordered state that breaks a continuous symmetry [4]. This
point can be appreciated with the example of a crystalline
solid. Atoms in the solid form a periodic structure in space
with energetically preferred unit cells and lattice constants.
This state is said to break the translational symmetry of the
particle system as the density of atoms is no longer uni-
form in space. A uniform translation of the structure does
not lead to a change in the system energy. On the other
hand, relative displacement of atoms distorts the unit cells
and leads to an increase in energy which grows quadrati-
cally with the displacement. Thus, the system has acquired
a form of rigidity by breaking a continuous symmetry
to gain order. Elasticity is a manifestation of this rigidity
when the ordered state is perturbed by external forces or
internal impurities and defects.

Both charge-density waves and vortex lattices are pe-
riodic structures in space, and hence naturally their be-
havior is similar to a crystalline solid. There are, how-
ever, differences in the number of components needed
to describe a generic deformation in each case. A CDW
with a single modulation wave vector Q corresponds to
an electron density �(r) D �0 C �1 cos(Q � rC '), where
�0 is the average density and �1 the modulation amplitude
due to charge ordering. A uniform phase shift ' ! ' C c
moves the CDW uniformly against the underlying lattice.
Weak deformation of the CDW is described by a spa-
tially varying phase '(r). The elastic energy of a CDW de-
pends quadratically on the phase gradientr', with differ-
ent elastic constants along and perpendicular to themodu-
lation vectorQ [29]. In the case of the vortex lattice, a two-
component vector field u(r) perpendicular to the vortex
lines is needed to describe a general distortion of the ideal
structure. The construction of the elastic energy parallels
that of a crystalline solid. In an isotropic medium, three
elastic constants are needed to describe the energetics of
a vortex line array [44,45].

Topological defects in an ordered structure also behave
elastically when deformed from their ideal positions under
a great variety of circumstances, though this form of elas-
ticity has a different microscopic origin. A dislocation in
a solid, for example, has a core where the atomic arrange-
ment differs from elsewhere in the crystal. This gives rise
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to an excess amount of energy proportional to the length
of the line. The interface between two bulk phases has an
excess free energy (commonly known as the surface ten-
sion) proportional to the surface area for the same reason.
This applies also to domain walls in a magnet.

Elastic Manifolds in a Disordered Potential

The energy of a topological defect is affected by the pres-
ence of impurities or point defects in the system. For ex-
ample, an impurity atom sitting in the core of a dislocation
has a different atomic environment and hence a different
energy than when it resides in a normal region. This ef-
fect gives rise to a short-range and often attractive force
between the impurity and the dislocation core. The ten-
dency for the dislocation to distort itself in order to adapt
to the impurity configuration is countered by the elastic
energy cost. In general, the two competing forces lead to
a large number of metastable conformations of the dislo-
cation core, separated by energy barriers. The effect of im-
purities on interfaces and magnetic domain walls can be
considered in a similar way.

A unified statistical mechanical description of impu-
rity pinning can be formulated in terms of a D-dimen-
sional elastic manifold embedded in d spatial dimen-
sions [28,34,49]. Let r 2 RD be the internal coordinates of
the manifold and u(r) 2 Rd�D be the transverse displace-
ment of the manifold at point r with respect to a flat con-
figuration. When the deformation is small, the excess vol-
ume of the manifold is a quadratic function of the gradient
of u(r). The following energy function includes effects of
both elasticity and impurities,

E (fug) D
Z

dDr
h�
2
jruj2 C VR (r;u)

i
: (1)

Here � is the stiffness constant of the manifold, and
VR (r;u) is a random potential arising from the inter-
action between the manifold and the impurities in the
medium. In most theoretical treatments, the set of ran-
dom variables fVR (r;u)g, which take particular values in
a given sample, is assumed to be Gaussian distributed
with the mean hVR (r;u)i D 0 and the second moment
hVR (r1;u1)VR (r2;u2)i D R (u1 � u2) ı (r1 � r2). Here
ı (r) is a short-ranged function which vanishes beyond
a coarse-graining length ak.

The form of the disorder correlator R(u) in the trans-
verse directions is dictated by the symmetries of the orig-
inal physical problem [28]. For contact interactions and
randomly distributed impurities in the embedding space,
R(u) is short-ranged with a characteristic decay length
a?. A different situation is encountered when the mani-

fold represents an interface that separates two bulk phases,
each affected differently by the impurities which serve as
a “random field” (i. e., the impurity atom has different
chemical potential in the two bulk phases). The poten-
tial VR (r; u) represents the cumulative effect of impuri-
ties swept by the interface when it is displaced to u(r)
from a reference configuration. Consequently R(u) � juj
for large u.

A CDW in the presence of impurities can also be de-
scribed by Eq. (1), where u (r) D ' (r) is a scalar field and
d D D. Since the impurity interacts with the local charge
density which is a periodic function of the local phase,
the potential VR (r; ') is also periodic in '. Consequently,
R(') is periodic in ' as well.

Application of Eq. (1) to the vortex lattice requires spe-
cial care. On scales smaller than the spacing between vor-
tex lines, each vortex line behaves as an independent ob-
ject. However, this description fails on large scales, where
the periodicity of the lattice changes the nature of the
problem [30,68].

Rugged Energy Landscape, Critical Dimension,
and the Pinning Length

The two terms in Eq. (1) represent competing effects on
the manifold: Elasticity favors a flat manifold with a con-
stant u, while the attractive force from impurities gives rise
to a spatially varying u(r). The configuration u(r) which
minimizes Eq. (1) satisfies the following force-equilibrium
condition:

�r2u � ruVR (r;u) D 0 : (2)

Complications arise when Eq. (2) has many solutions.
Each solution corresponds to a local minimum of the en-
ergy function (1), separated by energy barriers from other
local energy minima. The resulting energy surface (or
landscape) is known as rugged.

Proper characterization of the energy landscape de-
fined by Eq. (1) has been a long-standing problem in the
statistical mechanics of disordered systems. For D < 4 and
weak disorder, the ruggedness appears when the system
size is greater than a characteristic length Lc along the
manifold, known as the pinning length. This important ob-
servation was due to Larkin [44] for flux lines, Fukuyama,
Lee and Rice [29,50] for CDWs, and Imry andMa [37] for
magnetic domain walls. On scales L < Lc , elasticity limits
the transverse displacement u (known as roughness) to be
within the respective correlation length a? of the impurity
potential VR (r;u), so that the manifold lies within a single
minimumof the energy surface. On the scale Lc, the typical
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strength of the random force ruVR , averaged over a vol-
ume LDc , is estimated to be

ˇ̌
ruVR

ˇ̌
' R1/2(0)

a?
L�D/2
c . Balanc-

ing it with the elastic force �a?
ı
L2c , one obtains,

Lc D

 
� 2a4
?

R(0)

!1/(4�D)

: (3)

For L > Lc , Eq. (2) has an exponentially increasing num-
ber of solutions.

For D > 4, the elastic term in (2) dominates over the
random force term on large length scales. Consequently,
the rugged energy landscape is a small scale phenomenon
which occurs when Lc is larger than the correlation length
ak of the disorder potential VR (r;u) parallel to the mani-
fold. From Eq. (3) we see that this condition requires the
disorder strength to be sufficiently strong. Weak disorder
is not able to produce pinning for manifolds with internal
dimension greater than 4.

The qualitative analysis above shows that the energet-
ics of the manifold problem are qualitatively different be-
low and above four dimensions. The existence of a criti-
cal dimension Dc D 4 suggests systematic renormalization
group approach to the problem. However, earlier attempts
based on a perturbative treatment of the disorder poten-
tial failed to produce a renormalizable theory [1,22,32].
This was first achieved successfully by Daniel Fisher [28]
in 1986 in the equilibrium case. Extension of the scheme to
the driven depinning transition is discussed in Sect. “An-
alytical Treatments of the Depinning Transition and Uni-
versality”.

Driven Depinning, Critical Properties, and Scaling

The Driven Depinning Transition

An applied force F coupled linearly to the displacement
field u(r) tilts the equilibrium energy landscape as defined
by Eq. (1) towards a particular direction. For small F, the
manifold makes small adjustments locally to reach a new
stationary state where force equilibrium is re-established,
and this happens for the majority of solutions to Eq. (2).
The number of such solutions, however, continues to de-
crease as F increases. When the magnitude of F exceeds
a certain critical value, all stationary states disappear, and
the manifold enters a running state. The transition from
stationary to running states with increasing F is known as
the driven depinning transition.

Figure 1 illustrates the dependence of the steady-state
velocity v of the manifold against F D jFj. In the absence
of thermal fluctuations, there is a well-defined threshold
Fc that separates the pinned from moving regimes. At fi-
nite temperatures, the transition from a pinned to a mov-

Collective Transport and Depinning, Figure 1
Schematic plot showing themanifold velocity v against the driv-
ing force F at zero (blue) and finite (red) temperatures. Below
the threshold Fc, the manifold is pinned by impurities in the
medium, but thermal activation may generate a small but finite
velocity

ing manifold is smeared out by thermally activated creep
motion. At low temperatures, the rounding effect is weak
except in a very small region around Fc.

The discussion in Subsect. “Rugged Energy Landscape,
Critical Dimension, and the Pinning Length” on the pin-
ning length can be used to estimate the critical force
needed to depin the manifold. For D < 4, the maximum
pinning effect is seen on the scale Lc, where the typical
strength of the first two terms in (5) is given by [10,26,50]

Fc ' �a?
ı
L2c D

R2/(4�D)(0)

�D/(4�D)a(4CD)/(4�D)
?

: (4)

This is also the force needed to depin the manifold.
For D > 4, pinning is possible only if Lc > ak or
R1/2(0)a�1

?
a�D/4
k

> �a?
ı
a2
k
, i. e., the strength of the pin-

ning force is stronger than that of the elastic force on the
minimal scale ak.

ContinuumModel of the Manifold Dynamics

A dynamical model for the manifold can be constructed
by assuming the motion to be completely overdamped.
This is quite reasonable for the applications mentioned in
Sect. “Introduction”, where the displacement u(r; t) rep-
resents a course-grained variable which changes on a time
scale much longer than the relaxation time of underlying
microscopic processes.With this assumption, the equation
of motion for the manifold takes the form,

��1
@u
@t
D �r2uC �(r;u)C F :

Here � is known as the mobility of the manifold, and
�(r;u) D �ruVR (r;u) is the random pinning force.
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An interface is described by a height function u(r; t),
so that the dynamical equation, which defines the so-called
linear interface model (LIM), takes a scalar form [10,26],

��1
@u
@t
D �r2u C �(r; u)C F : (5)

The same equation applies to a CDW, but with �(r; u C
2�) D �(r; u) periodic in the phase variable [27]. Using
the example of a single vortex line in three dimensions,
Ertas and Kardar [23] have shown that the extra trans-
verse dimensions do not change the main features of the
depinning process. Hence Eq. (5) can be considered as the
generic description of the drivenmanifold problem, where
u(r; t) stands for the component of the transverse displace-
ment in the driven direction.

In Layman’s terms, Eq. (5)may be viewed as describing
the advance of amilitary front where the attacking side has
more ammunition andmanpower F but the defending side
is able to exploit the hilly ground positions �(r; u) to pose
an effective resistance. In addition, stretching the front line
into a convoluted form results in a decrease in attacking
power and is hence discouraged!

For the analysis of Eq. (5), it is convenient to describe
pinning effects in terms of the random force �(r; u) in-
stead of the random potential VR (r; u). Without loss of
generality, one may assume the mean value of �(r; u) to
be zero. For Gaussian distributed random forces, it is suf-
fice to specify the statistics of �(r; u) with the correlator,

h� (r1; u1) � (r2; u2)i D � (u1 � u2) ı (r1 � r2) : (6)

On the “bare” scale, �(u) D �@2R
ı
@u2 but as shown

in [66] and [48], this relation breaks down in the driven
case upon coarse-graining of the original degrees of free-
dom.

Critical Properties and Scaling Laws

Let us first consider the interface depinning problem as
described by Eq. (5). This model has been studied exten-
sively both analytically [14,66,69] and numerically [53,76]
in recent years, and the main characteristics of the solu-
tion have been well-understood. These findings are sum-
marized below.

The form of Eq. (5) suggests a “non-crossing condi-
tion” as first noted by Middleton [58]. Consider two in-
terface configurations u1(r; t0) and u2(r; t0) at some initial
time t0. If u1(r; t0) < u2(r; t0) for all r on the interface, one
can easily show that u1(r; t) < u2(r; t) at any later time
t > t0, i. e., the two solutions never touch if initially one
is completely behind the other. This property in particu-
lar implies that the interface velocity v D du

ı
dt (averaged

over all sites r) in the steady state is a unique and continu-
ous function of F, ruling out first order phase transition in
this class of models.

On the moving side but close to the depinning thresh-
old, advancement of the interface can be described with
the help of Fig. 2. The thick line illustrates the interface po-
sition at a given time t0. Pinning yields a roughness which
grows as a power-law of the distance between two points
on the interface, i. e.,

D�
u(r; t0) � u(r0; t0)

�2E
� jr � r0j2� ; (7)

where � is known as the roughness exponent. This behavior
holds on a range of length scales from the pinning length
Lc to a correlation length �k along the interface. The trans-
verse displacement of the interface on scale �k is given by
�? � �

�

k
.

Motion of the interface within a correlation time � also
obeys scaling. On time scales shorter than � , the inter-
face advances through a sequence of rapid, localizedmove-
ments (known as avalanches) of varying size up to the scale
�k. The average time for a given site to move by a distance
�u grows as a power law: �t � �u1/ˇ . During this time,
activities within a distance l � �t1/z along the interface
are correlated. The exponent z D �

ı
ˇ is known as the dy-

namical exponent. This scaling terminates when l reaches
the correlation length �k, or�t D � � � z

k
, where the inter-

face as a whole advances to a new disorder environment
with a different distribution of pinning sites and pinning
forces.

As F decreases towards Fc, the size of each corre-
lated domain grows to infinity in a power-law fashion as
well, e. g., �k � jF � Fc j�� , where � is known as the cor-
relation length exponent. The three exponents �, z and �
together characterize the critical properties of the inter-
face at the depinning transition. Through dimensional
arguments, one may determine the critical behavior of
quantities other than those discussed above. For exam-
ple, the interface velocity near the transition can be esti-
mated from v ' �?

ı
� � �

�

k

ı
� z
k
� jF � Fc j�(z��), hence

the corresponding velocity exponent is given by,

� D �(z � �) (8)

The region between two interface configurations separated
by time � , as shown in Fig. 2, can be described as a set of
“bubbles”, each representing a correlated volume of base
area �D

k
and height �?. The average strength of the pin-

ning forces within each bubble has a variation of the or-
der ��D/2

k
��1/2? from the system-wide average.Variation of

this quantity among bubbles should be smaller than the ex-
cess driving force F � Fc so that depinning can take place
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Collective Transport and Depinning, Figure 2
An interface above but close to the depinning threshold. Depinning events within a correlation length �

k
and correlation time �

are highly correlated and obey scaling at the transition. Shaded area represents the volume swept by the interface over the time
interval �

Collective Transport and Depinning, Table 1
Scaling exponents at the depinning transition. Numbers in parentheses indicate uncertainties in the last digit

Interfacea CDW MF D � 4
D D 1 D D 2 DD 3 DD 1 D D 2 DD 3

� (roughness) 1.25(1) 0.75(2) 0.35(1) 0 0
z (dynamic) 1.42(4) 1.56(6) 1.75(15) 1 1.32(4)b 1.65(6)b 2
�; �f (correlation length) 1.33(2) 0.80(1) 0.606(4) 0.4(1)c 2.01(2) 0.5(1)c 0.98(3)b 0.5(1)c 0.68(4)b 1

ı
2

� (velocity) 0.25(3) 0.64(2) 0.84(2) 0.45(5)c 0.64(3)b;c 0.81(3)b;c 1

aLeschhorn H [53]; bMiddleton AA, Fisher DS [61]; Narayan O, Middleton AA [67]; cMayer CR, Sethna JP [63].

uniformly across the system. This condition is fulfilled if
the correlation length exponent satisfies the following in-
equality [35,66,69],

� �
2

DC �
(9)

The above description of interface depinning applies also
to the CDW with one important caveat. Due to the non-
crossing condition, steady-state motion of the CDW at
F > Fc is periodic in time, i. e., '(r; t C �) D '(r; t)C 2�
for all r, with � being the period of the attractor [58].
The dynamic phase advance at different sites has thus
bounded variations described by � D 0. Above but close
to Fc, the activity at a given site, as measured by the phase
velocity '̇(r; t), is typically concentrated in time windows
much shorter than T, but acquires long-ranged spatial
correlations up to a correlation length �k � (F � Fc)�� .
Both analytical [65] and numerical calculations [63] in-
dicate that � D 1

ı
2 in all dimensions, therefore violat-

ing Eq. (9). Although the origin of this behavior has not
been settled completely [67], a plausible explanation is
that fluctuations of the pinning force in a given region
of the system are compensated by a static phase distor-
tion '0(r) D '(r; t D 0), so that the system behaves much
more homogeneous than the naïve estimate used to ob-
tain Eq. (9). The sample-to-sample fluctuations of Fc,

on the other hand, have been shown recently [7,25] to
obey a Gaussian distribution with a width proportional
to L�D/2as predicted, where L stands for the linear system
size.

Numerical Results for the Critical Exponents

The depinning transition of the elastic manifolds and
the CDW has been studied extensively using various lat-
tice models. Middleton and Fisher [60,61], Myers and
Sethna [63], and Narayan and Middleton [67] simulated
a discretized version of Eq. (5) for CDW depinning in
one to three dimensions. The random force is given by
�(r; ') D V sin(' � ˇ(r)), where V is the strength of the
pinning force, andˇ(r) is the preferred phase at site r, cho-
sen randomly from site to site. Values of critical exponents
as determined in their numerical work are given in Table 1,
which show good agreement with the analytic results in
Sect. “Analytical Treatments of the Depinning Transition
and Universality”. The exponent � f (second row) is deter-
mined from quantities related to the avalanche propaga-
tion below the depinning threshold.

Leschorn [53] carried out large-scale simulations of
a discretized version of the LIM. Exponents he obtained
are also given in Table 1. These values are in good agree-
ment with more recent studies [76]. Note that the rough-
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ness exponent � for a one-dimensional interface at the de-
pinning threshold is greater than one. This gives rise to
a subtlety in using Eq. (7) to measure � as discussed in [56].

Analytical Treatments of the Depinning Transition
and Universality

The depinning transition differs from the usual critical
phenomena in thermal equilibrium systems in terms of the
vast separation of fast and slow time scales. Therefore the
successful development of a renormalization group theory
in the early 1990s to effectively capture this unique fea-
ture was an important milestone in the analytical studies
of nonequilibrium phase transitions. The work acquired
broader significance due to the later discovered correspon-
dence between depinning and sand pile models of self-or-
ganized criticality (SOC), which we discuss in Sect. “Self-
Organized Criticality”.

Mean-Field Theory

Fisher [27] and others [43,52,55,65] considered a mean-
field approximation to Eq. (5) which can be treated analyt-
ically. It is instructive to examine the calculation in some
detail here as the solution reveals several important fea-
tures of the depinning transition which extend to lower
dimensions, while the mathematical manipulations can be
kept at an elementary level.

In sufficiently high dimensions, one may approximate
the Laplacian in Eq. (5) by a spring force, whose equilib-
rium point is set by the mean interface position ū(t). The

Collective Transport and Depinning, Figure 3
The mean-field model of depinning. a Block (representing the interface) dragged by a spring whose right end moves at a slow but
constant velocity v. The block is sitting on a rough surface and immersed in a very viscous fluid, so that inertia effects can be ne-
glected. b The effective potentialW on the block at a particular instant when viewed in a co-moving frame.W is a sum of two parts:
A quadratic spring potential plus a random potential U which travels slowly to the left. In the absence of thermal motion, the block
(represented by the red ball in the figure) traces the left most minima xC of W until it disappears, followed by an “avalanche” into
the next availableminimum

resulting dynamical equation for a given site on the inter-
face takes the form,

du
ı
dt D � (ū � u)C �(u)C F : (10)

For simplicity we have dropped � in (5) through a redef-
inition of t. In the steady-state, ū D vt, where v is the in-
terface velocity to be determined self-consistently from the
solution of Eq. (10). Since the disorder �(u) is uncorrelated
along the interface, the system-wide average ū can be re-
placed by an average over the distribution of �(u).

Following the discussion in [55], we adopt a moving
frame and define x D u � vt � (F � v)

ı
� to be the dis-

placement away from the equilibrium position when the
random force �(u) is absent. In terms of x, Eq. (10) reads
(after a rigid translation of �(u)),

dx
ı
dt D ��x C �(vtC x) : (11)

The self-consistency condition becomes,

� hxi D �F C v : (12)

The driving force F now disappears from the equation of
motion (11) and can be computed from (12) as a function
of v, once a solution to (11) is found.

As illustrated in Fig. 3, Eq. (11) describes the dynamics
of an overdamped particle in a moving potential,

W(x; t) D
�

2
x2 C U(vt C x) : (13)

The random part U(vt C x) D �
R v tCx
x0 �(u)du travels at

a constant velocity v to the left or to the right depending
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Collective Transport and Depinning, Figure 4
Fixed point solutions to Eq. (14) for a the linear interface models and b the charge-density wave depinning

on the sign of v. In the quasi-static limit v ! 0, the particle
stays in a local minimum of the potentialW for the whole
time, and is interrupted occasionally by jumps when the
minimum it follows disappears. When the potential trav-
els to the left (v > 0), the particle traces the leftmost min-
imum xC of W. The opposite occurs when the potential
travels to the right.

With the above picture in mind, we may use Eq. (12)
to calculate the thresholds FCc D �� limv!0Chxi and
F�c D � limv!0�hxi for forward and backward depin-
ning, respectively. For a continuous, slow-varying func-
tion �(u) with a sufficiently small amplitude, the poten-
tial W has a unique minimum all the time, and hence
FCc D F�c D 0, i. e., the system is never pinned. How-
ever, for a discontinuous function �(u) (or for sufficiently
strong disorder), the potential W has, from time to time,
more than one minimum, and hence FCc D �F�c > 0.
Note that only upward jumps in � (i. e. a sudden weaken-
ing of the pinning force) give rise to upward cusps in the
potential which generate double minima inW.

When the potentialW(x; t) travels at a small but finite
velocity v, the ball shown in Fig. 3b is displaced to the left-
most minimum ofW by an amount proportional to v due
to viscosity. From Eq. (12) and the value of Fc determined
above, one finds v D a(F � Fc), where a is a numerical
constant. This behavior is confirmed by exact solution of
a “two-state” model for the pinning force [52]. The mean-
field velocity exponent is thus given by �MF D 1.

Functional Renormalization Group

Equation (5) has been studied analytically since the 1970s.
Earlier attempts by Efetov and Larkin [22] and oth-
ers [26,43] based on a perturbative expansion of the noise
term around a flat reference state ran into divergences for
D < Dc D 4, which can not be cured with the usual renor-
malization group (RG) procedure. Breakthroughs were
achieved in 1992 by Narayan and Fisher [65] for the CDW

depinning and by Nattermann et al. [69] for the driven in-
terface. In the field theory jargon, the model has an infinite
number of relevant operators that correspond to the coef-
ficients in a power-law expansion of the random force cor-
relator�(u). Uponmomentum shell integration on a run-
ning scale L, the one-loop corrections to these coefficients
can be summarized in terms of a functional RG flow for
�(u),

d�(u)
d ln L

D �cL"
d2

du2

�
1
2
�2(u) ��(u)�(0)

�
: (14)

Here " D 4 � D and c is a constant. Dependence on L
can be absorbed with the scaling transformation u !
L�u; � ! L2��"�. The resulting flow equation has an
infinite number of fixed points, which are distinguished
by the number of nodes of the function�. Figure 4 shows
two such solutions, the first with no node at � D "

ı
3, and

the second with infinitely many nodes (periodic) at � D 0.
The periodic fixed point is associated with the CDW de-
pinning transition. The one with no node describes the in-
terface depinning transition. The most prominent feature
of the fixed point function �� is the cusp singularity at
u D 0, which is responsible for the failure of previous RG
treatments.

Equation (14) is supplemented with a RG equation for
the mobility � that determines the dynamical response on
scale L,

d ln�
d ln L

D �c�00(0C)L" : (15)

The elastic constant � , on the other hand, is not renormal-
ized. The latter property yields the scaling relation

�(2 � �) D 1 : (16)

The functional RG analysis has been carried out to two-
loop order by Le Doussal and collaborators [14,48]. This
study is particularly useful as it helps to clear up several
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subtleties which can not be easily resolved in the one-loop
calculation. For interface depinning, exponents up to the
second order in " are given by,

� D
1
3
"C 0:047771"2

z D 2 �
2
9
" � 0:0432087"2

� D
1

2 � �
D

1
2
C

1
12
"C 0:0258316"2

� D �(z � �) D 1 �
1
9
"C 0:040123"2 :

(17)

Good agreement is seen with the numerical values given in
Table 1.

For CDW depinning, the two-loop analysis yields the
following exponents,

� D 0

z D 2 �
1
3
" �

1
9
"2

� D
1

2 � �
D

1
2

� D �(z � �) D 1 �
1
6
" �

1
18
"2 :

(18)

Interestingly, here the expression for the dynamical expo-
nent z truncated at first order in " appears to be in better
agreement with the simulation results given in Table 1.

Very recently, Rosso, Le Doussal and Wiese [77] pro-
posed and implemented a scheme to measure numerically
the effective pinning force and the renormalized correla-
tor � on large distances. The idea is similar to the mean-
field model discussed above, with the particle replaced by
the center of mass of the manifold in a weak confining po-
tential that introduces a running cut-off to spatial correla-
tions. Their numerical results provide direct confirmation
of the cusp singularity in �, which has become the hall-
mark of the RG theories for the manifold problem.

Contact Line Depinning

The above analysis has been extended by Ertas and Kar-
dar [24] to the contact line depinning problem. The
increase in surface free energy (or surface area) due to
a deformation of the contact line from an ideal straight
configuration has been worked out previously by Joanny
and de Gennes [39]. Result of this analysis, generalized
to a “contact manifold” with D internal dimensions, is
that the Laplace term in Eq. (5) is replaced by a non-
local term, �r2u !

R
dDr0KD(r � r0)[u(r0; t) � ū(t)].

Here ū(t) denotes the mean displacement. The function

KD(r) � jrj�D�1 describes the decay of the long-ranged
elastic coupling along the contact manifold, assuming the
modes in the “bulk” have relaxed. This form of elastic cou-
pling changes the critical dimension to Dc D 2. In terms
of " D 2 � D, the critical exponents of the depinning tran-
sition from a two-loop renormalization group calculation
by Le Doussal et al. [48] are given by,

� D
1
3
"C 0:13245"2

z D 1 �
2
9
" � 0:1132997"2

� D
1

2 � �
D 1C

1
3
"C 0:24356"2

� D �(z � �) D 1 �
2
9
" � 0:1873737"2 :

(19)

Interestingly, the same long-range coupling is found to de-
scribe tensile crack propagation [75]. Numerical simula-
tions [21] of a discretized long-range model in D D 1
(" D 1) yield � D 0:385(5); z D 0:770(5); � D 1:625(10);
� D 0:625(5), in good agreement with the theory.

Self-Organized Criticality

Close to the depinning threshold, motion of the system
is intermittent. The growth activities are highly localized
and exhibit strong correlations over time. The natural
separation of slow and fast events at the onset of de-
pinning invites comparison to models of self-organized
criticality (SOC) and of earthquakes, which were made
popular through the seminal work of Bak, Tang and Wis-
senfeld (BTW) [5,6] on the “sandpile” model. This obser-
vation prompted a number of detailed investigations of
the microscopic processes leading to the build-up of spa-
tiotemporal correlations as the depinning threshold is ap-
proached from below, as summarized in [72]. Subsequent
work by several groups [67,71] established a direct link be-
tween these two classes of models. This development has
also contributed to a better understanding of SOC in au-
tomaton models. It opens the door to a systematic explo-
ration of their scaling properties which were hitherto hin-
dered by the lack of a suitable continuum representation.

The mapping between depinning and SOC automaton
models is most easily understood by considering u(r; t)
in Eq. (5) as the accumulated activity of a given lattice
site r after time t [71]. Take for example the original sand-
pile model introduced by BTW on a square lattice. The
system is specified by an integer height z(x; y) on each
lattice site (x; y). Starting from a random set of values
z0(x; y), “sand” is gradually added through a sequence of
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events z(x; y)! z(x; y)C 1, each time only a single site
is chosen randomly from all available sites in the system
for updating. If the operation leads to an overflow, i. e.,
z(x; y) > K, then toppling takes place according to the
rule,

z(x; y)! z(x; y) � 4
z(x ˙ 1; y)! z(x ˙ 1; y)C 1
z(x; y ˙ 1)! z(x; y ˙ 1)C 1 :

(20)

This process is continued until no site has a height exceed-
ing K . Let u(x; y; t) be the total number of toppling events
at site (x; y) from the beginning of the process. Counting
the number of sand grains received and given away by the
site yields immediately

z(x; y; t) D z0(x; y) � 4u(x; y; t)C u(x C 1; y; t)
C u(x � 1; y; t)C u(x; y C 1; t)
C u(x; y � 1; t)

D z0(x; y)Cr2u ;

(21)

wherer2 is the Laplace operator on the lattice. The condi-
tion z(x; y; t) > K for toppling u! u C 1 is thus equiva-
lent to

r2u C z0(x; y) � K > 0 : (22)

The above growth rule is almost identical to a lattice
automaton model introduced by Narayan and Middle-
ton [67] for CDW depinning. Comparing (22) to Eq. (5),
we see that here (i) u is restricted to take only integer val-
ues plus a random, site dependent shift ˇ(r), which can
be considered as the preferred phase set by the local dis-
order; (ii) The dynamical rules obey a global symmetry
u ! u C 1, as in CDW depinning. The usual wisdom in
critical phenomena suggests that the two models are in the
same universality class due to property (ii), while property
(i) is a microscopic detail which does not affect the scal-
ing properties at the depinning transition. Indeed, various
scaling exponents determined through analytical and nu-
merical studies of the two models are shown to be consis-
tent with each other [67,82]. Subtle differences exist, how-
ever, in the way the system is driven to criticality [67,72].
The effect of boundary conditions also need to be treated
with care [67].

To eliminate inertia effects in real sand pile ava-
lanches [64] which prevented direct comparison with the
BTW model, the Oslo group [15] designed a two-dimen-
sional rice pile experiment that displays power-law scaling
and self-organized criticality. The group also proposed an

automaton model, known as the Oslo model, which yields
critical exponents in good agreement with the experiment.
The Oslo model differs from the BTW model only in the
choice of the threshold valueK for toppling: Instead of tak-
ing a constant value, K is site-dependent. Its value is up-
dated after each toppling event at the site. Consequently,
condition (22) changes to,

r2u C z0(r) � K(r; u) > 0 : (23)

The symmetry u ! u C 1 is no longer present. A similar
discussion as above links the Oslo rice-pile model to the
LIM of depinning [8,71]. Other SOC models, such as the
Manna model [57] and the Zaitsev model [87], have sim-
ilar updating rules as the Oslo model and hence belong
to the LIM universality class as well. The mechanism of
self-organization and the development of spatiotemporal
correlations in the SOC and depinning models have been
discussed in detail by Paczuski, Maslov and Bak [72], who
have also identified a large number of scaling relations that
give all other exponents in terms of two basic ones.

As an example, let us consider the power-law distribu-
tion of the avalanche size which can be measured, e. g., by
the total number of toppling events s when a new grain is
added. For a system of linear size L, the distribution satis-
fies the finite-size scaling,

P(s; L) D s��F(s
ı
Lı ) : (24)

The mapping discussed above identifies ı D DC �, i. e.,
the dimension of the total volume swept by the interface
in a system-wide avalanche. On the other hand, a sum rule
yields the following expression,

� D 2 �
� C ��1

� C D
(25)

For example, the exponents � D 0 and � D 1
ı
2 for the

CDW depinning predicts � D 2 (D � 1)
ı
D, in excellent

agreement with simulation results on the sandpile model
in two and three dimensions [82]. Care must be taken,
however, in applying Eq. (25) to the D D 1 rice pile model
in the boundary driven case, as noted by Paczuski and
Boettcher [71].

Interface Depinning in AnisotropicMedium

Easy and Hard Directions of Depinning

The linear interface model defined by Eq. (5) together with
Eq. (6) for the random force is statistically invariant under
the tilt transformation u ! u C s � r, where s is the slope
of the interface. Hence the depinning threshold Fc, as well
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as other critical properties, are independent of the orien-
tation of the interface. This property holds for an interface
moving in an isotropic medium.

When the medium is anisotropic, one or more of the
model parameters that enter the estimate Eq. (4) for Fc
may change with s. Consequently, the depinning threshold
Fc(s) becomes orientation-dependent [83]. An interface
oriented in the “easy” direction enters the moving phase at
the weakest driving. However, a moving interface in this
direction is generically unstable against faceting towards
directions of slower growth, particularly near the depin-
ning threshold. To illustrate this point, we may consider
a part of the interface that is slowed down by an exception-
ally strong pin. As the rest of the interface moves forward
at a higher velocity, a local tilt develops that moves the in-
terface away from the easy direction. This further strength-
ens the pinning effect, producing a cone-like structure. In-
deed, the depinning transition in the easy direction has
been shown to be of first order with a velocity jump [38].

The story is different for an interface oriented in the
“hard” direction. Both numerical [2,3,11,84] and experi-
mental [2,11,12] studies have shown that the depinning
transition here is continuous, but the critical exponents
take different values from those of the LIM. Yet another
set of critical exponents are encountered when the inter-
face is forced to tilt away from the hard direction by, say
boundary conditions [83]. The resulting depinning prob-
lem is related to directed percolation, which we consider in
some detail below.

A Lattice Automaton

Tang and Leschhorn [84] introduced a lattice automa-
ton for imbibition in a two-dimensional porous medium.
A very similar model was studied by Buldyrev et al. [11]
around the same time and reported together with ex-
perimental results. The automaton model is defined as
follows. On a square lattice, each site (i, j) is assigned
a random pinning force �(i; j), uniformly distributed
in the interval [0,1). At t D 0, the interface hi is com-
pletely flat. In each time step, growth hi ! hi C 1 is per-
formed in parallel when either of the following two con-
ditions is satisfied: (i) the random force �(i; hi ) on the
interface at column i is less than a pre-specified driv-
ing force f ; or (ii) hi < hi�1 � 1 or hi < hiC1 � 1. Thus
to obtain a completely pinned interface, we must have
jhi � hi�1j � 1 and �(i; hi ) > f (called a blocking site)
for all i. This condition requires the existence of a di-
rected percolating path through blocking sites. Such paths
exist if the density p of blocking sites exceeds a critical
value pc ' 0:539. Consequently, the depinning threshold

is given by fc D 1 � pc ' 0:461. It is possible to show
that, for f < fc , the interface stops at the first directed per-
colating path that lies fully above its initial position.

The roughness of the incipient directed percolating
path at p D pc is � D �?

ı
�k ' 0:63, where �k D 1:733

and �? D 1:097 are exponents that characterize the di-
vergence of parallel and perpendicular correlation lengths,
�k � jp � pc j��k ; �? � jp � pc j��? , respectively [41].
This is also the roughness exponent assumed by the inter-
face at the depinning threshold f D fc . Simulations [84]
have shown that the dynamic exponent z D 1 at the de-
pinning transition of the above model, while the crossover
length exponent � D �k. From Eq. (8) one obtains � D
�k � �? ' 0:63.

The orientational dependence of the depinning thresh-
old in the automaton model has been studied by apply-
ing the helical boundary condition hiCL D hi C sL which
forces a global tilt [83]. The threshold force is indeed found
to be lower. This behavior matches well with the well-
known property of directed percolation: For p > pc , per-
colating paths fall within a cone of opening angle '(p)
around the symmetry direction [41]. If the average tilt s of
the interface exceeds this angle, no spanning percolating
path exists and the interface is free to move. The rough-
ness exponent of the cone boundary is � D 1

ı
2, which be-

longs to yet another universality class of interface depin-
ning away from a symmetry direction [83].

The above automaton model has been generalized by
Buldyrev et al. [12] to higher dimensions. The directed
percolating strings are replaced by directed percolating
surfaces which have been considered in the context of re-
sistor-diode percolation [20]. The roughness exponent of
such a surface at the percolation threshold in DC 1 di-
mensions is given in Table 2. Havlin et al. [36] investi-
gated in detail the temporal sequence of growth activities
at the depinning transition, which exhibits an interesting
super-diffusive behavior. They argued that the dynamic
exponent z that describes the growth in size of the affected
region after an initial depinning event is related to the scal-
ing of minimal path length with Euclidean distance on
the critical (isotropic) percolation cluster inD dimensions.
The values of z from their work are also given in Table 2.

As in the 1C 1 dimensional case, a tilted interface
has a lower depinning threshold. Just above the depinning
threshold, the interface decomposes into stripes of inac-
tive regions perpendicular to the tilt, separated by active
fronts that propagate towards the “easy” direction at a fi-
nite velocity. Based on this phenomenology, Tang, Kardar
and Dhar [83] determined exponents characterizing the
depinning transition of a tilted interface. In particular, the
velocity exponent � D 1 in all dimensions.
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Collective Transport and Depinning, Table 2
Summary of the exponents for directed percolation depinning along the hard direction. After [2]

DD 1 DD 2 DD 3 D D 4 DD 5 DD 6 MF
� (roughness) 0.63(1) 0.48(3) 0.35(1) 0.27(5) 0.25(5) 0.2(2) 0
z (dynamic) 1 1.15(5) 1.36 (5) 1.58(5) 1.7(1) 1.8(2) 2
� (correlation length) 1.73(2) 1.16(5) 0.95(10) 0.66(10) 0.6(1) 0.5(1) 1

ı
2

� (velocity) 0.58(7) 0.8(2) 1.0(2) 1.0(2) 1

Quenched KPZ Equation

The slope-dependent depinning threshold can be modeled
explicitly by adding the Kardar–Parisi–Zhang (KPZ) term
to Eq. (5). The resulting equation of motion takes the form,

��1
@u
@t
D �r2u C

1
2
(ru)2 C �(r; u)C F : (26)

In the original proposal [40], the -term is due to a kine-
matic effect known as lateral growth, and hence its
strength is proportional to the interface velocity v. At
the depinning threshold, however, this term is present
only when the medium is anisotropic. A positive  de-
scribes depinning along a hard direction, while a nega-
tive  corresponds to growth along an easy direction. Di-
rected numerical integrations [17,54] of Eq. (26) in (1C 1)
dimensions yielded exponents consistent with the directed
percolation models. The relevance of the KPZ nonlinearity
in modifying the critical behavior of the LIM has also been
confirmed by renormalization group calculations [47,81].

Future Directions

Through the intensive work by many groups in the past
fifteen years, the depinning transition of elastic manifolds
in a disordered medium has emerged as one of the best
understood nonequilibrium critical phenomena with non-
trivial scaling properties. The discovery of a renormaliz-
able continuum theory provided the much needed the-
oretical foundation for the identification of universality
classes and symmetry principles. Owing to this remark-
able development, models and experimental systems that
differ in microscopic details can be compared and classi-
fied with regard to their threshold behavior. More recent
refinements of the theory by the Paris group (e. g., [46])
have yielded deeper insights on the role of the cusp singu-
larity of the random force correlator in capturing the mul-
tiple-minima energy landscape of the disordered manifold
problem.

Within the class of models describe by Eq. (5), there
are still a few unresolved issues. For example, the rough-
ness exponent � of the (1C 1)-dimensional LIM has been
found numerically to be indistinguishable to 5

ı
4, sug-

gesting the possibility of an exact derivation. The effect

of a thermal noise term added to the deterministic model
has not been well-understood [13,59,86]. There now exist
very good numerical estimates of the exponent  that de-
scribes the vanishing of the interface velocity v � T with
temperature T at the depinning threshold, but its value
does not agree with any of the existing theoretical propos-
als [13]. Another puzzle is the closeness between the nu-
merical estimates for the dynamical exponent z given in
Table 1 and the one-loop RG prediction for the CDW de-
pinning.

The mapping between the CDW depinning and the
sandpile models offers a very powerful tool for the de-
velopment of RG theories for systems that exhibit SOC.
To our knowledge, this connection has not been fully
explored so far. It would be interesting to see if SOC
models other than the sandpile and the rice-pile, such
as the Olami–Feder–Christensen model [70] for earth-
quakes, can also be mapped to some type of depinning
model. Conversely, it would be nice to find out whether
the lessons learned from the detailed characterization of
avalanche dynamics [19] can contribute to a better under-
standing of critical correlations in the LIM at the depin-
ning threshold from small to large scales.

On the experimental side, perhaps the best studied sys-
tem is the CDW depinning, yet the CDW velocity gener-
ally grows faster than linear above the depinning thresh-
old [85], while the elastic depinning theory predicts � < 1.
It has been suggested that the apparent discrepancy could
be due to a combination of factors: Nonuniform driving,
thermal activation across energy barriers, and plasticity
when dislocations in the phase field is present. Simulta-
neous presence of strong pinning sites and weak collective
pinning in a finite system may also give rise to a complex
I–V curve in experimental systems. While some of these
effects have been investigated theoretically [79] (see also
the review by Brazovskii and Nattermann), a clear picture
is yet to emerge.

Moulinet et al. [62] designed an experimental system
to study the roughness and dynamics of the contact line
of a viscous fluid. The roughness exponent � obtained
from experimental measurements is 0.5, much bigger than
the value 0.385 obtained from numerical simulations [21]
of the model considered by Ertas and Kardar [24]. Simi-
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lar discrepancies have been reported in the experimental
studies [9,74] of the roughness of crack fronts. Modifica-
tions of the LIM to include nonlinear couplings and wave-
like dynamics [9] for avalanche propagation have been
suggested. However, many unresolved issues remain.

It is perhaps not surprising to see that real physical
systems almost always contain complications that invali-
date direct comparison with the linear elasticity theory of
depinning. The pinned state just below the transition is
highly metastable and hence is susceptible to various relax-
ational processes that could possibly invalidate our simple
assumptions (see, however [42] for a discussion of corre-
lation lengths below the elastic depinning threshold). In-
homogeneities inside the sample, e. g., macroscopic vari-
ations in the concentration of impurity atoms, may also
have a dramatic effect on the critical properties associ-
ated with the depinning transition. Incorporating the rel-
evant microscopic processes into the generic description
discussed here is expected to yield a more complete theory
of depinning. It is hoped that future work in this direction
will unleash the full impact of the theoretical progress that
have beenmade in the past two decades, which in itself has
been intellectually extremely stimulating.
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Glossary

Graph A graph is a set of elements, called vertices or
nodes, where pairs of vertices are connected by rela-
tional links, or edges. A graph can be considered as the
simplest representation of a complex system,where the
vertices are the elementary units of the system and the
edges represent their mutual interactions.

Community A community is a group of graph vertices
that “belong together” according to some precisely de-
fined criteria which can bemeasured.Many definitions
have been proposed. A common approach is to define
a community as a group of vertices such that the den-
sity of edges between vertices of the group is higher
than the average edge density in the graph. In the text
also the terms module or cluster are used when refer-
ring to a community.

Partition A partition is a split of a graph in subsets with
each vertex assigned to only one of them. This last
condition may be relaxed to include the case of over-
lapping communities, imposing that each vertex is as-
signed to at least one subset.

Dendrogram A dendrogram, or hierarchical tree, is
a branching diagram representing successive divisions
of a graph into communities. Dendrograms are fre-
quently used in social network analysis and computa-
tional biology, especially in biological taxonomy.

Scalability Scalability expresses the computational com-
plexity of an algorithm. If the running time of a com-
munity detection algorithm, working on a graph
with n vertices and m edges, is proportional to the
product n˛mˇ , one says that the algorithm scales as
O(n˛mˇ ). Knowing the scalability allows to estimate
the range of applicability of an algorithm.

Definition of the Subject

Graph vertices are often organized into groups that seem
to live fairly independently of the rest of the graph, with
which they share but a few edges, whereas the relation-
ships between group members are stronger, as shown by
the large number of mutual connections. Such groups
of vertices, or communities, can be considered as inde-
pendent compartments of a graph. Detecting communi-
ties is of great importance in sociology, biology and com-
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puter science, disciplines where systems are often repre-
sented as graphs. The task is very hard, though, both con-
ceptually, due to the ambiguity in the definition of com-
munity and in the discrimination of different partitions
and practically, because algorithms must find “good” par-
titions among an exponentially large number of them.
Other complications are represented by the possible oc-
currence of hierarchies, i. e. communities which are nested
inside larger communities, and by the existence of over-
laps between communities, due to the presence of nodes
belonging to more groups. All these aspects are dealt with
in some detail and many methods are described, from tra-
ditional approaches used in computer science and sociol-
ogy to recent techniques developed mostly within statisti-
cal physics.

Introduction

The origin of graph theory dates back to Euler’s solu-
tion [1] of the puzzle of Königsberg’s bridges in 1736. Since
then a lot has been learned about graphs and their math-
ematical properties [2]. In the 20th century they have also
become extremely useful as representation of a wide vari-
ety of systems in different areas. Biological, social, tech-
nological, and information networks can be studied as
graphs, and graph analysis has become crucial to under-
stand the features of these systems. For instance, social
network analysis started in the 1930s and has become one
of the most important topics in sociology [3,4]. In recent
times, the computer revolution has provided scholars with
a huge amount of data and computational resources to
process and analyze these data. The size of real networks
one can potentially handle has also grown considerably,
reaching millions or even billions of vertices. The need to
deal with such a large number of units has produced a deep
change in the way graphs are approached [5,6,7,8,9].

Real networks are not random graphs. The random
graph, introduced by P. Erdös and A. Rényi [10], is the
paradigm of a disordered graph: in it, the probability of
having an edge between a pair of vertices is equal for all
possible pairs. In a random graph, the distribution of edges
among the vertices is highly homogeneous. For instance,
the distribution of the number of neighbors of a vertex, or
degree, is binomial, so most vertices have equal or similar
degree. In many real networks, instead, there are big inho-
mogeneities, revealing a high level of order and organiza-
tion. The degree distribution is broad, with a tail that of-
ten follows a power law: therefore, many vertices with low
degree coexist with some vertices with large degree. Fur-
thermore, the distribution of edges is not only globally, but
also locally inhomogeneous, with high concentrations of

Community Structure in Graphs, Figure 1
A simple graph with three communities, highlighted by the
dashed circles

edges within special groups of nodes, and low concentra-
tions between these groups. This feature of real networks is
called community structure and is the topic of this chapter.
In Fig. 1 a schematic example of a graph with community
structure is shown.

Communities are groups of vertices which probably
share common properties and/or play similar roles within
the graph. So, communities may correspond to groups of
pages of the World Wide Web dealing with related top-
ics [11], to functional modules such as cycles and path-
ways in metabolic networks [12,13], to groups of related
individuals in social networks [14,15], to compartments in
food webs [16,17], and so on.

Community detection is important for other reasons,
too. Identifying modules and their boundaries allows for
a classification of vertices, according to their topological
position in themodules. So, vertices with a central position
in their clusters, i. e. sharing a large number of edges with
the other group partners, may have an important func-
tion of control and stability within the group; vertices ly-
ing at the boundaries between modules play an important
role of mediation and lead the relationships and exchanges
between different communities. Such classification seems
to be meaningful in social [18,19,20] and metabolic net-
works [12]. Finally, one can study the graph where vertices
are the communities and edges are set between modules
if there are connections between some of their vertices in
the original graph and/or if the modules overlap. In this
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way one attains a coarse-grained description of the orig-
inal graph, which unveils the relationships between mod-
ules. Recent studies indicate that networks of communities
have a different degree distribution with respect to the full
graphs [13]; however, the origin of their structures can be
explained by the same mechanism [21].

The aim of community detection in graphs is to iden-
tify the modules only based on the topology. The problem
has a long tradition and it has appeared in various forms
in several disciplines. For instance, in parallel computing
it is crucial to know what is the best way to allocate tasks
to processors so as to minimize the communications be-
tween them and enable a rapid performance of the cal-
culation. This can be accomplished by splitting the com-
puter cluster into groups with roughly the same number
of processors, such that the number of physical connec-
tions between processors of different groups is minimal.
The mathematical formalization of this problem is called
graph partitioning. The first algorithms for graph parti-
tioning were proposed in the early 1970s. Clustering anal-
ysis is also an important aspect in the study of social net-
works. The most popular techniques are hierarchical clus-
tering and k-means clustering, where vertices are joined
into groups according to their mutual similarity.

In a seminal paper, Girvan and Newman proposed
a new algorithm, aiming at the identification of edges ly-
ing between communities and their successive removal,
a procedure that after a few iterations leads to the isola-
tion of modules [14]. The intercommunity edges are de-
tected according to the values of a centrality measure, the
edge betweenness, that expresses the importance of the
role of the edges in processes where signals are transmitted
across the graph following paths of minimal length. The
paper triggered a big activity in the field, and many new
methods have been proposed in the last years. In particu-
lar, physicists entered the game, bringing in their tools and
techniques: spin models, optimization, percolation, ran-
dom walks, synchronization, etc., became ingredients of
new original algorithms. Earlier reviews of the topic can
be found in [22,23].

Section “Elements of Community Detection” is about
the basic elements of community detection, starting from
the definition of community. The classical problem of
graph partitioning and the methods for clustering anal-
ysis in sociology are presented in Sect. “Computer Sci-
ence: Graph Partitioning” and “Social Science: Hierarchi-
cal and k-Means Clustering”, respectively. Section “New
Methods” is devoted to a description of the new meth-
ods. In Sect. “Testing Methods” the problem of testing al-
gorithms is discussed. Section “The Mesoscopic Descrip-
tion of a Graph” introduces the description of graphs

at the level of communities. Finally, Sect. “Future Direc-
tions” highlights the perspectives of the field and sorts out
promising research directions for the future.

This chapter makes use of some basic concepts of
graph theory, that can be found in any introductory text-
book, like [2]. Some of them are briefly explained in the
text.

Elements of Community Detection

The problem of community detection is, at first sight, in-
tuitively clear. However, when one needs to formalize it
in detail things are not so well defined. In the intuitive
concept some ambiguities are hidden and there are often
many equally legitimate ways of resolving them. Hence
the term “Community Detection” actually indicates sev-
eral rather different problems.

First of all, there is no unique way of translating into
a precise prescription the intuitive idea of community.
Many possibilities exist, as discussed below. Some of these
possible definitions allow for vertices to belong to more
than one community. It is then possible to look for over-
lapping or nonoverlapping communities. Another ambi-
guity has to do with the concept of community structure.
It may be intended as a single partition of the graph or as
a hierarchy of partitions, at different levels of coarse-grain-
ing. There is then a problem of comparison. Which one
is the best partition (or the best hierarchy)? If one could,
in principle, analyze all possible partitions of a graph, one
would need a sensible way of measuring their “quality”
to single out the partitions with the strongest community
structure. It may even occur that one graph has no com-
munity structure and one should be able to realize it. Find-
ing a good method for comparing partitions is not a trivial
task and different choices are possible. Last but not least,
the number of possible partitions grows faster than expo-
nentially with the graph size, so that, in practice, it is not
possible to analyze them all. Therefore one has to devise
smart methods to find ‘good’ partitions in a reasonable
time. Again, a very hard problem.

Before introducing the basic concepts and discussing
the relevant questions it is important to stress that the
identification of topological clusters is possible only if the
graphs are sparse, i. e. if the number of edges m is of the
order of the number of nodes n of the graph. If m	 n,
the distribution of edges among the nodes is too homoge-
neous for communities to make sense.

Definition of Community

The first and foremost problem is how to define precisely
what a community is. The intuitive notion presented in
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the Introduction is related to the comparison of the num-
ber of edges joining vertices within a module (“intracom-
munity edges”) with the number of edges joining vertices
of different modules (“intercommunity edges”). A module
is characterized by a larger density of links “inside” than
“outside”. This notion can be however formalized in many
ways. Social network analysts have devised many defini-
tions of subgroups with various degrees of internal co-
hesion among vertices [3,4]. Many other definitions have
been introduced by computer scientists and physicists. In
general, the definitions can be classified in three main cat-
egories.

� Local definitions. Here the attention is focused on the
vertices of the subgraph under investigation and on
its immediate neighborhood, disregarding the rest of
the graph. These prescriptions comemostly from social
network analysis and can be further subdivided in self-
referring, when one considers the subgraph alone, and
comparative, when the mutual cohesion of the vertices
of the subgraph is compared with their cohesion with
the external neighbors. Self-referring definitions iden-
tify classes of subgraphs like cliques, n-cliques, k-plexes,
etc. They are maximal subgraphs, which cannot be en-
largedwith the addition of new vertices and edgeswith-
out losing the property which defines them. The con-
cept of clique is very important and often recurring
when one studies graphs. A clique is a maximal sub-
graph where each vertex is adjacent to all the others. In
the literature it is common to call cliques also non-max-
imal subgraphs. Triangles are the simplest cliques, and
are frequent in real networks. Larger cliques are rare,
so they are not good models of communities. Besides,
finding cliques is computationally very demanding: the
Bron–Kerbosch method [24] runs in a time growing
exponentially with the size of the graph. The defini-
tion of clique is very strict. A softer constraint is rep-
resented by the concept of n-clique, which is a maxi-
mal subgraph such that the distance of each pair of its
vertices is not larger than n. A k-plex is a maximal sub-
graph such that each vertex is adjacent to all the others
except at most k of them. In contrast, a k-core is a maxi-
mal subgraph where each vertex is adjacent to at least k
vertices within the subgraph. Comparative definitions
include that of LS set, or strong community, and that of
weak community. An LS set is a subgraph where each
node has more neighbors inside than outside the sub-
graph. Instead, in a weak community, the total degree
of the nodes inside the community exceeds the external
total degree, i. e. the number of links lying between the
community and the rest of the graph. LS sets are also

weak communities, but the inverse is not true, in gen-
eral. The notion of weak community was introduced by
Radicchi et al. [25].

� Global definitions. Communities are structural units of
the graph, so it is reasonable to think that their distinc-
tive features can be recognized if one analyzes a sub-
graph with respect to the graph as a whole. Global def-
initions usually start from a null model, i. e. a graph
which matches the original in some of its topological
features, but which does not display community struc-
ture. After that, the linking properties of subgraphs
of the initial graph are compared with those of the
corresponding subgraphs in the null model. The sim-
plest way to design a null model is to introduce ran-
domness in the distribution of edges among the ver-
tices. A random graph à la Erdös–Rényi, for instance,
has no community structure, as any two vertices have
the same probability to be adjacent, so there is no
preferential linking involving special groups of ver-
tices. The most popular null model is that proposed
by Newman and Girvan and consists of a random-
ized version of the original graph, where edges are
rewired at random, under the constraint that each ver-
tex keeps its degree [26]. This null model is the basic
concept behind the definition ofmodularity, a function
which evaluates the goodness of partitions of a graph
into modules (see Sect. “Evaluating Partitions: Qual-
ity Functions”). Here a subset of vertices is a com-
munity if the number of edges inside the subset ex-
ceeds the expected number of internal edges that the
subset would have in the null model. A more gen-
eral definition, where one counts small connected sub-
graphs (motifs), and not necessarily edges, can be found
in [27]. A general class of null models, including that of
modularity, has been designed by Reichardt and Born-
holdt [28].

� Definitions based on vertex similarity. In this last cat-
egory, communities are groups of vertices which are
similar to each other. A quantitative criterion is cho-
sen to evaluate the similarity between each pair of ver-
tices, connected or not. The criterion may be local or
global: for instance one can estimate the distance be-
tween a pair of vertices. Similarities can be also ex-
tracted from eigenvector components of special matri-
ces, which are usually close in value for vertices belong-
ing to the same community. Similarity measures are at
the basis of the method of hierarchical clustering, to
be discussed in Sect. “Social Science: Hierarchical and
k-Means Clustering”. The main problem in this case is
the need to introduce an additional criterion to select
meaningful partitions.



Community Structure in Graphs C 1145

It is worth remarking that, in spite of the wide variety
of definitions, in many detection algorithms communities
are not defined at all, but are a byproduct of the proce-
dure. This is the case of the divisive algorithms described
in Sect. “Divisive Algorithms” and of the dynamic algo-
rithms of Sect. “Dynamic Algorithms”.

Evaluating Partitions: Quality Functions

Strictly speaking, a partition of a graph in communities is
a split of the graph in clusters, with each vertex assigned
to only one cluster. The latter condition may be relaxed, as
shown in Sect. “Overlapping Communities”.Whatever the
definition of community is, there is usually a large num-
ber of possible partitions. It is then necessary to establish
which partitions exhibit a real community structure. For
that, one needs a quality function, i. e. a quantitative crite-
rion to evaluate how good a partition is. The most popu-
lar quality function is the modularity of Newman and Gir-
van [26]. It can be written in several ways, as

Q D
1
2m

X

i j

�
Ai j �

ki k j
2m

�
ı(Ci ;Cj) ; (1)

where the sum runs over all pairs of vertices, A is the adja-
cencymatrix, ki the degree of vertex i andm the total num-
ber of edges of the graph. The elementAij of the adjacency
matrix is 1 if vertices i and j are connected, otherwise it is 0.
The ı-function yields one if vertices i and j are in the same
community, zero otherwise. Because of that, the only con-
tributions to the sum come from vertex pairs belonging to
the same cluster: by grouping them together the sum over
the vertex pairs can be rewritten as a sum over themodules
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Here, nm is the number of modules, ls the total number of
edges joining vertices of module s and ds the sum of the
degrees of the vertices of s. In Eq. (2), the first term of each
summand is the fraction of edges of the graph inside the
module, whereas the second term represents the expected
fraction of edges that would be there if the graph were
a random graph with the same degree for each vertex. In
such a case, a vertex could be attached to any other vertex
of the graph, and the probability of a connection between
two vertices is proportional to the product of their degrees.
So, for a vertex pair, the comparison between real and ex-
pected edges is expressed by the corresponding summand
of Eq. (1).

Equation (2) embeds an implicit definition of commu-
nity: a subgraph is a module if the number of edges in-
side it is larger than the expected number in modularity’s

null model. If this is the case, the vertices of the subgraph
aremore tightly connected than expected. Basically, if each
summand in Eq. (2) is non-negative, the corresponding
subgraph is a module. Besides, the larger the difference
between real and expected edges, the more “modular” the
subgraph. So, large positive values of Q are expected to in-
dicate good partitions. The modularity of the whole graph,
taken as a single community, is zero, as the two terms of
the only summand in this case are equal and opposite.
Modularity is always smaller than one, and can be nega-
tive as well. For instance, the partition in which each ver-
tex is a community is always negative. This is a nice fea-
ture of the measure, implying that, if there are no parti-
tions with positive modularity, the graph has no commu-
nity structure. On the contrary, the existence of partitions
with large negativemodularity valuesmay hint to the exis-
tence of subgroups with very few internal edges and many
edges lying between them (multipartite structure).

Modularity has been employed as a quality function in
many algorithms, like some of the divisive algorithms of
Sect. “Divisive Algorithms”. In addition, modularity op-
timization is itself a popular method for community de-
tection (see Sect. “Modularity Optimization”). Modular-
ity also allows to assess the stability of partitions [29] and
to transform a graph into a smaller one by preserving its
community structure [30].

However, there are some caveats on the use of themea-
sure. The most important concerns the value of modular-
ity for a partition. For which values one can say that there
is a clear community structure in a graph? The question is
tricky: if two graphs have the same type of modular struc-
ture, but different sizes, modularity will be larger for the
larger graph. So, modularity values cannot be compared
for different graphs. Moreover, one would expect that par-
titions of random graphs will have modularity values close
to zero, as no community structure is expected there. In-
stead, it has been shown that partitions of random graphs
may attain fairly largemodularity values, as the probability
that the distribution of edges on the vertices is locally in-
homogeneous in specific realizations is not negligible [31].
Finally, a recent analysis has proved that modularity in-
creases if subgraphs smaller than a characteristic size are
merged [32]. This fact represents a serious bias when one
looks for communities via modularity optimization and is
discussed in more detail in Sect. “Modularity Optimiza-
tion”.

Hierarchies

Graph vertices can have various levels of organization.
Modules can display an internal community structure, i. e.
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Community Structure in Graphs, Figure 2
Schematic example of a hierarchical graph. Sixteen modules
with four vertices each are clearly organized in groups of four

Community Structure in Graphs, Figure 3
A dendrogram, or hierarchical tree. Horizontal cuts correspond
to partitions of the graph in communities. Reprinted figure with
permission from [26]

they can contain smaller modules, which can in turn in-
clude other modules, and so on. In this case one says that
the graph is hierarchical (see Fig. 2). For a clear classifi-
cation of the vertices and their roles inside a graph, it is
important to find all modules of the graph as well as their
hierarchy.

A natural way to represent the hierarchical structure
of a graph is to draw a dendrogram, like the one illustrated
in Fig. 3. Here, partitions of a graph with twelve vertices
are shown. At the bottom, each vertex is its own module.
By moving upwards, groups of vertices are successively ag-
gregated. Merges of communities are represented by hor-
izontal lines. The uppermost level represents the whole
graph as a single community. Cutting the diagram hor-
izontally at some height, as shown in the figure (dashed
line), displays one level of organization of the graph ver-

tices. The diagram is hierarchical by construction: each
community belonging to a level is fully included in a com-
munity at a higher level. Dendrograms are regularly used
in sociology and biology. The technique of hierarchical
clustering, described in Sect. “Social Science: Hierarchical
and k-Means Clustering”, lends itself naturally to this kind
of representation.

Overlapping Communities

As stated in Sect. “Evaluating Partitions: Quality Func-
tions”, in a partition each vertex is generally attributed
only to one module. However, vertices lying at the bound-
ary between modules may be difficult to assign to one
module or another, based on their connections with the
other vertices. In this case, it makes sense to consider such
intermediate vertices as belonging to more groups, which
are then called overlapping communities (Fig. 4).Many real
networks are characterized by a modular structure with
sizeable overlaps between different clusters. In social net-
works, people usually belong to more communities, ac-
cording to their personal life and interests: for instance
a person may have tight relationships both with the peo-
ple of its working environment and with other individuals
involved in common free time activities.

Community Structure in Graphs, Figure 4
Overlapping communities. In the partition highlighted by the
dashed contours, some vertices are shared between more
groups
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Accounting for overlaps is also a way to better exploit
the information that one can derive from topology. Ideally,
one could estimate the degree of participation of a ver-
tex in different communities, which corresponds to the
likelihood that the vertex belongs to the various groups.
Community detection algorithms, instead, often disagree
in the classification of peripheral vertices of modules, be-
cause they are forced to put them in a single cluster, which
may be the wrong one.

The problem of community detection is so hard
that very few algorithms consider the possibility of hav-
ing overlapping communities. An interesting method has
been recently proposed by G. Palla et al. [13] and is de-
scribed in Sect. “Clique Percolation”. For standard algo-
rithms, the problem of identifying overlapping vertices
could be addressed by checking for the stability of parti-
tions against slight variations in the structure of the graph,
as described in [33].

Computer Science: Graph Partitioning

The problem of graph partitioning consists in dividing
the vertices in g groups of predefined size, such that the
number of edges lying between the groups is minimal.
The number of edges running between modules is called
cut size. Figure 5 presents the solution of the problem for
a graph with fourteen vertices, for g D 2 and clusters of
equal size.

The specification of the number of modules of the par-
tition is necessary. If one simply imposed a partition with

Community Structure in Graphs, Figure 5
Graph partitioning. The cut shows the partition in two groups of
equal size

the minimal cut size, and left the number of modules free,
the solution would be trivial, corresponding to all vertices
ending up in the same module, as this would yield a van-
ishing cut size.

Graph partitioning is a fundamental issue in parallel
computing, circuit partitioning and layout, and in the de-
sign of many serial algorithms, including techniques to
solve partial differential equations and sparse linear sys-
tems of equations. Most variants of the graph partition-
ing problem are NP-hard, i. e. it is unlikely that the so-
lution can be computed in a time growing as a power of
the graph size. There are however several algorithms that
can do a good job, even if their solutions are not necessar-
ily optimal [34]. Most algorithms perform a bisection of
the graph, which is already a complex task. Partitions into
more than two modules are usually attained by iterative
bisectioning.

The Kernighan–Lin algorithm [35] is one of the ear-
liest methods proposed and is still frequently used, often
in combination with other techniques. The authors were
motivated by the problem of partitioning electronic cir-
cuits onto boards: the nodes contained in different boards
need to be linked to each other with the least number of
connections. The procedure is an optimization of a bene-
fit function Q, which represents the difference between the
number of edges inside the modules and the number of
edges lying between them. The starting point is an initial
partition of the graph in two clusters of the predefined size:
such initial partition can be random or suggested by some
information on the graph structure. Then, subsets consist-
ing of equal numbers of vertices are swapped between the
two groups, so thatQ has the maximal increase. To reduce
the risk to be trapped in local maxima of Q, the procedure
includes some swaps that decrease the function Q. After
a series of swaps with positive and negative gains, the par-
tition with the largest value of Q is selected and used as
starting point of a new series of iterations. The Kernighan–
Lin algorithm is quite fast, scaling as O(n2) in worst-case
time, n being the number of vertices. The partitions found
by the procedure are strongly dependent on the initial con-
figuration and other algorithms can do better. However,
the method is used to improve on the partitions found
through other techniques, by using them as starting con-
figurations for the algorithm.

Another popular technique is the spectral bisection
method, which is based on the properties of the Lapla-
cian matrix. The Laplacian matrix (or simply Laplacian) of
a graph is obtained from the adjacencymatrixA by placing
on the diagonal the degrees of the vertices and by chang-
ing the signs of the other elements. The Laplacian has all
non-negative eigenvalues and at least one zero eigenvalue,
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as the sum of the elements of each row and column of the
matrix is zero. If a graph is divided into g connected com-
ponents, the Laplacian would have g degenerate eigenvec-
tors with eigenvalue zero and can be written in block-di-
agonal form, i. e. the vertices can be ordered in such a way
that the Laplacian displays g square blocks along the di-
agonal, with entries different from zero, whereas all other
elements vanish. Each block is the Laplacian of the corre-
sponding subgraph, so it has the trivial eigenvector with
components (1; 1; 1; : : : ; 1; 1). Therefore, there are g de-
generate eigenvectors with equal non-vanishing compo-
nents in correspondence of the vertices of a block, whereas
all other components are zero. In this way, from the com-
ponents of the eigenvectors one can identify the connected
components of the graph.

If the graph is connected, but consists of g subgraphs
which are weakly linked to each other, the spectrum will
have one zero eigenvalue and g � 1 eigenvalues which
are close to zero. If the groups are two, the second low-
est eigenvalue will be close to zero and the corresponding
eigenvector, also called Fiedler vector, can be used to iden-
tify the two clusters as shown below.

Every partition of a graph with n vertices in two groups
can be represented by an index vector s, whose compo-
nent si isC1 if vertex i is in one group and�1 if it is in the
other group. The cut size R of the partition of the graph in
the two groups can be written as

R D
1
4
sTLs ; (3)

where L is the Laplacian matrix and sT the transpose of
vector s. Vector s can be written as s D

P
i aivi , where vi ,

i D 1; : : : ; n are the eigenvectors of the Laplacian. If s is
properly normalized, then

R D
X

i

a2ii ; (4)

where i is the Laplacian eigenvalue corresponding to
eigenvector vi . It is worth remarking that the sum contains
at most n � 1 terms, as the Laplacian has at least one zero
eigenvalue. Minimizing R equals to the minimization of
the sum on the right-hand side of Eq. (4). This task is still
very hard. However, if the second lowest eigenvector 2 is
close enough to zero, a good approximation of the mini-
mum can be attained by choosing s parallel to the Fiedler
vector v2: this would reduce the sum to 2, which is a small
number. But the index vector cannot be perfectly paral-
lel to v2 by construction, because all its components are
equal in modulus, whereas the components of v2 are not.
The best one can do is to match the signs of the compo-
nents. So, one can set si D C1(�1) if vi2 >0 (<0). It may

happen that the sizes of the two corresponding groups do
not match the predefined sizes one wishes to have. In this
case, if one aims at a split in n1 and n2 D n � n1 vertices,
the best strategy is to order the components of the Fiedler
vector from the lowest to the largest values and to put in
one group the vertices corresponding to the first n1 com-
ponents from the top or the bottom, and the remaining
vertices in the second group. If there is a discrepancy be-
tween n1 and the number of positive or negative compo-
nents of v2, this procedure yields two partitions: the better
solution is the one that gives the smallest cut size.

The spectral bisection method is quite fast. The first
eigenvectors of the Laplacian can be computed by us-
ing the Lanczos method [36], that scales as m/(3 � 2),
where m is the number of edges of the graph. If the eigen-
values 2 and 3 are well separated, the running time of
the algorithm is much shorter than the time required to
calculate the complete set of eigenvectors, which scales as
O(n3). The method gives in general good partitions, that
can be further improved by applying the Kernighan–Lin
algorithm.

Other methods for graph partitioning include level-
structure partitioning, the geometric algorithm, multilevel
algorithms, etc. A good description of these algorithms can
be found in [34].

Graph partitioning algorithms are not good for com-
munity detection, because it is necessary to provide as
input both the number of groups and their size, about
which in principle one knows nothing. Instead, one would
like an algorithm capable to produce this information in
its output. Besides, using iterative bisectioning to split the
graph in more pieces is not a reliable procedure.

Social Science: Hierarchical and k-Means Clustering

In social network analysis, one partitions actors/vertices in
clusters such that actors in the same cluster are more sim-
ilar between themselves than actors of different clusters.
The two most used techniques to perform clustering anal-
ysis in sociology are hierarchical clustering and k-means
clustering.

The starting point of hierarchical clustering is the def-
inition of a similarity measure between vertices. After
a measure is chosen, one computes the similarity for each
pair of vertices, no matter if they are connected or not. At
the end of this process, one is left with a new n � n ma-
trix X, the similarity matrix. Initially, there are n groups,
each containing one of the vertices. At each step, the two
most similar groups are merged; the procedure continues
until all vertices are in the same group.
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There are different ways to define the similarity be-
tween groups out of the matrix X. In single linkage clus-
tering, the similarity between two groups is the minimum
element xij, with i in one group and j in the other. On the
contrary, the maximum element xij for vertices of different
groups is used in the procedure of complete linkage cluster-
ing. In average linkage clustering one has to compute the
average of the xij.

The procedure can be better illustrated by means of
dendrograms, like the one in Fig. 3. One should note that
hierarchical clustering does not deliver a single partition,
but a set of partitions.

There are many possible ways to define a similarity
measure for the vertices based on the topology of the net-
work. A possibility is to define a distance between vertices,
like

xi j D
sX

k¤i; j

(Aik � Ajk )2 : (5)

This is a dissimilarity measure, based on the concept of
structural equivalence. Two vertices are structurally equiv-
alent if they have the same neighbors, even if they are not
adjacent themselves. If i and j are structurally equivalent,
xi j D 0. Vertices with large degree and different neighbors
are considered very “far” from each other. Another mea-
sure related to structural equivalence is the Pearson corre-
lation between columns or rows of the adjacency matrix,

xi j D
P

k(Aik � �i )(Ajk � � j)
n�i� j

; (6)

where the averages �i D (
P

j Ai j)/n and the variances
�i D

P
j(Ai j � �i )2/n.

An alternative measure is the number of edge-
(or vertex-) independent paths between two vertices.
Independent paths do not share any edge (vertex), and
their number is related to the maximum flow that can be
conveyed between the two vertices under the constraint
that each edge can carry only one unit of flow (max-
flow/min-cut theorem). Similarly, one could consider all
paths running between two vertices. In this case, there is
the problem that the total number of paths is infinite, but
this can be avoided if one performs a weighted sum of the
number of paths, where paths of length l are weighted by
the factor ˛ l , with ˛ < 1. So, the weights of long paths are
exponentially suppressed and the sum converges.

Hierarchical clustering has the advantage that it does
not require a preliminary knowledge on the number and
size of the clusters. However, it does not provide a way
to discriminate between the many partitions obtained by

the procedure, and to choose that or those that better rep-
resent the community structure of the graph. Moreover,
the results of the method depend on the specific similarity
measure adopted. Finally, it does not correctly classify all
vertices of a community, and in many cases some vertices
are missed even if they have a central role in their clus-
ters [22].

Another popular clustering technique in sociology is
k-means clustering [37]. Here, the number of clusters is
preassigned, say k. The vertices of the graph are embed-
ded in a metric space, so that each vertex is a point and
a distance measure is defined between pairs of points in
the space. The distance is a measure of dissimilarity be-
tween vertices. The aim of the algorithm is to identify k
points in this space, or centroids, so that each vertex is as-
sociated to one centroid and the sum of the distances of
all vertices from their respective centroids is minimal. To
achieve this, one starts from an initial distribution of cen-
troids such that they are as far as possible from each other.
In the first iteration, each vertex is assigned to the nearest
centroid. Next, the centers of mass of the k clusters are esti-
mated and become a new set of centroids, which allows for
a new classification of the vertices, and so on. After a suf-
ficient number of iterations, the positions of the centroids
are stable, and the clusters do not change any more. The
solution found is not necessarily optimal, as it strongly de-
pends on the initial choice of the centroids. The result can
be improved by performing more runs starting from dif-
ferent initial conditions.

The limitation of k-means clustering is the same as that
of the graph partitioning algorithms: the number of clus-
ters must be specified at the beginning, the method is not
able to derive it. In addition, the embedding in a metric
space can be natural for some graphs, but rather artificial
for others.

NewMethods

From the previous two sections it is clear that traditional
approaches to derive graph partitions have serious limits.
The most important problem is the need to provide the al-
gorithms with information that one would like to derive
from the algorithms themselves, like the number of clus-
ters and their size. Even when these inputs are not neces-
sary, like in hierarchical clustering, there is the question of
estimating the goodness of the partitions, so that one can
pick the best one. For these reasons, there has been a ma-
jor effort in the last years to devise algorithms capable of
extracting a complete information about the community
structure of graphs. These methods can be grouped into
different categories.



1150 C Community Structure in Graphs

Divisive Algorithms

A simple way to identify communities in a graph is to de-
tect the edges that connect vertices of different commu-
nities and remove them, so that the clusters get discon-
nected from each other. This is the philosophy of divisive
algorithms. The crucial point is to find a property of in-
tercommunity edges that could allow for their identifica-
tion. Any divisive method delivers many partitions, which
are by construction hierarchical, so that they can be repre-
sented with dendrograms.

Algorithm of Girvan and Newman. The most pop-
ular algorithm is that proposed by Girvan and New-
man [14]. The method is also historically important, be-
cause it marked the beginning of a new era in the field of
community detection. Here edges are selected according
to the values of measures of edge centrality, estimating the
importance of edges according to some property or pro-
cess running on the graph. The steps of the algorithm are:

1. Computation of the centrality for all edges;
2. Removal of edge with largest centrality;
3. Recalculation of centralities on the running graph;
4. Iteration of the cycle from step 2.

Girvan and Newman focused on the concept of be-
tweenness, which is a variable expressing the frequency of
the participation of edges to a process. They considered
three alternative definitions: edge betweenness, current-
flow betweenness and random walk betweenness.

Edge betweenness is the number of shortest paths be-
tween all vertex pairs that run along the edge. It is an ex-
tension to edges of the concept of site betweenness, intro-
duced by Freeman in 1977 [20]. It is intuitive that inter-
community edges have a large value of the edge between-
ness, because many shortest paths connecting vertices of
different communities will pass through them (Fig. 6). The
betweenness of all edges of the graph can be calculated

Community Structure in Graphs, Figure 6
Edgebetweenness is highest for edges connecting communities.
In the figure, the thick edge in the middle has a much higher be-
tweenness than all other edges, because all shortest paths con-
necting vertices of the two communities run through it

in a time that scales as O(mn), with techniques based on
breadth-first-search [26,38].

Current-flow betweenness is defined by considering
the graph a resistor network, with edges having unit re-
sistance. If a voltage difference is applied between any two
vertices, each edge carries some amount of current, that
can be calculated by solving Kirchoff’s equations. The pro-
cedure is repeated for all possible vertex pairs: the cur-
rent-flow betweenness of an edge is the average value of
the current carried by the edge. Calculation of current-
flow betweenness requires the inversion of an n � n ma-
trix (once), followed by obtaining and averaging the cur-
rent for all pairs of nodes. Each of these two tasks takes
a time O(n3) for a sparse matrix.

The random-walk betweenness of an edge says how
frequently a random walker running on the graph goes
across the edge. We remind that a random walker mov-
ing from a vertex follows each edge with equal probability.
A pair of vertices is chosen at random, s and t. The walker
starts at s and keeps moving until it hits t, where it stops.
One computes the probability that each edge was crossed
by the walker, and averages over all possible choices for the
vertices s and t. The complete calculation requires a time
O(n3) on a sparse graph. It is possible to show that this
measure is equivalent to current-flow betweenness [39].

Calculating edge betweenness is much faster than cur-
rent-flow or random walk betweenness (O(n2) versus
O(n3) on sparse graphs). In addition, in practical ap-
plications the Girvan–Newman algorithm with edge be-
tweenness gives better results than adopting the other cen-
trality measures. Numerical studies show that the recal-
culation step 3 of Girvan–Newman algorithm is essen-
tial to detect meaningful communities. This introduces
an additional factor m in the running time of the algo-
rithm: consequently, the edge betweenness version scales
as O(m2n), or O(n3) on a sparse graph. Because of that,
the algorithm is quite slow, and applicable to graphs with
up to n � 10 000 vertices, with current computational re-
sources. In the original version of Girvan–Newman’s algo-
rithm [14], the authors had to deal with the whole hierar-
chy of partitions, as they had no procedure to say which
partition is the best. In a successive refinement [26], they
selected the partition with the largest value of modular-
ity (see Sect. “Evaluating Partitions: Quality Functions”),
a criterion that has been frequently used ever since. There
have been countless applications of the Girvan–Newman
method: the algorithm is now integrated in well known li-
braries of network analysis programs.

Algorithm of Tyler et al. Tyler, Wilkinson and Hu-
berman proposed a modification of the Girvan–Newman
algorithm, to improve the speed of the calculation [40].
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The modification consists in calculating the contribution
to edge betweenness only from a limited number of ver-
tex pairs, chosen at random, deriving a sort of Monte
Carlo estimate. The procedure induces statistical errors
in the values of the edge betweenness. As a consequence,
the partitions are in general different for different choices
of the sampling pairs of vertices. However, the authors
showed that, by repeating the calculation many times, the
method gives good results, with a substantial gain of com-
puter time. In practical examples, only vertices lying at the
boundary between communities may not be clearly clas-
sified, and be assigned sometimes to a group, sometimes
to another. The method has been applied to a network of
people corresponding through email [40] and to networks
of gene co-occurrences [41].

Algorithm of Fortunato et al. An alternativemeasure of
centrality for edges is information centrality. It is based on
the concept of efficiency [42], which estimates how easily
information travels on a graph according to the length of
shortest paths between vertices. The information central-
ity of an edge is the variation of the efficiency of the graph
if the edge is removed. In the algorithm by Fortunato, La-
tora and Marchiori [43], edges are removed according to
decreasing values of information centrality. The method is
analogous to that of Girvan and Newman, but slower, as
it scales as O(n4) on a sparse graph. On the other hand, it
gives a better classification of vertices when communities
are fuzzy, i. e. with a high degree of interconnectedness.

Algorithm of Radicchi et al. Because of the high den-
sity of edges within communities, it is easy to find loops
in them, i. e. closed non-intersecting paths. On the con-
trary, edges lying between communities will hardly be part
of short loops. Based on this intuitive idea, Radicchi et al.
proposed a new measure, the edge clustering coefficient,
such that low values of the measure are likely to corre-
spond to intercommunity edges [25]. The edge cluster-
ing coefficient generalizes to edges the notion of cluster-
ing coefficient introduced by Watts and Strogatz for ver-
tices [44]. The latter is the number of triangles including
a vertex divided by the number of possible triangles that
can be formed. The edge clustering coefficient is the num-
ber of loops of length g including the edge divided by the
number of possible cycles. Usually, loops of length g D 3
or 4 are considered. At each iteration, the edge with small-
est clustering coefficient is removed, the measure is recal-
culated again, and so on. The procedure stops when all
clusters obtained are LS-sets or “weak” communities (see
Sect. “Definition of Community”). Since the edge cluster-
ing coefficient is a local measure, involving at most an ex-
tended neighborhood of the edge, it can be calculated very
quickly. The running time of the algorithm to completion

is O(m4/n2), or O(n2) on a sparse graph, so it is much
shorter than the running time of the Girvan–Newman
method. On the other hand, the method may give poor re-
sults when the graph has few loops, as it happens in several
non-social networks. In this case, in fact, the edge clus-
tering coefficient is small and fairly similar for all edges,
and the algorithm may fail to identify the bridges between
communities.

Modularity Optimization

If Newman–GirvanmodularityQ (Sect. “Evaluating Parti-
tions: Quality Functions”) is a good indicator of the qual-
ity of partitions, the partition corresponding to its maxi-
mum value on a given graph should be the best, or at least
a very good one. This is the main motivation for mod-
ularity maximization, perhaps the most popular class of
methods to detect communities in graphs. An exhaustive
optimization of Q is impossible, due to the huge number
of ways in which it is possible to partition a graph, even
when the latter is small. Besides, the true maximum is out
of reach, as it has been recently proved that modularity
optimization is an NP-hard problem [45], so it is probably
impossible to find the solution in a time growing polyno-
mially with the size of the graph. However, there are cur-
rently several algorithms able to find fairly good approxi-
mations of the modularity maximum in a reasonable time.

Greedy techniques. The first algorithm devised to max-
imize modularity was a greedymethod of Newman [46]. It
is an agglomerative method, where groups of vertices are
successively joined to form larger communities such that
modularity increases after the merging. One starts from n
clusters, each containing a single vertex. Edges are not ini-
tially present, they are added one by one during the proce-
dure. However, modularity is always calculated from the
full topology of the graph, since one wants to find its parti-
tions. Adding a first edge to the set of disconnected ver-
tices reduces the number of groups from n to n � 1, so
it delivers a new partition of the graph. The edge is cho-
sen such that this partition gives the maximum increase
of modularity with respect to the previous configuration.
All other edges are added based on the same principle.
If the insertion of an edge does not change the partition,
i. e. the clusters are the same, modularity stays the same.
The number of partitions found during the procedure is n,
each with a different number of clusters, from n to 1. The
largest value of modularity in this subset of partitions is
the approximation of the modularity maximum given by
the algorithm. The update of the modularity value at each
iteration step can be performed in a time O(nC m), so
the algorithm runs to completion in a time O((m C n)n),
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or O(n2) on a sparse graph, which is fast. In a later pa-
per by Clauset et al. [47], it was shown that the calcu-
lation of modularity during the procedure can be per-
formed much more quickly by use of max-heaps, special
data structures created using a binary tree. By doing that,
the algorithm scales as O(md log n), where d is the depth
of the dendrogram describing the successive partitions
found during the execution of the algorithm, which grows
as log n for graphs with a strong hierarchical structure.
For those graphs, the running time of the method is then
O(n log2 n), which allows to analyze the community struc-
ture of very large graphs, up to 107 vertices. The greedy al-
gorithm is currently the only algorithm that can be used to
estimate the modularity maximum on such large graphs.
On the other hand, the approximation it finds is not that
good, as compared with other techniques. The accuracy
of the algorithm can be considerably improved if one ac-
counts for the size of the groups to be merged [48], or if the
hierarchical agglomeration is started from some good in-
termediate configuration, rather than from the individual
vertices [49].

Simulated annealing. Simulated annealing [50] is
a probabilistic procedure for global optimization used in
different fields and problems. It consists in performing an
exploration of the space of possible states, looking for the
global optimum of a function F, say its maximum. Transi-
tions from one state to another occur with probability 1
if F increases after the change, otherwise with a proba-
bility exp(ˇ�F), where �F is the decrease of the func-
tion and ˇ is an index of stochastic noise, a sort of in-
verse temperature, which increases after each iteration.
The noise reduces the risk that the system gets trapped
in local optima. At some stage, the system converges to
a stable state, which can be an arbitrarily good approxi-
mation of the maximum of F, depending on how many
states were explored and how slowly ˇ is varied. Simulated
annealing was first employed for modularity optimization
by R. Guimerá et al. [31]. Its standard implementation
combines two types of “moves”: local moves, where a sin-
gle vertex is shifted from one cluster to another, taken at
random; global moves, consisting of merges and splits of
communities. In practical applications, one typically com-
bines n2 local moves with n global ones in one iteration.
The method can potentially come very close to the true
modularity maximum, but it is slow. Therefore, it can be
used for small graphs, with up to about 104 vertices. Appli-
cations include studies of potential energy landscapes [51]
and of metabolic networks [12].

Extremal optimization. Extremal optimization is
a heuristic search procedure proposed by Boettcher and
Percus [52], in order to achieve an accuracy comparable

with simulated annealing, but with a substantial gain in
computer time. It is based on the optimization of local
variables, expressing the contribution of each unit of the
system to the global function at study. This technique
was used for modularity optimization by Duch and Are-
nas [53]. Modularity can be indeed written as a sum over
the vertices: the local modularity of a vertex is the value
of the corresponding term in this sum. A fitness measure
for each vertex is obtained by dividing the local modular-
ity of the vertex by its degree. One starts from a random
partition of the graph in two groups. At each iteration, the
vertex with the lowest fitness is shifted to the other cluster.
The move changes the partition, so the local fitnesses need
to be recalculated. The process continues until the global
modularity Q cannot be improved any more by the pro-
cedure. At this stage, each cluster is considered as a graph
on its own and the procedure is repeated, as long as Q
increases for the partitions found. The algorithm finds an
excellent approximation of the modularity maximum in
a timeO(n2 log n), so it represents a good tradeoff between
accuracy and speed.

Spectral optimization. Modularity can be optimized
using the eigenvalues and eigenvectors of a special matrix,
the modularity matrix B, whose elements are

Bi j D Ai j �
ki k j
2m

; (7)

where the notation is the same used in Eq. (1). The
method [54,55] is analogous to spectral bisection, de-
scribed in Sect. “Computer Science: Graph Partitioning”.
The difference is that here the Laplacian matrix is replaced
by the modularity matrix. Between Q and B there is the
same relation as between R and L in Eq. (3), so modu-
larity can be written as a weighted sum of the eigenvalues
of B, just like Eq. (4). Here one has to look for the eigen-
vector of B with largest eigenvalue, u1, and group the ver-
tices according to the signs of the components of u1, just
like in Sect. “Computer Science: Graph Partitioning”. The
Kernighan–Lin algorithm can then be used to improve the
result. The procedure is repeated for each of the clusters
separately, and the number of communities increases as
long as modularity does. The advantage over spectral bi-
section is that it is not necessary to specify the size of the
two groups, because it is determined by taking the parti-
tion with largest modularity. The drawback is similar as
for spectral bisection, i. e. the algorithm gives the best re-
sults for bisections, whereas it is less accurate when the
number of communities is larger than two. The situation
could be improved by using the other eigenvectors with
positive eigenvalues of the modularity matrix. In addi-
tion, the eigenvectors with the most negative eigenvalues
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are important to detect a possible multipartite structure of
the graph, as they give the most relevant contribution to
the modularity minimum. The algorithm typically runs in
a time O(n2 log n) for a sparse graph, when one computes
only the first eigenvector, so it is faster than extremal op-
timization, and slightly more accurate, especially for large
graphs.

Finally, some general remarks on modularity opti-
mization and its reliability. A large value for the modular-
ity maximum does not necessarily mean that a graph has
a community structure. Random graphs can also have par-
titions with large modularity values, even though clusters
are not explicitly built in [31,56]. Therefore, the modular-
ity maximum of a graph reveals its community structure
only if it is appreciably larger than the modularity maxi-
mum of random graphs of the same size [57].

In addition, one assumes that the modularity maxi-
mum delivers the “best” partition of the network in com-
munities. However, this is not always true [32]. In the def-
inition of modularity (Eq. (2)) the graph is compared with
a random version of it, that keeps the degrees of its ver-
tices. If groups of vertices in the graphs are more tightly
connected than they would be in the randomized graph,
modularity optimization would consider them as parts of
the same module. But if the groups have less than

p
m in-

ternal edges, the expected number of edges running be-
tween them in modularity’s null model is less than one,
and a single interconnecting edge would cause the merg-
ing of the two groups in the optimal partition. This holds
for every density of edges inside the groups, even in the
limit case in which all vertices of each group are connected
to each other, i. e. if the groups are cliques. In Fig. 7 a graph
ismade out of nc identical cliques, with l vertices each, con-
nected by single edges. It is intuitive to think that the mod-
ules of the best partition are the single cliques: instead, if nc
is larger than about l2, modularity would be higher for the
partition in which pairs of consecutive cliques are parts of
the same module (indicated by the dashed lines in the fig-
ure). The problem holds for a wide class of possible null
models [58]. Attempts have been made to solve it within
the modularity framework [59,60,61].

Modifications of themeasure have also been suggested.
Massen and Doye proposed a slight variation of modular-
ity’s null model [51]: it is still a graph with the same degree
sequence as the original, and with edges rewired at random
among the vertices, but one imposes the additional con-
straint that there can be neither multiple edges between
a pair of vertices nor edges joining a vertex with itself (self-
edges).Muff, Rao and Caflisch remarked that modularity’s
null model implicitly assumes that each vertex could be at-
tached to any other, whether in real cases a cluster is usu-

Community Structure in Graphs, Figure 7
Resolution limit of modularity optimization. The natural com-
munity structure of the graph, represented by the individual
cliques (circles), is not recognized by optimizing modularity, if
the cliques are smaller than a scale depending on the size of the
graph. Reprinted figure with permission from [32]

ally connected to few other clusters [62]. Therefore, they
proposed a local version of modularity, in which the ex-
pected number of edges within a module is not calculated
with respect to the full graph, but considering just a por-
tion of it, namely the subgraph including the module and
its neighboring modules.

Spectral Algorithms

As discussed above, spectral properties of graph matrices
are frequently used to find partitions. Traditional methods
are in general unable to predict the number and size of
the clusters, which instead must be fed into the procedure.
Recent algorithms, reviewed below, are more powerful.

Algorithm of Donetti and Muñoz. An elegant method
based on the eigenvectors of the Laplacian matrix has been
devised byDonetti andMuñoz [63]. The idea is simple: the
values of the eigenvector components are close for vertices
in the same community, so one can use them as coordi-
nates to represent vertices as points in a metric space. So,
if one uses M eigenvectors, one can embed the vertices in
an M-dimensional space. Communities appear as groups
of points well separated from each other, as illustrated in
Fig. 8. The separation is the more visible, the larger the
number of dimensions/eigenvectors M. The space points



1154 C Community Structure in Graphs

Community Structure in Graphs, Figure 8
Spectral algorithmbyDonetti andMuñoz. Vertex i is represented
by the values of the ith components of Laplacian eigenvectors. In
this example, the graph has an adhoc division in four communi-
ties, indicated by different symbols. The communities are better
separated in two dimensions (b) than in one (a). Reprinted figure
with permission from [63]

are grouped in communities by hierarchical clustering (see
Sect. “Social Science: Hierarchical and k-Means Cluster-
ing”). The final partition is the one with largest modular-
ity. For the similarity measure between vertices, Donetti
and Muñoz used both the Euclidean distance and the an-
gle distance. The angle distance between two points is the
angle between the vectors going from the origin of theM-
dimensional space to either point. Applications show that
the best results are obtained with complete-linkage clus-
tering. The algorithm runs to completion in a time O(n3),
which is not fast. Moreover, the numberM of eigenvectors
that are needed to have a clean separation of the clusters is
not known a priori.

Algorithm of Capocci et al. Similarly to Donetti and
Muñoz, Capocci et al. used eigenvector components to
identify communities [64]. In this case the eigenvectors
are those of the normal matrix, that is derived from the
adjacency matrix by dividing each row by the sum of its
elements. The eigenvectors can be quickly calculated by
performing a constrained optimization of a suitable cost
function. A similaritymatrix is built by calculating the cor-
relation between eigenvector components: the similarity
between vertices i and j is the Pearson correlation coef-
ficient between their corresponding eigenvector compo-
nents, where the averages are taken over the set of eigen-
vectors used. The method can be extended to directed
graphs. It is useful to estimate vertex similarities, however
it does not provide a well-defined partition of the graph.

Algorithm of Wu and Huberman. A fast algorithm

by Wu and Huberman identifies communities based on
the properties of resistor networks [65]. It is essentially
a method for bisectioning graph, similar to spectral bisec-
tion, although partitions in an arbitrary number of com-
munities can be obtained by iterative applications. The
graph is transformed into a resistor network where each
edge has unit resistance. A unit potential difference is set
between two randomly chosen vertices. The idea is that, if
there is a clear division in two communities of the graph,
there will be a visible gap between voltage values for ver-
tices at the borders between the clusters. The voltages are
calculated by solving Kirchoff’s equations: an exact reso-
lution would be too time consuming, but it is possible to
find a reasonably good approximation in a linear time for
a sparse graph with a clear community structure, so the
more time consuming part of the algorithm is the sort-
ing of the voltage values, which takes time O(n log n). Any
possible vertex pair can be chosen to set the initial poten-
tial difference, so the procedure should be repeated for all
possible vertex pairs. The authors showed that this is not
necessary, and that a limited number of sampling pairs is
sufficient to get good results, so the algorithm scales as
O(n log n) and is very fast. An interesting feature of the
method is that it can quickly find the natural community
of any vertex, without determining the complete partition
of the graph. For that, one uses the vertex as source voltage
and places the sink at an arbitrary vertex. The same feature
is present in an older algorithm by Flake et al. [11], where
one uses max-flow instead of current flow.

Previous works have shown that also the eigenvec-
tors of the transfer matrix T can be used to extract use-
ful information on community structure [66,67]. The ele-
ment Tij of the transfer matrix is 1/k j if i and j are neigh-
bors, where kj is the degree of j, otherwise it is zero. The
transfer matrix rules the process of diffusion on graphs.

Dynamic Algorithms

This section describes methods employing processes run-
ning on the graph, focusing on spin-spin interactions, ran-
dom walk and synchronization.

Q-state Potts model. The Potts model is among the
most popular models in statistical mechanics [68]. It de-
scribes a system of spins that can be in q different states.
The interaction is ferromagnetic, i. e. it favors spin align-
ment, so at zero temperature all spins are in the same
state. If antiferromagnetic interactions are also present,
the ground state of the system may not be the one where
all spins are aligned, but a state where different spin val-
ues coexist, in homogeneous clusters. If Potts spin vari-
ables are assigned to the vertices of a graph with com-
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munity structure, and the interactions are between neigh-
boring spins, it is likely that the topological clusters could
be recovered from like-valued spin clusters of the system,
as there are many more interactions inside communities
than outside. Based on this idea, inspired by an earlier pa-
per by Blatt, Wiseman and Domany [69], Reichardt and
Bornholdt proposed a method to detect communities that
maps the graph onto a q-Potts model with nearest-neigh-
bors interactions [70]. The Hamiltonian of the model, i. e.
its energy, is the sum of two competing terms, one favor-
ing spin alignment, one antialignment. The relative weight
of these two terms is expressed by a parameter � , which
is usually set to the value of the density of edges of the
graph. The goal is to find the ground state of the system,
i. e. to minimize the energy. This can be done with simu-
lated annealing [50], starting from a configuration where
spins are randomly assigned to the vertices and the num-
ber of states q is very high. The procedure is quite fast and
the results do not depend on q. The method also allows
to identify vertices shared between communities, from the
comparison of partitions corresponding to global and lo-
cal energy minima. More recently, Reichardt and Born-
holdt derived a general framework [28], in which detecting
community structure is equivalent to finding the ground
state of a q-Potts model spin glass [71]. Their previous
method andmodularity optimization are recovered as spe-
cial cases. Overlapping communities can be discovered by
comparing partitions with the same (minimal) energy, and
hierarchical structure can be investigated by tuning a pa-
rameter acting on the density of edges of a reference graph
without community structure.

Random walk. Using random walks to find commu-
nities comes from the idea that a random walker spends
a long time inside a community due to the high density
of edges and consequent number of paths that could be
followed. Zhou used random walks to define a distance
between pairs of vertices [72]: the distance dij between i
and j is the average number of edges that a random walker
has to cross to reach j starting from i. Close vertices are
likely to belong to the same community. Zhou defines the
“global attractor” of a vertex i to be the closest vertex to i
(smallest dij), whereas the “local attractor” of i is its closest
neighbor. Two types of communities are defined, accord-
ing to local or global attractors: a vertex i has to be put
in the same community of its attractor and of all other
vertices for which i is an attractor. Communities must
be minimal subgraphs, i. e. they cannot include smaller
subgraphs which are communities according to the cho-
sen criterion. Applications to real and artificial networks
show that the method can find meaningful partitions. In
a successive paper [73], Zhou introduced a measure of dis-

similarity between vertices based on the distance defined
above. The measure resembles the definition of distance
based on structural equivalence of Eq. (5), where the el-
ements of the adjacency matrix are replaced by the cor-
responding distances. Graph partitions are obtained with
a divisive procedure that, starting from the graph as a sin-
gle community, performs successive splits based on the
criterion that vertices in the same cluster must be less dis-
similar than a running threshold, which is decreased dur-
ing the process. The hierarchy of partitions derived by the
method is representative of actual community structures
for several real and artificial graphs. In another work [74],
Zhou and Lipowsky defined distances with biased ran-
dom walkers, where the bias is due to the fact that walkers
move preferentially towards vertices sharing a large num-
ber of neighbors with the starting vertex. A different dis-
tance measure between vertices based on random walks
was introduced by Latapy and Pons [75]. The distance is
calculated from the probabilities that the random walker
moves from a vertex to another in a fixed number of steps.
Vertices are then grouped into communities through hi-
erarchical clustering. The method is quite fast, running to
completion in a time O(n2 log n) on a sparse graph.

Synchronization. Synchronization is another promis-
ing dynamic process to reveal communities in graphs. If
oscillators are placed at the vertices, with initial random
phases, and have nearest-neighbor interactions, oscillators
in the same community synchronize first, whereas a full
synchronization requires a longer time. So, if one follows
the time evolution of the process, states with synchronized
clusters of vertices can be quite stable and long-lived, so
they can be easily recognized. This was first shown by
Arenas, Díaz–Guilera and Pérez–Vicente [76]. They used
Kuramoto oscillators [77], which are coupled two-dimen-
sional vectors endowed with a proper frequency of oscilla-
tions. If the interaction coupling exceeds a threshold, the
dynamics leads to synchronization. Arenas et al. showed
that the time evolution of the system reveals some inter-
mediate time scales, corresponding to topological scales of
the graph, i. e. to different levels of organization of the ver-
tices. Hierarchical community structure can be revealed
in this way. Based on the same principle, Boccaletti et al.
designed a community detection method based on syn-
chronization [79]. The synchronization dynamics is a vari-
ation of Kuramoto’s model, the opinion changing rate
(OCR) model [80]. The evolution equations of the model
are solved for decreasing values of a parameter that tunes
the strength of the interaction coupling between neighbor-
ing vertices. In this way, different partitions are recovered:
the partition with the largest value of modularity is cho-
sen. The algorithm scales in a time O(mn), or O(n2) on
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sparse graphs, and gives good results on practical exam-
ples. However, synchronization-based algorithmsmay not
be reliable when communities are very different in size.

Clique Percolation

In most of the approaches examined so far, communi-
ties have been characterized and discovered, directly or
indirectly, by some global property of the graph, like be-
tweenness, modularity, etc., or by some process that in-
volves the graph as a whole, like random walks, synchro-
nization, etc. But communities can be also interpreted
as a form of local organization of the graph, so they
could be defined from some property of the groups of
vertices themselves, regardless of the rest of the graph.
Moreover, very few of the algorithms presented so far are
able to deal with the problem of overlapping communi-
ties (Sect. “Overlapping Communities”). A method that
accounts both for the locality of the community defini-
tion and for the possibility of having overlapping com-
munities is the Clique PercolationMethod (CPM) by Palla
et al. [13]. It is based on the concept that the internal edges
of community are likely to form cliques due to their high
density. On the other hand, it is unlikely that intercom-
munity edges form cliques: this idea was already used in
the divisive method of Radicchi et al. (see Sect. “Divisive
Algorithms”). Palla et al. define a k-clique as a complete
graph with k vertices. Notice that this definition is differ-
ent from the definition of n-clique (see Sect. “Definition
of Community”) used in social science. If it were possible
for a clique to move on a graph, in some way, it would
probably get trapped inside its original community, as it
could not cross the bottleneck formed by the intercom-
munity edges. Palla et al. introduced a number of con-
cepts to implement this idea. Two k-cliques are adjacent if
they share k � 1 vertices. The union of adjacent k-cliques
is called k-clique chain. Two k-cliques are connected if they
are part of a k-clique chain. Finally, a k-clique community
is the largest connected subgraph obtained by the union
of a k-clique and of all k-cliques which are connected to
it. Examples of k-clique communities are shown in Fig. 9.
One could say that a k-clique community is identified by
making a k-clique “roll” over adjacent k-cliques, where
rolling means rotating a k-clique about the k � 1 ver-
tices it shares with any adjacent k-clique. By construction,
k-clique communities can share vertices, so they can be
overlapping. There may be vertices belonging to non-ad-
jacent k-cliques, which could be reached by different paths
and end up in different clusters. In order to find k-clique
communities, one searches first for maximal cliques, a task
that is known to require a running time that grows expo-

Community Structure in Graphs, Figure 9
Clique Percolation Method. The example shows communities
spanned by adjacent 3-cliques (triangles). Overlapping vertices
are shown by the bigger dots. Reprinted figure with permission
from [13]

nentially with the size of the graph. However, the authors
found that, for the real networks they analyzed, the proce-
dure is quite fast, allowing to analyze graphs with up to 105

vertices in a reasonably short time. The actual scalability of
the algorithm depends on many factors, and cannot be ex-
pressed in closed form. The algorithm has been extended
to the analysis of weighted [81] and directed [82] graphs.
It was recently used to study the evolution of community
structure in social networks [83]. A special software, called
CFinder, based on the CPM, has been designed by Palla
and coworkers and is freely available. The CPM has the
same limit as the algorithm of Radicchi et al.: It assumes
that the graph has a large number of cliques, so it may
fail to give meaningful partitions for graphs with just a few
cliques, like technological networks.

Other Techniques

This section describes some algorithms that do not fit in
the previous categories, although some overlap is possible.

Markov Cluster Algorithm (MCL). This method, in-
vented by van Dongen [84], simulates a peculiar process
of flow diffusion in a graph. One starts from the stochastic
matrix of the graph, which is obtained from the adjacency
matrix by dividing each elementAij by the degree of i. The
element Sij of the stochastic matrix gives the probability
that a random walker, sitting at vertex i, moves to j. The
sum of the elements of each column of S is one. Each it-
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eration of the algorithm consists of two steps. In the first
step, called expansion, the stochastic matrix of the graph
is raised to an integer power p (usually p D 2). The en-
try Mij of the resulting matrix gives the probability that
a randomwalker, starting from vertex i, reaches j in p steps
(diffusion flow). The second step, which has no physical
counterpart, consists in raising each single entry of the
matrix M to some power ˛, where ˛ is now real-valued.
This operation, called inflation, enhances the weights be-
tween pairs of vertices with large values of the diffusion
flow, which are likely to be in the same community. Next,
the elements of each row must be divided by their sum,
such that the sum of the elements of the row equals one
and a new stochastic matrix is recovered. After some it-
erations, the process delivers a stable matrix, with some
remarkable properties. Its elements are either zero or one,
so it is a sort of adjacency matrix. Most importantly, the
graph described by thematrix is disconnected, and its con-
nected components are the communities of the original
graph. The method is really simple to implement, which
is the main reason of its success: as of now, theMCL is one
of the most used clustering algorithms in bioinformatics.
Due to the matrix multiplication of the expansion step, the
algorithm should scale asO(n3), even if the graph is sparse,
as the running matrix becomes quickly dense after a few
steps of the algorithm. However, while computing the ma-
trix multiplication, MCL keeps only amaximumnumber k
of non-zero elements per column, where k is usually much
smaller than n. So, the actual worst-case running time of
the algorithm is O(nk2) on a sparse graph. A problem of
the method is the fact that the final partition is sensitive to
the parameter ˛ used in the inflation step. Therefore sev-
eral partitions can be obtained, and it is not clear which
are the most meaningful or representative.

Maximum likelihood. Newman and Leicht have re-
cently proposed an algorithm based on traditional tools
and techniques of statistical inference [85]. The method
consists in deducing the group structure of the graph by
checking which possible partition better “fits” the graph
topology. The goodness of the fit is measured by the like-
lihood that the observed graph structure was generated by
the particular set of relationships between vertices that de-
fine a partition. The latter is described by two sets of model
parameters, expressing the size of the clusters and the con-
nection preferences among the vertices, i. e. the probabil-
ities that vertices of one cluster are linked to any vertex.
The partition corresponding to the maximum likelihood
is obtained by iterating a set of coupled equations for the
variables, starting from a suitable set of initial conditions.
Convergence is fast, so the algorithm could be applied to
fairly large graphs, with up to about 106 vertices. A nice

feature of the method is that it discovers more general
types of vertex classes than communities. For instance,
multipartite structure could be uncovered, or mixed pat-
terns where multipartite subgraphs coexist with commu-
nities, etc. In this respect, it is more powerful than most
methods of community detection, which are bound to fo-
cus only on proper communities, i. e. subgraphs withmore
internal than external edges. In addition, since partitions
are defined by assigning probability values to the vertices,
expressing the extent of their membership in a group, it
is possible that some vertices are not clearly assigned to
a group, but to more groups, so the method is able to deal
with overlapping communities. The main drawback of the
algorithm is the fact that one needs to specify the num-
ber of groups at the beginning of the calculation, a num-
ber that is often unknown for real networks. It is possible
to derive this information self-consistently by maximizing
the probability that the data are reproduced by partitions
with a given number of clusters. But this procedure in-
volves some degree of approximation, and the results are
often not good.

L-shell method. This is an agglomerative method de-
signed by Bagrow and Bollt [86]. The algorithm finds the
community of any vertex, although the authors also pre-
sented a more general procedure to identify the full com-
munity structure of the graph. Communities are defined
locally, based on a simple criterion involving the num-
ber of edges inside and outside a group of vertices. One
starts from a vertex-origin and keeps adding vertices ly-
ing on successive shells, where a shell is defined as a set of
vertices at a fixed geodesic distance from the origin. The
first shell includes the nearest neighbors of the origin, the
second the next-to-nearest neighbors, and so on. At each
iteration, one calculates the number of edges connecting
vertices of the new layer to vertices inside and outside the
running cluster. If the ratio of these two numbers (“emerg-
ing degree”) exceeds some predefined threshold, the ver-
tices of the new shell are added to the cluster, otherwise the
process stops. Because of the local nature of the process,
the algorithm is very fast and can identify communities
very quickly. By repeating the process starting from every
vertex, one could derive a membership matrix M: the ele-
mentMij is one if vertex j belongs to the community of ver-
tex i, otherwise it is zero. The membership matrix can be
rewritten by suitably permutating rows and columns based
on their mutual distances. The distance between two rows
(or columns) is defined as the number of entries whose
elements differ. If the graph has a clear community struc-
ture, the membership matrix takes a block-diagonal form,
where the blocks identify the communities. Unfortunately,
the rearrangement of the matrix requires a time O(n3), so



1158 C Community Structure in Graphs

it is quite slow. In a different algorithm, local communi-
ties are discovered through greedymaximization of a local
modularity measure [87].

Algorithm of Eckmann and Moses. This is another
method where communities are defined based on a lo-
cal criterion [88]. The idea is to use the clustering coeffi-
cient [44] of a vertex as a quantity to distinguish tightly
connected groups of vertices. Many edges mean many
loops inside a community, so the vertices of a commu-
nity are likely to have a large clustering coefficient. The
latter can be related to the average distance between pairs
of neighbors of the vertex. The possible values of the dis-
tance are 1 (if neighbors are connected) or 2 (if they are
not), so the average distance lies between 1 and 2. The
more triangles there are in the subgraph, the shorter the
average distance. Since each vertex has always distance 1
from its neighbors, the fact that the average distance be-
tween its neighbors is different from 1 reminds what hap-
pens when one measures segments on a curved surface.
Endowed with a metric, represented by the geodesic dis-
tance between vertices/points, and a curvature, the graph
can be embedded in a geometric space. Communities ap-
pear as portions of the graph with a large curvature. The
algorithm was applied to the graph representation of the
WorldWideWeb, where vertices areWeb pages and edges
are the hyperlinks that take users from a page to the other.
The authors found that communities correspond to Web
pages dealing with the same topic.

Algorithm of Sales–Pardo et al. This is an algorithm
designed to detect hierarchical community structure (see
Sect. “Hierarchies”), a realistic feature of many natural,
social and technological networks, that most algorithms
usually neglect. The authors [89] introduce first a similar-
ity measure between pairs of vertices based on Newman–
Girvan modularity: basically the similarity between two
vertices is the frequency with which they coexist in the
same community in partitions corresponding to local op-
tima of modularity. The latter are configurations for which
modularity is stable, i. e. it cannot increase if one shifts one
vertex from one cluster to another or by merging or split-
ting clusters. Next, the similarity matrix is put in block-
diagonal form, by minimizing a cost function expressing
the average distance of connected vertices from the diag-
onal. The blocks correspond to the communities and the
recovered partition represents the largest scale organiza-
tion level. To determine levels at lower scales, one iterates
the procedure for each subgraph identified at the previous
level, which is considered as an independent graph. The
method yields then a hierarchy by construction, as com-
munities at each level are nested within communities at
higher levels. The algorithm is not fast, as both the search

of local optima for modularity and the rearrangement of
the similaritymatrix are performed with simulated anneal-
ing, but delivers good results for computer generated net-
works, and meaningful partitions for some social, techno-
logical and biological networks.

Algorithm by Rosvall and Bergstrom. The modular
structure can be considered as a reduced description of
a graph to approximate the whole information contained
in its adjacency matrix. Based on this idea, Rosvall and
Bergstrom [90] envisioned a communication process in
which a partition of a network in communities represents
a synthesis Y of the full structure that a signaler sends to
a receiver, who tries to infer the original graph topology X
from it. The best partition corresponds to the signal Y that
contains the most information about X. This can be quan-
titatively assessed by the maximization of the mutual in-
formation I(X;Y) [91]. The method is better than mod-
ularity optimization, especially when communities are of
different size. The optimization of the mutual informa-
tion is performed by simulated annealing, so the method
is rather slow and can be applied to graphs with up to
about 104 vertices.

TestingMethods

When a community detection algorithm is designed, it
is necessary to test its performance, and compare it with
other methods. Ideally, one would like to have graphs with
known community structure and check whether the algo-
rithm is able to find it, or how closely can come to it. In
any case, one needs to compare partitions found by the
method with “real” partitions. How can different parti-
tions of the same graph be compared? Danon et al. [92]
used a measure borrowed from information theory, the
normalized mutual information. One builds a confusion
matrix N , whose element Nij is the number of vertices of
the real community i that are also in the detected commu-
nity j. Since the partitions to be comparedmay have differ-
ent numbers of clusters, N is usually not a square matrix.
The similarity of two partitions A and B is given by the
following expression

I(A; B) D
�2
PcA

iD1
PcB

jD1 Ni j log(Ni jN/Ni:N: j)
PcA

iD1 Ni: log(Ni:/N)C
PcB

jD1 N: j log(N: j/N)
;

(8)

where cB(cA) is the number of communities in partition
A(B), Ni: is the sum of the elements of N on row i and N: j
is the sum of the elements of N on column j. Another use-
ful measure of similarity between partitions is the Jaccard
index, which is regularly used in scientometric research.
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Given two partitions A and B, the Jaccard index is defined
as

IJ(A; B) D
n11

n11 C n01 C n10
; (9)

where n11 is the number of pairs of vertices which are in
the same community in both partitions and n01(n10) de-
notes the number of pairs of elements which are put in the
same community in A(B) and in different communities in
B(A). A nice presentation of criteria to compare partitions
can be found in [93].

In the literature on community detection, algorithms
have been generally tested on two types of graphs: com-
puter generated graphs and real networks. The most fa-
mous computer generated benchmark is a class of graphs
designed by Girvan and Newman [14]. Each graph con-
sists of 128 vertices, arranged in four groups with 32 ver-
tices each: 1–32, 33–64, 65–96 and 97–128. The average
degree of each vertex is set to 16. The density of edges
inside the groups is tuned by a parameter zin, express-
ing the average number of edges shared by each vertex of
a group with the other members (internal degree). Natu-
rally, when zin is close to 16, there is a clear community
structure (see Fig. 10a), as most edges will join vertices
of the same community, whereas when zin � 8 there are
more edges connecting vertices of different communities
and the graph looks fuzzy (see Fig. 10c). In this way, one
can realize different degrees of mixing between the groups.
In this case the test consists in calculating the similarity
between the partitions determined by the method at study
and the natural partition of the graph in the four equal-
sized groups. The similarity can be calculated by using the
measure of Eq. (8), but in the literature one used a different
quantity, i. e. the fraction of correctly classified vertices.
A vertex is correctly classified if it is in the same cluster
with at least 16 of its “natural” partners. If the model par-
tition has clusters given by the merging of two or more
natural groups, all vertices of the cluster are considered in-
correctly classified. The number of correctly classified ver-

Community Structure in Graphs, Figure 10
Benchmark of Girvan and Newman. The three pictures corre-
spond to zin D 15 (a), zin D 11 (b) and zin D 8 (c). In c the four
groups are basically invisible. Reprinted figure with permission
from [12]

tices is then divided by the total size of the graph, to yield
a number between 0 and 1. One usually builds many real-
izations of the graph for a particular value of zin and com-
putes the average fraction of correctly classified vertices,
which is a measure of the sensitivity of the method. The
procedure is then iterated for different values of zin. Many
different algorithms have been compared with each other
according to the diagram where the fraction of correctly
classified vertices is plotted against zin. Most algorithms
usually do a good job for large zin and start to fail when zin
approaches 8. The recipe to label vertices as correctly or
incorrectly classified is somewhat arbitrary, though, and
measures like those of Eq. (8) and (9) are probably more
objective. There is also a subtle problem concerning the
reliability of the test. Because of the randomness involved
in the process of distributing edges among the vertices, it
may well be that, in specific realizations of the graph, some
vertices share more edges with members of another group
than of their own. In this case, it is inappropriate to con-
sider the initial partition in four groups as the real parti-
tion of the graph.

Tests on real networks usually focus on a limited num-
ber of examples, for which one has precise information
about the vertices and their properties.

The most popular real network with a known commu-
nity structure is the social network of Zachary’s karate club
(see Fig. 11). This is a social network representing the per-
sonal relationships between members of a karate club at
an American university. During two years, the sociologist
Wayne Zachary observed the ties between members, both
inside and outside the club [94]. At some point, a conflict
arose between the club’s administrator (vertex 1) and one
of the teachers (vertex 33), which led to the split of the club

Community Structure in Graphs, Figure 11
Zachary’s karate club network, an example of graph with
known community structure. Reprinted figure with permission
from [26]
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in two smaller clubs, with some members staying with the
administrator and the others following the instructor. Ver-
tices of the two groups are highlighted by squares and cir-
cles in Fig. 11. The question is whether the actual social
split could be predicted from the network topology. Sev-
eral algorithms are actually able to identify the two classes,
apart from a few intermediate vertices, which may be mis-
classified (e. g. vertices 3, 10). Other methods are less suc-
cessful: for instance, the maximum of Newman–Girvan
modularity corresponds to a split of the network in four
groups [53,63]. It is fundamental however to stress that the
comparison of community structures detected by the vari-
ousmethods with the split of Zachary’s karate club is based
on a very strong assumption: that the split actually repro-
duced the separation of the social network in two commu-
nities. There is no real argument, beyond common wis-
dom, supporting this assumption.

Two other networks have frequently been used to test
community detection algorithms: the network of Amer-
ican college football teams derived by Girvan and New-
man [14] and the social network of bottlenose dolphins
constructed by Lusseau [95]. Also for these networks the
caveat applies: Nothing guarantees that “reasonable” com-
munities, defined on the basis of non-topological informa-
tion, must coincide with those detected by methods based
only on topology.

TheMesoscopic Description of a Graph

Community detection algorithms have been applied to
a huge variety of real systems, including social, biological
and technological networks. The partitions found for each
system are usually similar, as the algorithms, in spite of
their specific implementations, are all inspired by close in-
tuitive notions of community. What are the general prop-
erties of these partitions? The analysis of partitions and
their properties delivers a mesoscopic description of the
graph, where the communities, and not the vertices, are
the elementary units of the topology. The termmesoscopic
is used because the relevant scale here lies between the
scale of the vertices and that of the full graph. A simple
question is whether the communities of a graph are usu-
ally about of the same size or whether the community sizes
have some special distribution. It turns out that the dis-
tribution of community sizes is skewed, with a tail that
obeys a power law with exponents in the range between 1
and 3 [13,22,23,47]. So, there seems to be no characteristic
size for a community: small communities usually coexist
with large ones.

As an example, Fig. 12 shows the cumulative distribu-
tion of community sizes for a recommendation network

Community Structure in Graphs, Figure 12
Cumulative distribution of community sizes for the Amazon pur-
chasing network. The partition is derived by greedy modularity
optimization. Reprinted figure with permission from [47]

of the online vendor Amazon.com. Vertices are products
and there is a connection between item A and B if B was
frequently purchased by buyers of A. We remind that the
cumulative distribution is the integral of the probabil-
ity distribution: if the cumulative distribution is a power
law with exponent ˛, the probability distribution is also
a power law with exponent ˛ C 1.

If communities are overlapping, one could derive
a network, where the communities are the vertices and
pairs of vertices are connected if their corresponding com-
munities overlap [13]. Such networks seem to have some
special properties. For instance, the degree distribution is
a particular function, with an initial exponential decay fol-
lowed by a slower power law decay. A recent analysis has
shown that such distribution can be reproduced by assum-
ing that the graph grows according to a simple preferen-
tial attachmentmechanism, where communities with large
degree have an enhanced chance to interact/overlap with
new communities [21].

Finally, by knowing the community structure of
a graph, it is possible to classify vertices according to their
roles within their community, which may allow to infer
individual properties of the vertices. A nice classification
has been proposed by Guimerá and Amaral [12,96]. The
role of a vertex depends on the values of two indices,
the z-score and the participation ratio, that determine the
position of the vertex within its own module and with re-
spect to the other modules. The z-score compares the in-
ternal degree of the vertex in its module with the aver-
age internal degree of the vertices in the module. The par-
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ticipation ratio says how the edges of the vertex are dis-
tributed among the modules. Based on these two indices,
Guimerá and Amaral distinguish seven roles for a vertex.
These roles seem to be correlated to functions of vertices:
in metabolic networks, for instance, vertices sharing many
edges with vertices of other modules (“connectors”) are of-
ten metabolites which are more conserved across species
than other metabolites, i. e. they have an evolutionary ad-
vantage [12].

Future Directions

The problem of community detection is truly interdisci-
plinary. It involves scientists of different disciplines both
in the design of algorithms and in their applications. The
past years have witnessed huge progresses and novelties
in this topic. Many methods have been developed, based
on various principles. Their scalability has improved by at
least one power in the graph size in just a couple of years.
Currently partitions in graphs with up to millions of ver-
tices can be found. From this point of view, the limit is
close, and future improvements in this sense are unlikely.
Algorithms running in linear time are very quick, but their
results are often not very good.

The major breakthrough introduced by the newmeth-
ods is the possibility of extracting graph partitions with
no preliminary knowledge or inputs about the community
structure of the graph.Most new algorithms do not need to
know howmany communities there are, a major drawback
of computer science approaches: they derive this informa-
tion from the graph topology itself. Similarly, algorithms
of new generation are able to select one or a few meaning-
ful partitions, whereas social science approaches usually
produce a whole hierarchy of partitions, which they are
unable to discriminate. Especially in the last two years,
the quality of the output produced by some algorithms
has considerably improved. Realistic aspects of commu-
nity structure, like overlapping and hierarchical commu-
nities, are now often taken into account.

Themain question is: is there at present a goodmethod
to detect communities in graphs? The answer depends
on what is meant by “good”. Several algorithms give sat-
isfactory results when they are tested as described in
Sect. “Testing Methods”: in this respect, they can be con-
sidered good. However, if examined in more detail, some
methods disclose serious limits and biases. For instance,
the most popular method used nowadays, modularity op-
timization, is likely to give problems in the analysis of large
graphs. Most algorithms are likely to fail in some limit,
still one can derive useful indications from them: from
the comparison of partitions derived by different methods

one could extract the cores of real communities. The ideal
method is one that deliversmeaningful partitions and han-
dles overlapping communities and hierarchy, possibly in
a short time. No such method exists yet.

Finding a good method for community detection is
a crucial endeavor in biology, sociology and computer sci-
ence. In particular, biologists often rely on the application
of clustering techniques to classify their data. Due to the
bioinformatics revolution, gene regulatory networks, pro-
tein–protein interaction networks, metabolic networks,
etc., are now much better known that they used to be in
the past and finally susceptible to solid quantitative inves-
tigations. Uncovering their modular structure is an open
challenge and a necessary step to discover properties of el-
ementary biological constituents and to understand how
biological systems work.
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This glossary consists of a list of terms used inside the paper in math-
ematics, in probability, in engineering, and, on occasion, in physics.
To clarify the seemingly confusing use of up to four different names
for the same idea or concept, we have further added informal expla-
nations spelling out the reasons behind the differences in current ter-
minology from neighboring fields.

DISCLAIMER: This glossary has the structure of four areas.
A number of terms are listed line by line, and each line is followed by
explanation. Some “terms” have up to four separate (yet commonly
accepted) names.

Glossary

MATHEMATICS: function (measurable), PROBABILITY:
random variable, ENGINEERING: signal, PHYSICS: state

Mathematically, functions may map between any
two sets, say, from X to Y ; but if X is a probability
space (typically called ˝), it comes with a �-alge-
bra B of measurable sets, and probability measure P.
Elements E in B are called events, and P(E) the proba-
bility of E. Corresponding measurable functions with
values in a vector space are called random variables,
a terminology which suggests a stochastic viewpoint.
The function values of a random variable may rep-
resent the outcomes of an experiment, for example
“throwing of a die”.
Yet, function theory is widely used in engineering
where functions are typically thought of as signal. In
this case, X may be the real line for time, or Rd . En-
gineers visualize functions as signals. A particular sig-
nal may have a stochastic component, and this feature
simply introduces an extra stochastic variable into the
“signal”, for example noise.
Turning to physics, in our present application, the
physical functions will be typically be in some L2-
space, and L2-functions with unit norm represent
quantum mechanical “states”.

MATHEMATICS: sequence (incl. vector-valued),
PROBABILITY: random walk, ENGINEERING: time-
series, PHYSICS: measurement Mathematically, a se-

quence is a function defined on the integers Z or on
subsets of Z, for example the natural numbers N .
Hence, if time is discrete, this to the engineer rep-
resents a time series, such as a speech signal, or any
measurement which depends on time. But we will also
allow functions on lattices such as Zd .
In the case d D 2, we may be considering the grayscale
numbers which represent exposure in a digital cam-
era. In this case, the function (grayscale) is defined on
a subset of Z2, and is then simply a matrix.
A random walk on Zd is an assignment of a sequential
and random motion as a function of time. The ran-
domness presupposes assigned probabilities. But we

will use the term “random walk” also in connection
with random walks on combinatorial trees.

MATHEMATICS: nested subspaces, PROBABILITY:
refinement, ENGINEERING: multiresolution, PHYSICS:
scales of visual resolutions While finite or infinite fami-

lies of nested subspaces are ubiquitous inmathematics,
and have been popular in Hilbert space theory for gen-
erations (at least since the 1930s), this idea was revived
in a different guise in 1986 by Stéphane Mallat, then
an engineering graduate student. In its adaptation to
wavelets, the idea is now referred to as the multireso-
lution method.
What made the idea especially popular in the wavelet
community was that it offered a skeleton on which var-
ious discrete algorithms in applied mathematics could
be attached and turned into wavelet constructions in
harmonic analysis. In fact what we now call multireso-
lutions have come to signify a crucial link between the
world of discrete wavelet algorithms, which are popu-
lar in computational mathematics and in engineering
(signal/image processing, data mining, etc.) on the one
side, and on the other side continuous wavelet bases
in function spaces, especially in L2(Rd ). Further, the
multiresolution idea closely mimics how fractals are
analyzed with the use of finite function systems.
But in mathematics, or more precisely in operator the-
ory, the underlying idea dates back to work of John von
Neumann,Norbert Wiener, and HermanWold, where
nested and closed subspaces in Hilbert space were used
extensively in an axiomatic approach to stationary pro-
cesses, especially for time series. Wold proved that any
(stationary) time series can be decomposed into two
different parts: The first (deterministic) part can be ex-
actly described by a linear combination of its own past,
while the second part is the opposite extreme; it is uni-
tary, in the language of von Neumann.
Von Neumann’s version of the same theorem is a pil-
lar in operator theory. It states that every isometry in
a Hilbert spaceH is the unique sum of a shift isom-
etry and a unitary operator, i. e., the initial Hilbert
space H splits canonically as an orthogonal sum of
two subspacesHs andHu inH , one which carries the
shift operator, and the otherHu the unitary part. The
shift isometry is defined from a nested scale of closed
spaces Vn, such that the intersection of these spaces is
Hu . Specifically,

� � � � V�1 � V0 � V1 � V2 � � � � � Vn � VnC1 � � � �
^

n
Vn DHu ; and

_

n
Vn DH :

However, Stéphane Mallat was motivated instead by
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the notion of scales of resolutions in the sense of op-
tics. This, in turn, is based on a certain “artificial-intel-
ligence” approach to vision and optics, developed ear-
lier by DavidMarr at MIT, an approach which imitates
the mechanism of vision in the human eye.
The connection from these developments in the 1980s
back to von Neumann is this: Each of the closed
subspaces Vn corresponds to a level of resolution in
such a way that a larger subspace represents a finer
resolution. Resolutions are relative, not absolute! In
this view, the relative complement of the smaller (or
coarser) subspace in larger space then represents the
visual detail which is added in passing from a blurred
image to a finer one, i. e., to a finer visual resolution.
This view became an instant hit in the wavelet com-
munity, as it offered a repository for the fundamental
father and the mother functions, also called the scal-
ing function ', and the wavelet function  . Via a sys-
tem of translation and scaling operators, these func-
tions then generate nested subspaces, and we recover
the scaling identities which initialize the appropriate
algorithms. What results is now called the family of
pyramid algorithms in wavelet analysis. The approach
itself is called the multiresolution approach (MRA) to
wavelets. And in the meantime various generalizations
(GMRAs) have emerged.
In all of this, there was a second “accident” at play: As
it turned out, pyramid algorithms in wavelet analysis
now lend themselves via multiresolutions, or nested
scales of closed subspaces, to an analysis based on fre-
quency bands. Here we refer to bands of frequencies as
they have already been used for a long time in signal
processing.
One reason for the success in varied disciplines of the
same geometric idea is perhaps that it is closely mod-
eled on how we historically have represented numbers
in the positional number system. Analogies to the Eu-
clidean algorithm seem especially compelling.

MATHEMATICS: operator, PROBABILITY: process,
ENGINEERING: black box, PHYSICS: observable (if self-
adjoint) In linear algebra students are familiar with the

distinctions between (linear) transformations T (here
called “operators”) and matrices. For a fixed operator
T : V ! W, there is a variety of matrices, one for each
choice of basis in V and in W. In many engineering
applications, the transformations are not restricted
to be linear, but instead represent some experiment
(“black box”, in Norbert Wiener’s terminology), one
with an input and an output, usually functions of time.
The input could be an external voltage function, the
black box an electric circuit, and the output the result-

ing voltage in the circuit. (The output is a solution to
a differential equation.)
This context is somewhat different from that of quan-
tum mechanical (QM) operators T : V ! V where V
is a Hilbert space. In QM, selfadjoint operators repre-
sent observables such as position Q and momentum P,
or time and energy.

MATHEMATICS: Fourier dual pair, PROBABILITY:
generating function, ENGINEERING: time/frequency,
PHYSICS: P/Q The following dual pairs posi-

tion Q/momentum P, and time/energy may be com-
puted with the use of Fourier series or Fourier trans-
forms; and in this sense they are examples of Fourier
dual pairs. If for example time is discrete, then fre-
quency may be represented by numbers in the interval
[ 0; 2�); or in [ 0; 1) if we enter the number 2� into the
Fourier exponential. Functions of the frequency are
then periodic, so the two endpoints are identified. In
the case of the interval [ 0; 1), 0 on the left is identified
with 1 on the right. So a low frequency band is an
interval centered at 0, while a high frequency band is
an interval centered at 1/2. Let a function W on [ 0; 1)
represent a probability assignment. Such functions W
are thought of as “filters” in signal processing. We say
that W is low-pass if it is 1 at 0, or if it is near 1 for
frequencies near 0.
Low-pass filters pass signals with low frequencies, and
block the others.
If instead some filter W is 1 at 1/2, or takes values
near 1 for frequencies near 1/2, then we say that W is
high-pass; it passes signals with high frequency.

MATHEMATICS: convolution, PROBABILITY: —,
ENGINEERING: filter, PHYSICS: smearing Pointwise

multiplication of functions of frequencies corresponds
in the Fourier dual time-domain to the operation of
convolution (or of Cauchy product if the time-scale
is discrete.) The process of modifying a signal with
a fixed convolution is called a linear filter in signal
processing. The corresponding Fourier dual frequency
function is then referred to as “frequency response” or
the “frequency response function”.
More generally, in the continuous case, since convolu-
tion tends to improve smoothness of functions, physi-
cists call it “smearing.”

MATHEMATICS: decomposition (e. g., Fourier
coefficients in a Fourier expansion), PROBABILITY: �,
ENGINEERING: analysis, PHYSICS: frequency compo-
nents Calculating the Fourier coefficients is “analysis,”

and adding up the pure frequencies (i. e., summing
the Fourier series) is called synthesis. But this view
carries over more generally to engineering where there
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are more operations involved on the two sides, e. g.,
breaking up a signal into its frequency bands, trans-
forming further, and then adding up the “banded”
functions in the end. If the signal out is the same as
the signal in, we say that the analysis/synthesis yields
perfect reconstruction.

MATHEMATICS: integrate (e. g., inverse Fourier
transform), PROBABILITY: reconstruct, ENGI-
NEERING: synthesis, PHYSICS: superposition Here the

terms related to “synthesis” refer to the second half of
the kind of signal-processing design outlined in the
previous paragraph.

MATHEMATICS: subspace, PROBABILITY: —,
ENGINEERING: resolution, PHYSICS: (signals in a) fre-
quency band For a space of functions (signals), the selec-

tion of certain frequencies serves as a way of selecting
special signals. When the process of scaling is intro-
duced into optics of a digital camera, we note that
a nested family of subspaces corresponds to a grading
of visual resolutions.

MATHEMATICS: Cuntz relations, PROBABILITY: —,
ENGINEERING: perfect reconstruction from sub-
bands, PHYSICS: subband decomposition

N�1X

iD0

Si S�i D 1 ; and S�i S j D ıi; j1 :

MATHEMATICS: inner product, PROBABILITY:
correlation, ENGINEERING: transition prob-
ability, PHYSICS: probability of transition from one
state to another In many applications, a vector space

with inner product captures perfectly the geometric
and probabilistic features of the situation. This can
be axiomatized in the language of Hilbert space; and
the inner product is the most crucial ingredient in the
familiar axiom system for Hilbert space.

MATHEMATICS: fout D T fin, PROBABILITY: —,
ENGINEERING: input/output, PHYSICS: transformation
of states Systems theory language for operators

T : V ! W . Then vectors in V are input, and in the
range of T output.

MATHEMATICS: fractal, PROBABILITY: —,
ENGINEERING: �, PHYSICS: � Intuitively, think of

a fractal as reflecting similarity of scales such as is
seen in fern-like images that look “roughly” the same
at small and at large scales. Fractals are produced from
an infinite iteration of a finite set of maps, and this
algorithm is perfectly suited to the kind of subdivision
which is a cornerstone of the discrete wavelet algo-
rithm. Self-similarity could refer alternately to space,

and to time. And further versatility is added, in that
flexibility is allowed into the definition of “similar”.

MATHEMATICS: —, PROBABILITY: —, ENGINEERING:
data mining, PHYSICS:� The problem of how to handle

and make use of large volumes of data is a corollary
of the digital revolution. As a result, the subject of
data mining itself changes rapidly. Digitized infor-
mation (data) is now easy to capture automatically
and to store electronically. In science, commerce, and
industry, data represent collected observations and
information: In business, there are data on markets,
competitors, and customers. In manufacturing, there
are data for optimizing production opportunities, and
for improving processes. A tremendous potential for
data mining exists in medicine, genetics, and energy.
But raw data are not always directly usable, as is ev-
ident by inspection. A key to advances is our ability
to extract information and knowledge from the data
(hence “data mining”), and to understand the phe-
nomena governing data sources. Data mining is now
taught in a variety of forms in engineering depart-
ments, as well as in statistics and computer science
departments.
One of the structures often hidden in data sets is some
degree of scale. The goal is to detect and identify one or
more natural global and local scales in the data. Once
this is done, it is often possible to detect associated sim-
ilarities of scale, much like the familiar scale-similar-
ity from multidimensional wavelets, and from fractals.
Indeed, various adaptations of wavelet-like algorithms
have been shown to be useful. These algorithms them-
selves are useful in detecting scale-similarities, and are
applicable to other types of pattern recognition. Hence,
in this context, generalized multiresolutions offer an-
other tool for discovering structures in large data sets,
such as those stored in the resources of the Internet.
Because of the sheer volume of data involved, a strictly
manual analysis is out of the question. Instead, sophis-
ticated query processors based on statistical and math-
ematical techniques are used in generating insights and
extracting conclusions from data sets.

Multiresolutions Haar’s work in 1909–1910 had implic-
itly the key idea which got waveletmathematics started
on a roll 75 years later with Yves Meyer, Ingrid
Daubechies, Stéphane Mallat, and others—namely the
idea of a multiresolution. In that respect Haar was
ahead of his time. See Figs. 1 and 2 for details.

� � � � V�1 � V0 � V1 � � � � ; V0 CW0 D V1

The word “multiresolution” suggests a connection to
optics from physics. So that should have been a hint to



Comparison of Discrete and ContinuousWavelet Transforms C 1167

Comparison of Discrete and Continuous Wavelet Transforms,
Figure 1
Multiresolution. L2(Rd)-version (continuous);' 2 V0, 2 W0

Comparison of Discrete and Continuous Wavelet Transforms,
Figure 2
Multiresolution. l2(Z)-version (discrete);' 2 V0, 2 W0

mathematicians to take a closer look at trends in signal
and image processing! Moreover, even staying within
mathematics, it turns out that as a general notion
this same idea of a “multiresolution” has long roots
in mathematics, even in such modern and pure areas
as operator theory and Hilbert-space geometry. Look-
ing even closer at these interconnections, we can now
recognize scales of subspaces (so-called multiresolu-
tions) in classical algorithmic construction of orthog-
onal bases in inner-product spaces, now taught in lots
of mathematics courses under the name of the Gram–
Schmidt algorithm. Indeed, a closer look at good old
Gram–Schmidt reveals that it is a matrix algorithm,
Hence new mathematical tools involving non-com-
mutativity!
If the signal to be analyzed is an image, then why
not select a fixed but suitable resolution (or a sub-
space of signals corresponding to a selected resolu-
tion), and then do the computations there? The se-
lection of a fixed “resolution” is dictated by practical
concerns. That idea was key in turning computation
of wavelet coefficients into iterated matrix algorithms.
As the matrix operations get large, the computation is
carried out in a variety of paths arising from big ma-
trix products. The dichotomy, continuous vs. discrete,
is quite familiar to engineers. The industrial engineers
typically work with huge volumes of numbers.
Numbers! – So why wavelets? Well, what matters to
the industrial engineer is not really the wavelets, but
the fact that special wavelet functions serve as an effi-
cient way to encode large data sets – I mean encode for
computations. And the wavelet algorithms are compu-
tational. They work on numbers. Encoding numbers

into pictures, images, or graphs of functions comes
later, perhaps at the very end of the computation. But
without the graphics, I doubt that we would under-
stand any of this half as well as we do now. The same
can be said for the many issues that relate to the crucial
mathematical concept of self-similarity, as we know it
from fractals, and more generally from recursive algo-
rithms.

Definition of the Subject

In this paper we outline several points of view on the inter-
play between discrete and continuous wavelet transforms;
stressing both pure and applied aspects of both. We out-
line some new links between the two transform technolo-
gies based on the theory of representations of generators
and relations. By this wemean a finite system of generators
which are represented by operators in Hilbert space. We
further outline how these representations yield sub-band
filter banks for signal and image processing algorithms.

The word “wavelet transform” (WT) means different
things to different people: Pure and applied mathemati-
cians typically give different answers the questions “What
is the WT?” And engineers in turn have their own pre-
ferred quite different approach to WTs. Still there are two
main trends in how WTs are used, the continuousWT on
one side, and the discreteWT on the other. Here we offer
a user friendly outline of both, but with a slant toward ge-
ometric methods from the theory of operators in Hilbert
space.

Our paper is organized as follows: For the benefit of di-
verse reader groups, we begin with Glossary (Sect. “Glos-
sary”). This is a substantial part of our account, and it re-
flects the multiplicity of how the subject is used.

The concept of multiresolutions or multiresolution
analysis (MRA) serves as a link between the discrete and
continuous theory.

In Sect. “List of Names and Discoveries”, we summa-
rize how different mathematicians and scientists have con-
tributed to and shaped the subject over the years.

The next two sections then offer a technical overview
of both discrete and the continuous WTs. This includes
basic tools from Fourier analysis and from operators in
Hilbert space. In Sect. “Tools from Mathematics” and
Sect. “A Transfer Operator”, we outline the connections
between the separate parts of mathematics and their ap-
plications to WTs.

Introduction

While applied problems such as time series, signals and
processing of digital images come from engineering and
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from the sciences, they have in the past two decades taken
a life of their own as an exciting new area of applied math-
ematics. While searches in Google on these keywords typ-
ically yield sites numbered in the millions, the diversity of
applications is wide, and it seems reasonable here to nar-
row our focus to some of the approaches that are both
more mathematical and more recent. For references, see
for example [1,6,23,31]. In addition, our own interests
(e. g., [20,21,27,28]) have colored the presentation below.
Each of the two areas, the discrete side, and the continuous
theory is huge as measured by recent journal publications.
A leading theme in our article is the independent interest
in a multitude of interconnections between the discrete al-
gorithm and their uses in the more mathematical analysis
of function spaces (continuous wavelet transforms). The
mathematics involved in the study and the applications of
this interaction we feel is of benefit to both mathemati-
cians and to engineers. See also [20]. An early paper [9] by
Daubechies and Lagarias was especially influential in con-
necting the two worlds, discrete and continuous.

The Discrete vs. ContinuousWavelet Algorithms

The Discrete Wavelet Transform

If one stays with function spaces, it is then popular to pick
the d-dimensional Lebesgue measure onRd , d D 1; 2; : : :,
and pass to the Hilbert space L2(Rd ) of all square in-
tegrable functions on Rd , referring to d-dimensional
Lebesgue measure. A wavelet basis refers to a family of
basis functions for L2(Rd ) generated from a finite set of
normalized functions  i, the index i chosen from a fixed
and finite index set I, and from two operations, one called
scaling, and the other translation. The scaling is typically
specified by a d by dmatrix over the integersZ such that all
the eigenvalues in modulus are bigger than one, lie outside
the closed unit disk in the complex plane. The d-lattice is
denotedZd , and the translations will be by vectors selected
from Zd . We say that we have a wavelet basis if the triple
indexed family  i; j;k(x) :D j detAj j/2 (Ajx C k) forms
an orthonormal basis (ONB) for L2(Rd ) as i varies in I,
j 2 Z, and k 2 Rd . The word “orthonormal” for a family F
of vectors in a Hilbert spaceH refers to the norm and the
inner product inH : The vectors in an orthonormal fam-
ily F are assumed to have norm one, and to be mutually
orthogonal. If the family is also total (i. e., the vectors in F
span a subspace which is dense inH ), we say that F is an
orthonormal basis (ONB.)

While there are other popular wavelet bases, for exam-
ple frame bases, and dual bases (see e. g., [2,18] and the pa-
pers cited there), the ONBs are the most agreeable at least
from the mathematical point of view.

That there are bases of this kind is not at all clear,
and the subject of wavelets in this continuous context has
gained much from its connections to the discrete world of
signal- and image-processing.

Here we shall outline some of these connections with
an emphasis on the mathematical context. So we will be
stressing the theory of Hilbert space, and bounded linear
operators acting in Hilbert spaceH , both individual op-
erators, and families of operators which form algebras.

As was noticed recently the operators which specify
particular subband algorithms from the discrete world of
signal-processing turn out to satisfy relations that were
found (or rediscovered independently) in the theory of op-
erator algebras, and which go under the name of Cuntz
algebras, denoted ON if n is the number of bands. For ad-
ditional details, see e. g., [21].

In symbols the C�-algebra has generators (Si)N�1iD0 , and
the relations are

N�1X

iD0

Si S�i D 1 (1)

(where 1 is the identity element in ON ) and

N�1X

iD0

Si S�i D 1 ; and S�i S j D ıi; j1 : (2)

In a representation on aHilbert space, sayH , the sym-
bols Si turn into bounded operators, also denoted Si, and
the identity element 1 turns into the identity operator I
inH , i. e., the operator I : h! h, for h 2H . In operator
language, the two formulas (1) and (2) state that each Si
is an isometry inH , and that the respective ranges SiH
are mutually orthogonal, i. e., SiH ? S jH for i ¤ j. In-
troducing the projections Pi D Si S�i , we get Pi Pj D ıi; jPi ,
and

N�1X

iD0

Pi D I :

In the engineering literature this takes the form of pro-
gramming diagrams: Fig. 3. If the process of Fig. 3 is re-
peated, we arrive at the discrete wavelet transform (Fig. 4)
or stated in the form of images (n D 5) (Fig. 5).

Selecting a resolution subspace V0 D closure span
f'(� � k)jk 2 Zg, we arrive at a wavelet subdivision
f j;k j j � 0; k 2 Zg, where  j;k(x) D 2 j/2 (2 j x � k),
and the continuous expansion f D

P
j;kh j;k j f i j;k or

the discrete analogue derived from the isometries, i D
1; 2; : : : ;N � 1, Sk0 Si for k D 0; 1; 2; : : : ; called the dis-
crete wavelet transform.
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Comparison of Discrete and Continuous Wavelet Transforms,
Figure 3
Perfect reconstruction in a subband filtering as used in signal-
and image-processing

Comparison of Discrete and Continuous Wavelet Transforms,
Figure 4
Binary decision tree for a sequential selection of filters.

Notational Convention In algorithms, the letter N is
popular, and often used for counting more than one thing.

In the present contest of the discrete wavelet algorithm
(DWA) or DWT, we count two things, “the number of
times a picture is decomposed via subdivision”. We have
used n for this. The other related but different numberN is
the number of subbands, N D 2 for the dyadic DWT, and
N D 4 for the image DWT. The image-processing WT in
our present context is the tensor product of the 1-D dyadic
WT, so 2 � 2 D 4. Caution: Not all DWAs arise as tensor
products ofN D 2models. The wavelets coming from ten-
sor products are called separable. When a particular im-
age-processing scheme is used for generating continuous
wavelets it is not transparent if we are looking at a separa-
ble or inseparable wavelet!

To clarify the distinction, it is helpful to look at the rep-
resentations of the Cuntz relations by operators in Hilbert
space. We are dealing with representations of the two dis-
tinct algebras O2, and O4; two frequency subbands vs.
four subbands. Note that the Cuntz O2, and O4 are given
axiomatic, or purely symbolically. It is only when sub-
band filters are chosen that we get representations. This
also means that the choice of N is made initially; and the
same N is used in different runs of the programs. In con-

Comparison of Discrete and Continuous Wavelet Transforms,
Figure 5
The subdivided squares represent the use of the pyramid sub-
division algorithm to image processing, as it is used on pixel
squares. At each subdivision step the top left-hand square rep-
resents averages of nearby pixel numbers, averages taken with
respect to the chosen low-pass filter; while the three directions,
horizontal, vertical, and diagonal represent detail differences,
with the three represented by separate bands and filters. So in
this model, there are four bands, and they may be realized by
a tensor product construction applied to dyadic filters in the sep-
arate x- and the y-directions in the plane. For the discrete WT
used in image-processing, we use iteration of four isometries
S0; SH; SV; and SD with mutually orthogonal ranges, and satis-
fying the following sum-rule S0S�

0 C SHS�

H C SVS�

V C SDS�

D D I,
with I denoting the identity operator in an appropriate l2-space

trast, the number of times a picture is decomposed varies
from one experiment to the next!

Summary: N D 2 for the dyadic DWT: The operators
in the representation are S0, S1. One average operator, and
one detail operator. The detail operator S1 “counts” local
detail variations.

Image-processing. Then N D 4 is fixed as we run dif-
ferent images in the DWT: The operators are now: S0, SH ,
SV , SD. One average operator, and three detail operator for
local detail variations in the three directions in the plane.

The ContinuousWavelet Transform

Consider functions f on the real line R. We select the
Hilbert space of functions to be L2(R) To start a continu-
ousWT, wemust select a function 2 L2(R) and r; s 2 R
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Comparison of Discrete and Continuous Wavelet Transforms,
Figure 6
n D 2 Jorgensen. The selection of filters (Fig 4) is represented by
the use of one of the operators Si in Fig 3. A planar version of this
principle is illustrated in Fig 6. For a more detailed discussion,
see e. g., [3]

such that the following family of functions

 r;s(x) D r�1/2 

 x � s

r

�

creates an over-complete basis for L2(R). An over-com-
plete family of vectors in a Hilbert space is often called
a coherent decomposition. This terminology comes from
quantum optics. What is needed for a continuous WT in
the simplest case is the following representation valid for
all f 2 L2(R):

f (x) D C�1 

“

R2
h r;s j f i r;s(x)

drds
r2

where C :D
R

R j ̂(!)j
2 d!
!

and where h r;s j f i D
R

R  r;s(y) f (y)dy. The refinements and implications of
this are spelled out in tables in Sect. “Connections to
Group Theory”.

Some Background on Hilbert Space

Wavelet theory is the art of finding a special kind of basis
in Hilbert space. LetH be a Hilbert space overC and de-
note the inner product h � j � i. For us, it is assumed linear
in the second variable. IfH D L2 (R), then

h f j g i :D
Z

R
f (x) g (x) dx :

IfH D `2 (Z), then

h � j � i :D
X

n2Z

�̄n�n :

Let T D R/2�Z. IfH D L2 (T ), then

h f j g i :D
1
2�

Z 	

�	

f (�) g (�) d� :

Functions f 2 L2 (T ) have Fourier series: Setting
en (�) D ein� ,

f̂ (n) :D h en j f i D
1
2�

Z 	

�	

e�in� f (�) d� ;

and

k f k2L2(T ) D
X

n2Z

ˇ
ˇ f̂ (n)

ˇ
ˇ2 :

Similarly if f 2 L2 (R), then

f̂ (t) :D
Z

R
e�i x t f (x) dx ;

and

k f k2L2(R) D
1
2�

Z

R

ˇ̌
f̂ (t)

ˇ̌2dt :

Let J be an index set. We shall only need to consider
the case when J is countable. Let f ˛g˛2J be a family of
nonzero vectors in a Hilbert spaceH . We say it is an or-
thonormal basis (ONB) if

˝
 ˛ j  ˇ

˛
D ı˛;ˇ (Kronecker delta) (3)

and if
X

˛2J

jh ˛ j f ij2 D k f k2 holds for all f 2H : (4)

If only Eq. (4) is assumed, but not Eq. (3), we say that
f ˛g˛2J is a (normalized) tight frame. We say that it is
a frame with frame constants 0 < A � B <1 if

Ak f k2 �
X

˛2J

jh ˛ j f ij2 � B k f k2

holds for all f 2 H :
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Introducing the rank-one operators Q˛ :D j ˛i h ˛j of
Dirac’s terminology, see [3], we see that f ˛g˛2J is an
ONB if and only if the Q˛ ’s are projections, and

X

˛2J

Q˛ D I (D the identity operator inH ) : (5)

It is a (normalized) tight frame if and only if Eq. (5) holds
but with no further restriction on the rank-one operators
Q˛ . It is a frame with frame constants A and B if the oper-
ator

S :D
X

˛2J

Q˛

satisfies

AI � S � BI

in the order of Hermitian operators. (We say that opera-
tors Hi D H�i , i D 1; 2, satisfy H1 � H2 if h f j H1 f i �
h f j H2 f i holds for all f 2H ). If h; k are vectors in
a Hilbert space H , then the operator AD jhi hkj is de-
fined by the identity h u j Av i D h u j h i h k j v i for all
u; v 2H .

Wavelets in L2 (R) are generated by simple operations
on one or more functions  in L2 (R), the operations
come in pairs, say scaling and translation, or phase-mod-
ulation and translations. If N 2 f2; 3; : : : g we set

 j;k (x) :D N j/2 
�
N jx � k


for j; k 2 Z :

Increasing the Dimension In wavelet theory, [7] there
is a tradition for reserving ' for the father function and  
for the mother function. A 1-level wavelet transform of an
N �M image can be represented as

f 7!

0

@
a1 j h1

– –
v1 j d1

1

A (6)

where the subimages h1;d1; a1 and v1 each have the di-
mension of N/2 by M/2.

a1 D V1
m ˝ V 1

n : 'A(x; y) D '(x)'(y)

D
X

i

X

j

hi h j'(2x � i)'(2y � j)

h1 D V1
m ˝W1

n :  H(x; y) D  (x)'(y)

D
X

i

X

j

gi h j'(2x � i)'(2y � j)

v1 D W1
m ˝ V1

n :  V (x; y) D '(x) (y)

D
X

i

X

j

hi g j'(2x � i)'(2y � j)

d1 D W1
m ˝W1

n :  D(x; y) D  (x) (y)

D
X

i

X

j

gi g j'(2x � i)'(2y � j) (7)

where ' is the father function and  is the mother func-
tion in sense of wavelet,V space denotes the average space
and theW spaces are the difference space from multireso-
lution analysis (MRA) [7].

In the formulas, we have the following two indexed
number systems a :D (hi ) and d :D (gi ), a is for averages,
and d is for local differences. They are really the input for
the DWT. But they also are the key link between the two
transforms, the discrete and continuous. The link is made
up of the following scaling identities:

'(x) D 2
X

i2Z

hi'(2x � i) ;

 (x) D 2
X

i2Z

gi'(2x � i) ;

and (low-pass normalization)
P

i2Z hi D 1. The
scalars (hi ) may be real or complex; they may be finite
or infinite in number. If there are four of them, it is called
the “four tap”, etc. The finite case is best for computations
since it corresponds to compactly supported functions.
This means that the two functions ' and  will vanish
outside some finite interval on a real line.

The two number systems are further subjected to or-
thogonality relations, of which

X

i2Z

h̄i hiC2k D
1
2
ı0;k (8)

is the best known.
The systems h and g are both low-pass and high-pass

filter coefficients. In Eq. (7), a1 denotes the first averaged
image, which consists of average intensity values of the
original image. Note that only ' function, V space and h
coefficients are used here. Similarly, h1 denotes the first
detail image of horizontal components, which consists of
intensity difference along the vertical axis of the original
image. Note that ' function is used on y and  function
on x, W space for x values and V space for y values; and
both h and g coefficients are used accordingly. The data v1

denote the first detail image of vertical components, which
consists of intensity difference along the horizontal axis
of the original image. Note that ' function is used on x
and  function on y, W space for y values and V space
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for x values; and both h and g coefficients are used accord-
ingly. Finally, d1 denotes the first detail image of diagonal
components, which consists of intensity difference along
the diagonal axis of the original image. The original image
is reconstructed from the decomposed image by taking the
sum of the averaged image and the detail images and scal-
ing by a scaling factor. It could be noted that only  func-
tion,W space and g coefficients are used here. See [28,33].

This decomposition not only limits to one step but it
can be done again and again on the averaged detail de-
pending on the size of the image. Once it stops at certain
level, quantization (see [26,32]) is done on the image. This
quantization stepmay be lossy or lossless. Then the lossless
entropy encoding is done on the decomposed and quan-
tized image.

The relevance of the system of identities Eq. (8) may be
summarized as follows. Set

m0(z) :D
1
2

X

k2Z

hkzk for all z 2 T ;

gk :D (�1)k h̄1�k for all k 2 Z ;

m1(z) :D
1
2

X

k2Z

gkzk ; and

(S j f )(z) D
p
2mj(z) f (z2) ;

for j D 0; 1 ; f 2 L2(T ) ; z 2 T :

Then the following conditions are equivalent:

(a) The system of Eq. (8) is satisfied.
(b) The operators S0 and S1 satisfy the Cuntz relations.
(c) We have perfect reconstruction in the subband system

of Fig. 4.

Note that the two operators S0 and S1 have equiva-
lent matrix representations. Recalling that by Parseval’s
formula, we have L2(T ) ' l2(Z). So representing S0 in-
stead as an 1�1 matrix acting on column vectors
x D (x j) j2Z we get

(S0x)i D
p
2
X

j2Z

hi�2 j x j

and for the adjoint operator F0 :D S�0 , we get the matrix
representation

(F0x)i D
1
p
2

X

j2Z

h̄ j�2i x j

with the overbar signifying complex conjugation. This is
computational significance to the two matrix representa-
tions, both the matrix for S0, and for F0 :D S�0 , is slanted.

Comparison of Discrete and Continuous Wavelet Transforms,
Figure 7
Matrix representation of filters operations.

However, the slanting of one is the mirror-image of the
other, i. e., Fig. 7.

Significance of Slanting The slanted matrix representa-
tions refers to the corresponding operators in L2. In gen-
eral operators inHilbert function spaces havemanymatrix
representations, one for each orthonormal basis (ONB),
but here we are concerned with the ONB consisting of the
Fourier frequencies z j, j 2 Z. So in our matrix represen-
tations for the S operators and their adjoints we will be
acting on column vectors, each infinite column represent-
ing a vector in the sequence space l2. A vector in l2 is said
to be of finite size if it has only a finite set of non-zero en-
tries.

It is the matrix F0 that is effective for iterated matrix
computation. Reason: When a column vector x of a fixed
size, say 2s is multiplied, or acted on by F0, the result is
a vector y of half the size, i. e., of size s. So y D F0x. If we
use F0 and F1 together on x, then we get two vectors, each
of size s, the other one z D F1x, and we can form the com-
bined column vector of y and z; stacking y on top of z. In
our application, y represents averages, while z represents
local differences: Hence the wavelet algorithm.

2

66
666
666
666
666
666
6666
4

:::

y�1
y0
y1
:::

–
:::

z�1
z0
z1
:::

3

77
777
777
777
777
777
7777
5

D

2

4
F0
–
F1

3

5

2

666
666
666
66
4

:::

x�2
x�1
x0
x1
x2
:::

3

777
777
777
77
5

y D F0x
z D F1x
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Comparison of Discrete and Continuous Wavelet Transforms, Table 1
Splitting of a signal into filtered components: average and a scale of detail. Several instances: Continuous vs. discrete Operator
representation

N D 2 Overcomplete Basis Dual Bases

Continuous
resolution

C�1 

“

R2

drds
r2
j r;sih r;sj D 1 C�1

 ; ̃

“

R2

drds
r2
j r;sih ̃r;sj D 1

Discrete
resolution

X

j2Z

X

k2Z

ˇ̌
 j;k

˛ ˝
 j;k

ˇ̌
D 1 ;  j;k

Corresponding to r D 2�j , s D k2�j

X

j2Z

X

k2Z

ˇ̌
 j;k

˛
h ̃j;kj D 1

N � 2 Isometries in `2 Dual Operator System in `2

Sequence
spaces

N�1X

iD0

SiS�i D 1 ;where S0; : : : ; SN�1

are adjoints to the quadrature mirror
filter operators Fi , i. e., Si D F�i

N�1X

iD0

SiS̃�i D 1 ; for a dual operator

system S0; : : : ; SN�1,
S̃0; : : : ; S̃N�1

Comparison of Discrete and Continuous Wavelet Transforms, Table 2
Application of the operator representation to specific signals, contiuous and discrete

C�1 

“

R2

drds
r2
jh r;s j f ij

2
Dkfk2L2 8 f 2 L2 (R) C�1

 ; ̃

“

R2

drds
r2
h f j  r;s i h  ̃r;s j g i Dh f j g i 8 f ; g 2 L2 (R)

X

j2Z

X

k2Z

ˇ
ˇ˝ j;k j f

˛ˇˇ2 Dkfk2L2 8 f 2 L2 (R)
X

j2Z

X

k2Z

˝
f j  j;k

˛
h  ̃j;k j g i Dh f j g i 8 f ; g 2 L2 (R)

N�1X

iD0

�
�S�i c

�
�2 D kck2 8 c 2 `2

N�1X

iD0

˝
S�i c j S̃

�

i d
˛
D h c j d i 8 c; d 2 `2

Connections to Group Theory

The first line in the two tables below is the continuous
wavelet transform. It comes from what in physics is called
coherent vector decompositions. Both transforms applies
to vectors in Hilbert space H , and H may vary from
case to case. Common to all transforms is vector input
and output. If the input agrees with output we say that
the combined process yields the identity operator image.
1 : H !H or written 1H . So for example if (Si)N�1iD0 is
a finite operator system, and input/output operator exam-
ple may take the form

N�1X

iD0

Si S�i D 1H :

The Summary of and variations on the resolution of
the identity operator 1 in L2 or in `2, for  and  ̃ where
 r;s (x) D r�

1
2 

� x�s
r

,

C D
Z

R

d!
j!j
j ̂ (!)j2 <1 ;

similarly for  ̃ and C ; ̃ D
R

R
d!
j!j
 ̂ (!) ˆ̃ (!) is given in

Table 1.
Then the assertions in Table 1 amount to the equations

in Table 2.
A function  satisfying the resolution identity is called

a coherent vector in mathematical physics. The repre-
sentation theory for the (ax C b)-group, i. e., the matrix
group G D

˚ �
a b
0 1

j a 2 RC; b 2 R

�
, serves as its un-

derpinning. Then the tables above illustrate how the f j;kg

wavelet system arises from a discretization of the following
unitary representation of G:
�
U
 a b

0 1

� f
�
(x) D a�

1
2 f
�
x � b
a

�

acting on L2 (R). This unitary representation also ex-
plains the discretization step in passing from the first
line to the second in the tables above. The functions
f j;k j j; k 2 Z g which make up a wavelet system result
from the choice of a suitable coherent vector  2 L2 (R),
and then setting

 j;k (x) D
�
U
 2� j k�2� j

0 1

� 

�
(x) D 2

j
2 



2 j x � k

�
:
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Even though this representation lies at the historical origin
of the subject of wavelets, the (ax C b)-group seems to be
now largely forgotten in the next generation of the wavelet
community. But Chaps. 1–3 of [7] still serve as a beautiful
presentation of this (now much ignored) side of the sub-
ject. It also serves as a link to mathematical physics and to
classical analysis.

List of Names and Discoveries

Many of the main discoveries summarized below are now
lore.

1807 Jean Baptiste Joseph Fourier mathematics, physics
(heat conduction)
Expressing functions as sums of sine and cosine waves
of frequencies in arithmetic progression (now called
Fourier series).

1909 Alfred Haar mathematics
Discovered, while a student of David Hilbert, an or-
thonormal basis consisting of step functions, applica-
ble both to functions on an interval, and functions on
the whole real line. While it was not realized at the
time, Haar’s construction was a precursor of what is
now known as the Mallat subdivision, and multireso-
lution method, as well as the subdivision wavelet algo-
rithms.

1946 Denes Gabor (Nobel Prize): physics (optics, hologra-
phy)
Discovered basis expansions for what might now be
called time-frequency wavelets, as opposed to time-
scale wavelets.

1948 Claude Elwood Shannon mathematics, engineering
(information theory)
A rigorous formula used by the phone company for
sampling speech signals. Quantizing information, en-
tropy, founder of what is now called the mathematical
theory of communication.

1976 Claude Garland, Daniel Esteban (both) signal pro-
cessing
Discovered subband coding of digital transmission of
speech signals over the telephone.

1981 Jean Morlet petroleum engineer
Suggested the term “ondelettes.” J.M. decomposed re-
flected seismic signals into sums of “wavelets (Fr.: on-
delettes) of constant shape,” i. e., a decomposition of
signals into wavelet shapes, selected from a library
of such shapes (now called wavelet series). Received
somewhat late recognition for his work. Due to con-
tributions by A. Grossman and Y. Meyer, Morlet’s dis-
coveries have now come to play a central role in the
theory.

1985 Yves Meyer mathematics, applications
Mentor for A. Cohen, S. Mallat, and other of the
wavelet pioneers, Y.M. discovered infinitely often dif-
ferentiable wavelets.

1989 Albert Cohen mathematics (orthogonality relations),
numerical analysis
Discovered the use of wavelet filters in the analysis of
wavelets — the so-called Cohen condition for orthog-
onality.

1986 Stéphane Mallat mathematics, signal and image pro-
cessing
Discovered what is now known as the subdivision,
and multiresolution method, as well as the subdivision
wavelet algorithms. This allowed the effective use of
operators in the Hilbert space L2(R), and of the par-
allel computational use of recursive matrix algorithms.

1987 Ingrid Daubechies mathematics, physics, and com-
munications
Discovered differentiable wavelets, with the number of
derivatives roughly half the length of the support in-
terval. Further found polynomial algorithmic for their
construction (with coauthor Jeff Lagarias; joint spec-
tral radius formulas).

1991 Wayne Lawton mathematics (the wavelet transfer
operator)
Discovered the use of a transfer operator in the analy-
sis of wavelets: orthogonality and smoothness.

1992 The FBI using wavelet algorithms in digitizing and
compressing fingerprints
C. Brislawn and his group at Los Alamos created the
theory and the codes which allowed the compression
of the enormous FBI fingerprint file, creating A/D,
a new database of fingerprints.

2000 The International Standards Organization
A wavelet-based picture compression standard, called
JPEG 2000, for digital encoding of images.

1994 David Donoho statistics, mathematics
Pioneered the use of wavelet bases and tools from
statistics to “denoise” images and signals.

History

While wavelets as they have appeared in the mathematics
literature (e. g., [7]) for a long time, starting with Haar in
1909, involve function spaces, the connections to a host of
discrete problems from engineering is more subtle. More-
over the deeper connections between the discrete algo-
rithms and the function spaces of mathematical analysis
are of a more recent vintage, see e. g., [31] and [21].

Here we begin with the function spaces. This part of
wavelet theory refers to continuous wavelet transforms
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(details below). It dominated the wavelet literature in the
1980s, and is beautifully treated in the first four chapters
in [7] and in [8]. The word “continuous” refers to the con-
tinuum of the real lineR. Here we consider spaces of func-
tions in one or more real dimensions, i. e., functions on the
lineR (signals), the planeR2 (images), or in higher dimen-
sionsRd , functions of d real variables.

Tools fromMathematics

In our presentation, we will rely on tools from at least
three separate areas of mathematics, and we will outline
how they interact to form a coherent theory, and how they
come together to form a link between what is now called
the discrete and the continuous wavelet transform. It is the
discrete case that is popular with engineers ([1,23,29,30]),
while the continuous case has come to play a central role
in the part of mathematics referred to as harmonic analy-
sis, [8]. The three areas are, operator algebras, dynamical
systems, and basis constructions:

a. Operator algebras. The theory of operator algebras in
turn breaks up in two parts: One the study of “the al-
gebras themselves” as they emerge from the axioms of
von Neumann (von Neumann algebras), and Gelfand,
Kadison and Segal (C�-algebras.) The other has a more
applied slant: It involves “the representations” of the al-
gebras. By this we refer to the following: The algebras
will typically be specified by generators and by rela-
tions, and by a certain norm-completion, in any case
by a system of axioms. This holds both for the norm-
closed algebras, the so called C�-algebras, and for the
weakly closed algebras, the von Neumann algebras. In
fact there is a close connection between the two parts of
the theory: For example, representations of C�-algebras
generate von Neumann algebras.
To talk about representations of a fixed algebra sayAwe
must specify a Hilbert space, and a homomorphism �

from A into the algebra B(H) of all bounded operators
on H . We require that � sends the identity element
in A into the identity operator acting on H , and that
�(a�) D (�(a))� where the last star now refers to the
adjoint operator.
It was realized in the last ten years (see for exam-
ple [3,21,22] that a family of representations that
wavelets which are basis constructions in harmonic
analysis, in signal/image analysis, and in computational
mathematics may be built up from representations of
an especially important family of simple C�-algebras,
the Cuntz algebras. The Cuntz algebras are denoted
O2;O3; : : :, including O1.

b. Dynamical systems. The connection between the Cuntz
algebras ON for N D 2; 3; : : : are relevant to the kind
of dynamical systems which are built on branching-
laws, the case of ON representing N-fold branching.
The reason for this is that if N is fixed, ON includes
in its definition an iterated subdivision, but within
the context of Hilbert space. For more details, see
e. g., [12,13,14,15,16,17,22].

c. Analysis of bases in function spaces. The connection to
basis constructions using wavelets is this: The context
for wavelets is a Hilbert space H , where H may be
L2(Rd ) where d is a dimension, d D 1 for the line (sig-
nals), d D 2 for the plane (images), etc. The more suc-
cessful bases in Hilbert space are the orthonormal bases
ONBs, but until the mid 1980s, there were no ONBs
in L2(Rd ) which were entirely algorithmic and effective
for computations. One reason for this is that the tools
that had been used for 200 years since Fourier involved
basis functions (Fourier wave functions) which were
not localized. Moreover these existing Fourier tools
were not friendly to algorithmic computations.

A Transfer Operator

A popular tool for deciding if a candidate for a wavelet
basis is in fact an ONB uses a certain transfer operator.
Variants of this operator is used in diverse areas of applied
mathematics. It is an operator which involves a weighted
average over a finite set of possibilities. Hence it is natural
for understanding random walk algorithms. As remarked
in for example [12,20,21,22], it was also studied in physics,
for example by David Ruelle, who used to prove results on
phase transition for infinite spin systems in quantum sta-
tistical mechanics. In fact the transfer operator has many
incarnations (many of them known as Ruelle operators),
and all of them based on N-fold branching laws.

In our wavelet application, the Ruelle operator weights
in input over the N branch possibilities, and the weight-
ing is assigned by a chosen scalar function W. the and
the W-Ruelle operator is denoted RW . In the wavelet set-
ting there is in addition a low-pass filter functionm0 which
in its frequency response formulation is a function on
the d-torus Td D Rd /Zd .

Since the scaling matrix A has integer entries A passes
to the quotient Rd /Zd , and the induced transformation
rA : T d ! T d is anN-fold cover, where N D j detAj, i. e.,
for every x in T d there are N distinct points y in T d solv-
ing rA(y) D x.

In the wavelet case, the weight function W is W D

jm0j
2. Then with this choice of W, the ONB problem for

a candidate for a wavelet basis in the Hilbert space L2(Rd )
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Comparison of Discrete and Continuous Wavelet Transforms,
Figure 8
Julia set with c D �1 These images are generated byMathemat-
ica by authors for different c values for'c(z) D z(2)C c.

as it turns out may be decided by the dimension of a dis-
tinguished eigenspace for RW , by the so called Perron–
Frobenius problem.

This has worked well for years for the wavelets which
have an especially simple algorithm, the wavelets that are
initialized by a single function, called the scaling func-
tion. These are called the multiresolution analysis (MRA)
wavelets, or for short the MRA-wavelets. But there are in-
stances, for example if a problem must be localized in fre-
quency domain, when the MRA-wavelets do not suffice,
where it will by necessity include more than one scaling
function. And we are then back to trying to decide if the
output from the discrete algorithm, and the ON represen-
tation is an ONB, or if it has some stability property which
will serve the same purpose, in case where asking for an
ONB is not feasible.

Future Directions

The idea of a scientific analysis by subdividing a fixed pic-
ture or object into its finer parts is not unique to wavelets.
It works best for structures with an inherent self-similar-
ity; this self-similarity can arise from numerical scaling of
distances. But there are more subtle non-linear self-sim-
ilarities. The Julia sets in the complex plane are a case
in point [4,5,10,11,24,25]. The simplest Julia set come
from a one parameter family of quadratic polynomials

Comparison of Discrete and Continuous Wavelet Transforms,
Figure 9
Julia set with c D 0:45� 0:1428i These images are gener-
ated by Mathematica by authors for different c values for
'c(z) D z(2)C c.

'c (z) D z2 C c, where z is a complex variable and where c
is a fixed parameter. The corresponding Julia sets Jc have
a surprisingly rich structure. A simple way to understand
them is the following: Consider the two branches of the
inverse ˇ˙ D z 7! ˙

p
z � c. Then Jc is the unique min-

imal non-empty compact subset of C, which is invari-
ant under fˇ˙g. (There are alternative ways of present-
ing Jc but this one fits our purpose. The Julia set J of
a holomorphic function, in this case z 7! z2 C c, infor-
mally consists of those points whose long-time behav-
ior under repeated iteration, or rather iteration of sub-
stitutions, can change drastically under arbitrarily small
perturbations.) Here “long-time” refers to large n, where
'(nC1)(z) D '('(n)(z)), n D 0; 1; : : :, and '(0)(z) D z.

It would be interesting to adapt and modify the Haar
wavelet, and the other wavelet algorithms to the Julia sets.
The two papers [13,14] initiate such a development.

Literature

As evidenced by a simple Google check, the mathematical
wavelet literature is gigantic in size, and the manifold ap-
plications spread over a vast number of engineering jour-
nals. While we cannot do justice to this volume st litera-
ture, we instead offer a collection of the classics [19] edited
recently by C. Heil et al.
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Traffic management is an extremely complex dynamic
process associated with the spatiotemporal behavior of
many-particle non-linear systems. In this Encyclopedia of
Complexity and Systems Science, there are several review
articles devoted to various aspects of the complex dynam-
ics of vehicular traffic management, air traffic manage-
ment, and pedestrian traffic management.

The complexity of vehicular traffic management is as-
sociated with non-linear interactions between the follow-
ing three main dynamic processes:

(i) travel decision behavior,
(ii) traffic assignment in a traffic network, and
(iii) traffic flow behavior, in particular, traffic congestion

occurrence within the network.
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Travel decision behavior determines travel demand. Traf-
fic assignment in the network is associated with travel sup-
ply. However, traffic congestion occurring within the traf-
fic network restricts free flow travel. This influences both
travel decision behavior (e. g., because of traffic conges-
tion, a person decides to stay at home or travel by train
rather than by car) and traffic assignment in the network
(e. g., because of traffic congestion on a route from an ori-
gin to a destination usually used, a person changes their
route of travel). The articles presented in this Encyclope-
dia cover all these main scientific fields of traffic manage-
ment.

The review article of Goulias (see � Travel Behavior
and Demand Analysis and Prediction) is devoted to a de-
tailed consideration of the theoretical and modeling ap-
proaches to travel behavior analysis. As shown in Gou-
lias’s article, traveler values and attitudes are referred to
motivational, cognitive, situational, and disposition fac-
tors determining human behavior. Goulias presents a se-
quential chronological order merging technological inno-
vations and theoretical innovations to the modeling of
travel behavior. There are a diverse variety of approaches
to the modeling of travel behavior, which are based on
mathematical methods like multi-agent microsimulation
widely used in many other fields of systems science. Inputs
to these models are the typical regional model data about
social, economic, and demographic information of poten-
tial travelers and land use information to create schedules
followed by people in their everyday life. The output are
detailed lists of activities pursued, times spent in each ac-
tivity, and travel information from activity to activity. The
in-depth understanding of transportation-related human
behavior is essential to all kinds of traffic management.
This is because travel behavior refers primarily to themod-
eling and analysis of travel demand.

Traffic assignment and control as well as methods for
traffic prediction in various traffic networks are reviewed
in the articles of Rakha and Tawfik (see � Traffic Net-
works: Dynamic Traffic Routing, Assignment, and Assess-
ment), Gartner and Stamatiadis (see � Traffic Networks,
Optimization and Control of Urban), Hegyi, Bellemans
and De Schutter (see � Freeway Traffic Management and
Control), Rehborn and Klenov (see � Traffic Prediction
of Congested Patterns). In particular, Rakha and Tawfik
review methods for modeling of dynamic traffic assign-
ment in traffic networks. Gartner and Stamatiadis consider
methods for traffic modeling and light signal control in
city and urban traffic networks. Traffic control methods
developed for traffic on freeway networks are discussed in
the article of Hegyi, Bellemans, and De Schutter. Rehborn
and Klenov discuss methods for traffic prediction required

for dynamic traffic assignment in urban and freeway traffic
networks.

In an urban network with short enough network links,
dynamic traffic phenomena are determinedmostly by traf-
fic signals and other traffic regulations at link intersections.
The dynamic traffic phenomena in the urban network can
be nevertheless very complex, because traffic regulations
at one of the link intersections can have a great influence
on the probability of traffic congestion occurring on other
links of the network. In their article, Gartner and Stama-
tiadis (� Traffic Networks, Optimization and Control of
Urban) present a historical model development beginning
from a consideration of traffic control methods at an iso-
lated link intersection to a discussion of very complex ap-
proaches to dynamic traffic signal control and optimiza-
tion in a complex city network.

Driver interactions, which are always essential for traf-
fic dynamics on highways, lead to very complex spatiotem-
poral phenomena in vehicular traffic.

Hegyi, Bellemans and De Schutter (� Freeway Traf-
fic Management and Control) present an introduction
to control and managements methods currently used in
field trials on freeways as well as to some recent control
andmanagements approaches. Thesemethods include on-
ramp feedbackmetering, congestion pricing, speed limita-
tion, collective and individual route guidance systems. Fu-
ture traffic management methods will include also diverse
driver assistance systems, in particular, with the use of ve-
hicle ad-hoc networks and vehicle-to-infrastructure com-
munication.

A dynamic traffic management in a traffic network
requires a dynamic traffic assignment model. Rakha and
Tawfik (� Traffic Networks: Dynamic Traffic Routing,
Assignment, and Assessment) provide a detailed discus-
sion of the problem of dynamic traffic assignment. A dy-
namic traffic assignment model should find the link in-
flows for the network. The model usually includes a traf-
fic flow model (traffic modeler), which makes a prognosis
of traffic in the network, and a traffic routing model (traf-
fic router) associated with the problem of traffic optimiza-
tion. The traffic router computes the sequence of roadways
that minimize some utility objective function, i. e., mini-
mize travel “costs” of the traffic network. Examples of the
travel costs are travel time, fuel consumption, or HC and
CO2 emissions. In a real traffic network, traffic routing can
be organized through the use for example of individual
and collective driver guidance systems as well as conges-
tion pricing. The traffic modeler and router are connected
by a feedback loop. As a result, traffic congestion in the
network predicted by the traffic modeler changes results
of dynamic traffic assignment considerably. For this rea-
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son, the traffic modeler should model traffic congestion as
close as possible to real traffic congestion found in empir-
ical observations.

In the dynamic traffic management models, a reliable
prognosis of traffic is also required. As shown in the arti-
cle of Rehborn and Klenov (� Traffic Prediction of Con-
gested Patterns), there are two main approaches to traf-
fic prognosis: (a) “physics-of-traffic”, i. e., traffic prognosis
models and methods based on the understanding of the
nature of empirical spatiotemporal features of traffic pat-
terns; (b) methods of mathematical statistics or artificial
intelligence, which are also called “data mining” methods,
in which the understanding of traffic patterns is not neces-
sarily needed.

Data mining models for traffic prognosis do not usu-
ally require the understanding of traffic data, which these
methods use for traffic prediction. Using a huge number
of historical traffic data, such a method learns predictable
features of traffic data without the pretension of their un-
derstanding. The data mining methods used for traffic
prognosis include statistical methods based on regression,
a wavelet approach, or filtering models as well as neural
networks. It should be noted that there are many articles
in this Encyclopedia, in which these and other methods of
artificial intelligence are reviewed.

The physics-of-traffic approach to traffic prognosis is
based on the understanding of measurements of traffic
variables made in space and time as well as on simula-
tions of the traffic variables associated with empirical data.
The key element for a successful prediction concept lies
in the correct and reliable understanding of the empirical
features of the traffic process and their reproducible char-
acteristics. Furthermore, this understanding of real traf-
fic should be incorporated in a traffic flow model, which
should explain and predict the empirical traffic features.
Therefore, in the physics-of-traffic approach a traffic flow
prediction model is based on empirical features of phase
transitions or/and resulting congested patterns; current
and historical measured traffic data are used in the model,
which reconstructs traffic phases and makes the tracking
and prediction of the propagation of traffic congestion in
a traffic network.

Thus we see that the understanding of empirical traf-
fic congestion is the key for effective traffic management,
control, organization, and all other traffic applications.

Empirical congested patterns exhibit a complex spa-
tiotemporal behavior that was studied during the last 75
years by several generations of scientists. It was found that
traffic congestion in the traffic network results from traffic
breakdown in an initially free flow: vehicle speeds decrease
abruptly to lower speeds in congested traffic. Traffic break-

down is observed mostly at highway bottlenecks. A bot-
tleneck can be a result of road works, on- and off-ramps,
a decrease in the number of freeway lanes, road curves and
road gradients, bad weather conditions, accidents, etc. In
congested traffic a “stop-and-go” mode, i. e., a sequence of
moving traffic jams is very often observed.

However, the puzzle of empirical spatiotemporal fea-
tures of traffic congestion has been solved only recently.
Consequently, an alternative traffic flow theory that is
called three-phase traffic theory and the associated three-
phase traffic flow models, which can predict and explain
the empirical spatiotemporal features of traffic conges-
tion, have had to be introduced. The development of
various traffic flow theories and modeling approaches to
traffic congestion is discussed in (� Traffic Congestion,
Modeling Approaches to). These modeling approaches in-
clude microscopic, mesoscopic and macroscopic traffic
flow models, in particular based on cellular automata and
gas kinetic models widely used in many other fields of sys-
tems science. A probabilistic theory of traffic breakdown
is considered in the review article of Kerner and Klenov
(see � Traffic Breakdown, Probabilistic Theory of). Spa-
tiotemporal features of traffic congested patterns resulting
from traffic breakdown are considered in the review article
(� Traffic Congestion, Spatiotemporal Features of). Em-
pirical observations of traffic congestion discussed in these
articles show that phenomena of traffic breakdown and
the subsequent evolution of resulting congested patterns
are associated with diverse phase transitions and complex
spatiotemporal self-organization effects in vehicular traf-
fic.

On the one hand, the phase transitions and self-or-
ganization traffic phenomena, which can occur randomly
over time and space within a traffic network, depend con-
siderably on the spatiotemporal distribution of traffic de-
mand in the network. On the other hand, the occurrence
of traffic congestion changes travel decision behavior and
traffic assignment considerably. In turn, travel decision be-
havior and traffic assignment determine the spatiotempo-
ral distribution of traffic demand in this network. Thus the
recent understanding of empirical features of the phase
transitions and spatiotemporal effects in vehicular traffic
(see � Traffic Congestion, Modeling Approaches to and
� Traffic Congestion, Spatiotemporal Features of) should
be taken into account in future models and theories of dy-
namic traffic assignment as well as in the subsequent de-
velopment of traffic management and control strategies.
This will be one of the most important and difficult chal-
lenges for transportation research in the next future.

Thus the complexity of traffic management is associ-
ated with diverse phase transitions in vehicular traffic re-
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sulting in various complex self-organizing spatiotemporal
congested patterns propagating within a traffic network as
well as with the necessity in the optimization of the traf-
fic congested patterns. This optimization should ensure ei-
ther the dissolution of traffic congestion or, if this is not
possible to achieve, the minimization of the influence of
traffic congestion on travel costs like travel time, fuel con-
sumption, or HC and CO2 emissions.

Modeling approaches to vehicular traffic management
discussed in thementioned above review articles of the En-
cyclopedia are also very important for studies of air traffic
and pedestrian traffic.

Air traffic continues to grow at a steady pace in the
world. For this reason, the discussion of air traffic dynam-
ics as well as approaches to air trafficmodelingmade in the
review article of Sridhar and Sheth (see� Air Traffic Con-
trol, Complex Dynamics of) is an important contribution
to the fields of traffic management.

Currently, we can observe a continuous growth of pub-
lications devoted to modeling approaches to pedestrian
traffic and crowd dynamics. In particular, the interest to
pedestrian traffic is associated with necessity in the devel-
opment of effective evacuation strategies required for the
relocation of people to safely escape hazardous disaster im-
pacts. During the evacuation, destinations are chosen to
escape the hazardous disaster impacts as quickly as possi-
ble. This is a peculiarity of the evacuation process in com-
parison with vehicle traffic in which every vehicle has usu-
ally a defined destination. This very interesting and impor-
tant field of trafficmanagement is considered in the review
articles of Helbing and Johansson, Schadschneider et al.,
and Goudie.

Helbing and Johansson (see � Pedestrian, Crowd
and Evacuation Dynamics) and Schadschneider et al. (see
� Evacuation Dynamics: Empirical Results, Modeling and
Applications) consider various aspects of the modeling of
pedestrian interactions during evacuation as well as a com-
parison of the associated theoretical and empirical results.
Based on an example of Australian fire zone research,
Goudie (see� Evacuation as a Communication and Social
Phenomenon) considers evacuation as a communication
and social phenomenon. Goudie’s article describes the in-
fluence of communication and social aspects on possible
evacuation scenarios.
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Glossary
Transcription factor A protein that binds to the regula-

tory region of a target gene (its promoter or enhancer
regions) and thereby, controls its expression (tran-
scription of the target gene into a mRNA which is ulti-
mately translated into the protein encoded by the tar-
get gene). Transcription factors account for temporal
and contextual specificity of the expression of genes;
for instance, a developmentally regulated gene is ex-
pressed only during a particular phase in development
and in particular tissues.

Gene regulatory network (GRN) Transcription factors
regulate the expression of other transcription factor
genes as well as other ‘non-regulatory’ genes which
encode proteins, such as metabolic enzymes or struc-
tural proteins. A regulatory relationship between two
genes thus is formalized as: “transcription factor A is
the regulator of target gene B” or: A! B. The entirety
of such regulatory interactions forms a network = the
gene regulatory network (GRN). Synonyms: genetic
network or gene network, transcriptional network.

Gene network architecture and topology The GRN can
be represented as a “directed graph”. The latter con-
sists of a set of nodes (= vertices) representing the
genes connected by arrows (directed links or edges)
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representing the regulatory interactions pointing from
the regulator to the regulated target gene. [In con-
trast, in an undirected graph, the links are simple lines
without arrowheads. The protein-interaction network
can be represented as undirected graph]. The topol-
ogy of a network is the structure of this graph and
is an abstract notation, without physicality, of all the
potential regulatory interactions between the genes.
Topology usually is used to denote the simple inter-
actions captured by the directed graph. For defining
the network dynamics, however, additional aspects of
interactions need to be specified, including: modalities
or “sign” of an arrow (inhibitory vs. activating regu-
lation), the ‘transfer functions’ (relationship between
magnitude of input to that of the output = target gene)
and the logical function (notably, in Boolean network,
defining how multiple inputs are related to each other
and are integrated to shaping the output). In this ar-
ticle when all this additional information is implied
to be included, the term gene network architecture is
used. Thus, the graph topology is a subset of network
architecture.

Gene network dynamics The collective change of the
gene expression levels of the genes in a network, es-
sentially, the change over time of the network state S.

State space Phase space = the abstract space that contains
all possible states S of a dynamical system. For (au-
tonomous) gene regulatory networks, each state S is
specified by the configuration of the expression levels
of each of the N genes of the network; thus a system
state S is one point in the N-dimensional state space.
As the system changes its state over time, S moves
along trajectories in the state space.

Transcriptome Gene expression pattern across the entire
(or large portion of) the genome, measured at the level
of mRNA levels. Used as synonym to “gene expression
profile”. The transcriptome can in a first approxima-
tion be considered a snapshot of the network state S of
the GRN in gene network dynamics.

Cell type A distinct, whole-cell phenotype characteristic
of a mature cell specialized to exert an organ-specific
function. Example of cell types are: liver cell, red blood
cell, skin fibroblast, heart muscle cell, fat cell, etc. Cell
types are characterized by their distinct cell morphol-
ogy and their gene expression pattern.

Cell fate A potential developmental outcome of a (stem
or progenitor) cell. A cell fate of a stem cell can be the
development into a particular mature cell type.

Multipotency The ability of a cell to generatemultiple cell
types; a hallmark of stem cells. Stem cells are said to be
multipotent (see also under Stem cells).

Stem cell A multi-potent cell capable of “self-renewal”
(division in which both daughter cells have the same
degree of multi-potency as the mother cell) and can
give rise to multiple cell types. There is a hierarchy
of multipotency: a toti-potent embryonic stem cell can
generate all possible cell types in the body, including
extra-embryonic tissues, such as placenta. A pluripo-
tent embryonic stem cell can generate tissues of three
germ layers, i. e., it can produce all cell types of the foe-
tus and the adult. A multipotent (sensu stritiore) stem
cell of a tissue (e. g., blood) can give rise to all cell types
of that tissue (e. g., a hematopoietic stem cell can pro-
duce all the blood cells). A multipotent progenitor cell
can give rise to more than one cell types within a tissue
(e. g. the granulocyte-monocyte progenitor cell).

Cell lineage Developmental trajectory of a multipotent
cell towards one of multiple cell types, e. g., the
“myeloid lineage” among blood cells, comprising the
white blood cells granulocytes, monocytes, etc. Thus,
a cell fate decision is a decision between multiple lin-
eages accessible to a stem or progenitor cell.

Differentiation The process of cell fate decision in a stem
or progenitor cell and the subsequent maturation into
a mature cell type.

Definition of the Subject

Current studies of complex gene regulatory networks
(GRN) in which thousands of genes regulate each others’
expression have revealed interesting features of the net-
work structure using graph theory methods. But how does
the particular network architecture translate into biology?
Since individual genes alter their expression level as a con-
sequence of the network interactions, the genome-wide
gene expression pattern (transcriptome), which manifests
the dynamics of the entire network, changes as a whole in
a highly constrained manner. The transcriptome in turn
determines the cell phenotype. Hence, the constraints in
the global dynamics of the GRN directlymap into themost
elementary “biological observable”: the existence of dis-
tinct cell types in the metazoan body and their develop-
ment from pluripotent stem cells.

In this article a historical overview of the various levels
at which GRNs are studied, starting from network archi-
tecture analysis to the dynamics are first presented. An in-
troduction is given to continuous and discrete value mod-
els of GRN commonly used to understand the dynamics of
small genetic circuits or of large genome wide networks,
respectively. This will allow us to explain how the intu-
itive metaphor of the “epigenetic landscape”, a key idea
that was proposed by Waddington in the 1940s to explain
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the generation of discrete cell fates, formally arises from
gene network dynamics. This central idea appears in its
modern form in formal and molecular terms as the con-
cept that cell types represent attractor states of GRNs, first
proposed by Kauffman in 1969. This raises two funda-
mental questions currently addressed by experimental bi-
ologists in the era of “systems biology”: (1) Are cell types
in the metazoan body indeed high-dimensional attractors
of GRNs and (2) is the dynamics of GRNs in the “crit-
ical regime” – poised between order and chaos? A sum-
mary of recent experimental findings on these questions is
given, and the broader implications of network concepts
for cell fate commitment of stem cells are also briefly dis-
cussed. The idea of the epigenetic landscape is key to our
understanding of how genes and gene regulatory networks
give rise to the observable cell behavior, and thus to a for-
mal and integrated view of molecular causation in biol-
ogy.

Introduction

With the rise of “systems biology” over the past decade,
molecular biology is moving away from the paradigm of
linear genetic pathways which has long served as linear
chains of causation (e. g., Gene A! Gene B! Gene C!
phenotype) in explaining cell behaviors. It has begun to
embrace the idea of molecular networks as an integrated
information processing system of the cell [93,138]. The
departure from the gene-centered, mechanistic ‘arrow-ar-
row’ schemes that embody ‘proximal causation’ [189] to-
wards an integrative view will also entail a change in our
paradigm of what an “explanation” means in biology: How
dowemap the collective behavior of thousands of interact-
ing genes, obtained from molecular dissection, to the “bi-
ological observable”? The latter term, borrowed from the
statistical physics idea of the “macroscopic observable”,
is most prosaically epitomized in whole-cell behavior in
metazoan organisms: its capacity to adopt a large variety
of easily recognizable, discretely distinct phenotypes, such
as a liver cell vs. a red blood cell, or different functional
states, such as the proliferative, quiescent or the apoptotic
state.

All these morphologically and functionally distinct
phenotypes are produced by the very same set of genes
of the genome as a result of the joint action of the genes.
This is achieved by the differential expression (“turning
ON or OFF”) of individual genes. Thus, in a first approx-
imation, each cell phenotype is determined by a specific
configuration of the status of expression of all individual
genes across the genome. This genome-wide gene expres-
sion pattern or profile, or transcriptome, is the direct out-

put of the GRN and maps almost uniquely into a cell phe-
notype (see overview in Fig. 1).

A network is the most elementary conceptualization
of a complex system which is composed of interacting ele-
ments and whose behavior as an entity we wish to under-
stand: it formalizes how a set of distinct elements (nodes)
influence each other as predetermined by a fixed scheme
of their interactions (links between the nodes) and the
modality of interactions (rules associated with each node).
In this article we focus on the gene regulatory network
(GRN), the network formed by interactions throughwhich
genes regulate each other’s expression (Fig. 1a), and we ask
how they control the global behavior of the network, and
thereby, govern development of cells into the thousands of
cell types found in the metazoan body.

Because in a network a node exerts influence onto oth-
ers, we can further formalize networks as directed graphs,
that is, the links are arrows pointing from one node to an-
other (Fig. 1b). The information captured in an undirected
or directed graph is the network topology (see Glossary).
In addition, the arrows have a modality (“sign”), namely,
activating or inhibiting their target gene. But since each
node can receive several inputs (“upstream regulators”),
it is more appropriate to combine modality of interaction
together with the way the target gene integrates the var-
ious inputs to change its expression behavior (= output).
Thus, each node can be assigned a function that maps all
its inputs in a specific way to the output (Fig. 1, top). For
instance, “promoter logics” [209] which may dictate that
two stimulating inputs, the transcription factors, act syner-
gistically, or that one inhibitory input may, when present,
override all other activating inputs, is one way to represent
such an input integrating function.

Here we use network architecture as a term that en-
compasses both network topology as well as the interac-
tion modalities or the functions. The latter add the ingre-
dients to the topology information that are necessary to
describe the dynamics (behavior) of the network.

The Core Gene Regulatory Network (GRN)
in Mammals

How complex is the effective GRN of higher, multicellular
organisms, such as mammals? Virtually every cell type in
mammals contains the �25,000 genes in the genome [44,
158,178] which could potentially interact with each other.
However, in a first approximation, we do not need to deal
with all the 25,000 genes but only with those intrinsic reg-
ulators that have direct influence on other genes. A subset
of roughly 5–10% of the genes in the genome encode tran-
scription factors (TF) [194] a class of DNA binding pro-
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Complex Gene Regulatory Networks – from Structure to Biological Observables: Cell Fate Determination, Figure 1
Overview: Concepts at different levels for understanding emergence of biological behavior from genes and networks. a Elementary
interaction: regulator gene X1 interactswith target (regulated) gene X2, simplified as one link of a graph and the corresponding stan-
dard ‘cartoon’ it represents. bNotation of gene regulatory network topology as directed graph. c Schematic of a higher dimensional
gene expression state space, showing that a network state S(t) maps onto one point (denoted as cross) in the state space. Dashed
curve/arrow represents state space trajectory. d Spotted DNAmicroarray for measuring gene expression (mRNA) profiles, represent-
ing a network state S(t) and e the associated “GEDI map” visualization of gene expression pattern. The map is obtained using the
program GEDI [57,83]. This program places genes that behave similarly (with respect to their expression in a set of microarray mea-
surements) onto the same pixel (= minicluster of genes) of the map. Similar miniclusters are arranged in nearby pixels in the two-
dimensional picture of an n�m array of pixels. The assignment of genes to a pixel is achieved by a self-organizing map (SOM) algo-
rithm. The color of each pixel represents the centroid gene expression level (mRNA abundance) of the genes in the minicluster. For
a stack of GEDI maps, all genes are forced to be assigned to the same pixels in the differentmaps, hence the global coherent patterns
of each GEDI map allows for a one-glance ‘holistic’ comparison of gene expression profiles of different conditions S(t) (tissue types,
time points in a trajectory, etc). f Scheme of branching development of a subset of four different blood cells with their distinct GEDI
maps, starting from the multipotent CMP = common myeloid progenitor cell [150].MEP = Megakaryocte-Erythorid progenitor cell;
GMP = Granulocyte-Monocyte progenitor
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teins that regulate the expression of genes by binding to the
promoter region of the ‘target genes’ (Fig. 1a). Another few
hundred loci in the genome encodemicroRNAs (miRNA),
which are transcribed to RNA but do not encode proteins.
miRNAs regulate the expression of genes by interfering
with the mRNA of their target genes based on sequence
complementarity (for reviews see [41,89,141]). Thus, in
this discussion we can assume a regulatory network of
around 3000 regulator genes rather than the 25,000 genes
of the genome. The genes that do not encode TFs are the
“effector genes”, encoding the work horses of the cell, in-
cluding metabolic enzymes and structural genes. In our
approximation, we also assume that the effector genes do
not directly control other genes (although they may have
global effects such as change of pH that may affect the ex-
pression of some genes). Further we do not count genes
encoding proteins of the signal transduction machinery
since they act to mediate external signals (such as hor-
mones) that can be viewed as perturbations to the net-
work and can in a first approximation be left out when dis-
cussing cell-intrinsic processes. Thus, the directed graph
describing the genome-wideGRNnetwork has a “medusa”
structure [112], with a core set of regulators (medusa head)
and a periphery of regulated genes (arms) which in a first
approximation do not feedback to the core.

The Core GRN as a Graph
That Governs Cell Phenotype

The next question is: do the 3000 core regulatory genes
form a connected graph or rather independent (detached)
“modules”? The idea of modularity would have justified
the classical paradigm of independent causative pathways
and has in fact actively been promoted in an attempt to
mitigate the discouragement in view of the unfathomable
complexity of the genome [85]. While a systematic survey
that would provide a precise number is still not available,
we can, based on patchy knowledge from the study of indi-
vidual TFs, safely assume that a substantial fraction of TFs
control the expression of more than one other TF. Many
of them also control entire batteries [50] of effector genes,
while perhaps a third subset may be specialized in regu-
lating solely the effector genes. In any case, the core reg-
ulatory network of �3000 nodes controls directly or indi-
rectly the entire gene expression profile of 25,000 genes,
and hence, the cell phenotype.

Then, assuming that on a average each TF controls at
least two (typically more) other TFs [128,188], and con-
sidering statistical properties of random evolved networks
(graphs) [36], we can safely assume that the core tran-
scriptional network is a connected graph or at least its gi-

ant component (largest connected subgraph) covers the
vast majority of its nodes. This appears to be the case in
GRNs of simple organisms for which more data are avail-
able for parts of the network, as in yeast [128], C. ele-
gans [54]; sea urchin [50] or, for even more limited sub-
networks inmammalian systems [32,183] although studies
focused on selected subnetworks may be subjected to in-
vestigation bias. However, recent analysis of DNA binding
by ‘master transcription factors’ in mammalian cells us-
ing systemic (hence in principle unbiased) chromatin im-
munoprecipitation techniques [177] show that they typi-
cally bind to hundreds if not thousands of target genes [48,
70,105,155], strongly suggesting a global interconnected-
ness of the GRN. This however, does not exclude the pos-
sibility that the genome-wide network may exhibit some
“modularity” in terms of weakly connected modules that
are locally densely connected [166].

Structure of This Article

The goal of this article is to present both to biologists
and physicists a set of basic concepts for understanding
how the maps of thousands of interacting genes that sys-
tems biology researchers are currently assembling, ulti-
mately control cell phenotypes. In Sect. “Overview: Studies
of Networks in Systems Biology” we present an overview
to experimental biologists on the history of the analysis
of networks in systems biology. In Sect. “Network Archi-
tecture” we briefly discuss core issues in studies of net-
work topology, before explaining basic ideas of network
dynamics in Sect. “Network Dynamics” based on two-
gene circuits. The central concepts of multi-stability will
be explained to biologists, assuming a basic calculus back-
ground. Waddington’s epigenetic landscape will also be
addressed in this conjunction. In Sect. “Cell Fates, Cell
Types: Terminology and Concepts” we discuss the ac-
tual “biological observable” that the gene regulatory net-
work controls by introducing to non-biologists central
concepts of cell fate regulation. Section “History of Ex-
planing Cell Types” offers a historical overview of various
explanations for metazoan cell type diversity, including
dynamical, network-based concepts, as well as more ‘re-
ductionist’ explanations that still prevail in current main-
stream biology. Here the formal link between network
concepts and Waddington’s landscape metaphor will be
presented. We then turn from small gene circuits to large,
complex networks, and in Sect. “Boolean Networks as
Model for Complex GRNs” we introduce the model of
random Boolean networks which, despite their simplicity,
have provided a useful conceptual framework and paved
the way to learning what an integrative understanding
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of global network dynamics would look like, leading to
the first central hypothesis: Cell types may be high-dimen-
sional attractors of the complex gene regulatory network. In
Sect. “Three Regimes of Behaviors for Boolean Networks”
the more fundamental dynamical properties of ordered,
critical and chaotic behavior are discussed, leading to the
second hypothesis: Networks that control living cells may
be in the critical regime. In Sect. “Experimental Evidence
from Systems Biology” we summarize current experimen-
tal findings that lend initial support to these ideas, and in
Sect. “Future Directions and Questions” we conclude with
an outlook on how these general concepts may impact fu-
ture biology.

Overview: Studies of Networks in Systems Biology

Cellular networks of biological molecules currently stud-
ied by “systems biologists” encompass three large classes:
metabolic, protein–protein interaction and gene regula-
tory (transcriptional) networks (GRN). The formalization
of these systems into networks is often taken for granted
but is an important issue. It is noteworthy that metabolic
network diagrams [193] represent physical networks in
that there is a flow of information or energy in the links,
and thus, the often usedmetaphors inspired by man-made
transport or communication networks (‘bottleneck’, ‘hubs’
etc.) are more appropriate than in the other two classes.
Moreover, metabolic networks are subjected to the con-
straint of mass preservation at each node – in compli-
ance with Lavoisier’s mass conservation in chemistry. In
contrast to such flow networks, protein–protein interac-
tion networks and GRN are abstract notations of “influ-

Complex Gene Regulatory Networks – from Structure to Biological Observables: Cell Fate Determination, Table 1
Overview of typical directions and levels in the study of gene regulatory networks

A. Network Architecture
A1. Determination of network architecture

I Experimental
I Theoretical = Network inference

A2. Analysis of network architecture
Identification/characterization of “interesting” structural features

B. Network Dynamics
For small networks
B1. Modeling: theoretical prediction of behavior
of a real circuit based on (partially known, assumed) architecture + experimental verification

For complex networks (full architecture not known)
B2. Theoretical
Study of generic dynamics of simulated ensembles of networks of particular architecture classes
B3. Experimental
Measurement and analysis of high-dimensional state space trajectories of a real network

ence networks” in which the nodes influence the behavior
of other nodes directly or indirectly – as represented by
the links of the graph. There is no actual flow of matter
in the links (although of course information is exchanged)
and there is no obvious physical law that constrains the ar-
chitecture, thus allowing for much richer variations of the
network structure. The links are hence abstract entities,
representing potential interactions assembled from inde-
pendent observations that may not coexist in a particular
situation. Thus, in this case the network is rather a conve-
nient graphical representation of a collection of potential
interactions.

Studies of such biomolecular influence networks can
fundamentally be divided between two levels (Table 1):
(A) network architecture and (B) network dynamics (sys-
tem behavior).

The study of network architecture in molecular biol-
ogy can further be divided into (A1) efforts to determine
the actual graph structure that represent the specific inter-
actions of the genes for particular instance (a species) and
(A2) the more recent analysis of its structure, e. g., for in-
teresting topological features [2]. The determination of the
graph structure of the genome-wide GRNs in turn is either
achieved (i) by direct experimental demonstration of the
physical interactions, which has in the past decade greatly
benefited from novel massively parallel technologies, such
as chromatin IP, promoter one-hybrid or protein bind-
ing DNAmicroarrays [35,54,177], or (ii) via theoretical in-
ference based on observed correlations in gene expression
behavior from genome-wide gene expression profiling ex-
periments. Such correlations are the consequence of mu-
tual dependencies of expression in the influence network.
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The next section provides a concise overview of the
study of the network architecture, which due to limitations
of available data is mostly an exercise in studying graph
topology, and briefly discusses associated problems.

Network Architecture

Network Inference

An emerging challenge is the determination of entire net-
works, including the connection graph (topology), the di-
rection of interactions (‘arrows”) and, ideally, the interac-
tion modality and logical function, using systematic in-
ference from genome-wide patterns of gene expression
(“inverse problem”). Gene expression profiles (transcrip-
tomes) represent a snap-shot of the mRNA levels in cell
or tissue samples. The arrival of DNAmicroarrays for effi-
cient measuring gene expression profiles for almost all the
genes in the genome has stimulated the development of al-
gorithms that address the daunting inverse problem, and
the number of proposed algorithms has recently exploded.
Most approaches concentrate on inference based on the
more readily available static gene expression profiles, al-
though time course microarray experiments, where time
evolution of transcriptomes are monitored at close inter-
vals would be advantageous, especially to infer the arrow
direction of network links (directed graph) and the inter-
action functions.

However, because of uncertainties and the paucity
of experimental data, systematic network inference faces
formidable technical and formal challenges, and most the-
oretical work has been developed and tested based on
simulated networks. A fundamental concern is that mi-
croarray based expression levels reflect the average expres-
sion of a population of millions of cells that – as recently
demonstrated – exhibit vastly diverse behaviors evenwhen
they are clonal. Thus, the actual quantity used for infer-
ence is not a direct but a convoluted manifestation of net-
work regulation (this issue is discussed in Sect. “Are Cell
Types Attractors?”). Moreover, while mRNA levels reflect
relatively well the activity status of the corresponding gene
promoter, i. e., revealing the regulated activity, they are
poor indicator of the regulating activity of a gene, because
of the loose relationship betweenmRNA level and effective
activity of the transcription factor that it encodes. Since the
true network architecture (‘gold standard’) is not known,
validation of the theoretical approaches remains unsatis-
factory. Nevertheless, the recent availability of large num-
bers of gene expression profiles and the increasing (al-
though not complete) coverage of gene regulation maps
for single-cell organisms (notably E. coli and yeast) open
the opportunity to directly study the mapping between

gene expression profile and network structure [39,42,61,
88,135,190].

Here we refer to [2,131,139] for a survey of inference
methods and instead briefly discuss the study of network
topology before we move on to network dynamics.

Analyzing Network Structures

Once the network topology is known, even if direction,
modality and logics of links are not specified to offer the
complete system architecture, it can be analyzed using
graph theory tools for the presence of global or local struc-
tures (subgraphs) that are “interesting”. A potentially in-
teresting feature can be defined as a one which cannot be
explained by chance occurrence in some randomized ver-
sion of the graph (null model), i. e., which departs from
what onewould expect in a “random” network (see below).
Most of the graph theoretical studies have been stimulated
by the protein–protein interaction networks which have
been available for some years, of which the best character-
ized is that of the yeast S. cerevisiae [29]. Such networks
represent non-directed graphs, since the links between
the nodes (proteins) have been determined by the iden-
tification of physical protein interactions (heterodimer or
higher complex formation). Here we provide only a cur-
sory overview of this exploding field, while focusing on
conceptual issues.

A large array of structural network features, many of
them inspired by the study of ecological and social net-
works [152,160,199] have been found in biomolecular net-
works. These features include global as well as local fea-
tures, such as, to mention a few, the scale-free or broad-
scale distribution of the connectivity ki of the nodes i [3,
10,20], betweenness of node i [107,208], hierarchical or-
ganization [164], modularity [102,121,133,166,206], assor-
tativity [140], and enrichment for specific local topology
motifs [147], etc. (for a review of this still expanding field
see [2,21,29,152]).

The global property of a scale-free distribution of con-
nectivity ki, which has attracted most attention early on
and quickly entered the vocabulary of the biologist, means
that the probability P(ki ) for an arbitrary node (gene) i
in the network to have the connectivity ki has the form
P(ki ) � k�i where the characteristic constant � is the
power-law exponent – the slope of the line in a P(ki ) vs.
ki double-logarithmic plot. This distribution implies that
there is no characteristic scale, i. e., no stable average value
of k: sampling of larger number of nodes N will lead to
larger “average” k values. In other words, there is an “un-
expectedly” high fraction of nodes which are highly con-
nected (“hubs”) while the majority exhibits low connec-
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tivity. This property has attracted as much interest as it
has stirred controversy because of the connotation of “uni-
versality” of scale-freeness on the one hand, and several
methodological concerns on the other hand [21,24,73,76,
175,181,193]

The Problem of Choosing the Null Model In addition
to well-articulated caveats due to incompleteness, bias and
noise of the data [29,52], an important general method-
ological issue in the identification of structural features
of interest, especially if conclusion on functionality and
evolution is drawn, is the choice of the appropriate “null
model” – or “negative control” in the lingo of experimen-
talists. A total random graph obviously is not an ideal null
model, for on its background, any bias due to obvious con-
straints imposed by the physical reality of the molecular
network will appear non-random and hence, be falsely la-
beled “interesting” even if one is not interested in the phys-
ical constraints but in evidence for functional organiza-
tion [14,93]. For instance, the fact that gene duplication,
a general mechanism of genome growth during evolution,
will promote the generation of the network motif in which
one regulator regulates two target genes, needs to be con-
sidered before a “purposeful” enrichment for such a mo-
tif due to increased fitness is assumed [93]. Similarly, the
rewiring of artificial regulatory networks through reshuf-
fling of cis and trans regions or the construction of net-
works based on promoter-sequence information content
reveal constraints that lead to bias for particular structures
in the absence of selection pressure [18,46]

The problem amounts to the practical question of
which structural property of the network should be pre-
served when randomizing an observed graph to generate
a null model. Arbitrarily constrained randomization based
on preservation of some a priori graph properties [18,140]
thus may not suffice. However, the question of which fea-
ture to keep cannot be satisfactorily answered given the
lack of detailed knowledge of all physical processes under-
lying the genesis and evolution of the network. The more
one knows of the latter, the more appropriate constraints
can be applied to the randomization in order to expose
novel biological feature that cannot be (trivially) explained
by the neglected elementary construction constrains.

Evolution of Network Structure:
Natural Selection or Natural Constraint?

This question goes beyond the technicality of choosing
a null model for it reaches into the realm of a deeper ques-
tions of evolutionary biology: which features are inevitably
linked to the very physical processes through which net-

works have grown in evolution and which arose due to
natural selection because they confer a survival advan-
tage [15,77,78,93,203]? Often this question is taken for
granted and an all-mighty selection process is assumed
that can produce any structure as long as it contributes suf-
ficiently to fitness. This however, would require that dur-
ing natural selection the random, mutation-driven reshuf-
fling of nodes and connections has no constrains and that
Darwinian evolution explores the entire space of possible
architectures. Clearly this is not the case: physical con-
straints in the rearrangement of DNA (insertions, dele-
tions, duplications, conversion, etc) [16,170,187] as well
as graph theoretical considerations channel the possibil-
ities for how one graph can transform into another [93,
203]. For instance, growth of the network due to the in-
crease of genome-size (gene number) by gene duplica-
tion can, without the invisible hand of selection, give rise
to the widely-found scale-free structure [23,186] although
it remains to be seen whether this mechanism (and not
some more fundamental statistical process) accounts for
the ubiquitous (near) scale-free topology. The fact that the
scale-free (or at least, broad-scale [10]) architecture has
dynamical consequences (see Sect. “Architectural Features
of Large Networks and Their Dynamics”) raises the ques-
tion whether properties such as robustness may be inher-
ent to some structure that is “self-organized”, rather than
sculpted by the invisible hand of natural selection. Thus,
one certainly cannot simply argue that the scale-free struc-
ture has evolved “because of some functional advantage”.
Instead, it is reminded here that natural selection can
benefit from spontaneous, self-organized structures [116].
This structuralist view [200], in which the physically most
likely and not the biologically most functional is realized,
need to be considered when analyzing the anatomy of net-
works [93].

In summary, the choice of the null model has to be
made carefully and requires knowledge of the biochem-
ical and physicochemical process that underlies genome
evolution. This methodological caveat has its counterpart
in the identification of “interesting” nucleotide sequence
motifs when analyzing genome sequences [167].

Gene-Specific Information:
More Functional Analysis Based on Topology

Beyond pure graph theoretical analysis, there have been
attempts to link the topology with functional biological
significance. For instance, one question is how the global
graph structure changes (such as the size of the giant com-
ponent) when nodes or links are randomly or selectively
(e. g., hubs) removed. It should be noted that the term
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“robustness” used in such structural studies [5] refer to
networks with the aforementioned connotation of trans-
port or communication function with flow in the links and
thus, differs fundamentally from robustness in a dynami-
cal sense in the influence networks that we will discuss be-
low.

Another approach towards connecting network topol-
ogy with biological functionality is to employ bioinformat-
ics and consider the biological identity of the genes or pro-
teins represented by the nodes. Then one can ask whether
some graph-related node properties (e. g., degree of con-
nectivity, betweenness/centrality, contribution to network
entropy, etc.) are correlated with known biological prop-
erties of the genes, of which the most prosaic is the “es-
sentiality” of the protein, derived from genetic studies [84,
137,207,208]. To mention just a few of the earlier studies
of this expanding field, it has been suggested that proteins
with large connectivity (“hubs”) appear to be enriched for
“essential proteins” [104], that hubs evolve slower [68],
and that they tend to be older in evolution [58] – in ac-
cordance with the model of preferential attachment that
generates the scale-free distribution of the connectivity ki .
However, many of these findings have been contested for
statistical or other reasons [27,28,67,106,107]. The conclu-
sion of such functional bioinformatics analysis need to be
re-examined when more reliable and complete data be-
come available.

Network Dynamics

While the graph theoretical studies, including the rami-
fications into core questions of evolution outlined above,
are interesting eo ipso, life is breathed into these net-
works only with the ‘dynamics’. Understanding the sys-
tem-level dynamics of networks is an essential step in
our desire to map the static network diagrams which are
merely “anatomical observables”, into the functional ob-
servable of cell behavior. Dynamics is introduced by con-
sidering that a given gene (node) has a time-dependent ex-
pression value xi (t) which in a first approximation repre-
sents the activity state of gene i (an active gene is expressed
and post-translationally activated). Instead of seeing dy-
namics as a sequence of gene activation, epitomizing the
chain of causation of the gene-centric view (as outlined in
Sect. “Introduction”) a goal in the study of complex sys-
tems is to understand the integrated, “emergent” behav-
ior of systems as a holistic entity. We thus define a sys-
tem (network) state S(t) as S(t) D [x1(t); x2(t); : : : ; xN(t)]
which is determined by the expression values xi of all theN
genes of a network which change over time. It is obvious
that not all theoretically possible state configurations S can

be realized since the individual variables xi cannot change
independently. This global constraint on S imposed by
the gene regulatory interactions ultimately determines the
“system behavior” which is equivalent to whole-cell phe-
notype changes, such as switching between cell pheno-
types. Thus, one key question is: given a particular network
architecture, what is the dynamics of S, and does it repro-
duce typical cell behaviors, or even predict the particular
behavior of a specific cell? Before plunging into complex
GRNs, let us introduce basic concepts ofmodeling dynam-
ics using small circuits (Fig. 2, B1 in Table 1.).

Small Gene Circuits

Basic Formalism The dynamics of the network can be
written as a system of ordinary differential equations
(ODE) that describe the rate of change of xi as a function
of the state of the all the xj:

dx
dt
D F(x) ; (1)

where x is the state vector x(t) D [x1; x2; : : : ; xN ] for
a network of N genes, and F describes the interactions
(including the interaction matrix), defining how the com-
ponents influence each other. Concretely, for individual
genes in small circuits, e. g. of two genes, N = 2:

dx1
dt
D f1(x1; x2)

dx2
dt
D f2(x1; x2) :

(1a)

Here the functions f i are part of the network “architecture”
that determine how the inputs onto gene i jointly deter-
mine its dynamical behavior – as defined in Sect. “Intro-
duction”. An example of f is shown in Fig. 2b. Its form is
further specified by system parameters that are constants
for the time period of observation. The solution of these
system equations is the movement of the state vector x
in theN-dimensional gene expression state space spanned
by xi.

x(t) D S(t) D [x1; x2; : : : ; xN ] : (2)

The Network State For a larger number of genes, it
is convenient to describe the dynamics of the network
with the vector x which roughly represents the system
state S, Eq. (2), that biologists measure using DNA mi-
croarrays and is known as the “gene expression profile” (see
Sect. “Definition of the Subject”, Fig. 1). We will thus refer
to S instead of the vector x in discussing biological sys-
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tem states. Since Eq. (1) is a first order differential equa-
tion, S specifies a system state at time t which for t D 0
represents an initial condition. In other words, unlike in
macroscopic mechanical systems with inertia, in which the
velocity dxi /dt of the “particles” is also important to spec-
ify an initial state, in cells a photographic snapshot of all
the positions of xi, that is S(t) itself, specifies the system
state. (This will become important for experimental mon-
itoring of network dynamics).

Complex Gene Regulatory Networks – from Structure to Biological Observables: Cell Fate Determination, Figure 2
Fromgene circuit architecture to dynamics, exemplified on a bistable two-gene circuit. aCircuit architecture: twomutually inhibitory
genes X1 and X2 which are expressed at constant rate and inactivated with first-order kinetics (“bistable toggle switch”). b Typi-
cal ODE system equations for the circuit in a (see [71,109]). c State space (x1–x2-phase-plane). Each dot is an example initial state
So D [x1(t D 0); x2(t D 0)] with the emanating tick revealing direction and extent that the state So would travel in the next time
unit	t. Solid circles, S�

1 and S�

2 , denote stable fixed-points (“attractors”). Empty circle denotes unstable fixed-point (saddle-node).
d,e, f Various schematic representations of the probability P(S) (for a noisy circuit) to find the system in state S D [x1; x2]. The “ele-
vation” (z-axis over the x1–x2 plane) is calculated as – ln(P); thus, the most probable = stable states are the lowest in the emerging
landscape. gWaddington’smetaphoric epigenetic landscape, in the 1957 version [198]

Role of Dynamical Models in Biology Small networks,
or more precisely, “circuits” of a handful of interacting
proteins and genes, have long been the object of model-
ing efforts in cell biology that use ODEs of the type of
(1a) to model the behavior of the circuit [109,192] (Ta-
ble 1, B1). In contrast, the objects of interest in the study
of complex system sciences are large, i. e., “complex” net-
works of thousands of nodes, such as the 3000-node core
GRN, mentioned earlier, and has largely been driven by
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Complex Gene Regulatory Networks – from Structure to Biological Observables: Cell Fate Determination, Figure 3
Expansion of the bistable two-gene circuit by self-stimulation – creating a centralmetastable attractor. a The bistable circuit of Fig. 2
and associated epigenetic landscape, now as contour graph. b If the two genes exert self-activation, then, for a large range of param-
eters and additive effect of the two inputs that each gene receives, the epigenetic landscape is altered such that the central unstable
fixed-point in a. becomes locally stable, S�

3 , giving rise to robust “tristable” dynamics [99]. c Two specific examples of observed gene
circuits that represent the circuit of C. Such network motifs are typically found to regulate the branch points where multipotent
progenitor cells make binary cell fate decisions [99,162]. The metastable central attractor S�

3 can be modeled as representing the
metastable bi-potent progenitor cell which is poised in a state of locally stable indeterminacy between the two prospective fate
attractors S�

1 and S�

2

experimental monitoring of S(t) using microarrays since
the function F that represents the architecture of the net-
work is not known (Table 1, B3).

What is the actual aim of modeling a biological net-
work? In mathematical modeling of small gene circuits
or of signal transduction pathways, one typically predicts
the temporal evolution (time course) of the concentra-
tion of the modeled variables x1(t), or x2(t), and charac-
terizes critical points, such as stable steady states or os-
cillations in the low-dimensional state space, e. g. in the
x1 � x2 phase plane, after solving the system equations, as
exemplified in Figs. 2 and 3. Unknown parameter values

have to be estimated, either based on previous reports or
obtained by fitting the modeled xi(t) to the observed time
course. Successful prediction of behaviors also serves to
validate the assumed circuit architecture. From the stabil-
ity analysis of the resulting behavior [151], generalization
as to the dynamical robustness (low sensitivity to noise
that cause x(t) to randomly fluctuate) and structural ro-
bustness (preservation of similar dynamical behavior even
if network architecture is slightly rewired by mutations)
can be made [7,34]. Both types of robustness of the sys-
tem shall not be confounded with the robustness which is
sometimes encountered in the analysis of network topol-
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ogy where preservation of some graph properties (such as
global connectedness) upon deletion of nodes or links is
examined (“error tolerance”) (as discussed in Sect. “Net-
work Architecture”).

Although in reality most genes and proteins are em-
bedded in the larger, genome-wide network, small, ide-
alized circuit models which implicitly accept the absence
of many unknown links as well as inputs from the nodes
in the global network outside the considered circuit of-
ten surprisingly well predict the observed kinetics of the
variables of the circuit. This not only points to intrinsic
structural robustness of the class of natural circuits, in that
circuit architectures slightly different from that of the real
system can generate the observed dynamics. But it also
suggests that obviously, for some not well-understood rea-
sons, local circuits are to some extent dynamically insu-
lated from the larger network in which they are embedded
although they are topologically not detached.

Such “functional modularity” may be a property of the
particular architecture of the evolved complex GRNs. In
fact, in models of complex networks (discussed in the next
section), evidence for just such “functional modularity”
has been found with respect to network dynamics [116].
In brief preview (see Sect. “Three Regimes of Behaviors
for Boolean Networks”), work on random Boolean net-
work models of GRN has revealed three “regimes” of dy-
namical behaviors: ordered, critical, and chaotic, as de-
scribed in Sect. “Ordered and Chaotic Regimes of Net-
work Behavior”. In the ordered and critical regimes, many
or most genes become “frozen” into “active” or “inac-
tive” states, leaving behind functionally isolated “islands”
of genes which, despite being connected to other islands
through the interactions of the network, are free to vary
their activities without impacting the behaviors of other
functionally isolated islands of genes.

Complex Networks

Despite a recent spate of publications in which the tem-
poral change of expression of individual genes have been
predicted based on small circuit diagrams, such predic-
tions do not provide understanding of the integrated cell
behavior, such as the change of cell phenotype that may in-
volve thousands genes in the core GRN. Thus, analysis of
genome-wide network state is needed to understand the
biological observable. In a first approximation, it is plau-
sible that the state of a cell, such as the particular cell
(pheno-)type in a multi-cellular organism, is defined by
its genome-wide gene expression profile, or transcriptome
T D [x1; x2; : : : ; xN ] with N D 25; 000. In fact, microar-
ray analysis of various cells and tissues reveals globally

distinct, tissue specific patterns of gene expression pro-
files that can easily be discerned as shown in Fig. 1f. As
mentioned above (Sect. “Definition of the Subject”), the
gene expression profile across the genome is governed by
the core regulatory network of transcription factors (TFs)
which enslave the rest of the genome. Thus, in our ap-
proximation the network state S of the core transcriptional
network of 3000 or so genes essentially controls the entire
(genome-wide) gene expression profile.

For clarity of formalization, it is important to note that
one genome in principle encodes exactly one fixed net-
work, since the network connections are defined by the
specific molecular interactions between the protein struc-
ture of TFs and the DNA sequence motif of the cis-regula-
tory promoter elements they recognize. Both are encoded
by the genomic sequence. The often encountered notion
that “networks change during development” and that “ev-
ery cell type has its own network” is in this strict formalism
incorrect – the genes absent in one cell type must directly
or indirectly have been repressed (and sometimes, contin-
uously kept repressed) by other genes that are expressed.
Thus, the genome (of one species) directly maps into one
(time-invariant) network architecture which in turn can
generate a variety of states S(t). It is the state S that changes
in time and is distinct in different cell types or in different
functional states within one cell type. Only genetic muta-
tions in the genome will “rewire” the network and change
its architecture.

If the network state S(t) of the core GRN directly maps
into a state of a cell (the biological observable), then one
question is: What is the nature of the integrated dynamics
of S in complex, irregularly wired GRN and is it compati-
ble with observable cell behavior?

The study of the dynamics of complex networks (Ta-
ble 1, B) may at first glance appear to be impeded by our al-
most complete ignorance about the architecture and inter-
action modalities between the genes. However, we cannot
simply extrapolate from the mindset of studying small cir-
cuits with rate equations to the analysis of large networks.
This is not only impossible due to the lack of information
about the detailed structure of the entire network – the
function F in Eq. 1 is unknown – but it may also be nu-
merically hard to do. Yet, despite our ignorance about the
network architecture, much can be learned if we reset our
focus plane to the larger picture of the network. In this re-
gard, the study of the dynamics of complex network can
have two distinct goals (see Table 1).

One line of research (Table 1, B2) overcomes the lack
of information about the network architecture by taking
an ensemble approach [112] and asks: What is the typ-
ical behavior of a statistical ensemble of networks that is
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characterized by an architectural feature (e. g. average con-
nectivity ki, power-law exponent � )? This computationally
intense approach typically entails the use of discrete-val-
ued gene networks (Sect. “Boolean Networks as Model for
Complex GRNs”). As will be discussed below, such analy-
sis has led to the definition of three broad classes of behav-
iors: chaotic, critical and ordered.

The second approach (Table 1, B3) to the dynamics of
complex GRN is closer to experimental biology and ex-
ploits the availability of gene expression profile measure-
ments using DNA microarray technology. Such measure-
ments provide snapshots of the state of the network S(t)
over N genes, covering almost the entire transcriptome,
and thus, reveals the direct output of the GRN as a dis-
tributed control system. Monitoring S(t) and its change
in time during biological processes at the whole-cell level
will reveal the constraint imposed on the dynamics of S(t)
by network interactions and can, in addition to provid-
ing data for the inference problem (Sect. “Network Infer-
ence”), expose particular dynamical properties of the tran-
scriptome that can be correlated with the biological ob-
servable.

Cell Fates, Cell types: Terminology and Concepts

In order to appreciate the meaning of the network state S
and how it maps to the biological observable, we will now
present (to non-biologists) in more detail the most prosaic
biological observable of gene network dynamics: cell fate
determination during development.

Stem Cells and Progenitor Cells
in Multi-cellular Organism

A hall-mark of multi-cellular organisms is the differentia-
tion of the omnipotent zygote (fertilized egg) via totipotent
and pluripotent embryonic stem cells andmultipotent tissue
stem cells into functionally distinct mature “cell types” of
the adult body, such as red blood cell, skin cells, nerve cells,
liver cells, etc. This is achieved through a branching (tree-
like) scheme of successive specialization into lineages. If
the fertilized egg is represented by the main trunk of the
“tree of development”, then think of cells at the branching
points of developmental paths as the stem cells. One ex-
ample of a multipotent stem cell is the hematopoietic stem
cells (HSC) which is capable of differentiating into the en-
tire palette of blood cells, such as red blood cells, platelets
and the variety of white blood cells. The last branch points
represent progenitor cells which have a lesser develop-
mental potential but still can chose between a few cell
types (e. g., the common granulocyte-macrophage progen-
itor (GMP) cell, Fig. 1f). Finally, the outmost branches of

the tree represent the mature, terminally differentiated cell
types of the body.

A cell that can branch into various lineages is said to be
“multipotent”. It is a “stem cell” when it has the potential to
self-renew by cell division, maintaining its differentiation
potential, and to create the large family of cells of an entire
tissue (e. g., the hematopoietic stem cell). Thus, progenitor
cells, which proliferate but cannot infinitively self-renew,
are strictly not stem cells. The commitment to a particu-
lar cell phenotype (a next generation branch of the tree) is
also referred to as a “cell fate” since the cell at the proximal
branching point is “fated” to commit to one of its prospec-
tive cell types.

Development and Differentiation

The diversification of the embryonic stem cell to yield the
spectrum of the thousands [94] or so cell types in the
body occurs in a process of successive branching events, at
which multipotent cells commit to one fate and which ap-
pear to be binary in nature. Thus, multipotent cells make
an either-or decision between typically two lineages – al-
though more complex schemes have been proposed [65].
Moreover, it is generally assumed that during natural de-
velopment there is only diversification of developmental
paths but no confluence from different lineages, although
recently exceptions to this rule have been reported for the
hematopoietic system [1].

As cells develop towards the outer branches of the “tree
of development”, they become more and more special-
ized and progressively lose their competence to proliferate
and diversify (“potency”). They also develop the pheno-
type features of a mature cell type; for instance, in the case
of red blood cells, they adopt the flat, donut-like shape and
synthesize haemoglobin. This process is called differentia-
tion. Most cells then also loose their capacity to divide, that
is, to enter into the proliferative state. Thus, mature, ter-
minally differentiated cells are typically quiescent or “post
mitotic”.

The branching scheme of cell types imposes another
fundamental property: cell types are discrete entities. They
are distinct from each other, i. e., they are well separated in
the “phenotype space” and are stable [171]. There is thus
no continuum of phenotype. AsWaddington, a prominent
embryologist of the last century, recognized in the 1940s:
Cell types are “well-recognisable” entities and “intermedi-
ates are rare” [198]. In addition to the (quasi-) discreteness
between branches of the same level, discreteness between
the stages within one developmental path is also apparent:
a multipotent stem cell at a branching point is in a discrete
stage and can be identified based on molecular markers,
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isolated and cultured as such. Hence, a “stem cell” is not
just a snapshot of an intermediate stage within a continu-
ous process of development, but a discrete metastable en-
tity.

The flow down the developmental paths, from a stem
cell to the terminally differentiated state is, despite the
pauses at the various metastable stem and progenitor cell
levels, essentially unidirectional and, with a few excep-
tions, irreversible. In some tissues, the mature cells, as is
the case with liver, pancreas or endothelial cells, can upon
injury revert to a phenotype similar to that of the last im-
mature (progenitor) stage and resume proliferation to re-
store the lost cell population, upon which they return to
the differentiated, quiescent state.

Biologists often speak in somewhat loose manner
of cells “switching” their phenotype. This may refer to
switching from a progenitor state to a terminally dif-
ferentiated state (differentiation) or within a progenitor
state from the quiescent to other functional states, such
as the proliferative or the apoptotic state (apoptosis =
programmed cell death). In any case, such intra-lineage
switching between different functional states also repre-
sents discontinuous, quasi-discrete transitions of whole-
cell behaviors. The balance between division, differentia-
tion and death in the progenitor or stem cell compartment
of a tissue thus consists of state transitions that entail all-
or-none decisions. This balance is at the core of organis-
mal development and tissue homeostasis.

Now we can come back to the network formalism: if
the network state S maps directly into the biological ob-
servable, what are the properties of the network architec-
ture that confer its ability to produce the properties of
the biological observable outlined in this section: discrete-
ness and robustness of cell types, discontinuity of transi-
tions, successive binary diversification and directionality
of these processes? Addressing these questions is the long-
term goal of a theory of the multicellular organism. In the
following we describe the status of research toward this
goal.

History of Explaning Cell Types

Waddington’s Epigenetic Landscape
and Bistable Genetic Circuits

One of the earliest conceptualization of the existence of
discreteness of cell types was the work of C. Wadding-
ton, who proposed “epigenetic regulation” in the 1940s,
an idea that culminated in the famous figure of the “epi-
genetic landscape” (Fig. 2g). This metaphor, devoid of any
formal basis, let alone relationship to gene regulation, cap-
tures the basic properties of discrete entities and the insta-

bility of intermediates. The term ‘epigenetic’ was coined
by Waddington to describe distinct biological traits that
arise from the interplay of the same set of genes and does
not require the assumption of a distinct, “causal” gene to
be explained [196]. The 1957 version of the epigenetic
landscape [198] (Fig. 2g) also implies that multipotent
cells are destined to make either-or decisions between two
prospective lineages, as embodied in the “watershed” re-
gions (Fig. 2g).

Almost at the same time as Waddington, in 1948 Max
Delbrück proposed a generic concept of differentiation
into two discrete states in a biochemical system that can
be described by equations of the form (3), consisting of
two mutual inhibiting metabolites, x1(t) and x2(t) that
exhibits bistability [53] (For a detailed qualitative expla-
nation, see Fig. 2). The dynamics of such a system is
graphically represented in the two dimensional state space
spanned by x1 and x2 (Fig. 2c-f). Bistable dynamics im-
plies that there are two steady states S�1 and S�2 that sat-
isfy dx1/dt D dx2/dt D 0 and are stable fixed-points of the
system. For the system equations of Fig. 2b, this behav-
ior is observed for a large range of parameters. In a nut-
shell, the mutual inhibition renders the balanced steady
state S�3 (x1 D x2) unstable so that the system settles down
in either the steady state S�1 (x1 	 x2) or S�2 (x1 
 x2)
when kicked out of this unstable fixed point. These two
stable steady states and their associated gene activity pat-
terns are discretely separated in the x1 � x2 state space and
have been postulated to represent the differentiated state
of cells, thus, corresponding toWaddington’s valleys. This
was the first conceptualization of a cellular differentiated
state as a stable fixed-point of a non-linear dynamical sys-
tem. Soon after Monod and Jacob discovered the principle
of gene regulation they also proposed a circuit of the same
architecture as Delbrück [148], but consisting of two mu-
tually suppressing genes instead of metabolites, to explain
differentiation in bacteria as a bistable system.

Bistability, Tristability and Multistability

The central idea of bistability is that the very same system,
in this case, a gene circuit composed of two genes x1 and
x2, can under some conditions produce two distinct stable
states separated by an unstable stationary-state, and hence,
it can switch in almost discontinuous manner from one
state (S�1 ) to another (S�2 ) (“toggle switch”) (Fig. 2). Bista-
bility is a special (the simplest) case of multi-stability, an
elementary (but not necessary) property of systems with
non-linear interactions, such as those underlying the gene
regulatory influences as detailed in Fig. 2b. Which stable
state (in this case, S�1 or S�2 ) a network occupies depends
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on the initial condition, the position of S(t D 0) in the
x1 � x2 state space (Fig. 2c). The two stable steady-states,
S�1 or S�2 , are called “attractors” since the system in such
states will return to the characteristic gene expression pat-
tern in response to small perturbations to the system by
enforced change of the values of x1 or x2. Similarly, af-
ter an external influence that places the network at an un-
stable initial state S0(t D 0) within the basin of attraction
of attractor S�1 (gray area in Fig. 2c), and hence cause the
network to settle down in the stable state S�1 , the network
will stay there even after the causative influence that ini-
tially put it in the state S0 has disappeared. Thus, attrac-
tor states confer memory of the network state. In contrast,
larger perturbations beyond a certain threshold will trigger
a transition from one attractor to another, thus explain-
ing the observed discontinuous “switch-like” transitions
between two stable states in a continuous system.

After Delbrück, Monod and Jacob, numerous theoret-
ical [74] and, with the rise of systems biology, experimen-
tal works have further explored similar simple circuitries
that produce bistable behavior (see ref. in [38]). Such cir-
cuits and the predicted switch-like behavior have been
found in various biological systems, including in gene reg-
ulatory circuits in Escherichia coli [157], mammalian cell
differentiation [43,99,127,168] as well as in protein signal
transduction modules [12,64,205]. Artificial gene regula-
tory circuits have been constructed using simple recombi-
nant DNA technology to verify model predictions [22,71,
123].

Circuit analyzes have been expanded to cover more
complex circuits in mammalian development. It appears
that there is a common theme in the circuits that gov-
ern cell differentiation (Sect. “Cell Fates, Cell Types: Ter-
minology and Concepts”): interconnected pairs of mutu-
ally regulating genes that are often also self-regulatory, as
shown in Fig. 3b [43,99,168]. Such circuit diagrams may
be crucial in controlling the binary diversification at de-
velopmental branch points (Fig. 1f) [99]. In the case where
the twomutually inhibiting genes are also are self-stimula-
tory, as summarized in Fig. 3b, an interesting modification
of the bistable dynamics can be obtained. Assuming in-
dependent (additive) influence of the self-stimulatory and
cross-inhibitory inputs, this circuit will convert the central
unstable state (saddle) S�3 (Fig. 2, 3a) that separate the two
stable steady-states into a stable steady state, thus generat-
ing tristable behavior [99]. The third, central stable fixed
point has, in symmetrical cases, the gene expression con-
figuration S�3 [x1 � x2] (Fig. 3b).

The promiscuous expression of intermediate-low lev-
els of x1 and x2 in the locally stable state S�3 has been as-
sociated with a stem or progenitor cell that can differenti-

ate into the cell represented by the attractors S�1 (x1 	 x2)
or S�2 (x1 
 x2). In fact, the common progenitor cells
(Fig. 1f) have been shown to express “promiscuous” ex-
pression of genes thought to be specific for either of the
lineages in which it will have to commit to, so-to speak
providing a “preview” or “multi-lineage priming” of the
gene expression of its prospective cell fates [47,59,92]. For
instance, the common myeloid progenitor (CMP, Fig. 1)
which can commit to either the erythroid or the myeloid
lineage, expresses both the erythroid-specific transcription
factor GATA1 (= x1) and the myeloid specific transcrip-
tion factor PU.1 (= x2) at intermediate levels (Fig. 3c).
The metastable [GATA1�PU.1] configuration generates
a state of indeterminacy or “suspense” [146] awaiting the
signal, be it a biological instruction or stochastic pertur-
bation, that resolves it to become either one of the more
stable states [GATA1 	 PU.1] or [GATA1 
 PU.1]
when cells differentiate into the erythroid or myeloid lin-
eage, respectively. Thus, multi-potency and indetermi-
nacy of a progenitor cell can be defined purely dynami-
cally and does not require a much sought after “stemness”
gene (again, a concept that arose from the gene-centered
view) [195]. The metastable state also captures the notion
of a “higher potential energy” [79] that drives development
and hence, may account for the arrow of time in ontogen-
esis.

A Formalism for Waddington’s Epigenetic
Landscape Metaphor

Obviously, the valleys in Waddington’s epigenetic land-
scape represent the stable steady states (attractors) while
the hill-tops embody the unstable fixed-points, as shown
in Fig. 2. How can Waddington’s metaphor formally be
linked to gene network dynamics and the state space
structure? For a one dimensional system dx/dt D f (x),
this is easily shown with the following analogy: An “en-
ergy” landscape represents the cumulative “work” per-
formed/received when “walking” in the state space against
/ along the vector field of the “force” f (x) (Fig. 2c). Thus,
the “potential energy” is obtained by integrating f (x) (the
right-hand side of the system equation, Eq. (1)) over the
state space variables x.

V(x) D �
Z

f (x)dx : (3)

Here the state space dimension x is given the meaning
of a physical space, as that pertaining to a landscape,
and the integral V(x) is the sum of the “forces” experi-
enced by the network states S(t) D x(t) over a path in
x that drive S(t) to the stable states (Fig. 2c). The neg-
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ative sign establishes the notion of a potential in that
the system loses energy as it moves towards the sta-
ble steady states which are in the valleys (“lowest en-
ergy”). Higher (N > 1) dimensional systems (Eq. 1) are
in general non-integrable (unless there exists a continu-
ously differentiable (potential) function V(x1; x2; : : : ; xN)
for which f1dx1 C f2dx2 C � � � C fNdxN � � � D 0 is the ex-
act total differential, so that –grad(V)=F(x) with F(x) =
[ f1(x); f2(x); : : : ; fN (x)]T). Thus, there is in general no po-
tential function that could represent a “landscape”; how-
ever, the idea of some sort of “potential landscape” is
widely (and loosely) used, especially in the case of two-di-
mensional systems where the third dimension can be de-
picted as a cartographic elevation V (x1, x2). An elevation
function V(x1, x2) can be obtained in stochastic systems
where x(t) is subjected to random fluctuations due to gene
expression noise [87]. ThenV(S) is related to the probabil-
ity P(S) to find the system in state S D (x1; x2; : : : ), e. g.,
V(S) D � ln(P(S) [118,177]. It should however be kept in
mind that the “quasi-potential” V is not a true (conserva-
tive) potential, since the vector field is not a conservative
field.

The above treatment of the dynamics of the gene reg-
ulatory circuit explains the valleys and hills of Wadding-
ton’s landscape but still lacks the “directionality” of the
overall flow on the landscape, depicted by Waddington as
the slope from the back to the front of his landscape. (This
arrow or time of development will briefly be discussed in
the outlook Sect. “Future Directions and Questions”).

In summary, the epigenetic landscape that Wadding-
ton proposed based on his careful observation of cell be-
havior and that he reshaped over decades [103,179,196,
197,198], can now be given both a molecular biology cor-
relate (the gene regulatory networks) and a formal frame-
work (probability landscape of network states S). The
landscape idea lies at the heart of the connection between
molecular network topology and biological observable.

TheMolecular Biology View:
“Epigenetic” Marks of Chromatin Modification

Although it is intuitively plausible that stable steady states
of the circuits of Delbrück and of Monod and Jacob may
represent the stable differentiated state, this explanation
of a biological observable in terms of a dynamical sys-
tem was not popular in the community of experimental
molecular biologists and was soon sidelined as molecu-
lar biology, and with it the gene-centered view, came to
dominate biology. The success in identifying novel genes
(and their mutated alleles) and the often straightforward
explanation of a phenotype offered by the mere discov-

ery of a (mutant) gene triggered a hunt for such “explana-
tory genes” to account for biological observables. Gene cir-
cuits had to give place to the one-gene-one trait concept,
leading to an era in which a new gene-centered epistemo-
logical habit, sometimes referred to as “genetic determin-
ism”, prevailed [180]. Genetic determinism, a particular
form of reductionism in biology, was to last for another
fifty years after Delbrück’s proposal of bistability. Only as
the “low hanging fruits” of simple genotype-phenotype re-
lationships seemed to have all been picked, and genome-
wide gene expression measurements became possible was
the path cleared for the rise of “system biology” and bio-
complexity that we witness today.

In genetic determinism, macroscopic observables are
reduced in a qualitative manner to the existence of genes
or regulatory interactions which at best “form” a linear
chain of events. Such “pathways”, most lucidly manifest in
the arrow-arrow schemes of modern cell biology papers,
serve as a mechanistic explanation and satisfied the intel-
lectual longing for causation. It is in light of this think-
ing that the molecular biologists’ explanation of the phe-
nomenon of cell type determination has to be seen. Ab-
sent a theory of cell fate diversification and in view of the
stunning stability of cell types, a dogma thus came into ex-
istence according to which the type identity of cells, once
committed to, is irreversibly carved in stone [161]. Rare
transdifferentiation events (switch of cell lineages) were
regarded as curiosities. The observation that cell types ex-
press type-specific genes was explained by the presence of
cell-type specific transcription factors. For instance, red
blood cells express haemoglobin because of the presence
of GATA1 – a lineage specific transcription factor that not
only promotes commitment to the erythroid lineage (as
discussed above, Sect. “Bistability, Tristability and Multi-
stability”) but also controls haemoglobin expression [149].
Conversely, the absence of gene activity, for instance, non-
expression of liver-specific genes in erythrocytes, was ex-
plained by the silencing of the not needed genes by cova-
lent DNA methylation and histone modifications (methy-
lation, acetylation, etc.) [13,65,69,117,122] which modify
chromatin structure, and thereby, control the access of
the transcription machinery to the regulatory sites on the
DNA. But who controls the controller?

Chromatin modifications [117,122] are thought to
confer discrete alterations of gene expression state that
are stable and essentially irreversible. This idea of perma-
nent marks on DNA represents the conceptual cousin of
mutations (but without altering DNA sequence) and was
thus in line with the spirit of genetic determinism.Accord-
ingly, they were readily adopted as an explanation of the
apparently irreversible cell type-specific gene inactivation
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and were given the attribute “epigenetic” to contrast them
from the genetic changes that involve alteration of DNA
sequences. But enzymes responsible for covalent DNA and
chromatin modification are not gene-locus specific, leav-
ing open how the cell type specific gene expression pattern
is orchestrated.

It is important to mention here a disparity in the cur-
rent usage of the term “epigenetics” [103]. In modern
molecular biology, “epigenetics” is almost exclusively used
to refer to DNA methylation and covalent histone mod-
ifications; this meaning is taken for granted even among
authors who comment on the very usage of this term [13,
26,103], and are unaware that memory effects can arise
purely dynamically without a distinct material substrate,
as discussed in Sect. “Bistability, Tristability and Multista-
bility”. In contrast, biological physicists use “epigenetic”
to describe precisely phenomena, such as multi-stability
(Sect. “Bistability, Tristability and Multistability”) that are
found in non-linear systems – a usage that comes closer to
Waddington’s original metaphor for illustrating the dis-
creteness and stability of cell types [197,198]. The use
of Waddington’s “epigenetic landscape” has recently seen
a revival [75,165] in the modern literature in the context of
chromatin modifications but remains loosely metaphoric
and without a formal basis.

Rethinking the Histone Code

The idea of methylation and histone modifications as
a second code beyond the DNA sequence (“histone code”)
that cells use to “freeze” their type-specific gene expres-
sion pattern relied on the belief that these covalent mod-
ifications act like permanent marks (only erased in the
germline when an oocyte is formed). This picture is now
beginning to change.

First, recent biochemical analysis suggest that the no-
tion of a static, irreversible “histone code” is oversim-
plified, casting doubt on the view that histone modifi-
cation is the molecular substrate of “epigenetic mem-
ory” [122,126,144,191]. With the accumulating character-
ization of chromatin modifying enzymes, notably those
controlling histone lysine (de)methylation [122,126,144,
191], it is increasingly recognized that the covalent “epi-
genetic” modifications are bidirectional (reversible) and
highly dynamic. Second, cell fate plasticity, most lucidly
evident in the long-known but rarely observed transdif-
ferentiation events, or in the artificial reprogramming of
cells into embryonic stem cells either by nuclear trans-
fer-mediated cloning [91] or genetic manipulation [143,
156,184,201], confirm that the “epigenetic” marks are re-
versible – given that the appropriate biochemical context

is provided. If what was thought of as permanent molecu-
lar marks is actually dynamical and reversible – what then
maintains lineage-specific gene expression patterns in an
inheritable fashion across cell divisions?

In addition, as mentioned above, there is another,
more fundamental question from a conceptual point of
view: chromatin-based marking of gene expression status
is a generic, not locus – specific process – the same en-
zymes can apply or remove the covalent marks on vir-
tually any gene in the genome. They are dumb. So what
smart system orchestrates the DNA methylation and his-
tone modification machinery at the tens of thousands of
loci in the genome so that the appropriate set of genes is
(in)activated to generate the cell type-specific patterns of
gene expression?

A system-level view avoids the conundrum caused by
the mechanistic, proximal explanation [189] of the gene-
centered view. A complex systems approach led to the
idea that the genome-wide network of transcriptional reg-
ulation can under some conditions spontaneously orches-
trate, thanks to self-organization, the establishment of
lineage- specific gene expression profiles [114], as will be
discussed below. In fact, the picture of chromatin mod-
ification as primum movens that operates “upstream” of
the transcription factors (TFs), controlling their access to
the regulatory elements in promoter regions, must be re-
vised in light of a series of new observations. Evidence
is accumulating that the controller itself is controlled –
namely, by the TFs they are thought to control: TFs may
actually take the initiative by recruiting the generic chro-
matin-modifying enzymes to their target loci [51,80,125,
144,145,182,185]. It is even possible that a mutual, co-
operative dynamical interdependence between TFs and
chromatin-modifying enzymes may establish locus-spe-
cific, switch-like behavior that commands “chromatin sta-
tus” changes [56,132]. In fact, an equivalent of the inde-
terminacy state where both opposing lineage specific TFs
balance each other (Sect. “Bistability, Tristability andMul-
tistability”, Fig. 3b) is found at the level of chromatin mod-
ification, in that some promoters exhibit “bivalent” histone
modification in which activating and suppressing histone
methylations coexist [25]. Such states in fact are associated
with TFs expressed at low level – in agreement with the
central attractor S�3 of the tristable model (Fig. 3b). Thus,
chromatin modification is at least in part “downstream”
of TFs and may thus act to add additional stability to the
dynamical states that arise from the network of transcrip-
tional regulation. If correct, such a relationship will al-
low us to pass primary responsibility for establishing the
observable gene expression patterns back to transcription
factors. With its genome-wide regulatory connections the
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GRN is predestined for the task of coordination and dis-
tributed information processing.

But under what conditions can a complex, apparently
randomly wired network of 3000 regulators create, with
such stunning reliability and accuracy, the thousands of
distinct, stable, gene expression profiles that are associ-
ated with a meaningful biological state, such as a cell type?
Studies of Boolean networks as toy models in the past 40
years have provided important insights.

BooleanNetworks as Model for Complex GRNs

General Comment on Simplifying Models

The small-circuit model discussed in Sect. “Small Gene
Circuits” represents arbitrarily cut-out fragments of the
genome-wide regulatory network. A cell phenotype, how-
ever, is determined by the gene expression profile over
thousands of genes. How can we study the entire network
of 25,000 genes, or at least the core GRN with 3000 tran-
scription factors even if most of the details of interactions
remain elusive?

The use of random Boolean networks as a generic
network model, independent of a specific GRN architec-
ture of a particular species, was proposed by Kauffman in
1969 – at the time around which the very idea of small
gene regulatory circuits were presented by Monod and Ja-
cob [148]. In random Boolean networks the dynamics is
implemented by assuming discrete-valued genes that are
either ON (expressing the encoded protein) or OFF (si-
lenced). The interaction function (Sect. “Introduction”,
and F in Sect. “Small Gene Circuits”) that determines how
the ON/OFF status of multiple inputs of a target gene map
into its behavior (output status) is a logical (Boolean) func-
tion B, and the network topology is randomly-wired, with
the exception of some deliberately fixed features. Thus,
the work on random Boolean networks allowed the study
of the generic behavior of large networks of thousands of
genes even before molecular biology could deliver the ac-
tual connections and interaction logics of the GRN of liv-
ing systems (for review, see [8]).

The lack of detailed knowledge about specific genes,
their interaction functions and the formidable computa-
tional cost for modeling genome-wide networks has war-
ranted a coarse-graining epitomized by the Boolean net-
work approach. But more specifically, in the broader pic-
ture of system-wide dynamics, the discretization of gene
expression level is also justified because (i) the above
discussed steep sigmoidal shape of “transfer functions”
(Fig. 2b) that describe the influence of one gene onto an-
other’s expression rate can be approximated by a step-
function and/or (ii) the local dynamics produced by such

small gene circuit modules is in fact characterized by dis-
continuous transitions between discrete states as shown in
Sect. “Network Dynamics”.

In addition, the Boolean network approach offers sev-
eral advantages over the exhaustive, maximally detailed
models favored by engineers who seek to understand
a particular instance of a system rather than typical prop-
erties of a class of systems. The simplification opens a new
vista onto fundamental principles that may have been ob-
scured by the details since, as philosophers and physi-
cists have repeatedly articulated, there is no understand-
ing without simplification, and “less can be more” [11,30,
159]. An important practical advantage of the simplifica-
tion in the Boolean network approach is the possibility to
study statistical ensembles of ten thousands of network in-
stances, i. e., entire classes of network architectures, and to
address the question of how a particular architecture type
maps into a particular type of dynamic behavior. Some of
the results obtained in fact are valid for both discrete and
continuous behavior of the network nodes [17].

Model Formalism for Boolean Networks

In the Kauffmanmodel of random Boolean networks gene
activity values are binary (1 = ON, and 0 = OFF) [111,
115,116] and time is also discretized. Thus, a Boolean net-
work is a generalized form of cellular automata but with-
out the aspect of physical space and the particular neigh-
borhood relations. Then, in analogy to continuous sys-
tems, a network of N elements i (i D 1; 2; : : : ;N), de-
fines a network state S at any given discrete time step
t : S(t) D [x1(t); x2(t); : : : ; xN (t)] where xi is the activity
status that now only takes the values 1 or 0. The principles
are summarized in Fig. 4. The state space that represents
the entire dynamics of the network is finite and contains
2N states. However, again, not all states are equally likely
to be realized and observed, since genes do not behave in-
dependently but influence each other’s expression status.

Regulation of gene i by its incoming network connec-
tions is modeled by the Boolean function Bi that is asso-
ciated with each gene i and maps the configuration of the
activity status (1 or 0) of its input genes (upstream reg-
ulators of gene i) into the new value of xi for the next
time point. Thus, the argument of the Boolean function
Bi is the input vector R i (t) D [x1(t); x2(t); : : : ; xki(t)],
where ki is the number of inputs that the gene i receives.
At each time step, the value of each gene is updated:
xi(t C 1) D Bi [R i(t)]. The logical function Bi can be for-
mulated as a “truth table” which is convenient for large k’s
(Fig. 4a). In the widely studied case where each gene has
exactly k D 2 inputs, the Boolean function can be one of
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Complex Gene Regulatory Networks – from Structure to Biological Observables: Cell Fate Determination, Figure 4
Principles of Boolean network models of GRN, exemplified on a N D 4 gene network. a From architecture to dynamics. The four
genes i : A;B;C;D interact as indicated by the directed graph (top left panel), and each of the genes is assigned a Boolean function Bi
as indicated, with the corresponding “truth table” shown below. A network state is a string of N D 4 binary variable, thus there are
2N D 24 D 16 possible network states S. They collectively establish the entire state space and can be arranged in a state transition
map according to the state transitions imposed by the Boolean functions (right panel). The attractor states are colored gray. In the
example, there are threepoint attractors and one limit cycle attractor (of period T D 2). Thedotted lines in the state spacedenote the
attractor boundaries. b Example for capturing the regulation at the promoter of the lactose operon as an “AND” Boolean function.
Note that there are many ways to define what constitute an input – in the case shown, the allosteric ligands cAMP (“activator”) and
a ˇ-galactoside (“inducer”), such as allolactose, give rise to a two-input Boolean function ‘AND’

the set of 2(2^k) D 16 classical Boolean operators, such as
AND, OR, NOTIF, etc. [109,116]. Figure 4b shows the ex-
ample of the well-studied lactose operon and how its regu-
latory characteristics can be captured as an AND Boolean
function for the two inputs.

In the simplest model, all genes are updated in every
time step. This synchrony is artificial for it assumes a cen-
tral clock in the cell which is not likely to exist, although
some gating processes from oscillations in the redox po-

tential has been reported [120]. The idealization of syn-
chrony, however, facilitates the study of large Boolean net-
works, and many of the results that have been found with
synchronous Boolean networks carry over to networks
with asynchrony of updating that has been implemented
in various ways [40,72,81,119]. For synchronous networks
the entire network state S can also be viewed as being
updated by the updating function U : S(t C 1) D U[S(t)],
where U summarizes all the N Boolean functions Bi. This
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facilitates some treatments and is represented in the state
transition table that lists all possible network states in one
column and its successor in a second column. This leads
to a higher-level, directed graph that represents the entire
dynamics of a network as illustrated below.

Dynamics in Boolean Networks

The state transition table captures the entire dynamical be-
havior of the network and can conveniently be depicted as
a state transition map, a directed graph in which a node
represents one of the 2N possible state S(t) (a box with
a string or 1, 0s in Fig. 4a. representing the gene expression
pattern). Such diagrams are particularly illustrative only
for N up to �10, since they display all possible states S
of the finite state space [204]. The states are connected
by the arrows which represent individual state transitions
and collectively depict the trajectories in the state space
(Fig. 4a, right panel).

Since the Boolean functions are deterministic, a state
S(t) unambiguously transitions into one successor state
S(t C 1). In contrast, a state can have multiple predeces-
sors, since two ormore different states can be updated into
the same state. Hence, trajectories can converge but not di-
verge, i. e., there is no branching of trajectories emanating
from one state. This property of “losing information about
the ancestry” is essential to the robustness of the dynamics
of networks.

In updating the network states over time, S(t) can be
represented as a walk on the directed graph of the state
transition map. Because of the finiteness of the state space
in discrete networks, S(t) will eventually encounter an al-
ready visited state, and because of the absence of diver-
gence, the set of successive states will be the same as in the
previous encounter. Thus, no matter what the initial state
is, the network will eventually settle down in either a set of
cycling states (which form a limit cycle) or in a single stable
state that updates onto itself. Accordingly, these states to
which all the trajectories are “attracted” to are the attrac-
tors of the network. They are equivalent to stable oscilla-
tors or stable fixed-points, respectively, in the continuous
description of gene circuits (Sect. “Bistability, Tristability
and Multistability”). In other words, because of the regu-
latory interactions between the genes, the system cannot
freely choose any gene expression configuration S. Again,
most network states S in the state space are thus unstable
and transition to other states to comply with the Boolean
rules until the network finds an attractor. And as with the
small, continuous systems (Sect. “Bistability, Tristability
and Multistability”) the set of states S that “drain” to an
attractor state constitute its basin of attraction.

However, unlike continuous systems, Boolean net-
work dynamics do not produce unstable steady-states that
can represent the indeterminacy of undecided cell states
that correspond to stem cells about to make an either-
or decision between two lineages (see Sect. “Bistability,
Tristability and Multistability”). Instead, basins of attrac-
tion are “disjoint” areas of state space.

Attractors as Cell Types Kauffman proposed that the
high-dimensional attractor states represent cell types in
metazoan organisms – thus expanding the early notion of
steady state in small circuits to networks of thousands of
genes [111,116] (Sect. “Bistability, Tristability and Multi-
stability”). This provides a natural explanation for the sta-
bility of the genome-wide expression profile that is char-
acteristic of and defines a cell type as well as for the sta-
ble coordination of genome-wide gene expression oscilla-
tions in proliferating cells that undergo the cell division
cycle [202]. The correspondence of attractors in large net-
works with the cell type specific transcriptome is a central
hypothesis that links the theoretical treatment of the dy-
namics of complex networks with experimental cell biol-
ogy.

Use of Boolean Networks to Model Real Network Dy-
namics Owing to their simple structure, Boolean net-
works have been applied in place of differential equations
to model real-world networks for which a rudimentary
picture of the topology with only few details about the in-
teraction functions is known. Hereby, individual Boolean
functions are assigned to the network nodes either based
on best guesses, informed by qualitative descriptions from
the experimental literature, or randomly. This approach
has yielded surprisingly adequate recapitulation of biolog-
ical behaviors, indicating that the topology itself accounts
for a great deal of the dynamical constraints [4,49,60,62,
95,130]. Such studies also have been used to evaluate the
dynamical regime (discussed in the next section) of real
biological networks [19].

Three Regimes of Behaviors for BooleanNetworks

The simplicity and tractability of the Boolean network for-
malism has stimulated a broad stream of investigations
that has led to important insights in the fundamental prop-
erties of the generic dynamics that large networks can gen-
erate [116] even before progress in genomics could even
offer a first glimpse on the actual architecture of a real gene
regulatory network [112].

Using the ensemble approach, the architectural pa-
rameters that influence the global, long-term behavior of
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complex networks with N up to 100,000 has been deter-
mined [114,116]. As mentioned in the introduction, based
on the latest count of the genome size and the idea that
the core transcriptional network essentially governs the
global dynamics of gene expression profiles, networks of
N � 3000 would have sufficed. Nevertheless, a striking re-
sult from the ensemble studies was that for a broad class of
architectures, even a complex, irregular (randomly wired)
network can produce ‘ordered’ dynamics with stable pat-
terns of gene expression, thus potentially delivering the
“biological observable”. In general, the global behavior of
ensembles of Boolean networks can be divided in three
broad regimes [116]: an ordered and a chaotic regime, and
a regime that represents behavior at their common border,
the critical regime.

Ordered and Chaotic Regimes of Network Behavior

In networks in the ordered regime, two randomly picked
initial states S1(t D 0) and S2(t D 0) that are closed to
one another in state space as measured by the Hamming
distance H[H(t) D jS1(t) � S2(t)j � the number of genes
whose activities differ in the two states S1(t) and S2(t)] will
exhibit trajectories that on average will quickly converge
(that is, the Hamming distance between the two trajec-
tories will on average decrease with time) [55]. The two
trajectories will settle down in one fixed-point attractor or
a limit cycle attractor that will have a small period T com-
pared toN and thus, produce very stable system behaviors.
Such networks in general have a small number of attrac-
tors with typically have small periods T and drain large
basins of attraction [116]. Numerical analyzes of large en-
sembles suggest that the average period length scales with
p
N . The state transition map, as shown for N D 4 in

Fig. 4a, will show that trajectories converge onto attrac-
tor states from many different directions and are in gen-
eral rather short [Maliackal, unpublished] so that attractor
basins appear as compact, with high rotational symmetry
and hence, “bushy”.

It is important to stress here that if a cell type is an
attractor, then different cell types are different attractors,
and, in the absence of the unstable steady states present
in continuous dynamical systems (see Sect. “Bistability,
Tristability and Multistability”) differentiation consists in
perturbations that move a system state from one attrac-
tor into the basin of another attractor from which it flows
to the new attractor state that encodes the gene expres-
sion profile of the new cell type. Examination of the bushy
basins in the ordered regime makes it clear, as do numer-
ical investigations and experiments (Sect. “Are Cell Types
Attractors?”), that multiple pathways can lead from one

attractor to another attractor – a property that meets resis-
tance in the community of pathway-centered biologists.

In contrast, in networks in the chaotic regime, two
randomly placed initial states S1(t D 0) and S2(t D 0) that
are initially close to one another (in terms of Hamming
distance) will generate trajectories that on average will di-
verge and either end with high likelihood in two different
attractors, or they may appear to “wander” aimlessly in
state space. This happens because the attractor is a limit
cycle attractor with very long period T – on the scale of 2N

so that in the worst case a trajectory may visit most if not
all 2N possible network configurations S. For a small net-
work of just N D 200, this is a limit cycle in the order of
length 2100 � 1030 time steps. As a point of comparison,
the universe is some 1017 seconds old. Given the hyper-
astronomic size of this number, this “limit cycle” will ap-
pear as an aperiodic and endless stream of uncorrelated
state transitions, as if the system is on a “permanent tran-
sient”. Thus, networks in the chaotic regime are not sta-
ble, trajectories tend to diverge (at least initially), and their
behavior is sensitive to the initial state. In the state tran-
sition map, the small attractors typically receive trajecto-
ries with long transients that arrive from a few state space
directions and hence, in contrast to the bushy attractors
of the ordered regime, the basins have long thin branches
and appear “tree-like”.

The definition of “chaos” for discrete networks given
here is distinct from that of (deterministic) chaos in con-
tinuous systems, where time evolution of infinitesimally
closed initial states can be monitored and shown to di-
verge. Nevertheless, the degree of chaos in discrete net-
works, as qualitatively outlined above, is well-defined and
can be quantified based on the slope of the curve in the so-
called Derrida plot which assesses how a large number of
random pairs of initial states evolves in one time step [55].

More recently, it was shown that it is possible to de-
termine the behavior class from the architecture, without
simulating the state transitions and determining the Der-
rida plot, simply by calculating the expected average sensi-
tivity from all the N Boolean functions Bi [173]. In addi-
tion, a novel distance measure that uses normalized com-
pression distances (NCD) – which captures the complex-
ity in the difference between two states S(t) better than the
Hamming distance used in the Derrida plot – has been
proposed to determine the regime of networks [153].

Critical Networks: Life at Edge of Chaos?

Critical networks are those which exhibit a dynamical be-
havior just at the edge between that of the ordered and
the chaotic regime, and have been postulated to be opti-
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mally poised to govern the dynamics of living cells [114,
116]. Ordered behavior would be too rigid, in that most
perturbations of a stable attractor would be absorbed and
the network would return to the same attractor state, min-
imizing the possibility for a network to change its internal
equilibrium state in response to external signals (which are
modeled as flipping individual genes from ON to OFF or
vice versa). Chaotic behavior, on the other hand, would be
too sensitive to such perturbations because trajectories di-
verge – so that the network would wander off in state space
and fail to exhibit robust behavior. Critical networks may
represent the optimal mix between stability and respon-
siveness, hence conferring robustness to random pertur-
bations (noise) and adaptability in response to specific sig-
nals. Critical network have several remarkable features:

First, consider the need of cells to plausibly make the
maximum number of reliable discriminations, and to act
on them in the presence of noise with maximum reliabil-
ity. Then ‘deep’ in the ordered regime, convergence of tra-
jectories in state space is high, hence, as explained above
(Sect. “Dynamics in Boolean Networks”) information is
constantly discarded. In this “lossy” regime, information
about past discriminations is thus easily lost. Conversely,
in the chaotic regime and with only a small amount of
noise, the system will diverge and hence cannot respond
reliably to external signals (perturbations). It seems plau-
sible that optimal capacity to categorize and act reliably is
found in critical networks, or networks slightly in the or-
dered regime.

Second, it has recently been shown that a measure of
the correlation of pairs of genes with respect to their alter-
ing activities, called “mutual information” (MI) is max-
imized for critical networks [154]. The MI measures the
mutual dependence of two variables (vectors), such as two
genes based on their expression in a set of states S(t). Con-
sider two genes in a synchronous Boolean network, A and
B. The mutual information between xA and xB is defined
as MI(A,B) = H(xA)C H(xB) � H(xA; xB). Here, H(x) is
the entropy of the variable x, and H(x; y) is the joint en-
tropy of x and y. Mutual information is 0 if either gene
A or B is unchanging, or if A and B are changing in time in
an uncorrelated way. Mutual information is greater than 0
and bounded by 1.0, if A and B are fluctuating in a corre-
lated way. Thus, critical networks maximize the correlated
changing behavior of variables in the genetic network. This
new result strongly suggests, at least in the ensemble of
random Boolean networks, that critical networks can co-
ordinate the most complex organized behavior.

Third, the “basin entropy” of a Boolean network,
which characterizes the way the state space is partitioned
in to the disjoint basins of attraction of various sizes

(Fig. 4a) also exposes a particular property of critical net-
works [124]. If the size or “weight”,Wi, of a basin of attrac-
tion i is the fraction of all the 2N states that flow to that at-
tractor, then the basin entropy is defined as˙Wi log(Wi).
The remarkable result is that only critical networks have
the property that this basin entropy continues to increase
as the size of the network increases. By contrast, ordered
and chaotic networks have basin entropies that first in-
crease, but then stop increasing with network size [124].
If one thinks of basins of attraction and attractors not only
as cell fates, or cell types, but as distinct specific cellular
programs encoded by the network, then only critical net-
works appear to have the capacity to expand the diversity
of what “a cell can do” with increasing network size. Again,
this strongly suggests that critical networks can carry out
the most complex coordinated behaviors. Thus, GRNmay
have evolved under natural selection (or otherwise – see
Sect. “Evolution of Network Structure: Natural Selection
or Natural Constraint?”) to be critical.

Finally, it is noteworthy that while Boolean networks
were invented to model GRNs, the variables can equally
be interpreted as any kind of two-valued states of compo-
nents in a cell, and the Boolean network becomes a causal
network concerning events in a cell, including GRN as
a subset of such events. This suggests that not only GRN
but the entire network of processes in cells, including sig-
nal transduction andmetabolic processes, that is, informa-
tion, mass and energy flow, may optimally be coordinated
if the network is critical.

If life is poised to be in the critical regime, then the
questions follow: which architecture produces ordered,
critical and chaotic behaviors, and are living cells in fact
the critical regime?

Architectural Features of Large Networks
and Their Dynamics

As outlined in Sect. “Network Architecture”, the recent
availability of data on gene regulation in real networks, al-
though far from complete, has triggered the study of com-
plex, irregular network topologies as static graphs. This
line of investigation is now beginning to merge with the
study of the dynamics of generic Boolean networks. Below
we summarize some of the interesting architecture fea-
tures and their significance for global dynamics in term
of the three regimes. First, studies of generic dynamics in
ensembles of Boolean networks have established the fol-
lowing major structure-dynamics relationships:

(1) The average input connectivity per node, k. Initial
studies on Boolean networks by Kauffman assumed
a homogenous distribution of inputs k. It was found
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that k D 2 networks are in the ordered/critical regime
(given other parameters, see below) [116]. Above
a critical kc value (which depends on other parame-
ters, see below) networks behave chaotically. Analysis
of continuous, linearized models also suggest that in
general, sparsity of connections is more likely to pro-
mote ordered dynamics – or stability [142].

(2) The distribution of the connectivity (degree) over the
individual network genes. As mentioned in Sect. “Net-
work Architecture”, the global topology of many com-
plex molecular networks appears to have a connec-
tivity distribution that approximates a power-law. For
directed graphs such as the GRN, one needs to distin-
guish between the distribution of the input and output
connectivities. Analyses of the dynamics of random
Boolean networks with either scale-free input [66]
or output connectivity distribution suggest that this
property favors the ordered regime for a given value
of the parameter p (“internal homogeneity”, see be-
low) [6]; Specifically, if the slope of the scale free distri-
bution (power-law exponent � ) is greater than 2.5, the
corresponding Boolean network is ordered, regardless
of the value of the parameter p (see below). For values
of p approaching 1.0, � > 2.0 suffices to assure ordered
dynamics.

(3) The nature of the Boolean functions is an important
aspect of the network architecture that also influences
the global dynamics. In the early studies, Kauffman
characterized Boolean functions with respect to these
two important features [116]:
(a) “internal homogeneity p”. The parameter p

(0:5 < p < 1) is the proportion of either 1s or
0s in the output column of the truth table of
the Boolean function (Fig. 4). Thus, a function
with p D 0:5 has equal numbers of 1s and 0s for
the output of all input configurations. Boolean
functions with p-values close to 1 or 0 are said to
exhibit high internal homogeneity.

(b) “Canalizing function”. A Boolean function Bi of
target gene i is said to be canalizing if at least one
of its inputs has one value (either 1 or 0) that de-
termines the output of gene i (1 or 0), indepen-
dently of the values of the other components of the
input vector. If the two values of the input j deter-
mines both output values of gene i [a “fully canal-
izing” function, e. g., if x j(t) D 1 (or 0, respec-
tively), then xi(t C 1) D 1 (or 0, respectively)],
then the other inputs have no influence on the
output at all and the “effective input connectivity”
of i; kieff is smaller than the “nominal” ki. For in-
stance, for Boolean functions with k D 2, only two

of the 16 possible functions, XOR and XNOR, are
not canalizing. Four functions are “fully canaliz-
ing”, i. e., are effectively k D 1 functions (TRANS-
FER, COMPLEMENT).

From ensemble studies it was found that both a high in-
ternal homogeneity p and a high proportion of canalizing
functions contribute to ordered behavior [116].

Do Real Networks Have Architecture Features
That Suggest They Avoid Chaos?

Only scant data is available for transcriptional networks,
and it must be interpreted with due caution since new
data may, given sampling bias and artefacts, especially for
nearly scale-free distributions, affect present statistics. In
any case, existing data indicate that in fact the average
input connectivity of GRNs is rather low, and far from
k � N which would lead to chaotic behavior. Specifically,
analysis of available (partial) transcriptional networks sug-
gest that the input degrees approximates an exponential
distribution while the output degree distribution seems to
be scale-free although the number of nodes are rather small
to reliably identify a power-law distribution [54,82].

GRN data from E. coli, for which the most com-
plete, hand-curated maps of genome-wide gene regula-
tion exists [169] and from partial gene interaction net-
works from yeast, obtained mostly by chromatin-precip-
itation/microarray (ChIP-chip) [128], indicate that the
average input connectivity (which is exponentially dis-
tributed) is below 4 [82,134,188]. A recent work on the
worm C. elegans using the Yeast-one-hybrid system on
a limited set of 72 promoters found an average of 4 DNA-
binding proteins per promoter [54]. Thus, while such an-
alyzes await correction as coverage increase, clearly, real
GRNs for microbial and lower metazoan are sparse, and
hence more likely to be in or near the ordered regime.

In contrast to the input, the output connectivity ap-
pears to be power-law distributed for yeast and bacteria,
and perhaps also for C. elegans, if the low coverage of the
data available so far can be trusted [54,82]. The paucity of
data points precludes reliable estimates of the power-law
exponents. However, the scale-free property, if confirmed
for the entire GRN, may well also contribute to avoiding
chaotic and increasing the ordered or critical regime [6].
Nevertheless, It is reminded here that the deeper meaning
of the scale-freeness per se and its genesis (natural selec-
tion due to functionality or not) are not clear – it may
be an inevitable manifestation of fundamental statistics
rather than evolved under natural selection (Sect. “Evo-
lution of Network Structure: Natural Selection or Natural
Constraint?”).
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As for the use of Boolean functions, analysis of a set
of 150 experimentally verified regulatory mechanism of
well-studied promoters revealed an enrichment for canal-
izing functions, again, in accordance with the architecture
criteria associated with ordered dynamics [86]. Similarly,
when canalizing functions were randomly imposed onto
the published yeast protein–protein interaction network
topology to create a architecture whose dynamics was then
simulated, ordered behavior was observed [113].

In this conjunction it is interesting tomentionmicroR-
NAs (miRNAs), a recently discovered class of non-coding
RNA which act by inhibiting gene expression at the post-
transcriptional level through sequence complementarity
to mRNA [41,89]. Hence, they suppress a gene indepen-
dent of the TF constellation at the promoter. Thus, miR-
NAS epitomize the most simple and powerful molecular
realization of a canalizing function. Their existence may
therefore shift the network behavior from the chaotic to-
wards the critical or ordered regime. Interestingly, RNA-
based gene regulation is believed to have appeared before
the metazoan radiation 1000 million years ago, and mi-
croRNAs are thought to have evolved in ancestors of Bila-
teria [141]. In fact, many miRNA play key roles in cell fate
determination during tissue specification of development
of vertebrates [41,172], and a composite feedback loop cir-
cuit involving bothmicroRNA and TFs has been described
in neutrophil differentiation [63]. The shift of network be-
havior from the chaotic towards the critical or ordered
regime may indeed enable the coordination of complex
gene expression patterns during ontogeny of multicellular
systems which requires maximal information processing
capacity to ensure the coexistence of stability and diver-
sity.

There are, as mentioned in Sect. “Analyzing Network
Structures”, many more global and local topological fea-
tures that have been found in biomolecular networks
that appear to be interesting, as defined in the sense in
Sect. “Network Architecture” (enriched above some null
model graph). It would be interesting to test how they
contribute to producing chaotic, critical or ordered be-
havior. The impact of most of these topology features on
the global dynamics, notably the three regimes of behav-
iors, remains unknown, since most functional interpre-
tation of network motifs have focused on local dynam-
ics [9,136]. The low quality and availability of experimen-
tal data of GRN architectures opens at the moment only
a minimal window into the dynamical regimes of biolog-
ical networks. The improvement with respect to coverage
and quality of real GRNs, to be expected in the coming
years, is mostly driven by a reductionist agenda whose
intrinsic aim is to exhaustively enumerate all the “path-

ways” that may serve “predictivemodeling” of gene behav-
iors, as detailed in Sect. “Small Gene Circuits”. However,
with the concepts introduced here, a framework now exists
that warrants a deeper, genome-wide analysis of the rela-
tionship between structure and biological function. Such
analysis should also address the fundamental dualism be-
tween inevitable self-organization (due to intrinsic con-
straints from physical laws) and natural selection (of ran-
dommutants for functional advantages) [46,93,203] to ask
whether criticality is self-organized (see Sect. “Evolution
of Network Structure: Natural Selection or Natural Con-
straint?”).

Experimental Evidence from Systems Biology

The experimental validation of the central concepts that
were erected based on theoretical analysis of network dy-
namics, notably the ensemble approach of Boolean net-
works, amounts to addressing the following two questions:

1. Are cell types attractors?
2. Is the dynamical behavior of the genomic GRN in the

critical regime?

As experimental systems biology begins to reach beyond
the systematic characterization of genes and their interac-
tions it has already been possible to design experiments to
obtain evidence to address these questions.

Are Cell Types Attractors?

Obviously, the observable gene expression profiles S�, as
shown in Fig. 1e, are stationary (steady) states and char-
acteristic of a cell type. But “steady state” (dx/dt D 0 in
Eq. (1)) does not necessary imply a stable (self-stabilizing)
attractor state that attracts nearby states. In the absence of
knowledge of the architecture of the underlying GRN (we
do not know the function F in Eq. (1)) we cannot perform
the standard formal analysis, such as linear stability anal-
ysis around S�, to determine whether a stationary state is
stable or not; however, use of microarray-based expression
profiling not to identify individual genes as in the gene-
centered view, but in a novel integrated manner (Table 1,
B3) for the analysis of S(t) provides a way to address the
question. The qualitative properties of an attractor offer
a handle, in that a high-dimensional attractor state S�, be it
a fixed-point or a small limit cycle or even a strange attrac-
tor in the state space, requires that the volume of the states
around it contracts to the attractor, i. e., div(F) < 0. [90].

Convergence of Trajectories Thus, one consequence is
that trajectories emanating from states around (and near)
S� converge towards it from most (ideally, all) directions
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Complex Gene Regulatory Networks – from Structure to Biological Observables: Cell Fate Determination, Figure 5
Experimental evidence that a cell fate (differentiated state, cell type) is a high-dimensional stable attractor in gene expression state
space. Evidence is based on convergence (a) fromdifferent directions of high-dimensional trajectories to thegene expression pattern
of the differentiated state, or on the relaxation of states placed near the border of the basin of attraction back to the “center” of the
attractor state (b). aGene expression profile dynamics of HL60 cells treated with ATRA (all-trans retinoid acid) or DMSO (dimethylsul-
foxide) at 0h to differentiate them into neutrophil-like cells. Selected gene expression profile snapshots along the trajectories shown
as GEDI maps (as in Fig. 1), schematically placed along the state space trajectories. GEDI maps show the convergence of N � 2800
genes towards very similar patterns at 168h [98]. b Heterogeneity of a population of clonal (genetically identical) cells is exploited
to demonstrate the relaxation towards the attractor state. The histogram (top, left panel) from flow cytrometric measurement shows
the inherent heterogeneity (spread) of cells with respect to stem cell marker Sca-1 expression in EML cells which cannot be attributed
solely to measurement or gene expression noise but reflect metastable cell-individuality [37]. Two spontaneous “outlier” subfrac-
tions, expressing either low (L) or high (H) levels of the Sca-1, were sorted using FACS (fluorescence-activated cell sorting) and cul-
tured independently. They represent “small perturbations” of the attractor state. Each sorted subpopulationwill over a period of 5–9
days restore the parental distribution (right panel, schematic). Gene expression profiling (shown as as GEDI maps) reveal that the H
and L subpopulations are distinct with respect not only to Sca-1 expression levels but also to that of multiple other genes. Thus, the
two outlier cell fractions are at distinct states SH and SL in the high-dimensional state space of which Sca-1 is only one distinguishing
dimension. The restoration of the parental distribution of Sca-1 is accompanied by the approaching of the two distinct gene expres-
sion profiles SH and SL of the spontaneously perturbed cells to become similar to each other (and to that of the parental population),
indicating a high-dimensional attractor state
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and in all dimensions of the state space. It is technically
challenging to sample multiple high-dimensional initial
states near the attractor states and demonstrate that they
all converge towards S�over time. However, the fact that
the promyeloid precursor cells HL60 (a leukemic cell line)
can be triggered to differentiate into mature neutrophil-
like cells by an array of distinct chemical agents can be
exploited [45]. This historical observation itself, without
analysis of S(t) by gene expression profiling, already sug-
gests that the neutrophil state is an attractor, because it
reflects robustness and means that the detailed history of
how it is reached doesn’t matter.

But the advent of microarray-based gene expression
profiling technologies has recently opened up the pos-
sibility to show that (at least two) distinct trajectories
converge towards gene expression profile of the neu-
trophil state SNeutr if SNeutr is an attractor state [98]. Thus,
HL60 cells were treated with either one of two differen-
tiation-inducing reagents, all-trans-retinoid acid (ATRA)
and dimethyl sulfoxide (DMSO), two chemically unre-
lated compounds, and the changes of the transcriptome
over time in response to either treatment were measured
at multiple time intervals to monitor the two trajectories,
SATRA(t) and SDMSO(t), respectively (see Fig. 5a for de-
tails). In fact the two trajectories first diverged to an ex-
tent that the two state vectors lost most of their correla-
tion (i. e. the two gene expression profiles SATRA(24 h) and
SDMSO(24 h) were maximally different at t D 24 hours af-
ter stimulation). But subsequently, they converged to very
similar S(t) values when the cells reached the differenti-
ated neutrophil state for both treatments (Fig. 5a). The
convergence was not complete, but quite dramatic rel-
ative to the maximally divergent state at 24 h, and was
contributed by around 2800 of the 3800 genes monitored
(for details see [98]). Thus, it appears that at least the ar-
tificial drug-induced differentiated neutrophil state is so
stable that it can apparently orchestrate the expression
of thousands of genes to produce the appropriate cell-
type defining expression pattern S from quite distinct per-
turbed cellular states. Although only two trajectories have
been measured rather than an entire state space volume,
the convergence with respect to 2800 state space dimen-
sions is strongly indicative of a high-dimensional attractor
state.

Relaxation After Small Perturbations and the Problem
of Cell Heterogeneity A second way to expose quali-
tative properties of a high-dimensional attractor S� is to
perform a weak perturbation of S�, into a state S0 near
the edge of (but within) the basin of attraction (where S0

should differ from S� with respect to as many genes xi

as possible), and to observe its return of the network to
S�. This more intuitive property of an attractor state was
difficult to measure because of a phenomenon often ne-
glected by theorists and experimentalists alike: cell pop-
ulation heterogeneity due to “gene expression noise”. Mi-
croarray measurements, as is the case withmany biochem-
ical analysis methods, require the material of millions of
cells, thus the measured S(t) is actually a population av-
erage. This can be problematic because the population is
heterogeneous [33]: gene expression level of gene i can
typically differ by as much as 100 or more fold between
two individual cells within a clonal (genetically identical)
population [37]. Thus, virtually all genes i exhibit a broad
(log-normal) histogram (Fig. 5b, inset) when the expres-
sion level of an individual gene xi is measured at the sin-
gle-cell level across a population [38,101,129]. Such cell-
to-cell variability is often explained by “gene expression
noise” caused by random temporal fluctuations due to low
copy numbers of specific molecules in the cell [108]. How-
ever, there may be other possibly deterministic sources
that generate metastable variant cells [33,176]. Such non-
genetic, enduring individuality of cells translates into the
picture of a cell population forming a cloud of points in
state space around the attractor S�, in which each cell rep-
resents a single point. Application of a low dose perturba-
tion intended to allow a system to relax back to the attrac-
tor state then will be interpreted by individual cells differ-
ently: Those positioned at the border of the cloud may be
kicked out of the basin of attraction, and move to another
attractor, thus masking the trajectory of relaxation. In fact,
single-cell resolution measurements of the response to low
dose stimulation in cell populations confirmed this picture
of heterogeneity, in that a differentiation inducer given at
low dose to trigger a partial response (weak perturbation)
produced a bimodal distribution of gene expression of dif-
ferentiation markers: Some cells differentiated, other did
not [38].

However, the spontaneous heterogeneity eo ipso, con-
sisting of transient but persistent variant cells within
a population [37], allows us to demonstrate the relax-
ation to the attractor when single cell-level manipulation
and analysis are performed: Physical isolation of the pop-
ulation fractions at two opposite the edge of the cloud
(basin of attraction), based on one single state space di-
mension xk can substitute for the weak perturbation that
places cells to the border of a basin (see Fig. 5b for de-
tails). Indeed such “outlier” population fractions exhib-
ited not only distinct levels of xk expression but also glob-
ally distinct gene expression profiles (despite being mem-
bers of the same clonal population). Cells of both out-
lier fractions eventually “flowed back” to populate the
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state space region around the attractor state and restored
the original distribution (shape of the cloud) [37]. The
time scale of this relaxation (>5 days) was similar to that
for the HL60 cells to converge to the attractor of the
differentiated neutrophils. This result is summarized in
Fig. 5b. Again, the spontaneous regeneration of the dis-
tinct gene expression profile of a macroscopically observ-
able cell phenotype, consisting of thousands of genes, sup-
ports the notion of a high-dimensional attractor in gene
expression space that maps into a distinct, observable cell
type.

Are Gene Regulatory Networks in Living Cells Critical?

The second central question we ask in this article is
whether GRNs produce a global dynamics that is in the
critical regime (Sect. “Three Regimes of Behaviors for
Boolean Networks”). This question is not as straightfor-
ward to address experimentally. First, the notion of order,
chaos and criticality are defined in the models as prop-
erties of network ensembles. Second, it is cumbersome to
sample a large number of pairs of initial states andmonitor
their high-dimensional trajectories to determine whether
they on average converge, diverge or stay “parallel”.

As mentioned earlier (Sect. “Dynamics in Boolean
Networks”), one approach for obtaining a first glimpse of
an idea as to whether real networks are critical or not was
recently proposed by Aldana and coworkers [19] and refs.
herein): They “imposed” a dynamics onto real biological
networks, for which only the topology but not the inter-
action functions are known, by treating them as Boolean
networks, whereby the Boolean functions were guessed or
randomly assigned according to some rules. Such studies
suggest that these networks, given their assumed topolo-
gies, are in the critical regime.

To more directly characterize the observed dynam-
ics of natural systems in terms of the three regimes, sev-
eral indirect approaches have been taken. These strate-
gies are based on novel measurable quantities computed
from several schemes of microarray experiments that are
now available but were not originally generated with an
intention to answer this question. By first determining in
simulated networks whether that quantity is associated
also with criticality in silico, inference is then made as
to what regime of system behavior the observed system
resembles. Three such pieces of evidence provide a first
hint that perhaps, living cells may indeed be in the criti-
cal regime:

(i) Gene expression profile changes during Hela cell cy-
cle progression was compared with the detailed tem-
poral structure of the updating of network states in

Boolean networks. Tithe discretized real gene expres-
sion data of cells progressing in the cell cycle were
compared with that of simulated state cycles of ran-
dom Boolean networks in the three regimes in terms
of the Lempev-Zip complexity of time series. This
led to the conclusion that the dynamical behavior of
thousands of genes was most consistent with either
ordered or critical behavior, but not chaotic behav-
ior [174].

(ii) A striking property predicted from analysis of simu-
lated critical Boolean networks is that if a randomly
selected gene is deleted and the number of other
genes that change their expression as a consequence
of that single-gene deletion (“avalanche size”) is mea-
sured, and such single-gene deletion experiments is
repeated many times, the avalanche-sizes will exhibit
a power law distribution with a slope of �� D 1:5.
This specific behavior is only seen in critical net-
works. Analysis of just such data for over 200 sin-
gle deletion mutants in yeast [163] from the exper-
iments reported by Hughes et al. [100]was recently
performed. It was found that the distribution of the
avalanche sizes not only approached a power law,
but that the slope was also � 1.5 [163]. This result
was insensitive to altering the criterion for defining
a “change in gene activity” from two-fold to five fold
in calculating the avalanche size.

(iii) A more direct determination of the regime of net-
work dynamics was recently reported, in which an
analogous analysis as the Derrida plot (see Sect. “Or-
dered and Chaotic Regimes of Network Behavior”)
was performed [153]. Macrophage gene expression
profiles were measured at various time points in
response to various perturbations (= stimulation
of Toll-like receptors with distinct agents), offering
a way to measure the time evolution of a large num-
ber of similar initial states. Here, instead of the Ham-
ming distance the normalized compression distance
NCD (as mentioned in Sect. “Ordered and Chaotic
Regimes of Network Behavior”) was used to circum-
vent the problems associated with Derrida curves.
The results were consistent with critical dynamics, in
that on average, for many pairs of initial states, their
distance at time t and t C
t was on average equal,
thus neither trajectory convergence nor divergence
took place.

Future Directions andQuestions

The ideas of a state space representing the dynamics of the
network, and of its particular structure that stems from the
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constraints imposed by the regulatory interactions and can
be epitomized as an ‘epigenetic landscape’, serve as a con-
ceptual bridge linking network architecture with the ob-
servable biological behavior of a cell. In this framework,
the attractors (valleys) are disjoint regions in the state
space landscape and represent cell fates and cell types. One
profound and bold hypothesis is that for networks to have
a landscape with attractors that optimally convey cell lin-
eage identity and robustness of their gene expression pro-
file, yet allow enough flexibility for cell phenotype switches
during development, the networks must be poised at the
boundary between the chaotic and the ordered regime.
Such critical networks may be a universal property of net-
works that havemaximal information processing capacity.
But what can we naturally do with this conceptual frame-
work presented here? And what are the next questions to
ask for the near future?

Clearly, new functional genomics analysis techniques
will soon advance the experimental elucidation of the ar-
chitecture of the GRN of various species, including that of
metazoan organisms. This will drastically expand the op-
portunities for theoretical analysis of the architecture of
networks and finally afford a much closer look at the dy-
namics without resorting to simulated network ensembles.

However, beyond network analysis in terms of math-
ematical formalisms, the concepts of integrated network
dynamics presented here should also pave the way for
a formal rather than descriptive understanding of tissue
homeostasis and development as well as diseases, such as
cancer. One corollary of the idea that cell types are at-
tractors is that cancer cells are also attractors – which are
lurking somewhere in state space (near embryonic or stem
cell attractors) and are normally avoided by the physio-
logical developmental trajectories. They become accessible
in pathological conditions and trap cells in them, prevent-
ing terminal differentiation (this idea is discussed in detail
in [33,96]).

Such biological interpretation of the concepts pre-
sented here will require that these concepts be expanded
to embrace the following aspects of dynamical biological
systems that are currently not well understood but can al-
ready be framed:

Attractor Transitions and Development

If cell fates are attractors, then development is a flow in
state space trajectories which then represent the develop-
mental trajectories. But how do cells, e. g., a progenitor
cell committing to a particular cell fate, move from one
attractor to another? Currently, two models are being en-
visioned for the “flow between attractors” that constitutes

developmental paths in the generation of the multi-cellu-
lar organisms:

(i) In one model, stimulated by the studies in Boolean
networks, the cell “jumps” from one attractor to an-
other in response to a distinct perturbation (e. g., de-
velopmental signal) which is represented as the im-
posed alteration of the expression status of a set of
genes (“bit-flipping” in binary Boolean networks).
This corresponds to the displacement of the network
state S(t) by an external influence to a new position in
the basin of another attractor.

(ii) The second model posits that the landscape changes,
and has its roots in the classical modeling of non-
linear dynamical systems: For instance, the attrac-
tor of the progenitor cell (valley) may be converted
into an unstable steady-state point (hill top) at which
point the network (cell) will spontaneously be at-
tracted by either of the two attractors on each side
of the newly formed hill. This is exemplified in
a model for fate decision in bipotent progenitor cells
in hematopoiesis [99]. In this model, a change of the
landscape structure ensues from a change in the net-
work architecture caused by the slow alteration of the
value of a system parameter that controls the interac-
tion strength in the system equations (see Sect. “Small
Gene Circuits”). Thus, the external signal that triggers
the differentiation exerts its effect by affecting the sys-
tem parameters. Increasing the decay rates of x1 and
x2 in the example of Fig. 3b will lead to the disappear-
ance of the central attractor and convert the tristable
landscape of Fig. 3b to the bistable one of Fig. 3a [99].
Such qualitative changes that occur during the slow
increase or decrease of a system parameter are referred
to as a bifurcation. Note that this second model takes
a narrower view, assuming that the network under
study is not the global, universal and fixed network
of the entire genome, as discussed in Sect. “Complex
Networks”, but rather a subnetwork that can change
its architecture based on the presence or absence of
gene products of genes that are outside of the subnet-
work.

Noisy Systems

In a bistable switching system, it is immediately obvious
that random fluctuations in xi due to “gene expression
noise” may trigger a transition between the attractors and
thus, explain the stochastic phenotype transitions, as has
been recently shown for several micro-organismal systems
and discussed for mammalian cell differentiation [87,97,
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101,108]. The observed heterogeneity of cells in a nomi-
nally identical cell population;caused either by “gene ex-
pression noise” or other diversifying processes, such as the
random partitioning of molecules at cell divisions, implies
that cell states cannot be viewed as deterministic points
and trajectories in the state space, but rather as moving
“clouds” – held together by the attractors.

More recently, on the basis of such bistable switches,
it has even been proposed and shown in synthetic net-
works that environmental bias in fluctuation magnitude
may explicitly control the switch to the physiologically
favorable attractor state – because gene expression noise
may be higher (relative to the deterministically controlled
expression levels) when cells are in the attractor that dic-
tates a gene expression pattern that is incompatible with
a given environment [110]. Such biased gene expression
noise thus may drive the flow between the attractors, and
hence, (on average) guide the system through attractor
transitions to produce various cell fates in a manner that
is commensurate with development of the tissue. On the
other hand, it may also explain the local stochasticity of
cell fate decisions observed for many stem and progenitor
cells.

Directionality

The concepts of cell fates and cell types as attractors, as
well as any mechanisms that explains attractor transitions
during development and differentiation, do not explain
the overall directionality of development, or the “arrow
of time” in ontogenesis: Why is development essentially
a one-way process, i. e., irreversible in time, given that the
underlying regulatory events, the switching ON or OFF of
genes, are fully reversible? Where does the overall slope
(from back to front) inWaddington’s epigenetic landscape
(Fig. 2g) come from? One idea is that “gene expression
noise” may play the role of thermal noise (heat) in ther-
modynamics in explaining the irreversibility of processes.
Alternatively, the network could be specifically wired, per-
haps through natural selection so that attractor transitions
are highly biased for one direction.

Beyond Cell Autonomous Processes

To understand development we need of course to open
our view beyond the cell autonomous dynamics of GRNs.
Some of the genes expressed in particular states S(t) en-
code secreted proteins that affect the gene expression
hence, state S(t) of neighboring cells. Such inter-cell com-
munication establishes a network at a higher level, with its
own constrained dynamics that need to be incorporated in

the models of developmental trajectories in gene expres-
sion state space.

Evolution

As discussed several times in this article, when networks
are studied in the light of evolution, a central question
arises: how domutations, which essentially rewire the net-
work by altering the nature of regulatory interactions, give
rise to the particular architecture of the GRN that we find
today? What are the relative roles in shaping particular
network architectures, of (i) constraints due to physical
(graph-theoretical) laws and self-organization vs. that of
(ii) natural selection for functionality? If selection plays
a major role, can it select for such features as the global
landscape structure, or even for criticality? Or can the lat-
ter even “self-organize” without adaptive selection [31]?
Such questions go far beyond the current analysis of Dar-
winian mechanisms of robustness and evolvability of net-
works. They are at the heart of the quest in biocomplexity
research for fundamental principles of life, of which the
process of natural selection itself is a just subset.

Regulatory networks offer a accessible and formaliz-
able object of study to begin to ask these questions.

Bibliography

Primary Literature
1. Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K,

Jensen CT, Bryder D, Yang L, BorgeOJ, Thoren LA, Anderson K,
Sitnicka E, Sasaki Y, Sigvardsson M, Jacobsen SE (2005) Iden-
tification of Flt3+ lympho-myeloid stem cells lacking erythro-
megakaryocytic potential a revised road map for adult blood
lineage commitment. Cell 121:295–306

2. Aittokallio T, Schwikowski B (2006) Graph-based methods for
analysing networks in cell biology. Brief Bioinform 7:243–55

3. Albert R (2005) Scale-free networks in cell biology. J Cell Sci
118:4947–57

4. Albert R, Othmer HG (2003) The topology of the regula-
tory interactions predicts the expression pattern of the seg-
ment polarity genes in Drosophila melanogaster. J Theor Biol
223:1–18

5. Albert R, Jeong H, Barabasi AL (2000) Error and attack toler-
ance of complex networks. Nature 406:378–82

6. Aldana M, Cluzel P (2003) A natural class of robust networks.
Proc Natl Acad Sci USA 100:8710–4

7. Aldana M, Balleza E, Kauffman S, Resendiz O (2007) Robust-
ness and evolvability in genetic regulatory networks. J Theor
Biol 245:433–48

8. Aldana M, Coppersmith S, Kadanoff LP (2003) Boolean dy-
namics with random couplings. In: Kaplan E, Marsden JE,
Sreenivasan KR (eds) Perspectives and problems in nonlinear
science. A celebratory volume in honor of Lawrence Sirovich.
Springer, New York

9. Alon U (2003) Biological networks: the tinkerer as an engi-
neer. Science 301:1866–7



Complex Gene Regulatory Networks – from Structure to Biological Observables: Cell Fate Determination C 1209

10. Amaral LA, Scala A, Barthelemy M, Stanley HE (2000) Classes
of small-world networks. Proc Natl Acad Sci USA 97:11149–52

11. Anderson PW (1972) More is different. Science 177:393–396
12. Angeli D, Ferrell JE Jr., Sontag ED (2004) Detection of multi-

stability, bifurcations, and hysteresis in a large class of biolog-
ical positive-feedback systems. Proc Natl Acad Sci USA 101:
1822–1827

13. Arney KL, Fisher AG (2004) Epigenetic aspects of differentia-
tion. J Cell Sci 117:4355–63

14. Artzy-Randrup Y, Fleishman SJ, Ben-Tal N, Stone L (2004)
Comment on Network motifs: simple building blocks of com-
plex networks and Superfamilies of evolved and designed
networks. Science 305:1107; author reply 1107

15. Autumn K, Ryan MJ, Wake DB (2002) Integrating historical
and mechanistic biology enhances the study of adaptation.
Q Rev Biol 77:383–408

16. Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann
SA (2004) Structure and evolution of transcriptional regula-
tory networks. Curr Opin Struct Biol 14:283–91

17. Bagley RJ, Glass L (1996) Counting and classifying attractors in
high dimensional dynamical systems. J Theor Biol 183:269–84

18. Balcan D, Kabakcioglu A, Mungan M, Erzan A (2007) The in-
formation coded in the yeast response elements accounts for
most of the topological properties of its transcriptional regu-
lation network. PLoS ONE 2:e501

19. Balleza E, Alvarez-Buylla ER, Chaos A, Kauffman A, Shmulevich
I, AldanaM (2008) Critical dynamics in genetic regulatory net-
works: examples from four kingdoms. PLoS One 3:e2456

20. Barabasi AL, Albert R (1999) Emergence of scaling in random
networks. Science 286:509–12

21. Barabasi AL, Oltvai ZN (2004) Network biology: understand-
ing the cell’s functional organization. Nat Rev Genet 5:
101–113

22. Becskei A, Seraphin B, Serrano L (2001) Positive feedback in
eukaryotic gene networks: cell differentiation by graded to
binary response conversion. EMBO J 20:2528–2535

23. Berg J, Lassig M, Wagner A (2004) Structure and evolution of
protein interaction networks: a statistical model for link dy-
namics and gene duplications. BMC Evol Biol 4:51

24. Bergmann S, Ihmels J, Barkai N (2004) Similarities and differ-
ences in genome-wide expression data of six organisms. PLoS
Biol 2:E9

25. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff
J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal
A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin
structuremarks key developmental genes in embryonic stem
cells. Cell 125:315–26

26. Bird A (2007) Perceptions of epigenetics. Nature 447:396–8
27. Bloom JD, Adami C (2003) Apparent dependence of protein

evolutionary rate on number of interactions is linked to biases
in protein–protein interactions data sets. BMC Evol Biol 3:21

28. Bloom JD, Adami C (2004) Evolutionary rate depends on num-
ber of protein–protein interactions independently of gene
expression level: response. BMC Evol Biol 4:14

29. Bork P, Jensen LJ, von Mering C, Ramani AK, Lee I, Marcotte
EM (2004) Protein interaction networks from yeast to human.
Curr Opin Struct Biol 14:292–9

30. Bornholdt S (2005) Systems biology. Less is more inmodeling
large genetic networks. Science 310:449–51

31. Bornholdt S, Rohlf T (2000) Topological evolution of dynami-
cal networks: global criticality from local dynamics. Phys Rev
Lett 84:6114–7

32. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker
JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford
DK, Melton DA, Jaenisch R, Young RA (2005) Core transcrip-
tional regulatory circuitry in human embryonic stem cells.
Cell 122:947–56

33. Brock A, Chang H, Huang SH Non-genetic cell heterogeneity
andmutation-less tumor progression. Manuscript submitted

34. Brown KS, Hill CC, Calero GA, Myers CR, Lee KH, Sethna JP,
Cerione RA (2004) The statistical mechanics of complex sig-
naling networks: nerve growth factor signaling. Phys Biol 1:
184–195

35. Bulyk ML (2006) DNA microarray technologies for measuring
protein-DNA interactions. Curr Opin Biotechnol 17:422–30

36. Callaway DS, Hopcroft JE, Kleinberg JM, Newman ME, Stro-
gatz SH (2001) Are randomly grown graphs really random?
Phys Rev E Stat Nonlin Soft Matter Phys 64:041902

37. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S
(2008) Transcriptome-wide noise controls lineage choice in
mammalian progenitor cells. Nature 453:544–547

38. Chang HH, Oh PY, Ingber DE, Huang S (2006) Multistable and
multistep dynamics in neutrophil differentiation. BMC Cell
Biol 7:11

39. Chang WC, Li CW, Chen BS (2005) Quantitative inference of
dynamic regulatory pathways viamicroarray data. BMC Bioin-
formatics 6:44

40. Chaves M, Sontag ED, Albert R (2006) Methods of robustness
analysis for Boolean models of gene control networks. Syst
Biol (Stevenage) 153:154–67

41. Chen K, Rajewsky N (2007) The evolution of gene regula-
tion by transcription factors andmicroRNAs. Nat Rev Genet 8:
93–103

42. Chen KC, Wang TY, Tseng HH, Huang CY, Kao CY (2005)
A stochastic differential equation model for quantifying tran-
scriptional regulatory network in Saccharomyces cerevisiae.
Bioinformatics 21:2883–90

43. Chickarmane V, Troein C, Nuber UA, Sauro HM, Peterson C
(2006) Transcriptional dynamics of the embryonic stem cell
switch. PLoS Comput Biol 2:e123

44. Claverie JM (2001) Gene number. What if there are only
30,000 human genes? Science 291:1255–7

45. Collins SJ (1987) The HL-60 promyelocytic leukemia cell line:
proliferation, differentiation, and cellular oncogene expres-
sion. Blood 70:1233–1244

46. Cordero OX, Hogeweg P (2006) Feed-forward loop circuits as
a side effect of genome evolution. Mol Biol Evol 23:1931–6

47. Cross MA, Enver T (1997) The lineage commitment of
haemopoietic progenitor cells. Curr Opin Genet Dev 7:
609–613

48. Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li
F (2006) The c-Myc target gene network. Semin Cancer Biol
16:253–64

49. Davidich MI, Bornholdt S (2008) Boolean network model pre-
dicts cell cycle sequence of fission yeast. PLoS ONE 3:e1672

50. Davidson EH, Erwin DH (2006) Gene regulatory networks and
the evolution of animal body plans. Science 311:796–800

51. de la Serna IL, Ohkawa Y, Berkes CA, Bergstrom DA, Dacwag
CS, Tapscott SJ, ImbalzanoAN (2005)MyoD targets chromatin



1210 C Complex Gene Regulatory Networks – from Structure to Biological Observables: Cell Fate Determination

remodeling complexes to the myogenin locus prior to form-
ing a stable DNA-bound complex. Mol Cell Biol 25:3997–4009

52. Deane CM, Salwinski L, Xenarios I, Eisenberg D (2002) Protein
interactions: two methods for assessment of the reliability of
high throughput observations. Mol Cell Proteomics 1:349–56

53. Delbrück M (1949) Discussion. In: Unités biologiques douées
de continuité génétique Colloques Internationaux du Centre
National de la Recherche Scientifique. CNRS, Paris

54. Deplancke B, Mukhopadhyay A, Ao W, Elewa AM, Grove CA,
Martinez NJ, Sequerra R, Doucette-Stamm L, Reece-Hoyes
JS, Hope IA, Tissenbaum HA, Mango SE, Walhout AJ (2006)
A gene-centered C. elegans protein-DNA interaction net-
work. Cell 125:1193–205

55. Derrida B, Pomeau Y (1986) Random networks of automata:
a simple annealed approximation. Europhys Lett 1:45–49

56. Dodd IB, Micheelsen MA, Sneppen K, Thon G (2007) Theoret-
ical analysis of epigenetic cell memory by nucleosome modi-
fication. Cell 129:813–22

57. Eichler GS, Huang S, Ingber DE (2003) Gene Expression Dy-
namics Inspector (GEDI): for integrative analysis of expression
profiles. Bioinformatics 19:2321–2322

58. Eisenberg E, Levanon EY (2003) Preferential attachment in the
protein network evolution. Phys Rev Lett 91:138701

59. Enver T, Heyworth CM, Dexter TM (1998) Do stem cells play
dice? Blood 92:348–51; discussion 352

60. Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER (2004)
A gene regulatory network model for cell-fate determina-
tion during Arabidopsis thaliana flower development that is
robust and recovers experimental gene expression profiles.
Plant Cell 16:2923–39

61. Faith JJ, Hayete B, Thaden JT,Mogno I,Wierzbowski J, Cottarel
G, Kasif S, Collins JJ, Gardner TS (2007) Large-scale mapping
and validation of Escherichia coli transcriptional regulation
from a compendium of expression profiles. PLoS Biol 5:e8

62. Faure A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical
analysis of a generic Boolean model for the control of the
mammalian cell cycle. Bioinformatics 22:e124–31

63. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C,
Bozzoni I (2005) A minicircuitry comprised of microRNA-223
and transcription factors NFI-A and C/EBPalpha regulates hu-
man granulopoiesis. Cell 123:819–31

64. Ferrell JE Jr., Machleder EM (1998) The biochemical basis of
an all-or-none cell fate switch in Xenopus oocytes. Science
280:895–8

65. Fisher AG (2002) Cellular identity and lineage choice. Nat Rev
Immunol 2:977–82

66. Fox JJ, Hill CC (2001) From topology to dynamics in biochem-
ical networks. Chaos 11:809–815

67. Fraser HB, Hirsh AE (2004) Evolutionary rate depends on num-
ber of protein–protein interactions independently of gene
expression level. BMC Evol Biol 4:13

68. Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW
(2002) Evolutionary rate in the protein interaction network.
Science 296:750–2

69. Fuks F (2005) DNA methylation and histone modifications:
teaming up to silence genes. Curr Opin Genet Dev 15:
490–495

70. Gao H, Falt S, Sandelin A, Gustafsson JA, Dahlman-Wright K
(2007) Genome-wide identification of estrogen receptor ˛
binding sites in mouse liver. Mol Endocrinol 22:10–22

71. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a ge-
netic toggle switch in Escherichia coli. Nature 403:339–342

72. Gershenson C (2002) Classification of random Boolean net-
works. In: Standish RK, Bedau MA, Abbass HA (eds) Artificial
life, vol 8. MIT Press, Cambridge, pp 1–8

73. Gisiger T (2001) Scale invariance in biology: coincidence or
footprint of a universalmechanism? Biol Rev Camb Philos Soc
76:161–209

74. Glass L, Kauffman SA (1972) Co-operative components, spa-
tial localization and oscillatory cellular dynamics. J Theor Biol
34:219–37

75. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a land-
scape takes shape. Cell 128:635–8

76. Goldstein ML, Morris SA, Yen GG (2004) Problems with fitting
to the power-law distribution. Eur Phys J B 41:255–258

77. Goodwin BC, Webster GC (1999) Rethinking the origin of
species by natural selection. Riv Biol 92:464–7

78. Gould SJ, Lewontin RC (1979) The spandrels of SanMarco and
the Panglossian paradigm: a critiqueof the adaptationist pro-
gramme. Proc R Soc Lond B Biol Sci 205:581–98

79. Graf T (2002) Differentiation plasticity of hematopoietic cells.
Blood 99:3089–101

80. Grass JA, Boyer ME, Pal S, Wu J, Weiss MJ, Bresnick EH (2003)
GATA-1-dependent transcriptional repression of GATA-2 via
disruption of positive autoregulation and domain-wide chro-
matin remodeling. Proc Natl Acad Sci USA 100:8811–6

81. Greil F, Drossel B, Sattler J (2007) Critical Kauffman networks
under deterministic asynchronous update. New J Phys 9:373

82. Guelzim N, Bottani S, Bourgine P, Kepes F (2002) Topologi-
cal and causal structure of the yeast transcriptional regulatory
network. Nat Genet 31:60–3

83. Guo Y, Eichler GS, Feng Y, Ingber DE, Huang S (2006) Towards
a holistic, yet gene-centered analysis of gene expression pro-
files: a case study of human lung cancers. J Biomed Biotech-
nol 2006:69141

84. Hahn MW, Kern AD (2005) Comparative genomics of cen-
trality and essentiality in three eukaryotic protein-interaction
networks. Mol Biol Evol 22:803–6

85. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From
molecular to modular cell biology. Nature 402:C47–52

86. Harris SE, Sawhill BK, Wuensche A, Kauffman SA (2002)
A model of transcriptional regulatory networks based on bi-
ases in the observed regulation rules. Complexity 7:23–40

87. Hasty J, Pradines J, Dolnik M, Collins JJ (2000) Noise-based
switches and amplifiers for gene expression. Proc Natl Acad
Sci USA 97:2075–80

88. Haverty PM, Hansen U, Weng Z (2004) Computational infer-
ence of transcriptional regulatory networks from expression
profiling and transcription factor binding site identification.
Nucleic Acids Res 32:179–88

89. He L, Hannon GJ (2004) MicroRNAs: small RNAswith a big role
in gene regulation. Nat Rev Genet 5:522–31

90. Hilborn R (1994) Chaos and nonlinear dynamics: An intro-
duction for scientists and engineers, 2 edn. Oxford University
Press, New York

91. Hochedlinger K, Jaenisch R (2006) Nuclear reprogramming
and pluripotency. Nature 441:1061–7

92. Hu M, Krause D, Greaves M, Sharkis S, Dexter M, Heyworth C,
Enver T (1997) Multilineage gene expression precedes com-
mitment in the hemopoietic system. Genes Dev 11:774–85



Complex Gene Regulatory Networks – from Structure to Biological Observables: Cell Fate Determination C 1211

93. Huang S (2004) Back to the biology in systems biology: what
can we learn from biomolecular networks. Brief Funct Ge-
nomics Proteomics 2:279–297

94. Huang S (2007) Cell fates as attractors – stability and flexibility
of cellular phenotype. In: Endothelial biomedicine, 1st edn,
Cambridge University Press, New York, pp 1761–1779

95. Huang S, Ingber DE (2000) Shape-dependent control of
cell growth, differentiation, and apoptosis: switching be-
tween attractors in cell regulatory networks. Exp Cell Res
261:91–103

96. Huang S, Ingber DE (2006) A non-genetic basis for cancer pro-
gression andmetastasis: self-organizing attractors in cell reg-
ulatory networks. Breast Dis 26:27–54

97. Huang S,Wikswo J (2006) Dimensions of systems biology. Rev
Physiol Biochem Pharmacol 157:81–104

98. Huang S, Eichler G, Bar-Yam Y, Ingber DE (2005) Cell fates as
high-dimensional attractor states of a complex gene regula-
tory network. Phys Rev Lett 94:128701

99. Huang S, Guo YP, May G, Enver T (2007) Bifurcation dynam-
ics of cell fate decision in bipotent progenitor cells. Dev Biol
305:695–713

100. Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R,
Armour CD, Bennett HA, Coffey E, Dai H, He YD, Kidd MJ, King
AM, Meyer MR, Slade D, Lum PY, Stepaniants SB, Shoemaker
DD, Gachotte D, Chakraburtty K, Simon J, Bard M, Friend SH
(2000) Functional discovery via a compendium of expression
profiles. Cell 102:109–26

101. Hume DA (2000) Probability in transcriptional regulation and
its implications for leukocyte differentiation and inducible
gene expression. Blood 96:2323–8

102. Ihmels J, Bergmann S, Barkai N (2004) Defining transcription
modules using large-scale gene expression data. Bioinfor-
matics 20:1993–2003

103. Jablonka E, Lamb MJ (2002) The changing concept of epige-
netics. Ann N Y Acad Sci 981:82–96

104. Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality
and centrality in protein networks. Nature 411:41–42

105. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-
wide mapping of in vivo protein-DNA interactions. Science
316:1497–502

106. Jordan IK, Wolf YI, Koonin EV (2003) No simple dependence
between protein evolution rate and the number of protein–
protein interactions: only themost prolific interactors tend to
evolve slowly. BMC Evol Biol 3:1

107. Joy MP, Brock A, Ingber DE, Huang S (2005) High-be-
tweenness proteins in the yeast protein interaction network.
J Biomed Biotechnol 2005:96–103

108. Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in
gene expression: from theories to phenotypes. Nat RevGenet
6:451–64

109. Kaplan D, Glass L (1995) Understanding Nonlinear Dynamics,
1st edn. Springer, New York

110. Kashiwagi K, Urabe I, Kancko K, Yomo T (2006) Adaptive re-
sponse of a gene network to environmental changes by fit-
ness-induced attractor selection. PLoS One, 1:e49

111. Kauffman S (1969) Homeostasis and differentiation in ran-
dom genetic control networks. Nature 224:177–8

112. Kauffman S (2004) A proposal for using the ensemble ap-
proach to understand genetic regulatory networks. J Theor
Biol 230:581–90

113. Kauffman S, Peterson C, Samuelsson B, Troein C (2003) Ran-
dom Boolean network models and the yeast transcriptional
network. Proc Natl Acad Sci USA 100:14796–9

114. Kauffman SA (1969) Metabolic stability and epigenesis in ran-
domly constructed genetic nets. J Theor Biol 22:437–467

115. Kauffman SA (1991) Antichaos and adaptation. Sci Am
265:78–84

116. Kauffman SA (1993) The origins of order. Oxford University
Press, New York

117. Khorasanizadeh S (2004) The nucleosome: from genomic or-
ganization to genomic regulation. Cell 116:259–72

118. Kim KY, Wang J (2007) Potential energy landscape and ro-
bustness of a gene regulatory network: toggle switch. PLoS
Comput Biol 3:e60

119. Klemm K, Bornholdt S (2005) Stable and unstable attractors
in Boolean networks. Phys Rev E Stat Nonlin Soft Matter Phys
72:055101

120. Klevecz RR, Bolen J, Forrest G, Murray DB (2004)
A genomewide oscillation in transcription gates DNA
replication and cell cycle. Proc Natl Acad Sci USA 101:1200–5

121. Kloster M, Tang C, Wingreen NS (2005) Finding regulatory
modules through large-scale gene-expression data analysis.
Bioinformatics 21:1172–9

122. Kouzarides T (2007) Chromatin modifications and their func-
tion. Cell 128:693–705

123. Kramer BP, Fussenegger M (2005) Hysteresis in a synthetic
mammalian gene network. Proc Natl Acad Sci USA 102:
9517–9522

124. Krawitz P, Shmulevich I (2007) Basin entropy in Boolean net-
work ensembles. Phys Rev Lett 98:158701

125. Krysinska H, Hoogenkamp M, Ingram R, Wilson N, Tagoh H,
Laslo P, Singh H, Bonifer C (2007) A two-step, PU.1-depen-
dent mechanism for developmentally regulated chromatin
remodeling and transcription of the c-fms gene. Mol Cell Biol
27:878–87

126. Kubicek S, Jenuwein T (2004) A crack in histone lysine methy-
lation. Cell 119:903–6

127. Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, Sci-
ammas R, Gantner BN, Dinner AR, Singh H (2006) Multilin-
eage transcriptional priming and determination of alternate
hematopoietic cell fates. Cell 126:755–66

128. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Ger-
ber GK, Hannett NM, Harbison CT, Thompson CM, Simon
I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B,
Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young
RA (2002) Transcriptional regulatory networks in Saccha-
romyces cerevisiae. Science 298:799–804

129. Levsky JM, Singer RH (2003) Gene expression and themyth of
the average cell. Trends Cell Biol 13:4–6

130. Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-
cycle network is robustly designed. Proc Natl Acad Sci USA
101:4781–6

131. Li H, Xuan J, Wang Y, Zhan M (2008) Inferring regulatory net-
works. Front Biosci 13:263–75

132. Lim HN, van Oudenaarden A (2007) A multistep epigenetic
switch enables the stable inheritance of DNA methylation
states. Nat Genet 39:269–75

133. Luo F, Yang Y, Chen CF, Chang R, Zhou J, Scheuermann RH
(2007) Modular organization of protein interaction networks.
Bioinformatics 23:207–14



1212 C Complex Gene Regulatory Networks – from Structure to Biological Observables: Cell Fate Determination

134. LuscombeNM, BabuMM, YuH, SnyderM, Teichmann SA, Ger-
stein M (2004) Genomic analysis of regulatory network dy-
namics reveals large topological changes. Nature 431:308–12

135. MacCarthy T, Pomiankowski A, Seymour R (2005) Using large-
scale perturbations in gene network reconstruction. BMC
Bioinformatics 6:11

136. Mangan S, Alon U (2003) Structure and function of the
feed-forward loop network motif. Proc Natl Acad Sci USA
100:11980–5

137. Manke T, Demetrius L, Vingron M (2006) An entropic charac-
terization of protein interaction networks and cellular robust-
ness. JR Soc Interface 3:843–50

138. Marcotte EM (2001) The path not taken. Nat Biotechnol
19:626–627

139. Margolin AA, Califano A (2007) Theory and limitations of ge-
netic network inference from microarray data. Ann N Y Acad
Sci 1115:51–72

140. Maslov S, Sneppen K (2002) Specificity and stability in topol-
ogy of protein networks. Science 296:910–3

141. Mattick JS (2007) A newparadigm for developmental biology.
J Exp Biol 210:1526–47

142. May RM (1972) Will a large complex system be stable? Nature
238:413–414

143. Meissner A, Wernig M, Jaenisch R (2007) Direct reprogram-
ming of genetically unmodified fibroblasts into pluripotent
stem cells. Nat Biotechnol 25:1177–1181

144. Mellor J (2006) Dynamic nucleosomes andgene transcription.
Trends Genet 22:320–9

145. Metzger E, Wissmann M, Schule R (2006) Histone demethyla-
tion and androgen-dependent transcription. CurrOpinGenet
Dev 16:513–7

146. Mikkers H, Frisen J (2005) Deconstructing stemness. Embo J
24:2715–9

147. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon
U (2002) Network motifs: simple building blocks of complex
networks. Science 298:824–7

148. Monod J, Jacob F (1961) Teleonomic mechanisms in cellu-
larmetabolism, growth, and differentiation. Cold SpringHarb
Symp Quant Biol 26:389–401

149. Morceau F, Schnekenburger M, Dicato M, Diederich M (2004)
GATA-1: friends, brothers, and coworkers. Ann N Y Acad Sci
1030:537–54

150. Morrison SJ, Uchida N, Weissman IL (1995) The biology of
hematopoietic stem cells. Annu Rev Cell Dev Biol 11:35–71

151. Murray JD (1989) Mathematical biology, 2nd edn (1993).
Springer, Berlin

152. Newman MEJ (2003) The structure and function of complex
networks. SIAM Review 45:167–256

153. NykterM, Price ND, AldanaM, Ramsey SA, Kauffman SA, Hood
L, Yli-Harja O, Shmulevich I (2008) Gene expression dynamics
in the macrophage exhibit criticality. Proc Natl Acad Sci USA
105:1897–900

154. Nykter M, Price ND, Larjo A, Aho T, Kauffman SA, Yli-Harja
O, Shmulevich I (2008) Critical networks exhibit maximal in-
formation diversity in structure-dynamics relationships. Phys
Rev Lett 100:058702

155. OdomDT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Mur-
ray HL, Volkert TL, Schreiber J, Rolfe PA, Gifford DK, Fraenkel
E, Bell GI, Young RA (2004) Control of pancreas and liver gene
expression by HNF transcription factors. Science303:1378–81

156. Okita K, Ichisaka T, Yamanaka S (2007) Generation of
germline-competent induced pluripotent stem cells. Nature
448:313–7

157. Ozbudak EM, Thattai M, Lim HN, Shraiman BI, Van Oudenaar-
den A (2004) Multistability in the lactose utilization network
of Escherichia coli. Nature 427:737–740

158. Pennisi E (2003) Human genome. A low number wins the
GeneSweep Pool. Science 300:1484

159. Picht P (1969) Mut zur utopie. Piper, München
160. Proulx SR, Promislow DE, Phillips PC (2005) Network thinking

in ecology and evolution. Trends Ecol Evol 20:345–53
161. Raff M (2003) Adult stem cell plasticity: fact or artifact? Annu

Rev Cell Dev Biol 19:1–22
162. Ralston A and Rossant J (2005) Genetic regulation of stem cell

origins in the mouse embryo. Clin Genet 68:106–12
163. Ramo P, Kesseli J, Yli-Harja O (2006) Perturbation avalanches

and criticality in gene regulatory networks. J Theor Biol
242:164–70

164. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL
(2002) Hierarchical organization of modularity in metabolic
networks. Science 297:1551–5

165. ReikW, DeanW (2002) Back to the beginning. Nature 420:127
166. Resendis-Antonio O, Freyre-Gonzalez JA, Menchaca-Mendez

R, Gutierrez-Rios RM, Martinez-Antonio A, Avila-Sanchez C,
Collado-Vides J (2005) Modular analysis of the transcriptional
regulatory network of E. coli. Trends Genet 21:16–20

167. Robins H, Krasnitz M, Barak H, Levine AJ (2005) A relative-
entropy algorithm for genomic fingerprinting captures host-
phage similarities. J Bacteriol 187:8370–4

168. Roeder I, Glauche I (2006) Towards an understanding of lin-
eage specification in hematopoietic stem cells: a mathemat-
ical model for the interaction of transcription factors GATA-1
and PU.1. J Theor Biol 241:852–65

169. Salgado H, Santos-Zavaleta A, Gama-Castro S, Peralta-Gil M,
Penaloza-Spinola MI, Martinez-Antonio A, Karp PD, Collado-
Vides J (2006) The comprehensive updated regulatory net-
work of Escherichia coli K-12. BMC Bioinformatics 7:5

170. Samonte RV, Eichler EE (2002) Segmental duplications and
the evolution of the primate genome. Nat Rev Genet
3:65–72

171. Sandberg R, Ernberg I (2005) Assessment of tumor character-
istic gene expression in cell lines using a tissue similarity in-
dex (TSI). Proc Natl Acad Sci USA 102:2052–7

172. Shivdasani RA (2006) MicroRNAs: regulators of gene expres-
sion and cell differentiation. Blood 108:3646–53

173. Shmulevich I, Kauffman SA (2004) Activities and sensitivities
in boolean network models. Phys Rev Lett 93:048701

174. Shmulevich I, Kauffman SA, Aldana M (2005) Eukaryotic cells
are dynamically ordered or critical but not chaotic. Proc Natl
Acad Sci USA 102:13439–44

175. Siegal ML, Promislow DE, Bergman A (2007) Functional and
evolutionary inference in gene networks: does topologymat-
ter? Genetica 129:83–103

176. SmithMC, Sumner ER, Avery SV (2007) Glutathione andGts1p
drive beneficial variability in the cadmium resistances of indi-
vidual yeast cells. Mol Microbiol 66:699–712

177. Southall TD, Brand AH (2007) Chromatin profiling in model
organisms. Brief Funct Genomic Proteomic 6:133–40

178. Southan C (2004) Has the yo-yo stopped? An assessment of
human protein-coding gene number. Proteomics 4:1712–26



Complexity in Earthquakes, Tsunamis, and Volcanoes, and Forecast, Introduction to C 1213

179. Stern CD (2000) Conrad H. Waddington’s contributions to
avian and mammalian development, 1930–1940. Int J Dev
Biol 44:15–22

180. Strohman R (1994) Epigenesis: the missing beat in biotech-
nology? Biotechnology (N Y) 12:156–64

181. Stumpf MP, Wiuf C, May RM (2005) Subnets of scale-free net-
works are not scale-free: sampling properties of networks.
Proc Natl Acad Sci USA 102:4221–4

182. SuzukiM, Yamada T, Kihara-Negishi F, Sakurai T, Hara E, Tenen
DG, Hozumi N, Oikawa T (2006) Site-specific DNAmethylation
by a complex of PU.1 and Dnmt3a/b. Oncogene 25:2477–88

183. Swiers G, Patient R, Loose M (2006) Genetic regulatory net-
works programming hematopoietic stem cells and erythroid
lineage specification. Dev Biol 294:525–40

184. Takahashi K, Yamanaka S (2006) Induction of pluripotent
stem cells from mouse embryonic and adult fibroblast cul-
tures by defined factors. Cell 126:663–76

185. Tapscott SJ (2005) The circuitry of a master switch: Myod and
the regulation of skeletal muscle gene transcription. Devel-
opment 132:2685–95

186. Taylor JS, Raes J (2004) Duplication and divergence: The evo-
lution of new genes and old ideas. Annu Rev Genet 38:
615–643

187. Teichmann SA, Babu MM (2004) Gene regulatory network
growth by duplication. Nat Genet 36:492–6

188. Thieffry D, Huerta AM, Perez-Rueda E, Collado-Vides J (1998)
From specific gene regulation to genomic networks: a global
analysis of transcriptional regulation in Escherichia coli.
Bioessays 20:433–40

189. Tinbergen N (1952) Derived activities; their causation, biolog-
ical significance, origin, and emancipation during evolution.
Q Rev Biol 27:1–32

190. Toh H, Horimoto K (2002) Inference of a genetic network by
a combined approach of cluster analysis and graphical Gaus-
sian modeling. Bioinformatics 18:287–97

191. Trojer P, Reinberg D (2006) Histone lysine demethylases and
their impact on epigenetics. Cell 125:213–7

192. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles
and blinkers: dynamics of regulatory and signaling pathways
in the cell. Curr Opin Cell Biol 15:221–231

193. van Helden J, Wernisch L, Gilbert D, Wodak SJ (2002) Graph-
based analysis of metabolic networks. Ernst Schering Res
Found Workshop:245–74

194. vanNimwegen E (2003) Scaling laws in the functional content
of genomes. Trends Genet 19:479–84

195. Vogel G (2003) Stem cells. ‘Stemness’ genes still elusive. Sci-
ence 302:371

196. Waddington CH (1940) Organisers and genes. Cambridge
University Press, Cambridge

197. Waddington CH (1956) Principles of embryology. Allen and
Unwin Ltd, London

198. Waddington CH (1957) The strategy of the genes. Allen and
Unwin, London

199. Watts DJ (2004) The “new” science of networks. Ann Rev So-
ciol 20:243–270

200. Webster G, Goodwin BC (1999) A structuralist approach to
morphology. Riv Biol 92:495–8

201. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M,
Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro repro-
gramming of fibroblasts into a pluripotent ES-cell-like state.
Nature 448:318–24

202. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA,
Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO, Bot-
stein D (2002) Identification of genes periodically expressed
in the human cell cycle and their expression in tumors. Mol
Biol Cell 13:1977–2000

203. Wilkins AS (2007) Colloquium Papers: Between “design” and
“bricolage”: Genetic networks, levels of selection, and adap-
tive evolution. Proc Natl Acad Sci USA 104 Suppl 1:8590–6

204. Wuensche A (1998) Genomic regulation modeled as a net-
work with basins of attraction. Pac Symp Biocomput:89–102

205. Xiong W, Ferrell JE Jr. (2003) A positive-feedback-based
bistable ‘memory module’ that governs a cell fate decision.
Nature 426:460–465

206. Xu X, Wang L, Ding D (2004) Learning module networks
from genome-wide location and expression data. FEBS Lett
578:297–304

207. Yu H, Greenbaum D, Xin Lu H, Zhu X, Gerstein M (2004) Ge-
nomic analysis of essentialitywithin protein networks. Trends
Genet 20:227–31

208. Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M (2007) The
importance of bottlenecks in protein networks: correlation
with gene essentiality and expression dynamics. PLoS Com-
put Biol 3:e59

209. Yuh CH, Bolouri H, Davidson EH (2001) Cis-regulatory logic in
the endo16 gene: switching from a specification to a differ-
entiationmode of control. Development 128:617–29

Books and Reviews
Huang S (2004) Back to the biology in systems biology: what can

we learn from biomolecular networks. Brief Funct Genomics
Proteomics 2:279–297

Huang S (2007) Cell fates as attractors – stability and flexibility
of cellular phenotype. In: Endothelial biomedicine, 1st edn.
Cambridge University Press, New York, pp 1761–1779

Huang S, Ingber DE (2006) A non-genetic basis for cancer progres-
sion and metastasis: self-organizing attractors in cell regula-
tory networks. Breast Dis 26:27–54

Kaneko K (2006) Life: An introduction to complex systems biology,
1edn. Springer, Berlin

Kauffman SA (1991) Antichaos and adaptation. Sci Am 265:78–84
Kauffman SA (1993) The origins of order. Oxford University Press,

New York
Kauffman SA (1996) At home in the universe: the search for the laws

of self-organization and complexity. Oxford University Press,
New York

Laurent M, Kellershohn N (1999) Multistability: a major means of
differentiation and evolution in biological systems. Trends
Biochem Sci 24:418–422

Wilkins AS (2007) Colloquiumpapers: Between “design” and “brico-
lage”: Genetic networks, levels of selection, and adaptive evo-
lution. Proc Natl Acad Sci USA 104 Suppl 1:8590–6

Complexity in Earthquakes,
Tsunamis, and Volcanoes, and
Forecast, Introduction to
WILLIAM H. K. LEE
US Geological Survey (Retired), Menlo Park, USA



1214 C Complexity in Earthquakes, Tsunamis, and Volcanoes, and Forecast, Introduction to

Article Outline

Introduction
Earthquakes
Tsunamis
Volcanoes
Discussions

This Introduction is intended to serve as a ‘road map’
for readers to navigate through the 42 Encyclopedia ar-
ticles on earthquakes, tsunamis, and volcanoes. Select-
ing the topics and authors was somewhat subjective, as
it is not possible to cover the vast existing literature with
only 42 articles. They are, however, representative of the
wide range of problems investigated in connection with
these natural phenomena. I will introduce these articles
by grouping them into sections and then into subsec-
tions. However, some articles belong to more than one
section or one subsection, reflecting the inter-related na-
ture of earthquakes, tsunamis and volcanoes. For the ben-
efit of the readers, I will point to certain issues discussed
in some of the articles which, in my view, have not been
settled completely. I have also taken the liberty of quot-
ing or paraphrasing sentences from many of these arti-
cles when introducing them, but I do not claim to be
accurate. It is best for these articles to speak for them-
selves.

I wish to thank BernardChouet for helpingme in plan-
ning and reviewing the manuscripts of the volcanoes sec-
tion. I am grateful to Bernard Chouet, Edo Nyland, Jose
Pujol, Chris Stephens, and Ta-liang Teng for their helpful
comments that greatly improved this manuscript.

Introduction

Earthquakes, tsunamis, and volcanic eruptions are com-
plex and often inter-related natural phenomena with dis-
astrous impact to society rivaling those caused by the worst
floods or storms. The 1556 Huaxian earthquake in the
Shansi province of China claimed over 830,000 lives. The
total economic loss of the 1995 Kobe earthquake in Japan
was estimated at US $200 billion. The 2004 Indian Ocean
tsunami (triggered by the Sumatra–Andaman earthquake
of December 26) bought devastation thousands of miles
away with fatalities exceeding 280,000. The 79 AD erup-
tion of Mount Vesuvius near Naples, Italy buried the
towns of Pompeii and Herculaneum. The 1902 eruption
of Mount Pelée, Martinique, totally destroyed the town of
St. Pierre.

Insurance companies classify major natural catastro-
phes as storms, floods, or earthquakes (including tsuna-
mis, and volcanic eruptions). Since 1950, about 2.5million

people have died due to these catastrophes and overall
economic losses have totaled about US $2 trillion in cur-
rent dollar values. Earthquakes, tsunamis, and volcanic
eruptions have accounted for about half of the fatalities
and more than one third of the total economic losses.
Geoscientists have attempted to predict these events, but
with limited success. There are many reasons for such
slow progress: (1) systematic monitoring of earthquakes,
tsunamis and volcanoes requires large capital investment
for instruments and very long-term support for operation
and maintenance; (2) catastrophic earthquakes, tsunamis
and volcanic eruptions occur rarely, and (3) politicians
and citizens are quick to forget these hazards in the face of
other more frequent and pressing issues. But with contin-
uing rapid population growth and urbanization, the loss
potential from these natural hazards in the world is quickly
escalating.

With advances in nonlinear dynamics and complex-
ity studies, geoscientists have applied modern nonlinear
techniques and concepts such as chaos, fractal, critical
phenomena, and self-organized criticality to the study of
earthquakes, tsunamis and volcanoes. Here we sample
these efforts, mainly in seismicity modeling for earthquake
prediction and forecast, along with articles that review re-
cent progress in studying earthquakes, tsunamis, and vol-
canoes. Although predictability is desirable, it is also possi-
ble to reduce these natural hazards with more practical ap-
proaches, such as early warning systems, hazard analysis,
engineering considerations, and other mitigation efforts.
Several articles in this Encyclopedia discuss these practical
solutions.

Earthquakes

When a sudden rupture occurs in the Earth, seismic waves
are generated. When these waves reach the Earth’s sur-
face, we may feel them as a series of vibrations, which
we call an earthquake. Instrumental recordings of earth-
quakes have been made since the latter part of the 19th
century by seismographic stations and networks from lo-
cal to global scales. The observed data have been used, for
example, (1) to compute the source parameters of earth-
quakes, (2) to determine the physical properties of the
Earth’s interior, (3) to test the theory of plate tectonics,
(4) to map active faults, (5) to infer the nature of damag-
ing ground shaking, (6) to carry out seismic hazard ana-
lyzes, and (7) to predict and forecast earthquakes. A sat-
isfactory theory of the complex earthquake process has
not yet been achieved, and realistic equations for model-
ing earthquakes do not exist at present. There is, however,
good progress towards a physical foundation for the earth-
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quake source process, partly as a result of research directed
toward earthquake prediction.

Earthquake Monitoring,
and Probing the Earth’s Interior

Earthquakes are complex natural phenomena, and their
monitoring requires an interdisciplinary approach, in-
cluding using tools from other scientific disciplines and
engineering. In � Earthquake Monitoring and Early
Warning Systems, W.H.K. Lee and Y.M. Wu presented
a summary of earthquake monitoring, a description of the
products derived from the analysis of seismograms, and
a discussion of the limitations of these products. The basic
results of earthquakemonitoring are summarized in earth-
quake catalogs, which are lists of origin time, hypocen-
ter location, and magnitude of earthquakes, as well as
other source parameters. Lee and Wu describe the tradi-
tional earthquake location method formulated as an in-
verse problem. In � Earthquake Location, Direct, Glob-
al-Search Methods, Lomax et al. review a different ap-
proach using direct-search over a space of possible loca-
tions, and discuss other related algorithms. Direct-search
earthquake location is important because, relative to the
traditional linearized method, it is both easier to apply to
more realistic Earth models and is computational more
stable. Although it has not been widely applied because of
its computational demand, it shows great promise for the
future as computer power is advancing rapidly.

The most frequently determined parameter after ‘loca-
tion’ is ‘magnitude’, which is used to characterize the ‘size’
of an earthquake. A brief introduction to the quantifica-
tion of earthquake size, including magnitude and seismic
moment, is given in � Earthquake Monitoring and Early
Warning Systems by Lee and Wu. Despite its various lim-
itations, magnitude provides important information con-
cerning the earthquake source. Magnitude values have an
immense practical value for realistic long-term disaster
preparedness and risk mitigation efforts. A detailed re-
view, including current practices for magnitude determi-
nations, appears in � Earthquake Magnitude by P. Bor-
mann and J. Saul.

Besides computing earthquake source parameters,
earthquake monitoring also provides data that can be used
to probe the Earth’s interior. In � Tomography, Seismic,
J. Pujol reviews a number of techniques designed to inves-
tigate the interior of the Earth using arrival times and/or
waveforms from natural and artificial sources. The most
common product of a tomographic study is a seismic ve-
locity model, although other parameters, such as attenua-
tion and anisotropy, can also be estimated. Seismic tomog-

raphy generally has higher resolution than that provided
by other geophysical methods, such as gravity and mag-
netics, and furnishes information (1) about fundamental
problems concerning the internal structure of the Earth on
a global scale, and (2) for tectonic and seismic hazard stud-
ies on a local scale.

In � Seismic Wave Propagation in Media with Com-
plex Geometries, Simulation of, H. Igel et al. present the
state-of-the-art in computational wave propagation. They
point to future developments, particularly in connection
with the search for efficient generation of computational
grids for models with complex topography and faults, as
well as for the combined simulation of soil-structure in-
teractions. In addition to imaging subsurface structure
and earthquake sources, 3-D wave simulations can fore-
cast strong ground motions from large earthquakes. In
the absence of deterministic prediction of earthquakes, the
calculation of earthquake scenarios in regions with suffi-
ciently well-known crustal structures and faults will play
an important role in assessing and mitigating potential
damage, particularly those due to local site effects.

In addition to the classical parametrization of the
Earth as a layered structure with smooth velocity pertur-
bation, a new approach using scattered waves that reflect
Earth’s heterogeneity is introduced by H. Sato in his arti-
cle on � Seismic Waves in Heterogeneous Earth, Scatter-
ing of. For high-frequency seismograms, envelope char-
acteristics such as the excitation level and the decay gra-
dient of coda envelopes and the envelope broadening of
the direct wavelet are useful for the study of small-scale
inhomogeneities within the Earth. The radiative trans-
fer theory with scattering coefficients calculated from the
Born approximation and the Markov approximation for
the parabolic wave equation are powerful mathematical
tools for these analyzes. Studies of the scattering of high-
frequency seismic waves in the heterogeneous Earth are
important for understanding the physical structure and
the geodynamic processes that reflect the evolution of the
solid Earth.

Earthquake Prediction and Forecasting

A fundamental question in earthquake science is whether
earthquake prediction is possible. Debate on this question
has been going on for decades without clear resolution.
Are pure observational methods without specific physical
understanding sufficient? Earthquakes have been instru-
mentally monitored continuously for about 100 years (al-
though not uniformly over the Earth), but reliable and de-
tailed earthquake catalogs cover only about 50 years. Con-
sequently, it seems questionable that earthquakes can be
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predicted solely on the basis of observed seismicity pat-
terns, given that large earthquakes in a given region have
recurrence intervals ranging from decades to centuries or
longer. Despite progress made in earthquake physics, we
are still not able to write down all the governing equa-
tions for these events and lack sufficient information about
the Earth’s properties. Nevertheless, many attempts have
been and are being made to predict and forecast earth-
quakes. In this section, several articles based on empir-
ical and physics-based approaches will be briefly intro-
duced.

In � Geo-complexity and Earthquake Prediction,
V. Keilis-Borok et al. present an algorithmic prediction
method for individual extreme events having low proba-
bility but large societal impact. They show that the earth-
quake prediction problem is necessarily intertwined with
problems of disaster preparedness, the dynamics of the
solid Earth, and the modeling of extreme events in hier-
archical complex systems. The algorithms considered by
Keilis-Borok et al. are based on premonitory seismicity
patterns and provide alarms lasting months to years. Since
the 1990s, these alarms have been posted for use in testing
such algorithms against newly occurred large earthquakes.
Some success has been achieved, and although the areas
for the predicted earthquakes are very large and the pre-
dicted time windows are very long, such predictions can
be helpful for the officials and the public to undertake ap-
propriate preparedness.

Stochastic models are a practical way of bridging the
gap between the detailed modeling of a complex system
and the need to fit models to limited data. In � Earth-
quake Occurrence and Mechanisms, Stochastic Models
for, D. Vere-Jones presents a brief account of the role
and development of stochastic models of seismicity, from
the first empirical studies to current models used in
earthquake probability forecasting. The author combines
a model of the physical processes generating the observ-
able data (earthquake catalogs) with a model for the errors,
or uncertainties, in our ability to predict those observables.

D.A. Yuen et al. propose the use of statistical ap-
proaches and data-assimilation techniques to earthquake
forecasting in their article on � Earthquake Clusters over
Multi-dimensional Space, Visualization of. The nature of
the spatial-temporal evolution of earthquakes may be as-
sessed from the observed seismicity and geodetic mea-
surements by recognizing nonlinear patterns hidden in the
vast amount of seemingly unrelated data. The authors en-
deavor to bring across the basic concept of clustering and
its role in earthquake forecasting, and conclude that the
clustering of seismic activity reflects both the similarity be-
tween clusters and their correlation properties.

In � Seismicity, Critical States of: From Models to
Practical Seismic Hazard Estimates Space, G. Zoeller et al.
present a combined approach to understanding seismicity
and the emergence of patterns in the occurrence of earth-
quakes based on numerical modeling and data analysis.
The discussion and interpretation of seismicity in terms
of statistical physics leads to the concept of ‘critical states’,
i. e. states in the seismic cycle with an increased probabil-
ity for abrupt changes involving large earthquakes. They
demonstrate that numerical fault models are valuable for
understanding the underlying mechanisms of observed
seismicity patterns, as well as for practical estimates of fu-
ture seismic hazard.

D. Sornette and M.J. Werner in � Seismicity, Statisti-
cal Physics Approaches to stress that the term ‘statistical’
in ‘statistical physics’ has a different meaning than as used
in ‘statistical seismology’. Statistical seismology has been
developed as a marriage between probability theory, statis-
tics, and earthquake occurrences without considerations
of earthquake physics. In statistical physics approaches to
seismicity, researchers strive to derive statistical models
from microscopic laws of friction, damage, rupture, etc.
Sornette and Werner summarize some of the concepts
and tools that have been developed, including the lead-
ing theoretical physical models of the space-time organi-
zation of earthquakes. They then present several examples
of the new metrics proposed by statistical physicists, un-
derlining their strengths and weaknesses. They conclude
that a holistic approach emphasizing the interactions be-
tween earthquakes and faults is promising, and that statis-
tical seismology needs to evolve into a genuine physically-
based statistical physics of earthquakes.

In � Earthquake Networks, Complex, S. Abe and N.
Suzuki discuss the construction of a complex earthquake
network obtained by mapping seismic data to a growing
stochastic graph. This graph, or network, turns out to ex-
hibit a number of remarkable physical and mathematical
behaviors that share common traits with many other com-
plex systems. The scale-free and small-world natures are
typical examples in complex earthquake networks.

Electromagnetic phenomena associated with earth-
quakes, such as earthquake light have been reported
throughout almost all human history. Until rather re-
cently, however, most such observations were unreliable
and best described as folklore. In � Earthquakes, Electro-
magnetic Signals of, S. Uyeda et al. summarize the scien-
tific search for electromagnetic precursors for earthquake
prediction. The presumption is that since earthquakes oc-
cur when slowly increasing tectonic stress in the Earth’s
crust reaches a critical level; the same stress may give rise
to some electromagnetic phenomena. Research on possi-
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ble relationships was initiated in several countries around
the world in the 1980s. Two main approaches are (1) the
monitoring of possible emissions from focal regions in
a wide range of frequency from DC to VHF, and (2) the
monitoring of possible anomalies in the transmission of
man-made electromagnetic waves of various frequencies
over focal regions. Despite much circumstantial evidence,
earthquake-related electromagnetic signals, in particular
those at a pre-seismic stage are not yet widely accepted to
be associated with earthquakes.

Observational programs focused on searching for re-
liable precursory phenomena in seismicity, seismic veloci-
ties, tilt and strain, electromagnetic signals, chemical emis-
sions and animal behavior, claim some successes but no
systematic precursors have been identified. In � Earth-
quake Forecasting and Verification, J.R. Holliday et al.
stress that reliable earthquake forecasting will require sys-
tematic verification. They point out that although earth-
quakes are complex phenomena, systematic scaling laws
such as the Gutenberg–Richter frequency-magnitude re-
lation have been recognized. The Gutenberg–Richter re-
lation is given by: logN(M) D a � bM, where M is the
earthquake magnitude, N(M) is the number of earth-
quakes with magnitude greater than or equal to M, and a
and b are constants. Since b � 1, this means that the num-
ber of earthquakes increase tenfold for each decrease of
one magnitude unit. This suggests that large earthquakes
occur in regions where there are large numbers of small
earthquakes. On this basis, the regions where large earth-
quakes will occur can be forecast with considerable accu-
racy, but the Gutenberg–Richter relation provides no in-
formation about the precise occurrence times.

Earthquake Engineering Considerations
and EarlyWarning Systems

Since seismic hazards exist in many regions of the world,
three major strategies are introduced to reduce their so-
cietal impacts: (1) to avoid building in high seismic-risk
areas, (2) to build structures that can withstand the effects
of earthquakes, and (3) to plan for earthquake emergen-
cies. The first strategy is not very practical because, with
rapid population growth, many economically productive
activities are increasingly located in high seismic-risk ar-
eas. However, by mapping active faults and by studying
past earthquakes, we may estimate the risk potential from
earthquakes and plan our land use accordingly. The sec-
ond strategy depends on the skills of engineers, and also
requires seismologists to provide realistic estimates of the
ground motions resulting from expected earthquakes. The
third strategy includes attempting to predict earthquakes

reliably well in advance to minimize damage and casual-
ties, and also requires the cooperation of the entire soci-
ety. Although we are far from being able to predict earth-
quakes reliably, earthquake early warning systems can pro-
vide critical information to reduce damage and causalities,
as well as to aid rescuing and recovery efforts.

Accurate prediction of the level and variability of near-
source strong-ground motions in future earthquakes is
one of the key challenges facing seismologists and earth-
quake engineers. The increasing number of near-source
recordings collected by dense strong-motion networks ex-
emplifies the inherent complexity of near-field ground
shaking, which is governed by a number of interacting
physical processes. Characterizing, quantifying, and mod-
eling ground-motion complexity requires a joint investi-
gation of (1) the physics of earthquake rupture, (2) wave-
propagation in heterogeneous media, and (3) the effects
of local site conditions. In � Ground Motion: Complex-
ity and Scaling in the Near Field of Earthquake Rup-
tures, P.M. Mai discusses briefly the beginnings of strong-
motion seismology and the recognition of ground-mo-
tion complexity. Using two well-recorded recent earth-
quakes, the author introduces the observational aspects of
near-field ground shaking and describes the basic math-
ematical tools used in the computation of ground mo-
tion. The key elements for characterizing and model-
ing ground-motion complexity are also explained, supple-
mented by a concise overview of the underlying physical
processes.

With increasing urbanization worldwide, earthquake
hazards pose ever greater threats to lives, property, and
livelihoods in populated areas near major active faults on
land or near offshore subduction zones. Earthquake early-
warning (EEW) systems can be useful tools for reduc-
ing the impact of earthquakes, provided that the popu-
lated areas are favorably located with respect to earthquake
sources and their citizens are properly trained to respond
to the warning messages. Under favorable conditions, an
EEW system can forewarn an urban population of im-
pending strong shaking with lead times that range from
a few seconds to a few tens of seconds. A lead time is the
time interval between issuing a warning and the arrival of
the S- and surface waves, which are the most destructive
due to their large amplitudes. Even a few seconds of ad-
vance warning is useful for pre-programmed emergency
measures at various critical facilities, such as the deceler-
ation of rapid-transit vehicles and high-speed trains, the
orderly shutoff of gas pipelines, the controlled shutdown
of some high-technological manufacturing operations, the
safe-guarding of computer facilities, and bringing eleva-
tors to a stop at the nearest floor.
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Recent advances in early warning methodologies are
summarized by W.H.K Lee and Y.M. Wu in the second
part of their article, � Earthquake Monitoring and Early
Warning Systems. In � Earthquake Early Warning Sys-
tem in Southern Italy, A. Zollo et al. analyze and illus-
trate the main scientific and technological issues related
to the implementation andmanagement of the earthquake
early warning system under development in the Cam-
pania region of southern Italy. The system is designed
to issue alerts to distant coastal targets using data from
a dense seismic network deployed in the Apennine belt
region. The authors note that earthquake early warning
systems can also help mitigate the effects of earthquake-
induced disasters such as fires, explosions, landslides, and
tsunamis. Earthquake early warning systems can be in-
stalled at relatively low cost in developing countries, where
evenmoderate-size earthquakes can cause damage compa-
rable to that caused by much larger earthquakes in devel-
oped countries.

Nonlinear problems in structural earthquake engi-
neering deal with the dynamic response of meta-stable,
man-made buildings subjected to strong earthquake shak-
ing. During earthquakes, structures constructed on soft
sediments and soils deform together with the underlying
soil. Strong shaking forces the soil-structure systems to
evolve through different levels of nonlinear response, with
continuously changing properties that depend upon the
time history of excitation and on the progression and de-
gree of damage. In� Earthquake Engineering, Non-linear
Problems in, M.D. Trifunac first briefly discuss the litera-
ture on complex and chaotic dynamics of simple mechan-
ical oscillators, and then introduces the dynamic charac-
teristics and governing equations of the meta-stable struc-
tural dynamics in earthquake engineering. He describes
the nature of the solutions of the governing equations in
terms of both the vibrational and the wave representations.
The author also addresses the dynamic instability, material
and geometric nonlinearities, and complexities of the gov-
erning equations associated with nonlinear soil-structure
interaction.

Structural health monitoring and structural damage
detection refers to the processes of determining and track-
ing the structural integrity and assessing the nature of
damage in a structure. An important and challenging
problem is being able to detect the principal components
of damage in structures (as they occur during or soon af-
ter the earthquake) before physical inspection. In the ar-
ticle, � Earthquake Damage: Detection and Early Warn-
ing in Man-Made Structures, M.I. Todorovska focuses on
global methods and intermediate-scale methods, which
can point to the parts of the structure that have been dam-

aged. Recently, structural identification and health mon-
itoring of buildings based on detecting changes in wave
travel time through the structure has received renewed at-
tention and has proven to be very promising.

Earthquake Physics

Brittle deformation, which is the primary mode of defor-
mation of the Earth’s crust in response to tectonic stress, is
manifested by faulting at the long timescale and by earth-
quakes at the short timescale. It is one of the best-known
examples of a system exhibiting self-organized criticality.
A full understanding of this system is essential for evalu-
ating earthquake hazards, but our current understanding
is sketchy. In � Brittle Tectonics: A Non-linear Dynami-
cal System, C.H. Scholz shows that an earthquake dynamic
system has two characteristic length scales, W� and W��.
An earthquake nucleates within the seismogenic zone and
initially propagates in all directions along its perimeter,
acting as a 3D crack. When its dimension exceeds W*, the
rupture is restricted to propagating in the horizontal di-
rection, acting as a 2D crack. Thus a symmetry breakage
occurs at the dimension W�. Small earthquakes, with di-
mensions smaller than W�, are not self-similar with large
earthquakes, those with lengths larger than W�. The same
occurs for suprafaults at the dimension W�� (a suprafault
is the shear relaxation structure that includes a fault and
its associated ductile shear zone).

Earthquake prediction is desirable for reducing seis-
mic hazards, but we lack an understanding of how and
why earthquakes begin and grow larger or stop. Theoret-
ical and laboratory studies show that a quasi-static rup-
ture growth precedes dynamic rupture. Thus, detecting
the quasi-static rupture growth may lead to forecasting
the subsequent dynamic rupture. In � Earthquake Nu-
cleation Process, Y. Iio reviews studies that analyze the
early portions of observed waveforms, and summarizes
what we presently understand about earthquake nucle-
ation process. An earthquake initiates over a small patch
of a fault, and then their rupture fronts expand outward
until they stop. Some large earthquakes have a rupture ex-
tent greater than 1000 km, while fault lengths of small mi-
croearthquakes range over only a fewmeters. Surprisingly,
the concept that earthquakes are self-similar is widely ac-
cepted despite fault length ranging over 6 orders of magni-
tude. One example of such similarity is the proportionality
of average fault slip to fault length, which implies a con-
stant static stress drop, independent of earthquake size.

The self-similarity law raises a fundamental question,
namely what is the difference between large and small
earthquakes? One end-member model represents earth-
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quakes as ruptures that grow randomly and then terminate
at an earlier stage for smaller earthquakes, but continue
longer for larger earthquakes. This type of model has been
proposed mainly to explain the frequency–magnitude dis-
tribution of earthquakes (the Gutenberg–Richter relation),
but it implies that it is impossible to forecast the final size
of an earthquake at the time the rupture initiates. How-
ever, the other end-member model predicts that larger
earthquakes have a larger ‘seed’ than smaller earthquakes,
and that large and small earthquakes are different even at
their beginnings.

Geoscientists have long sought an understanding of
how earthquakes interact. Can earthquakes trigger other
earthquakes? The answer is clearly yes over short time and
distance scales, as in the case of mainshock–aftershock se-
quences. Over increasing time and distance scales, how-
ever, this question is more difficult to answer. In� Earth-
quakes, Dynamic Triggering of, S.G. Prejean and D.P. Hill
explore the most distant regions over which earthquakes
can trigger other earthquakes. This subject has been the
focus of extensive research over the past twenty five years,
and offers a potentially important key to improving our
understanding of earthquake nucleation. In this review,
the authors discuss physical models and give a description
of documented patterns of remote dynamic triggering.

Models of the earthquake source have been success-
fully used in predicting many of the general properties
of seismic waves radiated from earthquakes. These gen-
eral properties can be derived from a simple omega-
squared spectral shape. In � Earthquake Scaling Laws,
R. Madariaga derives general expressions for energy, mo-
ment and stress in terms of measured spectral parameters,
and shows that earthquake sources can be reduced to a sin-
gle family with the three parameters of moment, corner
frequency and radiated energy. He suggests that most of
the properties of the seismic spectrum and slip distribu-
tion can be explained by a simple crack model. Whether
an earthquake is modeled as a simple circular crack or
as a complex distribution of such cracks, the result is the
same.

In� Earthquake Source: Asymmetry and Rotation Ef-
fects, R. Teisseyre presents a consistent theory describing
an elastic continuum subjected to complex internal pro-
cesses, considers all the possible kinds of the point-related
motions and deformations, and defines a complex rotation
field including spin and twist. Also included in the discus-
sion is a new description of the source processes, including
the role of rotation in source dynamics, an explanation of
co-action of the slip and rotation motions, and a theory of
seismic rotation waves. Rotational seismology is an emerg-
ing field, and a progress report is provided in the Appendix

in � Earthquake Monitoring and Early Warning Systems
by W.H.K. Lee and Y.M. Wu.

Some New Tools to Study Earthquakes

The Global Positioning System (GPS) is a space-based
Global Navigation Satellite System. Using signals trans-
mitted by a constellation of GPS satellites, the positions
of ground-based receivers can be calculated to high pre-
cision, making it possible to track relative movements
of points on the Earth’s surface over time. Unlike older
geodetic surveying methods (which involved periodically
but infrequent measuring angles, distances, or elevations
between points), GPS can provide precise 3-D positions
over a range of sampling rates and on a global scale. GPS
equipment is easy to use and can be set up to collect
data continuously. Since its early geophysical applications
in the mid-1980s, this versatile tool, which can be used
to track displacements over time periods of seconds to
decades, has become indispensable for crustal deforma-
tion studies, leading to many important insights and some
surprising discoveries. In � GPS: Applications in Crustal
Deformation Monitoring, J. Murray-Moraleda focuses on
applications of GPS data to the studies of tectonic, seismic,
and volcanic processes. The author presents an overview
of how GPS works and how it is used to collect data for
geophysical studies. The article also describes a variety of
ways in which GPS data have been used to measure crustal
deformation and investigate the underlying processes.

The concept of a seismic cycle involves processes asso-
ciated with the accumulation and release of stress on seis-
mogenic faults, and is commonly divided into three inter-
vals: (1) the coseismic interval for events occurring during
an earthquake, (2) the postseismic interval immediately
following an earthquake, and (3) the interseismic period
in between large earthquakes. In � Crustal Deformation
During the Seismic Cycle, Interpreting Geodetic Observa-
tions of, R. Lohman explores howwe can draw conclusions
about fault zone slip at depths far greater than are directly
accessible to us, based on how the Earth’s surface deforms
during, before, and after earthquakes.

Atmospheric sound can be radiated by the displace-
ment or rupture of the Earth’s surface induced by earth-
quakes, tsunamis, and volcanoes, and by the flow and ex-
citation of fluids during volcanic eruptions. These com-
plex and potentially cataclysmic phenomena share some
common physics, yet represent different ways of convert-
ing energy into atmospheric sound. In� Infrasound from
Earthquakes, Tsunamis and Volcanoes, M. Garces and
A. LePichon discuss some of the signal features unique
to earthquakes, tsunamis, and volcanoes captured by the
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present generation of infrasound arrays. They also dis-
cuss contemporary methods for the analysis, interpreta-
tion, and modeling of these diverse signals, and consider
some of the associated geophysical problems that remain
unsolved.

Tsunamis

Tsunamis are oceanic gravity waves generated by seafloor
deformation due to earthquakes, volcanic eruptions, land-
slides, or asteroid impacts. Earthquake tsunamis, such as
the 2004 Indian Ocean tsunami (caused by the Sumatra–
Andaman earthquake of December 26), are the most fre-
quent type of tsunamis. However, large volcanic eruptions,
such as the 1883 Krakatau eruption (in the Sunda strait be-
tween the islands of Java and Sumatra) also cause ocean-
wide tsunamis. Landslides (which are often triggered by
earthquakes) cause large tsunamis locally, but their effects
are usually limited to the immediate vicinity of the source.

Modeling: Forward and Inverse Approaches

Forward-modeling of a tsunami starts from given initial
conditions, computes its propagation in the ocean, and
calculates the tsunami arrival times and/or water run-up
heights along the coasts. Once the initial conditions are
provided, the propagation and coastal behavior can be nu-
merically computed for an actual bathymetry. These cal-
culations are useful for early tsunami warning and for
detailed hazard estimations. However, the initial condi-
tions associated with tsunami generation processes are still
poorly known, because large tsunamis are rare and the
tsunami generation in the open ocean is not directly ob-
servable. Currently, the tsunami source is estimated indi-
rectly, mostly on the basis of seismological analysis, but
a more direct estimation of the tsunami source is essential
to better understand the tsunami generation process and
to more accurately forecast the effects of a tsunami along
the coasts.

In � Tsunamis, Inverse Problem of, K. Satake reviews
inverse methods used in the quantification of tsunami
sources from the observations. The author describes the
tsunami generation by earthquakes, with an emphasis on
the fault parameters and their effects on tsunami propaga-
tion, including shallow water theory and numerical com-
putation. The author then summarizes the tsunami ob-
servations, including instrumental sea-level data and run-
up height estimates for modern, historical and prehistoric
tsunamis. He also describes methods for modeling and
quantifying a tsunami source, and for analyzing tsunami
travel times, amplitudes and waveforms. He concludes

with an estimation of earthquake fault parameters derived
from waveform inversion of tsunami data, and a discus-
sion of heterogeneous fault motion and its application for
tsunami warning.

Tsunami inundation is the one of the final stages of
tsunami evolution, when the wave encroaches upon and
floods dry land. It is during this stage that a tsunami is
most destructive and takes the vast majority of its victims.
To gauge the near-shore impact of tsunami inundation,
engineers and scientists rely primarily on three different
methods: (1) field survey of past events, (2) physical exper-
imentation in a laboratory, and (3) numerical modeling.
In�Tsunami Inundation,Modeling of, P.J. Lynett focuses
on numerical simulations. He reviews tsunami generation
and open ocean propagation, and discusses the physics of
near-shore tsunami evolution, hydrodynamic modeling of
tsunami evolution, moving shoreline algorithms, and ef-
fect of topographical features on inundation.

Tsunami Forecasting andWarning

The original definition of ‘tsunami earthquake’ was given
by H. Kanamori (Phys Earth Planet Inter 6:346–359,
1972) as “an earthquake that produces a large-size tsunami
relative to the value of its surface wave magnitude (MS )”.
The true damage potential that a tsunami earthquake rep-
resents may not be recognized by conventional near real-
time seismic analysis methods that utilize measurements
of relatively high-frequency signals, and thus the threat
may only become apparent upon the arrival of the tsunami
waves on the local shores. Although tsunami earthquakes
occur relatively infrequently, the effect on the local popula-
tion can be devastating, as was most recently illustrated by
the July 2006 Java tsunami earthquake, which was quickly
followed by tsunami waves two to sevenmeters high, trav-
eling as far as two kilometers inland and killing at least
668 people.

It is important to note that the definition of ‘tsunami
earthquake’ is distinct from that of ‘tsunamigenic earth-
quake’. A tsunamigenic earthquake is any earthquake that
excites a tsunami. Tsunami earthquakes are a specific sub-
set of tsunamigenic earthquakes. In � Tsunami Earth-
quakes, J. Polet and H. Kanamori describe the character-
istics of tsunami earthquakes and the possible factors in-
volved in the anomalously strong excitation of tsunamis by
these events. They also discuss a possible model for these
infrequent, but potentially very damaging events.

Tsunamis are among nature’s most destructive haz-
ards. Typically generated by large, underwater shallow
earthquakes, tsunamis can cross an ocean basin in amatter
of hours. Although difficult to detect, and not dangerous
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while propagating in open ocean, tsunamis can unleash
awesome destructive power when they reach coastal areas.
With advance warning, populations dwelling in coastal ar-
eas can be alerted to evacuate to higher ground and away
from the coast, thus saving many lives.

Tsunami travels at about the same speed of a commer-
cial airliner, however, seismic waves can travel at speeds
more than 40 times greater. Because of this large dispar-
ity in speed, scientists rely on seismic methods to detect
the possibility of tsunami generation and to warn coastal
populations of an approaching tsunami well in advance of
its arrival. The seismic P-wave for example, travels from
Alaska to Hawaii in about 7min, whereas a tsunami will
take about 5.5 hours to travel the same distance. Although
over 200 sea-level stations reporting in near-real time are
operating in the Pacific Ocean, it may take an hour or
more, depending on the location of the epicenter, before
the existence (or not) of an actual tsunami generation is
confirmed. In other ocean basins where the density of sea-
level instruments reporting data in near real-time is less,
the delay in tsunami detection is correspondingly longer.
However, global, regional, and local seismic networks, and
the infrastructure needed to process the large amounts of
seismic data that they record, are well in place around
the world. For these reasons, tsunami warning centers
provide initial tsunami warnings to coastal populations
based entirely on the occurrence of a large shallow off-
shore earthquake. It is well-known, however, that large
shallow offshore earthquakes may or may not be tsunami-
genic.

In � Tsunami Forecasting and Warning, O. Kami-
gaichi discusses the complexity problem in tsunami fore-
casting for large local events, and describes the Tsunami
Early Warning System in Japan. Tsunami disaster mitiga-
tion can be achieved effectively by the appropriate com-
bination of software and hardware countermeasures. Im-
portant issues for disaster mitigation includes: (1) improv-
ing people’s awareness of the tsunami hazards, (2) impart-
ing the necessity of spontaneous evacuation when people
notice an imminent threat of tsunami on their own (feel-
ing strong shaking near the coast, seeing abnormal sea
level change, etc), (3) giving clear directions on how to re-
spond to the tsunami forecast, and (4) conducting tsunami
evacuation drills. The author notes that in tsunami fore-
casting, a trade-off exists between promptness and accu-
racy/reliability.

In � Earthquake Source Parameters, Rapid Estimates
for Tsunami Warning, B. Hirshorn and S. Weinstein de-
scribe the basic method used by the Pacific Tsunami
Warning Center (PTWC) mainly for large teleseismic
events. Software running at the PTWC processes in real

time seismic signals from over 150 seismic stations world-
wide provided by various seismic networks. Automatic
seismic event detection algorithms page the duty scien-
tists for any earthquake occurring worldwide over about
Magnitude 5.5. Other automatic software locates these
events, and provides a first estimate of their magnitude
and other source parameters in near real time. Duty scien-
tists then refine the software’s automated source parame-
ter estimates and issue a warning if necessary. The authors
also describe their ongoing efforts to improve estimates of
earthquake source parameters.

Wedge Mechanics, Submarine Landslides
and Slow Earthquakes

A study of the mechanics of wedge-shaped geological bod-
ies, such as accretionary prisms in subduction zones and
fold-and-thrust belts in collision zones, is interesting be-
cause they enable us to use the observed morphology and
deformation of these bodies to constrain properties of the
thrust faults underlying them. The fundamental process
described in wedge mechanics is how gravitational force,
in the presence of a sloping surface, is balanced by basal
stress and internal stress. The internal state of stress de-
pends on the rheology of the wedge. The most commonly
assumedwedge rheology for geological problems is perfect
Coulomb plasticity, and the model based on this rheology
is referred to as the Coulomb wedge model.

The connection between wedge mechanics and great
earthquakes and tsunamis at subduction zones is an
emerging new field of study. In their article,�WedgeMe-
chanics: Relation with Subduction Zone Earthquakes and
Tsunamis,Wang et al. cover the topics of stable and critical
Coulomb wedges, dynamic Coulomb wedge, stress drop
and increase in a subduction earthquake, and tsunami-
genic coseismic seafloor deformation. Better constraints
are needed to quantify how stresses along different down-
dip segments of the subduction fault evolve with time
throughout an earthquake cycle and how the evolution im-
pacts wedge and seafloor deformation. Submarine moni-
toring in conjunction with land-based monitoring at sub-
duction zones that are currently in different phases of
earthquake cycles will allow us to better understand the
evolution of fault and wedge stresses during the inter-
seismic period. In this regard, cabled seafloor monitoring
networks including borehole observatories being designed
or implemented at different subduction zones will surely
yield valuable data in the near future.

The term ‘submarine landslide’ encompasses a multi-
tude of gravitational mass failure features at areal scales
from squaremeters to thousands of square kilometers. The
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term ‘slow earthquake’ describes a discrete slip event that
produces millimeter to meter-scale displacements identi-
cal to those produced during earthquakes but without the
associated seismic shaking. Recently, a GPS network on
the south flank of Kilauea volcano, Hawaii, recorded mul-
tiple slow earthquakes on the subaerial portion of a large
landslide system that extends primarily into the subma-
rine environment. Since catastrophic failure of subma-
rine landslides can cause a tsunami they represent signif-
icant hazards to coastal zones. Because submarine land-
slide systems are among the most active as well as spa-
tially confined deforming areas on Earth, they are excel-
lent targets for understanding the general fault failure pro-
cess. In � Submarine Landslides and Slow Earthquakes:
Monitoring Motion with GPS and Seafloor Geodesy, B.A.
Brooks et al. present a review of this interdisciplinary topic
of interest in geodesy, seismology, tsunamis, and volcanol-
ogy.

Volcanoes

About 1,500 volcanoes have erupted one or more times
during the past 10,000 years, and since A.D. 1600, volcanic
disasters have killed about 300,000 people and resulted in
property damage and economic loss exceeding hundreds
of millions of dollar. Articles in this section are intended
to summarize recent research in: (1) volcano seismology,
(2) physical processes involved in volcanoes, and (3) mod-
eling volcanic eruptions and hazards warning.

Volcano Seismology

Magma transport in a volcano is episodic due to the in-
herent instability of magmatic systems at all time scales.
This episodicity is reflected in seismic activity, which orig-
inates in dynamic interactions between gas, liquid and
solid along magma transport paths that involve complex
geometries. The description of the flow processes is gov-
erned by the nonlinear equations of fluid dynamics. In
volcanic fluids, further complexity arises from the strong
nonlinear dependence of magma rheology on tempera-
ture, pressure, and water and crystal content, and nonlin-
ear characteristics of associated processes underlying the
physico-chemical evolution of liquid-gas mixtures consti-
tuting magma.

In � Volcanoes, Non-linear Processes in, B. Chouet
presents a brief review of volcano seismology and ad-
dresses basic issues in the quantitative interpretation of
processes in active volcanic systems. Starting with an in-
troduction of the seismic methodology used to quantify
the source of volcano seismicity, the author then focuses
on sources originating in the dynamics of volcanic flu-

ids. A review of some of the representative source mech-
anisms of Long-Period (LP) and Very Long-Period (VLP)
signals is followed by a description of a mesoscale compu-
tational approach for simulating two-phase flows of com-
plex magmatic fluids. Refined understanding of magma
and hydrothermal transport dynamics therefore requires
multidisciplinary research involving detailed field mea-
surements, laboratory experiments, and numerical mod-
eling. Such research is fundamental to monitoring and in-
terpreting the subsurface migration of magma that often
leads to eruptions, and thus would enhance our ability to
forecast hazardous volcanic activity.

Volcano seismicity produces a wide variety of seis-
mic signals that provide glimpses of the internal dynam-
ics of volcanic systems. Quantitative approaches to analy-
sis and interpret volcano-seismic signals have been devel-
oped since the late 1970s. The availability of seismic equip-
ments with wide frequency and dynamic ranges since the
early 1990s has revealed a variety of volcano-seismic sig-
nals over a wide range of periods. Quantification of the
sources of volcano-seismic signals is crucial to achieving
a better understanding of the physical states and dynam-
ics of magmatic and hydrothermal systems. In � Vol-
cano Seismic Signals, Source Quantification of, H. Kuma-
gai provides the theoretical basis for a quantification of the
sources of volcano-seismic signals. The author focuses on
the phenomenological representation of seismic sources,
waveform inversion to estimate source mechanisms, spec-
tral analysis based on an autoregressive model, and physi-
cal properties of fluid-solid coupled waves.

Among various eruptive styles, Strombolian activity
is easier to study because of its repetitive behavior. Since
Strombolian activity offers numerous interesting seismic
signals, a growing attention has been devoted to the ap-
plication of waveform inversion for imaging conduit ge-
ometry and retrieving eruption dynamics from seismolog-
ical recordings. Quantitative models fitting seismological
observations are a powerful tool for interpreting seismic
recordings from active volcanoes. In � Slug Flow: Mod-
eling in a Conduit and Associated Elastic Radiation, L.
D’Auria and M. Martini discuss the mechanism of gen-
eration of Very-Long Period (VLP) signals accompanying
Strombolian explosions. This eruptive style, occurring at
many basaltic volcanoes worldwide, is characterized by the
ascent and the bursting of large gas slugs. The mechanism
of formation, ascent and explosion of bubbles and slugs
and their relation with eruptive activity has been studied
theoretically and by analogue simulations. The authors re-
port results from numerical simulations, focusing on the
seismic signals generated by pressure variations applied to
the conduit walls.
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Physical Processes in Volcanoes

The dynamics of solid-liquid composite systems are rel-
evant to many problems, including how melts or aque-
ous fluids migrate through the mantle and crust toward
the surface, how deformation and fracture in these re-
gions are influenced by the existence of fluids, and also
how these fluids can be observed in seismic tomographic
images. In � Earth’s Crust and Upper Mantle, Dynamics
of Solid–Liquid Systems in, Y. Takei introduces a general
continuum mechanical theory for macroscopic dynam-
ics of solid-liquid composite systems, and emphasizes on
how such interactions with pore geometry can be studied.
The author then discusses the determinability of porosity
and pore geometry from seismic tomographic images, and
presents a practical method to assess porosity and pore ge-
ometry from tomographic VP and VS images.

A volcano consists of solids, liquids, gases, and inter-
mediate materials of any two of these phases. Mechanical
and thermodynamical interactions between these phases
are essential in the generating a variety of volcanic activ-
ities. In particular, the gas phase is mechanically distinct
from the other phases and plays an important role in dy-
namic phenomena in volcanoes. In � Pressure Impulses
Generated by Bubbles Interacting with Ambient Perturba-
tion, M. Ichihara and T. Nishimura discuss several bub-
ble dynamics phenomena from the viewpoint that a bub-
bly fluid acts as an impulse generator of observable signals,
such as earthquakes, ground deformations, airwaves, and
an eruption itself. The authors focus on the notion that the
impulse is excited by non-linear coupling between internal
processes in a bubbly fluid and an external perturbation.
The importance of these processes has recently become
noticed as a possible triggering mechanism of eruptions,
earthquakes, and inflation of a volcano.

Our capability to mitigate volcano hazards relies in
large part on forecasting explosive events, a process which
requires a high degree of understanding of the physic-
ochemical factors operating during explosive volcanism.
The approaches taken to gain an understanding of explo-
sive volcanism have relied on a combination of field obser-
vations, theoretical models and laboratory models of ma-
terials and mechanisms. In � Volcanic Eruptions, Explo-
sive: Experimental Insights, S.J. Lane and M.R. James first
review aspects of the volcanic materials literature, with the
aim of illustrating the nature of molten rock, the com-
plexity of which underpins most explosive volcanic pro-
cesses. Experimental modeling of these processes can then
build on the materials understanding. Such experiments
involve investigation of the behavior of natural volcanic
products at laboratory time and length scales, including

the response of magma samples to rapid changes in pres-
sure and temperature, the fall behavior of silicate particles
in the atmosphere, and the generation and separation of
electrostatic charge during explosive eruptions.

In�Volcanic Eruptions: Cyclicity During Lava Dome
Growth, O. Melnik et al. consider the process of slow ex-
trusion of very viscous magma that forms lava domes.
Dome-building eruptions are commonly associated with
hazardous phenomena, including pyroclastic flows gener-
ated by dome collapses, explosive eruptions, and volcanic
blasts. These eruptions commonly display fairly regular al-
ternations between periods of high and low or no activity
with time scales from hours to years. Usually hazardous
phenomena are associated with periods of high magma
discharge rate. Hence, understanding the causes of pulse
activity during extrusive eruptions is an important step
towards forecasting volcanic behavior, and especially the
transition to explosive activity whenmagma discharge rate
increases by a few orders of magnitude. In recent years the
risks have escalated because the population density in the
vicinity of many active volcanoes has increased.

Modeling Volcanic Eruptions and Hazards Warning

While a wide range of complex deterministic models ex-
ists to model various volcanic processes, these provide lit-
tle in the way of information about future activity. Being
the (partially) observed realization of a complex system,
volcanological data are inherently stochastic in nature, and
need to be modeled using statistical models. In � Vol-
canic Eruptions: Stochastic Models of Occurrence Pat-
terns, M.S. Bebbington considers models of eruption oc-
currence, omitting techniques for forecasting the nature
and effect of the eruption. As the track record of a poten-
tially active volcano provides the best method of assess-
ing its future long-term hazards, the author first briefly re-
views the provenance and characteristics of the data avail-
able, and then discusses various taxonomies for stochastic
models. The examples of Mount Etna and Yucca Moun-
tain are selected for more detailed examination partly be-
cause many, somewhat contradictory, results exist. Differ-
ent models make different assumptions, and vary in how
much information they can extract from data. In addition,
the data used often varies from study to study, and the sen-
sitivity of models to data is important, but too often ig-
nored.

In�Volcanic Hazards and EarlyWarning, R.I. Tilling
highlights the range in possible outcomes of volcano un-
rest and reviews some recent examples of the actual out-
comes documented for several well-monitored volcanoes.
The author also discusses the challenge for emergency-
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management authorities, as well as challenges in achiev-
ing refined predictive capability. To respond effectively to
a developing volcanic crisis, timely and reliable early warn-
ings are absolutely essential; they can be achieved only by
a greatly improved capability for eruption prediction. This
in turn depends on the quantity and quality of volcano-
monitoring data and the diagnostic interpretation of such
information.

Discussions

The terms ‘Prediction’ and ‘forecasting’ are often used in-
terchangeably. However, the commonly accepted defini-
tion of an ‘earthquake prediction’ is a concise statement,
in advance of the event, of the time, location, and mag-
nitude of a future earthquake. To be practically useful to
the society, the time window must be short (in days or
months), the location extent small (within tens of kilome-
ters), and the magnitude precise (˙ 0.5 unit). A ‘forecast’,
on the other hand, is more loosely defined as the probabil-
ity of an occurrence of a large earthquake in a given region
(e. g., southern California) during the coming decades or
centuries. The broader time intervals associated with fore-
casts allows society to consider and implement mitigation
efforts over a large region.

As an observational seismologist and on a personal
note, I am skeptical that earthquakes can be reliably pre-
dicted before (1) we have collected accurate data of their
occurrences over a sufficiently long period of time, and
(2) we have a good understanding of the physical pro-
cesses that create them. Although earthquakes have been
known from antiquity, accurate earthquake catalogs exist
only since about the 1960s. Since the recurrence of a dam-
aging earthquake in a given area is often more than 100
years (some even thousands of years), it is obvious that we
lack the necessary observed data. C. Lanczos (Linear Dif-
ferential Operators, Van Nostrand-Reinhold, 1961) said it
well in general: “a lack of information cannot be remedied
by any mathematical trickery”. Nevertheless, we must ap-
ply new concepts and tools to extract as much useful infor-
mation as possible from the existing data. Indeed, we must
thank many pioneers for enlightening us with many inter-
esting and tentative results about earthquakes, tsunamis
and volcanoes that they managed to extract from inade-
quate and insufficient data.

Because most tsunamis are generated by earthquakes,
successes in predicting tsunamis depend on predicting
earthquakes and recognizing them as tsunamigenic. Pre-
dicting a volcanic eruption is a little easier, as the location
is known and there are often some observable phenomena
preceding it. However, the exact time and the intensity and

extent of an eruption are difficult to predict because the
volcanic processes are very complex involving gas, liquid
and solid phases.

Fortunately, earthquake, tsunami and volcano hazards
can be reduced by employing sound engineering practices,
early warning systems, and hazard analysis, using many
of the tools and concepts that were developed for predic-
tion. Since fatalities and economic loss from a single catas-
trophic event can reach 100,000 or more, and $100 billion
or more, respectively, it is imperative that governments
should support long-term monitoring with modern in-
struments and research, including complexity studies of
earthquakes, tsunamis and volcanoes.

Complexity and Non-linearity in
Autonomous Robotics,
Introduction to
WARREN E. DIXON
Department of Mechanical and Aerospace Engineering,
Gainesville, USA

Historically, robotic systems have played a key role in
manufacturing, hazardous material handling, exploration
and surveillance, search and rescue, and military applica-
tions. For most of these applications, single robot systems
with traditional sensing and actuation are able to execute
predetermined tasks in a well defined environment. The
ability to develop a robotic system capable of executing
tasks in an environment that is not well defined or is dy-
namic has been a daunting task. The development of such
a capability has been limited by the complexity required in
sensing, cognitive decision making, new actuation capa-
bilities, and robustness and responsiveness of the control
system. The complexity of these challenges increases when
groups of robots are required to interact with each other
or with people in a social or physical manner. This volume
of work is a collection of recent and emerging efforts at
the dawn of a new millennium to develop enabling tech-
nologies for new frontiers where robots are able to execute
tasks in dynamic and unstructured environments.

Sensing is a fundamental requirement for an au-
tonomous system to efficiently interact with its environ-
ment. Vision is arguably the primary environmental sen-
sor used by human beings and many other animals to
understand how to interact with dynamic and unstruc-
tured environments. While traditional sensor modalities
will continue to be an integral part of emerging robotic
systems, new research efforts will be driven by the desire
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for human-like interpretation and reaction to image infor-
mation. However, the use of image-based feedback adds
complexity and new challenges. One challenge is how an
autonomous system can find and track objects of interest
in an image of dense, cluttered environments (see � Mo-
tion Prediction for Continued Autonomy). Once a tar-
get(s) of interest is determined, how can a robot use a set
of two dimensional images to interpret its relative posi-
tion and orientation with respect to different objects (see
� Image Based State Estimation). Another challenge is
how to use reconstructed and estimated information from
an image to develop a stable closed-loop error system (see
� Adaptive Visual Servo Control).

Given feedback from vision sensors, traditional sen-
sors (e. g., sonar, radar, lidar, encoders), or a fusion of
these sensors, another complexity is how to best exploit
sensor and other information discovered during the exe-
cution of a plan, including autonomous selection of which
behavior(s) to invoke, in what sequence, and by what
method. The ability to organize and apply situational
knowledge to macro-level planning and decision-making
can be enabled through a scaffolding provided by a com-
puter architecture that provides interfaces for different
sources of information (see � Software Architectures for
Autonomy). As robotic systems operate in increasingly
more complicated environments, more intelligence is re-
quired by the autonomous system. The ultimate goal for
an autonomous system is to enable a level of cognition
with human-like intelligence in perception, motor con-
trol, and high-level cognition. Beyond sensing and reac-
tion, cognition enables a robotic system to reason about
an environment without direct interaction, enabling the
capability to plan for selecting between competing goals,
coping with multiple sensory inputs, and completing mul-
tiple tasks (see�Cognitive Robotics). Computer architec-
tures that provide a backbone for organizing and interfac-
ing with different sensing and actuation components and
the ability for autonomous systems to exhibit increasing
levels of intelligence are especially important as robotics
move from behind chained off work cells in an assembly
line to direct emotional and physical interaction with peo-
ple (see�Human Robot Interaction).

In addition to new frontiers in sensing, computer
architectures, and autonomous reasoning, advances are
also required in the construction and actuation of an
autonomous robotic system. For example, since people
spend a significant portion of their time inside buildings,
the building itself could be designed as a morphing robot
surface that is articulated, programmable, and embedded
with integrated digital technologies (see � Continuum
Robots). Or, as robots are forecasted to take an increas-

ing role for in-home care, robots will need new methods
of physically interacting with people and the environment.
For example, many biological systems have shown that
significant articulation can be achieved through tongues,
trunks, and tentacles. Robots inspired by these systems
could also morph their shape to their environment to
access difficult-to-reach areas, and to perform adaptive
grasping using whole arm manipulation (see also � Con-
tinuum Robots).

New actuation and manipulation methods place new
challenges on control systems. One challenge includes the
lack of precise mathematical models of the environment
and its interaction with the robot through actuators and
sensors. As autonomous robots interact with people, the
robot may be required to interpret events that a person
describes using linguistic terms. These challengesmotivate
the need for new control designs that may be inspired by
the way that humans tend to work with vague or impre-
cise concepts (see�Neuro-fuzzy Control of Autonomous
Robotics).

Given the complexity that arises from developing
a single autonomous system capable of interacting with
uncertain and dynamic environments, motivation exists
to develop technologies for groups of robotic systems.
Distributed robotics hold the promise to enable groups
of robots to collaborate to solve complex tasks such as
monitoring a vast environment, manipulating large ob-
jects, or building advanced structures. One challenge to
enable groups of robots to collaborate efficiently is how
to develop path planning and motion coordination meth-
ods so that teams of autonomous mobile robots can share
the same workspace while avoiding interference with each
other, and/or while achieving groupmotion objectives (see
� Multiple Mobile Robot Teams, Path Planning and Mo-
tion Coordination in). Obtaining an optimal solution for
the coordination of multiple robot vehicles is a challenge
because an integrated approach for designing communi-
cation, sensing, and control systems must all be consid-
ered as constraints on the system performance (see� Dis-
tributed Controls of Multiple Robotic Systems, An Opti-
mization Approach). The design of a single robot requires
the balancing of many factors (e. g., cost, sensing, process-
ing capabilities), many of which are conflicting. In addi-
tion to these factors, distributed robotics adds the com-
plexity of multiple robots. For example, there are differ-
ent advantages and disadvantages to designing a homo-
geneous versus a heterogeneous team (see � Distributed
Robotic Teams: A Framework for Simulated and Real–
World Modeling).

Despite different design tradeoffs for teams of robots,
some advanced teams hold the potential for unprece-
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dented versatility and robustness at a low cost. For ex-
ample, modular self-reconfigurable (MSR) robot teams are
composed of a large number of repeated modules that can
rearrange their connectedness to form a large variety of
structures to suit the task (see � Modular Self-Reconfig-
urable Robots). In contrast to self-reconfigurable robotics,
self-replication utilizes an original unit to actively assem-
ble an exact copy of itself from passive components. This
has the potential to result in an exponential growth in the
number of robots available to perform a job, thus drasti-
cally shortening the original unit’s task time (see � Self-
-replicating Robotic Systems). To enable self replication,
a robot must exploit resources in the environment such
as raw materials and energy. Insights to address this chal-
lenge can be provided from nature, where biological sys-
tems must forage for resources. Foraging robots are mo-
bile robots capable of searching for and, when found,
transporting objects to one or more collection points. For-
aging robots may be single robots operating individually,
or multiple robots operating collectively (see � Foraging
Robots).

New technologies are emerging in sensing, actuation,
reasoning, and control. As these technologies mature, new
levels of autonomy are made possible. As robotic systems
are able to operate in increasingly more dynamic and un-
certain environments, an exciting new era for robotics is
evident.
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Glossary

Systems biology The holistic study of biological struc-
ture, function and organization.

Probabilistic graphical model A probabilistic model
defining the relationships between variables in amodel
by means of a graph, used to represent the relation-
ships in a biological network or pathway.

MCMC Markov chain Monte Carlo – a computational
method for approximating high-dimensional integrals
using Markov chains to sample from probability dis-
tributions, commonly used in Bayesian inference.

Microarray A high-throughput experimental platform
for collecting functional gene expression and other ge-
nomic data.

Cluster analysis A statistical method for discovering sub-
groups in data.

Metabolomics The study of the metabolic content of
tissues.

Definition of the Subject

This chapter identifies the challenges posed to biologists,
geneticists and other scientists by advances in technol-
ogy that have made the observation and study of biolog-
ical systems increasingly possible. High-throughput plat-
forms have made routine the collection vast amounts of
structural and functional data, and have provided insights
into the working cell, and helped to explain the role of ge-
netics in common diseases. Associated with the improve-
ments in technology is the need for statistical procedures
that extract the biological information from the available
data in a coherent fashion, and perhaps more importantly,
can quantify the certainty with which conclusions can be
made. This chapter outlines a biological hierarchy of struc-
tures, functions and interactions that can now be observed,
and detail the statistical procedures that are necessary for
analyzing the resulting data. The chapter has four main
sections. The first section details the historical connection
between statistics and the analysis of biological and ge-
netic data, and summarizes fundamental concepts in bi-
ology and genetics. The second section outlines specific
mathematical and statistical methods that are useful in
the modeling of data arising in bioinformatics. In sec-
tions three and four, two particular issues are discussed
in detail: functional genomic via microarray analysis, and
metabolomics. Section five identifies some future direc-
tions for biological research in which statisticians will play
a vital role.

Introduction

The observation of biological systems, their processes and
inter-reactions, is one of the most important activities in
modern science. It has the capacity to provide direct in-
sight into fundamental aspects of biology, genetics, evo-
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lution, and indirectly will inform many aspects of public
health. Recent advances in technology – high-throughput
measurement platforms, imaging – have brought a new era
of increasingly precise methods of investigation. In paral-
lel to this, there is an increasingly important focus on sta-
tistical methods that allow the information gathered to be
processed and synthesized. This chapter outlines key sta-
tistical techniques that allow the information gathered to
be used in an optimal fashion.

Although its origin is dated rather earlier, the term Sys-
tems Biology (see, for example, [1,2,3]) has, since 2000,
been used to describe the study of the operation of bi-
ological systems, using tools from mathematics, statistics
and computer science, supplanting computational biology
and bioinformatics as an all-encompassing term for quan-
titative investigation in molecular biology. Most biological
systems are hugely complex, involving chemical and me-
chanical processes operating at different scales. It is impor-
tant therefore that information gathered is processed co-
herently, according to self-consistent rules and practices,
in the presence of the uncertainty induced by imperfect
observation of the underlying system. The most natural
framework for coherent processing of information is that
of probabilistic modeling.

Statistical Versus Mathematical Modeling

There is a great tradition of mathematical and probabilis-
tic modeling of biology and genetics; see [4] for a thor-
ough review. The mathematization of biology, evolution
and heredity began at the end of the nineteenth century,
and continued for the first half of the twentieth century,
by far pre-dating the era of molecular biology and genet-
ics that culminated at the turn of the last millennium with
the human genome project. Consequently, the mathemat-
ical models of, say, evolutionary processes that were devel-
oped by Yule [5] and Fisher and Wright [6,7,8], and clas-
sical models of heredity, could only be experimentally ver-
ified and developed many years after their conception. It
could also be convincingly argued that through the work
of F. Galton, K. S. Pearson and R. A. Fisher, modern statis-
tics has its foundation in biology and genetics.

In parallel to statistical and stochastic formulation of
models for biological systems, there has been a more re-
cent focus on the construction of deterministic models to
describe observed biological phenomena. Such models fall
under the broad description Mathematical Biology, and
have their roots in applied mathematics and dynamical
systems; see, for example, [8,9] for a comprehensive treat-
ment. The distinction between stochastic and determin-
istic models is important to make, as the objectives and

tools used often differ considerably. This chapter will re-
strict attention to stochastic models, and the processing of
observed data, and thus is perhaps more closely tied to the
immediate interests of the scientist, although some of the
models utilized will be inspired by mathematical models
of the phenomena being observed.

Fundamental Concepts in Biology and Genetics

To facilitate the discussion of statistical methods applied
to systems biology, it is necessary to introduce fundamen-
tal concepts from molecular biology and genetics; see the
classic text [10] for full details. Attention is restricted to
eukaryotic, organisms whose cells are constructed to con-
tain a nucleus which coding information is encapsulated.

� The cell nucleus is a complex architecture containing
several nuclear domains [11] whose organization is not
completely understood, but the fundamental activity
that occurs within the nucleus is the production and
distribution of proteins.

� Dioxyribonucleic acid (DNA) is a long string of nu-
cleotides that encodes biological information, and that
is copied or transcribed into ribonucleic acid (RNA),
which in turn enables the formation of proteins. Spe-
cific segments of the DNA, genes, encode the proteins,
although non-coding regions of DNA – for example,
promoter regions, transcription factor binding sites –
also have important roles. Genetic variation at the nu-
cleotide level, even involving a single nucleotide, can
disrupt cellular activity. In humans and most other
complex organisms, DNA is arranged into chromo-
somes, which are duplicated in the process of mito-
sis. The entire content of the DNA of an organism is
termed the genome.

� Proteins are macromolecules formed by the translation
of RNA, comprising amino acids arranged (in primary
structure) in a linear fashion, comprising domains with
different roles, and physically configured in three di-
mensional space. Proteins are responsible for all biolog-
ical activities that take place in the cell, although pro-
teins may have different roles in different tissues at dif-
ferent times, due to the regulation of transcription.

� Proteins interact with each other in different ways in
different contexts in interaction networks that may
be dynamically organized. Genes are also regarded as
having indirect interactions through gene regulatory
networks.

� Genetic variation amongst individuals in a population
is due tomutation and selection, which can be regarded
as stochastic mechanisms. Genetic information in the
form of DNA passes from parent to offspring, which
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promulgates genetic variation. Individuals in a popula-
tion are typically related in evolutionary history. Sim-
ilarly, proteins can also thought to be related through
evolutionary history.

� Genetic disorders are the result of genetic variation,
but the nature of the genetic variation can be large- or
small-scale; at the smallest scale, variation in single nu-
cleotides (single nucleotide polymorphisms (SNPs)) can
contribute to the variation in observed traits.

Broadly, attention is focused on the study of structure and
function of DNA, genes and proteins, and the nature of
their interactions. It is useful, if simplistic, to view biolog-
ical activities in terms of an organizational hierarchy of
inter-related chemical reactions at the level of DNA, pro-
tein, nucleus, network and cellular levels. A holistic view of
mathematical modeling and statistical inference requires
the experimenter to model simultaneously actions and in-
teractions of all the component features, whilst recogniz-
ing that the component features cannot observed directly,
and can only be studied through separate experiments on
often widely different platforms. It is the role of the bioin-
formatician or systems biologist to synthesize the data
available from separate experiments in an optimal fashion.

Mathematical Representations
of the Organizational Hierarchy

A mathematical representation of a biological system is
required that recognizes, first, the complexity of the sys-
tem, secondly, its potentially temporally changing nature,
and thirdly the inherent uncertainties that are present. It is
the last feature that necessitates the use of probabilistic or
stochastic modeling.

An aphorism commonly ascribed to D.V. Lindley
states that “Probability is the language of uncertainty”;
probability provides a coherent framework for processing
information in the presence of imperfect knowledge, and
through the paradigm of Bayesian theory [12] provides the
mathematical template for statistical inference and predic-
tion. In the modeling of complex systems, three sorts of
uncertainty are typically present:

� Uncertainty of Structure: Imperfect knowledge of the
connections between the interacting components is
typically present. For example, in a gene regulatory net-
work, it may be possible via the measurement of gene
co-expression to establish which genes interact within
the network, but it may not be apparent precisely how
the organization of regulation operates, that is which
genes regulate the expression of other genes.

� Uncertainty concerning Model Components: In any
mathematical or probabilistic model of a biological sys-
tem, there are model components (differential equa-
tions, probability distributions, parameter settings)
that must be chosen to facilitate implementation of the
model. These components reflect, but are not deter-
mined by, structural considerations.

� Uncertainty of Observation: Any experimental proce-
dure carries with it uncertainty induced by the mea-
surement of underlying system, that is typically subject
to random measurement error, or noise. For example,
many biological systems rely on imaging technology,
and the extraction of the level of signal of a fluorescent
probe, for a representation of the amount of biological
material present. In microarray studies (see Sect. “Mi-
croarrays”), comparative hybridization of messenger
RNA (mRNA) to a medium is a technique for mea-
suring gene expression that is noisy due to several fac-
tors (imaging noise, variation in hybridization) not at-
tributable to a biological cause.

The framework to be built must handle these types of un-
certainty, and permit inference about structure and model
components.

Models Derived from Differential Equations

A deterministic model reflecting the dynamic relation-
ships often present in biological systems may be based on
the system of ordinary differential equations (ODEs)

ẋ(t) D g(x(t)) (1)

where x(t) D (x1(t); : : : ; xd (t))T represent the levels of d
quantities being observed ẋ(t) represents time derivative,
and g is some potentially non-linear system of equations,
that may be suggested by biological prior knowledge or
prior experimentation. The model in Eq. (1) is a classi-
cal “Mathematical Biology” model, that has been success-
ful in representing forms of organization in many bio-
logical systems (see, for example [13] for general appli-
cations). Suppressed in the notation is a dependence on
system parameters, � , a k-dimensional vector that may be
presumed fixed, and “tuned” to replicate observed behav-
ior, or estimated from observed data. When data repre-
senting a partial observation of the system are available,
inferences about � can be made, and models defined by
ODE systems are of growing interest to statisticians; see,
for example, [15,16,17].

Equation (1) can be readily extended to a stochastic dif-
ferential equation (SDE) system

ẋ(t) D g(x(t))C dz(t) (2)
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where z(t) is some stochastic process that renders the so-
lution to Eq. (2) a stochastic process (see, for example, [18]
for a comprehensive recent summary of modeling ap-
proaches and inference procedures, and a specific applica-
tion in [19]). The final term dz(t) represents the infinites-
imal stochastic increment in z(t). Such models, although
particularly useful for modeling activity at the molecular
level, often rely on simplifying assumptions (linearity of g ,
Gaussianity of z) and the fact that the relationship struc-
ture captured by g is known. Inference for the parameters
of the system can bemade, but in general require advanced
computational methods (Monte Carlo (MC) and Markov
chain Monte Carlo (MCMC)).

Probabilistic Graphical Models

A simple and often directly implementable approach
is based on a probabilistic graphical model, comprising
a graph G D (N ;E), described by a series of nodes N,
edges E, and a collection of random variables X D

(X1; : : : ; Xd )T placed at the nodes, all of which may be
dynamically changing. See, for example [20] for a recent
summary, [14] for mathematical details and [22] for a bi-
ological application.

The objective of constructing such a model is to
identify the joint probability structure of X given the
graph G, which possibly is parametrized by parameters �,
fX(xj�;G). In many applications, X is not directly ob-
served, but is instead inferred from observed data, Y , aris-
ing as noisy observations derived from X. Again, a k-di-
mensional parameter vector � helps to characterize the
stochastic dependence of Y on X by parametrize the con-
ditional probability density fYjX (yjx;�). The joint prob-
ability model encapsulating the probabilistic structure of
the model is

fX;Y (x; yj�;�;G) D fX(xj�;G) fYjX (yjx;�) (3)

The objectives of inference are to learn aboutG (the uncer-
tain structural component) and parameters (� ;�) (the un-
certain model parameters and observation components).

The graph structure G is described by N and E.
In holistic models, G represents the interconnections be-
tween interacting modules (genomic modules, transcrip-
tion modules, regulatory modules, proteomic modules,
metabolic modules etc.) and also the interconnections
within modules in the form of sub graphs. The nodesN
(and hence X) represent influential variables in the model
structure, and the edges E represent dependencies. The
edge connecting two nodes, if present, may be directed or
undirected according to the nature of the influence; a di-

rected edge indicates the direction of causation, an undi-
rected edge indicates a dependence.

Causality is a concept distinct from dependence (as-
sociation, co-variation or correlation), and represents the
influence of one node on one or more other nodes (see,
for example, [23] for a recent discussion of the distinction
with examples, and [24,25] for early influential papers dis-
cussing how functional dependence may be learned from
real data). A simple causal relationship between three vari-
ables X1; X2; X3 can be represented

X1 X2 X3

which encodes a conditional independence relationship be-
tween X1 and X3 given X2, and a factorization of the joint
distribution

p(x1; x2; x3) D p(x1)p(x2jx1)p(x3jx2):

Similarly, the equivalent graphs

X1

X3 X1 X3 X2

X2

encode p(x1; x2; x3) D p(x1)p(x2)p(x3jx1; x2)

whereas the graphs for conditional independence of X2
and X3 given X1 are

X2

X1 X2 X1 X3

X3

encoding p(x1; x2; x3) D p(x1)p(x2jx1)p(x3jx1): (4)

Such simplemodel assumptions are the building blocks for
the construction of highly complex graphical representa-
tions of biological systems. There is an important differ-
ence between analysis based purely on simultaneous ob-
servation of all components of the system, which can typ-
ically on yield inference on dependencies (say, covariances
measured in the joint probability model p(x) – see, for
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example [26,27,28] and analysis based on interventions-
genomic knock–out experiments, chemical or biological
challenges, transcriptional/translational perturbation such
as RNA interference (RNAi) – that may yield information
on casual links; see, for example [29,30].

Bayesian Statistical Inference

Given a statistical model for observed data such as Eq. (3),
inference for the parameters (�;�) and the graph struc-
tureG is required. The optimal coherent framework is that
of Bayesian statistical inference (see for example [31]), that
requires computation of the posterior distribution for the
unknown (or unobservable) quantities given by

�(�;�;Gjx; y) / fX;Y (x; yj�;�;G)p(� ;�;G)
D L(� ;�;Gjx; y)p(� ;�;G) (5)

a probability distribution fromwhich can be computed pa-
rameter estimates with associated uncertainties, and pre-
dictions from the model. The terms L(� ;�;Gjx; y) and
p(� ;�;G) are termed likelihood and prior probability dis-
tribution respectively. The likelihood reflects the observed
data, and the prior distribution encapsulates biological
prior knowledge about the system under study. If the
graph structure is known in advance, the prior distribu-
tion for that component can be set to be degenerate. If, as
in many cases of probabilistic graphical models, the x are
unobserved, then the posterior distribution incorporates
them also,

�(� ;�;G; xj; y) / fY jX(yjx;�) fX(xj�;G)p(� ;�;G) (6)

yielding a latent or state-space model, otherwise inter-
preted as amissing datamodel.

The likelihood and prior can often be formulated in
a hierarchical fashion to reflect believed causal or condi-
tional independence structures. If a graph G is separable
into two sub graphs G1;G2 conditional on a connecting
node �, similar to the graph in Eq. (4), then the probabil-
ity model also factorizes into a similar fashion; for exam-
ple,X1 might represent the amount of expressedmRNA of
a gene that regulates two separate functional modules, and
X2 and X3 might be the levels of expression of collections
of related proteins. The hierarchical specification also ex-
tends to parameters in probability models; a standard for-
mulation of a Bayesian hierarchical model involves specifi-
cation of conditional independence structures at multiple
levels of within a graph. The following three-level hierar-
chical model relates data Y D (Y1; : : : ;Y p) at level 1, to
a population of parameters � D (�1; : : : ;� p)T at level 2,
to hyper parameters at level 3

Level 3  

Level 2 �1 �2 � � � � p

Level 1 Y1 Y2 � � � Y p

(7)

yielding the factorization of the Bayesian full joint distri-
bution as

fX;Y ; ;� (x; y;� ; )

D p( )

( pY

iD1

p(� i j )

) ( pY

iD1

p(Y i j�i )

)

:

Bayesian Computation

The posterior distribution is, potentially, a high-dimen-
sional multivariate function on a complicated parameter
space. The proportionality constant in Eq. (5) takes the
form

fX;Y (x; y) D
Z

fX;Y (x; yj�;�;G)p(� ;�;G)d� d�dG

(8)

and in Eq. (6) takes the form

fY (y) D
Z

fX;Y (x; yj�;�;G)p(� ;�;G)d� d�dGdx (9)

and is termed the marginal likelihood or prior predictive
distribution for the observable quantities x and y. In formal
Bayesian theory, it is the representation of the distribu-
tion of the observable quantities through the paradigm of
exchangeability that justifies the decomposition in Eq. (8)
into likelihood and prior, and justifies, via asymptotic ar-
guments, the use of the posterior distribution for infer-
ence (see Chaps. 1–4 in [13] for full details). It is evident
from these equations that exact computation of the pos-
terior distribution necessitates high-dimensional integra-
tion, and in many cases this cannot be carried out analyti-
cally.

Numerical Integration Approaches Classical numeri-
cal integration methods, or analytic approximation meth-
ods are suitable only in low dimensions. Stochastic nu-
merical integration, for example Monte Carlo integration,
approximates expectations by using empirical averages of
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functional of samples obtained from the target distribu-
tion; for probability distribution �(x), the approximation
of E	 [g(X)],

E	 [g(X)] D
Z

g(x)�(x)dx <1

is achieved by randomly sampling x1; : : : ; xN (N large)
from �(), and using the estimate

bE	 [g(X)] D
1
N

nX

iD1

g(x i ):

An adaptation of the Monte Carlo method can be used if
the functions g and � are not “similar” (in the sense that g
is large in magnitude where � is not, and vice versa); im-
portance sampling uses the representation

E	 [g(X)] D
Z

g(x)�(x)dx D
Z

g(x)�(x)
p(x)

p(x)dx

for some pdf p() having common support with� , and con-
structs an estimate from a sample x1; : : : ; xN from p() of
the form

bE	 [g(X)] D
1
N

nX

iD1

g(x i )�(x i)
p(x i)

:

Under standard regularity conditions, the corresponding
estimators converge to the required expectation. Further
extensions are also useful:

� Sequential Monte Carlo: Sequential Monte Carlo
(SMC) is an adaptive procedure that constructs a se-
quence of improving importance sampling distribu-
tions. SMC is a technique that is especially useful for in-
ference problems where data are collected sequentially
in time, but is also used in standard Monte Carlo prob-
lems (see [32]).

� Quasi Monte Carlo:Quasi Monte Carlo (QMC) utilizes
uniform but not random samples to approximate the
required expectations. It can be shown that QMC can
produce estimators with lower variance than standard
Monte Carlo.

Markov Chain Monte Carlo Markov chain Monte
Carlo (MCMC) is a stochastic Monte Carlo method for
sampling from a high-dimensional probability distribu-
tion �(x), and using the samples to approximate expec-
tations with respect to that distribution. An ergodic, dis-
crete-time Markov chain is defined on the support of �
in such a way that the stationary distribution of the chain

exists, and is equal to � . Dependent samples from � are
obtained by collecting realized values of the chain after it
has reached its stationary phase, and then used as the basis
of a Monte Carlo strategy.

The most common MCMC algorithm is known as the
Metropolis–Hastings algorithm which proceeds as follows.
If the state of the d-dimensional chain fX tg at iteration t
is given by X t D u, then a candidate state v is generated
from conditional density q(u; v) D q(vju), and accepted
as the new state of the chain (that is, X tC1

def
D v) with prob-

ability ˛(u; v) given by

˛(u; v) D min
�
1;
�(v)q(v; u)
�(u)q(u; v)

�
:

A common MCMC approach involves using a Gibbs sam-
pler strategy that performs iterative sampling with updat-
ing from the collection of full conditional distributions

�(x jjx( j)) D �(x jjx1; : : : ; x j�1; x jC1; xd )

D
�(x1; : : : ; xd )

�(x1; : : : ; x j�1; x jC1; xd )
; j D 1; : : : ; d

rather than updating the components of x simultaneously.
There is a vast literature on MCMC theory and applica-
tions; see [33,34] for comprehensive treatments.

MCMC re-focuses inferential interest from computing
posterior analytic functional forms to producing posterior
samples. It is an extremely flexible framework for com-
putational inference that carries with it certain well-doc-
umented problems, most important amongst them being
the assessment of convergence. It is not always straightfor-
ward to assess when the Markov chain has reached its sta-
tionary phase, so certain monitoring steps are usually car-
ried out.

Bayesian Modeling: Examples

Three models that are especially useful in the modeling
of systems biological data are regression models, mixture
models, and state-space models. Brief details of each type
of model follow.

Regression Models Linear regression models relate an
observed response variable Y to a collection of predictor
variables X1; X2; : : : ; Xd via the model for the ith response

Yi D ˇ0 C
dX

jD1

ˇ jXi j C �i D XT
iˇ C �i

say, or in vector form, for Y D (Y1; : : : ;Yn)T,

Y D Xˇ C �
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where ˇ D (ˇ0; ˇ1; : : : ; ˇd )T is a vector of real-valued pa-
rameters, and � is a vector random variable with zero-
mean and variance-covariance matrix ˙ . The objective
in the analysis is to make inference about ˇ, to under-
stand the influence of the predictors on the response, and
to perform prediction for Y . The linear regression model
(or General Linear Model) is extremely flexible: the design
matrix X can be formed from arbitrary, possibly non-lin-
ear basis functions of the predictor variables. By introduc-
ing a covariance structure into ˙ , it is possible to allow
for dependence amongst the components of Y , and allows
for the possibility of modeling repeated measures, longi-
tudinal or time-series data that might arise from multiple
observation of the same experimental units.

An extension that is often also useful is to random ef-
fect or mixed models that take into account any repeated
measures aspect to the recorded data. If data on an indi-
vidual (person, sample, gene etc) is Y i D (Yi1; : : : ;Yid )T,
then

Y i D Xˇ C ZU i C �i (10)

where Z is a d � p constant design matrix, and U i is
a p � 1 vector of random effects specific to individual i.
Typically the random effect vectors are assumed to be
drawn from a common population. Similar formulations
can be used to construct semi-parametric models that are
useful for flexible modeling in regression.

Mixture Models A mixture model presumes that the
probability distribution of variable Y can be written

fYj� (yj�) D
KX

kD1

!k fk(yj�k) (11)

where f1; f2; : : : ; fK are distinct component densities in-
dexed by parameters �1; : : : ; �K , and for all k, 0 < !k < 1,
with

KX

kD1

!k D 1:

The model can be interpreted as one that specifies that
with probability !k , Y is drawn from density fk , for
k D 1; : : : ;K. Hence the model is suitable for modeling in
cluster analysis problems.

This model can be extended to an infinite mixture
model, which has close links with Bayesian non-parametric
modeling. A simple infinite mixture/Bayesian non-para-
metric model is the mixture of Dirichlet processes (MDP)
model [35,36]: for parameter ˛ > 0 and distribution func-
tion F0, an MDP model can be specified using the follow-
ing hierarchical specification: for a sample of size n, we

have

Yi j�i � fY j� (yj�i) i D 1; : : : ; n
�1; : : : ; �n � DP(˛; F0)

where DP(˛; F0) denotes a Dirichlet process. The
DP(˛; F0) model may be sampled to produce �1; �2; : : : ;
�n using the Polya-Urn scheme

�1 � F0

�k j�1; : : : ; �k�1 �
˛

˛ C k � 1
F0 C

1
˛ C k � 1

k�1X

jD1

ı� j

where ıx is a point mass at x. For �k , conditional
on �1; : : : ; �k�1, the Polya-Urn scheme either samples
�k from F0 (with probability ˛/(˛ C k � 1)), or sam-
ples �k D � j for some j D 1; : : : ; k � 1 (with probability
1/(˛ C k � 1)). This model therefore induces clustering
amongst the � values, and hence has a structure similar to
the finite mixture model – the distinct values of �1; : : : ; �n
are identified as the cluster “centers” that index the com-
ponent densities in the mixture model in Eq. (11). The de-
gree of clustering is determined by ˛; high values of ˛ en-
courage large numbers of clusters.

The MDP model is a flexible model for statistical in-
ference, and is used in a wide range of applications such as
density estimation, cluster analysis, functional data analy-
sis and survival analysis. The component densities can be
univariate or multivariate, and themodel itself can be used
to represent the variability in observed data or as a prior
density. Inference for such models is typically carried out
using MCMC or SMC methods [32,33]. For applications
in bioinformatics and functional genomic, see [37,38].

State-Space Models A state-space model is specified
through a pair of equations that relate a collection of states,
X t , to observations Y t that represent a system and how
that system develops over time. For example, the relation-
ship could be model led as

Y t D f (X t;U t)

X tC1 D g(X t ;V t)

where f and g are vector-valued functions, and (U t ;V t)
are random error terms. A linear state-space model takes
the form

Y t D AtX t C c t C U t

X tC1 D BtX t C d t C V t

for deterministicmatrices At and Bt and vectors c t and d t .
The X t represent the values of unobserved states, and the
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second equation represents the evolution of these states
through time (see [39]).

State-space models can be used as models for scalar,
vector and matrix-valued quantities. One application is
evolution of a covariance structure, for example, repre-
senting dependencies in a biological network. If the net-
work is dynamically changing through time, a model sim-
ilar to those above is required but where X t is a square,
positive-definite matrix. For such a network, therefore,
a probabilistic model for positive-definite matrices can be
constructed from the Wishart/Inverse Wishart distribu-
tions [40]. For example, we may have for t D 1; 2; : : :,

Y t � Normal(0; X t)

X tC1 � InverseWishart(�t ; X t)

where degrees of freedom parameter �t is chosen to induce
desirable properties (stationary, constant expectation etc.)
in the sequence of X t matrices.

Transcriptomics and Functional Genomics

A key objective in the study of biological organization is
to understand the mechanisms of the transcription of ge-
nomic DNA into mRNA that initiates the production of
proteins and hence lies at the center of the functioning of
the nuclear engine. In a cell in a particular tissue at a par-
ticular time, the nucleus contains the entire mRNA pro-
file (transcriptome) which, if it could be measured, would
provide direct insight into the functioning of the cell. If
this profile could be measured in a dynamic fashion, then
the patterns of gene regulation for one, several or many
genes could be studied. Broadly, if a gene is “active” at any
time point, it is producing mRNA transcripts, sometimes
at a high rate, sometimes at a lower rate, and understand-
ing the relationships between patterns of up- and down-
regulation lies at the heart of uncovering pathways, or net-
works of interacting genes. Transcriptomics is the study
of the entirety of recorded transcripts for a given genome
in a given condition. Functional genomics, broadly, is the
study of gene function via measured expression levels and
how it relates to genome structure and protein expression.

Microarrays

A common biological problem is to detect differential ex-
pression levels of a gene in two or more tissue or cell types,
as any differences may contribute to the understanding of
the cellular organization (pathways, regulatory networks),
or may provide a mechanism for discrimination between
future unlabeled samples. An important tool for the anal-
ysis of these aspects of gene function is the microarray,

a medium onto which DNA fragments (or probes) are
placed or etched. Test samplemRNA fragments are tagged
with a fluorescent marker, and then allowed to bond or
hybridize with the matching DNA probes specific to that
nucleotide sequence, according to the usual biochemical
bonding process. The microarray thus produces a mea-
surement of the mRNA content of the test sample for each
of the large number of DNA sequences bound to the mi-
croarray as probes. Microarrays typically now contain tens
of thousands of probes for simultaneous investigation of
gene expression in whole chromosomes, or even whole
genomes for simple organisms. The hybridization exper-
iments are carried out under strict protocols, and every ef-
fort is made to regularize the production procedures, from
the preparation stage through to imaging. Typically, repli-
cate experiments are carried out.

Microarray experiments have made the study of
gene expression routine; instantaneous measurements of
mRNA levels for large numbers of different genes can be
obtained for different tissue or cell types in a matter of
hours. The most important aspects of a statistical analysis
of gene expression data are, therefore, twofold; the analysis
should be readily implementable for large data sets (large
numbers of genes, and/or large numbers of samples), and
should give representative, robust and reliable results over
a wide range of experiments.

Since their initial use as experimental platforms, mi-
croarrays have become increasingly sophisticated, allow-
ing measurement of different important functional as-
pects. Arrays containing whole genomes of organisms can
be used for investigation of function, copy-number vari-
ation, SNP variation, deletion/insertion sites and other
forms of DNA sequence variation (see [41] for a recent
summary). High-throughput technologies similar in the
form of printed arrays are now at the center of transcrip-
tome investigation in several different organisms, and also
widely used for genome-wide investigation of common
diseases in humans [42,43]. The statistical analysis of such
data represents a major computational challenge. In the
list below, a description of details of first and second gen-
eration microarrays is given.

� First Generation Microarray Studies
From the mid 1990s, comparative hybridization exper-
iments using microarrays or gene-chips began to be
widely used for the investigation of gene expression.
The two principal types of array used were cDNA ar-
rays and oligonucleotide arrays:
� cDNA microarrays: In cDNA microarray compet-

itive hybridization experiments, the mRNA levels
of a genes in a target sample are compared to the
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mRNA level of a control sample by attaching fluo-
rescent tags (usually red and green respectively for
the two samples) and measuring the relative fluo-
rescence in the two channels. Thus, in a test sam-
ple (containing equal amounts of target and con-
trol material), differential expression relative to the
control is either in terms of up-regulation or down-
regulation of the genes in the target sample. Any
genes that are up-regulated in the target compared
to the control and hence that have larger amounts
of the relevant mRNA, will fluoresce as predomi-
nantly red, and any that are down-regulatedwill flu-
oresce green. Absence of differences in regulation
will give equal amounts of red and green, giving
a yellow fluor. Relative expression is measured on
the log scale

y D log
xTARGET
xCONTROL

D log
xR
xG

(12)

where xR and xG are the fluorescence levels in the
RED and GREEN channels respectively.

� Oligonucleotide arrays:The basic concept oligonu-
cleotide arrays is that the array is produced to inter-
rogate specific target mRNAs or genes by means of
a number of oligo probes usually of length no longer
than 25 bases; typically 10-15 probes are used to hy-
bridize to a specific mRNA, with each oligo probe
designed to target a specific segment of the mRNA
sequence. Hybridization occurs between oligos and
test DNA in the usual way. The novel aspect of the
oligonucleotide array is the means by which the ab-
solute level of the target mRNA is determined; each
perfect match (PM) probe is paired with amismatch
(MM) probe that is identical to the prefect match
probe except for the nucleotide in the center of the
probe, for which a mismatch nucleotide is substi-
tuted, as indicated in the diagram below.

PM: ATGTATACTATT A TGCCTAGAGTAC

MM: ATGTATACTATT C TGCCTAGAGTAC

The logic is that the target mRNA, which has been
fluorescently tagged, will bind perfectly to the PM
oligo, and not bind at all to theMM oligo, and hence
the absolute amount of the target mRNA present
can be obtained as the difference xPM � xMM where
xPM and xMM are the measurements of for the PM
andMM oligos respectively.

� Second Generation Microarrays
In the current decade, the number of array platforms
has increased greatly. The principle of of hybridization

of transcripts to probes on a printed array is often still
the fundamental biological component, but the design
of the new arrays is often radically different. Some of
the new types of array are described below (see [44] for
a summary).
� ChiP-Chip: ChIP-chip (chromatin immunoprecip-

itation chip) arrays are tiling array with genomic
probes systematically covering whole genomes or
chromosomes that is used to relate protein expres-
sion to DNA sequence by mapping the binding sites
of transcription factor and other DNA-binding pro-
teins. See [45] for an application and details of sta-
tistical issues.

� ArrayCGH: Array comparative genome hybridiza-
tion (ArrayCGH) is another form of tiling array that
is used to detect copy number variation (the varia-
tion in the numbers of repeated DNA segments) in
subgroups of individuals with the aim of detecting
important variations related to common diseases.
See [46,47].

� SAGE: Serial Analysis of Gene Expression (SAGE)
is a platform for monitoring the patterns of expres-
sion of many thousands of transcripts in one sam-
ple, which relies on the sequencing of short cDNA
tags that correspond to a sequence near one end of
every transcript in a tissue sample. See [48,49,50].

� Single Molecule Arrays: Single Molecule Arrays
rely on the binding of single mRNA transcripts to
the spots on the array surface, and thus allows for
extremely precise measurement of transcript levels:
see [51]. Similar technology is used for precise pro-
tein measurement and antibody detection. See [52].

Statistical Analysis of Microarray Data

In a microarray experiment, the experimenter has access
to expression/expression profile data, possibly for a num-
ber of replicate experiments, for each of a (usually large)
number of genes. Conventional statistical analysis tech-
niques and principles (hypothesis testing, significance test-
ing, estimation, simulation methods/Monte Carlo proce-
dures) are used in the analysis of microarray data. The
principal biological objectives of a typical microarray anal-
ysis are:

� Detection of differential expression: up- or down-reg-
ulation of genes in particular experimental contexts, or
in particular tissue samples, or cell lines at a given time
instant.

� Understanding of temporal aspects of gene regula-
tion: the representation and modeling of patterns of
changes in gene regulation over time.
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� Discovery of gene clusters: the partitioning of large
sets of genes into smaller sets that have common pat-
terns of regulation.

� Inference for gene networks/biological pathways: the
analysis of co-regulation of genes, and inference about
the biological processes involving many genes concur-
rently.

There are typically several key issues and models that arise
in the analysis of microarray data: such methods are de-
scribed in detail in [53,54,55,56]. For a Bayesian modeling
perspective, see [57].

� Array normalization: Arrays are often imaged under
slightly different experimental conditions, and there-
fore the data are often very different even from replicate
to replicate. This is a systematic experimental effect,
and therefore needs to be adjusted for in the analysis
of differential expression. Amisdiagnosis of differential
expression may be made purely due to this systematic
experimental effect.

� Measurement error: The reported (relative) gene ex-
pression levels models are only in fact proxies for the
true level gene expression in the sample. This requires
a further level of variability to be incorporated into the
model.

� Random effects modeling: It may be necessary to use
mixed regression models, where gene specific random-
effects terms are incorporated into the model.

� Multivariate analysis: The covariability of response
measurements, in time course experiments, or between
PM and MM measurements for an oligonucleotide
array experiment, is best handled using multivariate
modeling.

� Testing:One- and two-sample hypothesis testing tech-
niques, based on parametric and non-parametric test-
ing procedures can be used in the assessment of the
presence of differential expression. For detecting more
complex (patterns of) differential expression, in more
general structured models, the tools of analysis of
variance (ANOVA) can be used to identify the chief
sources of variability.

� Multiple testing/False discovery: In microarray analy-
sis, a classical statistical analysis using significance test-
ing needs to take into account the fact that a very large
number of tests are carried out. Hence significance lev-
els of tests must be chosen to maintain a required fam-
ily-wise error rate, and to control the false discovery
rate.

� Classification: The genetic information contained in
a gene expression profile derived from microarray ex-
periments for, say, an individual tissue or tumor type

may be sufficient to enable the construction of a clas-
sification rule that will enable subsequent classification
of new tissue or tumor samples.

� Cluster analysis: Discovery of subsets of sets of genes
that have common patterns of regulation can be
achieved using the statistical techniques of cluster anal-
ysis (see Sect. “Clustering”).

� Computer-intensive inference: For many testing and
estimation procedures needed for microarray data
analysis, simulation-based methods (bootstrap estima-
tion, Monte Carlo and permutation tests, Monte Carlo
andMCMC) are often necessary, especially when com-
plex Bayesian models are used.

� Data compression/feature extraction: The methods
of principal components analysis and extended linear
modeling via basis functions can be used to extract the
most pertinent features of the large microarray data
sets.

� Experimental design: Statistical experimental design
can assist in determining the number of replicates, the
number of samples, the choice of time points at which
the array data are collected and many other aspects of
microarray experiments. In addition, power and sam-
ple size assessments can inform the experimenter as to
the statistical worth of the microarray experiments that
have been carried out.

Typically, data derived from both types of microarrays are
highly noise and artefact corrupted. The statistical analy-
sis of such data is therefore quite a challenging process.
In many cases, the replicate experiments are very variable.
The other main difficulty that arises in the statistical anal-
ysis of microarray data is the dimensionality; a vast num-
ber of gene expressionmeasurements are available, usually
only on a relatively small number of individual observa-
tions or samples, and thus it is hard to establish any general
distributional models for the expression of a single gene.

Clustering

Cluster analysis is an unsupervised statistical procedure
that aims to establish the presence of identifiable sub-
groups (or clusters) in the data, so that objects belonging
to the same cluster resemble each other more closely than
objects in different clusters; see [58,59] for comprehensive
summaries.

In two or three dimensions, clusters can be visualized
by plotting the raw data. With more than three dimen-
sions, or in the case of dissimilarity data (see below), ana-
lytical assistance is needed. Broadly, clustering algorithms
fall into two categories:
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� Partitioning Algorithms: A partitioning algorithm di-
vides the data set into K clusters, where and the al-
gorithm is run for a range of K-values. Partitioning
methods are based on specifying an initial number
of groups, and iteratively reallocating observations be-
tween groups until some equilibrium is attained. The
most famous algorithm is the K-Means algorithm in
which the observations are iteratively classified as be-
longing to one of K groups, with group membership is
determined by calculating the centroid for each group
(the multidimensional version of the mean) and as-
signing each observation to the group with the closest
centroid. The K-means algorithm alternates between
calculating the centroids based on the current group
memberships, and reassigning observations to groups
based on the new centroids. A more robust method
uses mediods rather than centroids (that is, medians
rather than means in each dimension, and more gener-
ally, any distance-based allocation algorithm could be
used.

� Hierarchical Algorithms: A hierarchical algorithm
yields an entire hierarchy of clustering for the given
data set. Agglomerative methods start with each object
in the data set in its own cluster, and then successively
merges clusters until only one large cluster remains.Di-
visivemethods start by considering the whole data set as
one cluster, and then splits up clusters until each object
is separated. Hierarchical algorithms are discussed in
detail in Sect. “Hierarchical Clustering“.

Data sets for clustering of N observations can either take
the form of an N � p data matrix, where rows contain the
different observations, and columns contain the different
variables, or an N � N dissimilarity matrix, whose (i,j)th
element is di j , the distance or dissimilarity between obser-
vations i and j that obeys the usual properties of a metric.
Typical data distance measures between two data points i
and j with measurement vectors xi and x j are the L1 and
L2 Euclidean distances, and the grid-basedManhattan dis-
tance for discrete variables, or the Hamming distance for
binary variables. For ordinal (ordered categorical) or nom-
inal (label) data, other dissimilarities can be defined.

Hierarchical Clustering Agglomerative hierarchical
clustering initially places each of the N items in its own
cluster. At the first level, two objects are to be clustered
together, and the pair is selected such that the potential
function increases by the largest amount, leaving N � 1
clusters, one with twomembers, the remaining N � 2 each
with one. At the next level, the optimal configuration of
N � 2 clusters is found, by joining two of the existing clus-

ters. This process continuous until a single cluster remains
containing all N items. At each level of the hierarchy, the
merger chosen is the one that leads to the smallest increase
in some objective function.

Classical versions of the hierarchical agglomeration al-
gorithm are typically used with average, single or complete
linkage methods, depending on the nature of the merg-
ing mechanism. Such criteria are inherently heuristic, and
more formalmodel-based criteria can also be used.Model-
based clustering is based on the assumption that the data
are generated by a mixture of underlying probability dis-
tributions. Specifically, it is assumed that the population of
interest consists of K different sub populations, and that
the density of an observation from the the sub population
is for some unknown vector of parameters. Model-based
clustering is described in more detail in Sect. “Model–
Based Hierarchical Clustering”.

The principal display plot for a clustering analysis is
the dendrogram which plots all of the individual data ob-
jects linked by means of a binary “tree”. The dendro-
gram represents the structure inferred from a hierarchi-
cal clustering procedure which can be used to partition
the data into subgroups as required if it is cut at a certain
“height” up the tree structure. As with many of the aspects
of the clustering procedures described above, it is more of
a heuristic graphical representation rather than a formal
inferential summary. However, the dendrogram is readily
interpretable, and favored by biologists.

Model-Based Hierarchical Clustering Another ap-
proach to hierarchical clustering is model-based cluster-
ing (see for example [60,61]), which is based on the as-
sumption that the data are generated by a mixture of K
underlying probability distributions as in Eq. (11). Given
data matrix y D

�
y1; : : : ; yN

T, let � D (�1; : : : ; �N ) de-
note the cluster labels, where �i D k if the ith data point
comes from the kth sub-population. In the classification
procedure, the maximum likelihood procedure is used to
choose the parameters in the model.

Commonly, the assumption is made that the data in
the different sub-populations follow multivariate normal
distributions, with mean uk and covariance matrix˙k for
cluster k, so that

fY j� (yj�) D
KX

kD1

!k fk(yjuk ; ˙k)

D

KX

kD1

!k
1

(2�)d/2
1

j˙kj1/2

exp
�
�
1
2
(y � uk)T˙�1k (y � uk )

�
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where Pr[�i D k] D !k . If ˙k D �
2Ip is a p � p matrix,

then maximizing the likelihood is the same as minimiz-
ing the sum of within-group sums of squares and cor-
responds to the case of hyper-spherical clusters with the
same variance. Other forms of ˙k yield clustering meth-
ods that are appropriate in different situations. The key to
specifying this is the singular value or eigen decomposi-
tion of˙k , given by eigenvalues 1; : : : ; p and eigen vec-
tors v1; : : : ; vp , as in Principal Components Analysis [62].
The eigen vectors of ˙k , specify the orientation of the
kth cluster, the largest eigenvalue 1 specifies its vari-
ance or size, and the ratios of the other eigenvalues to the
largest one specify its shape. Further, if ˙k D �

2
k Ip , the

criterion corresponds to hyper spherical clusters of differ-
ent sizes, and by fixing the eigenvalue ratios ˛ j D  j/1
for j D 2; 3; : : : ; p across clusters, other cluster shapes are
encouraged.

Model-Based Analysis of Gene Expression Profiles

The clustering problem for vector-valued observations can
be formulated using models used to represent the gene ex-
pression patterns via the extended linear model, that is,
a linear model in non-linear basis functions; see, for ex-
ample, [63,64] for details.

Generically, the aim of the statistical model is to cap-
ture the behavior of the gene expression ratio yt as a func-
tion of time t. The basis of the modeling strategy would
be to use models that capture the characteristic behavior
of expression profiles likely to be observed due to different
forms of regulation. A regression framework and model
can be adopted. Suppose that Yt is model led using a linear
model

Yt D X tˇ C "t

where Xt is (in general) a 1 � p vector of specified func-
tions of t, and ˇ is a p � 1 parameter vector. In vec-
tor representation, the gene expression profile over times
t1; : : : ; tT can be written Y D (Y1; : : : ;YT ),

Y D Xˇ C " : (13)

The precise form of design matrix X will be specified
to model the time-variation in signal. Typically the ran-
dom error terms f"tg are taken as independent and iden-
tically distributed Normal random variables with variance
�2, implying that the conditional distribution of the re-
sponses Y is multivariate normal

Y jX;ˇ; �2 � N
�
Xˇ; �2IT


(14)

where now X is T � p where IT is the T � T identity ma-
trix.

In order to characterize the underlying gene expres-
sion profile, the parameter vector ˇ must be estimated.
For this model, the maximum likelihood/ordinary least
squares estimates of ˇ and �2 are

b̌ML D
�
XTX

�1 XTy b�2 D
1

T � p
�
y �by

T �y �by


for fitted valuesby D Xb̌ML D X
�
XTX

�1 XTy.

Bayesian Analysis in Model–Based Clustering In
a Bayesian analysis of the model in (13) a joint prior dis-
tribution �

�
ˇ; �2


is specified for

�
ˇ; �2


, and a posterior

distribution conditional on the observed data is computed
for the parameters. The calculation proceeds using Eq. (5)
(essentially with G fixed).

�
�
ˇ; �2jy; X


D

L
�
y; X;ˇ; �2


�
�
ˇ; �2



R
L
�
y; X;ˇ; �2


�
�
ˇ; �2


dˇd�2

where L
�
y; X;ˇ; �2


is the likelihood function. In the lin-

ear model context, a conjugate prior specification is used
where

�
�
ˇj�2


� Normal

�
v; �2V



�
�
�2

� IGamma


˛
2
;
�

2

� (15)

(v is p � 1, V is p � p positive-definite and symmetric,
all other parameters are scalars) and IGamma denotes the
inverse Gamma distribution. Using this prior, standard
Bayesian calculations show that conditional on the data

�
�
ˇjy; �2


� Normal

�
v�; �2V�



�
�
�2jy


� IGamma

�
T C ˛

2
;
c C �
2

� (16)

where

V� D
�
XTX C V�1

�1

v� D
�
XTX C V�1

�1 �XTy C V�1v


c D yTy C vTV�1v �
�
XTy C V�1v

T

�
XTX C V�1

�1 �XTy C V�1v


(17)

In regression modeling, it is usual to consider a centered
parametrization for ˇ so that v D 0, giving

v� D
�
XTX C V�1

�1 XTy

c D yTy � yTXT �XTX C V�1
�1 XTy

D yT


IT � X

�
XTX C V�1

�1 XT
�
y
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A critical quantity in a Bayesian clustering procedure is the
marginal likelihood, as in Eq. (8), for the data in light of the
model:

fY (y) D
Z

fY jˇ;
2
�
yjˇ; �2


�
�
ˇj�2


�
�
�2

dˇd�2 :

(18)

Combining terms above gives that

fY (y) D
�
1
�

�T/2 �
˛/2�

�
T C ˛

2

�

�

˛
2

�

jV�j1/2

jV j1/2
1

fc C �g(TC˛)/2
(19)

This expression is the marginal likelihood for a single gene
expression profile. For a collection of profiles belonging
to a single cluster, y1; : : : ; yN , Eq. (19) can again be eval-
uated and used as the basis of a dissimilarity measure
as an input into a hierarchical clustering procedure. The
marginal likelihood in Eq. (19) can easily be re-expressed
for clustered data. The basis of the hierarchical cluster-
ing method outlined in [64] proceeds by agglomeration of
clusters from N to 1, with the two clusters that lead to the
greatest increasemarginal likelihood score at each stage of
the hierarchy. This method works for profiles of arbitrary
length, potentially with different observation time points,
however it is computationally most efficient when the time
points are the same for each profile.

The design matrix X is typically expressed via non-
linear basis functions, for example truncated polynomial
splines, Fourier bases or wavelets. For T large, it is usually
necessary to use a projection through a lower number of
bases; for example, for a single profile, X becomes T � p
and ˇ becomes p � 1, for T > p. Using different designs,
many flexible models for the expression profiles can be fit-
ted. In some cases, the linear mixed effect formulation in
Eq. (10) can be used to construct the spline-based models;
in such models, some of the ˇ parameters are themselves
assumed to be random effects (see [65]).

For example, in harmonic regression, regression in the
Fourier bases is carried out. Consider the extended linear
model

Yt D
pX

jD0

ˇ j g j(t)C "t

where g0(t) D 1 and

g j(t) D

(
cos(� j t) j odd
sin(� j t) j even

Complexity in Systems Level Biology and Genetics: Statistical
Perspectives, Figure 1
Cluster of gene expression profiles obtained using Bayesian hier-
archical model-based clustering: data from the intraerythrocytic
developmental cycle of protozoa Plasmodium falciparum. Clus-
tering achieved using harmonic regression model with k D 2.
Solid red line is posterior mean for this cluster, dotted red lines
are point wise 95% credible intervals for the cluster mean pro-
file, and dotted blue lines are point wise 95% credible intervals
for the observations

where p is an even number, p D 2k say, and � j; j D
1; 2; : : : ; k are constants with �1 < �2 < � � � < �k . For
fixed t, cos(� j t) and sin(� j x) are also fixed and this model
is a linear model in parameters

ˇ D (ˇ0; ˇ1; : : : ; ˇp)T :

This model can be readily fitted to time-course expression
profiles. The plot below is a fit of the model with k D 2 to
a cluster of profiles extracted using the method described
in [64] from the malaria protozoa Plasmodium falciparum
data set described in [66].

One major advantage of the Bayesian inferential ap-
proach is that any biological prior knowledge that is avail-
able can be incorporated in a coherent fashion. For exam-
ple, the data in Figure 1 illustrate periodic behavior related
to the cyclical nature of cellular organization, and thus the
choice of the Fourier bases is a natural one.

Choosing the Number of Clusters: Bayesian Informa-
tion Criterion A hierarchical clustering procedure gives
the sequence by which the clusters are merged (in agglom-
erative clustering) or split (in divisive clustering) accord-
ing the model or distance measure used, but does not give
an indication for the number of clusters that are present in
the data (under the model specification). This is obviously
an important consideration. One advantage of the model-
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based approach to clustering is that it allows the use of sta-
tistical model assessment procedures to assist in the choice
of the number of clusters. A common method is to use ap-
proximate Bayes factors to compare models of different or-
ders (i. e. models with different numbers of clusters), and
gives a systematic means of selecting the parametrization
of the model, the clustering method, and also the number
of clusters (see [67]).

The Bayes factor is the posterior odds for one model
against the other assuming neither is favored a priori.
A reliable approximation to twice the log Bayes factor
called the Bayesian Information Criterion (BIC), which, for
modelM fitted to n data points is given by

BICM D �2 log LM(b�)C dM log n

where LM is the Bayesian marginal likelihood from
Eq. (18), LM(b�) is the maximized log likelihood of the
data for the model M, and dM is the number of parame-
ters estimated in the model. The number of clusters is not
considered a parameter for the purposes of computing the
BIC. The smaller (more negative) the value of the BIC, the
stronger the evidence for the model.

Classification via Model–Based Clustering Any clus-
tering procedure can be used as the first step in the con-
struction of classification rules. Suppose that it, on the ba-
sis of an appropriate decision procedure, it is known that
there are C clusters, and that a set of existing expression
profiles y1; : : : ; yN have been allocated in turn to the clus-
ters. Let z1; : : : ; zN be the cluster allocation labels for the
profiles. Now, suppose further that the C clusters can be
decomposed further into two subsets of sizes C0 and C1,
where the subsets represent perhaps clusters having some
common, known biological function or genomic origin.
For example, in a cDNA microarray, it might be known
that the clones are distinguishable in terms of the organ-
ism from which they were derived. A new objective could
be to allocate a novel gene and expression profile to one of
the subsets, and one of the clusters within that subset.

Let yi jk , for i D 0; 1, j D 1; 2; : : : ;Ci , k D 1; 2; : : : ;
Ni j denote the kth profile in cluster j in subset i. Let y�

denote a new profile to be classified, and �� be the binary
classification-to-subset, and z� the classification-to-cluster
variable for y�. Then, by Bayes Rule, for i D 1; 2,

P
�
�� D ijy�; y; z

�
/ p

�
y�j�� D i; y; z


P
�
�� D ijy; z

�

(20)

The two terms in Eq. (20) can be determined on the basis
of the clustering output.

Metabolomics

The termmetabolome refers to the total metabolite content
of an organic sample (tissue, blood, urine etc) obtained
from a living organism which represents the products of
a higher level of biological interaction than that which oc-
curs within the cell. Metabolomics and metabonomics are
the fields in biomedical investigation that combines the
application of nuclear magnetic resonance (NMR) spec-
troscopy with multivariate statistical analysis in studies of
the composition of the samples. Metabonomics is often
used in reference to the static chemical content of the sam-
ple, whereas metabolomics is used to refer to the dynamic
evolution of the metabolome. Both involve the measure-
ment of the metabolic response to interventions – see for
example [68] – and applications of metabolomics include
several in public health and medicine [69,70].

Statistical Methods for Spectral Data

The two principal spectroscopic measurement platforms,
NMR andMass Spectrometry (MS) yield alternative repre-
sentations of the metabolic spectrum. They produce spec-
tra (or profiles) that consist of several thousands of indi-
vidual measurements at different resonances or masses.
There are several phases of processing of such data; pre-
processing using smoothing, alignment and de-noising,
peak separation, registration and signal extraction. For an
extensive discussion, see [62].

AnNMR spectrum consists of measurements of the in-
tensity or frequency of different biochemical compounds
(metabolites) represented by a set of resonances dependent
upon the chemical structure, and can be regarded as a lin-
ear combination of peaks (nominally of various widths)
that correspond to singletons or multiple peaks according
to the neighboring chemical environment. A typical spec-
trum extracted from rat urine is depicted in Fig. 2 see [71].
Two dominant sharp peaks are visible.

Features of the spectra that require specific statisti-
cal modeling include multiple peaks for a single com-
pound, variation in peak shape, and chemical shifts in-
duced by variation in experimental pH Signals from dif-
ferent metabolites can be highly overlapped and subject to
peak position variation due primarily to pH variations in
the samples, and there are many small scale features (see
Fig. 3). Statistical methods of pre-processing NMR spec-
tra for statistical analysis which address the problems out-
lined above, using, for example, dynamic time warping
to achieve alignment of resonance peaks across replicate
spectra as a form or spectral registration form part of the
necessary holistic Bayesian framework.
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Complexity in Systems Level Biology and Genetics: Statistical
Perspectives, Figure 2
A normalized rat urine spectrum. The ordinate is parts per mil-
lion, the abscissa is intensity after standardization

Complexity in Systems Level Biology and Genetics: Statistical
Perspectives, Figure 3
Magnified portion of the spectrum showing small scale features

Classical statistical methods for metabolic spectra in-
clude the following:

� Principal Components Analysis (PCA) and Regres-
sion: a linear data projection method for dimension re-
duction, feature extraction, and classification of sam-
ples in an unsupervised fashion, that is, without refer-
ence to labeled cases.

� Partial Least Squares (PLS): a non-linear projection
method similar to PCA, but implemented in a super-
vised setting for sample discrimination.

� Clustering: Clusters of spectra, or peaks within spec-
tra, can be discovered using similar techniques to those
described in Sect. “Clustering”.

� Neural Networks: Flexible non-linear regression mod-
els constructed from simple mathematical functions
that are learned from the observation of cases, that
are ideal models for classification. The formulation of
an neural netweork involves three levels of interlinked
variables; outputs, inputs, and hidden variables, inter-
preted as a collection of unobserved random variables
that form the hidden link between inputs and outputs.

Bayesian Approaches

The Bayesian framework is a natural one for incorpo-
rating genuine biological prior knowledge into the sig-
nal reconstruction, and typically useful prior information
(about fluid composition, peak location, peak multiplic-
ity) is available. In addition, a hierarchical Bayesian model
structure naturally allows construction of plausible models
for the spectra across experiments or individuals.

� Flexible Bayesian Models: The NMR spectrum can be
represented as a noisy signal derived from some un-
derlying and biologically important mechanism. Basis-
function approaches (specifically, wavelets) have been
much used to represent non-stationary time-varying
signals [65,71,72,73]. The sparse representation of the
NMR spectrum in terms of wavelet coefficients makes
them an excellent tool in data compression, yet these
coefficients can still be easily transformed back to the
spectral domain to give a natural interpretation in
terms of the underlying metabolites.
Figure 4 depicts the reconstruction of the rat urine
spectrum in the region between 2.5 and 2.8 ppm using
wavelet methods; see [71].

� Bayesian Time Series Models for Complex Non-sta-
tionary Signals: See for example [74]. The duality be-
tween semi-parametric modeling of functions and la-
tent time series models allows a view of the analysis of
the underlying NMR spectrum not as a set of point wise
evaluations of a function, but rather as a (time-ordered)
series of correlated observations with some identifiable
latent structure. Time series models, computed using
dynamic calculation (filtering), provide a method for
representing the NMR spectra parsimoniously.

� Bayesian Mixture Models: A reasonable generative
model for the spectra is one that constructs the
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Complexity in Systems Level Biology and Genetics: Statistical
Perspectives, Figure 4
Wavelet reconstruction of a region of the spectrum results under
the “Least Asymmetric wavelet” with four vanishing moments
using the hard thresholding (HT)

spectra from a large number of symmetric peaks of
varying size, corresponding to the contributions of dif-
ferent biochemical compounds. This can be approxi-
mated using a finite mixture model, where the num-
ber, magnitudes and locations, of the spectral contribu-
tions are unknown. Much recent research has focused
on the implementation of computational strategies for
Bayesian mixtures, in particular Markov chain Monte
Carlo (MCMC) and Sequential Monte Carlo (SMC)
have proved vital. The reconstruction of NMR spec-
tra is a considerably more challenging area than those
for which mixture modeling is conventionally used, as
many more individual components are required. Flexi-
ble semi-parametric mixture models have been utilized
in [75,76], whilst fully non-parametric mixture mod-
els similar to those described in Sect. “Mixture Models”
can also be used [73].

A major advantage of using the fully Bayesian framework
is that, once again, all relevant information (the spec-
tral data itself, knowledge of the measurement processes
for different experimental platforms, the mechanisms via
which multiple peaks and shifts are introduced) can be in-
tegrated in a coherent fashion. In addition, prior knowl-
edge about the chemical composition of the samples can
be integrated via a prior distribution constructed by in-
spection of the profiles for training samples. At a higher
level of synthesis, the Bayesian paradigm offers a method

for integrating metabolomic data with other functional or
structural data, such as gene expression or protein expres-
sion data. Finally, the metabolic content of tissue changes
temporally, so dynamic modeling of the spectra could also
be attempted.

Future Directions

Biological data relating to structure and function of genes,
proteins and other biological substances are now available
from a wide variety of platforms. Researchers are begin-
ning to developmethods for coherent combination of data
from different experimental processes to get an entire pic-
ture of biological cause and effect. For example, the ef-
fective combination of gene expression and metabonomic
data will be of tremendous utility. A principal challenge is
therefore the fusion of expression data derived from dif-
ferent experimental platforms, and seeking links with se-
quence and ontological information available. Such fusion
will be critical in the future of statistical analysis of large
scale systems biology and bioinformatics data sets.

In terms of public health impact of systems biology
and statistical genomics, perhaps the most prominent is
the study of common diseases through high-throughput
genotyping of single nucleotide polymorphisms (SNPs).
In genome wide association studies, SNP locations that
correlate with disease status or quantitative trait value are
sought. In such studies, the key statistical step involves
the selection of informative predictors (SNP or genomic
loci) from a large collection of candidates. Many such
genome wide studies have been completed or are ongo-
ing (see [42,43,77,78]). Such studies represent huge chal-
lenges for statisticians and mathematical modelers, as the
data containmany subtle structures but also as the amount
of information is much greater than that available for typ-
ical statistical analysis.

Another major challenge to the quantitative analysis of
biological data comes in the form of image analysis and
extraction. Many high throughput technologies rely on
the extraction of information from images, either in static
form, or dynamically from a series of images. For example
it is now possible to track the expression level of mRNA
transcripts in real-time ([79,80,81]), and to observemRNA
transcripts moving from transcription sites to translation
sites (see for example [82]). Imaging techniques can also
offer insights into aspects of the dynamic organization of
nuclear function by studying the positioning of nuclear
compartments and how those compartments reposition
themselves in relation to each other through time. The
challenges for the statistician are to develop real-time anal-
ysis methods for tracking and quantifying the nature and
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content of such images, and tools from spatial modeling
and time series analysis will be required.

Finally, flow cytometry can measure characteristics of
millions of cells simultaneously, and is a technology that
offers many promises for insights into biological organi-
zation and public health implications. However, quanti-
tative measurement and analysis methods are only yet in
the early stages of development, but offer much promise
(see [83,84]).
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Glossary

Directed/Undirected graph A set of vertices connected
by directed or undirected edges. A directed edge is
one-way (A! B), while an undirected edge is two-
way or symmetric: A� B.

Network For our purposes, a network is defined iden-
tically to a graph: it is an abstract object composed
of vertices (nodes) joined by (directed or undirected)
edges (links). Hence we will use the terms ‘graph’ and
‘network’ interchangeably.

Graph topology The list of nodes i and edges (i; j) or
(i ! j) defines the topology of the graph.

Graph structure There is no single agreed definition for
what constitutes the “structure” of a graph. To the con-
trary: this question has been the object of a great deal
of research—research which is still ongoing.

Node degree distribution One crude measure of
a graph’s structure. If nk is the number of nodes having
degree k in a graph with N nodes, then the set of nk
is the node degree distribution—which is also often
expressed in terms of the frequencies pk D nk/N .

Small-worlds graph A “small-worlds graph” has two
properties: it has short path lengths (as is typical of
random graphs)—so that the “world” of the network
is truly “small”, in that every node is within a few (or
not too many) hops of every other; and secondly, it has
(like real social networks, and unlike random graphs)
a significant degree of clustering—meaning that two
neighbors of a node have a higher-than-random prob-
ability of also being linked to one another.

Graph visualization The problem of displaying a graph’s
topology (or part of it) in a 2D image, so as to give
the viewer insight into the structure of the graph. We
see that this is a hard problem, as it involves both
the unsolved problem of what we mean by the struc-
ture of the graph, and also the combined technolog-
ical/psychological problem of conveying useful infor-
mation about a (possibly large) graph via a 2D (or
quasi-3D) layout. Clearly, the notion of a good graph
visualization is dependent on the use to which the vi-
sualization is to be put—in other words, on the infor-
mation which is to be conveyed.

Section Here, a ‘bookkeeping’ definition. This article in-
troduces the reader to all of the other articles in the
Section of the Encyclopedia which is titled “Complex
Networks and Graph Theory”. Therefore, whenever
the word ‘Section’ (with a large ‘S’) is used in this
‘roadmap’ article, the word refers to that Section of the
Encyclopedia. To avoid confusion, the various subdi-
visions of this roadmap article will be called ‘parts’.

Definition of the Subject

The basic network concept is very simple: objects, con-
nected by relationships. Because of this simplicity, the con-
cept turns up almost everywhere one looks. The study of
networks (or equivalently, graphs), both theoretically and
empirically, has taken off over the last ten years, and shows
no sign of slowing down. The field is highly interdisci-
plinary, having important applications to the Internet and
the World Wide Web, to social networks, to epidemiol-
ogy, to biology, and inmany other areas. This introductory
article serves as a reader’s guide to the 13 articles in the
Section of the Encyclopedia which is titled “Complex Net-
works and Graph Theory”. These articles will be discussed
in the context of three broad themes: network structure;
dynamics of network structure; and dynamical processes
running over networks.

Introduction

In the past ten years or so, the study of graphs has
exploded, leaving forever the peaceful sanctum of pure
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mathematics to become a fundamental concept in a vig-
orous, ill-defined, interdisciplinary, and important field of
study. The most common descriptive term for this field
is the “study of complex networks”. This term is distin-
guished from the older, more mathematically-bound term
“graph theory” in two ways. First – and perhaps most im-
portant – this new field is not just theoretical; to the con-
trary, the curious researcher finds that there is an enor-
mous variety of empirically obtained graphs/networks (we
use the terms interchangeably here) available as datasets
on the Web. That is, one studies real, measured graphs;
and not surprisingly, this empirical connection gives the
endeavor much more of an applied flavor also.

The second distinction is perhaps not well motivated
by the words used; but the “study of complex networks”
typically means studying networks whose structure devi-
ates in important ways from the “classical random graphs”
of Erdős and Rényi [10,11]. We note that these two points
are related: as one turned to studying real networks [18],
one found that they were not described by classical ran-
dom graphs [24,25]; hence one was forced to look at other
kinds of structures.

This article is a reader’s guide to the other articles in
the Section entitled “Complex Networks and Graph The-
ory”. The inclusion of both terms was very deliberate:
graph theory gives the mathematical foundation for the
more messy endeavor called “complex networks”; and the
two fields have a strong and fruitful interaction. In this ar-
ticle I will describe the 13 other articles of this Section.

These 13 articles amply document the interdisciplinary
nature of this exciting field: we find represented mathe-
matics, biology, the Web and the Internet, software, epi-
demiology, and social networks (with the latter field also
having its own Section in the Encyclopedia). For this rea-
son, I will not define the parts of this article by field of
study, but rather by general themes which run through es-
sentially all studies of networks (at least in principle, and
often in fact). In each part of this article I will point out
those articles which represent that part’s theme to a signif-
icant degree. Hence these themes are meant to tie together
all of the articles into a simple framework.

In the next part “Graphs, Networks, and Complex
Networks”, I will concisely present the basic terminology
which is in use. Then in entitled part the “Structure of
Networks” I discuss the knotty question of the structure
of a graph; this problem is the first theme, and it is very
much unfinished business. In part “Dynamical Network
Structures” we look at network topologies (and structures)
which are dynamic rather than static. This is clearly an im-
portant theme, since (i) real empirical networks are neces-
sarily dynamic (on some – often short – time scale), and

(ii) the study of how networks grow and evolve can be
highly useful for understanding how they have the struc-
ture we observe today. Then in part “Dynamical Processes
on Networks” we look at the very large question of dy-
namical processes which take place over networks. Exam-
ples which illustrate the importance of this topic are epi-
demic spreading over social and computer networks, and
the activation/inhibition processes going on over gene (or
neural) networks. Clearly the progress of such dynamical
processes may be strongly dependent on the underlying
network structure; hence we see that all of these themes
(parts “Structure of Networks”–“Dynamical Processes on
Networks”) are tightly related.

In part “Graph Visualization” we look briefly at an
important but somewhat ‘orthogonal’ theme, namely, the
problem of graph visualization: given a graph’s topology,
how can one best present this information visually to a hu-
man viewer? Finally, part “Future Directions” offers a very
brief, modest, and personal take on the very large question
of “future directions” in research on complex networks.

Graphs, Networks, and Complex Networks

Graphs

One of the earliest applications of graph theory may be
found in Euler’s solution, in 1736, of the problem called
‘The seven bridges of Königsberg’. Euler considered the
problem of finding a continuous path crossing each of
the seven bridges of Königsberg exactly once, and solved
the problem by representing each connected piece of land
as a vertex (node) of a graph, and each bridge as an
undirected (two-way) link. (For a nice presentation of
this problem, see http://mathforum.org/isaac/problems/
bridges2.html.) This little problem is an excellent exam-
ple of the power of mathematics to extract understanding
via abstraction: the lay person may stare at the bridges, is-
lands etc, and try various ideas—but reducing the entire
problem to an abstract graph, composed only of nodes and
links, aids the application of pure reason, leading to a final
and utterly convincing solution.

To study graphs is to study discrete objects and the
relationships between them. Hence graph theory may
be regarded as a branch of combinatorics. Erdős and
Rényi [10,11] founded the study of “classical random
graphs”. These graphs are specified by the node numberN
(which typically is assumed to grow large), and by links
laid down at random between these nodes, subject to var-
ious constraints. One such constraint is that every node
have exactly k links—giving a (k�) regular random graph.
A more relaxed constraint is simply to specify m links in
total (so that the average node degree is hki D m/N). Fur-

http://mathforum.org/isaac/problems/bridges2.html
http://mathforum.org/isaac/problems/bridges2.html
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ther relaxing of this constraint gives that every possible
link, out of the set of
�
N
2

�
D N(N � 1)/2

possible links, is included with probability p. This gives
the average node degree (now averaged over many graphs)
as hki D hmi/N D p(N � 1)/2. While all of these types of
classical random graphs are similar “in spirit”, those with
the fewest constraints are those for which it is easiest to
prove things.

We are fortunate to have in our Section the article
� Random Graphs, A Whirlwind Tour of by Fan Chung.
In this article, the reader is given a good introduction
to classical random graphs, along with a thorough pre-
sentation of the more modern theory of random graphs
with a new, and more realistic, type of constraint—namely
that they should, on average, have a given node degree
distribution. This new theory makes the study of ran-
dom graphs extremely relevant for today’s empirically-an-
chored research: many empirical graphs are characterized
by their node degree distribution, andmany of these in fact
have a power-law degree distribution, such that the num-
ber nk of nodes having degree k varies with k by a power
law: nk � k�ˇ . This work is useful, precisely because
a random graph with a given node degree distribution is
the “most typical” graph of the set of graphs with that
degree distribution. Hence, statements about such ran-
dom graphs are statements about typical graphs with the
same degree distribution—unless and until we knowmore
about the empirical graphs.

Networks
As noted earlier in this introduction, we consider the
terms ‘network’ and ‘graph’ to be interchangeable. Nev-
ertheless there is a bit more to be said about the term.
The ‘network’ concept motivates and infuses a vigor-
ous and lively research activity that has more or less
exploded since (roughly) the work of Watts and Stro-
gatz [24,25]. Much of their work was motivated by the
‘small worlds problem’. The latter dates back to the work of
Milgram [18] (and even earlier). Milgram posed the ques-
tion: how far is it from Kansas (or Nebraska) to Boston,
Massachusetts—when the distance is measured in ‘hops’
between people who know one another? Modern language
would rephrase this question as follows: is the US acquain-
tanceship network a ‘small world’? Milgram’s answer was
‘yes’: after disregarding the chains (of letters—that was
the mechanism for a ‘hop’) that never reached the target,
the average path length was roughly 5–6 hops—a ‘small
world’.

The explosion of interest in the last 10 years is well doc-
umented in the set of references in “Books and Reviews”
(below).

We also include in this part an introductory discus-
sion of directed graphs. Directed graphs have directed
links: it no longer suffices to say “i and j are linked”, be-
cause there is a directionality in the linking: (i! j) or
( j! i) (or both). Some of the mathematical background
for understanding directed graphs is provided in the ar-
ticle in this Section by Berman and Shaked-Monderer
(� Non-negative Matrices and Digraphs). One quickly
finds, upon coming in contact with directed graphs, that
one is in a rather different world—the mathematics has
changed, the structures are different, and one’s intuition
often fails.

Directed graphs are however here to stay, and well
worth study. We cite two classic examples to demonstrate
the extreme relevance of directed graphs. First, there is
early and pioneering work by Stuart Kauffman [14,15] on
genetic regulatory networks. These form directed graphs,
because the links express the fact that gene G1 regulates
geneG2 (G1! G2)—a relationship which is by nomeans
symmetric. Understanding gene regulation and expression
is a fundamental problem in biology—and we see that the
problem may be usefully expressed as one of understand-
ing dynamics on a directed graph. The article in this Sec-
tion by Huang and Kauffman (� Complex Gene Regula-
tory Networks – from Structure to Biological Observables:
Cell Fate Determination) brings us up to date on this ex-
citing problem.

A more well known directed graph, which plays a role
for many of us in our daily lives, is the Web graph [1,2,8].
We navigate among Web pages using hyperlinks—one-
way pointers taking us (e. g.) from page A to page B
(A! B). The utility of the Web as a source of infor-
mation—and as a platform for interaction—is enormous.
Hence the Web is well worth intense study, both intellec-
tually and practically.

Hyperlinks are useful, not only for navigation, but
also to aid in ranking Web pages. This utility was clearly
pointed out in two early papers on Web link analy-
sis [7,17]. “Web link analysis” may be viewed most simply
as a process which takes (all or part of) the Web graph as
input, and which gives ‘importance scores’ for each Web
page as output. The PageRank approach to link analysis
of Brin and Page [7] has almost certainly played a sig-
nificant role in the meteoric rise of the Web search com-
pany Google. Hence there is both practical and commer-
cial value in understanding the Web graph. We have two
complementary papers in this Section which treat this im-
portant area: that by Adamic on � World Wide Web,
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Graph Structure, and that by Bjelland et al. on � Link
Analysis and Web Search.

Complex Networks

Nowwe come to the last substantial word in the title of this
Section: ‘complex’. This is a word that (as yet) lacks a pre-
cise scientific meaning. There are in fact too many defi-
nitions; in other words, there is no generally-agreed pre-
cise definition. For a good overview of work on this thorny
problem we refer the reader to [4].

Fortunately, for the purposes of this Section, we
need only a very simple definition: ‘complex networks’
are those which are not well modeled by classical ran-
dom graphs (described above, and in the article by Fan
Chung). The use of the term ‘complex networks’ is very
widespread—while examples which give a clear definition
are less common. We note that the definition given here
is also cited by Dorogovtsev in his article in this Section
(� Growth Models for Networks).

Structure of Networks

We have noted already that there is no single, simple an-
swer to the question “what is the structure of this graph”?
With this caveat in mind, we offer the reader a guide to
the articles in this Section which address the structure of
networks.

Undirected Graphs

We have already noted the article by Fan Chung (� Ran-
dom Graphs, A Whirlwind Tour of), giving an up-to-date
overview of the properties of random graphs with a given
node degree distribution—with the well-studied case be-
ing power-law graphs. She cites a number of experimen-
tal results which indicate that the experimental exponents
ˇ (taken from the power-law degree distributions) fall in
one range (2 < ˇ < 3) for social and technological net-
works, and another, rather distinct range (ˇ < 2) for bio-
logical networks. This may be regarded as a (quantitative)
structural difference between these two types of network;
Chung offers an explanation based on qualitatively distinct
growth mechanisms (see the next part of this article).

Fortunato and Castellano (� Community Structure
in Graphs) offer an excellent overview of another broad
approach to network structure. Here the idea is to un-
derstand structure in terms of substructure (and sub-
substructure, etc). That is: here is a network. Can we
identify subgraphs—possibly overlapping, possibly dis-
joint—of this network that in some sense “belong to-
gether”? In other words: how can one identify the com-
munity structure of a graph? The review of Fortunato and

Castellano is on the one hand very thorough—and on the
other hand makes clear that there is no one agreed an-
swer to this question. There are indeed almost as many an-
swers as there are theoretical approaches; and this problem
has received a lot of attention. Fortunato and Castellano
note that there is currently a “favorite” approach, defined
by finding subgraphs with high modularity [21]. Roughly
speaking, a subgraph with high modularity has a higher
density of internal links than that found for the same sub-
graph in a randomized ‘null model’ for the same graph.
Fortunato and Castellano give a careful discussion of the
strengths and weaknesses of this approach to community
detection, as well as of many others.

Since the work of Watts and Strogatz [24,25], the def-
inition of a ‘small-world graph’ has included two criteria.
First, one must have the short average path length which
Milgram found in his experiments, and which gives rise
to the term ‘small worlds’. However, one also insists that
a ‘true’ small-world graph should locally resemble a real
social network, in that there is a significant degree of clus-
tering. Roughly speaking, this means that the probability
that two of my acquaintances know each other is higher
than random. More mathematically, to say that a graph G
has high clustering means that the incidence of closed tri-
angles of links in G is higher than expected in a random-
ized ‘null model’ for G.

A closed triangle is a small, simply defined subgraph,
and in studying clustering one studies the statistics of the
occurrence of this small subgraph. A more general term
for this type of small subgraph is a motif [19]. Much as
with clustering and triangles, one defines a set of motifs,
and then generates a significance profile for any given net-
work, comparing the frequency of eachmotif in the profile
to that of a corresponding random graph. Valverde and
Solé (� Motifs in Graphs) offer a stimulating overview of
the study of motifs in networks of many types—both di-
rected and undirected. They point out a remarkable con-
sistency of motif significance profiles across networks with
very different origins—for example, a software graph and
the gene network of a bacterium—and argue that this con-
sistency is best understood in terms of historical accident,
rather than in terms of functionality.

The article by Liljeros (� Human Sexual Networks)
looks at empirical human sexual networks. He addresses
the evidence for and against the notion that such net-
works are power-law (also known as “scale free”). This
question is important for understanding epidemic spread-
ing over networks—especially in the light of the results of
Pastor-Satorras and Vespignani [23], which showed that
epidemic spreading on power-law networks is more dif-
ficult to stop than was predicted by earlier models using
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the well-mixed (all-to-all) approximation. Liljeros exam-
ines carefully what is known about the structure of hu-
man sexual networks, noting the great difficulty inherent
in gathering extensive and/or reliable data.

The article by He, Siganos, and Faloutsos (� Inter-
net Topology) looks at a very different empirical network,
namely the physical Internet, composed (at the lowest
level) of routers and cables. The naïve newcomer might
assume that the Internet, being an engineered system, is
fully mapped out, and hence its topology should be readily
“understood”. The article by He et al. presents the reality
of the Internet: it is largely self-organized (especially at the
higher level of organization, the ‘Autonomous System’ or
AS level); it is far from trivial to experimentally map out
this network—even at the AS level; and there is not even
agreement on whether or not the AS-graph is a power-law
graph—which is after all a rather crude measure of struc-
ture of the network. He et al. describe recent work which
offers a neat resolution of the conflicting and ambiguous
data on this question. They then go on to describe more
imaginative models for the structure of the Internet, going
beyond simply the degree distribution, and having names
like ‘Jellyfish’ and ‘Medusa’.

Directed Graphs

A generic directed graph is immediately distinguished
from its undirected counterparts in that a natural unit of
substructure is obvious, and virtually always present. That
is the ‘strongly connected component’ or SCC (termed
‘class’ by Berman and Shaked-Monderer). That is, even
when a directed graph is connected, there are node pairs
which cannot reach one another by following directed
paths. An SCC C is then a maximal set of nodes satisfying
the constraint that every node in C is reachable, via a di-
rected path, from every other node in C. The SCCs then
form disjoint sets (equivalence classes), and every node is
in one SCC. In short, the very notion of ‘reachability’ is
more problematic in directed graphs: all nodes in the same
SCC can reach one another, but otherwise, all bets are off!

Lada Adamic (� World Wide Web, Graph Structure)
gives a good overview of what is known empirically about
the structure of theWeb graph—that abstract and yet very
real object in which a node is a Web page, and a link is
a (one-way) hyperlink. The Web graph is highly dynamic,
in at least two ways: pages have a finite lifetime, with
new ones appearing while old ones disappear; also, many
Web pages are dynamic, in that they generate new content
when accessed—and can in principle represent an infinite
amount of content. Also, of course, the Web is huge. Lada
Adamic presents the problems associated with ‘crawling’

the Web to map out its topology. The reader will perhaps
not be surprised to learn that theWeb graph obeys a power
law—both for the indegree distribution and for the outde-
gree distribution. Adamic discusses several other measures
for the structure of theWeb graph, including its gross SCC
structure (the ‘bow tie’), its diameter, reciprocity, cluster-
ing, and motifs. The problem of path lengths and diameter
is less straightforward for directed graphs, since the un-
reachability problem produces infinite or undefined path
length for many pairs.

A nice bonus in the article by Adamic is the dis-
cussion of some popular and well studied subgraphs of
the Web graph—query connection graphs, Weblogs, and
Wikipedia. Query connection graphs are subgraphs built
from a hit list, and can give useful information about the
query itself, and the likelihood that the hit list will be sat-
isfactory. Weblogs and Wikipedia are well known to most
Web-literate people; and it is fascinating to see these daily
phenomena subjected to careful scientific analysis.

The article by Bjelland et al. (� Link Analysis and
Web Search) has perhaps the closest ties to the math-
ematical presentation of Berman and Shaked-Monderer
(� Non-negative Matrices and Digraphs). This is because
Web link analysis tends to focus on the principal eigenvec-
tor of the graph’s adjacency matrix (or of some modifica-
tion of the adjacency matrix), while Berman and Shaked-
Monderer discuss in some detail the spectral properties
of this matrix, and give some results about the princi-
pal eigenvector. The latter yields importance or authority
scores for each page. These scores are the principal out-
put of Web link analysis; and in fact Berman and Shaked-
Monderer cite PageRank as an outstanding example of an
application of the theory [22]. Bjelland et al. explain the
logic leading to the choice of the principal eigenvector, as
a way of ‘harvesting’ information from the huge set of ‘col-
lective recommendations’ that the hyperlinks constitute.
They also present the principal approaches to link analysis
(the ‘big three’), and place them in a simple logical frame-
work which is completed by the arrival of a new, fourth
approach. In addition, Bjelland et al. discuss a number of
technical issues related to Web link analysis—which is, af-
ter all, a practical and commercial field of endeavor, as well
as an object for research and understanding.

Jennifer Dunne (� Food Webs) presents a rather spe-
cial type of directed graph taken from biology: the food
web. She offers a very concise definition of this concept
in her glossary, which we reproduce here: “the network of
feeding interactions among diverse co-occurring species
in a particular habitat”.We note that most feeding interac-
tions are one-way: bird B eats insect I, but insect I does not
eat bird B. However, food webs are rather special among
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empirical directed graphs, in that they have a lower inci-
dence of loops than that found in typical directed graphs.
Early work indicated (or even assumed) that a food web
is loop-free; but this has been shown not to be strictly
true. (A simple, but real example of a loop is cannibal-
ism: A eats A; but much longer loops also exist.) The field
faces (as many do) a real problem in getting good empir-
ical data, and empirically obtained food webs tend to be
small. For example, Table 1 of Dunne presents data for 16
empirical food webs, ranging in size from 25 nodes to 172.

Our second biological application of directed graphs
is presented by Huang and Kauffman (� Complex
Gene Regulatory Networks – from Structure to Biolog-
ical Observables: Cell Fate Determination). This article
presents gene regulatory networks (GRN). The directed
link (G1! G2) in a GRN expresses the fact that gene
G1 regulates (by inhibition or activation) the expression
of gene G2, via intermediate proteins (typically transcrip-
tion factors). The links are thus inherently one way, al-
though reciprocal links (G1$ G2) do occur. The article
of Huang and Kauffman is very comprehensive: the struc-
ture of a GRN is only their starting point, as they seek to
understand andmodel the dynamical development process,
in which the set of on/off states of the cell genome moves
towards an attractor (a steady or quasi-steady state), which
represents a mature and stable cell type.

Returning to structure (of GRNs), we again face a se-
vere data-extraction problem, which is compounded by
the fact that the ‘interaction modality’ (activation or inhi-
bition, plus or minus) of each link must also be known be-
fore one can study dynamical development of gene expres-
sion over the GRN. In short: one needs to knowmore than
just the presence and direction of the links; one needs their
type. Huang and Kauffman give a thorough discussion of
these problems, and argue for studies using an “ensemble
approach”. This is much like the random graph approach,
in that it takes a set of statistical constraints which are em-
pirically determined, and then studies (often via simula-
tion) a randomly generated ensemble of graphs which sat-
isfy the statistical constraints. In short, the ensemble ap-
proach takes the structure as determined by these con-
straints (node degree distribution, etc), and then studies
random graphs with this structure. Note that both the
graph topology and the interaction modalities of the links
are randomized in this ensemble approach.

Dynamical Network Structures

We have already had a lot to say about the structure of
networks—and yet we have left out one important dimen-
sion, namely time. Empirical networks change over time,

so that most measurements that map out such a network
are taking a snapshot. Now we will look explicitly at stud-
ies addressing the dynamical evolution of networks.

One classic study is the paper by Barabasi and Al-
bert [5]. Here the preferential-attachment (or “rich get
richer”) model was introduced as an explanation for
the ubiquitous power-law degree distributions. In other
words, a growth (developmental) model was used to ex-
plain properties of snapshots of “mature” networks. In
the preferential-attachment model, new nodes which join
a network link to existing nodes with a biased probability
distribution—so that the probability of linking to an exist-
ing node of degree k is proportional to k.

This simple model indeed gives (after long time)
a power-law distribution; and the ideas in [5] stimulated
a great interest in various growth models for networks.We
are fortunate to have, in this Section of the Encyclopedia,
the article by SergeyDorogovtsev entitled�GrowthMod-
els for Networks. This article is of course very short com-
pared to the volume [9]—but it offers a good overview of
the field, and a thorough updating of that volume, covering
a broad range of questions and ideas, including the simple
linear preferential attachment model, and numerous vari-
ations of it. Also, a distinctly different class of growthmod-
els, termed “optimization based models”, is presented, and
compared to the class of models involving forms of pref-
erential attachment. In optimization based models, new
nodes place links so as to optimize some function of the
resulting network properties.

We also mention, in the context of growth models,
the article by Fan Chung (� Random Graphs, A Whirl-
wind Tour of). As noted above, she has pointed out a ten-
dency for biological networks to have significantly smaller
exponents than technological networks; and she includes
a good discussion of both preferential attachment (which
tends to give the larger, technological, exponents) and
duplication models. The latter involve new nodes “copy-
ing” or duplicating (probabilistically) the links of existing
nodes. Chung observes that such duplication mechanisms
do exist in biology, and also shows that they can give ex-
ponents in the appropriate range.

Huang and Kauffman (� Complex Gene Regulatory
Networks – from Structure to Biological Observables: Cell
Fate Determination) also offer a limited discussion of evo-
lution of the genome—not so much as a topic in itself, but
because (again) understanding genome evolution can help
in understanding—and even determining—the structure
of today’s genome. They mention both duplication and
preferential attachment. Also, it is quite interesting to note
the parallels between their discussion and that of Valverde
and Solé (�Motifs in Graphs)—in that Huang and Kauff-
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man also argue that many observed structures may be due,
not to selection pressure or enhanced functionality, but
simply to physical constraints on the evolutionary process,
and/or to historical accident. The duplication mechanism
in fact turns up again in the article by Valverde and Solé,
who argue that this growthmechanism can largely account
for the high frequency of occurrence of some motifs.

Finally, we note that growth is not the only dynamical
process operative in networks. Just as the mature body is
constantly shedding and regenerating cells, many mature
networks are subject to constant small topology changes.
One interesting class of non-growth dynamics is the at-
tack. That is: how robust is a given network against a sys-
tematic attack which deletes nodes and/or links? A classic
study in this direction is [3], which studied the attack tol-
erance of scale-free networks. There are many reasons to
believe that such networks are very well connected, and
this study added more: attacking random nodes had lit-
tle effect on the functionality of the network (as crudely
measured by the network diameter, and by the size of the
largest surviving component). Thus such networks may be
termed “robust”—but only with regard to this kind of “un-
informed” attack. The same study showed that a “smart”
attack, removing the nodes in descending order of node
degree (i. e., highest degree first), caused the network to
break down much more rapidly—thus highlighting once
again the crucial role played by the ‘hubs’ in power-law
networks.

Jennifer Dunne (� Food Webs) reports some stud-
ies of the robustness of food webs to attack—where here
the ‘attack’ is extinction of a node (species). The dynam-
ics is slightly different from that in the previous paragraph,
however, because of the phenomenon of secondary extinc-
tion: removal of one species can cause another (or sev-
eral others) to go extinct as well, if they are dependent
on the first for their food supply. Also, food webs are not
well modeled by power-law degree distributions. Never-
theless, the cited studies indicate that removing high-de-
gree species again causes considerably more damage (as
measured by secondary extinctions and web fragmenta-
tion) than removing low-degree species. Dunne also re-
ports studies seeking to simulate the effects of “ecologically
plausible” extinction scenarios; here we find that the stud-
ied food webs are in fact very robust to such extinction sce-
narios—a result which (perhaps) confirms our prejudice,
that today’s ecosystems are here because they are robust.

Dynamical Processes on Networks

Our next theme is also about dynamics—not of the net-
work topology, however, but over it. That is, it is often

of interest to study processes which occur on the nodes
(changing their state), and which transmit something (in-
formation) over the links, so that a change in one node’s
state induces a change in other nodes’ states.

We can render these ideas less abstract by considering
the concrete example of epidemic spreading. The nodes
can be individuals (or computers, or mobile phones), and
the network is then a network of social contacts (or a com-
puter or phone network). The elementary point that the
disease is spread via contact is readily captured by the net-
work model. A classic study in this regard, which strongly
underscored the value of network models, was that (men-
tioned earlier) of Pastor-Satorras and Vespignani [23].
Here it was shown that classical threshold thinking about
epidemic spreading fails when the network is scale-free:
the effective threshold is zero. This study, in yet another
way, revealed that such networks are extremely well con-
nected—and it stimulated a great deal of thought about
prevention strategies.

We have already mentioned the article by Liljeros
(� Human Sexual Networks) in this Section, with its ev-
idence for power-law, or nearly power-law, degree distri-
butions in human sexual networks. Liljeros offers a sober
and careful discussion of the implications of the theoreti-
cal result just cited, for understanding and preventing the
spread of sexually transmitted diseases on finite networks.
One consequence of a power-law node degree distribu-
tion—that a few individuals will have an extremely high
number of contacts—may seem at first glance implausible
or even impossible; and yet, as Liljeros points out, careful
empirical studies have tended to support this prediction.

The human sexual network is of course not static; peo-
ple change partners, and in fact people with many part-
ners tend to change more often. Hence, the dynamics of
the network topology must be considered, including how
it affects the dynamics of the epidemic spreading process
going on over the topology. A term which captures this
interplay is “concurrence”—which tells, not how many
partners you have, but how many partners you have “si-
multaneously”—i. e., within a time window which allows
the passing of the disease from one contact to another.
Considering concurrence leads to another type of graph,
termed a ‘line graph’—a structure in which contact rela-
tionships become nodes, which are linked when they are
concurrent.

The reader will not be surprised to hear that epi-
demic spreading over directed graphs is qualitatively dif-
ferent from the same process over undirected graphs. The
topic has real practical interest, because—as pointed out
by Kephart and White [16] and by Newman, Forrest and
Balthrop [20]—the effective network over which computer
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viruses propagate is typically directed. We invite the in-
terested reader to consult these sources—and to note the
striking similarities between the picture of the ‘email ad-
dress graph’ in [20] and the gross structure of the Web
graph [8] (and Figure 1 of Adamic).

Another classic study of dynamical processes on net-
works is that by DuncanWatts [24,25] on synchronization
phenomena over networks. Our Section includes a thor-
ough and up-to-date survey of this problem, primarily
from the theoretical side, by Chen et al. (� Synchroniza-
tion Phenomena on Networks). The field is large, as there
exists a wide variety of dynamical processes on nodes, and
types of inter-node coupling, which may (or may not) lead
to synchronization over the network. Chen et al. focus on
three main themes which neatly summarize the field. First,
there is the synchronization process itself, and the theory
which allows one to predict when synchronization will oc-
cur. Next comes the question of how the network structure
affects the tendency to synchronization. The third theme
is a logical followup to the second: if we know something
about how structure affects synchronization, can we not
find design methods which enhance the tendency to syn-
chronize? This latter theme includes a number of inge-
nious methods for ‘rewiring’ the network in order to en-
hance its synchronizability. For example: it is found that
a very strong community structure (recall the article by
Castellano and Fortunato) will inhibit synchronization;
and so one has studied networks called ‘entangled net-
works’, which are systematically rewired so as to have es-
sentially no community structure, and so are optimally
synchronizable.

Dunne (� Food Webs) discusses dynamics of species
number over food webs. That is, the links telling “who
eats who” also mediate transfers of biomass—a simple
dynamical process. And yet—as we know from the dy-
namics of the simple two-species Lotka–Volterra equa-
tions [13]—simple nonlinear rules can give rise to com-
plex behavior. Dunne reports that the behavior does not
get more simple as one studies larger networks; one finds
the same types of asymptotic behavior—equilibrium, limit
cycle, and chaotic dynamics. It is a nontrivial task to study
nonlinear dynamical models over tens or hundreds of
nodes, and at the same time anchor the theory and sim-
ulation in reality. One approach to doing this has been
to insist that the resulting model satisfy certain stability
criteria (hence conforming to reality!); these criteria are
framed in terms of ‘species persistence’ (not too many
extinctions) and/or ‘population stability’ (limited fluctu-
ations in species mass for all species).

A dynamical process also plays a central role in the dis-
cussion of Huang and Kauffman (� Complex Gene Reg-

ulatory Networks – from Structure to Biological Observ-
ables: Cell Fate Determination). In a simplified but highly
nontrivial model, the state of the gene network is modeled
by a vector S(t), which takes binary values (0 or 1, i. e., ‘off’
or ‘on’) at each node in the network, at each time t. Also,
the interactions between genes are modeled by Boolean
truth tables—i. e., a given gene’s (binary) output state is
some Boolean function of all of its input states. The re-
sulting ‘Boolean network model’ is at once very simple
(discrete time, discrete binary states), and yet very com-
plex, in the sense that it is impossible to predict the be-
havior of such models without simulating them. Huang
and Kauffman describe the three regimes of dynamical be-
havior found: an ‘ordered’ regime, a ‘chaotic’ regime, and
an intermediate ‘critical’ regime.While the ordered regime
gives stable behavior, Huang and Kauffman argue that bi-
ology favors the critical regime. One gets the flavor of their
argument if one recalls that the same genomemust be able
to converge to many different cell types—so its dynamics
cannot be too stable—and yet those same cell typesmust be
‘stable enough’. The discussion of the latter point includes
a remarkable recent experimental study which graphically
shows the return of two cell populations to the same ‘pre-
ferred’ stable attractor, after two distinct perturbations, via
two distinct paths in state space.

Valverde and Solé (� Motifs in Graphs) also discuss
dynamical processes, in terms of motifs. They give a clear
picture for the simple test case of the three-node motif
called ‘Feed Forward Loop’ or FFL. Here again—as for
the GRNs of Huang and Kauffman—the modality (activa-
tion/inhibition) of the three links must be considered, and
the resulting possibilities are either ‘coherent’ (non-con-
flicting) or ‘incoherent’. It is interesting to note that the
FFL motif has been studied both via simulation, and ex-
perimentally, in real gene networks. Valverde and Solé also
make contact with the article of Chen et al. (� Synchro-
nization Phenomena on Networks) by briefly discussing
the connection between network synchronizability and the
distribution of motif types.

Graph Visualization

The problem of graph visualization is a marvelousmixture
of art and science. To produce a good graph visualization
is to translate the science—what is known factually and an-
alytically about the graph—into a 2D (or quasi-3D) image
that the human brain can appreciate. Here the word ‘ap-
preciate’ can include both understanding and the experi-
ence of beauty. Both of these aspects are present in great
quantities in the many figures of this Section. We invite
the reader interested in visualization to visit and compare
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the following figures: Figure 2 in Fan Chung’s article; Fig-
ures 1 and 3 in Dunne; Figures 2 and 5 in Liljeros; Fig-
ure 17 in Chen et al.; and Figures 1, 2, and 6b in Valverde
and Solé.

Graph visualization is included in the articles of this
Section because it is a vital tool in the study of networks,
and also an unfinished research challenge. The article by
Vladimir Batagelj (� Complex Networks, Visualization
of) offers a fine overview of this large field. This article in
fact has a very broad scope, touching upon many visual-
ization problems (molecules, Google maps) which may be
called “information visualization”. The connection to net-
works (no pun intended) is that information is readily un-
derstood in terms of connections between units—i. e., as
a network.

We note that one natural way of ‘understanding’
a graph is in terms of its communities; and since com-
munity substructure offers a way (perhaps even hierarchi-
cal) of ‘coarse-graining’ the network, methods for defining
communities often lead naturally to methods for graph vi-
sualization. One example of this may be found in Figure 10
of Fortunato and Castellano (� Community Structure in
Graphs); for other examples, see [12] and [6]. Batagelj de-
scribes a wide variety of graph visualization methods; but
a careful reading of his article shows that many methods
which are useful for large graphs are dependent on find-
ing and exploiting some kind of community structure. The
terms used for approaches in this vein include ‘multilevel
algorithms’, ‘clustering’, ‘blockmodeling’, coarse graining,
partitions, and hierarchies.

The lessons learned from Fortunato and Castellano
are brought home again in the article by Batagelj: there is
no ‘magic bullet’ that gives a universally satisfying answer
to the problem of visualizing large networks. To quote
Batagelj in regard to an early graph visualization: “Nice as
a piece of art, but with an important message: there are
big problems with visualization of dense and/or large net-
works.” A more recent example is a 2008 visualization of
the Internet: here there is a ‘natural’ unit of coarse grain-
ing, namely the autonomous system or AS level (recall the
article by He et al. on Internet Topology), so that the net-
work of almost 5 million nodes reduces to ‘only’ about
18 000 ASes. Yet the resulting visualization (Figure 4 of
Batagelj) clearly reveals that 18 000 nodes is still ‘large’ rel-
ative to human visual processing capacity.

For other beautiful and mystifying examples of this
same point, I recommend figures 5 and 7 in the same arti-
cle. The difficulty of visualizing large networks is perhaps
most succinctly captured in the outline of Batagelj’s stim-
ulating article. Besides the normal introductory parts, we
find only two others: ‘Attempts’ and ‘Perspectives’. Yet the

article is by no means discouraging—it is rather fascinat-
ing and inspiring, and I encourage the reader to read and
enjoy it.

Future Directions

The many articles related to “Complex Networks and
Graph Theory” have each offered their own view of ‘Future
directions’ for the corresponding field of study. Therefore
it would be both redundant and presumptuous for me to
attempt the same task for all of these fields. Instead I will
offer a very short and entirely personal assessment of the
‘Future’ for the broad field of complex networks and graph
theory.

I view the field somewhat as a living organism: it is
highly dynamic, and still growing vigorously. New ideas
continue to pop up—many of which could not be covered
in this Section, simply due to practical limitations. Also,
there is a fairly free flow of ideas across disciplines. The
reader has perhaps already gotten a feeling for this cross-
boundary flow, by seeing the same basic ideas crop up in
many articles, on problems coming for distinctly different
traditional disciplines. In short, I feel that the interdisci-
plinarity of this field is real, it is vigorous and healthy, and
it is exciting.

Another aspect contributing to the excellent health of
the field is its strong connection to empiricism. Network
studies thrive on getting access to real, empirically-ob-
tained graphs—we have seen this over and over again in
discussion of the articles in this Section. From the Web
graph with its tens of billions of nodes, to food webs with
perhaps a hundred nodes, the science of networks is stim-
ulated, challenged, and enriched by a steady influx of new
data.

Finally, the study of complex networks is eminently
practical. The path to direct application can be very short.
Again we cite the Web graph and Google’s PageRank al-
gorithm as an example of this. The study of gene networks
is somewhat farther from immediate application; but the
possible benefits from a real understanding of cell and or-
ganism development can be enormous. The same holds for
the problem of epidemic spreading. These examples are
only picked out to illustrate the point; all of the articles,
and topics represented by them, are not far removed from
practical application.

In short: the field is exciting, vigorous, and interdisci-
plinary, and offers great practical benefits to society. The
study of graphs and networks shows no signs of becoming
moribund. Hence I will hazard a guess about the future:
that the field will continue to grow and inspire excitement
for many years to come. It is my hope that many readers
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of this Section will be infected by this excitement, and will
choose to join in the fun.
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Glossary

For basic notions on graphs and networks, see the ar-
ticles by Wouter de Nooy: � Social Network Analy-
sis, Graph Theoretical Approaches to and by Vladimir

http://delis.upb.de/paper/DELIS-TR-0634.pdf
http://arxiv.org/abs/0711.3199
http://arxiv.org/abs/0711.3199
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Batagelj:� Social Network Analysis, Large-Scale in the
Social Networks Section. For complementary informa-
tion on graph drawing in social network analysis, see
the article by Linton Freeman:� Social Network Visu-
alization, Methods of.

k-core A set of vertices in a graph is a k-core if each ver-
tex from the set has an internal (restricted to the set)
degree of at least k and the set is maximal – no such
vertex can be added to it.

Network A network consists of vertices linked by lines
and additional data about vertices and/or lines. A net-
work is large if it has at least some hundreds of vertices.
Large networks can be stored in computer memory.

Partition A partition of a set is a family of its nonempty
subsets such that each element of the set belongs to
exactly one of the subsets. The subsets are also called
classes or groups.

Spring embedder is another name for the energy mini-
mization graph drawing method. The vertices are con-
sidered as particles with repulsive force between them,
and lines as springs that attract or repel the vertices
if they are too far or too close, respectively. The algo-
rithm is a means of determining an embedding of ver-
tices in two or three dimensional space that minimizes
the ‘energy’ of the system.

Definition of the Subject

The earliest pictures containing graphs weremagic figures,
connections between different concepts (for example the
Sephirot in Jewish Kabbalah), game boards (nine men’s
morris, pachisi, patolli, go, xiangqi, and others) road maps
(for example Roman roads in Tabula Peutingeriana), and
genealogical trees of important families [33].

The notion of the graph was introduced by Euler. In
the eighteenth and nineteenth centuries, graphs were used
mainly for solving recreational problems (Knight’s tour,
Eulerian and Hamiltonian problems, map coloring). At
the end of the nineteenth century, some applications of
graphs to real life problems appeared (electric circuits,
Kirchhoff; molecular graphs, Kekulé). In the twentieth
century, graph theory evolved into its own field of dis-
crete mathematics with applications to transportation net-
works (road and railway systems, metro lines, bus lines),
project diagrams, flowcharts of computer programs, elec-
tronic circuits, molecular graphs, etc.

In social science the use of graphs was introduced by
Jacob Moreno around 1930 as a basis of his sociometric
approach. In his book Who shall survive? [36], a relatively
large network Sociometric geography of community – map
III (435 individuals, 4350 lines) is presented. Linton Free-

man wrote a detailed account of the development of social
network analysis [20] and the visualization of social net-
works [19]. The networks studied in social network anal-
ysis until the 1990s were mostly small – some tens of ver-
tices.

Introduction

Through the 1980s, the development of information tech-
nology (IT) laid the groundwork for the emerging field of
computer graphics. During this time, the first algorithms
for graph drawing appeared:

� Trees: Wetherell and Shannon [45].
� Acyclic graphs: Sugiyama [42].
� Energy minimization methods (spring embedders) for

general graphs: Eades [17], Kamada and Kawai [30],
Fruchterman and Reingold [21].

In energy minimization methods, vertices are considered
as particles with repulsive force between them and lines as
springs that attract or repel the vertices if they are too far
or too close, respectively. The algorithms provide a means
of determining an embedding of vertices in two or three
dimensional space that minimizes the ‘energy’ of the sys-
tem.

As early as 1963,William Tutte proposed an algorithm
for drawing planar graphs [43] and Donald E. Knuth put
forth an algorithm for drawing flowcharts [31].

A well known example of an early graph visualiza-
tion was produced by Alden Klovdahl using his program
View_Net – see Fig. 1. As nice a piece of art as it was, it
held an important message: there are big problems with
the visualization of dense, large graphs.

Complex Networks, Visualization of, Figure 1
Klovdahl: Social links in Canberra, Australia
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Complex Networks, Visualization of, Figure 2
Network of traceroute paths for 29 June 1999

These developments led to the emergence of a new
field: graph drawing. In 1992 a group of computer sci-
entists and mathematicians (Giuseppe Di Battista, Pe-
ter Eades, Michael Kaufmann, Pierre Rosenstiehl, Kozo
Sugiyama, Roberto Tamassia, Ioannis Tollis, and others)
started the conference International Symposium on Graph
Drawing which takes place each year. The proceedings of

Complex Networks, Visualization of, Figure 3
FAS: The scientific field of Austria

the conference are published in the Lecture Notes in Com-
puter Science series by Springer [24]. To stimulate new ap-
proaches to graph drawing, a graph drawing contest ac-
companies each conference. Many papers on graph draw-
ing are published in the Journal of Graph Algorithms and
Applications [79].

Most of the efforts of the graph drawing community
were spent on problems of drawing special types of graphs
(trees, acyclic graphs, planar graphs) or using special styles
(straight lines, orthogonal, grid-based, circular, hierarchi-
cal) and deriving bounds on required space (area) for se-
lected types of drawing.

In the 1990s, further development of IT (GUI, mul-
timedia, WWW) made large graph analysis a reality.
For example, see the studies of large organic molecules
(PDB [51]), the Internet (Caida [52]), and genealogies
(White and Jorion [46], FamilySearch [60]). In chem-
istry, several tools for dynamic three-dimensional visu-
alization and inspection of molecules were developed
(Kinemage [48], Rasmol [87], MDL Chime [82]).

One of the earliest systems for large networks was Sem-
Net (see Fairchild, Poltrock, Furnas [18]), used to explore
knowledge bases represented as directed graphs.

In 1991 Tom Sawyer Software [91] was founded – the
premier provider of high performance graph visualization,

http://www.fas.at/business/en/galery/index.htm
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layout, and analysis systems that enable the user to see and
interpret complex information to make better decisions.

In 1993 at AT&T, the development of GraphViz tools
for graph visualization began (dot, neato, dotty, tcldot, lib-
graph) [69]. Becker, Eick and Wilks developed a SeeXYZ
family of network visualization programs [8].

In 1996 Vladimir Batagelj and Andrej Mrvar started
the development of Pajek – a program for large network
analysis and visualization [5].

In 1997 at La Sepienza, Rome, the development of
GDToolkit [63] started as an extension of LEDA (Library
of Efficient Data types and Algorithms) to provide imple-
mentations of several classical graph-drawing algorithms.
The new version, GDT 4.0 (2007), produced in collabora-
tion with University of Perugia, is LEDA independent.

Graham Wills, a principal investigator at Bell Labs
(1992–2001), built the Nicheworks system for the visual
analysis of very large weighted network graphs (up to
a million vertices).

In the summer of 1998 Bill Cheswick and Hal Burch
started work on the Internet Mapping Project at Bell
Labs [53]. Its goal was to acquire and save Internet topo-
logical data over a long period of time. This data has been
used in the study of routing problems and changes, dis-
tributed denial of service (DDoS) attacks, and graph the-
ory. In the fall of 2000 Cheswick and Burch moved to
a spin-off from Lucent/Bell Labs named Lumeta Corpora-
tion. Bill Cheswick is now back at AT&T Labs. Figure 2
shows a network obtained from traceroute paths for 29
June 1999 with nearly 100 000 vertices.

In the years 1997–2004, Martin Dodge maintained
his Cybergeography Research web pages [58]. The results
were published in the book The Atlas of Cyberspace [14].
A newer, very rich, site on information visualization is
Visual complexity [95], where many interesting ideas on
network visualizations can be found. These examples, and
many others, can also be accessed from the Infovis 1100+
examples of information visualization site [77]. An inter-
esting collection of graph/network visualizations can be
found also on the CDs of Gerhard Dirmoser. The collec-
tion also contains many artistic examples and other pic-
tures not produced by computers.

In 1997 Harald Katzmair founded FAS research in Vi-
enna, Austria [61], a company providing network analysis
services. FAS emphasizes the importance of nice-looking
final products (pictures) for customers by using graphi-
cal tools to enhance the visual quality of results obtained
from network analysis tools. In Fig. 3, a network of Aus-
trian research projects is presented. A similar company,
Aguidel [49], was founded in France by Andrei Mogoutov,
author of the program Réseau-Lu.

Every year (from 2002) at the INSNA Sunbelt
conference [78], the Viszards group has a special session
in which they present their solutions – analysis and visu-
alizations of selected networks or types of networks. Most
of the selected networks are large (KEDS, Internet Movie
Data Base, Wikipedia, Web of Science).

Attempts

The new millennium has seen several attempts to develop
programs for drawing large graphs and networks. Most
of the following descriptions are taken verbatim from the
programs’ web pages.

Stephen Kobourov, with his collaborators from the
University of Arizona, developed two graph drawing sys-
tems: GRIP (2000) [22,70] and Graphael (2003) [66].
GRIP – Graph dRawing with Intelligent Placement was
designed for drawing large graphs and uses a multi-di-
mensional force-directed method together with fast en-
ergy function minimization. It employs a simple recursive
coarsening scheme – rather than being placed at random,
vertices are placed intelligently, several at a time, at loca-
tions close to their final positions.

The Cooperative Association for Internet Data Analy-
sis (CAIDA) [52], co-founded in 1998 by kc claffy, is an in-
dependent research group dedicated to investigating both
the practical and theoretical aspects of the Internet to pro-
mote the engineering and maintenance of a robust, scal-
able, global Internet infrastructure. They have been focus-
ing primarily on understanding how the Internet is evolv-
ing, and on developing a state-of-the-art infrastructure for
data measurement that can be shared with the entire re-
search community.

Figure 4 represents a macroscopic snapshot of the
Internet for two weeks: 1–17 January 2008. The graph
reflects 4 853 991 observed IPv4 addresses and 5 682 419
IP links. The network is aggregated into a topology of
Autonomous Systems (ASes). The abstracted graph con-
sists of 17 791 ASes (vertices) and 50 333 peering sessions
(lines).

Walrus is a tool for interactively visualizing large di-
rected graphs in three-dimensional space. It is best suited
to visualizing moderately sized graphs (a few hundred
thousand vertices) that are nearly trees.Walrus uses three-
dimensional hyperbolic geometry to display graphs un-
der a fisheye-like magnifier. By bringing different parts of
a graph to themagnified central region, the user can exam-
ine every part of the graph in detail. Walrus was developed
by Young Hyun at CAIDA based on research by Tamara
Munzner. Figure 5 presents two examples of visualizations
produced with Walrus.

http://www.insna.org/
http://www.insna.org/
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CAIDA: AS core 2008

Complex Networks, Visualization of, Figure 5
Walrus

Some promising algorithms for drawing large graphs
have been proposed by Ulrik Brandes, Tim Dwyer, Em-
den Gansner, Stefan Hachul, DavidHarel, Michael Jünger,
Yehuda Koren, Andreas Noack, Stephen North, Christian
Pich, and Chris Walshaw [11,16,23,25,26,32,39,44]. They
are based either on a multilevel energy minimization ap-
proach or on an algebraic or spectral approach that re-
duces to some application of eigenvectors.

The multilevel approach speeds-up the algorithms.
Multilevel algorithms are based on two phases: a coarsening
phase, in which a sequence of coarse graphs with decreas-
ing sizes is computed, and a refinement phase, in which
successively finer drawings of graphs are computed, us-
ing the drawings of the next coarser graphs and a vari-
ant of a suitable force-directed single-level algorithm [25].
The fastest algorithms combine the multilevel approach
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Complex Networks, Visualization of, Figure 6
Katy Börner: Text analysis

with fast approximation of long range repulsive force us-
ing nested data structures, such as quadtree or kd-tree.

Katy Börner from Indiana University, with her col-
laborators, produced several visualizations of sciento-
metric networks such as Backbone of Science [9] and
Wikipedia [73]. They use different visual cues to produce
information-rich visualizations – see Fig. 6. She also com-
missioned theMap of Science based on data (800 000 pub-
lished papers) from Thomson ISI and produced by Kevin
Boyack, Richard Klavans and Bradford Paley [9].

Yifan Hu from AT&T Labs Information Visualization
Group developed a multilevel graph drawing algorithm
for visualization of large graphs [29]. The algorithm was
first implemented in 2004 in Mathematica and released
in 2005. For demonstration he applied it to the Univer-
sity of Florida Sparse Matrix collection [56] that contains
over 1500 square matrices. The results are available in
the Gallery of Large Graphs [74]. The largest graph (van-
Heukelum/cage15) has 5 154 859 vertices and 47 022 346

edges. In Fig. 7, selected pictures from the gallery are pre-
sented.

From the examples that we have given, we can see that,
in some cases, graph drawing algorithms can reveal sym-
metries in a given graph and also a ‘structure’ ((sub)trees,
clusters, planarity, etc.). Challenges remain in devising
ways to represent graphs with dense parts.

For dense parts, a better approach is to display them
using matrix representation. This representation was used
in 1999 by Vladimir Batagelj, Andrej Mrvar and Matjaž
Zaveršnik in their partitioning approach to visualization
of large graphs [7] and is a basis of systems such asMatrix
Zoom by James Abello and Frank van Ham, 2004 [1,2],
and MatrixExplorer by Nathalie Henry and Jean-Daniel
Fekete, 2006 [27]. A matrix representation is determined
by an ordering of vertices. Several algorithms exist that can
produce such orderings. A comparative study of them was
published by Chris Mueller [37,84]. In Fig. 8 three order-
ings of the same matrix are presented. Most ordering al-

http://ella.slis.indiana.edu/~katy/
http://ella.slis.indiana.edu/~katy/
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Complex Networks, Visualization of, Figure 7
Examples from the Gallery of Large Graphs

gorithms were originally designed for applications in nu-
merical, rather than data, analysis. The orderings can also
be determined using clustering or blockmodeling meth-
ods [15].

An important type of networks are temporal networks,
where the presence of vertices and lines changes through
time. Visualization of such networks requires special ap-
proaches (Sonia [88], SVGanim [90], TecFlow [75]). An
interesting approach to visualization of temporal networks
was developed by Ulrik Brandes and his group [12].

Perspectives

In this section, we present a collection of ideas on how to
approach visualization of large networks. These ideas are
only partially implemented in different visualization solu-
tions.

While the technical problems of graph drawing strive
for a single ‘best’ picture, network analysis is also a part of
data analysis. Its goal is to gain insight not only into the
structure and characteristics of a given network, but also
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Complex Networks, Visualization of, Figure 8
Matrix representations

Complex Networks, Visualization of, Figure 9
Big picture, V. Batagelj, AE’04

into how this structure influences processes going on over
the network. We usually need several pictures to present
the obtained results.

Small graphs can be presented in their totality and in
detail within a single view. In a comprehensive view of
large graphs, details become lost – conversely a detailed
view can encompass only a part of a large graph.

The literature on graph drawing is dominated by the
‘sheet of paper’ paradigm – the solutions and techniques
are mainly based on the assumption that the final result
is a static picture on a sheet of paper. In this model, to
present a large data set we need a large ‘sheet of paper’ –
but this has a limit. Figure 9 presents a visualization of

a symmetrized subnetwork of 5952 words and 18 008 as-
sociations from the Edinburgh Associative Thesaurus [59]
prepared by Vladimir Batagelj on a 3 m � 5 m ‘sheet of pa-
per’ for Ars Electronica, Linz 2004 Language of networks
exhibition.

The main tool for dealing with large objects is abstrac-
tion. In graphs, abstraction is usually realized using a hier-
archy of partitions. By shrinking selected classes of a par-
tition we obtain a smaller reduced graph. The main oper-
ations related to abstraction are:

� Cut-out: Display of only selected parts (classes of parti-
tion) of a graph;
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Complex Networks, Visualization of, Figure 10
Glasses: Rasmol displays – BallStick, SpaceFill, Backbone, Ribbons

� Context: Display details of selected parts (classes) of
a graph and display the rest of the graph in some re-
duced form;

� Model: Display the reduced graph with respect to
a given partition;

� Hierarchy: Display the tree representing the nesting of
graph partitions.

In larger, denser networks there is often too much infor-
mation to be presented at once. A possible answer is an in-
teractive layout on a computer screen where the user con-
trols what (s)he wants to see.

The computer screen is a medium which offers many
new possibilities: parallel views (global and local); brush-
ing and linking; zooming and panning; temporary el-
ements (additional information about the selected ele-

ments, labels, legends, markers, etc.); highlighted selec-
tions; and others. These features can and should be max-
imally leveraged to support data analytic tasks; or repeat-
ing Shneiderman’s mantra: overview first, zoom and fil-
ter, then details on-demand (extendedwith: Relate, history
and extract) [40].

When interactively inspecting very large graphs, a seri-
ous problem appears: how does one avoid the “lost within
the forest” effect? There are several solutions that can help
the user maintain orientation:

� Restart option: Returns the user to the starting point;
� Introduction of additional orientation elements: Al-

lows elements to be switched on and off.
� Multiview: Presents at least two views (windows):
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– Map view: Shows an overall global view which con-
tains the current position and allows ‘long’ moves
(jumps). For very large graphs, a map view can be
combined with zooming or fish-eye views.

– Local view: Displays a selected portion of the graph.

Additional support can be achieved by implementing
trace, backtrack, and replay mechanisms and guided tours.

An interactive dynamic visualization of a graph on the
computer screen need not be displayed in its totality. In-
specting a visualization, the user can select which parts and
elements will be displayed and in what way. See, for exam-
ple, TouchGraph [92].

Complex Networks, Visualization of, Figure 11
Glasses: Display of properties – school

Complex Networks, Visualization of, Figure 12
Part of the big picture

Closely related to the multiview concept are the associ-
ated concepts of glasses, lenses and zooming. Glasses affect
the entire window, while lenses affect only selected region
or elements.

By selecting different glasses, we can obtain different
views on the same data supporting different visualization
aims. For example, in Fig. 10 four different glasses (ball
and stick, space-fill, backbone, ribbons) were applied in
the program Rasmol to the molecule 1atn.pdb (deoxyri-
bonuclease I complex with actin).

Another example of glasses is presented in Fig. 11.
The two pictures were produced by James Moody [35].
The graph pictured was obtained by applying spring em-
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Complex Networks, Visualization of, Figure 13
Lenses: Temporary info about the selected vertex

Complex Networks, Visualization of, Figure 14
Zoom, glasses, lenses, navigation: Google Maps

bedders. It represents the friendships among students in
a school. The glasses are the coloring of its vertices by
different partitions: an age partition (left picture) and
a race partition (right picture). This gives us an expla-
nation of the four groups in the resulting graph pic-
ture, characterized by younger/older and white/black stu-
dents.

Figure 12 shows a part of the big picture presented in
Fig. 9. The glasses in this case are based on ordering the
edges in increasing order of their values and drawing them

in this order – stronger edges cover the weaker. The pic-
ture emphasizes the strongest substructures; the remain-
ing elements form a background.

There are many kinds of glasses in representation
of graphs, for example, fish-eye views, matrix represen-
tation, using application field conventions (genealogies,
molecules, electric circuits, SBGN), displaying vertices
only, selecting the type of labels (long/short name, value),
displaying only the important vertices and/or lines, size of
vertices determined by core number or “betweennes”.
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Complex Networks, Visualization of, Figure 15
Zoom, glasses, lenses, navigation: Grokker

An example of lens is presented in Fig. 13 – contri-
butions of companies to various presidential candidates
from Follow the Oil Money by Greg Michalec and Skye
Bender-deMoll [62]. When a vertex is selected, informa-
tion about that vertex is displayed. Another possible use
of a lens would be to temporarily enhance the display of
neighbors of a selected vertex [94] or to display their labels.
The “shaking” option used in Pajek to visually identify all
vertices from a selected cluster is also a kind of lens; so
are thematrix representations of selected clusters in Node-
Trix [72].

Additional enhancement of a presentation can be
achieved by the use of support elements such as labels,
grids, legends, and various forms of help facilities.

An important concept connected with zooming is the
level of detail, or LOD – subobjects are displayed differ-
ently depending on the zoom depth.

A nice example of a combination of these techniques
is the Google Maps service [65] – see Fig. 14. It combines
zooming, glasses (Map, Satellite, Terrain), navigation (left,
right, up, down) and lenses (info about points). The maps
at different zoom levels provide information at different
levels of detail and in different forms.

A similar approach could be used for inspection of
a large graph or network by examining selected hierar-
chical clusterings of its vertices. To produce higher level
‘maps,’ different methods can be used: k-core represen-

tation [4], density contours [83], generalized blockmod-
eling [15], clustering [71] (Fig. 15), preserving only im-
portant vertices and lines, etc. In visualizing ‘maps,’ new
graphical elements (many of them still to be invented) can
be used (see [13,80], p. 223 in [15]) to preserve or to indi-
cate information about structures at lower levels.

The k-core representation [4,81] is based on k-core
decomposition of a network [6,7] and was developed by
Alessandro Vespignani and his collaborators [54]. Fig-

Complex Networks, Visualization of, Figure 16
k-core structure of a portion of the web at the .fr domain
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Complex Networks, Visualization of, Figure 17
Density structure

ure 16 shows a portion of the web at the .fr domain with
1 million pages. Each node represents a web page and each
edge is a hyperlink between two pages.

Density contours were introduced by James Moody in
2006. First, a spring embedder layout of a (valued) net-
work is determined. Next, vertices and lines are removed
and replaced by density contours. Figure 17 shows this
process applied to the case of a social science co-citation
network. The left side shows the network layout and the
right bottom part presents the corresponding density con-
tours.

The basic steps in graph/network visualization are:

graph/network ! analysis ! layouts

! viewer ! pictures :

Development of different tools can be based on this
scheme, depending on the kind of users (simple, ad-
vanced) and the tasks they address (reporting, learning,
monitoring, exploration, analysis). In some cases, a sim-
ple viewer will be sufficient (for example SVG viewer,
X3D viewer, or a special graph layout viewer), in others
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a complete network analysis system is needed (such as Ge-
omi [3,64], ILOG [76], Pajek [50], Tulip [93], yFiles [96]).

To visualize a network, layouts are obtained by aug-
menting network data with results of analysis and users’
decisions. In Pajek’s input format, there are several layout
elements from Pajek’s predecessors (see Pajek’s manual,
pp. 69–73 in [50]). As in typesetting

text C formatting D formatted text

so in network visualization

network C layout D picture :

It would be useful to define a common layout format (an
extension of GraphML [68]?) so that independent viewer
modules can be developed and combined with different
layout algorithms. Some useful ideas can be found in the
nViZn (“envision”) system [89]. To specify layouts we can
borrow from typesetting the notion of style.
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Glossary

Correlations is the degree, to which events at different
positions and at different times depend on or influence
each other, is measured by correlation functions. If two
events are statistically independent, the correlation be-
tween them is zero. The opposite is not necessarily the
case, but one will often expect that if correlations de-
cay, the mutual dependence does likewise.

Correlation function describes correlations between two
quantities and depends on their separation in time and
space.

Complex systems consist of a large number of interact-
ing components. The interactions give rise to emer-
gent hierarchical structures. The components of the
system and properties at systems level typically change
with time. A complex system is inherently open and its
boundaries often a matter of convention.

Equilibrium In statistical mechanics the prototype equi-
librium system consists of a “small” system in ther-
mal contact with another system, the latter being big
enough to act as a heat bath. A heat bath is defined as
a system so big that when it exchanges energy with the
small system the temperature of the heat bath remains
the same. The statistical properties of equilibrium sys-
tems are independent of time.

Generalized rigidity is a term introduced by P.W. An-
derson [1] to describe the situation, when amany com-
ponent system acts as a globally connected unit, in the
sense that if one apply a force at one point, the effect
can be transmitted across the system. Ice has rigidity,
if we push at one point, the entire piece of ice will start
moving. If the ice, on the other hand melts to water,
a force applied locally will only have an effect locally.
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Hamiltonian expresses the energy of a system as a func-
tion of the degrees of freedom, in terms of which the
system is defined at the considered level of description.
Emergence in physical systems can sometimes be un-
derstood in terms of lumping degrees of freedom, in
the Hamiltonian, together in sets of effective degrees
of freedom, e. g. the center of mass of a solid body.

Non-equilibrium systems is a term used to describe any
system that is not in equilibrium. Needless to say this
is a characterization of limited value, since there are
many very different types of systems included in this
category.

Order parameter is a quantity that allows one to discrim-
inate between two phases of a physical system. The or-
der parameter changes from zero to non-zero as one
passes from one phase to the other. To identify the rel-
evant order parameter is often non-trivial and, is in it-
self, a first important step.

Renormalization group analysis is a systematic mathe-
matical procedure that enables a derivation of the
emergent behavior at the macroscopic systems level.
The behavior at long length and time scales is obtained
from the underlying microskopic short length scales
and fast dynamics.

Statistical mechanics seeks to understand how properties
at systems level emerge from the level of the system-
components and their interactions. This often involves
the application of probability theory, and a number of
mathematical techniques. Throughout, we draw a dis-
tinction between statistical mechanics and statistical
physics. The latter is mainly concerned with themicro-
scopic foundation of thermodynamics and, e. g., phe-
nomena such as phase transitions and superconduc-
tivity.

Definition of the Subject

Matter in the universe is organized in a hierarchical struc-
ture. At the bottom (if there is one) we have elementary
particles, atoms and molecules from which we get macro
molecules like proteins and DNA, these are the building
blocks of organelles, which together form the cells. From
cells we get organs, which put together form organisms:
animals and plants of a great variety of species. One level
of structure emerges from the level below. Is it possible to
scientifically describe, let alone, predict emergence. Some-
times emergence is described as a phenomena beyond
analysis. The perplexity with which this concept is some-
times met, is well illustrated by the following quote from
a recent call for participation in a meeting, held by the
British research council EPSRC, to look at ways to explore

emergence in complex systems. Emergence is described in
the following words: “For the first time since the enlight-
enment in the western tradition we have started to un-
derstand that there are non-causal systems in which some
things just “are”. The concept of emergence by whisch
patterns of possibility arise through interactions of agents
over time, accepts that even with the same starting condi-
tions the same pattern would not necessarily repeat.” An-
other attitude is represented by Lord Roberts May’s state-
ment in a recent lecture that “when people say something
is an emergent property, it just means they don’t under-
stand the phenomena”.

In this brief article we will argue that emergence is
neither an empty concept nor a mysterious non-causal
enigma. On the contrary, emergence is central to sci-
entific enquiry. Emergence occurs when many compo-
nents interact and combine to form an identifiable sys-
tem. In philosophy this is the observation that quantita-
tive changes accumulate and give rise to new qualitative
changes. A proposition that can be traced from the ancient
Greek philosophers through Hegel to Dialectical Material-
ism. In physics Phil Anderson famously summed the fact
that new levels of organization need new types of descrip-
tion, up in the phrase “More is Different” [2]. By follow-
ing the tradition of statistical mechanics it is sometimes
possible to reduce significantly the confusion surround-
ing what emergence is, and how it can be investigated and
described. Kenneth Wilson got the 1982 Nobel prize for
his Renormalization Group theory, which is a particular
beautiful method for extracting certain emergent proper-
ties with great mathematical detail and precision [3].

Introduction

Statistical mechanics is concerned with the interaction of
many components. From interactions between the com-
ponents at one given level the aim is to understand the col-
lective coherent behavior, which emerges as many compo-
nents are put together. It is through the interactions of the
components at one level that the next level emerges. We
consider a collection of interacting atoms and the outcome
is, say, a transistor. In some cases themicroscopic details of
the properties of the individual building blocks are not so
crucial. It happens that the collective behavior is controlled
by general properties of the interactions between the com-
ponents more than by the intrinsic properties of the com-
ponents. A number of methods have been developed to
bridge the gap between the individual components com-
prising a system and the collective whole. This often in-
volves predictions of the asymptotic behavior at long dis-
tances and at long times. In particular the philosophy and
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technique of the Renormalization Group have been suc-
cessful in a number of cases in doing this. Many other ap-
proaches exist, some in which a coarse grained description
is sought similar to the one used in fluid dynamics, other
times the collective systems level behavior is generated by
use of Individual Based Agent models typically simulated
on computers. The latter method goes beyond traditional
statistical mechanics, nevertheless it is reasonable to con-
sider simulations of agent based models as part of statisti-
cal mechanics since they are very similar in spirit to tradi-
tional statistical mechanics simulations starting from the
microscopic degrees of freedom, as e. g. extensively done
for the celebrated Ising model used in studies of magnetic
systems, melting and many other phenomena.

In this article we will discuss a number of examples
of how statistical mechanics is able to deal with emer-
gent phenomena. Our first example is from the theory of
equilibrium properties of magneticmaterials. In themodel
the microscopic magnetic moments – or spin – combine
to form macroscopic coherent vortices. The vortices are
bound in pairs at low temperature. When the temperature
is increased, the biggest pairs are able to unbind, or fall
apart. This is a subtle collective effect caused by the smaller
pairs weakening the binding force between the vortices in
the biggest pairs. We use this case to describe in some
detail how the statistical mechanics formalism of Boltz-
mann and Gibbs allows us to identify the macroscopic ex-
citations. These macroscopic excitations are what consti-
tute the macroscopic “components” of the system, once
they are identified we can calculate the unbinding of the
vortex pairs. This discussion focuses on spatial aspects.
The mathematical description developed from this model
has applications to a range of very different phenomena,
such as melting, superconductivity, superfluidity, electri-
cal charges in two-dimensional space and crystal growth.
This is a good typical example of how the mathematical
formalism of statistical mechanics is able to deliver un-
derstanding, and a description, transcending the particular
and unify apparently disconnected phenomena.

Many-component systems also often exhibit emergent
temporal behavior that is caused by the interactions and
ensuing collective motion of the components. For exam-
ple, one typically see very persistent correlations, or long
time memory, in the macro-dynamics of many-compo-
nent systems. A particular version of this phenomena is
called 1/ f fluctuations, and we explain below what this
is, and how it is related to long time correlations or long
memory effects. To make the discussion concrete we will
present the details of a very simple model of diffusing par-
ticles. The model might be related to motorway traffic.

To go beyondmodels taken from physics we will finish

by a discussion of models inspired by the observed collec-
tive behavior of social insects. Aspects of trail formation
and mound building of ants and termites have been re-
produced in computer simulations. Often the models con-
sider “agents” with a tendency to perform random walks
and picking up and laying down material. The agents de-
viate from random walking when they come across traces
of smell – pheromones – laid down by other ants. This in-
direct interaction can lead to the formation of surprisingly
intricate structures of trails and mounds.

Since essentially any activity within statistical mechan-
ics is concerned with a description of emerging phenom-
ena a very large literature exists and we list here only
a few books of particular relevance to the view point of the
present article [1,4,5,6,7,8,9,10,11,12,13] and some more
specialized papers as we go along.

EquilibriumAverages

To describe how statistical mechanics is able to identify
structures emerging at the macroscopic level we briefly re-
call how macroscopic (or systems level) quantities are ob-
tained through averaging procedures. The reason equilib-
rium systems can be analyzed in particular detail is that the
situation, where the systems of interest can be considered
as in thermal equilibrium with a heat bath, allows for the
determination of the probability weights of the individual
micro-states. One starts out with the following fundamen-
tal hypothesis concerning isolated or closed systems:

� Micro Canonical Ensemble. For a closed system it
is assumed that all micro-states, consistent with the
macroscopic constraints, occur with equal probability.

The macroscopic constraints can, for example, be the
total energy E (which is constant for a closed system) and
the volume V . Denote by ˝(E;V ) the total number of
micro-states possible under these constrains. Meaning the
components or particles of the system have to be located
within the given volume V , and that when we add all the
energies of the particles the sum must equal E. The prob-
ability p(s) that the system is in a particular state s is then

p(s) D
1

˝(E;V )
: (1)

Closed systems are not very interesting in the sense that
one is unable to interact with them. A much more inter-
esting situation is when the system S under consideration
is brought in contact with a heat bath B or heat reser-
voir. The heat bath is a system so big that even when it
exchanges energy with the small system of experimental
interest, the heat bath remains unchanged. Say a cup of tea
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in contact with the Pacific Ocean. The heat bath is char-
acterized by its temperature T. We can now use the fun-
damental hypothesis above to determine the probabilis-
tic weights for the states of S. Since the combined sys-
tem BC S is closed the weights for the combined system
is given by the Micro Canonical Ensemble, i. e. all micro-
states of the combined system are equally likely. The num-
ber of micro-states for the combined system of total energy
ETot D EB C ES will be a product

˝Tot(ETot) D ˝B(EB)˝S(ES) : (2)

Here one neglects the interactions between the heat bath
and the system. Now focus on one particular micro-state s
of S of energy Es. Since we have a particular state, s, in
mind we have ˝S(s) D 1. This state can be combined in
many ways with states of the bath B as long as those fulfill
the constraint ETot D EB C Es . So the probability, p(s), for
finding the system S in s, when S is in equilibrium with the
bath, is proportional to˝B(ETot � Es ). Namely

p(s) D
˝B(ETot � Es )P

state˝B(ETot � Estate)
; (3)

the denominator ensures normalization. In order to intro-
duce the temperature into the mathematical formalism it
turns out that we should consider the logarithm of p(s).
We have

ln[p(s)] D constantC ln[˝B(ETot � Es )] (4)

D constantC ln[˝B(ETot)]

�
@ ln[˝B(ETot)]

@ETot
Es

(5)

D constant �
1

kBT
Es : (6)

Here we Taylor expanded to linear order to obtain the first
equality. The second equality follows, because it can be
shown by use of the first and second law of thermodynam-
ics that the temperature is given by

1
kBT
D
@ ln[˝B(ETot)]

@ETot
: (7)

This is obtained in the following way. The first and sec-
ond law of thermodynamics lead to the following ther-
modynamic identity dE D TdS � pdV where the en-
tropy S D kB ln[˝(E)]. Since the thermodynamic identity
takes the form of an exact differential we conclude that
@E/@S D T from which Eq. (7) follows. We now conclude

p(s) D
e�

Es
kBT

Z
; (8)

where the constant Z is obtained from the normalization
condition

X

states
p(s) D 1 ; (9)

to be given by

Z D
X

states
D e�

Es
kBT : (10)

We conclude that the probabilistic weights, needed to
calculate the average macroscopic behavior of a system
in contact with a heat bath at temperature T, is given
by the (Boltzmann) weights in Eq. (8). And we mention
that a large number of average quantities can be calculated
from the sum in Eq. (10). This important sum is called the
partition function or partition sum. Some states, or config-
urations of the microscopic degrees of freedom, will con-
tribute more to the partition sum than others, such config-
urations can sometimes be identified as macroscopic col-
lective excitations. These may possess a degree of robust-
ness and stability and can in such cases be identified as
macroscopic emergent objects with specific properties that
can be considered essential building blocks. Perhaps it is
instructive to have the following picture in mind. Think of
a pool table. To describe the motion of the balls we can ei-
ther follow the trajectories of all the individual molecules
making up 15 colored balls or we can notice that some
of the molecules move together in a coordinated way and
thereby form each of the 15 balls. We can therefore instead
simply follow the trajectories of the center of mass (COM)
of each of the balls. Obviously we lose a lot of information
since we can’t go from the COM of the balls to the mo-
tion of all the molecules; whereas we can drive the COM
motion if we know the motion of all the molecules. Hence
we note that emergence involves a loss of information. We
will discuss in detail an important and illustrative example
in the next section.

The Two-Dimensional XY-Model

Here we describe how the averaging procedure described
in the previous section can be structured in a way that al-
lows the introduction of new effective collective degrees
of freedom. These describe macroscopic excitations cre-
ated by the coherent motion of a huge number of micro-
scopic variables. When the collective degrees have been
identified information concerning the detailed motion of
the microscopic variables can be neglected, and one is in
this way able to reduce the computational effort needed
and at the same time identify the essential emergent struc-
tures. A particular clear example of this procedure consists
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of the physics of systems modeled by the so-called two-di-
mensional XY-model.

We start our discussion by considering the formation
of vortices in the sea of two-dimensional magnetic mo-
ments. The individual microscopic magnetic moments sit
on the sites of a two-dimensional square lattice and the di-
rection of the moments are confined to two dimensions,
see Fig. 1 (A beautiful online interactive simulation can be
found on Hans Weber’s web page at http://www.mt.luth.
se/~weber/). Each magnetic moment can be thought of as
a magnetic needle, or an arrow, confined to two dimen-
sions and pointing in a specific direction described by the
angle � . The magnetic moment number i is given by the
vector Si D (cos(�i ); sin(�i )).

We will use it as our reference model. We think of
the model as consisting of planar rotors of unit length ar-
ranged on a two-dimensional square lattice. The Hamilto-
nian of the system is given by

H D �J
X

hi; ji

Si � S j D �J
X

hi; ji

cos(�i � � j) : (11)

Complex Systems and Emergent Phenomena, Figure 1
Rotor configuration of the XY-model. Vortices (black circle) and anti-vortices (white circle) are clearly seen. The configuration is neu-
tral, i. e. there is an equal number of vortices and anti-vortices; but only one white circle is indicated. The reader may find it amusing
to try to locate the missing anti-vortex

Here J is the coupling constant between the magnetic mo-
ments, hi; ji denotes summation over all nearest neighbor
sites in the lattice, and �i denotes the angle of the rotor on
site iwith respect to some (arbitrary) polar direction in the
two-dimensional vector space containing the rotors.

We shall see below how the components, the rotors,
work together to form certain collective coherent struc-
tures: topological defects or topological charges. In Fig. 1
these excitations are depicted. Each consists of a whirl or
vortex in the configuration of the rotors. There are vor-
tices of opposite sign. As one moves around in a positive
direction along a contour encircling the center of a vor-
tex (black circle) the rotors perform a full rotation in the
positive direction as well. When we move around one of
the anti-vortices (white circle) in a similar way, the rotors
undergo a full rotation in the negative direction. Although
these charges are here seen as arising from rotors or mag-
netic moments, the impressive fact is that these topologi-
cal charges also represent Coulomb charges in two dimen-
sions, or dislocations in two-dimensional crystals, or vor-
tices in two-dimensional superconductors or a large num-
ber of other collective excitations. The interaction between

http://www.mt.luth.se/~weber/
http://www.mt.luth.se/~weber/
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the topological charges depends in all cases logarithmically
on the spatial separation and this leads to some very gen-
eral collective behavior, most spectacular the logarithmic
dependence on separation causes a certain type of phase
transition: the Kosterlitz–Thouless transition [14].

If we assume that the direction of the rotors varies
smoothly from site to site, we can approximate cos(�i�� j)
by the first two terms 1 � 1/2(�i � � j)2 in the Taylor ex-
pansion of cos. The sum over the nearest neighbors corre-
sponds to the discrete Laplace operator, which we can ex-
press in terms of partial derivatives through �i �� j D @x�
for two sites i and j which differs by one lattice spacing in
the x-direction. This leads to the continuum Hamiltonian

H D E0 C
J
2

Z
dr(r�)2 : (12)

Here E0 D 2JN is the energy of the completely aligned
ground state of N rotors.

The thermodynamics of the system is obtained from
the partition function

Z D e�ˇE0
Z

D[�] exp
�
�ˇ

J
2

Z
dr(r�)2

�
; (13)

a functional integral over all possible configurations of the
director field �(r). Not all configurations will be of the
same importance. By focusing on the terms in the sum
that contribute most, we can identify the configurations
that may be used as building blocks at the next level of de-
scription. Since the energy appears in the exponential with
a negative sign in front, the most significant contributions
will be those with the smaller energy – thus we have to pick
out the local minima.We therefore divide the integral over
�(r) into a sum over the local minima �vor of H[�] plus
fluctuations �sw around the minima

Z D e�ˇE0
X

�vor

Z
D[�sw] exp

�
� ˇ(H[�vor]

C
1
2

Z
dr1

Z
dr2�sw(r1)

ı2H
ı�(r1)ı�(r2)

�sw(r2))
�
:

(14)

The field configurations corresponding to local minima of
H are solutions to the extremal condition

ıH
ı�(r)

D 0 ) r2�(r) D 0 : (15)

There are two types of solutions to this equation. The first
consists of the ground state �(r) D constant. The second
type of solutions consist of vortices in the director field
(see Fig. 1) and are obtained by imposing the following set
of boundary conditions on the circulation integral of �(r):

1) For all closed curves encircling the position r0 of the
center of the vortex

I
r�(r) � dl D 2�n ; n D 1; 2; : : : : (16)

2) For all paths that don’t encircle the vortex position r0
I
r�(r) � dl D 0 : (17)

Condition 1) imposes a singularity in the director field.
Note the circulation integral must be equal to an integer
times 2� since we circle a closed path and therefore �(r)
has to point in the same direction after traversing the path
as it did when we started.

We can estimate the energy of a vortex in the follow-
ing way. The problem is spherical symmetric, hence the
vortex field �vor must be of the form �(r) D �(r). The de-
pendence on r can be found from Eq. (16). We calculate
the circulation integral along a circle of radius r centered
at the position r0 of the vortex

2�n D
I
r�(r) � dl D 2�rjr� j : (18)

We solve and obtain jr�(r)j D n/r. Substitute this result
into the Hamiltonian Eq. (12)

Evor � E0 D
J
2

Z
dr[r�(r)]2 (19)

D
Jn2

2

Z 2	

0
d�
Z L

a
r dr

1
r2

(20)

D �n2 J ln
L
a
: (21)

Here a denotes the lattice constant and L is the linear
size of the considered lattice. The circulation condition
Eq. (16) creates a distortion in the phase field �(r) that per-
sists infinitely far from the center of the vortex. jr� j de-
cays only as 1/r leading to a logarithmic divergence of the
energy. Hence we need to take into account that the inte-
gral over r in Eq. (20) is cut-off for large r-values by the fi-
nite system size L and for small r-values by the lattice spac-
ing a. We recall that our continuum Hamiltonian is an ap-
proximation to the lattice Hamiltonian in Eq. (11). A vor-
tex with the factor n in Eq. (16) larger than one is called
multiple charged. We notice that the energy of the vortex
is quadratic in the charge. In a macroscopically large sys-
tem even the energy of a single charge vortex will be large,
and therefore we do not expect individual vortices to be
thermally induced.

Consider now a pair consisting of a single charged
vortex and a single charged anti-vortex. When we en-
circle the vortex, we pick up

H
dl � r� D 2� and when
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we encircle the anti-vortex, we pick up
H
dl � r� D �2� .

Hence, if we choose a path large enough to enclose both
vortices, we pick up a circulation of the phase equal to
2� C (�2�) D 0. I. e. the distortion of the phase field �(r)
from the vortex-anti-vortex pair is able to cancel out at dis-
tances from the center of the two vortices large compared
to the separation R between the vortex and the anti-vortex,
see Fig. 1. This explains why the energy of the vortex pair
is of the form [15,16,17]

E2vor(R) D 2Ec C E1 ln(R/a) : (22)

Where Ec is the energy of a vortex core and E1 is pro-
portional to J. In detail, the phase field �2vor(r) of a vor-
tex located at r D (�a; 0) and an anti-vortex located at
r D (a; 0) is given by [15]

�2vor(r) D arctg
�

2ay
a2 � r2

�
: (23)

Significant aspects of the macroscopic behavior of the
XY-model can be understood by treating the vortices as
particles characterized by their position and their charge
and ignoring the underlying sea of rotors. Indication of
this follows from the expression for the energy of a pair of
vortices in Eq. 22. This energy is given in terms of the rel-
ative position of the two vortices, no reference is needed
to the microscopic rotor field given in Eq. 23. The pairs
of vortices have dramatic effects on the macroscopic be-
havior of the XY-model. At low temperature the vortices
are organized in fairly small bound pairs, as the tempera-
ture is increased and more thermal energy is available the
separation between paired up vortices grow and at a cer-
tain temperature the pairs break apart with the effect that
the individual vortices now canmove freely around as they
are no longer kept in check by their partner of the oppo-
site charge. The result is the Kosterlitz–Thouless transition
which manifests itself in various ways in different realiza-
tions of the XY-model. Before we discuss this transition
we will look at the average ordering of the rotors. This
quantity – the magnetization – is usually able to monitor if
a dramatic change in the macroscopic behavior occurs as
a function of temperature. But not so in the 2d XY-model.
To understand this makes it clearer how important it is to
identify correctly the emergent excitations of a many com-
ponent system.

Lack of Ordering in Two Dimensions

In order to highlight the peculiarity of two dimensions
we consider the d-dimensional XY-model. We imagine
a d-dimensional cubic lattice. Each lattice site contains

a planar rotor or a phase. In the continuum limit the
Hamiltonian is still given by Eq. (12) except the integral
over r is now a d-dimensional integral and therefore the
factor J is replaced by Ja2�d . The average size of the pro-
jection of the rotors along, say, the x-direction in S space,
i. e. the magnetization, is

hSx i D hcos �(r)i (24)

D hcos �(0)i : (25)

Note that we might as well have chosen the y-direction.
The model is isotropic and the x and the y directions are
equivalent.When hSx i ¤ 0 a preferred direction is singled
out in the sense that on average S points in the direction
given by hSx i. In this case we say that the rotor field pos-
sesses order. In contrast if hSxi D 0 we also have hSyi D 0,
since the model is isotropic. The zero projection comes
about because the rotors circulate around and on average
point equally much in all directions. So we say that the ro-
tor field is disordered or does not possess any ordering.

First we neglect the singular vortex contributions
(which is perfectly safe at low temperature) and Fourier
transform the phase field

�(r) D
Z

dk
(2�)d

�̂(k)e�ik�r (26)

�(0) D
Z

dk
(2�)d

�̂(k) (27)
Z

dr(r�)2 D
Z

dk
(2�)d

k2 ˆ�(k)�̂(�k) : (28)

These equations are substituted into the expression

hSx i D
R
D[�] cos(�(0))e�ˇH
R
D[�]e�ˇH

D Re

 R
D[�]e�ˇHCi�(0)

Z

!

:

(29)

After some algebra one obtains the following expression

hSx i D exp

 

�
T

2Ja2�d
Sd
Z 	/a

	/L
dkkd�3

!

: (30)

The behavior of hSx i is controlled by the integral

I(L) D
Z 


a



L

dkkd�3 : (31)

The behavior of I(L) strongly depends on the dimension d.
For d < 2 we have I(L) � L2�d !1 as L!1. Hence,
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hSx i D 0 in the limit of large systems for dimensions less
than 2. For d > 2 we have that

I(L)! AD
1

d � 2


�
a

�d�2
(32)

and therefore

hSxi D exp
�
�

Sd
2Ja2�d

AT
�
> 0 : (33)

Finally for d D 2 the integral I(L) is logarithmically diver-
gent I(L) D ln(L/a) which is sufficient to force hSx i to zero
for any non-zero temperature.

We conclude that there is no ordered phase accord-
ing to the behavior of hSx i at low temperature for d � 2.
For d < 2 this means that there is no phase transition. The
same was for a while thought to be the case for d D 2.
Since the thermal motion included in the calculation of
hSx i is able to prevent a preferred direction and hence en-
sure hSx i D 0 for T > 0 including other types of excita-
tions, such as vortices, can surely not make hSx i different
from zero. So it is safe to conclude that the rotors are un-
able to order along a common direction for any non-zero
temperature and it was accordingly expected that a phase
transition in the 2d YX-model was excluded. This conclu-
sion was reached since in magnetic systems the average of
the local magnetic moment, i. e. hSx i is the order parame-
ter and the phase transition takes place at the temperature
where the order parameter changes from zero to a non-
zero value. It turned out that by identifying the vortices as
emergent collective excitations and by understanding their
physical effects, a phase transition of a new kind was dis-
covered in the 2d XY-model.

Vortex Unbinding

An indication of the importance of vortices as the temper-
ature is increased can be obtained from the following sim-
ple and heuristic argument. We estimate the free energy
of a single vortex. The Helmholtz free energy is given by
the difference between the energy and the entropy multi-
plied by the temperature F D E � TS. The energy is given
by Eq. (21). We estimate the entropy from the number of
places where we can position the vortex center, namely
on each of the (L/a)2 plaquette of the square lattice, i. e.,
S D kB ln(L2/a2). Accordingly, the free energy is given by

F D E0 C (� J � 2kBT) ln(L/a) : (34)

For T < � J/2kB the free energy will diverge to plus in-
finity as L!1. At temperatures T > � J/2kB the system
can lower its free energy by producing vortices: F ! �1
as L!1. This simple heuristic argument points to the

fact that the logarithmic dependence on system size of the
energy of the vortex combines with the logarithmic de-
pendence of the entropy to produce the subtleties of the
vortex unbinding transition. Assume a different depen-
dence of the energy on system size and one will either
have thermal activation of vortices at all temperatures (in
case Evor ! const. <1) or vortices will not be activated
at any temperature (in case Evor � (L/a)b with b > 0). It
is the logarithmic size dependence of the 2d vortex energy
that allows the outcome of the competition between the
entropy and the energy to change qualitatively at a certain
finite temperature TKT.

In reality it is not single vortices of the same sign that
proliferate at a certain temperature. What happens is that
the larger vortex pairs which are bound together for tem-
peratures below TKT unbind at TKT. This is a collective ef-
fect that can be treated quantitatively by use of a special
Renormalization Group method design by Kosterlitz [18].
The vortex pairs induced as one approaches TKT disturb
the phase field so much that the effective value of the vor-
tex binding term E1 in the vortex pair free energy, that is
Eq. (22) generalized to non-zero temperature, is driven to
zero for large vortex separations. In the next section we
shall see in detail how this happens.

The SpinWave Stiffness

As our concern in this article is with emergent entities,
we will now briefly discuss how a focus on, and an under-
standing of, the vortex degrees of freedom makes it possi-
ble to identify and describe the previously “hidden” phase
transition in the 2d XY-system.

The effect of the thermally activated vortex pairs is de-
scribe by the temperature dependent spin wave stiffness�Rs .
This is an example of what PhilipW. Anderson calls a gen-
eralized rigidity [1]. The spin wave stiffness describes how
much free energy it costs to apply a twist, or gradient, to
the rotors (also called spins):

�(r) D �0(r)C vex � r ; (35)

here �0(r) is allowed to vary according to the canonical en-
semble. The increase in the free energy is given by

F(vex) � F(0) D
1
2
V�Rs v

2
ex : (36)

A number of comments concerning the notation are il-
luminating. The notation vex for the gradient applied to
the phase field �(r) has its origin in the fact that the same
physics, as we describe here, applies to superfluid films and
superconducting films. In these cases the field �(r) is the
phase of the complex order parameter, the wave function
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of the super-fluid. Being the phase of a quantummechani-
cal wave function the gradient of �(r) is related to a proba-
bility current and thereby to the velocity field of the super-
fluid. The notation �Rs is meant to remind one that this
phase rigidity, is determined by the density of superfluid
in the case of a superfluid or a superconductor. The super-
script R in �Rs indicates that thermal excitations renormal-
ize the quantity. It follows immediately from the Hamil-
tonian in Eq. (12) that at zero temperature �Rs D J D �s.
The spin wave stiffness is similar to the shear constant of
a material. The shear constant determines how the (free)
energy increase when a shear deformation is imposed. As
temperature is increased the shear constant decreases and
drops abruptly to zero when the solid melts into a liquid.

To obtain �Rs one calculates the left hand side of
Eq. (36). Details can be found in the wonderful book by
Chaikin and Lubensky [9]. The phase field is split into two
parts

�0(r) D �s(r)C �v(r) ; (37)

where the first term describes smooth spin waves and the
second term contains the singular vortex contribution.
The free energy is obtained from F D kBT ln Z and the
partition function is given by Eq. (13). To calculate Z in-
troduce Fourier transforms of the phase field. After quite
a bit of algebra one arrives at the following simple expres-
sion

�Rs D �s �
1
2
�2s
T

lim
k!0

hn̂(k)n̂(�k)i0
k2

; (38)

which expresses the renormalized stiffness in terms of the
correlation function of the Fourier transform of the vortex
density function

n(r) D
X

˛

n˛ı(r � r˛) ; (39)

for a collection of vortices of charge n˛ (see Eq. (16)) with
centers located at positions r˛ . The vortices are now de-
scribed entirely by their position exactly like if they were
ordinary particles. So what started out as a complex con-
figuration in the field of rotors is now possible to treat
as point particles. The effect of the extended disturbance
of the rotor field is taken care of by the interaction en-
ergy between two vortices. The thermodynamic average
in Eq. (38) is over the canonical ensemble with no twist
imposed, hence the subscript 0. Eq. (38) can be used to
determine how the spin wave stiffness behaves at large dis-
tances as a function of temperature. We will discuss how
in the next section.

The KT Transition

Let us first summarize the phenomenology of the Koster-
litz–Thouless transition. As the temperature is increased
more and more vortex pairs are thermally activated. This
makes �Rs decrease, see Eq. (38). This corresponds to a de-
crease in the increment of the free energy induced by a cer-
tain twist vex. We can understand the effect from the fact
that the phase field �(r) becomes more andmore distorted
as the temperature is increased, hence the extra pertur-
bation caused by vex becomes relatively less important.
Quantitatively one finds

�Rs D

(
�Rs (T�KT)[1C const.(TKT � T)1/2] for T < TKT
0 for T > TKT :

(40)

Here, TKT is the Kosterlitz–Thouless temperature at
which vortex pairs unbind. The value of TKT differs
from one system to another. In the 2d XY-model
TKT/J ' 0:893˙ 0:002 [19]. The remarkable thing is, that
the ratio

�Rs (T
�
KT)/TKT D 2/� (41)

is universal for all systems that undergoes a KT-transition.
Since �Rs (T

C
KT) D 0 Eq. (41) is referred to as the universal

jump. The correlation length �(T) behaves in a very un-
usual way as one approaches TKT from above.We are used
to a relatively slow algebraic divergence of the correlation
length as the critical temperature is approached. For the
KT-transition the divergence is, however, much faster

�(T) � exp
�

const.
(T � TKT)1/2

�
for T > TKT : (42)

Can we in a simple way understand this exponential di-
vergence? Yes, we can. The phase field is significantly dis-
torted by unbound vortices, since these vortices are not
screened by a nearby anti-vortex. I. e. the phases �(r) can
remain correlated over distances shorter than the typical
distance D D 1/

p
nub between unbound vortices of den-

sity nub [20]. Or in other words, we expect the correla-
tion length � � D. The vortices are thermally induced and
therefore their density is expected to depend on the tem-
perature through a Boltzmann factor exp(�Evor/T). The
situation described here is exactly what happens in the
one-dimensional so-called �4 model. This model supports
thermally activated solitons. The correlation length is set
by the inverse of the soliton density and diverges expo-
nentially as the temperature goes to zero [21]. The same
thing, in a slightly simpler version, also happens in the
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one-dimensional Ising model. This argument can indicate
the cause of the exponential dependence of � . But it is no
more than an indication since the exponential dependence
in Eq. (42) is significantly different from a simple Boltz-
mann factor. This difference is due to corrective renormal-
ization effects.

Continuous phase transitions are accompanied by di-
vergences in thermodynamic quantities caused by the di-
vergence of the correlation length as the critical tempera-
ture Tc is approached. The singular part of the free energy
density f can be estimated as the amount of thermal energy
Tc within a correlated volume �d , which gives f � Tc/�d .
The specific heat cV is given by the second derivative of the
free energy cV D �T@2 f /@T2 � @2��d@T2. For the KT-
transition the exponential divergence of �(T) in Eq. (42) is
so rapid and occur over such a narrow temperature range
that the divergence in cV cannot be resolved in simula-
tions or in experiment. This is another reason why the
vortex unbinding transition remained unnoticed for so
long. It doesn’t leave any dramatic signature in the ther-
modynamic quantities. However, as mentioned above, the
macroscopic rigidity clearly changes at the transition.

The Vortex Unbinding Transition in Other Systems

We have above mentioned that not only the XY-model
exhibits the Kosterlitz–Thouless vortex unbinding transi-
tion [22]. Any two-dimensional system that supports ther-
mally induced “charges” or topological defects that inter-
act logarithmically will undergo this transition. The U(1)
symmetry of the phase field �(r) of the XY-model is also
present in the Ginzburg–Landau free energy of superfluids
and of superconductors. The topological excitations in the
case of a superfluid consist of vortices in the flow of the
superfluid. Vortices like those observed when one emp-
ties a bath tub. In thin superfluid helium film such vortices
destruct the superfluid phase with increasing temperature
according to the scenario of the KT-transition [23,24].

The situation is slightly more complicated in super-
conductors. Because the superfluid in this case is charged
(the superconducting pairs of electrons), screening effects
play a role [9,10,22]. However, for thin superconducting
films of thickness ı the effective screening length is given
by eff D 2/ı, which can easily become a macroscopic
length. In this case the loss of superconductivity is caused
by the unbinding of vortex pairs according to the KT-tran-
sition. The broken pairs can move freely when they re-
spond to an applied electric current. As they move they
cause phase slips in the superconducting order parameter.
These phase slips induce a voltage drop according to the
Josephson relation. The superconductor is now unable to

support an electric current without a voltage drop, i. e. it is
not a superconductor any longer [25,26,27,28].

Dislocations in two-dimensional crystals interact
through the strain field. Two edge dislocations of opposite
sign correspond to an extra row of atoms inserted along
the line connecting the location of the two dislocation
cores. The extra line of atoms produces strain and leads to
an increase in the energy which is logarithmic in the sep-
aration between the two dislocations. Thus, the situation
is very similar to the one encountered in the XY-model.
When the dislocations unbind, free dislocations are pro-
duced. A shear applied to the system can now be accom-
modated by the mobile dislocations without an increase
in the (free) energy. I. e., the shear constant has dropped
to zero and the system is melted. The 2d melting theory
of Kosterlitz–Thouless–Halperin–Nelson–Young predicts
that melting occurs in two stages. At the first stage dislo-
cations unbind and make the shear constant drop to zero.
The dislocations are topological defects, their effect on the
order of the lattice are, however, not very dramatic. Before
the unbinding of dislocations, the translational and the
orientational order of the lattice are both described by cor-
relation functions that depend algebraically on distance.
When the dislocations unbind the translational correla-
tion function becomes exponential but the orientational
correlations remain algebraic. At a somewhat higher tem-
perature topological defects called disclinations unbind
with the effect that the orientational order becomes expo-
nential. Details can be found in Chaikin and Lubensky [9].

There are many other cases where the logarithmic vor-
tex interaction and the KT-transition play a role. For in-
stance, the shape of surfaces in three dimensions may un-
dergo a transition from smooth to rough [29]. Assume that
the surface energy of the two-dimensional surface is pro-
portional to the area of the surface. And assume that the
surface is defined in terms of its height h(x; y) above the
xy-plane, i. e. no over hangs. In other words the points
on the surface have the coordinates (x; y; h(x; y)). The
Hamiltonian for the surface is then

H D �
Z

dx
Z

dy
p
1C (rh)2 : (43)

Here � is a measure of the surface tension. If the height
only varies slowly as a function of (x; y) we can assume
jrhj 
 1 and then expand the square root. In this approx-
imation the Hamiltonian in Eq. (43) can be written as

H D �L2 C
1
2

Z
dx
Z

dy(rh)2 ; (44)

(L is the linear size of the system in the xy-plane) which
is equivalent to Eq. (19), and we expect the same physical
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phenomenology to apply to the surface as we found for the
XY-model.

Non-Equilibrium Systems

The Boltzmann probabilities cannot be used to calculate
the macroscopic properties when we deal with situations
that have no equivalence among systems in contact with
a heat bath. At present there is no general procedure for
the determination of the probability weights of the in-
dividual microstates. This doesn’t mean that statical me-
chanics can’t describe howmacroscopic properties emerge
in systems out of equilibrium. Indeed approaches of broad
interest exist. Here we will briefly introduce the use of
Langevin equations and algorithmic models through two
concrete simplistic models. The first is inspired by the very
long memory or correlation times often observed in com-
plex systems. We will discuss slow flowing motorway traf-
fic. The other is concerned with the emergence of self-
organized structures among interacting living organisms.
Specifically we will think of the formation of ant trails.

1/f Fluctuations – a Langevin Approach

In this section we describe an example of emergence in
time. We will assume that interaction between the compo-
nents of our system forces these to diffuse around, rather
than to move around in a ballistic manner. The result is
a time signal that contains very strong correlations and
is characterized by what is denoted a 1/ f power spec-
trum [30].

We want to study correlations in a time signal f (t).
We measure the signal again and again at two times sepa-
rated by T time units. To make life simple we will neglect
the normalization factor in the empirical averages, i. e. we
don’t divide by the number of terms in the sum in Eq. (45)
below. A justification for this is that we are interested in
the functional dependence of the correlations on the time
interval T and not so much interested in the actual spe-
cific value of the correlation coefficient. Since the correla-
tion coefficient will depend on T we talk about the correla-
tion function. Moreover, since we are correlating the sig-
nal with itself we talk about the autocorrelation function
given by:

C(T) D
X

t
[ f (t)� h f (t)i][ f (tC T) � h f (t C T)i]

D

Z
dt[ f (t)� h f (t)i][ f (t C T)� h f (t C T)i]

D

Z
dt[ f (t)� h f (t)i][ f (t C T)� h f (t)i] :

(45)

In the last equality we made use of the fact that the average
of value f (t) and f (tC T) are identical.

The autocorrelation function is an important object
for the study of memory effects or causality effects in a sig-
nal. The correlation function is equivalent to the power
spectrum. The power spectrum of the signal f (t) is defined
as

S f (!) D j f̂ (!)j2 : (46)

That is the absolute value squared of the Fourier trans-
form of the signal and the power spectrum is related to
the Fourier transform of the autocorrelation function:

S f (!) D Ĉ(!) : (47)

This relation explains why power spectra that approxi-
mately depend inversely proportional on the frequency

S f (!) / 1/!ˇ ; (48)

with ˇ ' 1, are of special interest [31,32,33]. Namely, at
a somewhat heuristic level, we can substitute Eq. (48) into
Eq. (47) and then into

C(T) D
Z 1

�1

d!Ĉ(!)e�i! t ; (49)

to obtain

C(T) D
Z 1

�1

d!!�ˇe�i!T (50)

D T1�ˇ
Z 1

�1

duu�ˇ eu : (51)

We made the substitution u D !T and note that the in-
tegral in the above equation now is independent of T. So
when ˇ ' 1, the correlation function C(T) depends very
weakly on T meaning very slow decay of correlations. This
indicates the particular interest in power spectra that ap-
proximately decays as one over the frequency – called 1/ f
noise. The way we carried the argument through is slightly
dangerous due to possible divergent integrals; the conclu-
sion is, however, sound.

Transport by Diffusion

For concreteness imagine a piece of motorway stretching
from x D �1 to x D 1. At x D 0 vehicles can enter or
leave at an intersection. We will develop a model for the
time evolution of the density of cars n(x; t) at position x at
time t. Since the cars – particles – only can leave or enter
our system at x D 0, at all other positions, x ¤ 0, changes
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during a brief time interval ı in the number of particles in
a small interval [x; x C ıx] about x

ın(x; t) D n(x; t C ıt)ıx � n(x; t)ıx (52)

will be caused by a difference during the time ıt between
the number of particles leaving the section [x; x C ıx] at
x C ıx and the number of particles entering the section at
x. Let J(x; t) denote the particle current (number of par-
ticles crossing the position x at time t per time unit). We
can then write

ın(x; t) D J(x C ıx; t)ıt � J(x; t)ıt : (53)

Substituting Eq. (53) into Eq. (52) we obtain

n(x; t C ıt)ıx � n(x; t)ıx D �J(x C ıx; t)ıt C J(x; t)ıt
+ (54)

@n(x; t)
@t

D �
@J(x; t)
@x

: (55)

The last equation follows in the limit ıx ! 0 and ıt ! 0.
This equation is exact and only assumes conservation

of the particles. To obtain a closed equation for n(x; t) we
need to relate J(x; t) to n(x; t). And to do so we need to
make assumptions concerning the nature of how the parti-
cles, or cars, move along the line. Let us imagine that con-
gestion makes it impossible for cars to move freely. On the
contrary assume that the drivers are forced to effectively
perform random walks; i. e. diffuse along the motorway.

We emphasize that it is through this assumption that
the cars, or particles, are made to interact. Here we assume
that the diffusion is a result of over-crowding and interac-
tion amongst the cars. Obviously particles might perform
diffusive motion as a result of other interactions. Pollen in
water diffuses because it is bombarded by large numbers
of water molecules. In any case some sort of complex in-
teraction is always responsible for diffusive motion since
the particles otherwise would move around according to
Newton’s laws. The model might in fact be more relevant
to small particles (pollen, say) suspended in a long narrow
strip of water – or something else.

To model the jamming and resulting diffusive mo-
tion, we will assume that the net particle current (at coarse
grained level) is from high particle density to low particle
density, and linear in the density difference. We express
this as

J(x; t) D ��
@n(x; t)
@x

: (56)

We combine Eq. (55) and Eq. (56) to obtain a closed form
of dynamical equation for n(x; t):

@n(x; t)
@t

D �
@2n(x; t)
@x2

: (57)

This is the well-known diffusion equation. It describes
how inhomogeneities in the density n(x; t) relaxes by dif-
fusion. The equation describes a closed system. Next we
include the particles that might be added or removed at
a certain rate g(x; t) at position x at time t. According to
the description above we have in particular in mind that
g(x; t) must describe cars leaving and entering at x D 0.
Wewill later return to how this particular requirement can
be imposed on g(x; t). We now have our final equation of
motion for n(x; t)

@n(x; t)
@t

D �
@2n(x; t)
@x2

C g(x; t) : (58)

This is an inhomogeneous partial differential equation and
we solve it easily by Fourier transformation

n(x; t) D
Z 1

�1

dk
2�

Z 1

�1

d!
2�

n̂(k; !)ei(kxC! t) : (59)

Substitute into Eq. (58) to obtain an expression for n̂(k; !)
in terms of the Fourier transform of the drive ĝ(k; !)

n̂(k; !) D
ĝ(k; !)
i! C � k2

: (60)

Now substitute Eq. (60) into Eq. (59):

n(x; t) D
Z 1

�1

dk
2�

Z 1

�1

d!
2�

ĝ(k; !)
i! C � k2

ei(kxC! t) : (61)

Next we want to focus on the density fluctuations at a spe-
cific position x0 > 0. Therefore we define

N(t) � n(x0; t) � hn(x0; t)it ; (62)

where we have subtracted the temporal averaged density.
We will determine the power spectrum ofN(t) and for this
purpose need the Fourier transform

N̂(!) D
Z 1

�1

dtN(t)e�i! t (63)

D

Z 1

�1

dt n(x0; t)e�i! t � hn(x0; t)it
Z 1

�1

dt e�i! t
(64)

D

Z 1

�1

dk
2�

ĝ(k; !)
i! C � k2

ei kx0�hn(x0; t)itı(!) : (65)
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Complex Systems and Emergent Phenomena, Figure 2
Cars/particles diffusing up and down a motorway stretching from x D �1 to x D1. At x D 0 an intersection allows the vehicles
to enter or leave the motor way. At x D x0 a traffic warden is monitoring the number of vehicles, N(t), in front of him

That is how far we can go without further assumptions
concerning the nature of the drive g(x; t). Since this
source term is meant to represent vehicles entering and
leaving at position x D 0 we will now use

g(x; t) D ı(x)�(t)) ĝ(!) D �̂(!) : (66)

We then have that for x ¤ 0 the source g(x; t) D 0 and at
x D 0 the temporal variation in the flow onto and away
from the “motorway” is given by �(t). From Eq. (65) we
get

N̂(!) D �̂(!)
Z 1

�1

dk
ei kx0

i! C � k2
: (67)

The power spectrum is finally calculated as the absolute
value square of N̂(!)

jN̂(!)j2 D
j�̂(!)j2

4�!
e�
q

2!
�

x0
: (68)

The power spectrum of the density fluctuations is clearly
influenced by the power spectrum of �(t). Let us assume
that vehicles enter and leave at the intersection in a to-
tally uncorrelated manner (perhaps not a totally realistic
assumption) which translates into j�̂(!)j2 D constant. In
this case

jN̂(!)j2 /
1
!
e�
q

2!
�

x0
: (69)

For frequencies so small that
p
(2!)/�x0 < 1 we have

exp(�
p
(2!)/�x0) ' 1 and therefore

jN̂(!)j2 /
1
!

for ! <
�

2x2o
�

1
2Tdiff

: (70)

Where we introduced the time scale Tdiff D x2o/� . This is
the characteristic time it takes for particles, under going
diffusion with a diffusion constant � , to move from x D 0
to x D x0.

Very long temporal correlations, as indicated by the
1/ f behavior of the power spectrum, is observed in very
many and diverse situations: the light intensity from

quasars, the ocean current, the pitch or pressure fluctua-
tions in speech and music, the flow of traffic, the fluctua-
tions in the resistivity of a conductor, and many more [31,
32]. Is the model we have sketched above able to explain
the observed 1/ f correlations in all these many differ-
ent systems? No, probably not. Surface driven diffusion
doesn’t seem to be central to all these situations. The ques-
tion whether a general explanation for 1/ f exists is still an
open one.

We have considered 1/ f fluctuations here for mainly
two reasons. It is a fascinating problem which is often en-
countered in complex systems and our discussion illus-
trates how one can use stochastic differential equations
to go beyond equilibrium statistical mechanics to analyze
temporal emergent behavior.

Self-organized Structure Formation – Ant Trails

As our next example of non-equilibrium statistical me-
chanics and emergence in complex systems we will briefly
consider an algorithmic model inspired by ant trail for-
mation. The model is schematic, simplistic and its rele-
vance to the actual mechanism involved when real ants
form trails is not known in detail. Nevertheless, the model
is an interesting example of how emergent structures can
appear from a dynamical algorithm.

The model describes how the path selected by ants
gradually converge towards the shortest path between the
nest and a location of food, as a result of ants’ tendency
to walk around at random combined with a preference
for following the smell (the pheromone trail) left be-
hind by preceding ants [12,13]. The model discussed here
is presented by Danilo Benzatti at http://ai-depot.com/
CollectiveIntelligence/Ant.html; but a rich literature on
individual based models of formation of patterns by social
insects exists [12,13,34,35,36].

We imagine a network of possible paths around the ant
nest (see Fig. 3).

The nest is located at one node. Around the nest many
edges connect a system of nodes. The ants can only move
along the edges and in this way travel from node to node.
At some of the nodes food is present. Often more than one

http://ai-depot.com/CollectiveIntelligence/Ant.html
http://ai-depot.com/CollectiveIntelligence/Ant.html
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Complex Systems and Emergent Phenomena, Figure 3
Anetwork of possible paths the ants can choosebetween as they
travel fromthenest atN to the foodat F. Thegreen shortpathwill
maintain a high level of pheromones, andwill continue to attract
ants, while the longer red path will gradually sustain a high level
of pheromones and will therefore cease to attract ants

possible route will lead from the nest to the food. How do
ants, with no global overview and no sophisticated means
of measuring traveled distance, identify the shortest route
from the nest to a food position? The assumption is that
all what an individual ant is able to do is:

(1) AntMotion: Perform random walks.
(2) Effect of ant on path: Lay down a unit of pheromone

when traversing an edge.
(3) Feedback: Feel attracted to pheromones deposited on

the edges. The more pheromones the more an ant is
attracted to an edge; and the more likely it is that the
ant chooses to walk along that edge.

(4) Return to nest:When food is found the ant follows its
own pheromone trail back to the nest.

The reason this algorithm can converge towards the short-
est path, is that the shortest path between the nest and
the location of the food will have more ants traveling
along its edges per time, and therefore will have a higher
pheromone concentration than the longer paths.

The details of the algorithm is as follows. Let the nodes
be enumerated by i D 1; 2; : : : ;N. Let edges between node
number i and node number j be labeled Ei j. Each edge car-
ries a time-dependent pheromone weight �(Ei j; t). When
an ant traverses an edge it deposits one unit of pheromone
leading to

�(Ei j; t) 7! �(Ei j; t C 1) D �(Ei j; t)C 1 : (71)

At each node the ants chose probabilistically between the
edges sprouting from the node. The probability p(Ei j; t)

that an ant chooses a certain edge Ei j among all the edges
connected to a specific node number i is given by

p(Ei j; t) D
�(Ei j; t)P
l �(Ei l ; t)

: (72)

At the start of the simulation all ants are in the nest. Next
they begin their random exploration of the network.When
an ant locates the food, it picks up a unit of food and re-
turns to the nest along the path it followed on its way out.
On the return journey pheromones are also laid down, re-
inforcing this specific path. Finally it is assumed that the
pheromones evaporate at a constant rate, say,

�(Ei j; t) 7! �(Ei j; tC1) D �(Ei j; t)��	(Ei j; t) : (73)

(Note the 	-function [defined as	(x) D 1 for x > 0 and
	(x) D 0 for x � 0] ensures that the evaporation stops
when there are no more pheromones on an edge, i. e.
when �(Ei j D 0.) Thus, paths rarely used will lose their
pheromone signature and will not be attractive to the ant,
whereas the pheromone level will be maintained along the
more often used paths. Thus, the shorter paths with amore
frequent ant-traffic will prevail over the longer paths, since
the ants on the latter paths visit the individual edges less
frequently.

The collective effect of this algorithm is to find the
shortest path between nest and food, although the individ-
ual ant doesn’t need to know that this is what is going on.
For more detail see [37] and for modeling of emergent col-
lective intelligence and pattern formation amongst social
insects see [12,13,34,35,36]. It is still an open question how
to represent algorithmic models, like the one described in
this section, in a precise way.

Summary and Future Directions

We have described a specific example where one can fol-
low in great detail the steps from one level of structure to
the next in the hierarchical order of matter. Topological
defects arise as coherent structures of the “atoms” at one
level and can be considered as (composite) particles at the
next level. Their interaction can be derived from the be-
havior of the constituent “atoms”. Many different systems
may support composite particles that interact in the same
way. We looked in particular at vortex physics, where the
Kosterlitz–Thouless transition is caused by the logarith-
mic interaction between the topological defects. The one
most important fact in determining the KT-transition is
that both energy and entropy depend logarithmically on
length scale for the two-dimensional topological charges.
This example is hoped to make clear that within equilib-
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rium statistical mechanics emergent phenomena can be
described and analyzed in great quantitative detail.

Whenwemove to systems out of equilibrium, which of
course by far constitute the majority, no universally appli-
cable formalism exists so far. We illustrated, however, by
two very different examples that emergent collective be-
havior produced by interactions between components can
also in non-equilibrium situations be modeled either by
use of various mathematical techniques or through the ap-
plication of computer simulations.

I will finish by suggesting the following conclusion.
There is nothing mysterious about emergent phenomena.
They are a wonderful thing – but they are not of new
character, something science never has seen or dealt with
before. On the contrary, I will claim that understanding
emergent phenomena is exactly what all science is aimed
at. Often this is not so explicitly clear as in the examples
discussed above where the emphasis is explicitly on the
macroscopic, or systems level, effects of the interactions
between the components constituting the system. Never-
theless, even when one studies, say, atomic physics (as in
contrast to statistical physics), one is dealing with the effect
of interacting components. An atom consists after all of in-
teracting protons, neutrons and electrons and the proper-
ties of the atom are the emergent result of the interactions
between these particles.

Notwithstanding, the focus of the statistical mechan-
ics approach is towards generality. As illustrated by our
discussion of the XY-model and the Kosterlitz–Thouless
transition, the same phenomenology can be observed in
many very different systems with very different types of
components (magnetic moments, atoms in a lattice, su-
perfluids etc.), if the interactions between the components
possess equivalence at a mathematical level. It is this gen-
erality that leads people to suggest that even simple model
studies may sometimes be of relevance to seemingly much
more complicated situations. In the future we are bound
to see the statistical mechanics approach to emergent phe-
nomena being applied to a much broader range of prob-
lems than was traditionally the case. We see attempts in
fields like biology and economics, but also in linguistics, to
develop pertinent statistical mechanics models. Examples
include phenomena ranging from gene regulation to the
social behavior of insect colonies and from stock market
fluctuations to management of logistics. So far statistical
mechanics has mainly been developed under the influence
of physics and methods like the Renormalization Group
arose. It will be very interesting to follow how statistical
mechanics broadens its arsenal of tools as emergent phe-
nomena in other fields are approached from the view point
of statistical mechanics.
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Glossary

Biocomposite Biological composite materials made
through biological processes usually in living organ-
isms. Biocomposites formed through biomineraliza-
tion processes are referred to as biomineral composites

Biomimetics Also known as biomimicry, is the study of
biological systems with the aim of applying the meth-
ods and processes in these systems to the design of en-
gineering materials and systems to produce engineer-
ing devices and structures with superior or comparable
functionalities.

Biomineralization Mineralization carried out through
biological processes to convert organic materials to
inorganic materials to form biominerals. Biomin-
eral composites are composed of inorganic minerals
formed through biomineralization processes by living
organisms in organic matrices of proteins and polysac-
charides.

Composite A combination of two or more monophase
materials arranged into a material (or “material struc-
ture”) to produce one or more particular properties
that are superior to the same properties exhibited by
the individual component materials.

Multifunctionality This is the ability of a material or de-
vice to perform two or more functions simultaneously
or consecutively.

Self healing The ability of a structure to repair damage
without external intervention. For example, a small cut
on a human skin will be repaired automatically by the
body. Man-made structures with such ability are under
early development.

Definition of the Subject

A composite material is a combination of two or more
monophase materials arranged into a single entity mate-
rial (or “material structure”) to produce one or more par-
ticular properties that are superior to the same proper-
ties exhibited by the individual component materials. Un-
til recently, most composites were designed with a single

http://arxiv.org/pdf/physics/0204033
http://ai-depot.com/CollectiveIntelligence/Ant.html
http://ai-depot.com/CollectiveIntelligence/Ant.html
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function in mind, most commonly focusing on improving
strength or durability of the material. Many high perfor-
mance composites have been developed and are perform-
ing excellently in this respect. For example, carbon fiber
reinforced epoxy is now commonly used in many engi-
neering applications. Carbon fibers have high theoretical
strength and high stiffness, but are brittle and therefore
readily break if a very small flaw is initiated. By embed-
ding the fiber in epoxy, which is relatively ductile (less
flaw sensitive) compared to the carbon fiber, the compos-
ite structure combines the strength and stiffness of the car-
bon fibers with the ductility of the epoxy. A natural exten-
sion of this concept is to develop materials that are opti-
mized for engineering applications in conditions that de-
mand more than one function being performed by a sin-
gle material. For example, a material acting as a structural
support may as well function as a thermal sensor at the
same time.

A multifunctional composite, therefore, is a compos-
ite material that is capable of performing two or more
functions simultaneously or consecutively. The need for
improved performance in current engineering application
and in entirely new areas of application has been the major
driving force behind the design and development of mul-
tifunctional composites. Multifunctionality is achieved in
a composite by deliberately and purposefully engineering
the microsructures of the component materials and the
composite as a whole usually at themicro- and nano-range
levels (that is at the length scales of μm and nm). When
the reinforcement scale is in the nano-region the resulting
composites are commonly referred to as nanocomposites,
which is a new frontier in materials science and engineer-
ing. Today, much effort is being geared towards research
and development of multifunctional composites at various
materials research departments and institutions across the
world.

Introduction

Multifunctional composites are designed, through mi-
crostructural modification, to enhance or introduce new
material properties in order to improve or increase the
functionalities of a structure, with respect to a broad range
of properties. This can include various combinations of
magnetic, electronic, electrical, optical, chemical, thermal
and mechanical properties. In other words, a multifunc-
tional composite provides two or more functionalities si-
multaneously or sequentially with improved performance,
with less complexity, cost and weight compared to a struc-
ture where these functions are provided by individual
components. In many cases, a multifunctional composite

is the only means by which the combination of the desired
functions can be achieved.

Requirements for high performance, durability, con-
servation of natural resources, low cost, and in many ap-
plications miniaturization have led to research and de-
velopment of multifunctional composites with high spe-
cific properties, e. g., high strength per unit weight. These
have especially been the driving forces for applications in
space exploration, aerospace, information technology and
energy production and transmission. Thus, materials sci-
ence is a critical tool to bring together different materials
as composites that can perform more than one function.
Such composites are designed and engineered at various
scales, ranging from the atomic level and up. For example,
load-bearing composites have been developed to simulta-
neously act as thermal sensors by utilizing carbon nano-
tube reinforced polymers [109].

A very important multifunctional composite group
that has been researched over the past two decades is
the group of carbon nanotube composites because of the
remarkable mechanical, electrical, thermal and structural
properties exhibited by the fiber-like carbon nanotubes
reinforcing component of the composites [35]. Carbon
nanotubes are added to polymeric matrices to form car-
bon nanotube polymer composites with excellentmechan-
ical and electrical properties [105].With the nanotubes the
scale of reinforcement is now in the nano region hence
these composites are termed nanocomposites, and will
be discussed in Sect. “Functionalized Carbon Reinforced
Polymer Matrix Composites”.

Living organisms are made up of multifunctional ma-
terials. An example is the human skin that functions as
a container and protector for all internal organs and the
human structure. It also serves as a heat sensor, touch sen-
sor, and an outlet for sweat and oil. The human skin, made
up of various cells and layers of cells consisting of blood
vessels, sensory receptors, glands, and hair follicles, is
therefore a natural multifunctional composite. Moreover,
human skin has the amazing ability of self healing. Con-
sequently, nature serves as an inspiration for the develop-
ment ofmultifunctional materials. A second class ofmulti-
functional natural composites is the biomineralized mate-
rials found in living organisms. Biomineral composites are
natural materials, a group of bioceramic-biopolymer com-
posites, produced through cell-mediated processes [40].
They are composed of inorganic nano- or micro-scale
amorphous or crystalline minerals formed through bio-
logically induced or biologically controlled mineralization
processes by living organisms in organic matrices of pro-
teins and polysaccharides [42,116]. Their functions in-
clude structural support, mechanical protection, move-
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ment, grinding, and gravity or magnetic field sensing. This
class of multifunctional composites is of importance in
biomimetics and is of interest to both biologists and ma-
terials scientists. They are tough materials combining high
hardness with high fracture resistance. Examples are bone,
dentine, enamel, shells, scales, eggshells and sponge silica
skeletons. There are many other biocomposites that are
not organic-inorganic such as skin, wood and leaf – these
are organic and are also multifunctional.

Many other types of composite materials are now be-
ing developed aiming towards multifunctional compos-
ites as demands are increasing for smaller, lightweight
but smarter products. Reinforcing components could be
particles (0-dimensional), fibers (1-dimensional) or plates
(2-dimensional). The orientation of these reinforcing
components in a matrix could be random, unidirectional
or bidirectional, and could be laminar. They are in the
form of distinct phases in the matrix with sizes varying
from macrophases to nanophases. When the size of the
reinforcement is in the nano-range, the composite is re-
ferred to as a nanocomposite. When the nanoreinforce-
ments are composed of a functional nanophase the com-
posite is then a multifunctional nanocomposite in which
the nanophase provides an advanced functional behavior
through enhanced properties such as mechanical, chemi-
cal, biological, electrical, magnetic, optical properties.

A Short Note on Carbon

Carbon is a critical, enabling material and consequently an
important component of many multifunctional compos-
ites. We will, therefore, outline some of the key properties
for this element.

Carbon is one on themost common elements found on
earth. It appears in three major forms: diamond, graphite,
and as various forms of “fullerenes” and “carbon nano-
tubes.” The two former versions occur naturally, whereas
the latter is typically artificially produced. Diamond, with
a cubic crystal structure where the atoms are arranged in
a tetrahedral configuration, is the hardest material found
in nature. It is an electric insulator. In graphite, the atoms
are arranged in hexagonal planes that are stacked parallel
to each other. This layered nature of the structure makes
graphite anisotropic and relatively soft, since fracture eas-
ily occurs along these layers. In this form, carbon is elec-
trically conductive.

A third form of carbon was categorized in 1985 [54]
(even though earlier work indicated their existence) and
will play a key role in functionalizing composite materials.
This third form is a variant of graphite, where one layer of
graphite is wrapped to form a sphere or cylinder. The ini-

tial form described was a 60-carbon atom sphere, where
the carbon atoms are arranged in 20 hexagons and 12 pen-
tagons on the surface of the sphere. Soon after this dis-
covery, variants of the 60-atom sphere were found, where,
in particular, the tubular form, carbon nanotube (CNT)
have provided an exciting new research field [50]. There
are endless variants of how CNTs can be assembled, but
the major categories can be summarized as single- and
multi-wall tubes along with their major division by the
atomic structure (armchair or zigzag; if arbitrary direc-
tion “chiral” see Fig. 1). CNTs are one of the most promis-
ing materials for functionalizing composites, due to their
unique properties. For example, the armchair styled CNT
are metallic, but the other versions are semiconductors. In
particular, single CNTs are excellent conductor, and can
therefore serve as nano-sized electrical wires. CNTs also
have excellent mechanical properties, for example as high
as 1 TPa elastic modulus has been reported [48,60]. Multi-
walled CNTs consist of either single walled tubes layered

Composites, Multifunctional, Figure 1
Illustration of the various atomic configurations a carbon nano-
tube can assume. A carbon atom is located in each of the corners
of the hexagons
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over each other (“Russian doll-style”), or as a continuous,
rolled sheet forming a wrapped layered sheet (parchment-
style). There are several interesting review papers dis-
cussing CNT tubes, for example by Thostenson et al. [106]
focusing on mechanical properties, by Gooding [43] fo-
cusing on electrochemistry and by Bandaru [5], discussing
electrical properties of CNTs. Two recent review papers on
theoretical aspects of the thermomechanical properties of
carbon nanotubes can be found in [20,21].

FunctionalizedCarbon ReinforcedPolymer
Matrix Composites

Carbon reinforced, polymer matrix composite are now
commonly used in engineering applications, due to their
relatively high strength and low weight. The carbon fibers
give the composite their strength and stiffness, for which
the structures traditionally have been optimized.However,
recent developments make it possible to utilize the ability
of carbon fibers to be electrically conductive. This opens
up a broad range of opportunities for functionalizing car-
bon reinforced polymer matrix composites.

Electromagnetic Shielding

Electromagnetic interference (EMI) is caused by electro-
magnetic radiations emitted from sources that carry elec-
trical current. A common source for EMI is an electronic
device, but natural sources such as the Northern Lights
and the Sun can also cause EMI. EMI results in anything
from annoying “sound sparkles” on the television or cell
phone to a malfunction of a device or a system (e. g., an
aircraft). In warfare, EMI can be used to disrupt commu-
nications by the hostile side. Thus, it is important to shield
aircrafts and communication devices from EMI. Carbon
reinforced polymer matrix composites can readily be de-
signed to shield EMI. Since carbon is electrically conduct-
ing, the carbon fibers can be used to reflect the radiations.
By adding conductive fillers into the polymer matrix, the
composite material can work efficiently as an EMI shield.
It is now commonly used in many consumer products to
shield them from EMI, both for protecting the machine
and from spreading EMI the machine is generating. For
example Bagwell et al. [4] added short copper fibers to in-
crease EMI. A review of EMI shielding can be found in ref-
erence [27] and a review of conducting polymer compos-
ites that are primarily optimized for EMI shield is found
in [101].

Electrified Carbon Fiber Polymer Matrix Composites

Interestingly, research from the groups of Sierakowski
and Zhupanska have shown that the material properties

in a carbon fiber polymer matrix composite may change
when subjected to an electromechanical field [97,98,121].
Early work [98] indicated that the strength, in particu-
lar the resistance to fracture and delamination, increases
when the composite is subjected to an electric current.
Several factors contributes to this, including that (i) the
mechanical and electromagnetic fields are coupled when
mechanical and electromagnetic loads are imposed simul-
taneously; (ii) the heat generated in the conducting car-
bon fibers are transferred to the polymer matrix; and pos-
sibly that (iii) the failure mechanisms change when the
structure is subjected to an electromagnetic field. Recent
work [97,121] where the impact resistance was investi-
gated, show that the gains are short-term. The impact re-
sistance initially can increase as much as 30%, but for
a structure subjected to long-term exposure to an elec-
tromagnetic field, the gain is reduced back to the initial
properties. The losses appear to be caused by the increas-
ing temperature of the polymer due to the heating of the
carbon fibers. Nevertheless, a structure can temporarily be
strengthened by imposing an electromagnetic field. More-
over, the heat generated in the carbon fibers could poten-
tially be used to activate self healingmechanisms (self heal-
ing mechanisms are discussed in Sect. “Self-healing Com-
posites”)

Functionalized Compositeswith CarbonNanotubes

As discussed in the introductory section of carbon, carbon
nanotubes are probably one of the single most promising
materials to functionalize composites. The possibilities ap-
pear to be endless and a few limited examples will be dis-
cussed here.

Single-walled carbon nanotubes (SWNTs) have great
promise for functionalizing composite materials. They are
light weight and have high mechanical strength, high ther-
mal and electric conductivity and unique optoelectronic
properties. They are also light weight, with a small di-
ameter and high aspect ratio. However, these properties
may be compromised when incorporated into a polymer
matrix. This is primarily caused by the SWNT not being
compatible with the polymer matrixes. This results in the
SWNTs tending to agglomerate into clusters. When the
SWNT are not bonded properly to the polymer matrix
and/or appear in clusters, their unique properties may not
be transferred to the composite materials. Therefore, sig-
nificant efforts are being aimed towards improving the dis-
persion and bonding.

Chen et al. [19] suggest that molecular engineering is
a viable approach to achieve goodmechanical strength and
retain the electric conductivity of CNT. They pointed out
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that the problem with dispersion and bonding is due to
the smooth surface of the SWNT. In a mix of SWNT and
a polymer matrix, the mechanical load can be transferred
though mechanical interactions between the SWNT and
the polymer matrix, via van der Waals’ interactions or co-
valent bonds, or via special non-covalent bonds, such as
hydrogen bonding. The covalent bonding is in general the
strongest type of bonding. However, when this is imple-
mented, the electrical and thermal properties are often se-
riously challenged since these bonds tend to interfere with
the SWNT structure [19].

CNTs can be used for energy absorption, which
have been shown by Chen and co-workers [22,45,86].
In their work, they developed a solid-liquid composite
which combines a non-wetting liquid with a hydropho-
bic nanoporous solid. The basic premise is that a liquid
is absorbed into nanopores (such as the inside of a CNT)
when a pressure is applied on the system. They showed
that this infiltration absorbs and converts mechanical
work into solid-liquid interface energy, with high energy
absorption (10–100 J/g). Due to the ultra-high specific sur-
face area of the nanopores, this is several orders of mag-
nitude higher than conventional energy absorption mate-
rials. Moreover, by varying the interface energy, the en-
ergy absorption performance may be adjusted in a wide
range, suitable for damping protections, vibration proof,
or blast resistance. The interfacial energy can be changed
by using chemical admixtures, or using viscous liquid. If
the load rate can be controlled, this can also change the
interfacial energy. In addition, by using functional liquids
(such as electrolytes), the ion density at the nanopore-
liquid interface may be perturbed by external mechani-
cal or thermal fields. Thus, the multifunctional solid-liq-
uid nanocomposite may harvest thermal and mechanical
energies into electricity [46,87].

Polyaniline (PANi) is formed by polymerizing ani-
line (phenylamine, aminobenzene) which is an aromatic
amine with the formula C6H5NH2. PANi is a conductive
polymer, and consequently has great potential to be a use-
ful material component in multifunctional composites.
When aniline is polymerized with the presence of multi-
walled carbon nanotubes (MWNT), to form a polyani-
line-carbon nanotube composite, the MWNT are coated
with PANi and form a three-dimensional network within
a matrix of PANi. This results in a composite with ex-
cellent electro-optical properties [90]. Preliminary work
has shown that PANi can also work as a biological sen-
sor [61]. Here the SWNT was wrapped with a single-
stranded DNA and mixed with a self-doped polyaniline,
poly(anilineboronic acid). The composite is able to detect
nanomolar concentration of dopamine (a naturally occur-

ring hormone). The sensitivity for detecting dopaminewas
increased with a factor of four by adding the SWNT com-
pared to the self-doped polyaniline [61].

Polypyrrole (PPy) is formed from synthesized (con-
nected) pyrrole, where pyrrole is a heterocyclic aromatic
organic compound, C4H4NH. PPy have been used for cor-
rosion protection of metals, discussed in Sect. “Multifunc-
tional Coatings”. In a similar manner as PANi, PPy is
conducting. An interesting application is to use PPy with
MWNT, where supercapacitive properties have beenmea-
sured [49]. To achieve this, the MWNTs must be aligned
and then coated by an appropriate layer of PPy. Align-
ment of the MWNTs can be obtained by growing them
on a quartz glass under appropriate conditions, described
for example by Hughes et al. [49]. Measurement of the
charge storage capacity of the aligned-MWNT-PPy com-
posite film show several times charge storage than either
PPy or MWNT alone (e. g., 2.55 F/cm2 for the composite
film compared to 0.62 F/cm2 for pure PPy film) [49]. Thus,
aligned MWNTs coated with PPy have potential applica-
tions for supercapacitors and batteries, as well as sensors.

Composites as Actuators and Sensors

Ionic polymers have received significant attention dur-
ing the last decade, based on their ability to work as elec-
tromechanical transducer and potentials to work as sen-
sors and/or actuators, and also as electrolytes in poly-
mer fuel cells. Today, the preferred polymer materials are
perfluorosulfonic acid (PFSA) polymers, a class of flu-
oropolymers consisting of a hydrophobic polytetrafluo-
roethylene (PTFE) backbone attached to hydrophilic sul-
fonic acid groups (SO–

3) or carboxylate groups via the fluo-
rocarbon polymer side chains. Upon water uptake, the hy-
drophobic groups ionize and attach to the hydronium ions
(H3O+) to provide a conductive path for proton transport,
while the polymer network maintains the overall structure
of the membrane. Commercial material products include
Nafion®1 membranes and Flemion®2 membranes. These
membranes are also used as the proton exchange mem-
branes (PEM) for fuel cell applications. A PEM functions
as a “filter” (an electrolyte), letting protons through the
polymer membrane, whereas the electrons are forced to
take a path outside the PEM. From the path of the elec-
trons, electric energy can be harvested.

Actuators and sensors can be made by an ionic poly-
mer metal composite (IPMC) [3,8,9,56,57,74,75,76,89],

1Nafion® is a registered trademark of E.I. DuPont De Nemours &
Co.

2Flemion® is a registered trademark of Asahi Glass Group in
Japan.
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Composites, Multifunctional, Figure 2
A schematic of the principle of an IPMC actuator. aGeometry before a voltage is applied highlighting themorphology of the polymer
chains (hydrophobic) and the hydrophilic groups forming a cluster. b The structure deforms when an external voltage is applied. c
The cluster-network model for Nafion® membranes, illustrating the cation migration. Adapted from [47,67,76,95]

with a potential application as artificial muscles [3,8,9,10,
56,57,67,76,94,95,112,114]. In this case, the ionic polymer
is sandwiched between two metallic electrodes. The ionic
polymer is hydrated, typically with water or ionic liquids

such as salts [3], to achieve its functionality. The metal
electrodes are flexible layers, resulting in a soft and flex-
ible actuator which can perform large dynamic deforma-
tion if placed in an alternating electric field, see Fig. 2.
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Currently, platinum (Pt) and gold (Au) are the preferred
electrode materials, which defuses into the ionic polymer
membrane, resulting in a material gradient over the thick-
ness of the IPMC. The actuation is governed by the mo-
bile cations (positively charged) moving towards the fixed
cathode (negatively charged), resulting in a biased mor-
phology and consequently a bending of the membrane as
indicated in Fig. 2. When the current is switched, the loca-
tion of the cathode is reversed and the cations will conse-
quently move towards the other side, causing the actuator
to move in the reverse. Alternatively, the IPMC can work
as a sensor, where it generates a voltage if it is suddenly
bent.

Nafion® polymer based IPMCs relaxes (reduces its de-
flection), whereas Flemion® polymer based IPMCs slowly
increases its deflection under constant voltage. This is at-
tributed to the mobile cations initially repelling the sul-
fonic acid groups in Nafion® polymer (which gives a fast
actuation), but when the polarization is held constant,
the cations relocates slowly, relaxing the IPMC. The car-
boxylate in Flemion® polymers are weaker in polariz-
ing the structure, and therefore the relaxation is not ob-
served [75,76].

These actuators can strain up to 3% for voltages less
than 7V [67]. This induces a significant bending, where
stresses up to 30MPa are reported [67]. Future research
efforts are focused on reducing the negative effect of de-
hydration (an ionizing liquid is needed for the function),
as well as addressing the reduced efficiency over time. Cur-
rent applications range from fins to robotic fish to artificial
eyes [67].

Biomineral Composites

Nature has presented us with a variety of biological com-
posites (biocomposites) such as skin, bone, shell, leaf and
wood, which are all multifunctional in living organisms.
Some are organic in nature, e. g. leaf and wood, whereas
some are organic-inorganic, e. g. bone. Attempting to
mimic nature, the design of these biocomposites are now
intensely studied, including the structure and microstruc-
ture and the physical, chemical, electrical, magnetic and
even optical properties. For example, using a biomimetics
process M. C. Chang and co-workers have been able to de-
velop a synthetic bone [17,18].

Biocomposites formed through a biomineralization
process are referred to as biomineral composites. Ex-
amples of biomineral composites include bone, dentine,
enamel, mollusk shells, crustacean exoskeletons, eggshells,
sponge silica skeletons, and a variety of transition metal
minerals produced by different bacteria (see references in

references [42] and [33]). The functions of the biomin-
eral composites include structural support, mechanical
protection and movement, anchoring (to another body
or to ocean floor) grinding, filtering, gravity or magnetic
field sensing, optical and piezoelectric [33]. Biomineral
composites are composed of an organic matrix of pro-
teins, lipids and polysaccharides. The structure consist of
a nano- or micro-scale amorphous or crystalline minerals
formed by a biologically induced or controlled mineraliza-
tion processes, through complex chemical interactions be-
tween organic and inorganic matrices [2,42,91,116]. The
structure is usually complex with the organic and the
mineral components tightly interwoven at the nanoscale
level, highly ordered and hierarchical to give high strength,
rigidity along with mechanical and chemical stability, that
are superior to synthetic materials made from the same
materials. Biomineral composites are normally designed
to function under a narrow range of environmental condi-
tions, such as narrow temperature regimes and restricted
mechanical loads. However, the compositions of biocom-
posites can be altered over time when a gradual change
in environmental conditions occurs, to achieve necessary
properties for the survival of the organisms [63]. Mol-
lusks and sponges are known to make use of sophisti-
cated biomineralization mechanisms to obtain structures
that exhibit attractive combinations of strength, stiffness,
resilience, and energy absorbing capabilities [63]. Even
though the mechanisms of biomineralization are yet to
be fully understood [69], biomineral composites are of
much interest to warrant in-depth studies by biologists
and chemists as well as material scientists. The structures
of a few biomineral composites that are multifunctional
are briefly described below.

The crustacean exoskeleton is a layered structure made
up of the epicuticle layer, which is the topmost layer, the
exocuticle layer and the endocuticle layer, which is the in-
nermost [25]. The epicuticule is a relatively thin layer of
about 2–4 μm. It is waxy, acting as a diffusion barrier [77].
The exocuticle is about 150–180 μm in Homarus ameri-
canus (American lobster) claw with the endocuticle 3–4
times this thickness. As a comparison, for the Callinected
sapidus (Atlantic blue crab) claw, the exocuticle is about
40–50 μm and the endocuticle 6–8 times thicker [25]. The
exocuticle and the endocuticle are the major load bearing
structures of the exoskeleton and are made up of multi-
ple fibrous layers arranged parallel to the surface. The fi-
brous layer consists of chitin-protein (chitin is a biological
polysaccharide with the generic formula (C8H13O5N)n)
fibrils bonded by a matrix of minerals and other proteins.
Each of these fibrous layers is rotated by a small angle rel-
ative to the next layer in parallel, building up to a band of
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Composites, Multifunctional, Figure 3
The cross-section (top) of the exoskeleton of a Homarus americanus (American lobster) taken from the claw (top right). The outer
layer (epicuticle) acts as a diffusion barrier while the exocuticle and endocuticle layers are load bearing structures built ofmineralized
fibrous chitin protein. The helicoidal nature of the arrangement of the fibrous layers of the exocuticle and the endocuticle layers is
shown on the left. The pore canals and the pore canal fibers in a layer are shown (bottom). Each layer is composed of chitin protein
fibers (bottom right). Note that the exocuticle layer is denser than the endocuticle layer

layers that is twisted by 180° to form a helicoidal architec-
ture (Fig. 3). The exoskeleton has through-the-thickness
holes, pore canals, through which chitin-protein macrofib-
rils fibers, pore canal fibers run perpendicularly to the lay-
ers. Even though some disagreement exists in the litera-
ture, the pore canal fibers appear to run from the bottom
of the endocuticle to the top of the exocuticle [25,28]. The
pore canals and the pore canal fibers fill important func-
tions in building the exoskeleton after molting. Moreover,
Cheng et al. [25] showed that the pore canal fibers are im-
portant for strength of the exoskeleton. In all, the multi-
scaled structure of the exoskeleton, a biomineral compos-
ite, provide the crustacean with a strong structural sup-
port, an impervious defense covering for the body of the
crustacean, and also serve as a carrying, holding and tear-
ing tool in case of attack or feeding.

Nacre is another natural biomineral nanocomposite; it
is also known as mother-of-pearl. It is the iridescent lin-
ing on the inside of the shells of many sea-going bivalves
and gastropods such as oysters, mussels and abalones. Like
many other biomineral composites, nacre has a hierar-
chical structure. It is composed of about 95% inorganic
hexagonal platelets of aragonite (a crystallographic form
of CaCO3) 5 to 8 μm wide and 0.2 to 0.5 μm thick [6], ar-
ranged in a continuous parallel lamina in 5% organic ma-
trix composed of elastic biopolymers (such as chitin, lus-
trin and silk-like proteins and polysaccharides). The or-

ganic biopolymer is typically 5 to 20 nm thick. Nacre has
received significant attention in recent years due to its
high ductility, enhanced toughness and fracture strength,
along with its low weight, resulting in excellent specific
properties. Its fracture resistance is about 1000 to 3000
times greater than that of its component aragonite crys-
tals [30,31]. Its high toughness is as a result of the duc-
tility of the organic matrix in connection with the re-
peated unfolding of the protein molecules. The nanostruc-
ture resembles a brickwork arrangement with a signifi-
cant overlap of the platelets and the organic matrix serv-
ing as the mortal [15]. This architecture is a critical fac-
tor that is responsible for the high fracture strength ob-
served in nacre [6,41]. In addition, Li et al. [59] showed
that the rotation of the nano-sized grain during loading
is a key contributor to the high ductility. Many studies
have been carried out on nacre using various experimental
and modeling techniques to study its formation, its struc-
ture and morphology, and its deformation and properties,
especially the mechanical properties [6,16,52,55,62,63,65,
73,85].

Mimicking this material is of interest in the design of
high performance materials such as impact resistance ar-
mor [7,55,92]. Using layer by layer assembly technique,
Podsiadlo et al. [84] have been able to prepare a nanostruc-
tured analogue of nacre from nanometer sized sheets of
montmorillonite clay and a polyelectrolyte. Artificial nacre
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has also been synthesized [103]. Mimicking nacre in cre-
ating one nano-layer of material at a time, Nicholas Kotov
and his team have evolved a process that allows the cre-
ation of materials one nano-layer at a time. They use this
process to produce a new material from clay nanosheets
and a water-soluble polymer that shares chemistry with
white glue. The material is transparent, very strong, yet
lighter in weight [64].

Animal skeletons are made up of bones which are hard
and rigid tissues. Bone is self-healing and can continu-
ously regenerate itself. Moreover, bone is relatively stiff
and tough, and can withstand and adapt over time to local
stresses. These properties make bone a reliable biological
structural material. Bone is considered as a nanocomposite
of minerals and proteins [18,26]: It is composed of a ma-
trix impregnated with calcium carbonate, calcium sul-
phate and small amounts of sodium and magnesium. The
matrix, consist of collagen fibers impregnatedwith crystals
of hydroxyapatite, Ca5(PO4)3(OH), and water. Among the
functions of the bone is support, locomotion, protection
for soft and delicate organs (like the skull protecting the
brain), manufacturing of blood cells and homeostasis. An
example of bone is the femur; it has a covering of a tough,
strong membrane, called periosteum which is richly sup-
plied with blood vessels. Next to the periosteum is a layer
of compact bone and bone forming cells (osteoblasts), ar-
ranged in concentric layers (lamellae) with round small in-
terconnecting canals (the Haversian canals) that contain
blood vessels, nerves and lymph vessels. Embedded in this
hard bone matrix are osteocytes, which are associated with
bone deposition and bone remodeling. Inside the compact
bone is a thin soft membrane known as the endosteum
that encloses the marrow cavity that contains soft tissues,
the yellow marrow [88,108]. The growth and strengthen-
ing of bone is stimulated by mechanical stresses through
strain detection. This function is carried out by special-
ized cells within the bone that are sensitive to and respond
to strains. In the absence of mechanical stresses bone be-
comes weak and less developed. Thus, the more the bone
performs its intended functions the stronger it becomes.
Mimicking this ability will produce excellent synthetic en-
gineering materials for structural or load-bearing applica-
tions.

In a study of the sponge Euplectella sp., Aizenberg et
al. [2] described the structure of its skeleton as being hier-
archical in nature. It has a layered arrangement that gives
it a high resistance to crack propagation. The skeleton is
thus composed of a layered biocomposite material. The
structure is described in Fig. 4, after Aizenberg et al. [2].
The microstructure is made up of consolidated hydrated
silica nanoparticles forming sets of concentric rings glued

together by an organic matrix to form spicules. This layer
approach provides toughness and resistance to crack prop-
agation. These spicules are then assembled in parallel into
bundles within a silica matrix to form struts. The struts are
arranged tomake the cylindrical cage with the ability to re-
sist tensile and shearing stresses and a significant capacity
for recovery after deformation of the skeleton.

Aizenberg et al. [1] showed that the tunic spicules of
the ascidian P. pachydermatina are a biocomposite ma-
terial with well-defined domains of both amorphous and
crystalline calcium carbonates, separated by an insoluble
organic layer. The crystalline calcium carbonate is poly-
crystalline calcite, and it forms around the amorphous
calcium carbonate which serves as the core. The calcium
carbonate layers contain magnesium and proteins with
a higher content in the amorphous than in the crystalline.
The amino acid compositions of macromolecules associ-
ated with the two mineral phases are also quite different.

Wood is a natural biocomposite material with a multi-
functional capability. It differs from the above mentioned
bicomposites in that it is not a biomineral composite.
Wood is a naturally hard and tough biocomposite mate-
rial that forms the trunk or stem of trees. The material
consists essentially of elongated hollow cells that carry nu-
trients from the roots to the leaves. The cells make up the
cellulose fibers that are arranged generally in the grain di-
rection, parallel to the surface of the trunk. Cellulose, with
a generic chemical formular (C6H10O5)n, is one of the ma-
jor chemical constituents of wood, others are hemicellu-
lose and lignin. It is a linear polymer with thousands of
mers in a single molecule and it constitutes about 40 to
50% of wood. The cross section of wood is composed of
several layers: the outer bark, the inner bark, the cambium,
the sapwood, the heartwood, and the pitch. The thickness
of each layer depends on the age of the tree, the species to
which it belongs, and on the particular tree. The cambium
layer is microscopically thin and it grows by cell division
to increase the diameter of the trunk. The tree trunk in-
creases in diameter by addition of new peripheral growth
layers that constitute the growth rings. The sapwood layer
conducts moisture, minerals, oxygen, and nitrogen. As the
stem (or trunk) grows in diameter, the sapwood progres-
sively forms the heartwood. The heartwood is the thickest
of the layers and it is the one that provides the structural
strength. It is usually darker in color because of the min-
eral deposits, gums and resins that are present in it. Cut-
ting across these layers horizontally are tissues called wood
rays radiating out from the center outward. They help in
storing and transferring nutrients. Botanically, woods are
classified as softwoods and hardwoods depending on their
basic cellular structure and on howmoisture moves within
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Structural analysis of themineralized skeletal systemof Euplectella sp. a Photograph of the entire skeleton, showing cylindrical glass
cage. Scale bar: 1 cm. b Fragment of the cage structure showing the square-grid lattice of vertical and horizontal struts with diagonal
elements arranged in a chessboard manner. Orthogonal ridges on the cylinder surface are indicated by arrows. Scale bar: 5mm. c
Scanning electron micrograph (SEM) showing that each strut (enclosed by a bracket) is composed of bundled multiple spicules (the
arrow indicates the long axis of the skeletal lattice). Scale bar: 100µm. d SEM of a fractured and partially HF-etched single beam
revealing its ceramic fiber-composite structure. Scale bar: 20µm. e SEM of the HF-etched junction area showing that the lattice
is cemented with laminated silica layers. Scale bar: 25µm. f Contrast-enhanced SEM image of a cross section through one of the
spicular struts, revealing that they are composed of a wide range of different-sized spicules surrounded by a laminated silica matrix.
Scale bar: 10 µm. g SEM of a cross section through a typical spicule in a strut, showing its characteristic laminated architecture. Scale
bar: 5 µm. h SEM of a fractured spicule, revealing an organic interlayer. Scale bar: 1 µm. i Bleaching of biosilica surface revealing its
consolidated nanoparticulate nature. Scale bar: 500nm. (Taken from reference [2] with permission from AAAS)

the living tree. Softwoods are mainly made up of long cells
of between 3 and 5mm called tracheids. Hardwoods, on
the other hand, are mainly made up of two kinds of cells,
wood fibers (0.7 to 3mm long) and vessel elements (with
wide ranging lengths).

The important physical properties of wood are mois-
ture content, permeability, shrinkage, density. These give
it the multifunctional capability such as serving as a su-
per-structure, acting as a nutrient storage and transport
medium, the ability to withstand harsh weather, and
self-healing. The properties, however, vary greatly across
species and also depend on factors such as the age of
the tree, stem form, type of soil and climate. Wood is
anisotropic with the mechanical properties varying across
the growth rings and along the height up the tree. The
mechanical, electrical and thermal characteristics of wood
make it a popular excellent engineering material over ages.

Leaf is an organic biocomposite that is flat, broad and
thin. It is a plant organ in which photosynthesis is carried
out. The upper surface of the leaf is waxy for the purpose of
water-proofing. It performs functions such as converting
sunlight to chemical energy in the mesophyll, transport-
ing glucose, water and minerals through out the plant by

the vascular bundle; it is water-proof and provides shade
for the tree. The cross-section is made up of different lay-
ers in this order from the top: upper cuticle, upper epider-
mis, palisade mesophyll, spongy mesophyll, lower epider-
mis and lower cuticle. Embedded in the mesophyll layers
is the vascular bundle (phloem and xylem) and air spaces
for the supply of air (carbon dioxide) and moisture that
comes in through the stomata that dotted the lower epider-
mis through the lower cuticle. The broadness of leaf allows
it to gather as much sunlight as possible as a supply of the
energy needed for photosynthesis. Leaf provides a system
that could be mimicked in designing materials for energy
conversion and at the same time distributes the product.

Biocomposites materials produced by nature have
properties that could be beneficial when reproduced in
synthetic materials. The design, manufacture from simple
raw materials, economical use of raw materials and en-
ergy, multifunctionality and degradability of biocompos-
ites are inspirational to biomimetics or biomimicry in the
design and manufacture of synthetic engineering materi-
als. Another inspiration from nature is the building from
bottom up, from atomic or molecular level to the macro
structural level. This provides for efficient use of raw ma-
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terials. A thorough study of nature’s biocomposite mate-
rials could, therefore, yield viable procedures and tech-
niques for the design and manufacture of synthetic engi-
neeringmaterials with excellent combination of properties
that will provide for multifunctionality in them.

Self-healing Composites

Biological systems have an outstanding ability in self-heal-
ing; that is, automatically detecting and repairing damaged
tissue. The repair is made by a material similar to the orig-
inal (causing a scar tissue), or identical tissue (leaving the
damage area undetectable after repair). For humans, the
latter can for example be observed in bone, whereas the
former on skin. Moreover, biological systems can adapt to
new conditions. Humans build more muscles and bones
if we increase our daily exercise regime and a tree grows
branches to find the most sunlight.

Man-made structures traditionally do not have these
features. If damage occurs, damage will continue to accu-
mulate until it is detected via human intervention or until
the structures fails. Today, there are many sophisticated
means of detecting failures. Even though tremendous ad-
vances have been made towards detecting and repairing
damage in structures, self-healing materials would signifi-
cantly improve the reliability of structures. During the last
decade, significant advances have been made towards de-
veloping self-healing composites. The current approaches
results in a “scar tissue” in the sense that the original ma-
terial is not exactly reproduced, but that the structure will
function satisfactory. Two materials systems will be dis-
cussed here; (i) ceramic matrix composites and (ii) poly-
mer matrix composites.

Ceramic materials typically have high strength and
stiffness, and retain their strength even at high tempera-
tures. Since they are brittle and therefore are considered
unreliable (tend to break without warning signs that met-
als exhibit, such as plastic deformations, especially under
tensile stresses) their uses have been limited. To negoti-
ate the brittle response, ceramics can be reinforced. Most
commonly, ceramics are reinforced with a second ceramic,
forming a ceramic matrix composite (CMC). The bonding
between the reinforcement and thematrix is a key parame-
ter that governs the toughness of the CMC. By controlling
the interface material, referred to as “interphase”, the in-
terfacial bonding can be optimized, allowing for the load
transfer between the matrix and the fibers, deflects matrix
cracking and serve as a barrier towards diffusion. When
considering the strength of the interface material, it must
be optimized to be “just right,” not too strong and not too
weak.

Self-healing of CMCs can be achived through high
temperature oxidation in silicon carbide based CMCs. Sil-
icon carbide (SiC) reinforced with SiC fiber (SiC/SiC com-
posites) or carbon fibers (SiC/C composites) is mechan-
ically durable up to 1500°C and is therefore considered
a promising composite for high temperature applications
such as engines and gas turbines [70]. Even though the
fibers are brittle in a similar manner as the matrix, the
fibers and matrix work synergistically to create a ductile
material. Micro-cracks develop during loading, but these
micro-cracks are stopped by the microstructural features,
simulating a non-linear response paralleling yielding in
metals. When silicon is subjected to elevated tempera-
tures, it quickly forms a protective coating of silica (SiO2).
Unfortunately, the micro-cracks that are associated with
the CMC become pathways for oxygen to penetrate into
the structure, causing internal oxidation. This can weaken
the structure. By coating the fibers with carefully selected
materials, the oxidation can be controlled and result in
self-healing of the micro-cracks. Graphitic carbons (“py-
rocarbons,” “PyC”) and boron nitride (BN) have emerged
as the most prominent interphase [39,44,70,71,72]. When
oxygen diffuses through the micro-cracks, a fluid oxide
is formed due to the oxidation, filling the cracks, Fig. 5.
These glassy oxides that form can be optimized through
the interphase. For example, when a borosilica glass is used
as an additional coating on the fibers, no loss in compos-
ite strength was observed after 200 h at elevated tempera-
tures [39]. Thus, a self-healing mechanism in silicon car-
bide (SiC) matrix composite reinforced with SiC or carbon
fibers has been observed, which is caused by oxidation at
high temperatures. The oxidation occurs at temperatures
above 800°C. The self-healing can continue until the re-
ducing material has been consumed.

Polymer composites might be the most promising
systems where self-healing mechanisms can be developed.
There are several reasons for this. Polymer based sys-
tems are in general less expensive than ceramic based sys-
tems, and tends to be easier to work with. All self-heal-
ing ceramic systems are based on activating the healing
process through subjecting the material structure to heat.
Even though some self-healing polymer systems are based
on heating, the temperature regime for healing polymer
is significantly lower than for ceramics, thus simplifying
the process. Furthermore,many self-healing approaches to
polymer systems are not dependent on heating. Lastly, sev-
eral different approaches for self-healing of polymer have
been developed so far, thus inviting alternative approaches
for self-healing.

One simple concept of healing a damaged structure
is to subject the material to elevated temperatures as was
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Composites, Multifunctional, Figure 5
Examples of interphases used in SiC matrix composites a
schematic top view of a fiber with a coating (interphase) in ama-
trix b schematic side view of an advancing crack exposing the
interphase that oxidizes, resulting in self-healing

seen for ceramics. This idea is based on that the elevated
temperature activates a chemical process that results in
healing. For example, by utilizing a particular thermally
reversible reaction (e. g., a selected Diels–Alder reaction)
for cross linking linear polymer chains, a fractured ma-
terial can be healed, as demonstrated by Chen and co-
workers [23,24]. For one material system investigated, af-
ter fracture and subsequent heat treatment, the original
strength was regained. In this case, the polymer (a furan-
based monomer synthesized with 1.8-bis(maleimido)-3.6-
dioxaoctane) was subjected to mechanical testing lead-
ing to fracture followed by heat treatment at 130°C for
30min. In this case, there was no loss in the original
strength when the structure was re-tested [24]. This ap-
proach to self-healing has the clear advantage that no ad-
ditional material is needed to be added: the material is in-

trinsically self-healing. However, only a very limited set
of materials that can self-heal by cross-linking the poly-
mer chains upon reheating. An alternative approach for
healing via heating utilizes an additional material phase
incorporated into the original material. When subjected
to sufficient heating, this additional material is activated,
and can mend the damage structure. For example, a com-
posite made of glass fiber reinforced epoxy retained its
stiffness after the heated repair [120]. By adding a heat-ac-
tivated material to the composite structure, a design engi-
neer would not be strictly limited to a narrow set of materi-
als. However, a major disadvantage with both of these heat
activated healing methods is that the healing is not auto-
matic; rather, the structure needs to be treated in a separate
process. (This may be differentiated from the ceramic self-
healing that was discussed above. The ceramic is operat-
ing at the temperature at which oxidation occurs, but this
polymer operates at temperature lower than where self-
healing appears.) Nevertheless, depending on the applica-
tion, this approach can be quite useful.

A more convenient approach to self-healing of a struc-
ture compared to the heat activated systems described
above is a system that heals itself without active interfer-
ence. Most approaches aiming to achieve this are based on
introducing one or more phases into the composite ma-
terial. These additional material phases are automatically
activated when damage occurs. A successful approach
have been developed by White, Sottos and co-work-
ers, where spherical microcapsules containing a “healing
agent” and a second phase containing a catalyst are em-
bedded in a polymer matrix composite [12,13,14,53,115].
When a crack propagates, the micro capsules in the crack
path burst and release their healing agent into the crack,
Fig. 6. As the healing agent fills the crack, it will eventu-
ally contact the catalysts. When this occurs, the healing
agent will polymerize, filling the crack and effectively heal-
ing the crack. In the work by White, Sottos and co-work-
ers, the agent was a dicyclopentadiene (DCPD) monomer
and the catalyst a bis(tricyclohexylphoshine)benzylidine
rethenum (IV) dichloride (a Grubbs’ catalyst) [12,13,
14,53,115]. This results in a ring-opening metathesis poly-
merization (ROMP) of the DCPD, resulting in a highly
cross-linked polymer. When stabilized with 100–200 ppm
p-tert-butylcatechol, the DCPD has a long life and healing
can be achieved even for aging structures. The micro cap-
sules containing the DCPD ranged from 40–240 μm and
were made with poly-ureaformaldehyde. In early work,
curing for 48 h was required to retain 45% of the initial
strength (if the curing occurred at 80°C, up to 80% of ini-
tial strength was achieved) [12,115]. Subsequent studies
showed that 10 h were sufficient to achieve full polymer-
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Composites, Multifunctional, Figure 6
Schematic of a propagating crack in a polymer with micro-cap-
sules filled with a healing agent

ization (full healing or full strength), and that the fatigue
life can be increased with over 200% if the structure is
allowed to rest sufficiently for the healing agent to poly-
merize [13,14]. Most engineering structures are allowed
to “rest” between operations. For example, cars are nor-
mally used for commuting to work and get sufficient time
to “rest,” both day and night, whereas airplanes are sched-
uled for regular maintenance that keeps them grounded
for many hours that may be sufficient for the polymer-
ization to take place. Thus, this system is a promising ap-
proach towards extending the lifetime of polymer matrix
composites.

The micro-sphere approach has the clear advantage of
being possible to be incorporated into a range of materials,
and that no particular treatment is needed to activate the
healing processes. There are, however, some drawbacks.
These include that the shell of the micro-capsules have to
be designed so that it breaks when a crack has developed in
the bulk material, and that the healing agent comes across
the catalyst. Moreover, the up to 200 μm diameter spheres
can possibly interfere with the reinforcement of the poly-
mer, including introducing an unwanted waviness of the
fiber reinforcement. The latter drawback can be addressed
by replacing the micro-spheres with hollow micro-cylin-
ders [11,36,68,82,83]. The current state-of-the-art for hol-
low micro-cylinders focuses on using commercial hollow
glass fibers embedded in composite materials [11,82,83].
In a similar manner as to the case of micro-spheres, the
hollow cylinders are filled with a “healing agent” that is ac-
tivated once the fiber breaks. A two-phase epoxy system is
used, where the epoxy resin is stored in one set of cylin-
ders and the hardening agent is stored in a second set of
cylinders. In a layered composite material, the hollow glass
fibers are aligned with the reinforcement fibers, for exam-
ple the fibers with the epoxy resin are aligned with the 0°-
ply and the fibers with the hardening agent with the 90°-
ply. When cracks develop and propagate, the glass tubes
break, allowing the epoxy and the hardening-agent to fill
the damaged zone. The materials are selected so that the
epoxy cures at ambient conditions. The major challenge
with this approach relates to the difficulty of finding suit-
able glass tubes. Ideally, the properties of the hollow glass
tubes should match that of the original reinforcement, so
they can replace or enhance the composite structure. To
address this, Pang and Bond [83] purchased commercial
borosilicate glass tubing and using in-house facilities drew
the fibers to external diameter of 60 μm and inner diameter
of approximately 42 μm. The fibers were filled with a com-
mercial epoxy repair agent (MY750 Ciba–Geigy) and the
corresponding hardening agent respectively [83]. In this
case, about 90% of the strength of the original strength is
retained after repair, but the strength degrades with time.

With the exception of the reversible cross linking poly-
mers, the repair schemes discussed so far for polymer
composites are all based on one-time repairs; once a mi-
cro-capsule or micro-fiber breaks the healing agent is con-
sumed, and no further healing will occur if another crack
should develop again at the same point. In contrast, self-
healing in biological systems can occur multiple times for
repeated injuries, assuming a reasonable frequency of in-
juries. In animals, this is possible by the continuous flow of
an intelligent mixture of biochemicals in the vascular net-
work, which is related to the circulatory system. Some at-
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tempts are made to mimic vascular network for self-heal-
ing [104,107], where a constant supply of healing agent
could potentially be provided. There are several manufac-
turing issues involved here, and opens up many potential
research avenues.

Multifunctional Coatings

Applying coating on a structure is many time a cost effec-
tive way of obtaining a multifunctional composite mate-
rial. There aremany examples that illustrate this, for exam-
ple environmental barrier coatings, coatings for increased
wear resistance, and thermal barrier coatings. Most coat-
ings combine several functions by having multiple layers
where each layer contributes a particular function.

Coatings for corrosion resistance (sometimes referred
to as environmental coatings) are probably one of the
most common classes of coatings, for example covering
steel with zinc to obtain a galvanic protection, (the zinc
is sacrificed to protect the underlying steel). Even though
functional, these cannot be categorized as multifunctional
and will not be discussed here. More advanced coatings
are now being developed to protect steel and other met-
als. Some of these coatings have multifunctional capaci-
ties. Some particular interesting coating materials are elec-
tropolymerized polymer composites including polyani-
line (PANi) [51,78,93,102] and polypyrrole (PPy) [51,102].
Polyaniline (PANi) is formed by polymerizing aniline
(phenylamine, aminobenzene), C6H5NH2 and polypyr-
role (PPy) is synthesized pyrrole, C4H4NH. The polymers
are typically deposited through an electrochemical synthe-
sis in which the thickness can be controlled. The corrosion
resistance depends on the deposition parameters including
applied potential and the feeding rate of the monomers.
By producing a composite of PPy and PANi, the corrosion
rate can be reduced with more than two order of magni-
tudes compared to unprotected materials [51]. To achieve
this improved rate, it is crucial to ensure a proper bonding
of the structure of the polymer composites deposited on
the metal, which must be controlled through the process-
ing parameters [102]. This class of coatings protects in sul-
furic acid (H2SO4), not so well in hydrochloric acid (HCl),
and not at all in a Sodium chloride (NaCl) solution [93].
Thus, care must be taken when using this type of coating
for corrosion protection, but evidently, it can be quite use-
ful for a range of applications.

A second class of important coatings is coatings used
to ensure low friction and increased wear resistance of
the underlying structure, tribological coatings. These coat-
ings are critical for a range of applications, including mov-
ing contacts (e. g., bearings), materials processing (e. g.,

drilling), and applications where addition of lubricants or
materials debris from wearing is unacceptable (e. g., food
processing, medical implants). Also, by reducing friction
in moving parts in vehicles, the fuel efficiency of the vehi-
cle can be significantly increased.When optimizing a coat-
ing for wear resistance, the goal is to reach as high hard-
ness as possible [110]. When combining wear resistance
with low friction, many other aspects much be consid-
ered. There are now several systems used as solid lubri-
cants which allows for both low friction and wear resis-
tance. These include diamond and diamond-like carbon,
graphite, molybdenum disulfide, hexagonal boron nitride,
boric acid as well as soft metals [37]. An interesting ex-
ample of a low friction wear-resistant coating consists of
a composite coating made from a titanium nitride ma-
trix, TiN, with molybdenum sulphides, MoSx, dispersed
as a second phase. Up to 8% (by weight) addition of MoSx
does not effect the hardness of the coating (thus promoting
wear resistance), but decreased the coefficient of friction
with more than a factor of two, and consequently increas-
ing the life up to 500 times compared to the TiN coating
alone [29].

Of high interest is to combine the corrosion resis-
tance coating with the tribological coatings. This multi-
functional coating would then resist both corrosion, wear
and provide a low coefficient of friction [113,117]. This
would increase the lifetime of many engineering applica-
tions, and for example, increase the fuel efficiency of ve-
hicles since it reduces energy losses due to friction. Tri-
bological coatings under stress and at the same time in
aggressive environments degrade at a significantly faster
rate compared to if they were subjected to wear alone or
to the aggressive environments alone, since the two con-
ditions aid each other to aggravate the deterioration of
the coatings, as illustrated in Fig. 7. In a recent review by
Wood [117] it is clear that this is a research area that re-
quires significant attention in the future.

The last class of coatings we will discuss is coatings
used for high temperature protection: thermal barrier
coatings (TBCs), used to protect the underlying metallic
substrate. TBCs are commonly used for protecting super-
alloys in gas turbines (both stationary for energy produc-
tion and mobile for propulsion of airplanes). These sys-
tems are a material system with multiple layers, in which
each layer is optimized for a particular function. It is made
up of a bond coat being deposited on a metallic base, af-
ter which a ceramic top coat is deposited, see Fig. 8. In gas
turbine engines, a thermal gradient over the top coat of up
to 150°C is achieved from active cooling of the superal-
loy and by selecting top coat materials with relatively low
thermal conductivities [38,66,79,99,100,118]. The metal-
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Composites, Multifunctional, Figure 7
Illustration of a degradation caused by combined wear and corrosion of a coated structure. Wear (illustrated by a sphere moving
on the surface with an applied normal force) causes cracks in the coating. As the cracks develop, the environment can reach the
substrate and deteriorate the substrate quickly

Composites, Multifunctional, Figure 8
An example of a thermal barrier coating produced by electron-beam physical vapor deposition (EB-PVD). a Sketch of the system;
b scanning electron microscopy (SEM) image of the cross-section of the top coat, close to the surface; c SEM image of the interface
between the top coat, thermally grown oxide (TGO) and the bond coat. Note that b and c are of the same scale. The top coat (yttria
stabilized zirconia) is intentionally made porous to allow for strain tolerance during thermal cycling

lic bond coat provides oxidation protection to the super-
alloy by sacrificing itself by supplying aluminum to form
an alpha-alumina scale (˛-Al2O3) between the bond coat
and the top coat (Fig. 8). As the alumina scale grows, the
aluminum content decreases in the bond coat, ultimately

changing the bond coat properties [32,96]. Thus, it is im-
portant to control the chemical content of the materials
since even small amounts of critical trace elements can en-
hance or reduce the interfacial fracture toughness of the
structure. Even though TBCs have been used for more
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than a decade, improvements of thesemultifunctional ma-
terials are still critical. By improving their reliability and
durability, gas turbine powerplants and aircraft engines
can become significantly more efficient, reducing their fuel
consumption and reducing the pollution associated with
energy production and propulsion.

OtherMultifunctional Composites

Polyaniline (PANi) as discussed earlier has also been used
as nanoparticles (rather than the matrix) to achieve mul-
tifunctional composites. For example Dispenza et al. [34]
used PANi particles in a hydrogel matrix obtaining a bio-
compatible nanocomposite with properties suitable for
the development of optoelectronic devices. The compos-
ite was obtained by a multistep process, starting with water
dispersion polymerization of aniline, followed by �-irradi-
ation. The �-irradiation cross links the PANi to the steric
stabilizers (either poly-vinyl-pyrrolidone, PVP or poly-
vinyl-alcohol, PVA). Depending on the processing condi-
tions, various properties can be obtained, but the PANi
particles remain spherical [34]. The composites can un-
dergo two optical transitions and the fluorescence signals
can vary in wave-length as a function of pH-value.

Composites with 3-dimensional reinforcements have
been developed in order to eliminate a number of short-
comings like low shear and transverse stiffness and
strength exhibited by laminated composites, with appli-
cation in areas such as the aerospace industry. 3-dimen-
sional braided reinforcements give reinforcing support
in all the three directions thereby suppressing delamina-
tion in the composite and giving a higher damage toler-
ance [80,81,119].

Another group of composites that are multifunctional
are the hybrid composite materials. A hybrid composite
is made by combing two or more types of fibers in a sin-
gle matrix material or in two or more types of matrix ma-
terials. This gives a greater possibility of achieving multi-
functions by changing the combinations of fibers and/or
matrix materials [111]. However, the interactions of the
constituent components of a hybrid composite and large
number of design variables involved make the design of
such a composite complex. Examples are carbon-aramid
reinforced epoxy, glass-carbon reinforced epoxy, and car-
bon-Kevlar reinforced epoxy. Lee [58] classified hybrid
composites as (1) interply or tow-by-tow, in which tows
of the two or more constituent types of fiber are mixed
in a regular or random manner; (2) sandwich hybrids,
also known as core-shell, in which one material is sand-
wiched between two layers of another; (3) interply or lam-
inated, where alternate layers of two (or more) materials

are stacked in a regular manner; (4) intimately mixed hy-
brids, where the constituent fibers are made to mix as ran-
domly as possible so that no over-concentration of any
one type is present in the material; (5) other kinds, such
as those reinforced with ribs, pultruded wires, thin veils of
fiber or combinations of the above [58].

Future Directions

Biomimetics is seeking to mimic nature to design and pro-
duce materials comparable or better than the ones nature
has produced. The goal is to be able to synthesize organs
for replacement in the body. Such organs should be able to
perform and grow just like the natural one being replaced.
This will eliminate looking for or waiting for donors want-
ing to donate such a needed organ which, in some cases,
the body of the patient may reject in the end.

For non-biological applications, mimicking multi-
functional biocomposites should be directed at design-
ing synthetic composite materials that can simultaneously
perform more than one function. Self-healing is another
aspect being targeted to be achieved in material design.
The future goal is not only to achieve multifunctionality in
composite materials but also such materials should be self-
healing. One great lesson from nature is that nature does
not waste materials in building its structures yet with in-
credible relevant properties. This is because nature builds
from bottom up, frommolecular level tomacro level. Abil-
ity to control the design and structure of the material
on the molecular level will allow production and fabrica-
tion of components, devices and structures with incredi-
ble properties and functionalities without excessive use of
material or energy inputs. This is a great advantage in con-
servation of material and energy.
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and Center for the Study of Biological Complexity,
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Defining complexity one remembers the words of St. Au-
gustine: “I know very well what time is, until I have to ex-
plain it to somebody else.” Intuitively so clear, complex-
ity is so difficult to define rigorously. Complexity is some-
times mistaken with size, large systems are presumably
complex. Are they always? Is a big piece of rockmore com-
plex than a tiny living cell? What makes a system complex
is not the number of its components, but the number and
kind of their interactions. As a result of these interactions
the system formed has properties and behavior different
from those of its components. The dynamics of a com-
plex system’s interactions is described by more sophisti-
cated mathematical models (nonlinear differential equa-
tions). But how much complexity is needed to observe
such emergent properties and dynamics? Given the num-
ber of components how many interactions would produce
a new behavior?

We may not be able to specify an ideal definition of
complexity or a detailed reply to these questions. How-
ever, what we can and must do is to quantify complexity,
to measure it, as we do with electric charge without know-
ing what exactly it is. In the realm of computational chem-
istry, this has been done during the last 30 years defining
a variety of measures of molecular complexity – composi-
tional, structural, and dynamic. While molecular compo-
sitional complexity is straightforward for calculation from
the number of atoms of different elements, the structural
complexity of molecules can be quantitatively assessed by
a variety of descriptors (termed also topological indices),
based on graph theory and information theory. Presenting
molecular structure as a graph gives rise to a multitude of
quantitative descriptors. However, only few of them satisfy
the set of criteria formulated in this field. A major require-

ment for a complexity descriptor is to match in a series of
molecules certain patterns of increasing complexity, based
on the number of complexifying elements – branches, cy-
cles, central organization, and others (see � Topological
Complexity of Molecules). New methods consider as ef-
fective complexity measures the overall subgraph count,
the sum of vertex degrees of all subgraphs (“overall con-
nectivity”), and the count of all random walks. Shannon’s
information theory has also been broadly used in quanti-
fying complexity of chemical systems. Shannon’s function
was found to be very useful in characterizing different dis-
tributions of atoms in molecules. It reflects the increase in
complexity with the increase in the diversity of atoms and
bonds in molecules, the diversity being caused not only
by the elemental composition of atoms, but also by the
vertex degrees and vertex total distances distributions in
molecular graphs. Moreover, Shannon’s information in-
dices calculated from electron distributions in atoms and
nucleon distributions in atomic nuclei were shown to be
an important tool for predicting the properties of super-
heavy chemical elements, and their isotopes (see � In-
formation Theoretic Complexity Measures). The univer-
sality of the graph theoretical and information theoretical
methods developed in the field of computational chem-
istry makes them also of interest in network complexity
analysis in biology, social sciences, computer sciences, and
other branches of science and technology.

A higher-level theoretical framework of molecular
similarity and complexity is the quantum mechanical,
density-functional formalism (DFT). This quantitative ap-
proach enables comparing and ordering of molecular
structures, which finds application in a quantum version
of the linear and nonlinear QSPR (see � Quantum Simi-
larity and QuantumQuantitative Structure-Properties Re-
lationships (QQSPR)). Tuning the relative reaction rates
of the different steps of a complex chemical reaction would
enable the optimal design of many industrially important
reactions. The DFT technique was recently used to address
such a fine tuning procedure (see� Computer-Aided De-
sign of the Reaction Site in Heterogeneous Catalysis). Such
an approach promises to provide in the near future tools
for effective screening of potential new materials with tai-
lored catalytic properties.

Drug discovery is a major field of interest for applied
computational chemistry. The lengthy process of design
of a new drug starts with a search for the best compu-
tational model that relates molecular structure, composi-
tion, and properties to certain biological activity that has
the desired therapeutic effect. This vast area of research,
which spans over the last 50 years and is known as QSAR
(Quantitative Structure-Activity Relationships) modeling,
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reduces strongly the potential drug candidates selected
for synthesis and testing. While composition and proper-
ties are experimentally determined quantities, the trans-
lation of molecular structure into numbers is not unique,
and includes a multitude of structural parameters termed
molecular descriptors (see� Drug Design, Molecular De-
scriptors in). Different classes of descriptors capture differ-
ent aspects of molecular structure. The manner in which
atoms are connected to each other is characterized by
graph theory-based structural invariants called topologi-
cal or two-dimensional (2D) indices. Three-dimensional
(3D) descriptors are used to account for the metric and
geometry of molecules, while conformational (or 4D) pa-
rameters complete the picture by accounting for the pres-
ence of a variety of 3D structures in molecules having free
rotating atomic groups. Distinct classes include quantum
chemical descriptors, such as atomic charges, bond or-
ders, superdelocalizabilities and dipole moments, as well
as physicochemical properties like solubility and binding
constants. No theory exists to predict which of these de-
scriptor classes would work the best for a given class of bi-
ologically active compounds, thus making all of them use-
ful tools in drug design.

The search for new promising drug candidates experi-
enced a quantum leap, when the intelligent guesses based
on analogies with naturally occurring compounds were re-
placed by automated searches in huge databases of chem-
ical compounds. The use of such combinatorial libraries
has led to an explosive increase in the number of iden-
tified therapeutic targets, and enabled producing tailor-
made drug molecules. All this increased considerably the
complexity of the in silicomethods used in drug discovery.
The QSAR modeling reached a stage of maturity, with rig-
orously defined criteria for selection of molecular descrip-
tors, as well as selection of methods for model validation
and determining the applicability domains of the models
derived (see � QSAR Modeling and QSAR Based Virtual
Screening, Complexity and Challenges of Modern). It was
realized that no particular QSAR modeling method has
an advantage over the others, as well as that each specific
technique and each specific class of descriptors have their
unique contribution to the relationship with the examined
biological activity. This resulted in the creation of combi-
natorial QSAR methodology, which produces a multitude
of models, satisfying a set of acceptability criteria.

In parallel with the optimization of traditional QSAR
methods and their adaptation to the complex datasets
available, the field of drug design benefited tremendously
by using the methods of artificial intelligence. Most of
these methods have been inspired by the manner in which
the living things function and evolve (see � Drug Design

with Artificial Intelligence Methods). Genetic and evolu-
tionary algorithms are stochastic methods that solve op-
timization problems by evolving solutions based on con-
cepts of DNA genetics and Darwinian evolution. The ant
colony optimization (ACO) algorithms mimic the behav-
ior of some ant species when searching for the short-
est path to a food source. The particle swarm optimiza-
tion (PSO) algorithm mirrors the social behavior of large
groups of individuals, such as bird flocking, fish school-
ing, and animal herding. Swarm intelligence algorithms
are used in drug design for diverse application, includ-
ing selection of structural descriptors for QSAR mod-
els, enzyme-inhibitor docking, and gene expression. An-
other class of algorithms, termed Artificial Immune Sys-
tems (AIS), makes use of learning and memory principles
used in the human immune system. AIS models found
application in diverse biological and medical problems,
such as prediction of protein structure, cancer diagno-
sis, classification of gene expression data, and recogni-
tion of ECG arrhythmia. Machine learning (decision trees,
support vector machines, k-nearest neighbors, etc.) is an
important field of artificial intelligence methods. It ex-
tracts information from experimental data by computa-
tional and probabilistic methods, and by using a set of
rules it predicts the properties of objects not included in
the learning set (see � Drug Design with Machine Learn-
ing). Machine-learning techniques, such as artificial neu-
ral networks (ANNs), have been widely applied to QSAR
data (see�Drug Design with Artificial Neural Networks).
Its success story began with the creation of algorithms
for the training of multilayer feed-forward (MLF) arti-
ficial neural networks. MLF was widely used to model
biological and toxicological properties of chemical com-
pounds. Other networks used in drug design are self-or-
ganizing maps, counter-propagation networks, and prob-
abilistic neural networks.

Biochemistry became for biology what physics has
been for chemistry – the fundament to build on and ex-
plain. The essence of life, and even its origin, is nowadays
in a process of redefining, proceeding from the self-orga-
nization of biomolecules (DNA, RNA, proteins, metabo-
lites) in biochemical networks. All aspects of biological
development, such as cell differentiation, tissue multilay-
ering, segmentation and left-right asymmetry, can be re-
lated to the physicochemical processes of self-organizing.
The complex dynamics of self-organizing is characterized
by oscillations, pattern formation, and the emergence of
multiple steady states. Origin of life is the domain where
chemical self-organization and biological evolution meet
(see � Biological Development and Evolution, Complex-
ity and Self-organization in). Networks of different kinds

http://pcp.vub.ac.be/ORILIFE.html
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http://pcp.vub.ac.be/ORILIFE.html
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and sizes appear at different stages of molecular evolution.
(see � Molecular Evolution, Networks in). The evolution
of networks is not yet studied in detail, yet it is already es-
tablished that gene mutations cause addition and deletion
of nodes in protein–protein interaction networks, tran-
scriptional regulatory networks, and metabolic networks,
whereas rewiring of nodes is an evolutionary mechanism
observed only in the first two networks.

Complexity of biological systems is multifaceted. Tra-
ditionally, the genome sequence complexity is viewed as
a universal method for comparing species complexity, de-
spite the controversy with some of the complexity mea-
sures examined. The Kolmogorov’s information, Shan-
non’s information, and Jensen–Shannon divergence are
among the most frequently used measures (see � Bio-
logical Complexity and Biochemical Information). Other
types of biocomplexity, based on the structure and func-
tionality of biological systems, have also been analyzed.
Recently, the advance in the study of biological networks
has offered new options for the assessment of biologi-
cal complexity, including modeling the evolution of com-
plexity in artificial life systems. Essential for each specific
quantitative measure of network complexity is its diver-
gence from the random network having the same size and
the same average connectivity. Modular and motif (sub-
graph) information content of biological networks were
shown to reflect well the complex network organization.
Complexity of the dynamics of biochemical reactions is
closely related to the cell fractal structure, and has impor-
tant consequences for the dynamic behavior of cells. The
processes of organizing the intracellular macromolecular
systems obey chaotic dynamics. Non-linear interactions
in and between spatial and temporal domains and over
wide ranges of scales underlie the emergent properties of
complex biological systems (see � Biochemistry, Chaotic
Dynamics, Noise, and Fractal Space in). With their non-
linearity, fractal dimensions, and attractors-controlled dy-
namics, the processes of the self-organizing chaos are of
major importance for complexity theory. The high com-
plexity of biological systems is a challenge for the tradi-
tional modeling of dynamics based on continuous mod-
els and ordinary differential equations (ODE). The cel-
lular automata method (see � Cellular Automata Mod-
eling of Complex Biochemical Systems) appears as a vi-
able alternative for modeling of processes within bio-
logical systems, including their metabolic, protein, and
gene regulatory networks, as well as for identifying dy-
namic patterns, and devising of strategies for pathway con-
trol.

Chemistry and chemical engineering have entered into
the 21st century with a broad spectrum of new classes of

sophisticated and even “smart” materials of high complex-
ity. Nanotechnology offers structures of unusual proper-
ties based on atomic clusters, nanotubes, and DNA. Com-
posite materials and special polymers extend essentially
the areas of application of classical materials. Many of the
new materials are created with the technology of molec-
ular self-assembly, adopted from the living nature. The
high complexity of nanoscale materials (see � Nanoscale
Atomic Clusters, Complexity of) stems from the wealth of
possible structures, and the very strong size-dependence of
their properties. Clusters have great potential as ameans of
optimization of existing technologies, developing princi-
pally new technological processes, materials, and devices.

DNA provides basic building blocks for construct-
ing nanostructures with specific functional features like
molecular recognition, self-assembly, and predictable
structure (see � DNA-Templated Self-Assembly of Pro-
tein Arrays and Highly Conductive Nanowires). Periodic
protein arrays can be constructed by templated self-assem-
bly onto DNA nanogrids. This enables producing target
materials with predictable 3D structure like highly con-
ductive nanowires. The principles of biomolecular self-as-
sembly can be extended to the modern materials synthe-
sis, leading to a broad range of new materials and pro-
cesses with significant technological impact (see � Self-
-assembled Materials). The complex nature of self-assem-
bling processes makes their modeling a nontrivial task.
The methods used cover from atomic scale (molecular dy-
namics and Monte Carlo simulations) to mesoscale (ki-
netic Monte Carlo and phase field modeling) to lattice
methods, to Random Sequential Adsorption (RSA) and
cellular automata techniques. The development of com-
plex, multi-scale modeling approaches is under way and
shows great promise.

Themass-production of industrial polymers was dom-
inated for a long time by polymers with linear macro-
molecular structure like polyethylene and polypropylene,.
The appearance of nonlinear polymers with a variety of
branched-tree topologies offered new classes of materials
with properties unseen in linear polymers (see � Poly-
mers, Non-linearity in). The entanglement of branches in
the star- and comb-shaped, and hyper-branched (known
also as dendrimers) polymers, results in complicated con-
formational statistics and dynamics. The latter is modeled
surprisingly well using graph theory, providing reliable
prediction of the materials’ properties in melt and solid
states. Even more unusual properties are offered by com-
posites. Composite materials combine the best features of
different materials and are ideally suited to achieve multi-
functionality and to formmaterials that have a broad spec-
trum of desired properties (see� Composites, Multifunc-
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tional). Carbon fiber and carbon nanotube-based compos-
ites can be formed with materials as diverse as polymers,
cement, and ceramics. Perhaps the most unusual prop-
erty demonstrated by some complex composites is the self-
healing. Inspired from the technological secrets of the liv-
ing things, such dreammaterials not requiring continuous
support will become one of the most exciting novelties of
21st century.

Computational and Theoretical
Nanoscience, Introduction to
YONG S. JOE
Center for Computational Nanoscience,
Department of Physics and Astronomy,
Ball State University, Muncie, USA

Nanoscience and nanotechnology change the nature of al-
most every human-made object in this century. Advances
in the field of nanoscience empower us with new tools
for proving electronic devices with ever-decreasing scale.
Many people have projected that nanometer-scale devices
will continue this trend, bringing control of matter to un-
precedented scales. This includes scale reduction not only
in microelectronics, but also in fields such as quantum-
switch-based computing in the shorter term. These ad-
vances have the potential to change the way we engineer
our environment, construct and control systems, and in-
teract in society.

Computational science, which has emerged as a third
way of doing research, one that complements theory and
experiment, plays a key role in developing our understand-
ing of materials at the nanometer scale and in the develop-
ment “by-design” of new nanoscale materials and devices.
Hence, modeling and simulation are now integral compo-
nents of scientific research.

It is essential to have a detailed understanding of quan-
tum effects in electronic transport to design devices effec-
tively at the nanoscale, sustain the miniaturization trends
of integrated circuits, and create new engineered nanos-
tructures [see � Quantum Phenomena in Semiconduc-
tor Nanostructures]. The resonance phenomena has a spe-
cial attention in the electronic transport of non-interacting
electrons through the infinite rectilinear quantum wires
with impurities and one-dimensional rings with impuri-
ties connected to current leads [see � Resonances in Elec-
tronic Transport Through Quantum Wires and Rings].
The Fano resonance, which is a manifestation of the in-
terference between a localized state and the continuum

states, is investigated in an Aharonov–Bohm ring and
in an open three-terminal interferometer with a quan-
tum dot [see � Quantum Dots: Fano Resonances in an
Aharonov–Bohm Ring]. It is also important to understand
quantum transport and Kondo physics in coupled quan-
tum dots with Anderson impurity [see � Quantum Im-
purity Physics in Coupled Quantum Dots]. The complex
quantum dots, treated as artificial molecules, are an excel-
lent model system for studying dynamical symmetries and
Kondo effect. The simplest of such complex objects is the
double quantum dot which consists of two islands with
confined electrons [see � Tunneling Through Quantum
Dots with Discrete Symmetries]. Since the quantum inter-
ference of the system depends not only on the dynamical
phase but also on the geometric phase, the investigation
of the geometric phase and its effect on nanostructures in
a dynamical process of the environment is of particular
interest [see � Geometric Phase and Related Phenomena
in Quantum Nanosystems]. In studying complex systems
we have to deal with coupled phenomena and processes at
a multitude of different spatial and temporal scales. Un-
derstanding interactions in the low dimensional semicon-
ductor nanostructures and its response at multiple scales is
a fundamental quest of modern science. [See �Nanoscale
Processes, Modeling Coupled and Transport Phenomena
in Nanotechnology].

The spin phenomena in mesoscopic transport have
moved only recently into the focus of attention, as one
branch of the field of spintronics. The interplay between
quantum coherence with confinement- or interaction-ef-
fects gives rise to a variety of unexpected spin phenomena
in mesoscopic conductors and allows moreover to con-
trol and engineer the spin of the charge carriers. The spin
interference is often the basis for spin-valves, spin-filters
and detectors, and spin-switches. Their underlying mech-
anisms may gain relevance on the way to future semicon-
ductor-based spin electronics. A quantitative and theoret-
ical understanding of spin-dependent mesoscopic trans-
port calls for developing efficient and flexible numerical
algorithms.

The electronic and transport properties of quantum
dot spin transistors are studied with emphasis on single-
electron tunneling and shell structure using comprehen-
sive modeling approach. For example, self-consistent cal-
culation of the Poisson and Schrödinger equations within
the spin-density-functional theory and the exact diago-
nalization of the many-body Schrödinger equation can be
employed to describe spin transport properties of quan-
tum dots [see � Quantum Dot Spin Transistors, Self–
consistent Simulation of]. With rising interest in spin-de-
pendent transport, the interplay of the electron spin and
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charge degree of freedom has been exploited in a vari-
ety of spin interference devices. Charge and spin trans-
port through phase-coherent conductors of mesoscopic
scales carry imprints of wave interference as predominant
and characteristic features [see � Spin-Polarized Quan-
tumTransport inMesoscopic Conductors: Computational
Concepts and Physical Phenomena]. Novel physical phe-
nomena that may lead to improved memory devices and
advances in quantum information processing are closely
related to spin-orbit interactions. Hence, it is important to
investigate a semiclassical wave-packet description of spin
transport in the presence of electric fields by explaining
how the microscopic motion of carriers gives rise to a spin
current [see � Semiclassical Spin Transport in Spin-Orbit
Coupled Systems].

In the meantime, the theory of exchange-correlation
energy is of great interest in modern density-functional
many-body approaches. Hence, the spin dependent ex-
change-correlation energy in an interacting system such
as the two-dimensional electron layers is of critical impor-
tance in the proper design of modern nano-structure de-
vices and quantum-well lasers from a technological point
of view [see � Spin Dependent Exchange and Correla-
tion in Two-Dimensional Electron Layers]. In addition,
the time revolution of correlation functions in disordered
spin systems is also worth to investigate [see � Spin Dy-
namics in Disordered Solids].

Carbon nanotubes are referred to as the fabric of nano-
technology, and will play a central role in the future de-
velopment of this technology. Understanding the proper-
ties of nanotubes, via computational simulation studies,
has been one of the most intensive areas of research in
physical sciences. Carbon nanotubes form the fourth al-
lotrope of crystalline carbon after graphite, diamond, and
a variety of caged-like fullerene molecules. Their mechan-
ical properties make them stronger than steel, and their
thermal conductivity is faster than copper. They have very
exotic electronic-conduction properties by changing their
geometry or by introducing topological defects into their
structure and therefore, their electronic conductance can
change from metals to semi-conductors. In general, car-
bon nanotubes show very different mechanical, thermal,
electronic and optical properties.

The investigation into nanotube properties has
prompted an intensive experimental and theoreti-
cal/computational research. One of the most active areas
has involved the use of predictive computational mod-
eling of their mechanical, thermal and mass transport
properties [see � Carbon Nanotubes, Thermo-mechan-
ical and Transport Properties of]. One of the computa-
tional methods includes atomistic simulations using tight-

binding molecular dynamics to study the nucleation and
formation of carbon fullerenes and single-walled carbon
nanotubes [see � Tight-Binding Molecular Dynamics for
Carbon and Applications to Nanostructure Formation].
Furthermore, the non-equilibrium Green’s Function ap-
proach can be employed to study nanowire field effect
transistors (FETs) such as a silicon nanowire FETs and
carbon nanotube FETs [see � Quantum Simulations of
Ballistic Nanowire Field Effect Transistors]. Therefore,
carbon nanotubes are viewed as highly relevant nano-
structures with extensive potential applications.

The physical implementation of the quantum bit (or
qubit) has been, and still is, the starting point of any pro-
posal for quantum information processing device. The re-
search of quantum computing focuses on qubits and quan-
tum entanglement based on both a large spectrum of sys-
tems and solid-state devices. Hence, it is interesting to
consider the practical realizability of quantum comput-
ers based on solid-state flying qubits and a simple quan-
tum-gate network [see� Charge-Based Solid-State Flying
Qubits].

For device sizes in the range of tens of nanometers,
the atomistic granularity of constituent materials cannot
be neglected. Effects of atomistic strain, surface rough-
ness, unintentional doping, the underlying crystal symme-
tries, or distortions of the crystal lattice can have a dra-
matic impact on the device operation and performance. In
an atomistic simulation, one takes into account both the
atomistic/granular and quantum properties of the under-
lying nanostructure. The variety of geometries, materials,
and doping configurations in semiconductor devices at the
nanoscale suggests that a general Nanoelectronic Model-
ing tool (NEMO 3-D) is needed [see�Multimillion Atom
Simulations with Nemo3D].

There is a persistent need of miniaturization of ma-
chines and energy conversion devices for various engi-
neering applications. In the field of robotics, there is
a need to develop nano-scale actuators, motors and other
machine components [see � Viral Protein Nano-Actua-
tors, Computational Studies of Bio-nanomachines]. These
nano-scale robots, machines, and sensors can be used to
deliver drugs to specific locations in the body, or detect
individual cancer cells, or be used as molecular filters to
separate minute particles from the environment. On the
other hand, the field computation, which is a model of
computation that information is represented primarily in
fields, is to provide a mathematical language for describing
information processing in the brain and in other natural
and artificial systems [see � Field Computation in Natu-
ral and Artificial Intelligence]. This field computation can
be expected to provide an increasingly important analyt-
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ical and intuitive framework for understanding massively
parallel analog computation in natural and artificial intel-
ligence.

In conclusion, there is no doubt that computational
and theoretical nanoscience research such as quantum
electronic and spintronic nanodevices will yield new ap-
plications in the near future for sensing, information pro-
cessing, and quantum computation.

Computer-Aided Design
of the Reaction Site
in Heterogeneous Catalysis
ANTON KOKALJ
Department of Physical and Organic Chemistry,
Jožef Stefan Institute, Ljubljana, Slovenia
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Glossary

Surface site is a position on the surface. High-symmetry
positions are usually named as top, bridge, and hollow
sites and designate positions over a surface atom, over
two neighboring surface atoms, and over the void in
between neighboring surface atoms, respectively.

Surface reaction center is a group of atoms on the surface
where an elementary reaction occurs. The term reac-
tion site will be used occasionally.

Adsorption is a process where molecules from the gas-
phase or from liquid-solution bind to a solid or liquid
surface. In this article, adsorption from the gas-phase
to a solid surface is considered exclusively.

Chemisorption is a type of adsorption where a molecule
binds to the surface through a direct chemical bond,
whereas in physisorption the binding is due to van der
Waals interaction.

Catalyst’s activity is related to the rate of catalytic reac-
tion, and can be expressed as amount of product made
per unit time per active site (i.e. turnover frequency).

Catalyst’s selectivity is a ratio between the amount of de-
sired product obtained per amount of consumed reac-
tants.

DFT Density Functional Theory
GGA Generalized Gradient Approximation
PES Potential Energy Surface
MEP Minimum Energy Path
NEB Nudged Elastic Band
fcc Face-Centered Cubic
IS Initial State
TS Transition State
FS Final State
BEP Brønsted–Evans–Polanyi
MD Molecular Dynamics
TM Transition Metal; term “early TM” designates transi-

tion metals with less than half-filled d-states, whereas
“late TM” are those with more than half filled d-states.

DOS Density of States
STM Scanning Tunneling Microscopy
OMC Oxametallacycle
EO Ethylene epoxide
Ac Acetaldehyde

Definition of the Subject

First-principles (in Latin ab initio) quantum-mechanical-
based computer simulations can deliver an atomic-level
insight into elementary constituents of phenomena such
as chemical reactions. The knowledge and understand-
ing thus obtained may be used to propose new reaction-
centers with on-demand tailored catalytic properties. The
purpose of this article is to demonstrate with several ex-
amples how to gain such an insight and on this basis how
to help design new heterogeneous reaction centers. In par-
ticular, surfaces of transition metals are considered, which
are traditionally known as good heterogeneous catalysts.
However, ab initio calculations of the properties of indi-
vidual reaction centers present only the first part of the
endeavor, because dynamical properties (e. g. overall reac-
tion rates) are, in general, determined by the interplay be-
tweenmany elementary atomic-scale processes. The recipe
for calculating the properties of such a dynamical system
may therefore be accomplished by a hierarchy approach,
where different computational methods are utilized for
different time and lengths scales. For example, the infor-
mation provided by the atomic-scale quantum-mechan-
ical calculations can be utilized by statistical mechanics
methods like kinetic Monte Carlo to follow the time evo-
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lution of the system. Such (statistical) methods are beyond
the subject of this article and are just shortly outlined.

Introduction

A chemical reaction is a process of conversion of sub-
stances into other substances. Consider for example a sim-
ple chemical reaction, where molecules A and B react so as
to form molecules C and D. The molecules A and B that
enter into reaction are called reactants, and the molecules
C and D are the reaction products. To understand the
mechanism of reaction we need to envisage the atomic
structure of the involvedmolecules and the trajectory dur-
ing their inter-conversion. In general, during chemical re-
action some bonds are broken and new bonds are formed.
Perhaps the simplest picture of a chemical bond—a bond
linking two atoms together—is that of a mechanical spring
governed by Hook’s law. This means that atoms “feel”
a harmonic potential around equilibrium positions. Imag-
ine for example that during chemical reaction an a–b bond
breaks and b–c bond forms. This means that the a–b bond
will be stretched first (the potential energy will increase)
and eventually broken (point of maximum potential en-
ergy), and then a new b–c bond will start to form (the po-
tential energy will decrease). This process is schematically
shown in Fig. 1. Already this simple picture shows that
chemical reaction is an activated process, that is, the sys-
tem has to cross an energy barrier when passing from re-

Computer-Aided Design of the Reaction Site in Heterogeneous
Catalysis, Figure 1
Reaction energy profile of a simple reaction (red curve):
abC c! aC bc. Around equilibrium positions (local minima)
atoms feel harmonic potential (indicated by two dashed gray
parabolas). As a consequence chemical reaction (bond-breaking
and bond-making) will involve overcoming an energy barrier,
E�. The effect of a catalyst on the chemical reaction is to reduce
the E� (blue curve) and correspondingly to enhance the rate of
reaction

actants to products. In reality the majority of chemical re-
actions are activated. Moreover, in many cases, the energy
barrier of the reaction is so large that the reaction does not
take place: more precisely the rate of reaction is too slow
to be observed. Namely, the rate of chemical reaction de-
pends exponentially on the energy barrier: the larger the
barrier, the smaller is the rate. To accelerate a chemical re-
action, a “third” substance, called a catalyst, is used. A cata-
lyst is a substance that accelerates the rate of a chemical re-
action, but is itself not consumed by the reaction. In terms
of the above discussion of activated process, this means
that the catalyst reduces the height of the activation bar-
rier (see Fig. 1), for example, by means of providing a new
reaction mechanism.

A catalyst can be either homogeneous or heteroge-
neous. A homogeneous catalyst is in the same phase (solid,
liquid, and gas), whereas heterogeneous catalyst is in a dif-
ferent phase with respect to reactants. A typical exam-
ple of heterogeneous catalysis is where a solid catalyst is
used to accelerate the gas-phase reaction. At present, about
90% of all chemicals are produced as heterogeneously cat-
alyzed processes [62], where catalysts are solids, and pro-
vide a range of products such as fuels, fertilizers and plas-
tics. Moreover heterogeneous catalysis is used to clean poi-
sonous emissions from power plants, cars, and industrial
production. Because of the technological and economical
importance of catalysis, it makes it worthwhile to improve
the catalysts even if the gain is as minor as only a few per-
centage points or less in performance. The efficiency of
the production process strongly depends on the specific
properties of the catalyst. A deeper knowledge of the in-
teractions between the reactants and the catalyst and the
understanding of the reaction mechanism would allow for
the optimization of the production of many chemicals.

To understand the reaction mechanism of a given
chemical reaction in detail, it is clear that the above-
mentioned spring-picture of the chemical bonds holding
the atoms within the molecule together will not suffice.
Moreover, when a catalyst is used to accelerate the rate of
reaction, the complexity of the system rises, because the
number of degrees of freedom increases substantially. The
progress attained in the last few decades in the field of
computer simulations of matter at the atomic scale have
opened new perspectives toward an atomic-scale under-
standing of the catalysts. In particular, electronic structure
calculations, which for the description of solids are mainly
based on Density Functional Theory (DFT), can provide
information that are otherwise hard to obtain from exper-
iment, such as the details of the reaction mechanisms and
identification of the nature of the transition states. There-
fore they help elucidate the factors that determine the ac-
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tivity and selectivity of catalysts, and consequently provide
a way for their improvement.

Ab Initio Electronic Structure Calculations

The dynamics of a chemical reaction could, in princi-
ple, be treated by solving the time-dependent Schrödinger
equation. In practice, this is not feasible (except maybe
for a few trivial cases), and therefore several approxima-
tions are made. For example, one could proceed with
a time-independent Schrödinger equation that is simpli-
fied with Born–Oppenheimer approximation. The time-
independence stems from the fact, that, for example, the
Hamiltonian (the energy operator) of an isolated molecule
or crystal (in the absence of any external time-varying “in-
fluence”) does not depend on time, whereas the Born–
Oppenheimer approximation allows one to decouple the
electronic motion from the motion of nuclei. This is made
possible, because the mass of the nucleus is about three or-
ders of magnitude heavier than the mass of the electrons
and therefore the time scale of ionic dynamics is much
larger than the electronic one. This means that one picks
a given fixed configuration of nuclei (kinetic energy of nu-
clei is thus neglected) and then solves the electronic prob-
lem (hence the name electronic structure theory). Formally,
this can be written as:

bHfRg�fRg D E(fRg)�fRg ; (1)

where bHfRg and �fRg are the Hamiltonian and wave-func-
tion of n interacting electrons moving in the field of N
fixed nuclei with coordinates fRg. E(fRg) is the energy
of the Hamiltonian bHfRg, and can be seen as the po-
tential energy that the nuclei “feel” at configuration fRg.
As for the analysis of chemical reactions, it is often only
the ground-state E(fRg) that is of interest. The E(fRg)
is therefore a function of the coordinates of nuclei. Solv-
ing Eq. (1) for many different configurations of the nu-
clei, would allow for the construction of the potential-en-
ergy-surface (PES), that can be used to analyze the mo-
tion of nuclei. Once the PES is constructed the forces
acting on atoms can be calculated as FI D � @E(fRg)@RI

(I
designates a given atom), and the dynamics (e. g. mo-
tion of atoms) can be studied, for example, by integrat-
ing the classical equation of motions—a method known
as ab initiomolecular dynamics (MD). However, the con-
struction of PES is only feasible for very simple systems,
for others ab initio MD consists of solving Eq. (1) at
each snapshot during the discretized time evolution (t,
t C ıt, t C 2ıt; : : :) of the system. At each snapshot the
forces are calculated by Hellman–Feynman theorem as
FI D � @E(fRg)@RI

D �h�fRgj
@HfRg
@RI
j�fRgi, and the system is

propagated by ıt accordingly. Note that in such MD treat-
ment the quantum effects of nuclei (e. g. tunneling) are ne-
glected.

For practical purposes, even solving Eq. (1) is too com-
plicated (analytical solution does not exist, except for a few
trivial cases), and the n-electron equation is further simpli-
fied into a set of one-electron equations with the following
form:

�
� 1

2r
2 C (eff(r)

�
�i D "i�i ; i D 1; n ; (2)

where (eff(r) is an effective one-electron potential (for no-
tational simplicity, nonmagnetic insulator is considered).
One possible scheme is the Hartree–Fock (HF) method,
where the many-electron wave-function � is approxi-
mated by an anti-symmetrized product (Slater determi-
nant) of one-electron orbitals, � i, thus satisfying the Pauli
exclusion principle according to which the wave-function
has to be anti-symmetric with respect to exchange of two
electrons. In HF method the effective potential (eff(r) is
given by:

b(HF
eff (r) D ((r)C

Z

r0

�(r0)
jr � r0j

dr0 � bK(r) : (3)

The ((r) is the external potential due to nuclei charges,
�(r0) is the electron density (the integral accounts for
the electron-electron Coulomb interaction), and bK(r) is
the exchange operator that arises due to “anti-symme-
try” of the wave-function. The HFmethod, although com-
putationally appealing, gives too poor results due to ne-
glect of the correlation effects. The procedure for treat-
ing correlations is well established, but the corresponding
wave-function-based methods are computationally very
demanding [104].

Another computationally appealing method is pro-
vided by Density Functional Theory, where the elec-
tronic structure problem is simplified by realizing that the
ground-state energy is a functional of the electron ground-
state density [35]. The practical DFT approach also con-
sists of solving a set of one-electron equations (Kohn–
Sham equations [46]), similar to those of HF, but the DFT
formalism—although formally exact—allows one to treat
the correlation effects, in practice, in an approximate way.
In DFT the effective potential (eff(r) is given by:

(KSeff (r) D ((r)C
Z

r0

�(r0)
jr � r0j

dr0 C (xc(r) ; (4)

where the (xc(r) is the exchange-correlation potential,
which is given in terms of exchange-correlation (XC) en-
ergy functional Exc[�] as(xc(r) D ıExc[�]/ı�(r). There are
two types of approximations in DFT, depending on how
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Computer-Aided Design of the Reaction Site in Heterogeneous Catalysis, Figure 2
Three types of surface models: a cluster, b embedded cluster, and c slab model (surface unit cell is indicated by dashed line). The
multi-slab flavor of the slabmodel is shown in the inset of c

the Exc[�] is approximated [79]. In the local-density-ap-
proximation (LDA) the XC functional depends solely on
electron density (i. e. the space is partitioned into infinites-
imally small cubes, which are treated as uniform elec-
tron gas), whereas the generalized-gradient-approxima-
tion (GGA) incorporates also the density gradient terms
into the XC functional. The LDA usually gives poor esti-
mates of activation energies (poorly describes the bond-
breaking and bond-making), because it favors homoge-
neous systems. Because a more bonded system is more ho-
mogeneous, the LDA overestimates the binding energies,
and correspondingly severely underestimates the activa-
tion energy (E�) of bond-making processes (and vice versa
for bond-breaking reactions). On the other hand, the GGA
givesmore accurate binding and activation energies. There
aremany flavors of GGA functionals, for the description of
solids the most popular are those of Perdew [80,81].

Modeling the Surface

In order to describe a surface (or a catalyst) with a com-
puter, one needs to construct an appropriate model. Such
models consists of a limited number of atoms, because it
is not possible to treat a macroscopic number of (inequiv-
alent) atoms. Three types of surface models are used (see
Fig. 2):
Cluster model: surface is represented by a cluster of atoms

that is obtained by a “finite cut” from an ideal lattice.
This model builds on the assumption that adsorption
is a phenomenon of strong local character. The cluster
models of metallic surfaces are prone to cluster-size ef-
fects [34,86,109], in particular, the adsorption energy is
known to undergo large variations as a function of the
cluster size and shape [34,86].

Embedding scheme: embedding schemes divide the ad-
sorbate/substrate system into at least two zones: (i) the
cluster region and (ii) an outer region. The essence of
embedding is to correctly connect the cluster to the
outer part of the model so as to diminish the size ef-

fects of the cluster model. The most sophisticated em-
bedding schemes are based on Green function formal-
ism [6,24].

Periodic slab model: describes the surface by an infinite
periodic slab in the xy-direction with finite thickness
in the z-direction. The structure (and description) of
such a slab is entirely given by a surface unit cell. There
are two flavors: a single slab and a multi-slab model.
The latter is actually an infinite 3D model, where in-
dividual slabs are separated by vacuum layers that are
thick enough to prevent adjacent slab–slab interaction.

A given surface can be cut from the bulk crystal with many
possible orientations. Miller indices are used to designate
the surface plane by three integers as (hkl). These indices
denote a plane that intercepts the three lattice vectors at
1/h, 1/k, and 1/l , respectively. Figure 3 shows the three
low-Miller index surfaces of an fcc (face-centered-cubic)
crystal, which are (100), (110), and (111).

Description of Activated Processes

As mentioned in the Introduction, a chemical reaction is
an activated process, and reactants have to overcome an
energy barrier (E�) during their conversion to products.
The transition over the energy barrier occurs on average
once per tslow � tfasteE

�/kT , where tfast is the time-scale
characteristic to microscopic dynamics, and kT is the ther-
mal energy. Usually E� 	 kT and the two time-scales dif-
fer by many orders of magnitude (the transition itself is
very fast but it occurs rarely). Hence activated processes
cannot be studied directly by molecular-dynamics (MD)
simulations, as this would require an unfeasible number
of MD integration steps before a single transition would
occur (the time step used in MD must be smaller than the
tfast).

In general, there are several energy barriers involved
in a chemical reaction. In this case the description of the
overall chemical reaction is decomposed into several el-
ementary steps, where each elementary step is associated
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Computer-Aided Design of the Reaction Site in Heterogeneous Catalysis, Figure 3
Three lowMiller index surfaces of an fcc (face-centered-cubic) crystal: (111), (100), and (110). In the bottom row of plots the direction
of the plane used to cut the corresponding surfaces is indicated. The positions of high-symmetry surface sites (hollow, bridge, and
top) are also shown on the (100) surface

Computer-Aided Design of the Reaction Site in Heterogeneous Catalysis, Figure 4
Chemical reactions consist of several elementary steps. The Figure shows a typical mechanism of surface catalyzed reaction (i. e.
Langmuir–Hinshelwood mechanism), which consists of the following reaction steps: adsorption of reactants, their diffusion on the
surface, one or more elementary steps where some bonds are broken and new ones are formed so as to form the productmolecules,
which eventually desorb from the surface. The inset shows the associated reaction energy profile

with (at most) one energy barrier. Figure 4 shows elemen-
tary steps involved in a typical surface-catalyzed reaction.
Therefore, one needs to consider each elementary step in
order to understand the overall chemical reaction. The hi-
erarchical approach to the problem would consist of first
analyzing each elementary step individually by electronic
structure calculations, and then to assemble them into an

overall picture by other methods, such as, for example, ki-
netic Monte Carlo (Sect. “Putting It All Together”).

Let us consider an activated elementary step, such as
depicted in Fig. 1. A stable molecular configuration on the
left side of the barrier is called initial-state (IS) and that
on the right side the final-state (FS) of an elementary step,
whereas the point of the highest energy along the path
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from IS to FS is called a “transition state” (TS), and its
energy difference with respect to IS, is the activation en-
ergy, E�:

E� D ETS � EIS : (5)

But for an isolated diatomic molecule, the potential-en-
ergy-surface is multidimensional, hence there is an infinite
number of trajectories going from IS to FS, and among
there is also the minimum-energy-path (MEP), which is
characterized by vanishing force components orthogonal
to the path. The MEP’s tangent is therefore parallel to the
force vector and the configuration of the highest energy
along the MEP is the TS—a first-order stationary point
(see Fig. 5).

The calculation of PES is, due to its multidimensional
nature, computationally too demanding to be sampled ac-
curately but for a few simple cases. However, in many in-
stances it turns out that the knowledge of the stationary
points on the PES and its shape around them is sufficient

Computer-Aided Design of the Reaction Site in Heterogeneous
Catalysis, Figure 5
Two-dimensional potential-energy-surface (PES). Two trajecto-
ries are shown linking the two local minima: one of them is the
minimum-energy-path (MEP) that is characterized by the van-
ishing force components orthogonal to the path and passes
through the saddle point. In an elementary chemical reaction,
reactant (initial-state, IS) and product (final-state, FS) are asso-
ciated with local minima on the PES, and the reactant is trans-
formed into the product by proceeding along a given trajec-
tory on the PES that links the two minima. Statistically, the most
probable trajectory displays the smallest barrier, hence it passes
through the saddle point (first-order stationary point). The con-
figuration at the saddle point is called the transition state (TS)

to calculate reaction rates. Accurate estimates of transition
rates, can be obtained, for example, by using a statistical
approach known as transition-state theory (TST) [16,18].
According to TST the (forward) rate constant depends ex-
ponentially on the activation energy, E�, and is given by
a van’t Hoff–Arrhenius type expression:

kf D �e�E
�/kT ; (6)

where k is a Boltzmann constant (please note that k and
kf label two distinct quantities), T is temperature, and �
is a prefactor, which depends on the shape of the PES
around the stationary points. The letter “f” in the kf in-
dicates that this is the rate-constant for the forward di-
rection of the elementary step, i. e. from IS to FS. There
will also be backward jumps from FS to IS, and the net
rate, r, of the elementary step will be given by the differ-
ence between the forward and backward rates, r D rf � rb.
The TST also provides an insight into the physical ori-
gin of prefactor �. In the harmonic TST approximation,
where the PES around the IS and TS is expanded in nor-
mal modes, the prefactor � can be described in terms of
the vibration frequencies �i of IS and TS, and Eq. (6) can
be written as:

kf D
Q3N

i �ISiQ3N�1
i �TSi

e�E
�/kT : (7)

Note that the product in the denominator is only over
3N � 1 frequencies (N being the number of atoms), be-
cause the TS’s normal mode tangent to reaction coordi-
nate cancels out in the derivation of TST. On the basis
of (harmonic) TST it is therefore clear why the knowl-
edge of the stationary points on the PES and its shape
around them suffices (in many cases) to calculate reaction
rate. In the one-dimensional case, Eq. (7) would reduce
to kf D �ISe�E

�/kT , where �IS is the oscillator frequency
around the IS. Bond-stretching frequencies are on the or-
der of 1012 to 1013s�1, and this gives an idea about the typ-
ical value of the prefactor in Eq. (6).

Identification of Transition-States

The dependence of the rate constant on the E� is exponen-
tial and only linear on the prefactor �, Eq. (6). It is precisely
for this reason why the identification of the transition state
is so crucial: knowing its structure and understanding its
chemistry would allow for the design of a reaction site that
would lower the energy of TS and consequently increase
the rate of the elementary step. The premise behind this
is that by “chemically” acting on the reaction-center, the
prefactor would not change substantially, and the expo-
nential dependence on E� would prevail in determining
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the rate. Moreover, it is much more intuitive to act on the
energetic stability of the TS than on the “shape” of the PES
around the IS and TS. As for the overall reaction rate, one
would consequently need to lower the energy barrier for
all elementary steps to increase the overall rate, but it turns
out that in catalytic reactions, some barriers are anti-cor-
related, that is, lowering a barrier for one elementary step
increases the barrier for some other elementary step.

At this point one could ask: why bother with com-
puter atomistic simulations to identify transition states
involved in given chemical reactions? The reason is that
transition states are very hard to identify experimentally,
because of their too short lifetimes. Moreover, the identifi-
cation of transition states is quite demanding even by com-
puter simulations: usually at least one order of magnitude
heavier than the identification of equilibrium configura-
tions (local minima on PES). The reason is that the meth-
ods based solely on the first derivatives of PES—the forces
—do not converge to saddle points. Among the most pop-
ular methods for the identification of saddle points is the
nudged-elastic-bandmethod (NEB) [32,33], where instead
of searching solely for TS, one considers a path connect-
ing the IS and FS. This path is then discretized into sev-
eral structures called images. The images are connected
by “springs” to prevent them from sliding down the PES
into the nearest local minimum during the optimization
procedure (the spring forces are allowed to act parallel to
the path and the true forces orthogonal to it). The NEB
method therefore converges the path to the MEP. The
highest point along a stable MEP—which by definition
is a saddle point (a first-order stationary point)—is then
found by allowing one of the images to “climb up” until
the forces vanish. Actually the NEBwill converge toMEP’s
whenever these are stable (i. e. when the curvature of the
PES on hyperplanes orthogonal to the MEP itself is every-
where positive). When the MEP’s are not stable different
techniques based on the use of collective variables should
be preferred [110].

Brønsted–Evans–Polanyi Relationship

Because the PES is such an illusive object, chemists have
long attempted to develop some concepts that would sur-
pass the explicit knowledge of the PES and even of the
transition states. Although these are mainly empirical,
they are useful and can be used as guides or in explanatory
purposes when searching for improved reaction sites. Var-
ious relationships have been proposed, and they are de-
rived from some assumptions of the shape of the potential-
energy-surface. Perhaps the most widely used, at least in
the field of heterogeneous catalysis, is the Brønsted–Evans–

Polanyi (BEP) relationship [7,17,62], according to which
the activation energy for a set of related elementary reac-
tions correlates linearly with the reaction energy,
E (
E
is defined graphically in Figs. 1 and 7):

E� D aC b
E : (8)

This relation tells us that the smaller
E is, the smaller will
be the activation energy. Small here means negative, that
is, exothermic or thermodynamically favored. In Eq. (8)
there are two parameters, a and b, which give the slope
and the intercept of the BEP line. These two parameters
were given various names, e. g. the slope is called the reac-
tion coefficient, whereas the intercept is the intrinsic bar-
rier of reaction [62]. It has been shown that the BEP rela-
tion holds well for dissociation reactions at surfaces [3,71],
because the transition state is late, product-like, and vari-
ations in the stability of dissociated products are likely to
reflect the stability of the transition state. Analogously, for
an early, reactant-like, transition state the variation in the
stability of the reactant will correspondingly affect the sta-
bility of the transition state, but the barrier will be little
affected. This is schematically shown in Fig. 6. For this rea-
son the BEP slope is large for reactions with late transition
state, and small for early transition state.

Description of the Overall Reaction

Decomposition into Elementary Steps

A heterogeneous catalytic reaction involves several ele-
mentary steps, such as the adsorption of the gas-phase re-
actants on the solid surface, their diffusion on the surface,
one or more elementary steps involving breaking some of
the reactant chemical bonds and making new ones so as
to form the product molecules, which eventually desorb
from the surface (see Fig. 4). Consider, for example, am-
monia (NH3) synthesis, which is among the largest indus-
trial catalytic processes (Haber–Bosch process) and one of
the most studied [94]. The overall reaction is:

N2 C 3H2 ! 2NH3 ; (9)

and it consists of the following elementary steps [94]
(omitting diffusion of adsorbed species):

1: N2(g) ! N2(ad)

2: N2(ad) ! 2N(ad)

3: H2(g) ! 2H(ad)

4: N(ad) CH(ad) ! NH(ad)

5: NH(ad) CH(ad) ! NH2(ad)

6: NH2(ad) CH(ad) ! NH3(ad)

7: NH3(ad) ! NH3(g) ;

(10)
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Computer-Aided Design of the Reaction Site in Heterogeneous Catalysis, Figure 6
Effect on the variation of relative stability of final (FS) and initial state (IS) on the activation energy for late- and early-type transition
state (TS), respectively, according to the BEP relation. a For late TS the stabilization of FS stabilizes the TS leading to a reduction of
the activation energy, E�. b For early TS the stabilization of IS stabilizes the TS, but this affects the E� very little

where labels (g) and (ad) designate the gas-phase and ad-
sorbed species, respectively. This set of elementary steps
can be classified into three groups:

(i) dissociative adsorption of nitrogen (N2) and hydro-
gen (H2), Eqs. (10.1)–(10.3);

(ii) reactions of the dissociated N and H species to form
the product NH3 species: in this step, the adsorbed N
is successively hydrogenated, Eqs. (10.4)–(10.6);

(iii) desorption of the product ammonia molecules,
Eq. (10.7).

Sabatier Principle

As for the aboveNH3 synthesis, a good catalyst must facili-
tate both the dissociation of reactant N2 andH2 molecules,
as well as the formation of the product molecules. Be-
cause the reactants are the molecules in the gas phase, the
reaction energy of dissociation steps is given by the dis-
sociative chemisorption energies. According to the BEP
relation, Eq. (8), the more negative (exothermic) is the
chemisorption energy the smaller will be the activation en-
ergy, and the easier (faster) the formation of intermedi-
ates. This indicates that a very reactive surface should be
used that forms strong bonds with the dissociated species.
However, there is an opposite trend for the formation
of product molecules, see Fig. 7 (it is worth mentioning
that the BEP slope for association reactions tends to be
much smaller than for dissociation reactions [71]). In ad-
dition, if the surface is too reactive intermediates will fully

cover it thus inhibiting the reaction. Therefore, weakly
chemisorbed intermediates would be required to form
the product molecules. The best catalyst will be therefore
a compromise with an intermediate chemisorption energy.
This is the principle of Sabatier, which results in the so-
called volcano activity plots (see inset of Fig. 7).

Considerations presented above demonstrate why the
surface acts as a catalyst: the main effect is to stabilize the
intermediates, which reduces the activation energies ac-
cordingly. But the stabilization should not be overdone,
because then the reaction rate would decrease again.

Putting It All Together

From the preceding section it is rather obvious that the
dynamics of the overall reaction may develop pattern(s),
that may not be guesses merely by considering elementary
steps individually. Namely, macroscopic dynamical prop-
erties are, in general, determined by the interplay between
many elementary atomic-scale processes. For this reason,
after the individual elementary steps have been quantified,
they need to be put into a broader context that will link
them together so as to construct a coherent picture of the
overall reaction.

Mean-Field Description: Rate Equations One could
setup rate equations for all elementary steps. The proce-
dure for doing that is well established [15,61,102]. Con-
sider for example, an elementary step where adsorbed
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Computer-Aided Design of the Reaction Site in Heterogeneous Catalysis, Figure 7
Surface acts as the catalyst, because it stabilizes the intermediates, and therefore decreases the activation energy. Themore they are
stabilized (the more negative	E1) the smaller is the activation energy for their formation (left barrier, E�

1 ), but the barrier for their
conversion into products will display the opposite trend (right barrier, E�

2 ). The optimum is therefore a compromise between the
two anti-correlated effects, hence the catalyst should bind intermediates moderately (Sabatier principle). Inset: the rate of reaction
displays a volcano dependence on the intermediate chemisorption energy (	E1)

species A and B react so as to form adsorbed species AB:

A(ad) C B(ad)• AB(ad) : (11)

Naively speaking, the forward rate, rf, of this step will be
given by the “probability of A and B to meet at the same
site” times the “probability to overcome the barrier” per
unit time. If we define the coverage of species x as �x D
Nx /N , where Nx is the number of adsorbed x molecules
andN is the number of all surface sites, then the first prob-
ability is given by the product of the two coverages, �A�B,
whereas the second probability is given by the forward rate
constant, kf. In this case the rate is normalized to the num-
ber of “jumps” per site per unit time. The reverse rate, rb,
will be analogously given by �AB � kb, where kb is the rate
constant for the backward direction (activation energy in
the backward direction is E�bck D E��
E, e. g. see Fig. 1).
The net rate is therefore given by:

r D rf � rb D �A�Bkf � �ABkb

D �A�B
�
�fe�E

�/kT� � �AB
�
�be�(E

���E)/kT� ;

(12)

where �f and �b designate prefactors for the forward and
backward direction, respectively. Note, however, that if
the probability is expressed as �A�B then A and B are
treated as independent. Therefore, in this scheme the lat-
eral interactions between the adsorbed species can be

treated only by mean-field description through depen-
dence of the activation energies and prefactors on the cov-
erage. After rate equations are constructed for all elemen-
tary steps the so-obtained set of equations needs to be
solved. The resulting equations may be highly nonlinear
and very interesting patterns such as kinetic oscillations
and chaos may develop [116]. In order to simplify the
treatment several approximations may be applied, such as
steady-state (SSA) and quasi-equilibrium approximation
(QEA) [61].

Kinetic Monte Carlo A more detailed description of
the overall reaction could be obtained with a kinetic
Monte Carlo (kMC) simulation [19,115], but it requires
larger computational effort. In kMC the surface is usually
mapped onto a two-dimensional lattice and the adsorbate
positions are associated with lattice sites (adsorption for
example is simulated by random “arrivals” of molecules
to the lattice sites). At each simulation step the rates of
all considered elementary processes are evaluated. A given
process is then executed by a random selection with ap-
propriately weighted probability (i. e. the rate of jumps is
proportional to the associated barriers). In kMC the time
evolution is coarse-grained to time scale appropriate for
the rare activated events. At each step a detailed atomic
configuration is known, and the activation energies can be
calculated taking into account proper local environment.
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In kMC the number of particles as well as the number of
steps is very large, and to calculate all the interactions and
activation energies on the fly with ab-initio methods is far
from feasible. Therefore, a model Hamiltonian (e.q. lattice
gas Hamiltonian) is constructed that allows for fast on the
fly calculation of required energies. A model Hamiltonian
may be built by expanding it into various interaction terms
that are determined from a number of ab initio pre-calcu-
lated structures [85].

Rate-Limiting Step An analysis of the rates of the in-
volved elementary steps reveals that not all the elemen-
tary steps are equally significant in determining the rate
of the overall chemical reaction. The step that most sig-
nificantly determines the rate of the overall chemical re-
action is called the rate-determining step. This may imply
that the rate-determining step is the “slowest” among all
elementary steps, however under steady state conditions,
by definition, the rates of all the steps will be equal. For
example, in the ammonia synthesis mentioned above, the
dissociation of N2 is rate-determining. Theremay be more
than one kinetically relevant steps in a given chemical re-
action. From Eq. (12), we see that the rate depends expo-
nentially on activation energy and temperature, whereas
the dependence on the other parameters is weaker. There-
fore, if a given elementary step has much larger E� than
the others, it is likely to be rate-determining. Note also that
under different experimental conditions (T; P) different
steps may be rate-determining. For example, under large
enough T the E�/kT ratio will become small enough, and
other factors, such as, the availability of sites and partial
pressures of reactants may prevail.

Optimum Chemisorption Energy For a class of het-
erogeneous reactions, where dissociative adsorption is the
rate-determining step, like the ammonia synthesis consid-
ered above, an analysis of the reaction rates gives a univer-
sal result that the optimum chemisorption energy should
be, broadly speaking, in the range from � 1.0 to � 2.0 eV
per molecule [3,76]. This universality is a consequence
of the BEP dependence of the activation energy on the
chemisorption energy. This implies that the stronger the
bond in the diatomic molecule, the more reactive will be
the “optimum” catalyst. For example, the bond of N2 is
stronger than that of oxygen, O2, therefore a good catalyst
for reactions involving dissociation of N2 is more reactive
than the catalyst for reactions involving the O2 dissocia-
tion. The catalysts for ammonia synthesis are metals such
as ruthenium (Ru) and iron (Fe), whereas oxidation reac-
tions typically involve less reactive silver (Ag), palladium
(Pd) and platinum (Pt) catalysts.

The general result presented in the paragraph above
calls for an in-depth understanding of the factors that
govern the dissociative chemisorption energies and these
factors will be underlined in Sect. “Theory and Trends
of Chemisorption and Reactivity on Transition Metals”.
Theory and computer simulations have played an impor-
tant role here. They helped to provide an understand-
ing of chemisorption phenomenon and moreover com-
puter simulations based on DFT have provided systematic
databases of dissociative chemisorption energies.

Although the range of optimum chemisorption ener-
gies suggested above is relatively broad, it turns out that
for a given diatomic molecule this range typically involves
only a few elemental metals, and none of them may even
lie close to the volcano curvemaximum [76]. Hence a fine-
tuning of the chemisorption energy would be required so
as to move toward the volcano maximum. A simple ratio-
nal approach would be to form a bimetallic alloy by simple
interpolation [39], i. e., by mixing a givenmetal that lies on
the left side of the volcano peak (too strong chemisorption
energy, Echem) with the one on the right (too weak Echem).
As for the ammonia synthesis discussed above, mixing
Mo—which binds N too strongly—with Co—which binds
N too weakly—results in a catalyst that is closer to the vol-
cano maximum and therefore more active than the best
elemental metals Fe, Ru, and Os [39] (see Fig. 8). This is
precisely what was found experimentally [38,47]. Note that
both Mo and Co display lower activity than Fe, Ru, and

Computer-Aided Design of the Reaction Site in Heterogeneous
Catalysis, Figure 8
Calculated volcano plot [39]: catalyst’s activity (i. e. turnover fre-
quency, TOF) for ammonia synthesis as a function of chemisorp-
tion energy of nitrogen with respect to Ru, Echem � Echem[Ru] (eV
per N2 molecule). Curve is calculated by microkinetic model as-
suming linear BEP relation between nitrogen chemisorption en-
ergy and the activation energy for N2 dissociation. On the basis
of results from [39]
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Os, and without the knowledge of the principal factor that
governs the activity, this would only be guessed by error-
and-trial.

For the mixed catalyst to have the interpolated proper-
ties, several requirements have to be fulfilled. In particular
the constituent metals should not segregate. More issues
about alloys will be discussed in Sect. “Theory and Trends
of Chemisorption and Reactivity on Transition Metals”.

Selectivity Issues

Tuning solely the reactivity of a catalyst—for example
according to the above-mentioned Sabatier volcano plot
principle—in order to optimize its activity is in many cases
not sufficient. Chemical reactions are accompanied with
the formation of (unwanted) byproducts. In some cases
the selectivity issues may be crucial (selectivity can be
defined as a ratio between the amount of desired prod-
uct obtained per amount of consumed reactants), because
some of the reaction byproducts may even poison the cat-
alyst, such as, for example, coke formation during the syn-
gas production (e. g. see Sect. “Improvement of Steam-Re-
forming Catalyst”). Therefore, it is clear that improving
the catalyst’s selectivity is of great importance.

DFT simulations can help improve the catalyst’s selec-
tivity by disentangling the mechanisms that govern the re-
activity of catalysts toward competitive reaction pathways.
Consider the formation of two competitive species from
a given adsorbed intermediate:

A(ad) ! B
A(ad) ! C :

(13)

If B and C are adsorbed species, then the BEP relation sug-
gests that in order to favor the formation of, for example,
B species the reaction center should be designed such as
to relatively enhance the magnitude of adsorption energy
of B with respect to C. However, if the species B and C
are gas-phase molecules, or if the reactions do not obey
the BEP relation, the design of the proper reaction cen-
ter that will favor the formation of wanted species will be
more difficult. A possible strategy is to act on stabilities of
involved transition states by designing such a reaction cen-
ter that will stabilize the TS of the desired reaction channel
with respect to those of undesired pathways. To do so the
transition states have to be identified: knowing their struc-
ture and understanding their chemistry would allow one
to act on their stability. In this respect, the understand-
ing of the factors that determine the adsorbate–substrate
bonding should be most helpful. For this reason a sim-
ple chemisorption model and its applicability under differ-
ent circumstances will be presented below. Then it will be

demonstratedwith a few examples how quantummechan-
ical computer simulations can be used to help in designing
novel reaction-centers with tailored properties.

Theory and Trends of Chemisorption and Reactivity
on TransitionMetals

Ab initio electronic structure methods, such as DFT, allow
one to calculate the properties needed for the quantitative
description of chemical reactions, such as equilibrium and
transition state structures, their energies, and vibrational
properties. On the other hand, one needs a simple model,
which would describe in terms of a few parameters the
trends of these properties, and therefore provide under-
standing of the most important factors that govern them.

Below a short description of the Hammer–Nørskov
chemisorption model [28,30] is given, which is based on
the Newns–Anderson chemisorption theory [75]. This
model provides a simple description of the chemisorption
trends on transition metal (TM) surfaces. Consider, for
example, that a single one-electron state of an adsorbed
atom interacts with a TM surface. This state will interact
with all the valence electron states of the surface metal
atoms, which can be described with s- and d-band (i. e.
valence electrons of a given (isolated) TM atom are de-
scribed by discrete s- and d-states, but in a solid these states
form s- and d-band). The former is very broad and approx-
imately half filled for all TM (containing one electron/TM-
atom). The d-band is instead much narrower, as shown in
Fig. 9a. The delocalized s-states interact weakly with the
adsorbate state, resulting in its broadening, whereas the lo-
calized d-states (which can be approximately considered as
molecular state) interact strongly forming the adsorbate–
surface bonding- and antibonding-states. This is schemat-
ically shown in Fig. 9b. Because the s-band and its interac-
tion with the adsorbate is similar for all TM, the variation
in the adsorbate–surface bonding is described merely by
considering the d-band in the Hammer–Nørskov model.
The variation of the adsorbate–surface bonding is deter-
minedmainly by two effects: (i) the amount of empty anti-
bonding adsorbate–surface states; note that anti-bonding
interaction is repulsive, so the more these states are empty
the stronger is the adsorbate–surface interaction, and (ii)
Pauli type repulsion arising from the orthogonalization of
the overlapping adsorbate and metal states. This term is
proportional to the square of coupling matrix elements be-
tween adsorbate state and metal d-states.

As for the effect (i), the amount of the empty antibond-
ing states is related to the position of the d-band with re-
spect to the Fermi level, "F (Fermi level is the energy of
the highest occupied state in the metal). In the Hammer–
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Computer-Aided Design of the Reaction Site in Heterogeneous Catalysis, Figure 9
a Electronic structure of transition metal (TM); b schematic illustration of adsorbate interaction with TM surface

Nørskov model this position is described by the center of
the d-band, "d. The higher is the "d with respect to "F the
more empty are the antibonding states and the stronger
is the adsorbate–surface bond. This explains why the re-
activity of TM decreases from left to right in the Periodic
Table: the more the d-band is occupied the more below the
Fermi level it is (lower "d). Figure 10 shows the trend of the
DFT calculated chemisorption energies of oxygen on close
packed surfaces of 4d transition metals. It is due to this
trend and the Sabatier principle that mainly late transi-
tion metals (i. e. those with more than a half filled d-band)
are catalytically interesting, because early transitionmetals
(i. e. those with less than a half filled d-band) bind adsor-
bates too strongly. The reactivity also reduces when going
down from the 3d to 5d row in the Periodic Table, because
the latter states are more extended and therefore the effect
(ii) is more repulsive.

For a given adsorbate, its interaction to the surface can
be affected not only by changing the metal (as shown in

Computer-Aided Design of the Reaction Site in Heterogeneous
Catalysis, Figure 10
DFT calculated dissociative chemisorption energies of oxygen
with respect to gas-phase O2 molecule (in eV per O-atom) on
closed-packed surfaces of 4d transition metals. On the basis of
results from Refs. [13,54]. The line is drawn to guide the eye

Fig. 10), but also by other means that are more subtle, and
can be used to fine-tune the adsorbate–surface interaction.
Consider what happens to the reactivity of a given late
transition metal if the width of the d-band is reduced by
some means. DFT calculations reveal that in such cases no
charging or decharging of d-states occurs [30], and in or-
der to keep the number of d-electrons fixed the d-band has
to move up causing an up-shift of its center thus increas-
ing the adsorbate–surface interaction. This is schemati-
cally presented in Fig. 11. In general, the less effectively
a given TM atom is bonded the smaller is the width of its
local d-band (the density-of-states projected to d-states of
the considered metal atom), resulting in increased reactiv-
ity for late TM. The variation of the width of the d-band
can be achieved, for example, by varying the coordination
of surface atoms or by strain. Consider for example (111)
and (100) low Miller index surfaces of an fcc metal (these
two surfaces are shown in Fig. 3): the former has nine-fold
coordinated surface atoms, whereas the latter has eight-

Computer-Aided Design of the Reaction Site in Heterogeneous
Catalysis, Figure 11
Effect of the reduced band width on the center of the d-band for
late (more than a half filled d-band) transition metal: in order to
keep the number of electrons fixed (number of electrons is given
by the colored area below "F), the d-band has to shift up, result-
ing in the 	"d shift of the center of the d-band, "d . The effect
would be the opposite for early (less than a half filled d-band)
transition metal: the "d would be down-shifted
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Computer-Aided Design of the Reaction Site in Heterogeneous
Catalysis, Figure 12
Schematic representation of electronic and geometric effects.
a The adsorbate–surface interaction can be tuned by changing
the electronic properties of the binding site by acting on its en-
vironment (electronic effect). b The adsorbate–surface interac-
tion is hindered if the ensemble of the active binding site on the
surface does not match the “geometric” requirements of the ad-
sorbate (geometric effect)

fold coordinated surface atoms. Surface atoms of the (111)
facet are therefore effectively more bonded than those of
the (100) facet, and therefore we may anticipate that the
former binds simple adsorbates less than the latter.

Considerations presented above were made for an
atom (with a single state) interacting with the TM sur-
face, but the arguments can be generalized to molecules
by considering several adsorbate states interacting with the
surface. The above electronic effects are still valid (e. g. see
Fig. 13 for the correlation between the d-band center and
molecular adsorption and activation energies), but in ad-
dition to that there is another effect, which is related to
the geometry of the molecule and surface. Indeed, the two
types of effects are termed electronic (or ligand) and ge-
ometric (or ensemble) effects, and provide a basic frame-

Computer-Aided Design of the Reaction Site in Heterogeneous Catalysis, Figure 13
a DFT calculated ethylene adsorption energy as a function of the d-band center ("d) of the Pd(111) surface and commensurate Pd
overlayer over close packed Re(0001), Ru(0001), and Au(111) surfaces. b DFT calculated C–H bond activation energies for ethylene
(C2H4, ) and ethyl (C2H5, ) dehydrogenation versus Pd d-band center for the same systems as in a. On the basis of results from [77]

work for tuning the reactivity of surface reaction centers.
The way the two effects work is presented schematically in
Fig. 12, and they may be described as:

– Electronic (ligand) effect is due to modifications of cat-
alytic properties due to the interaction of a surface atom
that the molecule binds to with its neighbors (e. g. shift
of the d-band center).

– Geometric (ensemble) effect is related to the number of
active surface atoms required for a given molecule to
bind.

Above we implicitly assume that the larger the adsor-
bate–surface bond strength the larger the reactivity of the
surface (i. e. the two terms were used casually; here surface
reactivity toward dissociation reactions is meant). This can
by justified by the BEP relation and also by the fact that
the interaction of TS with the surface can be treated like
a molecule–surface interaction, hence the stronger is this
interaction the lower is the energy barrier.

Special Active Sites at Surfaces

What we have not mentioned explicitly so far is that not
all sites on any real surface are alike. For example, lat-
tice imperfections are always present on surfaces. This is
particularly the case for industrial catalysts which con-
sist of small dispersed particles on a ceramic support and
display a large variety and concentration of defects [99].
It may be anticipated on the basis of the d-band model
that such structural variations should influence the reac-
tivity. Indeed, nowadays a large amount of experimental
evidence indicates that the binding of adsorbates at sur-
faces is strengthened by the presence of low-coordinated
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defects [83,93,98,112]. Below we shortly survey how the
reactivity can be tuned by strain, defects and alloying.

Strain With computer simulations the effect of strain
can be very easily modeled by merely increasing/decreas-
ing the lattice spacings. Although such calculations are fic-
titious, they are useful to discern the effects of strain on
the reactivity, and show that surface reactivity increases
with tensile strain and vice-versa [65]. As anticipated on
the basis of the d-band model, this is due to the fact that
a reduced overlap between the d-states at neighboring
atoms reduces the width of the d-band. Experimentally the
strained sites can be made, for example, by growing atom-
ically thin commensurate overlayers on support with dif-
ferent lattice spacings [9,87,95]. This way both compres-
sive and tensile strained overlayers can be achieved (de-
pending on the relative lattice spacings of support with re-
spect to metal constituting the overlayers). An example is
shown in Fig. 13, which shows the adsorption energy of
ethylene (C2H4) and activation energies for dehydrogena-
tion of ethylene and ethyl (C2H5) on palladium overlayers
over rhenium (Re), ruthenium (Ru), and gold (Au) [77].
Correlation between these energies and the d-band cen-
ter is rather good. The Pd overlayer on Au is more reac-
tive than pure Pd, because lattice spacings of Au are larger
than that of Pd and vice-versa for Ru. So Pd overlayer ex-
periences tensile and compressive strain on Au and Ru, re-
spectively. Rhenium is an exception, because of very sim-

Computer-Aided Design of the Reaction Site in Heterogeneous Catalysis, Figure 14
Density of states (DOS) projected to progressively less coordinatedmetal atom at the Rh surface (NC 	 coordination number). From
left to right: perfect (111) facet and step-edge, ad-row, and ad-atom defects thereon. The d- and s-band are colored red and blue,
respectively. Arrows indicate the position of the d-band centers ("d). On the basis of results from [48]

ilar lattice spacings to that of Pd, yet the reactivity trend
is captured by the d-band center, which is apparently af-
fected by the electronic interaction between Pd and Re.

Surface Defects The importance of surface defects in
determining the reactivity of heterogeneous catalysts can
hardly be overestimated [30]. Not only do defects usu-
ally bind adsorbates more strongly than perfect facets do,
but in certain cases the reactivity of the step defects is so
much larger than that of the terraces as to dominate the
dissociation reaction rate at concentrations as low as 1%
of step atoms [14]. This can be attributed both to elec-
tronic and geometric effects. As for the former, the width
of the d-band of atoms at defects is reduced due to their de-
creased coordination (up-shift of "d), as shown in Fig. 14.
The reactivity is then further increased by geometric ef-
fect, because of the availability of new sites. The extent of
the two effects is apparent from Fig. 15, which displays
the TS for NO dissociation under three different circum-
stances [26]: (a) shows the TS structure over the perfect
facet of Ru(0001), and in (b) the same TS structure (no
geometric effect) is shown near the step-edge defect. The
reduction of E� by 0.5 eV as going from (a) to (b) is there-
fore due to increased reactivity of step atoms (electronic ef-
fect). The barrier then further decreases by 0.7 eV, by tak-
ing advantage of the geometry of the step (geometric ef-
fect), because the TS structure shown in (c) benefits from
being highly coordinated. Note that the TS’s for the dis-



Computer-Aided Design of the Reaction Site in Heterogeneous Catalysis C 1321

Computer-Aided Design of the Reaction Site in Heterogeneous
Catalysis, Figure 15
Activation energies and transition state structures for NO disso-
ciation over flat Ru(0001) facet a, and step-edge defect thereon
b,c [26,30]. In b the TS structure is analogous to that shown
in a, whereas in c the advantage of the step-edge geometry is
taken into account. Note that the reaction center at flat facet a
involves three surface Ru atoms, where that of step-edge c in-
volves five surface Rh atoms. From [26,27].With kind permission
from Springer Science and Business Media

sociation of diatomic molecules such as N2, NO, O2, and
CO are late [71,76], atomic-like, and isolated atoms are
“unhappy” (reactive) and they want to be as highly coor-
dinated as possible. So on one hand, the coordination of
metal atoms at the step-edge defect is reduced, but on the
other hand the step-edge defects provide the surface sites
with high coordination. Therefore, at step-edges the elec-
tronic and geometric effects are cooperative resulting in
their large reactivity toward dissociation reactions.

Computer-Aided Design of the Reaction Site in Heterogeneous Catalysis, Figure 16
Low coordinated surface defects are so reactive that even gold—the noblest amongmetals [29]—becomes catalytically active in the
limit of very small nanoparticles. aAmodel of gold nanoparticles on aMgO(100) support. Reprinted figurewith permission from [72].
b An STM (scanning-tunneling-microscope) image of gold nanoparticles on TiO2(110). From [107], reprinted with permission from
AAAS

Indeed, the surface defects are so much more reac-
tive than flat terraces, that even gold—the noblest among
metals [29]—under certain circumstances becomes reac-
tive enough to display very interesting catalytic proper-
ties [37]. For example, gold is inert toward the oxidation
of carbon monoxide (CO+1

2O2 ! CO2), because of its
inability to dissociate oxygen molecules. However, small
gold nanoparticles supported on oxides (see Fig. 16) have
been found to be active [31,107]. This behavior may be at-
tributed to several effects: (i) the abundance of low coor-
dinated reactive sites, which increases with decreasing the
particle size (these sites appear at the intersections of low
Miller-index planes and include edge, kink and even ad-
atom defects) [66,84]; (ii) strain induced due to oxide-sup-
port and small particle size [66], and (iii) the appearance of
new special sites at the perimeter of the oxide–metal inter-
face (e. g. due to oxide-induced charge transfer to adsor-
bate) [60,72,73,74].

Alloying Alloying presents a very interesting way of
changing the reactivity of the surface. On one hand ad-
dition of another metal (impurity) into a given host metal
changes its electronic structure, but on the other hand it
opens a way to tailor a selectivity by a geometric effect.
The electronic effect on the reactivity of alloys is well cap-
tured by the shift of the d-band center, and these shifts
have been calculated by DFT and tabulated for many cat-
alytically interesting bimetallic alloys [88], thus provid-
ing a guideline for an on-demand tuning of the electronic
structure of the surface. An interesting and counterintu-
itive example of alloying is that in some cases the addi-
tion of an inert IB metal enhances the adsorption ener-
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gies on more reactive VIII group metals [28,77]. This is
mainly due to strain [88], i. e., if a “small” metal atom is
added into a “larger” host, it will experience a tensile strain
and vice-versa (and the d-band center will shift accord-
ingly).

As for the geometric effect, it has long been known
from experiments that the addition of a group-IB metal
(Cu, Ag, Au) to group-VIII metals (Fe, Co, Ni; Ru, Rh,
Pd; Os, Ir, Pt) can lead to an increased selectivity of the
catalyst [97]. In particular, it is known that such catalysts
hinder hydrogenolysis reactions which involve C–C bond
breaking, but do not significantly affect dehydrogenation
reactions which involve C–H bond breaking [97]. For
example, the hydrogenolysis reaction require sites with
a larger ensemble of active atoms than dehydrogenation
reactions. Already the addition of a small amount of IB
metal will substantially decrease the number of sites com-
posed of a large ensemble of active metal atoms, thus dis-
favoring reactions that require large ensembles of active
atoms (as shown schematically by Fig. 12b) and making
the dehydrogenation reactions—which require a small en-
semble of active atoms—more selective [97].

Tuning the surface composition of an alloy represents
an exciting way of designing new reaction centers with tai-
lored catalytic properties. However, the actual composi-
tion cannot be varied at random. Some combinations of
metals may lead to segregation, while for others the com-
position at the surface differs from that in the bulk (the
amount of a given metal at the surface is either enriched
or depleted). An extensive database of surface segregation
energies have been compiled byDFT calculations [89], and
the segregation tendency may be explained by surface en-
ergy and crystal structure differences between the host and
impurity. Even if the two metals do not form a bulk alloy
(i. e. they are immiscible), they may form an alloy on the
surface. Such alloys have been shown to have interesting
catalytic properties [2,22,23,44,97]. An example of a AuNi
surface alloy used to catalyze steam reforming will be pre-
sented in Sect. “Improvement of Steam-Reforming Cata-
lyst”.

An exiting novel class of near surface alloys have
been considered recently where the impurity metal atoms
are located primarily in the subsurface layer [22,44] (see
Fig. 17). The DFT calculations indicate that such alloys
yield superior catalytic behavior for hydrogen related reac-
tion, because they bind atomic hydrogen weakly, yet they
are able to dissociate the H2 molecule efficiently [22]. As
for the water–gas shift reaction (COCH2O! CO2CH2),
such a type of subsurface alloy was also suggested to be
promising due to the ability to bind CO weakly and to dis-
sociate water easily [44].

Computer-Aided Design of the Reaction Site in Heterogeneous
Catalysis, Figure 17
An idealized model of a near-surface alloy (NSA) with impurity
metal in the subsurface layer. NSA’s have interesting catalytic
properties [2,22,23,44,97]

Examples

As described above the reactivity of special sites on the sur-
face can be tuned in several ways, which are relatively easy
to achieve with computer DFT simulations, because there
we are assembling a given structure “atom by atom”, and
hence we have total control over it. Computer simulations
allow one to consider and investigate structures under var-
ious circumstances that are otherwise unfeasible in reality
with the aim to gain new understanding. One could en-
visage many different surface reaction centers and some of
them may have very appealing catalytic properties. Below
a few examples are presented with the aim to demonstrate
how new reaction centers may be proposed on the basis
of insight gained by careful analysis of results of quantum
mechanical computer simulations.

Tuning the Relative Rates
of Methane Dehydrogenation

One of the problems in the conversion of methane
(CH4)—the principal component of natural gas—to more
useful liquid-phase chemicals, such as methanol, is that,
although many catalysts are able to cleave the C–H bonds,
they do so in a nonselective manner. The efficiency of
catalysts is thus limited by the tendency of dehydrogena-
tion to proceed until graphite is eventually formed on
the surface, thus poisoning the catalyst [20]. Although
a symbolic reaction equation may look as simple as
CH4 C ?! CH3OHC � � � it appears in reality so diffi-
cult that—despite its importance —a direct conversion of
methane to methanol (or other liquid chemicals) is not yet
feasible. For this reason let us ask a simpler question: is it
possible to design a reactive center that will cleave the C–H
bonds of methane selectively?

By careful analysis of the results of DFT computer sim-
ulations, it has been shown how to design such a reaction
center that effectively activates the first dehydrogenation
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step while hindering the second one [48,49,114]:

1: CH4 • CH3 CH ;
2: CH3 • CH2 CH ;

(14)

The activation energies can be used as a measure of reac-
tion rate constants (e. g. Eq. (6), kf D �e�E

�/kT ), therefore
a target reaction center has to reverse the natural order of
the two barriers’ heights. This means that the barrier for
the first step has to be lower than that for the second.

Local Geometry of the Reaction Site Kokalj et al. [48]
have investigated the effect of local geometry of the reac-
tion center on the two energy barriers. These authors con-
sidered the Rh(111) surface because Rh is known for its re-
activity toward the C–H bond cleavage of CH4 [103]. The
local geometry of the reaction center was varied by “cre-
ating” progressively less coordinated defective sites on the
surface, passing from perfect (111) facet with nine-fold co-
ordinated surface atoms (coordination number, NC D 9),
to step-edge (NC D 7), added row (NC D 5), and finally
to an ad-atom defect (NC D 3). These surface structures
are shown in Fig. 18, and the corresponding d-band pro-
jected density of states is shown in Fig. 14. For each one

Computer-Aided Design of the Reaction Site in Heterogeneous Catalysis, Figure 18
Different local geometries of the reaction centers on Rh(111). From left to right: perfect surface, step-edge, ad-row, and ad-atom.
Reprinted with permission from [48]

Computer-Aided Design of the Reaction Site in Heterogeneous Catalysis, Figure 19
a Adsorption energies of methane (CH4), methyl (CH3), methylene (CH2) and atomic hydrogen (H) on a step-edge (NC D 7), ad-row
(NC D 5), and ad-atom (NC D 3) with respect to the Rh(111) facet (NC D 9). b Activation energies for the first two steps of methane
dehydrogenation as a function of local geometry of the reaction site. On the basis of results from [48]

of them, the DFT calculated optimal adsorption energies
of the involved CH4, methyl (CH3), ethylene (CH2), and
hydrogen (H) species are reported in Fig. 19a. The adsorp-
tion of CH4, CH3, and CH2 is rather sensitive to the co-
ordination of the metal atoms at the binding site, whereas
the adsorption of hydrogen is not so much so.

As for CH3 and CH2, we may see that they are stabi-
lized at low coordinated defects, as expected on the basis of
the Hammer–Nørskov d-band model, except for the ad-
atom defect, where the trend is reversed. Moreover, the
ad-atom behaves rather unexpectedly also with respect to
C–H activation energies, as shown in Fig. 19b: although
the barrier for the first dehydrogenation step decreases
as expected with the coordination of the reaction center,
the dehydrogenation of methyl (CH3 ! CH2 CH) is hin-
dered at an ad-atom defect, where the first dehydrogena-
tion step is instead most favored. Therefore, the behavior
of the ad-atom is so peculiar that neither can the adsorp-
tion of CH3 and CH2 be explained solely by the Hammer–
Nørskov d-band model (electronic effect) nor can the de-
hydrogenation barriers be explained by the BEP relation.
As will be shown below this is related to structural features
of the ad-atom (geometric effect).We proceed by analyzing
the involved structures, in particular, adsorbed CH3, CH2,
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and the corresponding TS structures for the two dehydro-
genation steps.

Analysis of CH3 Adsorption Methyl is a radical whose
unsaturated C atom strongly binds to the metal surface.
But in addition to this C–metal bond, methyl also displays
a peculiar three-center C–H–metal bond, which is in part
responsible for the peculiar behavior mentioned above.
The three-center C–H–metal bond is usually referred to
as agostic bond in organometallic chemistry [12,25,111].
The agostic bond results essentially from the hybridiza-
tion of 1e C–H bonding orbitals with the d states of the
metal surface [68,78]. Agostic bonds occur when the ad-
sorption geometry allows for a small H–metal distance.
Consider for example a methyl radical adsorbed at an fcc
hollow site with H atoms pointing toward either the near-
est hollow sites (no agostic bonds, Fig. 20a) or toward the
nearest metal atoms (thus giving rise to agostic bonds,
Fig. 20b). The difference between the two adsorption en-
ergies is rather large (� 0:4 eV); also note that in the latter
case, the C–H distance is slightly larger than in the former.
This effect is enhanced when going from the (111) facet
to the step edge and ad-row: the C–H distance increases,
Fig. 20, andmore charge is delocalized from the C–H bond
toward the Rh atom, Fig. 21. On the other hand, at an ad-
atom defect the H–metal distance is quite large, indicating
a smaller agostic interaction, and consequently explaining
the reversed trend of methyl adsorption energy at the ad-
atom.

Agostic bonding also stretches and correspondingly
weakens the C–H bond [69], thus helping break it, and
this may partially explain why the ad-atom reaction cen-
ter is not so efficient for methyl dehydrogenation.

Analysis of CH2 Adsorption To explain the reversed
trend of methylene adsorption energy at the ad-atom, note
that to couple the two unpaired electrons of the methylene
diradical, CH2 has to form (at least) two bonds with the
substrate. The local structure of an ad-atom defect, how-
ever, is such that this requirement is not easily fulfilled. As
passing from a (111) facet to a step edge and an added row,
CH2 binds to progressively less coordinated atoms, how-
ever at an ad-atom defect it bridges the ad-atom (NC D 3)
to a surface atom underneath (NC D 10). The average
coordination number of the two bridged atoms is thus
NC D 6:5, close to the value NC D 7 of the step edge. As
a result, the adsorption energy of methylene at an ad-atom
and at a step edge are very similar: � 4.26 and � 4.25 eV,
respectively (see Fig. 19a).

Structural Analysis of Transition States An analysis
of a large number of identified TS structures, not only

those on currently considered reaction centers, but also
on Ru(0001) [11], Ni(111) [52,70,108], Pd(100) [113], and
Pt(110)(1 � 2) [82] reveals that the TS’s display some uni-
versal features [49,114], which are evident from Fig. 22,
and can be described as:

(i) For both reactions the TS is late, i. e., its structure is
close to that of the final state: the C–H distance for the
detaching H atom at the TS is in the range 1.6–1.7 Å,
to be compared with an equilibrium bond length of
1.1 Å.

(ii) The TS of the first dehydrogenation step involves
only one metal atom: the CH3 fragment is located at
the top site.

(iii) On the other hand, the TS for the second dehydro-
genation step involves two metal atoms: the CH2
(methylene) fragment is located at the bridge site,
while the dissociating H atom is at the top site.

We further notice that although the adsorption energy of
H is rather insensitive to the coordination of the metal re-
action center (see Fig. 19), this is so only for the best ad-
sorption sites corresponding to each reaction center (hol-
low or bridge). However, at the TS of the CH3 ! CH2 +
H, the H atom is located instead close to a top site (see
Fig. 22b). The hydrogen adsorption energies on top of
a metal atom are also rather similar for the (111) facet, at
step edge, and at ad-row (� �2:45 eV). However, on top
of the ad-atom the adsorption is about 0.2 eV less stable,
and this further contributes to the large value of the E� at
an ad-atom defect.

Requirements for Reaction Center The insight ob-
tained on the basis of the analysis presented above, may be
used to design new reaction centers, which would enhance
the first reaction while hindering the second, by not only
acting on the local geometry, but also on the local chemical
composition. On the basis of the above analysis the follow-
ing three requirements should be met [49]:

(i) One of the CH2–metal bonds should be substantially
weakened;

(ii) The strength of the H–metal bond at the top site
should be reduced, and

(iii) Agostic C–H–metal bonding of CH3 should be pre-
vented.

Note that agostic interactions are small, hence the effect of
agostic bonding on the reaction barrier can only be small.
On the other hand, the CH2–surface and H–surface bonds
are strong, and a large reduction of these bond strengths
can affect the reaction barrier substantially. It turns out
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Computer-Aided Design of the Reaction Site in Heterogeneous Catalysis, Figure 20
a,b Staggered and eclipsed orientation of methyl at an fcc site of perfect Rh(111). In a the orientation of CH3 is such that H atoms are
staggeredwith the nearest metal atoms, whereas in b they are eclipsed thus forming agostic bonds. c CH3 adsorbed at the step edge
with one of the H atoms pointing toward the stepmetal atom thus forming the agostic bond. d CH3 at the ad-atom: agostic bonding
is hindered due to large H-metals distances. Adapted from [49]

Computer-Aided Design of the Reaction Site in Heterogeneous Catalysis, Figure 21
a, b, c Electron charge density, integrated over the energy windowmarked by a blue stripe in d, illustrating the extent of three center
C–H–metal agostic bonding of methyl adsorbed on a a Rh(111) facet, b a step edge, and c an ad-atom. The magnitude of ILDOS
increases from red to violet following a rainbow scale. Five contours are drawn in logarithmic scale from 10�1 to 10�3e/a30. dDensity
of states projected to H, C, and Rh atom. Adapted from [49]

Computer-Aided Design of the Reaction Site in Heterogeneous Catalysis, Figure 22
a, bMain features of the transition state structures for the first two dehydrogenation reactions on a flat Rh(111) surface. c A reaction
center composed of a single reactive site is not compatible with the structural characteristics of TS shown in b, and would therefore
destabilize it. Adapted from [49]
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Computer-Aided Design of the Reaction Site in Heterogeneous
Catalysis, Figure 23
a Rh atom substitutionally embedded into Cu(111) and b Rh ad-
atom on Cu(111). Reprinted with permission from [49]

that the above requirements can be fulfilled more or less
simultaneously.

Local Chemical Composition of Reaction Site The re-
quirements just outlined, suggest that a proper reac-
tion center should be composed of solely one reactive
atom, embedded, for example, in an inert environment
(shown schematically in Fig. 22c). Consider, for exam-
ple, an isolated reactive Rh atom substitutionally embed-
ded into a more inert Cu(111) surface, such as shown in
Fig. 23a [49]. This can be seen as a model for a Cu-rich
phase of a RhCu alloy. Bulk RhCu alloy shows two phases:
a Rh-rich phase (with Cu concentration, XCu . 0:1) and
a Cu-rich phase (with XCu & 0:8) [63]. However, on the
surface the amount of Cu is enriched, e. g., already at
a small amount of Cu (XCu > 0:05) the Cu-rich phase will
form on the surface [10].

At this reaction center (Fig. 23a), the CH2 forms one
strong bond with the substitutional Rh atom, while the
other bond with a Cu atom is much weaker. In addition,
agostic bonding is also prevented. Therefore, it performs
much better than the Rh(111): the calculated E� for the
first dehydrogenation step is 0.70 eV, whereas that for the
second is as large as 0.84 eV (to be compared with 0.69 and
0.42 eV at the Rh(111), respectively) [49]. Snapshots of the
two reactions are shown in Fig. 24. Given that the two re-
action barriers on clean Cu(111) are predicted to be 1.7
and 1.5 eV [49], dehydrogenation would selectively occur
near the Rh atom.

Tuning the chemical composition of the reaction cen-
ter therefore substantially increases the barrier for the sec-
ond dehydrogenation step, but hardly affects the barrier
for the first step in the current case. However, by com-
bining the structural effects with the chemical effects just
outlined, it is possible to selectively increase the barrier
of the second dehydrogenation step, while reducing that

Computer-Aided Design of the Reaction Site in Heterogeneous
Catalysis, Figure 24
Initial- (IS), transition- (TS), and final-state (FS) structures for the
first two steps of methane dehydrogenation over the Rh atom
substitutionally embedded into Cu(111). Reprinted with permis-
sion from [49]

of the first. Consider for example a Rh ad-atom adsorbed
onto a Cu(111) surface, as shown in Fig. 23b [49]. In this
case, the reaction barrier for the first reaction is very small,
E� D 0:35 eV, while the barrier for the second reaction is
quite large, E� D 0:89 eV [49]. In order to illustrate the
effects of the local atomic structure and local chemical
composition on the two dehydrogenation steps, the reac-
tion energy profiles at the considered reaction centers are
shown in Fig. 25.

The reaction center based on metal ad-atoms, such as
just considered (Fig. 23b), is merely an academic model
system, because the naked metal ad-atoms would either
cluster or diffuse into the bulk. Nevertheless, the kind of
arguments and analysis presented and utilized above are
instrumental to the understanding of the mechanisms re-
sponsible for the reactivity of reaction centers on real cat-
alysts and to the design and realization of new materials
with tailored catalytic properties. As for the ad-atoms, the
problem is of course open on how to stabilize them. For
example, Zhang and Hu [114] considered isolated Pt ad-
atoms on an oxide MoO3(010) surface, and calculated that
the barrier for methane dehydrogenation is significantly
lower than that on a Pt(111), while the further dehydro-
genation of methyl is blocked.

Improvement of Steam-Reforming Catalyst

Today, the conversion of methane to liquid chemicals is
utilized via an in-direct route: in a first step the methane is
transformed into a syngas (a mixture of H2 and CO). Then
in the second step the liquid chemicals such as, for exam-
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Computer-Aided Design of the Reaction Site in Heterogeneous Catalysis, Figure 25
Reaction profiles for the two dehydrogenation reactions. Arrows indicate the improved parameter of the reaction center. The zero
level is the energy of the gas phase methane. Difference between the labels “CH3(a)+H(a)” and “CH3(a)” is that for the latter the
H(a) diffused to an equivalent site far from CH3(a). Labels Rh in Cu(111), Rh/Rh(111), and Rh/Cu(111) stand for Rh atom substitution-
ally embedded into Cu(111) (Fig. 23a), Rh ad-atom on Rh(111), and Rh ad-atom on Cu(111) (Fig. 23b), respectively. Reprinted with
permission from [49]

ple, methanol are synthesized from syngas. Note, however,
that a direct route to methanol synthesis would surpass
a very expensive syngas production.

The syngas may be produced via several processes, one
of them being the steam reforming:

CH4CH2O• COC3H2 (
H0
298K D 2:14 eV) : (15)

The elementary reaction steps can be classified into two
groups, and can be written as (omitting adsorption, diffu-
sion, and desorption steps):

(i) dissociation of reactants:

1: CH4 ! CH3(ad) CH(ad)

2: CH3(ad) ! CH2(ad) CH(ad)

3: CH2(ad) ! CH(ad) CH(ad)

4: CH(ad) ! C(ad) CH(ad)

5: H2O! OH(ad) CH(ad)

6: OH(ad) ! O(ad) CH(ad)

(16)

(ii) formation of products:

1: H(ad) CH(ad) ! H2

2: O(ad) C C(ad) ! CO
(17)

On the basis of detailed investigation of elementary pro-
cesses by means of atomistic DFT computer-simulations
and surface-science experiments, Besenbacher et al. [2]
designed an improved high surface area alloy catalyst
for steam-reforming process. The process is obviously
limited by the ability of a catalyst to activate hydrocar-
bon molecules, and its tendency to form an undesired
graphite, C(ad) ! C(s), which poisons the catalysts. As
already stated, catalysts are able to break C–H bonds,
but in a nonselective manner, which is precisely what
is done in steam-reforming, where methane is stripped
off all the H atoms, Eqs. (16.1)–(16.4). At this point,
two issues are crucial: (i) the surface should prevent
naked C(ad) atoms from clustering so as to avoid the
graphite growth, and (ii) the C(ad) should not bind too
strongly to the surface: recall that the less the C(ad) binds
to the surface the easier it will react with chemisorbed
O(ad).

A traditional catalyst in steam-reforming is based on
Ni as the active element [45]. Kratzer and Besenbacher et
al. [2,52] considered adding a small amount of Au into the
Ni. The idea is to prevent the C(ad) atoms from clustering.
Although the two metals do not form a bulk alloy—they
are immiscible in the bulk—they do form an alloy in the
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Computer-Aided Design of the Reaction Site in Heterogeneous Catalysis, Figure 26
a STM image of a surface NiAu alloy with 7% of a surface Au atoms. Au atoms are black and the neighboring Ni atoms are brighter
than other Ni atoms indicating the modification in electronic structure. bDFT calculated adsorption energy of a C atom as a function
of its position on the surface;bottom curve shows the diffusion profile of the C atomon cleanNi(111) alongA–B–C–D positions shown
in the bottom inset. Top curve shows the same diffusion profile for a situation where one Ni atom was substituted by an Au atom as
shown by top inset. From [2], reprinted with permission from AAAS

outermost surface layer, as shown by an STM image in
Fig. 26a.

As already discussed in Sect. “Tuning the Relative
Rates of Methane Dehydrogenation”, the transition states
for dehydrogenations are similar on various transition
metals, so in the current case they will be similar to those
displayed in Fig. 22 for the first two dehydrogenation
steps. DFT calculations by Kratzer et al. [52] predicted that
the addition of Au into Ni(111) decreases the reactivity to-
ward the C–H bond breaking, in accord with experimental
observation [36]. The activation barrier for the first dehy-
drogenation step increases by 0.17 eV at the reaction cen-
ter involving one Au atom, and more than twice that for
the center with two Au atoms. This is at variance with
what was predicted on RhCu alloy [49] (Sect. “Tuning the
Relative Rates of Methane Dehydrogenation”), where the
barrier for CH4 dehydrogenation was almost not affected
by the presence of Cu. This can be explained by the fact
that Ni and Au atoms differ substantially in size, whereas
Cu and Rh do not. Addition of “larger” Au impurity onto
the Ni layer therefore down-shifts the d-band center of Ni
thus decreasing its reactivity [52]. Nevertheless, the effect
of addition of Au on dehydrogenation is relatively modest
compared to the effect it has on naked C(ad) atoms and on
formation of graphite. In particular, a Au atom makes all
the nearest neighboring hollow sites completely unstable
for adsorption of carbon atoms (by almost 2 eV), and also
destabilizes by 0.24 eV the second nearest neighbor sites,

as shown in Fig. 26b. This has a tremendous consequence:
a single Au atom excludes six surface Ni metal atoms from
binding with C(ad) (corresponding to six nearest neighbor
hollow sites), and additionally makes the next neighbor-
ing sites less stable and therefore somewhat more suscep-
tible to CO formation. Therefore, even a small amount of
Au prevents the C(ad) atoms from clustering and therefore
from graphite being formed.

That actually all works as suggested by DFT calcu-
lations, the authors have performed several experiments:
(i) they first synthesized a Au/Ni catalyst in a high surface
area form on aMgAl2O4 support, then (ii) they performed
a surface structure characterization by means of EXAFS to
confirm the Ni and Au actually formed surface alloy, and
finally (iii) they measured the steam-reforming activity of
a catalyst. They showed that, while the Ni catalyst deacti-
vates rapidly, the activity of the Au/Ni was almost constant
under the measured time interval (see Fig. 27) [2].

It is instructive to compare the RhCu model catalyst
discussed in Sect. “Tuning the Relative Rates of Methane
Dehydrogenation”, designed to suppress the dehydro-
genation of methyl, to the current NiAu catalyst: the AuNi
catalyst consists of individual inert atoms in a reactive sub-
strate, whereas the RhCu model catalyst consists of iso-
lated reactive atoms embedded in an inert (or less reactive)
substrate. This is entirely due to the geometric (ensemble)
effect: The C atom requires sites composed of a large en-
semble of active surface atoms, whereas for the dehydro-
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Computer-Aided Design of the Reaction Site in Heterogeneous
Catalysis, Figure 27
Conversion of n-butane on Ni (dashed line) and NiAu surface-
alloy (solid line) as a function of time during steam reforming.
From [2], reprinted with permission from AAAS

genation of methyl already two reactive neighboring atoms
are sufficient.

Ethylene Epoxidation

To further illustrate how quantum mechanical simula-
tions help disentangle the mechanisms responsible for the
reactivity and selectivity of a catalyst, we consider one
more example, the epoxidation of ethylene, which is one
of the most important selective oxidation processes based
on heterogeneous metallic catalysis [1,53,92,96]. Ethylene
epoxide (oxirane) is an important intermediate in the fab-
rication of glycols and polyols, and silver is a remarkably
good catalyst for this reaction with a selectivity at high
temperature and high pressure up to 80% in the pres-
ence of promoters such as Cl and Cs [53,92,96]. Although
a symbolic reaction equation may look as simple as:

C2H4 C
1
2O2 ! C2H4O ; (18)

the elucidation of the reaction mechanism has been a sub-
ject of long debate. Its understanding has emerged only
recently and was made possible by the synergy between
the surface-science experiments and DFT computer sim-
ulations. Early studies have mainly focused on the iden-
tity of active oxygen species in the reaction and tried to
resolve the longstanding question whether molecular or
atomic species are the active oxidant [8,21,91]. It has been
established only recently that the reaction proceeds via the
surface oxametallacycle (OMC) intermediate, which then
transforms either to ethylene epoxide (EO) or to acetalde-
hyde (Ac) [5,42,43,55,56,57,59,67,100,101], the latter re-
action leading to undesired total combustion. The over-
all reaction can be described by the following minimal-se-

quence of steps:

1: O2(g) ! O2(ad)

2: O2(ad) ! 2O(ad)

3: C2H4(g) ! C2H4(ad)

4: C2H4(ad) C O(ad) ! OMC(ad)

5a: OMC(ad) ! EO
5b: OMC(ad) ! Ac :

(19)

For amore elaborate list of elementary steps see, for ex-
ample, the work of Stegelmann [101]. For ethylene epox-
idation to occur, the catalyst must be reactive enough to
dissociate the oxygen molecule [53], but it should be also
mild enough so as to form and to stabilize an OMC in-
termediate, rather than to break C–H bonds, either in the
ethylene or in the OMC intermediate [51]. Silver fulfills all
these requirements quite well: it is among the most appro-
priate metals for reactions involving dissociation of oxy-
gen (Sect. “Optimum Chemisorption Energy”), does not
activate the C–H bonds [51,92,96] and also binds theOMC
weakly to the surface [50,56,64] so that its transformation
to EO is facile (as will be shown below). As for dissocia-
tion of oxygen, for example, palladium would be also ac-
ceptable (Sect. “Optimum Chemisorption Energy”), but at
variance with Ag is able to break the C–H bonds [90] (see
also Fig. 13b).

Provided that the C–H bond activation is not an is-
sue, the main reaction byproduct involves the formation
of Ac [51,56,57]. The Ac molecule is thermodynamically
more stable than the EO by about 1 eV. The reason that the
EO can be synthesized is because a proper catalyst makes
the barrier for its formation smaller or at least compara-
ble to the barrier for Ac formation. The epoxidation of
ethylene is therefore an example of a kinetically favored
reaction. Linic et al. [56,57] showed that the selectivity
of a catalyst is determined by the branching reaction of
OMC to form EO rather than the competitive Ac. In par-
ticular, at given temperature it would mainly depend on
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the difference between the Ac and EO activation ener-
gies,
E� D E�Ac � E�EO (assuming the two corresponding
prefactors are similar). The selectivity, S, can be approxi-
mately expressed as:

S D
rEO

rEO C rAc
�

e�E
�

EO/kT

e�E
�

EO/kT C e�E�Ac/kT

D
1

1C e��E�/kT ; (20)

where rEO and rAc are the rates of EO and Ac formation,
respectively. Therefore, the larger is the 
E� the larger is
the selectivity. The ability to stabilize the transition state
for EO formation with respect to that for Ac formation
would therefore lead to increased selectivity.

Bocquet et al. [4] realized on the basis of DFT calcu-
lations that the selectivity is linked to the conformational
arrangement of the OMC intermediate. By considering the
trajectories of atoms during the EO and Ac formation and
the structure of the two transition states, they suggested
that staggeredOMC conformation favors the formation of
Ac, whereas eclipsed OMC conformation favors the EO
formation. This is due to the fact that the Ac formation in-
volves the shift of the H-atom from the first C atom to the
second C atom, which is assisted if the two CH2 groups
of the OMC intermediate are in staggered conformation.
This is schematically shown in Fig. 28. Hence, if on a given
surface both staggered and eclipsed forms exist, the differ-
ence between the two activation energies would be related
to the relative energy stability of the two conformational
OMC forms.

Kokalj et al. [51] provided on the basis of DFT calcu-
lations an alternative explanation as to what determines

Computer-Aided Design of the Reaction Site in Heterogeneous Catalysis, Figure 28
The formation of acetaldehyde (Ac) proceeds through the staggered conformation of the two CH2 groups in oxametallacycle (OMC).
Bocquet et al. [4] realized on the basis of DFT calculations that the selectivity in the OMC branching reaction toward either EO or Ac
is related to the relative stabilities of eclipsed and staggered conformations of the OMC

the selectivity. These authors applied the BEP relationship
for the EO and Ac formation on a number of different cir-
cumstances, including (111) and (100) surfaces of Rh, Cu,
Ag, and Au. This analysis revealed that the formation of
Ac follows remarkably well the BEP relation, whereas the
formation of EO does so to a lesser extent. By knowing
that the EO and Ac bind weakly to the surface [51,64], the
main message from this BEP analysis was that the stronger
is the OMC–surface interaction the larger are the two bar-
riers [51], which demonstrates that for a facile OMC to EO
and Ac transformation a less reactive catalyst is required,
such as, for example, silver.

Although an approximate magnitude of the activation
barriers for the EO and Ac formation can be determined
from the BEP principle, the BEP principle alone is not ac-
curate enough to estimate the selectivity of a catalyst to-
ward the EO formation (see Fig. 30b). The identification of
other important factors that determine the catalyst’s selec-
tivity toward the formation of EO with respect to Ac for-
mation was made possible by the structural analysis of the
TS’s for both reactions. Figure 29 schematically depicts the
TS’s for the EO and Ac formation from OMC on Ag(100).
The main difference between the two is that, in TS for EO
formation the C–surface bond is fully broken, whereas in
TS for Ac formation both C– and O–surface bonds are
only partially broken [51]. This may suggest that the two
bonds contribute differently to the two activation energies.
In particular the stronger is the OMC’s O–surface bond
with respect to the C–surface bond, the more selective the
substrate will be toward EO formation. This argument was
quantified by decomposing the OMC–surface interaction
into C– and O–surface contributions, which were approx-
imated by the interaction of methyl (CH3�) and methoxy
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Computer-Aided Design of the Reaction Site in Heterogeneous Catalysis, Figure 29
Schematic presentation of an OMC intermediate and transition states for EO (left) and Ac (right) formation. In the TS leading to EO
the C–surface bond is broken, whereas in the TS leading to Ac both C– and O–surface bonds are elongated. During the EO formation
the O–atom moves beneath the ethylene fragment, which is concomitantly shifted upward (indicated by blue arrows) and as a con-
sequence the C–metal bond is ruptured, whereas in the formation of Ac the whole molecule is upshifted during the 1,2 hydrogen
shift, and consequently the C– and O–surface bonds are partially broken. Based on [51]

Computer-Aided Design of the Reaction Site in Heterogeneous Catalysis, Figure 30
a TheOMC–surface interaction canbedecomposed into C– andO–surface terms, which canbe approximated by the CH3– andCH3O–
surface interaction, respectively. This leads to an indicator embodied in Eq. (21) that predicts the	E�D E�

Ac � E�

EO remarkably better
than the standard BEP relation. b Standard BEP and c indicator of Eq. (21) in predicting the	E�. The rms and the maximum errors
are 0.19 and 0.38eV, respectively. Reprinted from [51]

(CH3O�) radicals with the surface, respectively, as shown
in Fig. 30a. By combining this observation with the BEP
relation and after some trivial algebra, an equation for the

E� was derived. This equation was than fitted to cal-
culated data, and that resulted in the following expres-
sion [51]:


E� ' 0:39
�
ECH3
ads � ECH3O

ads C EAc
ads� EEO

ads
�
� 0:31 ; (21)

where Eads stands for adsorption energy of corresponding
species. The quality of the fit given by Eq. (21) is compared
to that obtained from the simple BEP relation in Figs. 30b

and 30c. The indicator as embodied in Eq. (21) is able to
estimate
E� with an accuracy better than 0.1 eV (the rms
and maximum errors are 0.05 and 0.07 eV, respectively),
and it suggests that
E� is mainly determined by two con-
tributions: (i) differential bonding affinity of the catalyst
toward the O- and C-atoms of the OMC, and (ii) the dif-
ference between the adsorption energies of the two final
states, Ac and EO.

Recently, Linic et al. [58] showed on the basis of DFT
computational screening, that Cu/Ag alloy should dis-
play a greater selectivity toward EO compared to pure
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Ag, which was later confirmed by surface science experi-
ments [40,41]. However, no explanation was given of why
this is so. This finding can be straightforwardly explained
by the model presented above [51]. The reasons are that
Cu shows larger bonding affinity toward the O-atom with
respect to the C-atom than silver (this also explains why
Cu is intrinsically more selective than Ag for OMC trans-
formation into EO [105,106]). Because Cu is also more
reactive than Ag, this implies that on diluted Ag1�xCux
alloys (x 
 1, assuming no Cu-Cu nearest neighbors),
the most stable OMC binds its O-atom to Cu and its C-
atom to Ag (for instance, such OMC orientation is pre-
ferred by 0.16 eV on Cu/Ag(100)), enhancing the O–metal
bond strength and making the C–metal bond “relatively”
weaker. According to the differential bonding affinity term
of Eq. (21), this makes the formation of EOmore selective.
In particular, on Cu/Ag(100) alloy 
E� is larger than on
Ag by 0.17 eV, where 0.04 eV is due to BEP contribution,
and 0.10 eV is due to differential bonding affinity [51].

Future Directions

Electronic structure calculations, such as DFT, have
reached the point, where they can provide understand-
ing of the atomic-scale details of the elementary steps and
the mechanisms underlying the reactivity of a catalyst to-
ward specific chemical reactions. This knowledge can then
be exploited in the search for better catalysts, and sur-
passes the traditional error-and-trial procedure. In par-
ticular, applications are emerging, where new materials
are screened computationally. Ever increasing computer
power will make it possible to screen large numbers of new
materials in the future, and this has great potential in the
search for new materials with tailored catalytic properties.
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Glossary

Computer generated imagery (CGI) The use of com-
puter generated images for special effects purposes in
film production.

Intelligent agent A hardware or (more usually) software-
based computer system that enjoys the properties au-
tonomy, social ability, reactivity and pro-activeness.

Non-player character (NPC) A computer controlled
character in a computer game – as opposed to a player
controlled character.

Virtual character A computer generated character that
populates a virtual world.

Virtual world A computer generated world in which
places, objects and people are represented as graphical
(typically three dimensional) models.

Definition of the Subject

As the graphics technology used to create virtual worlds
has improved in recent years, more and more importance
has been placed on the behavior of virtual characters in
applications such as games, movies and simulations set
in these virtual worlds simulations. The behavior of these
virtual characters should be believable in order to create
the illusion that virtual worlds are populated with living
characters. This has led to the application of agent-based
modeling to the control of virtual characters. There are
a number of advantages of using agent-based modeling
techniques which include the fact that they remove the re-
quirement for hand controlling all agents in a virtual en-
vironment, and allow agents in games to respond to unex-
pected actions by players or users.

Introduction

Advances in computer graphics technology in recent years
have allowed the creation of realistic and believable vir-
tual worlds. However, as such virtual worlds have been de-
veloped for applications spanning games, education and
movies it has become apparent that in order to achieve
real believability, virtual worlds must be populated with
life-like virtual characters. This is where the application of
agent-based modeling has found a niche in the areas of
computer graphics and, in a huge way, computer games.
Agent-based modeling is a perfect solution to the problem
of controlling the behaviors of the virtual characters that
populate a virtual world. In fact, because virtual characters
are embodied and autonomous these applications require
an even stronger notion of agency than many other areas
in which agent-based modeling is employed.

Before proceeding any further, and because there are
so many competing alternatives, it is worth explicitly stat-
ing the definition of an intelligent agent that will inform
the remainder of this article. Taken from [83] an intelli-
gent agent is defined as “. . . a hardware or (more usually)
software-based computer system that enjoys the following
properties:

� autonomy: agents operate without the direct interven-
tion of humans or others, and have some kind of control
over their actions and internal state;

� social ability: agents interact with other agents (and
possibly humans) via some kind of agent-communica-
tion language;

� reactivity: agents perceive their environment, (which
may be the physical world, a user via a graphical user
interface, a collection of other agents, the INTERNET, or
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perhaps all of these combined), and respond in a timely
fashion to changes that occur in it;

� pro-activeness: agents do not simply act in response to
their environment, they are able to exhibit goal-directed
behavior by taking the initiative.”

Virtual characters implemented using agent-based mod-
eling techniques satisfy all of these properties. The char-
acters that populate virtual worlds should be fully au-
tonomous and drive their own behaviors (albeit some-
times following the orders of a director or player). Vir-
tual characters should be able to interact believably with
other characters and human participants. This property is
particularly strong in the case of virtual characters used
in games which by their nature are particularly interac-
tive. It is also imperative that virtual characters appear to
perceive their environments and react to events that oc-
cur in that environment, especially the actions of other
characters or human participants. Finally virtual charac-
ters should be pro-active in their behaviors and not always
require prompting from a human participant in order to
take action.

The remainder of this article will proceed as follows.
Firstly, a broad overview of the use of agent-based model-
ing in computer graphics will be given, focusing in partic-
ular on the genesis of the field. Following on from this, the
focus will switch to the use of agent-based modeling tech-
niques in two particular application areas: computer gen-
erated imagery (CGI) for movies, and computer games.
CGI has been used to astounding effect in movies for
decades, and in recent times has become heavily reliant on
agent-basedmodeling techniques in order to generate CGI
scenes containing large numbers of computer generated
extras. Computer games developers have also been using
agent-basedmodeling techniques effectively for some time
now for the control of non-player characters (NPCs) in
games. There is a particularly fine match between the re-
quirements of computer games and agent-based modeling
due to the high levels of interactivity required.

Finally, the article will conclude with some suggestions
for the future directions in which agent-based modeling
technology in computer graphics and games is expected to
move.

Agent-BasedModelling in Computer Graphics

The serious use of agent-based modeling in computer
graphics first arose in the creation of autonomous groups
and crowds – for example, crowds of people in a town
square or hotel foyer, or flocks of birds in an outdoor
scene. While initially this work was driven by visually
unappealing simulation applications such as fire safety

testing for buildings [75], focus soon turned to the cre-
ation of visually realistic and believable crowds for ap-
plications such as movies, games and architectural walk-
throughs. Computer graphics researchers realized that
creating scenes featuring large virtual crowds by hand
(a task that was becoming important for the applications
already mentioned) was laborious and time-consuming
and that agent-based modeling techniques could remove
some of the animator’s burden. Rather than requiring that
animators hand-craft all of the movements of a crowd,
agent-based systems could be created in which each char-
acter in a crowd (or flock, or swarm) could drive its
own behavior. In this way the behavior of a crowd would
emerge from the individual actions of the members of that
crowd.

Two of the earliest, and seminal, examples of such sys-
tems are Craig Reynolds’ Boids system [64] and Tu &
Terzopoulos’ animations of virtual fish [76]. The Boids
system simulates the flocking behaviors exhibited in na-
ture by schools of fish, or flocks of birds. The system was
first presented at the prestigious SIGGRAPH conference
(www.siggraph.org) in 1987 and was accompanied by the
short movie “Stanley and Stella in: Breaking the Ice”. Tak-
ing influence from the area of artificial life (or aLife) [52],
Reynolds postulated that the individualmembers of a flock
would not be capable of complex reasoning, and so flock-
ing behavior must emerge from simple decisions made by
individual flock members. This notion of emergent behav-
ior is one of the key characteristics of aLife systems.

In the original Boids system, each virtual agent (repre-
sented as a simple particle and known as a boid) used just
three rules to control its movement. These were separa-
tion, alignment and cohesion and are illustrated in Fig. 1.
Based on just these three simple rules extremely realistic
flocking behaviors emerged.This freed animators from the
laborious task of hand-scripting the behavior of each crea-
ture within the flock and perfectly demonstrates the ad-
vantage offered by agent-based modeling techniques for
this kind of application.

The system created by Tu and Terzopoulos took
a more complex approach in that they created complex
models of biological fish. Their models took into account
fish physiology, with a complex model of fish muscular
structure, along with a perceptual model of fish vision. Us-
ing these they created sophisticated simulations in which
properties such as schooling and predator avoidance were
displayed. The advantage of this approach was that it was
possible to create unique, unscripted, realistic simulations
without the intervention of human animators. Terzopou-
los has since gone on to apply similar techniques to the
control of virtual humans [68].

http://www.siggraph.org
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The three rules used by Reynolds’ original Boids system to simulate flocking behaviors

Moving from animals to crowds of virtual humans, the
Virtual Reality Lab at the Ecole Polytechnique Fédérale
de Lausanne in Switzerland (vrlab.epfl.ch) led by Daniel
Thalmann has been at the forefront of this work for many
years. They group currently has a highly evolved system,
VICrowd, for the animation of virtual crowds [62] which
theymodel as a hierarchy whichmoves from individuals to
groups to crowds. This hierarchy is used to avoid some of
the complications which arise from trying to model large
crowds in real time – one of the key gaols of ViCrowd.

Each of the levels in the ViCrowd hierarchy can be
modeled as an agent and this is done based on beliefs,
desires and intentions. The beliefs of an agent represent
the information that the agent possesses about the world,
including information about places, objects and other
agents. An agent’s desires represent the motivations of
the agent regarding objectives it would like to achieve.
Finally, the intentions of an agent represent the actions
that an agent has chosen to pursue. The belief-desire-in-
tention (BDI) model of agency was proposed by Rao and
Georgeff [61] and has been used inmany other application
areas of agent-based modeling.

ViCrowd has been used in ambitious applications in-
cluding the simulation of a virtual city comprised of,
amongst other things, a train station a park and a the-
ater [22]. In all of these environments the system was ca-
pable of driving the believable behaviors of large groups of
characters in real-time.

It should be apparent to readers from the examples
given thus far that the use of agent-based modeling tech-
niques to control virtual characters gives rise to a range of
unique requirements when compared to the use of agent
based modeling in other application areas. The key to un-
derstanding these is to realize that the goal in designing
agents for the control of virtual characters is typically not
to design the most efficient or effective agent, but rather to
design the most interesting or believable character. Out-

side of very practical applications such as evacuation sim-
ulations, when creating virtual characters, designers are
concerned with maintaining what Disney, experts in this
field, refer to as the illusion of life [36].

This refers to the fact that the user of a system must
believe that virtual characters are living, breathing crea-
tures with goals, beliefs, desires, and, essentially, lives of
their own. Thus, it is not so important for a virtual hu-
man to always choose the most efficient or cost effective
option available to it, but rather to always choose rea-
sonable actions and respond realistically to the success or
failure of these actions. With this in mind, and following
a similar discussion given in [32], some of the foremost re-
searchers in virtual character research have the following
to say about the requirements of agents as virtual charac-
ters.

Loyall writes [46] that “Believable agents are personal-
ity-rich autonomous agents with the powerful properties of
characters from the arts.” Coming from a dramatic back-
ground it is not surprising that Loyall’s requirements re-
flect this. Agents should have strong personality and be
capable of showing emotion and engaging in meaningful
social relationships.

According to Blumberg [11], “. . . an autonomous an-
imated creature is an animated object capable of goal-di-
rected and time-varying behavior”. The work of Blumberg
and his group is very much concerned with virtual crea-
tures, rather than humans in particular, and his require-
ments reflect this. Creatures must appear to make choices
which improve their situation and display sophisticated
and individualistic movements.

Hayes–Roth and Doyle focus on the differences be-
tween “animate characters” and traditional agents [27].
With this in mind they indicate that agents’ behaviors
must be “variable rather than reliable”, “idiosyncratic in-
stead of predictable”, “appropriate rather than correct”, “ef-
fective instead of complete”, “interesting rather than effi-

http://vrlab.epfl.ch
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cient”, and “distinctively individual as opposed to optimal”.
Perlin and Goldberg [59] concern themselves with

building believable characters “that respond to users and
to each other in real-time, with consistent personalities,
properly changing moods and without mechanical repeti-
tion, while always maintaining an author’s goals and in-
tentions”.

Finally, in characterizing believable agents, Bates [7]
is quite forgiving requiring “only that they not be clearly
stupid or unreal”. Such broad, shallow agents must “ex-
hibit some signs of internal goals, reactivity, emotion, natu-
ral language ability, and knowledge of agents . . . as well as
of the . . . micro-world”.

Considering these definitions, Isbister and Doyle [32]
identify the fact that the consistent themes which run
through all of the requirements given above match the
general goals of agency – virtual humans must display au-
tonomy, reactivity, goal driven behavior and social abil-
ity – and again support the use of agent-basedmodeling to
drive the behavior of virtual characters.

The Spectrum of Agents

The differences between the systemsmentioned in the pre-
vious discussion are captured particularly well on the spec-
trum of agents presented by Aylett and Luck [5]. This
positions agent systems on a spectrum based on their ca-
pabilities, and serves as a useful tool in differentiating be-
tween the various systems available. One end of this spec-
trum focuses on physical agents which are mainly con-
cerned with simulation of believable physical behavior,
(including sophisticated physiological models of muscle
and skeleton systems), and of sensory systems. Interest-
ing work at this end of the spectrum includes Terzopoulos’
highly realistic simulation of fish [76] and his virtual stunt-
man project [21] which creates virtual actors capable of re-
alistically synthesizing a broad repertoire of lifelike motor
skills.

Cognitive agents inhabit the other end of the agent
spectrum and are mainly concerned with issues such as
reasoning, decision making, planning and learning. Sys-
tems at this end of the spectrum include Funge’s cogni-
tive modeling approach [26] which uses the situation cal-
culus to control the behavior of virtual characters, and
Nareyek’s work on planning agents for simulation [55],
both of which will be described later in this article.

While the systems mentioned so far sit comfortably
at either end of the agent spectrum, many of the most
effective inhabit the middle ground. Amongst these are
c4 [13], used to great effect to simulate a virtual sheep dog
with the ability to learn new behaviors, Improv [59] which

augments sophisticated physical human animation with
scripted behaviors and the ViCrowd system [62] which sits
on top of a realistic virtual human animation system and
uses planning to control agents’ behavior.

Virtual Fidelity

The fact that so many different agent-based modeling sys-
tems, for the control of virtual humans exist gives rise to
the question why? The answer to this lies in the notion of
virtual fidelity, as described by Badler [6]. Virtual fidelity
refers to the fact that virtual reality systems need only re-
main true to actual reality in so much as this is required
by, and improves, the system.

In [47] the point is illustrated extremely effectively.
The article explains that when game designers are archi-
tecting the environments in which games are set, the scale
to which these environments are created is not kept true to
reality. Rather, to ease players’ movement in these worlds,
areas are designed to a much larger scale, compared to
character sizes, than in the real world. However, game
players do not notice this digression from reality, and in
fact have a negative response to environments that are de-
signed to be more true to life finding them cramped. This
is a perfect example of how, although designers stay true
to reality for many aspects of environment design, the par-
ticular blend of virtual fidelity required by an application
can dictate certain real world restrictions can be ignored
in virtual worlds.

With regard to virtual characters, virtual fidelity dic-
tates that the set of capabilities which these characters
should display is determined by the application which they
are to inhabit. So, the requirements of an agent-based
modeling system for CGI in movies would be very differ-
ent to those of a agent-based modeling system for control-
ling the behaviors of game characters.

Agent-BasedModelling in CGI forMovies

With the success of agent-based modeling techniques
in graphics firmly established there was something of
a search for application areas to which they could be ap-
plied. Fortunately, the success of agent-based modeling
techniques in computer graphics was paralleled with an
increase in the use of CGI in the movie industry, which
offered the perfect opportunity. In many cases CGI tech-
niques were being used to replace traditional methods for
creating expensive, or difficult to film scenes. In particular,
scenes involving large numbers of people or animals were
deemed no longer financially viable when set in the real
world. Creating these scenes using CGI involved painstak-
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ing hand animation of each character within a scene,
which again was not financially viable.

The solution that agent-based modeling offers is to
make each character within a scene an intelligent agent
that drives its own behavior. In this way, as long as the ini-
tial situation is set up correctly scenes will play out without
the intervention of animators. The facts that animating for
movies does not need to be performed in real-time, and is
in no way interactive (there are no human users involved
in the scene), make the use of agent-basedmodeling a par-
ticularly fine match for this application area.

Craig Reynolds’ Boids system [64] which simulates the
flocking behaviors exhibited in nature by schools of fish, or
flocks of birds and was discussed previously is one of the
seminal examples of agent-based modeling techniques be-
ing used in movie CGI. Reynold’s approach was first used
for CGI in the 1999 film “BatmanReturns” [14] to simulate
colonies of bats. Reynold’s technologies have been used in
“The Lion King” [4] and “From Dusk ‘Till Dawn” [65]
amongst other films. Reynolds’ approach was so success-
ful, in fact, that he was awarded an Academy Award for
his work in 1998.

Similar techniques to those utilized in the Boids sys-
tem have been used in many other films to animate
such diverse characters as ants, people and stampeding
wildebeest. Two productions which were released in the
same year, “Antz” [17] by Dreamworks and “A Bug’s
Life” [44] by Pixar took great steps in using CGI effects
to animate large crowds for. For “Antz” systems were
developed which allowed animators easily create scenes
containing large numbers of virtual characters modeling
each as an intelligent agent capable of obstacle avoidance,
flocking and other behaviors. Similarly, the creators of
“A Bug’s Life” created tools which allowed animators eas-
ily combine pre-defined motions (known as alibis) to cre-
ate behaviors which could easily be applied to individual
agents in scenes composed of hundreds of virtual charac-
ters.

However, the largest jump in the use of agent-based
modeling in movie CGI was made in the recent Lord of
the Rings trilogy [33,34,35]. In these films the bar was
raised markedly in terms of the sophistication of the vir-
tual characters displayed and the sheer number of char-
acters populating each scene. To achieve the special ef-
fects shots required by the makers of these films, the
Massive software system was developed by Massive Soft-
ware (www.massivesoftware.com). This system [2,39] uses
agent-based modeling techniques, again inspired by aLife,
to create virtual extras that control their own behaviors.
This system was put to particularly good use in the large
scale battle sequences that feature in all three of the Lord

of the Rings films. Some of the sequences in the final film
of the trilogy, the Return of the King, contain over 200,000
digital characters.

In order to create a large battle scene using theMassive
software, each virtual extra is represented as an intelligent
agent, making its own decisions about which actions it will
perform based on its perceptions of the world around it.
Agent control is achieved through the use of fuzzy logic
based controllers in which the state of an agent’s brain is
represented as a series of motivations, and knowledge it
has about the world – such as the state of the terrain it
finds itself on, what kinds of other agents are around it and
what these other agents are doing. This knowledge about
the world is perceived through simple simulated visual, au-
ditory and tactile senses. Based on the information they
perceive agents decide on a best course of action. Design-
ing the brains of these agents is made easier that it might
seem at first by the fact that agents are developed for short
sequences, and so a small range of possible tasks. So for ex-
ample, separate agent models would be used for a fighting
scene and a celebration scene.

In order to create a large crowd scene using Massive
animators initially set up an environment populating it
with an appropriate cast of virtual characters where the
brains of each character are slight variations (based on
physical and personality attributes) of a small number of
archetypes. The scene will then play itself out with each
character making it’s own decisions. Therefore there is no
need for any hand animation of virtual characters. How-
ever, directors can view the created scenes and by tweak-
ing the parameters of the brains of the virtual charac-
ters have a scene play out in the exact way that they re-
quire.

Since being used to such impressive effect in the Lord
of the Rings trilogy (the developers of the Massive sys-
tem were awarded an academy award for their work), the
Massive software system has been used in numerous other
films such as “I, Robot” [60], “The Chronicles of Narnia:
The Lion, the Witch and the Wardrobe” [1] and “Rata-
touille” [10] along with numerous television commercials
and music videos.

While the achievements of using agent-based model-
ing for movie CGI are extremely impressive, it is worth
noting that none of these systems run in real-time. Rather,
scenes are rendered by banks of high powered comput-
ers, a process that can take hours for relatively simple
scenes. For example, the famous Prologue battle sequence
in the “Lord of the Rings: The Fellowship of the Ring” took
a week to render. When agent-based modeling is applied
to the real-time world of computer games, things are very
different.

http://www.massivesoftware.com
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Agent-BasedModelling in Games

Even more so than in movies, agent-based modeling tech-
niques have been used to drive the behaviors of virtual
characters in computer games. As games have become
graphically more realistic (and in recent years they have
become extremely so) game-players have come to expect
that games are set in hugely realistic and believable virtual
worlds. This is particularly evident in the widespread use
of realistic physics modeling which is now commonplace
in games [67]. In games that make strong use of physics
modeling, objects in the game world topple over when
pushed, float realistically when dropped in water and gen-
erally respond as one would expect them to. Players expect
the same to be true of the virtual characters that populate
virtual game worlds. This can be best achieved by mod-
eling virtual characters as embodied virtual agents. How-
ever, there are a number of constraints which have a major
influence on the use of agent-based modeling techniques
in games.

The first of these constraints stems from the fact that
modern games are so highly interactive. Players expect to
be able to interact with all of the characters they encounter
within a game world. These interactions can be as simple
as having something to shoot at or having someone to race
against; or involve much more sophisticated interactions
in which a player is expected to converse with a virtual
character to find out specific information or to cooper-
ate with a virtual character in order to accomplish some
task that is key to the plot of a game. Interactivity raises
a massive challenge for practitioners as there is very little
restriction in terms of what the player might do. Virtual
characters should respond in a believable way at all times
regardless of how bizarre and unexpected the actions of
the player might be.

The second challenge comes from the fact that the
vast majority of video games should run in real time. This
means that the computational complexity must be kept to
a reasonable level as there are only a finite number of pro-
cessor cycles available for AI processing. This problem is
magnified by the fact that an enormous amount of CPU
power it usually dedicated to graphics processing. When
compared to the techniques that can be used for control-
ling virtual characters in films some of the techniques used
in games are rudimentary due to this real-time constraint.

Finally, modern games resemble films in the fact that
creators go to great lengths to include intricate story-
lines and control the building of tension in much the way
that film script writers do. This means that games are
tested heavily in order to ensure that the game proceeds
smoothly and that the level of difficulty is finely tuned so

as to always hold the interest of a player. In fact, this testing
of games has become something of a science in itself [77].
Using autonomous agents gives game characters the abil-
ity to do things that are unexpected by the game designers
and so upset their well laid plans. This can often be a bar-
rier to the use of sophisticated techniques such as learning.

Unfortunately there is also a barrier to the discus-
sion of agent-basedmodeling techniques used in commer-
cial games. Because of the very competitive nature of the
games industry, game development houses often consider
the details of how their games work as valuable trade se-
crets to be kept well guarded. This can make it difficult to
uncover the details of how particularly interesting features
of a game are implemented.While this situation is improv-
ing – more commercial game developers are speaking at
games conferences about how their games are developed
and the release of game systems development kits for the
development of game modifications (or mods) allows re-
searchers to plumb the depths of game code – it is still of-
ten impossible to find out the implementation details of
very new games.

Game Genres

Before discussing the use of agent-based modeling in
games any further, it is worth making a short clarifica-
tion on the kinds of computer games that this article refers
to. When discussing modern computer games, or video
games, this article does not refer to computer implemen-
tations of traditional games such as chess, backgammon
or card games such as solitaire. Although these games are
of considerable research interest (chess in particular has
been the subject of extremely successful research [23]) they
are typically not approached using agent-based modeling
techniques. Typically, artificial intelligence approaches to
games such as these rely largely on sophisticated search-
ing techniques which allow the computer player to search
through a multitude of possible future situations dictated
by the moves it will make and the moves it expects its
opponent to make in response. Based on this search,
and some clever heuristics that indicate what constitutes
a good game position for the computer player, the best se-
quence of moves can be chosen. This searching technique
relies on the fact that there are usually a relatively small
number of moves that a player can make at any one time
in a game.However, the fact that the ancient Chinese game
of Go-Moku has not, to date, been mastered by computer
players [80] illustrates the restrictions of such techniques.

The common thread linking together the kinds of
games that this article focuses on is that they all con-
tain computer controlled virtual characters that possess
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A screenshot of the upcoming action game RogueWarrior from Bethesda Softworks (image courtesy of Bethesda Softworks)

a strong notion of agency. Efforts are often made to sepa-
rate the many different kinds of modern video games that
are the focus of this article into a small set of descriptive
genres. Unfortunately, much like in music, film and lit-
erature, no categorization can hope to perfectly capture
the nuances of all of the available titles. However, a brief
mention of some of the more important game genres is
worth while (a more detailed description of game gen-
res, and artificial intelligence requirements of each is given
in [41]).

The most popular game genre is without doubt the ac-
tion game in which the player must defeat waves of de-
mented foes, typically (for increasingly bizarre motiva-
tions) bent upon global destruction. Illustrative examples
of the genre include Half-Life 2 (www.half-life2.com) and
the Halo series (www.halo3.com). A screenshot of the up-
coming action game Rogue Warrior (www.bethsoft.com)
is shown in Fig. 2.

Strategy games allow players to control large armies
in battle with other people, or computer controlled op-
ponents. Players do not have direct control over their
armies, but rather issue orders which are carried out
by agent-based artificial soldiers. Well regarded exam-
ples of the genre include the Age of Empires (www.
ageofempires.com) and Command & Conquer (www.
commandandconquer.com) series.

Role playing games (such as the Elder Scrolls (www.
elderscrolls.com) series) place game players in expansive
virtual worlds across which they must embark on fantasti-
cal quests which typically involve a mixture of solving puz-

zles, fighting opponents and interacting with non-player
characters in order to gain information. Figure 3 shows
a screenshot of the aforementioned role-playing game The
Elder Scrolls IV: Oblivion.

Almost every sport imaginable has at this stage been
turned into a computer based sports game. The challenges
in developing these games are creating computer con-
trolled opponents and team mates that play the games at
a level suitable to the human player. Interesting examples
include FIFA Soccer 08 (www.fifa08.ea.com) and Forza
Motorsport 2 (www.forzamotorsport.net).

Finally, many people expected that the rise of mas-
sively multi-player online games (MMOGs), in which
hundreds of human players can play together in an online
world, would sound the death knell for the use of virtual
non-player characters in games. Examples of MMOGs in-
cludeWorld of Warcraft (www.worldofwarcraft.com) and
Battlefield 2142 (www.battlefield.ea.com). However, this
has not turned out to be the case as there are still large
numbers of single player games being produced and even
MMOGs need computer controlled characters for roles
that players do not wish to play.

Of course there are many games that simply do not
fit into any of these categorizations, but that are still rel-
evant for a discussion of the use of agent-based tech-
niques – for example The Sims (www.thesims.ea.com) and
theMicrosoft Flight Simulator series (www.microsoft.com/
games/flightsimulatorx). However the categorization still
serves to introduce those unfamiliar with the subject to the
kinds of games up for discussion.

http://www.half-life2.com
http://www.halo3.com
http://www.bethsoft.com
http://www.ageofempires.com
http://www.ageofempires.com
http://www.commandandconquer.com
http://www.commandandconquer.com
http://www.elderscrolls.com
http://www.elderscrolls.com
http://www.fifa08.ea.com
http://www.forzamotorsport.net
http://www.worldofwarcraft.com
http://www.battlefield.ea.com
http://www.thesims.ea.com
http://www.microsoft.com/games/flightsimulatorx
http://www.microsoft.com/games/flightsimulatorx
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Computer Graphics and Games, Agent BasedModeling in, Figure 3
A screenshot from Bethesda Softwork’s role playing game The Elder Scrolls IV: Oblivion (image courtesy of Bethesda Softworks)

Implementing Agent-Based Modelling Techniques
in Games

One of the earliest examples of using agent-based model-
ing techniques in video games was its application to path
planning. The ability of non-player characters (NPCs) to
manoeuvre around a game world is one of the most ba-
sic competencies required in games. While in very early
games it was sufficient to have NPCs move along pre-
scripted paths, this soon become unacceptable. Games
programmers soon began to turn to AI techniques which
might be applied to solve some of the problems that were
arising. The A* path planning algorithm [74] was the first
example of such a technique to find wide-spread use in
the games industry. Using the A* algorithm NPCs can be
given the ability to find their own way around an envi-
ronment. This was put to particularly fine effect early on
in real-time strategy games where the units controlled by
players are semi-autonomous and are given orders rather
than directly controlled. In order to use the A* algorithm
a game world must be divided into a series of cells each
of which is given a rating in terms of the effort that must
be expended to cross it. The A* algorithm then performs
a search across these cells in order to find the shortest path
that will take a game agent from a start position to a goal.

Since becoming widely understood amongst the game
development community many interesting additions have
been made to the basic A* algorithm. It was not long be-
fore three dimensional versions of the algorithm became
commonly used [71]. The basic notion of storing the en-
ergy required to cross a cell within a game world has also
been extended to augment cells with a wide range of other
useful information (such as the level of danger in crossing
a cell) that can be used in the search process [63].

The next advance in the kind of techniques being used
to achieve agent-based modeling in games was the finite
state machine (FSM) [30]. An FSM is a simple system in
which a finite number of states are connected in a directed
graph by transitions between these states. When used for
the control of NPCs, the nodes of an FSM indicate the
possible actions within a game world that an agent can
perform. Transitions indicate how changes in the state of
the game world or the character’s own attributes (such as
health, tiredness etc) can move the agent from one state to
another.

Figure 4 shows a sample FSM for the control of an
NPC in a typical action game. In this example the behav-
iors of the character are determined by just four states –
CHASE, ATTACK, FLEE and EXPLORE. Each of these states
provides an action that the agent should take. For exam-
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ure 4
A simple finite statemachine for a soldier NPC in an action game

ple, when in the EXPLORE state the character should wan-
der randomly around the world, or while in the FLEE state
the character should determine a direction to move in that
will take it away from its current enemy and move in that
direction. The links between the states show how the be-
haviors of the character should move between the various
available states. So, for example, if while in the ATTACK
state the agent’s health measure becomes low, they will
move to the FLEE state and run away from their enemy.

FSMs are widely used because they are so simple, well
understood and extremely efficient both in terms of pro-
cessing cycles required and memory usage. There have
also been a number of highly successful augmentations
to the basic state machine model to make them more ef-
fective, such as the introduction of layers of parallel state
machines [3], the use of fuzzy logic in finite state ma-
chines [19] and the implementation of cooperative group
behaviors through state machines [72].

The action gameHalo 2 is recognized as having a par-
ticularly good implementation of state machine based
NPC control [79]. At any time an agent could be in any
one of the four states Idle, Guard/Patrol, Attack/Defend,
and Retreat. Within each of these states a set of rules was
used in order to select from a small set of appropriate ac-
tions for that state – for example a number of different
ways to attack the player. The decisions made by NPCs
were influenced by a number of character attributes in-
cluding strength, speed and cowardliness. Transition be-
tween states was triggered by perceptions made by charac-
ters simulated senses of vision and hearing and by internal

attributes such as health. The system implemented also al-
lowed for group behaviors allowing NPCs to hold conver-
sations and cooperate to drive vehicles.

However, FSMs are not without their drawbacks.
When designing FSMs developers must envisage every
possible situation that might confront an NPC over the
course of a game. While this is quite possible for many
games, if NPCs are required to move between many dif-
ferent situations this task can become overwhelming. Sim-
ilarly, as more and more states are added to an FSM de-
signing the links between these states can become a mam-
moth undertaking.

From [31] the definition of rule based systems states
that they are “. . . comprised of a database of associated
rules. Rules are conditional program statements with con-
sequent actions that are performed if the specified condi-
tions are satisfied”. Rule based systems have been applied
extensively to control NPCs in games [16], in particular
for the control of NPCs in role-playing games. NPCs be-
haviors are scripted using a set of rules which typically in-
dicate how an NPC should respond to particular events
within the gameworld. Borrowed from [82], the listing be-
low shows a snippet of the rules used to control a warrior
character in the RPG Baldur’s Gate (www.bioware.com).

IF
// If my nearest enemy is not within 3
!Range(NearestEnemyOf(Myself),3)
// and is within 8
Range(NearestEnemyOf(Myself),8)

THEN
// 1/3 of the time
RESPONSE #40

// Equip my best melee weapon
EquipMostDamagingMelee()
// and attack my nearest enemy, checking every 60
// ticks to make sure he is still the nearest
AttackReevalutate(NearestEnemyOf (Myself),60)

// 2/3 of the time
RESPONSE #60

// Equip a ranged weapon
EquipRanged()
// and attack my nearest enemy, checking every 30
// ticks to make sure he is still the nearest
AttackReevalutate(NearestEnemyOf (Myself), 30)

The implementation of an NPC using a rule-based system
would consist of a large set of such rules, a small set of
which would fire based on the conditions in the world at
any given time. Rule based systems are favored by game
developers as they are relatively simple to use and can be

http://www.bioware.com
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exhaustively tested. Rule based systems also have the ad-
vantage that rule sets can be written using simple propri-
etary scripting systems [9], rather than full programming
languages, making them easy to implement. Development
companies have also gone so far as to make these scripting
languages available to the general public, enabling them to
author there own rule sets.

Rule based systems, however, are not without their
drawbacks. Authoring extensive rule sets is not a trivial
task, and they are usually restricted to simple situations.
Also, rule based systems can be restrictive in that they
don’t allow sophisticated interplay between NPCs motiva-
tions, and require that rule set authors foresee every situa-
tion that the NPC might find itself in.

Some of the disadvantages of simple rule based systems
can be alleviated by using more sophisticated inference
engines. One example uses Dempster Schafer theory [43]
which allows rules to be evaluated by combining multi-
ple sources of (often incomplete) evidence to determine
actions. This goes some way towards supporting the use
of rule based systems in situations where complete knowl-
edge is not available.

ALife techniques have also been applied extensively in
the control of game NPCs, as much as a philosophy as any
particular techniques. The outstanding example of this is
The Sims (thesims.ea.com) a surprise hit of 2000 which
has gone on to become the best selling PC game of all
time. Created by games guru Will Wright the Sims puts
the player in control of the lives of a virtual family in their
virtual home. Inspired by aLife, the characters in the game
have a set ofmotivations, such as hunger, fatigue and bore-
dom and seek out items within the game world that can
satisfy these desires. Virtual characters also develop so-
phisticated social relationships with each other based on
common interest, attraction and the amount of time spent
together. The original system in the Sims has gone on to
be improved in the sequel The Sims 2 and a series of ex-
pansion packs.

Some of the more interesting work in developing tech-
niques for the control of game characters (particularly in
action games) has been focused on developing interesting
sensing and memory models for game characters. Play-
ers expect when playing action games that computer con-
trolled opponents should suffer from the same problems
that players do when perceiving the world. So, for exam-
ple, computer controlled characters should not be able to
see through walls or from one floor to the next. Similarly,
though, players expect computer controlled characters to
be capable of perceiving events that occur in a world and
so NPCs should respond appropriately to sound events or
on seeing the player.

One particularly fine example of a sensing model was
in the game Thief: The Dark Project where players are re-
quired to sneak around an environment without alerting
guards to their presence [45]. The developers produced
a relatively sophisticated sensing model that was used by
non-player characters which modeled visual effects such
as not being able to see the player if they were in shadows,
and moving some way towards modeling acoustics so that
non-player characters could respond reasonably to sound
events.

2004’s Fable (fable.lionhead.com) took the idea of
adding memory to a game to new heights. In this adven-
ture game the player took on the role of a hero from boy-
hood to manhood. However, every action the player took
had an impact on the way in which the game world’s pop-
ulation would react to him or her as they would remember
every action the next time they met the player. This notion
of long-term consequences added an extra layer of believ-
ability to the game-playing experience.

Serious Games & Academia

It will probably have become apparent to most readers of
the previous section that much of the work done in imple-
menting agent-based techniques for the control of NPCs
in commercial games is relatively simplistic when com-
pared to the application of these techniques in other ar-
eas of more academic focus, such as robotics [54]. The
reasons for this have been discussed already and briefly
relate to the lack of available processing resources and
the requirements of commercial quality control. However,
a large amount of very interesting work is taking place in
the application of agent-based technologies in academic
research, and in particular the field of serious games. This
section will begin by introducing the area of serious games
and then go on to discuss interesting academic projects
looking at agent-based technologies in games.

The term serious games [53] refers to games de-
signed to do more than just entertain. Rather, serious
games, while having many features in common with con-
ventional games, have ulterior motives such as teaching,
training, and marketing. Although games have been used
for ends apart from entertainment, in particular educa-
tion, for a long time, the modern serious games move-
ment is set apart from these by the level of sophisti-
cation of the games it creates. The current generation
of serious games is comparable with main-stream games
in terms of the quality of production and sophistication
of their design. Serious games offer particularly inter-
esting opportunities for the use of agent-based model-
ing techniques due to the facts that they often do not

http://thesims.ea.com
http://fable.lionhead.com
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have to live up to the rigorous testing of commercial
games, can have the requirement of specialized hardware
rather than being restricted to commercial games hard-
ware and often, by the nature of their application domains,
require more in-depth interactions between players and
NPCs.

The modern serious games movement can be said to
have begun with the release of America’s Army (www.
americasarmy.com) in 2002 [57]. Inspired by the real-
ism of commercial games such as the Rainbow 6 series
(www.rainbow6.com), the United States military devel-
oped America’s Army and released it free of charge in or-
der to give potential recruits a flavor of army life. The game
was hugely successful and is still being used today as both
a recruitment tool and as an internal army training tool.

Spurred on by the success of America’s Army the seri-
ous games movement began to grow, particularly within
academia. A number of conferences sprung up and no-
tably the Serious Games Summit became a part of the
influential Game Developer’s Conference (www.gdconf.
com) in 2004.

Some other notable offerings in the serious games field
include Food Force (www.food-force.com) [18], a game
developed by the United NationsWorld Food Programme

Computer Graphics and Games, Agent BasedModeling in, Figure 5
A screenshot of Serious Gordon, a serious game developed to aid in the teaching of food safety in kitchens

in order to promote awareness of the issues surrounding
emergency food aid; Hazmat Hotzone [15], a game devel-
oped by the Entertainment Technology Centre at Carnegie
Mellon University to train fire-fighters to deal with chem-
ical and hazardous materials emergencies; Yourself!Fitness
(www.yourselffitness.com) [53] an interactive virtual per-
sonal trainer developed for modern games consoles; and
Serious Gordon (www.seriousgames.ie) [50] a game devel-
oped to aid in teaching food safety in kitchens. A screen
shot of Serious Gordon is shown in Fig. 5.

Over the past decade, interest in academic research
that is directly focused on artificial intelligence, and in par-
ticular agent-based modelling techniques and their appli-
cation to games (as opposed to the general virtual char-
acter/computer graphics work discussed previously) has
grown dramatically. One of the first major academic re-
search projects into the area of Game-AI was led by John
Laird at the University of Michigan, in the United States.
The SOAR architecture was developed in the early nine-
teen eighties in an attempt to “develop and apply a unified
theory of human and artificial intelligence” [66]. SOAR is
essentially a rule based inference system which takes the
current state of a problem and matches this to production
rules which lead to actions.

http://www.americasarmy.com
http://www.americasarmy.com
http://www.rainbow6.com
http://www.gdconf.com
http://www.gdconf.com
http://www.food-force.com
http://www.yourselffitness.com
http://www.seriousgames.ie
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After initial applications into the kind of simple puz-
zle worlds which characterized early AI research [42], the
SOAR architecture was applied to the task of controlling
computer generated forces [37]. This work lead to an ob-
vious transfer to the new research area of game-AI [40].

Initially the work of Laird’s group focused on apply-
ing the SOAR architecture to the task of controlling NPC
opponents in the action game Quake (www.idsoftware.
com) [40]. This proved quite successful leading to oppo-
nents which could successfully play against human play-
ers, and even begin to plan based on anticipation of what
the player was about to do. More recently Laird’s group
have focused on the development of a game which re-
quires more involved interactions between the player and
the NPCs. Named Haunt 2, this game casts the player
in the role of a ghost that must attempt to influence the
actions of a group of computer controlled characters in-
habiting the ghost’s haunted house [51]. The main is-
sue that arises with the use the SOAR architecture is
that it is enormously resource hungry, with the NPC
controllers running on a separate machine to the actual
game.

At Trinity College in Dublin in Ireland, the author
of this article worked on an intelligent agent architec-
ture, the Proactive Persistent Agent (PPA) architecture,

Computer Graphics and Games, Agent BasedModeling in, Figure 6
Screenshots of the PPA system simulating parts of a college

for the control of background characters (or support char-
acters) in character-centric games (games that focus on
character interactions rather than action, e. g. role-playing
games) [48,49]. The key contributions of this work were
that it made possible the creation of NPCs that were capa-
ble of behaving believably in a wide range of situations and
allowed for the creation of game environments which it
appeared had an existence beyond their interactions with
players. Agent behaviors in this work were based on mod-
els of personality, emotion, relationships to other charac-
ters and behavioral models that changed according to the
current role of an agent. This system was used to develop
a stand alone game and as part of a simulation of areas
within Trinity College. A screenshot of this second appli-
cation is shown in Fig. 6.

At Northwestern University in Chicago the Interactive
Entertainment group has also applied approaches from
more traditional research areas to the problems facing
game-AI. Ian Horswill has led a team that are attempting
to use architectures traditionally associated with robotics
for the control of NPCs. In [29] Horswill and Zubek con-
sider how perfectly matched the behavior based architec-
tures often used in robotics are with the requirements of
NPC control architectures. The group have demonstrated
some of their ideas in a test-bed environment built on top

http://www.idsoftware.com
http://www.idsoftware.com
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of the game Half-Life [38]. The group also looks at issues
around character interaction [85] and the many psycho-
logical issues associated with creating virtual characters
asking how we can create virtual game agents that display
all of the foibles that make us relate to characters in human
stories [28].

Within the same research group a team led by Ken For-
bus have extended research previously undertaken in con-
junction with the military [24] and applied it to the prob-
lem of terrain analysis in computer strategy games [25].
Their goal is to create strategic opponents which are ca-
pable of performing sophisticated reasoning about the ter-
rain in a game world and using this knowledge to iden-
tify complex features such as ambush points. This kind
of high level reasoning would allow AI opponents play
a much more realistic game, and even surprise human
players from time to time, something that is sorely miss-
ing from current strategy games.

As well as this work which has spring-boarded from
existing applications, a number of projects began expressly
to tackle problems in game-AI. Two which particularly
stand out are the Excalibur Project, led by Alexander
Nareyek [55] and work by John Funge [26]. Both of these
projects have attempted to applying sophisticated plan-
ning techniques to the control of game characters.

Nareyek uses constraint based planning to allow game
agents reason about their world. By using techniques such
as local search Nareyek has attempted to allow these so-
phisticated agents perform resource intensive planning
within the constraints of a typical computer game envi-
ronment. Following on from this work, the term anytime
agent was coined to describe the process by which agents
actively refine original plans based on changing world con-
ditions. In [56] Narayek describes the directions in which
he intends to take this work in future.

Funge uses the situational calculus to allow agents rea-
son about their world. Similarly to Nareyek he has ad-
dressed the problems of a dynamic, ever changing world,
plan refining and incomplete information. Funge’s work
uses an extension to the situational calculus which allows
the expression of uncertainty. Since completing this work
Funge has gone on to be one of the founders of AiLive
(www.ailive.net), a middleware company specializing in
AI for games.

While the approaches of both of these projects have
shown promise within the constrained environments to
which they have been applied during research, (and work
continues on them) it remains to be seen whether such
techniques can be successfully applied to a commercial
game environment and all of the resource constraints that
such an environment entails.

One of the most interesting recent examples of agent-
based work in the field of serious games is that undertaken
by Barry Silverman and his group at the University of
Pennsylvania in the United States [69,70]. Silvermanmod-
els the protagonists in military simulations for use in train-
ing programmes and has taken a very interesting approach
in that his agent models are based on established cognitive
science and behavioral science research. While Silverman
admits that many of the models described in the cognitive
science and behavioral science literature are not well quan-
tified enough to be directly implemented, he has adapted
a number of well respected models for his purposes. Sil-
verman’s work is an excellent example of the capabilities
that can be explored in a serious games setting rather than
a commercial game setting, and as such merits an in depth
discussion. A high-level schematic diagram of Silverman’s
approach is shown in Fig. 7 and shows the agent architec-
ture used by Silverman’s system, PMFserv.

The first important component of the PMFserv system
is the biology module which controls biological needs us-
ing a metaphor based on the flow of water through a sys-
tem. Biological concepts such as hunger and fatigue are
simulated using a series of reservoirs, tanks and valves
which model the way in which resources are consumed by
the system. This biological model is used in part to model
stress which has an important impact on the way in which
agents make decisions. To model the way in which agent
performance changes under pressure Silverman uses per-
formance moderator functions (PMFs). An example of one
of the earliest PMFs used is the Yerkes–Dodson “inverted-
u” curve [84] which illustrates that as mental arousal is
increased performance initially improves, peaks and then
trails off again. In PMFserv a range of PMFs are used to
model the way in which behavior should change depend-
ing on stress levels and biological conditions.

The second important module of PMFserv attempts
to model how personality, culture and emotion affect the
behavior of an agent. In keeping with the rest of their
system PMFserv uses models inspired by cognitive sci-
ence to model emotions. In this case the well known OCC
model [58], which has been used in agent-based applica-
tions before [8], is used. The OCC model provides for 11
pairs of opposite emotions such as pride and shame, and
hope and fear. The emotional state of an agent with regard
to past, current and future actions heavily influences the
decisions that the agent makes.

The second portion of the Personality, Culture, Emo-
tion module uses a value tree in order to capture the val-
ues of an agent. These values are divided into a Preference
Tree which captures long term desired states for the world,
a Standards Tree which relates to the actions that an agent

http://www.ailive.net
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Computer Graphics and Games, Agent BasedModeling in, Figure 7
A schematic diagram of the main components of the PMFserv system (with kind permission of Barry Silverman)

believes it can or cannot follow in order to achieve these
desired states and a Goal Tree which captures short term
goals.

PMFserv also models the relationships between agents
(Social Model, Relations, Trust in Fig. 7). The relationship
of one agent to another is modeled in terms of three axes.
The first is the degree to which the other agent is thought
of as a human rather than an inanimate object – locals tend
to view American soldiers as objects rather than people.
The second axis is the cognitive grouping (ally, foe etc)
to which the other agent belongs and whether this is also
a group to which the first agent has an affinity. Finally,
the valence, or strength, of the relationship is stored. Re-
lationships continually change based on actions that oc-
cur within the game world. Like the other modules of
the system this model is also based on psychological re-
search [58].

The final important module of the PMFserv architec-
ture is the Cognitive module which is used to decide on
particular actions that agents will undertake. This module
uses inputs from all of the othermodules to make these de-
cisions and so the behavior of PMFserv agents is driven by
their stress levels, relationships to other agents and objects
within the game world, personality, culture and emotions.
The details of the PMFserv cognitive process are beyond
the scope of this article, so it will suffice to say that action
selection is based on a calculation of the utility of a partic-

ular action to an agent, with this calculation modified by
the factors listed above.

The most highly developed example using the PMF-
serv model is a simulation of the 1993 event inMogadishu,
Somalia in which a United States military Black Hawk he-
licopter crashed, as made famous by the book and film
“Black Hawk Down” [12]. In this example, which was
developed as a military training aid as part of a larger
project looking at agent implementations within such sys-
tems [78,81] the player took on the role of a US army
ranger on a mission to secure the helicopter wreck in
a modification (or “mod”) of the game Unreal Tourna-
ment (www.unreal.com). A screenshot of this simulation
is shown in Fig. 8.

The PMFserv system was used to control the behav-
iors of characters within the game world such as Somali
militia, and Somali civilians. These characters were im-
bued with physical attributes, a value system and relation-
ships with other characters and objects within the game
environment. The sophistication of PMFserv was appar-
ent inmany of the behaviors of the simulations NPCs. One
particularly good example was the fact that Somali women
would offer themselves as human shields for militia fight-
ers. This behavior was never directly programmed into the
agents make-up, but rather emerged as a result of their
values and assessment of their situation. PMFserv remains
one of the most sophisticated current agent implementa-

http://www.unreal.com
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Computer Graphics and Games, Agent BasedModeling in, Figure 8
A screenshot of the PMFserv system being used to simulate the Black HawkDown scenario (with kind permission of Barry Silverman)

tions and shows the possibilities when the shackles of com-
mercial game constraints are thrown off.

Future Directions

There is no doubt that with the increase in the amount of
work being focused on the use of agent-based modeling in
computer graphics and games there will be major develop-
ments in the near future. This final section will attempt to
predict what some of these might be.

The main development that might be expected in all
of the areas that have been discussed in this article is an
increase in the depth of simulation. The primary driver of
this increase in depth will be the development of more so-
phisticated agent models which can be used to drive ever
more sophisticated agent behavior. The PMFserv system
described earlier is one example of the kinds of deeper sys-
tems that are currently being developed. In general com-
puter graphics applications this will allow for the creation
of more interesting simulations including previously pro-
hibitive features such as automatic realistic facial expres-
sions and other physical expressions of agents’ internal
states. This would be particularly use in CGI for movies
in which, although agent based modeling techniques are
commonly used for crowd scenes and background charac-

ters, main characters are still animated almost entirely by
hand.

In the area of computer games it can be expected that
many of the techniques being used in movie CGI will fil-
ter over to real-time game applications as the process-
ing power of game hardware increases – this is a pattern
that has been evident for the past number of years. In
terms of depth that might be added to the control of game
characters one feature that has mainly been conspicuous
by its absence in modern games is genuine learning by
game agents. 2000’s Black & White and its sequel Black &
White 2 (www.lionhead.com) featured some learning by
one of the game’s main characters that the player could
teach in a reinforcement manner [20]. While this was
particularly successful in the game, such techniques have
not been more widely applied. One interesting academic
project in this area is the NERO project (www.nerogame.
org) which allows a player to train an evolving army of sol-
diers and have them battle the armies of other players [73].
It is expected that these kinds of capabilities will become
more and more common in commercial games.

One new feature of the field of virtual character con-
trol in games is the emergence of specialized middle-
ware. Middleware has had a massive impact in other
areas of game development including character mod-

http://www.lionhead.com
http://www.nerogame.org
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eling (for example Maya available from www.autodesk.
com) and physics modeling (for example Havok avail-
able from www.havok.com). AI focused middleware for
games is now becoming more common with notable of-
ferings including AI-Implant (www.ai-implant.com) and
Kynogon (www.kynogon.com) which perform path find-
ing and state machine based control of characters. It is ex-
pected that more sophisticated techniques will over time
find their way into such software.

To conclude the great hope for the future is that more
and more sophisticated agent-based modeling techniques
from other application areas and other branches of AI will
find their way into the control of virtual characters.

Bibliography

Primary Literature

1. Adamson A (Director) (2005) The Chronicles of Narnia: The
Lion, the Witch and the Wardrobe. Motion Picture. http://
adisney.go.com/disneypictures/narnia/lb_main.html

2. Aitken M, Butler G, Lemmon D, Saindon E, Peters D, Williams G
(2004) The Lord of the Rings: the visual effects that brought
middle earth to the screen. International Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH),
Course Notes

3. Alexander T (2003) Parallel-StateMachines for Believable Char-
acters. In: Massively Multiplayer Game Development. Charles
River Media

4. Allers R, Minkoff R (Directors) (1994) The Lion King. Motion
Picture. http://disney.go.com/disneyvideos/animatedfilms/
lionking/

5. Aylett R, Luck M (2000) Applying Artificial Intelligence to Vir-
tual Reality: Intelligent Virtual Environments. Appl Artif Intell
14(1):3–32

6. Badler N, Bindiganavale R, Bourne J, Allbeck J, Shi J, Palmer M
(1999) Real Time Virtual Humans. In: Proceedings of the Inter-
national conference on Digital Media Futures.

7. Bates J (1992) The Nature of Characters in Interactive Worlds
and the Oz Project. Technical Report CMU-CS-92–200. School
of Computer Science, Carnegie Melon University

8. Bates J (1992) Virtual reality, art, and entertainment. Presence:
J Teleoper Virtual Environ 1(1):133–138

9. Berger L (2002) Scripting: Overview and Code Generation. In:
Rabin S (ed) AI Game Programming wisdom. Charles River Me-
dia

10. Bird B, Pinkava J (Directors) (2007) Ratatouille. Motion Pic-
ture. http://disney.go.com/disneyvideos/animatedfilms/
ratatouille/

11. Blumberg B (1996) Old Tricks, NewDogs: Ethology and Interac-
tive Creatures. PhD Thesis, Media Lab, Massachusetts Institute
of Technology

12. Bowden M (2000) Black Hawk Down. Corgi Adult
13. Burke R, Isla D, Downie M, Ivanov Y, Blumberg B (2002) Crea-

ture Smarts: The Art and Architecture of a Virtual Brain. In: Pro-
ceedings of Game-On 2002: the 3rd International Conference
on Intelligent Games and Simulation, pp 89–93

14. Burton T (Director) (1992) Batman Returns. Motion Picture.
http://www.warnervideo.com/batmanmoviesondvd/

15. Carless S (2005) Postcard From SGS 2005: Hazmat: Hot-
zone – First-Person First Responder Gaming. Retrieved Oc-
tober 2007, from Gamasutra: www.gamasutra.com/features/
20051102/carless_01b.shtml

16. Christian M (2002) A Simple Inference Engine for a Rule Based
Architecture. In: Rabin S (ed) AI Game Programming Wisdom.
Charles River Media

17. Darnell E, Johnson T (Directors) (1998) Antz. Motion Picture.
http://www.dreamworksanimation.com/

18. DeMaria R (2005) Postcard from the Serious Games Summit:
How the United Nations Fights Hunger with Food Force. Re-
trieved October 2007, from Gamasutra: www.gamasutra.com/
features/20051104/demaria_01.shtml

19. Dybsand E (2001) A Generic Fuzzy State Machine in C++. In:
Rabin S (ed) Game Programming Gems 2. Charles River Media

20. Evans R (2002) Varieties of Learning. In: Rabin S (ed) AI Game
Programming Wisdom. Charles River Media

21. Faloutsos P, van de Panne M, Terzopoulos D (2001) The Vir-
tual Stuntman: Dynamic Characters with a Repetoire of Au-
tonomous Motor Skills. Comput Graph 25(6):933–953

22. Farenc N, Musse S, Schweiss E, Kallmann M, Aune O, Boulic R
et al (2000) A Paradigm for Controlling Virtual Humans in Ur-
ban Environment Simulations. Appl Artif Intell J Special Issue
Intell Virtual Environ 14(1):69–91

23. Feng-Hsiung H (2002) Behind Deep Blue: Building the Com-
puter that Defeated the World Chess Champion. Princeton
University Press

24. Forbus K, Nielsen P, Faltings B (1991) Qualitative Spatial Rea-
soning: The CLOCK Project. Artif Intell 51:1–3

25. Forbus K, Mahoney J, Dill K (2001) How Qualitative Spatial Rea-
soning Can Improve Strategy Game AIs. In: Proceedings of the
AAAI Spring Symposium on AI and Interactive Entertainment

26. Funge J (1999) AI for Games and Animation: A Cognitive Mod-
eling Approach. A.K. Peters

27. Hayes-Roth B, Doyle P (1998) Animate Characters. Auton
Agents Multi-Agent Syst 1(2):195–230

28. Horswill I (2007) Psychopathology, narrative, and cognitive ar-
chitecture (or: why NPCs should be just as screwed up as we
are). In: Proceedings of AAAI Fall Symposium on Intelligent
Narrative Technologies

29. Horswill I, Zubek R (1999) Robot Architectures for Believable
Game Agents. In: Proceedings of the 1999 AAAI Spring Sym-
posium on Artificial Intelligence and Computer Games

30. Houlette R, Fu D (2003) The Ultimate Guide to FSMs in Games.
In: Rabin S (ed) AI Game ProgrammingWisdom 2. Charles River
Media

31. IGDA (2003) Working Group on Rule-Based Systems Report. In-
ternational Games Development Association

32. Isbister K, Doyle P (2002) Design and Evaluation of Embodied
Conversational Agents: A Proposed Taxonomy. In: Proceed-
ings of the AA-MAS02Workshop on Embodied Conversational
Agents: Lets Specify and Compare Them! Bologna, Italy

33. Jackson P (Director) (2001) The Lord of the Rings: The Fellow-
ship of the Ring. Motion Picture. http://www.lordoftherings.
net/

34. Jackson P (Director) (2002) The Lord of the Rings: The TwoTow-
ers. Motion Picture. http://www.lordoftherings.net/

35. Jackson P (Director) (2003) The Lord of the Rings: The Return
of the King. Motion Picture. http://www.lordoftherings.net/

http://www.autodesk.com
http://www.autodesk.com
http://www.havok.com
http://www.ai-implant.com
http://www.kynogon.com
http://adisney.go.com/disneypictures/narnia/lb_main.html
http://adisney.go.com/disneypictures/narnia/lb_main.html
http://disney.go.com/disneyvideos/animatedfilms/lionking/
http://disney.go.com/disneyvideos/animatedfilms/lionking/
http://disney.go.com/disneyvideos/animatedfilms/ratatouille/
http://disney.go.com/disneyvideos/animatedfilms/ratatouille/
http://www.warnervideo.com/batmanmoviesondvd/
http://www.gamasutra.com/features/20051102/carless_01b.shtml
http://www.gamasutra.com/features/20051102/carless_01b.shtml
http://www.dreamworksanimation.com/
http://www.gamasutra.com/features/20051104/demaria_01.shtml
http://www.gamasutra.com/features/20051104/demaria_01.shtml
http://www.lordoftherings.net/
http://www.lordoftherings.net/
http://www.lordoftherings.net/
http://www.lordoftherings.net/


Computer Graphics and Games, Agent Based Modeling in C 1351

36. Johnston O, Thomas F (1995) The Illusion of Life: Disney Ani-
mation. Disney Editions

37. Jones R, Laird J, Neilsen P, Coulter K, Kenny P, Koss F (1999)
Automated Intelligent Pilots for Combat Flight Simulation. AI
Mag 20(1):27–42

38. Khoo A, Zubek R (2002) Applying Inexpensive AI Techniques to
Computer Games. IEE Intell Syst Spec Issue Interact Entertain
17(4):48–53

39. Koeppel D (2002) Massive Attack. http://www.popsci.com/
popsci/science/d726359b9fa84010vgnvcm1000004eecbccdr
crd.html. Accessed Oct 2007

40. Laird J (2000) An Exploration into Computer Games and Com-
puter Generated Forces. The 8th Conference on Computer
Generated Forces and Behavior Representation

41. Laird J, van Lent M (2000) Human-Level AI’s Killer Application:
Interactive Computer Games. In: Proceedings of the 17th Na-
tional Conference on Artificial Intelligence

42. Laird J, Rosenbloom P, Newell A (1984) Towards Chunking as
a General LearningMechanism. The 1984 National Conference
on Artificial Intelligence (AAAI), pp 188–192

43. Laramée F (2002) A Rule Based Architecture Using Dempster-
Schafer theory. In: Rabin S (ed) AI GameProgrammingWisdom.
Charles River Media

44. Lasseter J, Stanton A (Directors) (1998) A Bug’s Life; Motion Pic-
ture. http://www.pixar.com/featurefilms/abl/

45. Leonard T (2003) Building anAI Sensory System: Examining the
Deign of Thief: The Dark Project. In: Proceedings of the 2003
Game Developers’ Conference, San Jose

46. Loyall B (1997) Believable Agents: Building Interactive Person-
alities. Ph D Thesis, Carnegie Melon University

47. Määta A (2002) Realistic Level Design for Max Payne. In: Pro-
ceedings of the 2002 Game Developer’s conference, GDC 2002

48. Mac Namee B, Cunningham P (2003) Creating Socially Interac-
tive Non Player Characters: The μ-SIC System. Int J Intell Games
Simul 2(1)

49. Mac Namee B, Dobbyn S, Cunningham P, O’Sullivan C (2003)
Simulating Virtual Humans Across Diverse Situations. In: Pro-
ceedings of Intelligent Virtual Agents ’03, pp 159–163

50. Mac Namee B, Rooney P, Lindstrom P, Ritchie A, Boylan F,
Burke G (2006) Serious Gordon: Using Serious Games to Teach
Food Safety in the Kitchen. The 9th International Conference
on Computer Games: AI, Animation, Mobile, Educational & Se-
rious Games CGAMES06, Dublin

51. Magerko B, Laird JE, Assanie M, Kerfoot A, Stokes D (2004) AI
Characters and Directors for Interactive Computer Games. The
2004 Innovative Applications of Artificial Intelligence Confer-
ence. AAAI Press, San Jose

52. ThalmannMN, Thalmann D (1994) Artificial Life and Virtual Re-
ality. Wiley

53. Michael D, Chen S (2005) Serious Games: Games That Educate,
Train, and Inform. Course Technology PTR

54. Muller J (1996) The Design of Intelligent Agents: A Layered Ap-
proach. Springer

55. Nareyek A (2001) Constraint Based Agents. Springer
56. Nareyek A (2007) Game AI is Dead. Long Live Game AI! IEEE

Intell Syst 22(1):9–11
57. Nieborg D (2004) America’s Army: More Than aGame. Bridging

the Gap;Transforming Knowledge into Action through Gam-
ing and Simulation. Proceedings of the 35th Conference of the
International Simulation and Gaming Association (ISAGA), Mu-
nich

58. Ortony A, Clore GL, Collins A (1988) The cognitive structure of
emotions. Cambridge University Press, Cambridge

59. Perlin K, Goldberg A (1996) Improv: A System for Scripting In-
teractive Actors in Virtual Worlds. In: Proceedings of the ACM
Computer Graphics Annual Conference, pp 205–216

60. Proyas A (Director) (2004) I, Robot. Motion Picture. http://www.
irobotmovie.com

61. Rao AS, Georgeff MP (1991) Modeling rational agents within
a BDI-architecture. In: Proceedings of Knowledge Representa-
tion and Reasoning (KR&R-91). Morgan Kaufmann, pp 473–484

62. Musse RS, ThalmannD (2001) A BehavioralModel for Real Time
Simulation of Virtual Human Crowds. IEEE Trans Vis Comput
Graph 7(2):152–164

63. Reed C, Geisler B (2003) Jumping, Climbing, and Tactical Rea-
soning: How to Get More Out of a Navigation System. In: Rabin
S (ed) AI Game Programming Wisdom 2. Charles River Media

64. Reynolds C (1987) Flocks, Herds and Schools: A Distributed Be-
havioral Model. Comput Graph 21(4):25–34

65. Rodriguez R (Director) (1996) FromDusk ’Till Dawn.Motion Pic-
ture

66. Rosenbloom P, Laird J, Newell A (1993) The SOAR Papers: Read-
ings on Integrated Intelligence. MIT Press

67. Sánchez-Crespo D (2006) GDC: Physical Gameplay in Half-Life
2. Retrieved October 2007, from gamasutra.com: http://www.
gamasutra.com/features/20060329/sanchez_01.shtml

68. Shao W, Terzopoulos D (2005) Autonomous Pedestrians. In:
Proceedings of SIGGRAPH/EG Symposium on Computer Ani-
mation, SCA’05, pp 19–28

69. Silverman BG, Bharathy G, O’Brien K, Cornwell J (2006) Human
Behavior Models for Agents in Simulators and Games: Part II:
Gamebot Engineeringwith PMFserv. Presence Teleoper Virtual
Worlds 15(2):163–185

70. Silverman BG, JohnsM, Cornwell J, O’Brien K (2006) Human Be-
havior Models for Agents in Simulators and Games: Part I: En-
abling Science with PMFserv. Presence Teleoper Virtual Envi-
ron 15(2):139–162

71. Smith P (2002) Polygon Soup for the Programmer’s Soul: 3D
Path Finding. In: Proceedings of the Game Developer’s Confer-
ence 2002, GDC2002

72. Snavely P (2002) Agent Cooperation in FSMs for Baseball. In:
Rabin S (ed) AI Game Programming Wisdom. Charles River Me-
dia

73. Stanley KO, Bryant BD, Karpov I, Miikkulainen R (2006) Real-
Time Evolution of Neural Networks in the NERO Video Game.
In: Proceedings of the Twenty-First National Conference on Ar-
tificial Intelligence, AAAI-2006. AAAI Press, pp 1671–1674

74. Stout B (1996) Smart Moves: Intelligent Path-Finding. Game
Dev Mag Oct

75. Takahashi TS (1992) Behavior Simulation by Network Model.
Memoirs of Kougakuin University 73, pp 213–220

76. Terzopoulos D, Tu X, Grzeszczuk R (1994) Artificial Fishes with
Autonomous Locomotion, Perception, Behavior and Learning,
in a PhysicalWorld. In: Proceedings of theArtificial Life IVWork-
shop. MIT Press

77. Thompson C (2007) Halo 3: How Microsoft Labs Invented
a New Science of Play. Retrieved October 2007, from
wired.com: http://www.wired.com/gaming/virtualworlds/
magazine/15-09/ff_halo

78. Toth J, Graham N, van Lent M (2003) Leveraging gaming in
DOD modelling and simulation: Integrating performance and
behavior moderator functions into a general cognitive archi-

http://www.popsci.com/popsci/science/d726359b9fa84010vgnvcm1000004eecbccdrcrd.html
http://www.popsci.com/popsci/science/d726359b9fa84010vgnvcm1000004eecbccdrcrd.html
http://www.popsci.com/popsci/science/d726359b9fa84010vgnvcm1000004eecbccdrcrd.html
http://www.pixar.com/featurefilms/abl/
http://www.irobotmovie.com
http://www.irobotmovie.com
http://www.gamasutra.com/features/20060329/sanchez_01.shtml
http://www.gamasutra.com/features/20060329/sanchez_01.shtml
http://www.wired.com/gaming/virtualworlds/magazine/15-09/ff_halo
http://www.wired.com/gaming/virtualworlds/magazine/15-09/ff_halo


1352 C Computing in Geometrical Constrained Excitable Chemical Systems

tecture of playing and non-playing characters. Twelfth Confer-
ence on Behavior Representation in Modeling and Simulation
(BRIMS, formerly CGF), Scotsdale, Arizona

79. Valdes R (2004) In the Mind of the Enemy: The Artificial
Intelligence of Halo 2. Retrieved October 2007, from How-
StuffWorks.com: http://entertainment.howstuffworks.com/
halo2-ai.htm

80. van der Werf E, Uiterwijk J, van den Herik J (2002) Program-
ming a Computer to Play and Solve Ponnuki-Go. In: Proceed-
ings of Game-On 2002: The 3rd International Conference on
Intelligent Games and Simulation, pp 173–177

81. van Lent M, McAlinden R, Brobst P (2004) Enhancing the be-
havioral fidelity of synthetic entities with human behavior
models. Thirteenth Conference on Behavior Representation in
Modeling and Simulation (BRIMS)

82. Woodcock S (2000) AI Roundtable Moderator’s Report. In:
Proceedings of the Game Developer’s Conference 2000
(GDC2000)

83. Wooldridge M, Jennings N (1995) Intelligent Agents: Theory
and Practice. Know Eng Rev 10(2):115–152

84. Yerkes RW, Dodson JD (1908) The relation of strength of stim-
ulus to rapidity of habit formation. J Comp Neurol Psychol
18:459–482

85. Zubek R, Horswill I (2005) Hierarchical Parallel Markov Models
of Interaction. In: Proceedings of the Artificial Intelligence and
Interactive Digital Entertainment Conference, AIIDE 2005

Books and Reviews
DeLoura M (ed) (2000) Game Programming Gems. Charles River

Media
DeLoura M (ed) (2001) Game Programming Gems 2. Charles River

Media
Dickheiser M (ed) (2006) Game Programming Gems 6. Charles River

Media
Kirmse A (ed) (2004) Game Programming Gems 4. Charles RiverMe-

dia
Pallister K (ed) (2005) Game Programming Gems 5. Charles River

Media
Rabin S (ed) (2002) Game AI Wisdom. Charles River Media
Rabin S (ed) (2003) Game AI Wisdom 2. Charles River Media
Rabin S (ed) (2006) Game AI Wisdom 3. Charles River Media
Russell S, Norvig P (2002) Artificial Intelligence: A Modern Ap-

proach. Prentice Hall
Treglia D (ed) (2002) Game Programming Gems 3. Charles RiverMe-

dia

Computing in Geometrical
Constrained Excitable Chemical
Systems
JERZY GORECKI1,2, JOANNA NATALIA GORECKA3

1 Institute of Physical Chemistry,
Polish Academy of Science, Warsaw, Poland

2 Faculty of Mathematics and Natural Sciences,
Cardinal Stefan Wyszynski University, Warsaw, Poland

3 Institute of Physics, Polish Academy of Science,
Warsaw, Poland

Article Outline

Glossary
Definition of the Subject
Introduction
Logic Gates, Coincidence Detectors and Signal Filters
Chemical Sensors Built with Structured Excitable Media
The Ring Memory and Its Applications
Artificial Chemical Neurons with Excitable Medium
Perspectives and Conclusions
Acknowledgments
Bibliography

Glossary

Some of the terms used in our article are the same as in
the article of Adamatzky in this volume, and they are ex-
plained in the glossary of � Reaction-Diffusion Comput-
ing.
Activator A substance that increases the rate of reaction.
Excitability Here we call a dynamical system excitable if

it has a single stable state (the rest state) with the fol-
lowing properties: if the rest state is slightly perturbed
then the perturbation uniformly decreases as the sys-
tem evolves towards it. However, if the perturbation
is sufficiently strong it may grow by orders of magni-
tude before the system approaches the rest state. The
increase in variables characterizing the system (usually
rapid if compared with the time necessary to reach the
rest state) is called an excitation. A forest is a classical
example of excitable medium and a wildfire that burns
it is an excitation. A dynamical system is non-excitable
if applied perturbations do not grow up and finally de-
cay.

Excitability level The measure of how strong a perturba-
tion has to be applied to excite the system. For exam-
ple, for the Ru-catalyzed Belousov–Zhabotinsky reac-
tion, increasing illumination makes the medium less
excitable. The decrease in the excitability level can be
observed in reduced amplitudes of spikes and in de-
creased velocities of autowaves.

Firing number The ratio between the number of gen-
erated excitations to the number of applied external
stimulations. In most of the cases we define the fir-
ing number as the ratio between the number of output
spikes to the number of arriving pulses.

Inhibitor A substance that decreases the rate of reaction
or even prevents it.

Medium In the article we consider a chemical medium,
fully characterized by local concentrations of reagents
and external conditions like temperature or illumina-
tion level. The time evolution of concentrations is gov-

http://entertainment.howstuffworks.com/halo2-ai.htm
http://entertainment.howstuffworks.com/halo2-ai.htm
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erned by a set of reaction-diffusion equations, where
the reaction term is an algebraic function of vari-
ables characterizing the system and the non-local cou-
pling is described by the diffusion operator. We are
mainly concerned with a two dimensional medium
(i. e., a membrane with a solution of reagents used in
experiments), but the presented ideas can be also ap-
plied to one-dimensional or three-dimensional media.

Refractory period A period of time during which an ex-
citable system is incapable of repeating its response to
an applied, strong perturbation. After the refractory
period the excitable medium is ready to produce an ex-
citation as an answer to the stimulus.

Spike, autowave In a spatially distributed excitable me-
dium, a local excitation can spread around as a pulse
of excitation. Usually a propagating pulse of excitation
converges to a stationary shape characteristic for the
medium, which is not dependent on initialization and
propagates with a constant velocity – thus it is called
an autowave.

Subexcitability A system is called subexcitable if the am-
plitude and size of the initiated pulse of excitation de-
creases in time. However, if the decay time is compara-
ble with the characteristic time for the system, defined
as the ratio between system size and pulse velocity,
then pulses in a subexcitable system travel for a suf-
ficiently long distance to carry information. Subex-
citable media can be used to control the amplitude of
excitations. Subexcitability is usually related to system
dynamics, but it may also appear as the result of geo-
metrical constraints. For example, a narrow excitable
channel surrounded by a non-excitable medium may
behave as a subexcitable system because a propagating
pulse dies out due to the diffusion of the activator in
the neighborhood.

Definition of the Subject

It has been shown in the article of Adamatzky � Reac-
tion-Diffusion Computing that an excitable system can
be used as an information processing medium. In such
amedium, information is coded in pulses of excitation; the
presence of a single excitation or of a group of excitations
forms a message. Information processing discussed by
Adamatzky is based on a homogeneous excitable medium
and the interaction between pulses in such medium. Here
we focus our attention on a quite specific type of excitable
medium that has an intentionally introduced structure of
regions characterized by different excitability levels. As the
simplest case we consider amedium composed of excitable
regions where autowaves can propagate and non-excitable

ones where excitations rapidly die. Using such two types of
medium one can, for example, construct signal channels:
stripes of excitable medium where pulses can propagate
surrounded by non-excitable areas thick enough to can-
cel potential interactions with pulses propagating in neigh-
boring channels. Therefore, the propagation of a pulse
along a selected line in an excitable system can be real-
ized in two ways. In a homogeneous excitable medium, it
can be done by a continuous control of pulse propagation
and the local feedback with activating and inhibiting fac-
tors (� Reaction-Diffusion Computing). In a structured
excitable medium, the same result can be achieved by cre-
ating a proper pattern of excitable and non-excitable re-
gions. The first method gives more flexibility, the second
is just simpler and does not require a permanent watch.
As we show in this article, a number of devices that per-
form simple information processing operations, including
the basic logic functions, can be easily constructed with
structured excitable medium. Combining these devices as
building blocks we can perform complex signal process-
ing operations. Such an approach seems similar to the de-
velopment of electronic computing where early computers
were built of simple integrated circuits.

The research on information processing with struc-
tured excitable media has been motivated by a few im-
portant problems. First, we would like to investigate how
the properties of a medium can be efficiently used to con-
struct devices performing given functions, and what tasks
are the most suitable for chemical computing. There is
also a question of generic designs valid for any excitable
medium and specific ones that use unique features of
a particular system (for example, a one-dimensional gen-
erator of excitation pulses that can be built with an ex-
citable surface reaction [23]). In information processing
with a structured excitable medium, the geometry of the
medium is as important as its dynamics, and it seems
interesting to know what type of structures are related to
specific functions. In the article we present a number of
such structures characteristic for particular information
processing operations.

Another important motivation for research comes
from biology. Even the simplest biological organisms can
process information and make decisions important for
their life without CPU-s, clocks or sequences of com-
mands as it is in the standard von Neumann computer
architecture [15]. In biological organisms, even at a very
basic cellular level, excitable chemical reactions are re-
sponsible for information processing. The cell body con-
sidered as an information processing medium is highly
structured. We believe that analogs of geometrical struc-
tures used for certain types of information processing op-
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erations in structured excitable media will be recognized
in biological systems, so we will better understand their
role in living organisms. At a higher level, the analogies
between information processing with chemical media and
signal processing in the brain seems to be even closer be-
cause the excitable dynamics of calcium in neural tissue
is responsible for signal propagation in nerve system [30].
Excitable chemical channels that transmit signals between
processing elements look similar to dendrites and axons.
As we show in the article, the biological neuron has its
chemical analog, and this allows for the construction of
artificial neural networks using chemical processes. Hav-
ing in mind that neural networks are less vulnerable to
random errors than classical algorithms one can go back
from biology to man-made computing and adopt the con-
cepts in a fast excitable medium, for example especially
prepared semiconductors (�Unconventional Computing,
Novel Hardware for).

The article is organized in the following way. In the
next section we discuss the basic properties of a structured
chemical medium that seem useful for information pro-
cessing. Next we consider the binary information coded in
propagating pulses of concentration and demonstrate how
logic gates can be built. In the following chapter we show
that a structured excitable medium can acquire informa-
tion about distances and directions of incoming stimuli.
Next we present a simple realization of read-write memory
cell, discuss its applications in chemical counting devices,
and show its importance for programming with pulses of
excitation. In the following section we present a chemi-
cal realization of artificial neurons that perform multiar-
gument operation on sets of input pulses. Finally we dis-
cuss the perspectives of the field, in particular more effi-
cient methods of information coding and some ideas of
self-organization that can produce structured media capa-
ble of information processing.

Introduction

Excitability is the wide spread behavior of far-from-equi-
librium systems [35,39] observed, for example, in chem-
ical reactions (Bielousov–Zhabotynsky BZ-reaction [45],
CO oxidation on Pt [37], combustion of gases [26]) as
well as in many other physical (laser action) and biochem-
ical (signaling in neural systems, contraction of cardio-
vascular tissues) processes [51]. All types of excitable sys-
tems share a common property that they have a stable
stationary state (the rest state) they reside in when they
are not perturbed. A small perturbation of the rest state
results only in a small-amplitude linear response of the
system that uniformly decays in time. However, if a per-

turbation is sufficiently large then the system can evolve
far away from the rest state before finally returning to it.
This response is strongly nonlinear and it is accompa-
nied by a large excursion of the variables through phase
space, which corresponds to an excitation peak (a spike).
The system is refractory after a spike, which means that it
takes a certain recovery time before another excitation can
take place. The excitability is closely relatedwith relaxation
oscillations and the phenomena differ by one bifurcation
only [56].

Properties of excitable systems have an important im-
pact on their ability to process information. If an excitable
medium is spatially distributed then an excitation at one
point of the medium (usually seen as an area with a high
concentration of a certain reagent), may introduce a suffi-
ciently large perturbation to excite the neighboring points
as the result of diffusion or energy transport. Therefore,
an excitation can propagate in space in the form of a pulse.
Unlike mechanical waves that dissipate the initial energy
and finally decay, traveling spikes use the energy of the
medium to propagate and dissipate it. In a typical excitable
medium, after a sufficiently long time, an excitation pulse
converges to the stationary shape, independent of the ini-
tial condition what justifies to call it an autowave. Un-
damped propagation of signals is especially important if
the distances between the emitting and receiving devices
are large. The medium’s energy comes from the nonequi-
librium conditions at which the system is kept. In the
case of a batch reactor, the energy of initial composition
of reagents allows for the propagation of pulses even for
days [41], but a typical time of an experiment in such con-
ditions is less than an hour. In a continuously fed reactor
pulses can run as long as the reactants are delivered [44].

If the refractory period of the medium is sufficiently
long then the region behind a pulse cannot be excited
again for a long time. As a consequence, colliding pulses
annihilate. This type of behavior is quite common in
excitable systems. Another important feature is the disper-
sion relation for a train of excitations. Typically, the first
pulse is the fastest, and the subsequent ones are slower,
which is related to the fact that themediumbehind the first
pulse has not relaxed completely [63]. For example, this
phenomenon is responsible for stabilization of positions in
a train of pulses rotating on a ring-shaped excitable area.
However, in some systems [43] the anomalous dispersion
relation is observed and there are selected stable distances
between subsequent spikes. The excitable systems charac-
terized by the anomalous dispersion can play an important
role in information processing, because packages of pulses
are stable and thus the information coded in such packages
can propagate without dispersion.
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The mathematical description of excitable chemical
media is based on differential equations of reaction-dif-
fusion type, sometimes supplemented by additional equa-
tions that describe the evolution of the other important
properties of the medium, for example the orientation
of the surface in the case of CO oxidation on a Pt sur-
face [12,37]. Numerical simulations of pulse propagation
in an excitable medium which are presented in many pa-
pers [48,49] use the FitzHugh–Nagumo model describ-
ing the time evolution of electrical potentials in nerve
channels [17,18,54]. The models for systems with the Be-
lousov–Zhabotinsky (BZ) reaction, for example the Rovin-
sky and Zhabotinsky model [61,62] for the ferroin cat-
alyzed BZ reaction with the immobilized catalyst, can be
derived from “realistic” reaction schemes [16] via differ-
ent techniques of variable reduction. Experiments with
the Ru-catalyzed, photosensitive BZ reaction have become
standard in experiments with structured excitable media
because the level of excitation can be easily controlled by
illumination; see for example [7,27,33]. Light catalyzes the
production of bromine that inhibits the reaction, so non il-
luminated regions are excitable and those strongly illumi-
nated are not. The pattern of excitable (dark) and non-ex-
citable (transparent) fields is just projected on amembrane
filled with the reagents. For example, the labyrinth shown
in Fig. 1 has been obtained by illuminating a membrane
through a proper mask. The presence of a membrane is
important because it stops convection in the solution and
reduces the speed and size of spikes, so studied systems can
be smaller. The other methods of forming excitable chan-
nels based on immobilizing a catalyst by imprinting it on
a membrane [68] or attaching it by lithography [21,71,72]
have been also used, but they seem to be more difficult.

Numerical simulations of the Ru-catalyzed BZ reac-
tion can be performed with different variants of the Oreg-
onator model [9,19,20,38]. For example, the three-variable
model uses the following equations:

"1
@u
@t
D u(1 � u) � w(u � q)C Dur

2u (1)

@v
@t
D u � v (2)

"2
@w
@t
D � C f v � w(u C q)C Dwr

2w (3)

where u, v and w denote dimensionless concentrations of
the following reagents: HBrO2, Ru(4,40-dm-bpy)3C3 , and
Br�, respectively. In the considered system of equations,
u is an activator and v is an inhibitor. The set of Orego-
nator equations given above reduces to the two-variable
model cited in the article of Adamatzky� Reaction-Diffu-
sion Computing if the processes responsible for bromide

Computing in Geometrical Constrained Excitable Chemical Sys-
tems, Figure 1
Pulses of excitation propagating in a labyrinth observed in an
experiment with a Ru-catalyzed BZ-reaction. The excitable areas
are dark, the non-excitable light. The source of a train of pulses
(a tip of a silver wire) is placed at the point A

production are very fast if compared to the other reactions
("2 
 "1 
 1). In such cases, the local value of w can be
calculated assuming that it corresponds to the stationary
solution of the third equation. If such a w is substituted
into the first equation, one obtains the two-variable Oreg-
onator model. In the equations given above, the units of
space and time are dimensionless and they have been cho-
sen to scale the reaction rates. Here we also neglected the
diffusion of ruthenium catalytic complex because usually
it is much smaller than those of the other reagents. The
reaction-diffusion equations describing the time evolution
of the system can be solved with the standard numerical
techniques [57].

The parameter � represents the rate of bromide pro-
duction caused by illumination and it is proportional to
the applied light intensity. Therefore, by adjusting the lo-
cal illumination (or choosing the proper � as a func-
tion of space variables in simulations) we create regions
with the required level of excitability, like for example ex-
citable stripes insulated by a non-excitable neighborhood.
Of course, the reagents can freely diffuse between the re-
gions characterized by different illuminations.

The structure of the equations describing the system’s
evolution in time and space gives the name “reaction dif-
fusion computing” [4] to information processing with an
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excitable medium. Simulations play an important role in
tests of potential information processing devices, because,
unlike in experiment, the conditions and parameters of
studied systems can be easily adjusted with the required
precision and kept forever. Most of the information pro-
cessing devices discussed below were first tested in simu-
lations and next verified experimentally. One of the prob-
lems is related to the short time of a typical experiment in
a batch condition (a membrane filled with reagents) that
does not exceed one hour. In such systems the period in
which the conditions can be regarded as stable is usually
shorter than 30 minutes and within this time an experi-
mentalist should prepare the medium, introduce the re-
quired illumination and perform observations. The prob-
lem can be solved when one uses a continuously fed re-
actor [44], but experimental setups are more complex. On
the other hand, simulations often indicate that the range of
parameters in which a given phenomenon appears is very
narrow. Fortunately experiments seem to be more robust
than simulations and the expected effects can be observed
despite of inevitable randomness in reagent preparation.
Having in mind the relatively short time of experiments
in batch conditions and the low stability of the medium,
we believe that applications of a liquid chemical excitable
medium like the Ru-catalyzed BZ reaction as informa-
tion processors (wetware) are rather academic and they
are mainly oriented on the verification of ideas. Practical
applications of reaction-diffusion computers will probably
be based on an other type of medium, like structured semi-
conductors (� Unconventional Computing, Novel Hard-
ware for).

In an excitable reaction-diffusion medium, spikes
propagate along the minimum time path. Historically, one
of the first applications of a structured chemical medium
used in information processing was the solution of the
problem of finding the shortest path in a labyrinth [67].
The idea is illustrated in Fig. 1. The labyrinth is build
of excitable channels (dark) separated by non-excitable
medium (light) that does not allow for interactions be-
tween pulses propagating in different channels. Let us as-
sume that we are interested in the distance between the
right bottom corner (point A) and the left upper cor-
ner (point B) of the labyrinth shown. The algorithm that
scans all the possible paths between these points and se-
lects the shortest one is automatically executed if the paths
in labyrinth are build of an excitable chemical medium. To
see how it works, let us excite the medium at the point A.
The excitation spreads out through the labyrinth, separates
at the junctions and spikes enter all possible paths. Dur-
ing the time evolution, pulses of excitation can collide and
annihilate, but the one that propagates along the shortest

path has always unexcited medium in front. Knowing the
time difference between the moment when the pulse is ini-
tiated at the point A and the moment when it arrives at
the point B and assuming that the speed of a pulse is con-
stant, we can estimate the length of shortest path linking
both points. The algorithm described above is called the
“prairie fire” algorithm and it is automatically executed by
an excitable medium. It finds the shortest path in a highly
parallel manner scanning all possible routes at the same
time. It is quite remarkable that the time required for find-
ing the shortest path does not depend on the the complex-
ity of labyrinth structure, but only on the distance between
the considered points.

Although the estimation of theminimumdistance sep-
arating two points in a labyrinth is relatively easy (within
the assumption that corners do not significantly change
pulse speed) it is more difficult to tell what is the shortest
path. To do it one can trace the pulse that arrived first and
plot a line tangential to its velocity. This idea was discussed
in [6] in the context of finding the length of the short-
est path in a nonhomogeneous chemical mediumwith ob-
stacles. The method, although relatively easy, requires the
presence of an external observer who follows the propaga-
tion of pulses. An alternative technique of extracting the
shortest path based on the image processing was demon-
strated in [59]. One can also locate the shortest path con-
necting two points in a labyrinth in a purely chemical way
using the coincidence of excitations generated at the end-
points of the path. Such amethod, described in [29], allows
one to find themidpoint of a trajectory, and thus locate the
shortest path point by point.

Computing in Geometrical Constrained Excitable Chemical Sys-
tems, Figure 2
The idea of angle trisection. Angle arms are linked with red arc
shaped excitable channels with the radius ratio r : R D 1 : 3. The
channels have been excited at the same time at the right arm
of the angle. At the moment when the excitation pulse (a yellow
dot) on a smaller arch reaches the second arm the excitation on
the other arch shows a point on a line trisecting the angle (the
dashed line)
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Computing in Geometrical Constrained Excitable Chemical Systems, Figure 3
The shapeof the excitation pulse in a stripe of excitablemedium. The arrow indicates the direction of propagation. Calculationswere
done for the Oregonator model (Eqs. (1)–(3)) and the following values of parameters were applied: f D 1:12;q D 0:002;"1 D 0:08;
"2 D 0:00097;�excitable D 0:007;�non-excitable D 0:075. a The position of a spike on the stripe, b, c concentration of activator and
inhibitor along the x-axis, d concentration of activator along the y-axis

The approximately constant speed of excitation pulses
in a reaction-diffusion medium allows one to solve some
geometrically oriented problems. For example one can
“measure” the number � by comparing the time of pulse
propagation around a non-excitable circle of the radius d
with the time of propagation around a square with the
same side [69]. Similarly, a constant speed of propagating
pulses can be used to obtain a given fraction of an angle.
For example, a trisection of an angle can be done if the
angle arms are linked with two arc-shaped excitable chan-
nels as shown in Fig. 2. The ratio of channel radii should
be equal to 3. Both channels are excited at the same time at
points on the same arm. The position of excitation at the
larger arch at the moment when the excitation propagat-

ing on the shorter arch reaches the other arm belongs to
a line that trisects the angle.

The examples given above are based on two properties
of structured excitable medium: the fact that the non-ex-
citability of the neighborhood can restrict the motion of an
excitation pulse to a channel, and that the speed of propa-
gation depends on the excitability level of the medium but
not on channel shape. This is true when channels are wide
and the curvature is small. There are also other properties
of an excitable medium useful for information processing.
A typical shape of a pulse propagating in a stripe of ex-
citable medium is illustrated in Fig. 3. The pulse moves
from the left to the right as the arrow indicates. The pro-
files on Fig. 3b,c show cross sections of the concentrations
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Computing in Geometrical Constrained Excitable Chemical Systems, Figure 4
The shape of activator concentration in an excitable medium of a triangular shape. a The structure of excitable (dark) and non-
excitable (light) regions,b concentration of activator along the linesmarked in a. Theprofiles correspond to times when the activator
reaches its maximum at a given line

of the activator u(x; y) and inhibitor v(x; y) along the hor-
izontal axis of the stripe at a selected moment of time. The
peak of the inhibitor follows activator maximum and is
responsible for the refractory character of the region be-
hind the pulse. Figure 3d illustrates the profile of an acti-
vator along the line perpendicular to the stripe axis. The
concentration of the activator reaches its maximum in the
stripe center and rapidly decreases at the boundary be-
tween the excitable and non-excitable areas. Therefore, the
width of the excitable channel can be used as a parameter
that controls the maximum concentration of an activator
in a propagating pulse.

Figure 4 shows profiles of a concentration in an ex-
citable channel with a triangular shape. The two curves on
Fig. 4b illustrate the profile of u along the lines 1 and 2,
respectively measured at the time when the concentra-
tion of u on a given line reaches its maximum. It can be
seen that the maximum concentration of the activator de-
creases when a pulse propagates towards the tip of the tri-
angle. This effect can be used to build a chemical signal
diode. Let us consider two pieces of excitable medium, one
of triangular shape and another rectangular, separated by
a non-excitable gap as shown on Fig. 4a. It is expected that
a perturbation of the rectangular area by a pulse propagat-
ing towards the tip of the triangular one is much smaller
than the perturbation of the triangular area by a pulse
propagating towards the end of rectangular channel. Us-
ing this effect, a chemical signal diode that transmits pulses
only in one direction can be constructed just by selecting
the right width of non-excitable medium separating two

pieces of excitable medium: a triangular one and a rectan-
gular one [5,40].

The idea of a chemical signal diode presented in Fig. 4a
was, in some sense, generalized by Davydov et al. [46], who
considered pulses of excitation propagating on a 2-dimen-
sional surface in 3-dimensional space. It has been shown
that the propagation of spikes on surfaces with rapidly
changing curvature can be unidirectional. For example,
such an effect occurs when an excitation propagates on
the surface of a tube with a variable diameter. In such
a case, a spike moving from a segment characterized by
a small diameter towards a larger one is stopped.

For both of the chemical signal diodes mentioned
above, the excitability of the medium is a non trivial func-
tion of some space variables. However, a signal diode can
be also constructed when the excitability of the medium
changes in one direction only, so in a properly selected
coordinate system it is a function of a single space vari-
able. For example, the diode behavior in a system where
the excitability level is a triangular function of a single
space variable has been confirmed in numerical simula-
tions based on the Oregonator model of a photosensitive,
Ru-catalyzed BZ reaction (Eqs. (1)–(3)) [76]. If the catalyst
is immobilized, then pulses that enter the region of inho-
mogeneous illumination from the strongly illuminated site
are not transmitted, whereas the pulses propagating in the
other direction can pass through (see Fig. 5a). A similar
diode-like behavior resulting from a triangular profile of
medium excitability can be expected for oxidation of CO
on a Pt surface. Calculations demonstrate that a triangular
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Computing in Geometrical Constrained Excitable Chemical Systems, Figure 5
The excitability as a function of a spacevariable in different one-dimensional realizations of a signal diodewith BZ- reaction inhibited
by light: a a triangular profile of illumination, b the illumination profile in a diode composed of two non-excitable barriers, c the
illumination profile in a single barrier diode with nonsymmetrical excitable inputs. The upper graphs in b and c illustrate illumination
on a membrane used in experiments [25]

profile of temperature (in this case, reducedwith respect to
that which characterizes the excitable medium) allows for
the unidirectional transmission of spikes characterized by
a high surface oxygen concentration [23]. However, a real-
ization of the chemical signal diode can be simplified. If the
properties of excitable channels on both sites of a diode are
the same, then the diode can be constructed with just two
stripes of non-excitable medium characterized by differ-
ent excitabilities as illustrated in Fig. 5b. If the symmetry is
broken at the level of input channels then the construction
of a signal diode can be yet simpler, and it reduces to a sin-
gle narrow non-excitable gap with a much lower excitabil-
ity than that of the neighboring channels (cf. Fig. 5c). In
both cases the numerical simulations based on the Orego-
nator model have shown that a diode works. The predic-
tions of simulations have been qualitatively confirmed by
experimental results [25]. Different realizations of a sig-
nal diode show that even for very simple signal process-
ing devices the corresponding geometrical structure of
excitable and non-excitable regions is not unique. Alter-
native constructions of chemical information processing
devices seem important because they tell us on the mini-
mum conditions necessary to build a device that performs
a given function. In this respect a diode built with a single
non-excitable region looks interesting, because such situ-
ation may occur at a cellular level, where the conditions
inside the cell are different from those around. The diode
behavior in the geometry shown on Fig. 5c indicates that
the unidirectional propagation of spikes can be forced by
a channel in a membrane, transparent to molecules or ions
responsible for signal transmission.

Wave-number-dependent transmission through
a non-excitable barrier is another feature of a chemical
excitable medium important for information process-
ing [48]. Let us consider two excitable areas separated by
a stripe of non-excitable medium and a pulse of excitation
propagating in one of those areas. The perturbation of
the area behind the stripe introduced by an arriving pulse
depends on the direction of its propagation. If the pulse
wavevector is parallel to the stripe then the perturbation
is smaller than in the case when it arrives perpendicu-
larly [48]. Therefore, the width of the stripe can be selected
such that pulses propagating perpendicularly to the stripe
can cross it, whereas a pulse propagating along the stripe
do not excite the area on the other side. This feature is fre-
quently used to arrange the geometry of excitable channels
such that pulses arriving from one channel do not excite
the other.

Non-excitable barriers in a structured medium can
play a more complex role than that described above. The
problem of barrier crossing by a periodic train of pulses
can be seen as an excitation via a periodic perturbation of
the medium. It has been studied in detail in [13]. The an-
swer of the medium is quite characteristic in the form of
a devil-staircase-like firing number as a function of pertur-
bation strength. In the case of barrier crossing, the strength
of the excitation behind a barrier generated by an arriv-
ing pulse depends on the character of the non-excitable
medium, the barrier width, and the frequency of the in-
coming signal (usually, due to an uncompleted relaxation
of the medium, the amplitude of spikes decreases with
frequency). A typical complex frequency transformation
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Computing in Geometrical Constrained Excitable Chemical Systems, Figure 6
Frequency transformation on a barrier – the results for the FitzHugh–Nagumo model [64]. a The comparison of an arriving train of
pulses (1) and the transmitted signal (2). b A typical dependence of the firing number as a function of barrier width. The plateaus are
labeled with corresponding values of firing number (1, 6/7, 4/5, 3/4, 2/3, 1/2 and 0). At points labeled a–e the following values have
been observed: a – 35/36; b – 14/15; c – 10/11; d – 8/9 and e – 5/6

Computing in Geometrical Constrained Excitable Chemical Systems, Figure 7
The firing number as a function of the barrier width d and the interval of time between consecutive pulses (tp). Labels in the white
areas give the firing number, and the gray color marks values of parameters where more complicated transformations of frequency
occur. a Results calculated for the FitzHugh–Nagumomodel, b the Rovinsky–Zhabotinskymodel. Both space and time are in dimen-
sionless units

after barrier crossing is illustrated in Fig. 6. Experimental
and numerical studies on firing number of a transmitted
signal have been published [10,64,72,74]. It is interesting
that the shape of regions characterized by the same fir-

ing number in the space of two parameters, barrier width
and signal frequency, is not generic and depends on the
type of the excitable medium. Figure 7 compares the firing
numbers obtained for FitzHugh–Nagumo and Rovinsky–
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Zhabotinsky models. In the first case, trains of pulses with
small periods can cross wider barriers than trains charac-
terized by low frequency; for the second model the depen-
dence is reversed.

Logic Gates, CoincidenceDetectors
and Signal Filters

The simplest application of excitable media in informa-
tion processing is based on the assumption that the logi-
cal FALSE and TRUE variables are represented by the rest
state and by the presence of an excitation pulse at a given
point of the system respectively. Within such interpreta-
tion a pulse represents a bit of information propagating
in space. When the system remains in its rest state, no
information is recorded or processed, which looks plau-
sible for biological interpretation. Information coded in
excitation pulses is processed in regions of space where
pulses interact (via collision and subsequent annihila-
tion or via transient local change in the properties of the
medium). In this section we demonstrate that the geom-
etry of excitable channels and non-excitable gaps can be
tortured (the authors are grateful to prof. S. Stepney for
this expression) to the level at which the system starts
to perform the simplest logic operations on pulses. The
binary chemical logic gates can be used as building blocks
for devices performing more complex signal processing
operations. Information processing with structured ex-
citable media is “unconventional” because it is performed
without a clock that sequences the operations, as it is in
the standard von Neumann type computer architecture.
On the other hand, in the signal processing devices de-
scribed below, the proper timing of signals is important
and this is achieved by selecting the right length and ge-
ometry of channels. In some cases, for example for the
operations on trains of pulses, the presence of a reference
signal, which plays a role similar to a clock, would signif-
icantly help to process information [70]. Historically, the
logical gates were the first devices that have been realized
with a structured chemical medium [1,2,14,65,73,75].

The setup of channels that execute the logic sum (OR)
operation is illustrated in Fig. 8 [48]. The gate is composed
of three excitable stripes (marked gray) surrounded by
a non-excitable medium. The gaps separating the stripes
have been selected such that a pulse that arrives perpendic-
ularly to the gap can excite the area on the other side and
a pulse that propagates parallel to the gap does not gener-
ate sufficient perturbation to excite themediumbehind the
gap. If there is no input pulse, the OR gate remains in the
rest state and does not produce any output. A pulse in any
of the input channels I1 and I2 can cross the gap separat-

Computing in Geometrical Constrained Excitable Chemical Sys-
tems, Figure 8
The distribution of excitable channels (dark) that form the OR
gate. b and c illustrate the time evolution of a single pulse ar-
riving from inputs I1 and I2, respectively

ing these channels from the output O and an output spike
appears. The excitation of the output channel generated by
a pulse from one of the input channels propagates parallel
to the gap separating the other input channel so it does not
interfere with the other input as seen in Fig. 8b and c. The
frequency at which the described OR gate operates is lim-
ited by the refractory period of the output medium. If the
signals from both input channels arrive, but the time dif-
ference between pulses is smaller than the refractory time,
then only the first pulse will produce the output spike.

The gate that returns the logic product (AND) of input
signals is illustrated in Fig. 9. The width of the gap sepa-
rating the output channel O from the input one (I1,I2) is
selected such that a single excitation propagating in the in-
put channel does not excite the output (Fig. 9b). However,
if two counterpropagating pulses meet, then the resulting
perturbation is sufficiently strong to generate an excita-
tion in the output channel (Fig. 9c). Therefore, the output
signal appears only when both sites of the input channel
have been excited and pulses of excitation collided in front
of the output channel. The width of the output channel
defines the time difference between input pulses treated
as simultaneous. Therefore, the structure shown in Fig. 9
can also be used as a detector of time coincidence between
pulses.

The design of the negation gate is shown in Fig. 10.
The gaps separating the input channels, the source chan-
nel and the output channel can be crossed by a pulse that
propagates perpendicularly, but they are non-penetrable
for pulses propagating parallel to the gaps. The NOT gate
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Computing in Geometrical Constrained Excitable Chemical Sys-
tems, Figure 9
The distribution of excitable channels (dark) that form the AND
gate. b and c illustrate the response of the gate to a single pulse
arriving from input I1 and to a pair of pulses, respectively

Computing in Geometrical Constrained Excitable Chemical Sys-
tems, Figure 10
The distribution of excitable channels (dark) that form the NOT
gate

should deliver an output signal if the input is in the rest
state. Therefore, it should contain a source of excitation
pulses (marked S). If the input is in the rest state then
pulses from the source propagate unperturbed and enter
the output channel. If there is an excitation pulse in the in-
put channel then it enters the channel linking the source
with the output and annihilates with one of pulses gener-
ated by the source. As a result no output pulse appears. At
the first look, the described NOT gate works fine, but if
we assume that a single pulse is used in information cod-
ing than the input pulse should arrive at the right time to
block the source. Therefore, additional synchronization of
the source is required. If information is coded in trains of
pulses then the frequency of the source should match with
the one used for coding.

The structure of excitable channels for the exclusive
OR (XOR) gate is illustrated in Fig. 11c [34]. Two input
channels bring signals to the central area C. The output

Computing in Geometrical Constrained Excitable Chemical Sys-
tems, Figure 11
c the distribution of excitable channels (dark) that form the XOR
gate. a and b illustrate the response of the gate to a single pulse
arriving from input I1 and to a pair of pulses, respectively

channels are linked together via diodes (Fig. 4) that stop
possible backward propagation. As in the previous cases
only pulses perpendicular to the gaps can pass through
non-excitable gaps between the central area and both in-
put and output channels. The shape of the central area has
been designed such that an excitation generated by a single
input pulse propagates parallel to one of the outputs and
is perpendicular to another. As the result one of the out-
put channels is excited (see Fig. 11a). However, if pulses
from both input channels arrive at the same time then the
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wavevector of the excitation in the central part is always
parallel to the boundaries (Fig. 11b). Therefore, no output
signal appears. Of course, there is no output signal if none
of the inputs are excited. It is worth noticing that for some
geometries of the XOR gate the diodes in output channels
are not necessary because the backward propagation does
not produce a pulse with a wavevector perpendicular to
a gap as seen in the fourth frame of Fig. 11a.

Another interesting example of behavior resulting
from the interaction of pulses has been observed in a cross-
shaped structure built of excitable regions, separated by
gaps penetrable for perpendicular pulses [65,66] shown
in Fig. 12. The answer of cross-shaped junction to a pair
pulses arriving from two perpendicular directions has
been studied as a function of the time difference between
pulses. Of course, if the time difference is large, pulses
propagate independently along their channels. If the time

Computing in Geometrical Constrained Excitable Chemical Sys-
tems, Figure 12
The distribution of excitable and non-excitable regions in
a cross-shaped junction. Here the excitable regions are gray and
the non-excitable black. Consecutive figures illustrate an inter-
esting type of time evolution caused by interaction of pulses.
Two central figures are enlarged in order to show how uncom-
pleted relaxation influences the shape of the next pulse

difference is small the cross-junction acts like the AND
gate and the output excitation appears in one of the cor-
ner areas. However, for a certain time difference the first
arriving pulse is able to redirect the other and force it to
follow. The effect is related to uncompleted relaxation of
the central area of the junction at the moment when the
second pulse arrives. Pulse redirection seems to be an in-
teresting effect from the point of programming with exci-
tation pulses, but in practice it requires a high precision in
selecting the right time difference.

The logic gates described above can also be applied to
transform signals composed of many spikes. For exam-
ple, two trains of pulses can be added together if they pass
through an OR gate. The AND gate creates a signal com-
posed of coinciding pulses from both trains. It is also easy
to use a structured excitable medium and generate a signal
that does not contain coinciding pulses [50]. The struc-
ture of the corresponding device is illustrated in Fig. 13.
All non-excitable gaps are penetrable for perpendicular
pulses. If a pulse of excitation arrives from one of the in-
put channels then it excites the segment A and propagates
towards the other end of it. If there is no spike in the other
input channel then this excitation propagates unperturbed
and activates the output channel. However, if a pulse from
the other channel arrives it annihilates with the original

Computing in Geometrical Constrained Excitable Chemical Sys-
tems, Figure 13
The distribution of excitable channels in devices that compare
trains of pulses. The device shown in a applies the XOR opera-
tion to a pair of signals and makes a signal composed of spikes
that do not coincide with the other signal. b generates a signal
composed of spikes that arrive through I1 and do not coincide
with excitation pulses coming from I2
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Computing in Geometrical Constrained Excitable Chemical Systems, Figure 14
a The distribution of excitable and non-excitable regions in a band filter. b Typical characteristics of the band filter [22]. The black
dots mark periods for which the signal is not transmitted, the empty ones indicate full transmission, the empty diamondsmark the
periods of the arriving signal for which every second spike is transmitted

pulse and no output signal is generated. The structure il-
lustrated on Fig. 13a can be easily transformed into a de-
vice that compares two trains of pulses such that the result-
ing signal is composed of spikes of the first signal that do
not coincide with the pulses of the second train. Such a de-
vice can be constructed just by neglecting one of the output
channels. Figure 13b illustrates the geometry of the device
that produces the output signal composed of pulses in ar-
riving at the input I1 that have no corresponding spikes in
the signal arriving from I2.

The coincidence detector can be used as a frequency
filter that transmits periodic signals within a certain fre-
quency interval [22,50]. The idea of such a filter is shown
in Fig. 14. The device tests if the time between subse-
quent spikes of the train remains in the assumed range.
As illustrated the signal arriving from the input I sepa-
rates and enters the segment E through diodes D1 and
D2. The segments E and F form a coincidence detector
(or an AND gate, c. f. Fig. 9). The excitation of the out-
put appears when an excitation coming to E via the seg-
ment C and D2 is in the coincidence with the subsequent
spike of the train that arrived directly via D1. The time
shift for which coincidences are tested is decided by the
difference in lengths of both paths. The time resolution
depends on the width of the F channel (here l2 � l1). For
periodic signals the presented structure works as a fre-

quency filter and transmits signals within the frequency
range f˙ D v/(�r ˙ (�w)/2), where �r is the difference
of distances traveled by spikes calculated to the point in E
placed above the center of F channels (� 2  le), �w is
the width of the output channel, and v is the velocity of
a spike in the medium. Typical characteristics of the filter
are illustrated on Fig. 14b. The points represent results of
numerical simulations and the line shows the filter char-
acteristics calculated from the equation given above. It can
be noticed that at the ends of the transmitted frequency
band a change in output signal frequency is observed. This
unwelcome effect can be easily avoided if a sequence of two
identical filters is used. A filter tuned to a certain frequency
will also pass any of its harmonics because the output sig-
nal can be generated by the coincidence of every second,
third, etc. pulses in the train.

Chemical Sensors Built
with Structured ExcitableMedia

Even the simplest organisms without specialized nerve
systems or brains are able to search for the optimum liv-
ing conditions and resources of food. We should not be
astonished by this fact because even chemical systems can
receive and process information arriving from their neigh-
borhood. In this section we describe how simple struc-
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Computing in Geometrical Constrained Excitable Chemical Systems, Figure 15
The distribution of excitable areas (gray and black) and non-excitable regions (white) in the ring-shaped direction detector. Triangles
marked X1, X2 and X3 show the output channels. b and c illustrate time evolution of pulses generated from sources at different
locations. The excited output channel depends on the direction of the source (copied from [53] with the permission of the authors)

tures built of excitable media can be used for direction
and distance sensing. In order to simplify the conversion
between an external stimulus and information processed
by a sensor, we assume that the environment is repre-
sented by the same excitable medium as the sensor itself,
so a stimulus can directly enter the sensor and be pro-
cessed.

One possible strategy of sensing is based on a one-to-
one relationship between the measured variable and the
activated sensor channel [53]. An example of a sensor of
that type is illustrated on Fig. 15. It is constructed with
a highly excitable, black ring surrounded by a number
of coincidence detectors, denoted as X1, X2 and X3. The
excitation of a detector appears if a pair of pulses collide
on the ring in front of it. Let us consider a homogeneous
excitable environment and a spherical pulse of excitation
with the source at the point S1. High excitability of the ring
means that excitations on the ring propagate faster than
those in the surrounding environment. At a certain mo-
ment the pulse arrives at the point P1, which lies on a line
connecting the S1 and the center of the ring (see Fig. 15b).
The arriving pulse creates an excitation on the ring origi-
nating from the point P1. This excitation splits into a pair
of pulses rotating in opposite directions and after propa-
gating around the ring, they collide at the point, which is
symmetric to P with respect to the center of the ring O.
The point of collision can be located by an array of coinci-
dence detectors and thus we have information on the wave
vector of the arriving pulse. In this method the resolution
depends on the number of detectors used because each of
them corresponds to a certain range of the measured wave
vectors. The fact that a pulse has appeared in a given out-

put channel implies that no other channel of the sensor
gets excited. It is interesting that the output information
is reversed in space if compared with the input one; the
left sensor channels are excited when an excitation arrives
from the right and vice versa.

The geometry of the direction sensor that sends in-
formation as an excitation pulse in one of its detector
channels can be yet simplified. Two such realizations are
illustrated in Fig. 16. The excitable areas that form the sen-
sor are marked black, the excitable surrounding medium
where stimuli propagate is gray, and the non-excitable ar-
eas are white. Let us consider an excitation generated in the
mediumM by a source S. It is obvious that if the source is
located just above the sensor then pulses of excitation are
generated at the ends of the sensor channel D at the same
time and they finally annihilate above the central coinci-
dence channel and generate an output pulse in it. If the
source is located at a certain angle with respect to the verti-
cal line then the annihilation point is shifted off the center
of D.We have performed a series of numerical simulations
to find the relation between the position of the source and
the position of annihilation point in D. In Fig. 16c and 16d
the position of the annihilation point is plotted as a func-
tion of the angle between the source position and the ver-
tical line. Although the constructions of sensors seem to
be very similar, the working range of angles is larger for
the sensor shown on Fig. 16b whereas the sensor shown in
Fig. 16a offers slightly better resolution. Using information
from two detectors of direction, the position of the source
of excitation can be easily located because it is placed on
the intersection of the lines representing the detected di-
rections [77].
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Computing in Geometrical Constrained Excitable Chemical Systems, Figure 16
The geometry of excitable (black) and diffusive (white) areas in two realizations of simplified distance sensors. The gray color marks
the excitable medium around the sensor, S marks the position of excitation source. c and d show the position of the annihilation
point in the channel D as a function of the angle q between the source position and the vertical line. The half-length of D is used as
the scale unit

Computing in Geometrical Constrained Excitable Chemical Systems, Figure 17
The distance sensor based on frequency transformation. a The distribution of excitable channels, b the firing numbers in different
channels as a function of distance; black, green, blue red and violet curves correspond to signals in channels 1–5, respectively
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Another strategy of sensing is based on the observa-
tion that frequencies of pulses excited in a set of sensor
channels by an external periodic perturbation contain in-
formation on the location of a stimulus. Within this strat-
egy there is no direct relationship between the number of
sensor channels and sensor resolution, and, as we show be-
low, a sensor with a relatively small number of channels
can quite precisely estimate the distance separating it from
the excitation source. As we have mentioned in the In-
troduction, the frequency of a chemical signal can change
after propagating through a barrier made of non-excitable
medium. For a given frequency of arriving spikes the fre-
quency of excitations behind the barrier depends on the
barrier width and on the angle between the normal an-
gle to the barrier and the wave vector of arriving pulses.
This effect can be used for sensing. The geometrical ar-
rangement of excitable and non-excitable areas in a dis-
tance sensor is shown in Fig. 17. The excitable signal chan-
nels (in Fig. 17a they are numbered 1–5) are wide enough
to ensure stable propagation of spikes. They are separated
from one another by parallel non-excitable gaps that do
not allow for interference between pulses propagating in
the neighboring channels. The sensor channels are sepa-
rated from the excitable medium M by the non-excitable
sensor gap G. The width of this gap is very important. If
the gap is too wide then no excitation of the medium M
can generate a pulse in the sensor channels. If the gap is
narrow then any excitation in front of the sensor can pass
G and create a spike in each sensor channel so the signals
sent out by the sensor channels are identical. However,
there is a range of gap widths such that the firing num-
ber depends on the wave vector characterizing a pulse at
the gap in front of the channel. If the source S is close to
the array of sensor channels, then the wave vectors char-
acterizing excitations in front of various channels are sig-
nificantly different. Thus the frequencies of excitations in
various channels should differ too. On the other hand, if
the source of excitations is far away from the gap G then
the wave vectors in front of different channels should be al-
most identical and the frequencies of excitations should be
the same. Therefore, the system illustrated in Fig. 17a can
sense the distance separating it from the source of excita-
tions. If this distance is small then the firing numbers in
neighboring sensor channels are different and these differ-
ences decrease when the source of excitations moves away.
A typical distance dependence of firing numbers observed
in different channels is illustrated in Fig. 17b. This result
has been obtained in numerical simulations based on the
Oregonator model.

The range of sensed distances depends on the num-
ber of sensor channels. A similar sensor, but with 4 sen-

sor channels, was studied in [28]. Comparing the results,
we observe that the presence of 5th channel significantly
improves the range of distances for which the sensor op-
erates. On the other hand, the additional channel has al-
most no effect on sensor resolution at short distances. The
sensor accuracy seems to be a complex function related to
the width of the sensor gap and the properties of channels.
The firing number of a single channel as a function of the
distance between the sensor and the source has a devil-
staircase-like form with long intervals where the function
is constant corresponding to simple fractions as illustrated
in Fig. 5b. In some range of distances the steps in firing
numbers of different channels can coincide, so the reso-
lution in this range of distances is poor. For the other re-
gions, the firing numbers change rapidly and even small
changes in distance can be easily detected.

The signal transformation on a barrier depends on the
frequency of incoming pulses (c. f. Fig. 6) so the distance
sensor that works well for one frequency may not work for
another. In order to function properly for different stimuli
the sensor has to be adapted to the conditions it operates.
In practice such adaptation can be realized by the compar-
ison of frequencies of signals in detector channels with the
frequency in a control channel. For example the control
channel can be separated from the mediumM by a barrier
so narrow that every excitation of the medium generates
a spike. The comparison between the frequency of exci-

Computing in Geometrical Constrained Excitable Chemical Sys-
tems, Figure 18
Two snapshots from the experimental realization of the distance
sensor with four channels. In the upper figure the source (1mm
thick silverwire) is placed 2mmaway from the sensor; in the bot-
tom one the source is 12mm away. The firing numbers are given
next to the corresponding channels
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tations in the control channel and in the sensor channels
can be used to adjust the sensor gap G. If the frequency of
excitations in the sensor channels is the same as in the con-
trol channels then the width of the gap should be increased
or its excitability level decreased. On the other hand if the
frequency in the sensor channel is much smaller than in
the control channel (or null) then the gap should be more
narrow or more excitable. Such an adaptation mechanism
allows one to adjust the distance detector to any frequency
of arriving excitations.

The fact that the distance detector described above
actually works has been confirmed in experiments with
a photosensitive Ru-catalyzed BZ reaction. Typical snap-
shots from two experiments performed for the source
placed 2 and 12mm away from the sensors are shown in
Fig. 18. The firing numbers observed in different sensor
channels confirm qualitatively the predictions of numeri-
cal simulations. If the source of excitations is close to the
sensor gap, then the differences between firing numbers
observed in neighboring channels are large. On the other
hand, when the source of excitations is far away from the
sensor, the frequencies in different channels become sim-
ilar. The range of distances at which the sensor works is
measured in centimeters so it is of the same order as the
sensor size.

The RingMemory and Its Applications

The devices discussed in the previous section can be clas-
sified as instant machines [58] capable of performing just
the task they have been designed for. A memory where
information coded in excitation pulses can be written-in,
kept, read-out and, if necessary, erased, significantly in-
creases the information processing potential of structured
excitable media. Moreover, due to the fact that the state of
memory can be changed by a spike, the memory allows for
programming with excitation pulses. One possible realiza-
tion of a chemical memory is based on the observation that
a pulse of excitation can rotate on a ring-shaped excitable
area as long as the reactants are supplied and the products
removed [41,52,55]. Therefore, a ring with a number of
spikes rotating on it can be regarded as a loaded memory
cell. Such memory can be erased by counterpropagating
pulses. The idea of memory with loading pulses rotating
in one direction and erasing pulses in another has been
discussed in [49]. If the ring is big then it can be used to
memorize a large amount of information because it has
many states corresponding to different numbers of rotat-
ing pulses. However, in such cases, loading the memory
with subsequent pulses may not be reliable because the in-
put can be blocked by the refractory tail left by one of al-

Computing in Geometrical Constrained Excitable Chemical Sys-
tems, Figure 19
The distribution of excitable channels (dark) that form amemory
cell. The cell is composed of the loading channel ML, the mem-
ory ring, the erasing channel ME (marked gray) and the output
channel O

ready rotating pulses. The same effect can block the eras-
ing pulses. Therefore, the memory capable of storing just
a single bit seems to be more reliable and we consider it in
this section. Such memory has two states: if there is a ro-
tating pulse the ring is in the logical TRUE state (we call
it loaded); if there is no pulse the state of memory cor-
responds to the logical FALSE and we call such memory
erased.

Let us consider the memory illustrated in Fig. 19. The
black areas define the memory ring, the output channel O,
and the loading channel ML. The memory ring is formed
by two L-shaped excitable areas. The areas are separated
by gaps and, as we show below, with a special choice of the
gaps the symmetry of the ring is broken and unidirectional
rotation ensured. The Z-shaped excitable area composed
of gray segments inside the ring forms the erasing channel.
The widths of all non-excitable gaps separating excitable
areas are selected such that a pulse of excitation propagat-
ing perpendicularly to the gap excites the active area on
the other site of the gap, but the gap is impenetrable for
pulses propagating parallel to the gap. The memory cell
can be loaded by a spike arriving from the ML channel.
Such a spike crosses the gap and generates an excitation
on the ring rotating counterclockwise. The information
about loaded memory is periodically sent out as a series of
spikes through the output channel O. The rotating pulse
does not affect the erasing channel because it always prop-
agates parallel to it. The erasing excitation is generated in
the center of the Z-shaped area and it splits into two eras-
ing pulses. These pulses can cross the gaps separating the
erasing channel from the memory ring and create a pair of
pulses rotating clockwise. A spike that propagates clock-
wise on the memory ring is not stable because it is not able
to cross any of the gaps and dies. It also does not produce
any output signal. Therefore, if the memory has not been
loaded then an erasing excitation does not load it. On the
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other hand, if the memory is loaded then clockwise ro-
tating pulses resulting from the excitation of the erasing
channel annihilate with the loading pulse and the mem-
ory is erased. The idea of using two places where erasing
pulses can enter the memory ring is used to ensure that
at least one of those places is fully relaxed and so one of
erasing pulses can always enter the ring.

In order to verify that such memory works, we have
performed a number of simulations using the Rovinsky–
Zhabotinsky model of a BZ reaction and have done the ex-
periments. We considered a loaded memory and at a ran-
dom time the excitation was generated in the middle of the
erasing channel. In all cases, such an excitation erased the
memory ring. A typical experimental result is illustrated
in Fig. 20. Here the channels are 1.5mm thick and the
gaps are 0.1mm wide. Figure 20a shows the loaded mem-
ory and initiated pair of pulses in the erasing channel. In
Fig. 20b one of the pulses from the erasing channel enters
the memory ring. The memory ring in front of the left part
of erasing channel is still in the refractory state so the left
erasing pulse has not produced an excitation on the ring.
Finally in Fig. 20c we observe the annihilation of the load-
ing pulse with one of erasing pulses. Therefore, the state
of memory changed from loaded to unloaded. The exper-
iment was repeated a few times and the results were in
a qualitative agreement with the simulations: the loaded
memory cell kept its information for a few minutes and it
was erased after every excitation of the erasing channel.

Figure 21 illustrates two simple, yet interesting, appli-
cations of a memory cell. Figure 21a shows a switchable
unidirectional channel that can be opened or closed de-
pending on the state of memory [29]. The channel is con-
structed with three excitable segments A, B and C sepa-
rated by signals diodes D1 and D2 (c. f. Fig. 4). The mid
segment B is also linked with the output of the memory
ring M. Here the erasing channels of M are placed outside
the memory ring, but their function is exactly the same as
in the memory illustrated in Fig. 19. The idea of switch-
able channel is similar to the construction of the NOT gate
(Fig. 10). If the memory is not loaded then the spike prop-
agation from input I to output O is unperturbed. However,
if the memory is loaded then pulses of excitation period-
ically enter the segment B and annihilate with the trans-
mitted signal. As a result, the channel is either open or
blocked depending on the state of the memory. The excita-
tions generated by the memory ring do not spread outside
the B segment. On one end their propagation is stopped by
the diode D1, on the other by the geometry of the junction
between the B channel and the memory output. The state
of memory is controlled by the excitation pulses coming
from loading and erasing channels, so switchable channels

Computing in Geometrical Constrained Excitable Chemical Sys-
tems, Figure 20
Three snapshots from an experiment with memory erasing. The
memory ring is formed by two L-shaped excitable channels, the
Z-shaped erasing channel is inside the ring

can be used in devices that are programmable with exci-
tation pulses. Figure 21b illustrates a self-erasing mem-
ory cell that changes its state from loaded to erased after
a certain time. In such a memory cell, the output chan-
nel is connected with the erasing one. When the memory
is loaded the output signal appears. After some time de-
cided by the length of connecting channels an output pulse
returns as an erasing pulse and switches the memory to
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Computing in Geometrical Constrained Excitable Chemical Systems, Figure 21
Two simple applications of a memory cell. a A switchable unidirectional channel that stops or transmits signals depending on the
state of memory. b A self-erasing memory cell that changes its state after a certain time. SEC marks the connection between the
memory output and the erasing channel

Computing in Geometrical Constrained Excitable Chemical Systems, Figure 22
The counter of excitation pulses that arrive at the input I0.a shows the geometry of excitable channels (black) in a single digit counter
for the positional representation with the base 3. b is a schematic illustration of the cascade of single digit counters that provides
a positional representation. The feedback signals from E1, E2 and E3 channels erase the memory of the single digit counters

unloaded state. This behavior is an example of a simple
feedback process common in self regulating information
processing systems.

Using memory cells, signal diodes, and coincidence
detectors, one can construct devices which perform more
complex signal processing operations. As an example, we
present a simple chemical realization of a device that
counts arriving spikes and returns their number in any
chosen positional representation [27]. Such a counter can
be assembled from single digit counters. The construc-
tion of a single digit counter depends on the represen-
tation used. Here, as an example, we consider the posi-
tional representation with the base 3. The geometry of
a single digit counter is schematically shown in Fig. 22.
Its main elements are two memory cells M1 and M2 and
two coincidence detectors C1 and C2. At the beginning
let us assume that none of the memory cells are loaded.
When the first pulse arrives through the input channel
I0, it splits at all junctions and excitations enter segments
B0, B1 and B2. The pulse that has propagated through B0
loads the memory cell M1. The pulses that have propa-

gated through B1 and B2 die at the bottom diodes of seg-
ments C1 and C2 respectively. Thus, the first input pulse
loads the memory M1 and does not change the state of
M2. When M1 is loaded, pulses of excitation are period-
ically sent to segments B0 and C1 via the bottom chan-
nel. Now let us consider what happen when the second
pulse arrives. It does not pass through B0 because it an-
nihilates with the pulses arriving from the memory M1.
The excitations generated by the second pulse can enter
B1 and B2. The excitation that propagated through B2 dies
at the bottom diode of the segment C2. The pulse that has
propagated through B1 enters C1, annihilates with a pulse
from memory M1 and activates the coincidence detector.
The output pulse from the coincidence detector loads the
memory M2. Therefore, after the second input pulse both
memories M1 and M2 are loaded. If the third pulse ar-
rives the segments B0 and B1 are blocked by spikes sent
from the memory rings. The generated excitation can en-
ter channel B2 and its collision with a pulse coming from
the memory cell M2 activates the output channel of C2.
The output signal is directed to the counter of responsible
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for the digit at next position (I1) and it is also used to erase
all memory cells. Thus after the third pulse both memory
cells M1 and M2 are erased. The counter shown in Fig. 22
returns a digit in a representation with the base 3: here
0 is represented by the (M1;M2) D (0; 0), 1 by (1; 0), 2
by (1; 1) and the next pulse changes the state of memory
cell into (M1;M2) D (0; 0). Of course, using n � 1 mem-
ory cells in a single digit counter we can represent digits
of the system with base n. A cascade of single digit coun-
ters (see Fig. 22b) gives a positional representation of the
number of arriving pulses.

Artificial Chemical Neurons with ExcitableMedium

In this section we discuss a simple realization of an arti-
ficial neuron with structured excitable medium and show
how neuron networks can be used in programmable de-
vices. We consider a chemical analogy of the McCulloch–
Pitts neuron, i. e., a device that produces the output sig-
nal if the combined activation exceeds a critical value [32].
The geometry of a chemical neuron is inspired by a the
structure of biological neuron [30]. One of its realizations
with an excitable medium is illustrated on Fig. 23. Another
geometry of a neuron has been discussed in [24]. In an ar-
tificial chemical neuron, like in real neurons, dendrites (in-
put channels 1–4) transmit weak signals which are added
together through the processes of spatial and temporal in-

Computing in Geometrical Constrained Excitable Chemical Systems, Figure 23
Artificial chemical neuron. a The geometry of excitable and non-excitable areas; b The response of the neuron to different types of
excitations as a function of the illumination of non-excitable regions. The numbers given on the left list the excited channels. The
values of�p for which the neuron body gets excited aremarked by a thick line

tegration inside the cell body (part C). If the aggregate ex-
citation is larger than the threshold value the cell body gets
excited. This excitation is transmitted as an output signal
down the axon (the output channel) and the amplitude of
the output signal does not depend on the value of inte-
grated inputs but only on the properties of the medium
that makes the output channel. In Fig. 23a the axon is not
shown and we assume that it is formed by an excitable
channel located perpendicularly above the cell body. In the
construction discussed in [24] both dendrites and the axon
were on a single plane. We have studied the neuron us-
ing numerical simulations based on the Oregonator model
and the reaction-diffusion equations have been solved on
a square grid. The square shape of the neuron body and the
input channels shown on Fig. 23a allows for precise defi-
nition of the boundary between the excitable and non-ex-
citable parts. The idea behind the chemical neuron is sim-
ilar to that of the AND gate: perturbations introduced by
multiple inputs combine and generate a stronger excita-
tion of the cell body than this resulting from a single input
pulse. Therefore, it is intuitively clear that if we are able to
adjust the amplitudes of excitations coming from individ-
ual input channels, then the output channel becomes ex-
cited only when the required number of excitations arrive
from the inputs.

In the studied neuron, the amplitudes of spikes in
input channels have been adjusted by sub-excitability of
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these channels which can be controlled by the chan-
nel width or by the illumination of surrounding non-
excitable medium. In our simulations we considered
different values of �p for non-excitable areas, whereas
�a D 0:007 characterizing excitable regions has been fixed
for dendrites and the neuron body. Simulation results
shown on Fig. 23b indicate that the properties of chemical
neurons are very sensitive with respect to changes in �p .
The thick line marks the values of �p for which the output
signal appears. For the parameters used when �p is slightly
below 0.047377 any single excitation produces an output
signal. On the other hand if �p > 0:047397 then even the
combined excitation of all inputs is not sufficient to excite
the neuron. In between those two limiting values we ob-
serve all other thresholds; i. e., an output excitation as the
result of two or three combined inputs. Therefore, by ap-
plying the proper illumination level the structure shown
in Fig. 23a can work as a four input McCulloch–Pitts neu-
ron with the required threshold. A similar high sensitivity
of the neuron properties on �a is also observed. It means
that neuron properties can be controlled with tiny changes
in system parameters.

The chemical neuron illustrated in Fig. 23a can be used
to program signal processing with pulses of excitation. If
we set the illuminations such that any two input pulses
produce the output and use one of the inputs to control
the device, then if the control pulse is present the device
performs the OR operation on the other inputs. If there is
no control pulse, it calculates an alternative on conjunc-
tions of all pairs of channels.

The geometry of a network constructed with neurons
can be easily controlled if the switchable channels illus-
trated on Fig. 21b are used to establish or cut connec-
tions between processing elements. The state of the mem-
ory that controls the channel may depend on the state of
the network through a feedback mechanism what allows
for network training. In the chemical programming de-
scribed above pulses of concentration of the same reagent
are used to store and process information, and to program
the medium. Therefore, the output signal may be directly
used to change the network geometry. External program-
ming factors like illumination or a temperature field [3]
are difficult for applications in three dimensional struc-
tures. The pulse based programming seems to be easier
if the proper geometry of switchable channels and of the
feedbacks is introduced.

At the first look it seems that a practical realization
of a network built of chemical neurons may be difficult.
However, the geometry of a considered neuron looks quite
similar to structures of phases formed in a multicompo-
nent system. For example, the diamond structure in an oil-

water-surfactant system, which spontaneously appears at
certain thermodynamic conditions [11], has a form of cen-
ters linked with the four nearest neighbors. If the reactants
corresponding for excitability are soluble in water, but not
in oil then the water rich phase forms the structure of
excitable channels and processing elements just as the re-
sult of thermodynamic conditions. Within a certain range
of parameters, such a structure is thermodynamically sta-
ble. This means that the network has an auto-repair abil-
ity and robustness against unexpected destruction. The
subexcitability of a channel is related to its diameter, so the
required value can be obtained by selecting the right com-
position of the mixture and the conditions at which the
phase transition occurs. Moreover, the structure is three
dimensional, which allows for a higher density of process-
ing elements than that obtained with the classical two-di-
mensional techniques, for example lithography.

Perspectives and Conclusions

Perspectives

In this article we have described a number of simple de-
vices constructed with structured excitable chemical me-
dia which process information coded in excitation pulses.
All the considered systems process information in an un-
conventional (non-von Neumann) way; i. e., without an
external clock or synchronizing signal that controls the se-
quence of operations. On the other hand, in many cases
the right timing of performed operation is hidden in the
geometrical distribution and sizes of excitable regions. The
described devices can be used as building blocks for more
complex systems that process signals formed of excita-
tion pulses. Some of the discussed devices can be con-
trolled with spikes. Therefore, there is room for program-
ming and learning. However, the further development of
applications of structured excitable medium for informa-
tion processing along this line seem to follow the evolu-
tion of classical electronic computing. In our opinion it
would be more interesting to step away from this path and
learn more about the potential offered by excitable me-
dia.

It would be interesting to study new types of ex-
citable media suitable for information processing. Elec-
trical analogs of reaction-diffusion systems (� Uncon-
ventional Computing, Novel Hardware for) seem promis-
ing, because they are more robust than the wetware based
on liquid BZ media. In such media, spikes propagate
much faster and the spatial scale can be much reduced
if compared with typical chemical systems. They seem
to be promising candidates for the hardware in geo-
metrically oriented problems and direct image process-
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ing [4]. However, two interesting properties of chem-
ical reaction-diffusion systems are lost in their electri-
cal analogs. First, chemical information processing sys-
tems, unlike the electronic ones, integrate two functions:
the chemical reactivity and the ability to process infor-
mation. Having in mind the excitable oxidation of CO
on a Pt surface and the potential application of this
medium for information processing [23], we can think
of catalysts that are able to monitor their activity and
report it. Second, the media described in � Unconven-
tional Computing, Novel Hardware for are two-dimen-
sional. Most of the systems discussed in this article can
be realized in three dimensions. The use of two dimen-
sional media in chemical experiments is mainly related
with significant difficulties in observations of three di-
mensional chemical excitations [42]. Potential application
of phase transitions for channel structure generation de-
scribed in the previous section should increase the in-
terest in information processing with three dimensional
medium.

Studies onmore effectivemethods of information cod-
ing are important for the further development of reac-
tion-diffusion computing. The most simple translation of
chemistry into the language of information science based
on the equivalence between the presence of a spike and
the TRUE logic value is certainly not the most efficient.
It can be expected that information interpreted within
multi-valued logic systems is more suitable for transfor-
mations with the use of structured media [47]. As an ex-
ample, let us consider three-valued logic encoded by exci-
tation pulses in the following way: the lack of a pulse rep-
resents a logical FALSE (F), two pulses separated by time
ıt correspond at the logical TRUE (T), and one pulse is
interpreted as a “nonsense” (F). Let us assume that two
signals coded as described above are directed to the in-
puts of the AND gate illustrated on Fig. 9 and that they
are fully synchronized at the input. The gap between the
input and output channels is adjusted such that an ac-
tivator diffusing from a single traveling pulse is not suf-
ficient to generate a new pulse in the output channel,
but the excitation resulting from the collision of facing
pulses at the junction point exceeds the threshold and the
output pulse is generated. Moreover, let us assume that
the system is described by the dynamics for which sig-
nals are transformed as illustrated in Fig. 7a (for exam-
ple FitzHugh–Nagumo dynamics) and that the time dif-
ference between spikes ıt is selected such that the sec-
ond spike can pass the gap. The output signal appears
when spikes from both input channels are in coincidence
or when the second spike from the same input arrives. As
a result the device performs the following function within

3-valued logic [47]:

�F1 T F ?

T T ? ?

F ? F F
? ? F ?

The same operation, if performed on a classical com-
puter would require a procedure that measures time
between spikes. The structured excitable medium per-
forms it naturally provided that the time ıt is adjustedwith
the properties of the medium and the geometry of the gap.
Of course, similar devices that process variables of n-val-
ued logic can be also constructed with structured excitable
media.

Conclusions

In the article we have presented a number of examples
that should convince the reader that structured excitable
media can be used for information processing. The fu-
ture research will verify if this branch of computer science
is fruitful. It would be important to find new algorithms
that can be efficiently executed using a structured excitable
medium. However, the ultimate test for the usefulness of
ideas should come from biology. It is commonly accepted
that excitable behavior is responsible for information pro-
cessing and coding in living organisms [8,31,36,60]. We
believe that studies on chemical information processing
will help us to better understand these problems. And, al-
though at the moment computing with a homogeneous
excitable medium seems to offer more applications than
that with the structured one, we believe the proportions
will be reversed in the future. After all, our brains are
not made of a single piece of a homogeneous excitable
medium.
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Glossary

Integrable This term is generally used in more than one
way and in different contexts. For the purposes of this
article, a partial differential equation or system of par-
tial differential equations is integrable if it can be solved
explicitly to yield solitons (qv).

Manakov system A system of two cubic Schrödinger
equations where the self- and cross-phase modulation
terms have equal weight.

Nonlinear Schrödinger equation A partial differential
equation that has the same form as the Schrödinger
equation of quantum mechanics, with a term nonlin-
ear in the dependent variable, and for the purposes of
this article, interpreted classically.

Self- and cross-phase modulation Any terms in a non-
linear Schrödinger equation that involve nonlinear
functions of the dependent variable of the equation, or
nonlinear functions of a dependent variable of another
(coupled) equation, respectively.

Solitary wave A solitary wave is a wave characterized by
undistorted propagation. Solitary waves do not in gen-
eral maintain their shape under perturbations or colli-
sions.

Soliton A soliton is a solitary wave which is also robust
under perturbations and collisions.

Turing equivalent Capable of simulating any TuringMa-
chine, and hence by Turing’s Thesis capable of per-
forming any computation that can be carried out by
a sequence of effective instructions on a finite amount
of data. A machine that is Turing equivalent is there-

fore as powerful as any digital computer. Sometimes
a device that is Turing equivalent is called “universal.”

Definition of the Subject

Solitons are localized, shape-preserving waves character-
ized by robust collisions. First observed as water waves
by John Scott Russell [29] in the Union Canal near Edin-
burgh and subsequently recreated in the laboratory, soli-
tons arise in a variety of physical systems, as both tempo-
ral pulses which counteract dispersion and spatial beams
which counteract diffraction.

Solitons with two components, vector solitons, are
computationally universal due to their remarkable colli-
sion properties. In this article, we describe in detail the
characteristics of Manakov solitons, a specific type of vec-
tor soliton, and their applications in computing.

Introduction

In this section, we review the basic principles of soliton
theory and spotlight relevant experimental results. Inter-
estingly, the phenomena of soliton propagation and colli-
sion occur in many physical systems despite the diversity
of mechanisms that bring about their existence. For this
reason, the discussion in this article will treat temporal and
spatial solitons interchangeably, unless otherwise noted.

Scalar Solitons

A pulse in optical fiber undergoes dispersion, or tempo-
ral spreading, during propagation. This effect arises be-
cause the refractive index of the silica glass is not con-
stant, but is rather a function of frequency. The pulse can
be decomposed into a frequency range—the shorter the
pulse, the broader its spectral width. The frequency de-
pendence of the refractive index will cause the different
frequencies of the pulse to propagate at different veloci-
ties, giving rise to dispersion. As a result, the pulse devel-
ops a chirp, meaning that the individual frequency com-
ponents are not evenly distributed throughout the pulse.
There are two types of dispersion: normal and anoma-
lous. If the longer wavelengths travel faster, the medium
is said to have normaldispersion. If the opposite is true,
the medium has anomalous dispersion.

The response of a dielectric such as optical fiber is non-
linear. Most of the nonlinear effects in fiber originate from
nonlinear refraction, where the refractive index n depends
on the intensity of the propagating field according to the
relation

n D n0 C n2jEj2; (1)
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where n0 is the linear part of the refractive index, jE2j is
the optical intensity, and n2 is the coefficient of nonlin-
ear contribution to the refractive index. Because the ma-
terial responds almost instantaneously, on the order of
femtoseconds, and because the phase shift 
� is propor-
tional to n, each component of an intense optical pulse sees
a phase shift proportional to its intensity. Since the fre-
quency shift ı! D �(@
�)/(@t), the leading edge of the
pulse is red-shifted (ı! < 0), while the trailing edge is
blue-shifted (ı! > 0), an effect known as self-phase mod-
ulation (SPM). As a result, if the medium exhibits normal
dispersion, the pulse is broadened; for anomalous disper-
sion, the pulse is compressed. Under the proper condi-
tions, this pulse compression can exactly cancel the lin-
ear, dispersion-induced broadening, resulting in distor-
tionless soliton propagation. Formore details, see the book
by Agrawal [3].

The idealized mathematical model for this pulse prop-
agation is the nonlinear Schrödinger equation (NLSE):

i
@u
@z
˙

1
2
@2u
@x2
C juj2u D 0; (2)

where u(z, x) is the complex-valued field envelope, z is
a normalized propagation distance and x is normalized
time propagating with the group velocity of the pulse. The
second and third terms describe dispersion and the inten-
sity-dependent Kerr nonlinearity, respectively. The coeffi-
cient of the dispersion term is positive for anomalous dis-
persion and negative for normal dispersion. Equation (2),
known as the scalar NLSE, is integrable—that is, it can
be solved analytically, and collisions between solitons are
‘elastic,’ in that no change in amplitude or velocity occurs
as a result of a collision. Zakharov and Shabat [38] first
solved this equation analytically using the inverse scatter-
ing method. It describes, for example, the propagation of
picosecond or longer pulses propagating in lossless optical
fiber.

Two solitons at different wavelengths will collide in
an optical fiber due to dispersion-induced velocity differ-
ences. A schematic of such a collision is depicted in Fig. 1.
The scalar soliton collision is characterized by two phe-
nomena— a position and phase shift—both of which can
be understood in the same intuitive way. During collision,
there will be a local increase in intensity, causing a local in-
crease in the fiber’s refractive index, according to Eq. (1).
As a result, both the soliton velocity and phase will be af-
fected during the collision.

From an all-optical signal processing perspective, the
phase and position shifts in a soliton collision are not use-
ful. This is because these effects are independent of any
soliton properties that are changed by collision; that is, the

Computing with Solitons, Figure 1
Schematic of a scalar soliton collision, in which amplitude and
velocities are unchanged. The two soliton collision effects are
a position shift (depicted through the translational shift in the
soliton path) and phase shift (not pictured)

result of one collision will not affect the result of subse-
quent collisions. Scalar solitons are therefore not useful for
complex logic or computing, which depend on multiple,
cascaded interactions.

Despite this setback, it was discovered later that a sys-
tem similar to the scalar NLSE, the Manakov system [19],
possesses very rich collisional properties [26] and is in-
tegrable as well. Manakov solitons are a specific instance
of two-component vector solitons, and it has been shown
that collisions of Manakov solitons are capable of transfer-
ring information via changes in a complex-valued polar-
ization state [16].

Vector Solitons

When several field components, distinguished by polariza-
tion and/or frequency, propagate in a nonlinear medium,
the nonlinear interaction between them must be consid-
ered as well. This interaction between field components
results in intensity-dependent nonlinear coupling terms
analogous to the self-phase modulation term in the scalar
case. Such a situation gives rise to a set of coupled non-
linear Schrödinger equations, and may allow for propa-
gation of vector solitons. For the case of two components
propagating in an ideal sl medium with no higher-order
effects and only intensity-dependent nonlinear coupling,
the equations become:

i
@u1
@z
C
@2u1
@x2
C 2�(ju1j2 C ˛ju2j2)u1 D 0 ;

i
@u2
@z
C
@2u2
@x2
C 2�(ju2j2 C ˛ju1j2)u2 D 0 ;

(3)
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where u1(z; x) and u2(z; x) are the complex-valued pulse
envelopes for each component, � is a nonlinearity param-
eter, and ˛ describes the ratio between self- and cross-
phase modulation contributions to the overall nonlinear-
ity. Only for the special case of ˛ D 1 are Eqs. (3) inte-
grable. First solved using the method of inverse scattering
by Manakov [19], Eqs. (3) admit solutions known as Man-
akov solitons. For nonintegrable cases (˛ ¤ 1), some ana-
lytical solitary-wave solutions are known for specific cases,
although in general a numerical approach is required [36].
The specific case of ˛ D 2/3, for example, corresponds to
linearly birefringent polarization maintaining fiber, and
will be considered in more detail in Sect. “Experiments”.

Due to their multicomponent structure, vector soli-
tons have far richer collision dynamics than their scalar,
one-component counterparts. Recall that scalar collisions
are characterized by phase and position shifts only. Vector
soliton collisions also exhibit these effects, with the added
feature of possible intensity redistributions between the
component fields [19,26]. This process is shown schemat-
ically in Fig. 2. In the collision, two conservation relations
are satisfied: (i) the energy in each soliton is conserved and
(ii) the energy in each component is conserved. It can be
seen that when the amplitude of one component in a soli-
ton increases as a result of the collision, the other compo-

Computing with Solitons, Figure 2
Schematic of a vector soliton collision, which exhibits a position
shift and phase shift (not pictured), similar to the scalar soliton
collision (cf. Fig. 1). Vector soliton collisions also display an en-
ergy redistribution among the component fields, shown here as
two orthogonal polarizations. Arrows indicate direction of en-
ergy redistribution

nent decreases, with the opposite exchange in the second
soliton. The experimental observation of this effect will
be discussed in Sect. “Experiments”. In addition to funda-
mental interest in such solitons, collisions of vector soli-
tons make possible unique applications, including colli-
sion-based logic and universal computation [16,27,34,35],
as discussed in Sect. “Manakov Soliton Computing”.

Manakov Solitons

As mentioned in Sect. “Introduction”, computation is pos-
sible using vector solitons because of an energy redistribu-
tion that occurs in a collision. In this section, we provide
the mathematic background of Manakov soliton theory, in
order to understand soliton computing and a remarkable
way to achieve bistability using soliton collisions as de-
scribed in Sects. “Manakov Soliton Computing” and “Mul-
tistable Soliton Collision Cycles”, respectively.

The Manakov system consists of two coupled
NLSEs [19]:

i
@q1
@z
C
@2q1
@x2
C 2�(jq1j2 C jq2j2)q1 D 0 ;

i
@q2
@z
C
@2q2
@x2
C 2�(jq1j2 C jq2j2)q2 D 0 ;

(4)

where q1(x; z) and q2(x; z) are two interacting optical
components, � is a positive parameter representing the
strength of the nonlinearity, and x and z are normal-
ized space and propagation distance, respectively. As men-
tioned in Sect. “Vector Solitons”, the Manakov system is
a special case of Eqs. (3) with ˛ D 1. The two components
can be thought of as components in two polarizations, or,
as in the case of a photorefractive crystal, two uncorrelated
beams [11].

Manakov first solved Eqs. (4) by the method of in-
verse scattering [19]. The system admits single-soliton,
two-component solutions that can be characterized by
a complex number k � kR C ikI , where kR represents the
energy of the soliton and kI the velocity, all in normal-
ized units. The additional soliton parameter is the com-
plex-valued polarization state � � q1/q2, defined as the
(z- and x-independent) ratio between the q1 and q2 com-
ponents.

Figure 3 shows the schematic for a general two-soliton
collision, with initial parameters �1, k1 and �L , k2, corre-
sponding to the right-moving and left-moving solitons, re-
spectively. The values of k1 and k2 remain constant during
collision, but in general the polarization state changes. Let
�1 and �L denote the respective soliton states before im-
pact, and suppose the collision transforms �1 into �R , and
�L into �2. It turns out that the state change undergone
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Computing with Solitons, Figure 3
Schematic of a general two-soliton collision. Each soliton is char-
acterized by a complex-valued polarization state� and complex
parameter k. Reprinted with permission from [34]. Copyright by
the American Physical Society

by each colliding soliton takes on the very simple form of
a linear fractional transformation (also called a bilinear or
Möbius transformation). Explicitly, the state of the emerg-
ing left-moving soliton is given by [16]:

�2 D
[(1 � g)/��1 C �1]�L C g�1/��1

g�L C (1 � g)�1 C 1/��1
; (5)

where

g �
k1 C k�1
k2 C k�1

: (6)

The state of the right-moving soliton is obtained similarly,
and is

�R D
[(1 � h�)/��L C �L]�1 C h��L/��L

h��1 C (1 � h�)�L C 1/��L
; (7)

where

h �
k2 C k�2
k1 C k�2

: (8)

We assume here, without loss of generality, that k1R ;
k2R > 0.

Several properties of the linear fractional transforma-
tions in Eqs. (5) and (7) are derived in [16], including the
characterization of inverse operators, fixed points, and im-
plicit forms. In particular, when viewed as an operator ev-
ery soliton has an inverse, which will undo the effect of the

operator on the state. Note that this requires that the in-
verse operator have the same k parameter as the original,
a condition that will hold in our application of computing
in the next section.

These state transformations were first used by Jaku-
bowski et al. [16] to describe logical operations such as
NOT. Later, Steiglitz [34] established that arbitrary com-
putation was possible through time gating of Manakov
(1 + 1)-dimensional spatial solitons. We will describe this
in Sect. “Manakov Soliton Computing”.

There exist several candidates for the physical re-
alization of Manakov solitons, including photorefrac-
tive crystals [4,5,9,11,30], semiconductor waveguides [17],
quadratic media [33], and optical fiber [23,28]. In Sect.
“Experiments”, we discuss in detail an experiment with
vector solitons in linearly birefringent optical fiber.

Manakov Soliton Computing

We described in the previous section how collisions of
Manakov solitons can be described by transformations of
a complex-valued state which is the ratio between the two
Manakov components. We show in this section that gen-
eral computation is possible if we use (1+1)-dimensional
spatial solitons that are governed by the Manakov equa-
tions and if we are allowed to time-gate the beams input
to the medium. The result is a dynamic computer without
spatially fixed gates or wires, which is unlike most present-
day conceptions of a computer that involve integrated cir-
cuits, in which information travels between logical ele-
ments that are fixed spatially through fabrication on a sil-
icon wafer. We can call such a scheme “nonlithographic,”
in the sense that there is no architecture imprinted on the
medium.

The requirements for computation include cascadabil-
ity, fanout, and Boolean completeness. The first, cascad-
ability, requires that the output of one device can serve as
input to another. Since any useful computation consists of
many stages of logic, this condition is essential. The sec-
ond, fanout, refers to the ability of a logic gate to drive
at least two similar gates. Finally, Boolean completeness
makes it possible to perform arbitrary computation.

We should emphasize that although the model we use
is meant to reflect known physical phenomena, at least
in the limit of ideal behavior, the result is a mathemati-
cal one. Practical considerations of size and speed are not
considered here, nor are questions of error propagation. In
this sense the program of this article is analogous to Fred-
kin and Toffoli [13] for ideal billiard balls, and Shor [31]
for quantum mechanics. There are however several can-
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Computing with Solitons, Figure 4
The general physical arrangement considered in this paper.
Time-gated beams of spatial Manakov solitons enter at the top
of the medium, and their collisions result in state changes that
reflect computation. Each solid arrow represents a beam seg-
ment in a particular state. Reprinted with permission from [34].
Copyright by the American Physical Society

didates for physical instantiation of the basic ideas in this
paper, as noted in the previous section.

Although we are describing computation embedded
in a homogeneous medium, and not interconnected gates
in the usual sense of the word, we will nevertheless use
the term gates to describe prearranged sequences of soli-
ton collisions that effect logical operations. We will in fact
adopt other computer terms to our purpose, such aswiring
to represent the means of moving information from one
place to another, and memory to store it in certain ways
for future use.

We will proceed in the construction of what amounts
to a complete computer in the following stages: First we
will describe a basic gate that can be used for FANOUT.
Then we will show how the same basic configuration can
be used for NOT, and finally, NAND. Then we will de-
scribe ways to use time gating of the input beams to in-
terconnect signals. The NAND gate, FANOUT, and inter-
connect are sufficient to implement any computer, and we
conclude with a layout scheme for a general-purpose, and
hence Turing-equivalent computer. The general picture of
the physical arrangement is shown in Fig. 4.

Figure 5 shows the usual picture of colliding solitons,
which can work interchangeably for the case of temporal

Computing with Solitons, Figure 5
Colliding spatial solitons. Reprinted with permission from [34].
Copyright by the American Physical Society

Computing with Solitons, Figure 6
Convenient representation of colliding spatial solitons. Reprin-
ted with permission from [34]. Copyright by the American Phys-
ical Society

or spatial solitons. It is convenient for visualization pur-
poses to turn the picture and adjust the scale so the axes
are horizontal and vertical, as in Fig. 6. We will use binary
logic, with two distinguished, distinct complex numbers
representing TRUE and FALSE, called 1 and 0, respectively.
In fact, it turns out to be possible to use complex 1 and 0
for these two state values, and we will do that throughout
this paper, but this is a convenience and not at all a neces-
sity. We will thus use complex polarization states 1 and 0
and logical 1 and 0 interchangeably.

FANOUT

We construct the FANOUT gate by starting with a COPY
gate, implemented with collisions between three down-
moving, vertical solitons and one left-moving horizontal
soliton. Figure 7 shows the arrangement. The soliton state
labeled in will carry a logical value, and so be in one of the
two states 0 or 1. The left-moving soliton labeled actua-
tor will be in the fixed state 0, as will be the case through-
out this paper. The plan is to adjust the (so far) arbitrary
states z and y so that out = in, justifying the name COPY.
It is reasonable to expect that this might be possible, be-
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Computing with Solitons, Figure 7
COPY gate. Reprinted with permission from [34]. Copyright by
the American Physical Society

cause there are four degrees of freedom in the two com-
plex numbers z and y, and two complex equations to sat-
isfy: that out be 1 and 0 when in is 1 and 0, respectively.
Values that satisfy these four equations in four unknowns
were obtained numerically. We will call them zc and yc. It
is not always possible to solve these equations; Ablowitz et
al. [1] showed that a unique solution is guaranteed to exist
in certain parameter regimes. However, explicit solutions
have been found for all the cases used in this section, and
are given in Table 1.

To be more specific about the design problem, write
Eq. (5) as the left-moving product �2 D L(�1; �L), and
similarly write Eq. (7) as �R D R(�1; �L). The succes-
sive left-moving products in Fig. 7 are L(in; 0) and
L(y; L(in; 0)). The out state is then R(z; L(y; L(in; 0))).
The stipulation that 0 maps to 0 and 1 maps to 1 is ex-
pressed by the following two simultaneous complex equa-
tions in two complex unknowns

R(z; L(y; L(0; 0))) D 0 ;
R(z; L(y; L(1; 0))) D 1 :

It is possible to solve for z as a function of y and then elim-
inate z from the equations, yielding one complex equation
in the one complex unknown y. This is then solved numer-
ically by grid search and successive refinement. There is no
need for efficiency here, since we will require solutions in
only a small number of cases.

Computing with Solitons, Table 1
Parameters for gates when soliton speeds are 1

gate z y
COPY �0:24896731 � 0:62158212 � I 2:28774210C 0:01318152 � I
NOT �0:17620885C 0:38170630 � I 0:07888703 � 1:26450654 � I
ONE �0:45501471 � 1:37634227 � I 1:43987094C 0:64061349 � I
Z-CONV 0:31838068 � 0:43078735 � I �0:04232340C 2:17536612 � I
Y-CONV 1:37286955C 0:88495501 � I �0:58835758� 0:18026939 � I

Computing with Solitons, Figure 8
FANOUT gate. Reprinted with permission from [34]. Copyright by
the American Physical Society

Tomake a FANOUT gate, we need to recover the input,
which we can do using a collision with a soliton in the state
which is the inverse of 0, namely1 [16]. Figure 8 shows
the complete FANOUT gate. Notice that we indicate colli-
sions with a dot at the intersection of paths, and require
that the continuation of the inverse soliton not intersect
the continuation of z that it meets. We indicate that by
a broken line, and postpone the explanation of how this
“wire crossing” is accomplished. It is immaterial whether
the continuation of the inverse operator hits the continua-
tion of y, because it is not used later. We call such solitons
garbage solitons.

NOT and ONE Gates

In the same way we designed the complex pair of states
(zc ; yc) to produce a COPY and FANOUT gate, we can find
a pair (zn ; yn) to get a NOT gate, mapping 0 to 1 and 1 to 0;
and a pair (z1; y1) to get a ONE gate, mapping both 0 and
1 to 1. These (z, y) values are given in Table 1.

We should point out that the ONE gate in itself, consid-
ered as a one-input, one-output gate, is not invertible, and
could never be achieved by using the continuation of one
particular soliton through one, or even many collisions.
This is because such transformations are always nonsin-
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Computing with Solitons, Figure 9
A NAND gate, using converter gates to couple copies of one of
its inputs to its z and y parameters. Reprinted with permission
from [34]. Copyright by the American Physical Society

gular linear fractional transformations, which are invert-
ible [16]. The transformation of state from the input to the
continuation of z is, however,muchmore complicated and
provides the flexibility we need to get the ONE gate. It turns
out that this ONE gate will give us a row in the truth table
of a NAND, and is critical for realizing general logic.

Output/Input Converters,
Two-Input Gates, and NAND

To perform logic of any generality we must of course be
able to use the output of one operation as the input to an-
other. To do this we need to convert logic (0/1) values to
some predetermined z and y values, the choice depending
on the type of gate we want. This results in a two-input,
one-output gate.

As an important example, here’s how a NAND gate can
be constructed. We design a z-converter that converts 0/1
values to appropriate values of z, using the basic three-
collision arrangement shown in Fig. 7. For a NAND gate,
we map 0 to z1, the z value for the ONE gate, and map
1 to zn, the z value for the NOT gate. Similarly, we con-
struct a y-converter that maps 0 to y1 and 1 to yn. These z-

and y-converters are used on the fanout of one of the in-
puts, and the resulting two-input gate is shown in Fig. 9.
Of course these z- and y-converters require z and y val-
ues themselves, which are again determined by numerical
search (see Table 1).

The net effect is that when the left input is 0, the other
input is mapped by a ONE gate, and when it is 1 the other
input is mapped by a NOT gate. The only way the output
can be 0 is if both inputs are 1, thus showing that this is
a NAND gate. Another way of looking at this construction
is that the 2×2 truth table of (left input)×(right input) has
as its 0 row a ONE gate of the columns (1 1), and as its 1
row a NOT gate of the columns (1 0).

The importance of the NAND gate is that it is univer-
sal [20]. That is, it can be used with interconnects and
fanouts to construct any other logical function. Thus we
have shown that with the ability to “wire” we can imple-
ment any logic using the Manakov model.

We note that other choices of input converters result
in direct realizations of other gates. Using input converters
that convert 0 and 1 to (zc ; yc ) and (zn ; yn), respectively,
results in a truth table with first row (0 1) and second
row (1 0), an XOR gate. Converting 0 and 1 to (zc ; yc )
and (z1; y1), respectively, results in an OR gate, and so on.

Time Gating

We next take up the question of interconnecting the gates
described above, and begin by showing how the continua-
tion of the input in the COPY gate can be restored without
affecting the other signals. In other words, we show how
a simple “wire crossing” can be accomplished in this case.

For spatial solitons, the key flexibility in the model is
provided by assuming that input beams can be time-gated;
that is, turned on and off. When a beam is thus gated, a fi-
nite segment of light is created that travels through the
medium. We can think of these finite segments as finite
light pulses, and we will call them simply pulses in the re-
mainder of this article.

Figure 10a shows the basic three-collision gate imple-
mented with pulses. Assuming that the actuator and data
pulses are appropriately timed, the actuator pulse hits all
three data pulses, as indicated in the projection below the
space-space diagram. The problem is that if we want a later
actuator pulse to hit the rightmost data pulse (to invert
the state, for example, as in the FANOUT gate), it will also
hit the remaining two data pulses because of the way they
must be spaced for the earlier three collisions.

We can overcome this difficulty by sending the actua-
tor pulse from the left instead of the right. Timing it ap-
propriately early it can be made to miss the first two data
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Computing with Solitons, Figure 10
a When entered from the right and properly timed, the actua-
tor pulse hits all three data pulses, as indicated in the projection
at the bottom; bWhen entered from the left and properly timed,
the actuator pulsemisses two datapulses and hits only the right-
most data pulse, as indicated in the projection at the bottom.
Reprintedwith permission from [34]. Copyright by the American
Physical Society

pulses, and hit the third, as shown in Fig. 10b. It is easy
to check that if the velocity of the right-moving actuator
solitons is algebraically above that of the data solitons by
the same amount that the velocity of the data solitons is al-
gebraically above that of the left-moving actuator solitons,
the same state transformations will result. For example, if
we choose the velocities of the data and left-moving actua-
tor solitons to beC1 and�1, we should choose the velocity
of the right-moving actuator solitons to beC3. This is re-
ally a consequence of the fact that the g and h parameters
of Eqs. (6) and (8) in the linear fractional transformation
depend only on the difference in the velocities of the col-
liding solitons.

Wiring

Having shown that we can perform FANOUT and NAND,
it remains only to show that we can “wire” gates so that
any outputs can be fed to any inputs. The basic method
for doing this is illustrated in Fig. 11. We think of data as
stored in the down-moving pulses in a column, which we
can think of as “memory”. The observer moves with this
frame, so the data appears stationary.

Pulses that are horizontal in the three-collision gates
shown in previous figures will then appear to the ob-
server to move upward at inclined angles. It is important
to notice that these upward diagonally moving pulses are
evanescent in our picture (and hence their paths are shown
dashed in the figure). That is, once they are used, they do

Computing with Solitons, Figure 11
The frame of this figure is moving down with the data pulses on
the left. A data pulse inmemory is operated onwith a three-colli-
sion gate actuated from the left, and the result deposited to the
upper right. Reprinted with permission from [34]. Copyright by
the American Physical Society

not remain in the picture with a moving frame and hence
cannot interfere with later computations. However, all ver-
tically moving pulses remain stationary in this picture.

Once a diagonal trajectory is used for a three-collision
gate, reusing it will in general corrupt the states of all the
stationary pulses along that diagonal. However, the origi-
nal data pulse (gate input) can be restored with a pulse in
the state inverse to the actuator, either along the same di-
agonal as the actuator, provided we allow enough time for
the result (the gate output, a stationary z pulse) to be used,
or along the other diagonal.

Computing with Solitons, Figure 12
A data pulse is copied to the upper right, this copy is copied to
the upper left, and the result put at the top of memory. The orig-
inal data pulse can then be restored with an inverse pulse and
copied to the left in the same way. Reprinted with permission
from [34]. Copyright by the American Physical Society
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Suppose we want to start with a given data pulse in
the memory column and create two copies above it in the
memory column. Figure 12 shows a data pulse at the lower
left being copied to the upper right with a three-collision
COPY gate, initiated with an actuator pulse from the left.
This copy is then copied again to the upper left, back to
a waiting z pulse in the memory column. After the first
copy is used, an inverse pulse can be used along the lower
left to upper right diagonal to restore the original data
pulse. The restored data pulse can then be copied to the
left in the same way, to a height above the first copy, say,
and thus two copies can be created and deposited in mem-
ory above the original.

A Second Speed and Final FANOUT and NAND

There is one problem still remaining with a true FANOUT:
When an original data pulse in memory is used in a COPY
operation for FANOUT, two diagonals are available, one
from the lower left to the upper right, and the other from
the lower right to the upper left. Thus, two copies can be
made, as was just illustrated. However, when a data pulse
is deposited in the memory column as a result of a logic
operation, the logical operation itself uses at least one diag-
onal, which leaves at most one free. This makes a FANOUT
of the output of a gate impossible with the current scheme.

A simple solution to this problem is to introduce an-
other speed, using velocities ˙0:5, say, in addition to ˙1.
This effectively provides four rather than two directions
in which a pulse can be operated on, and allows true
FANOUT and general interconnections. Figure 13 shows
such a FANOUT; the data pulse at the lower left is copied
to a position above it using one speed, and to another po-
sition, above that, using another.

Finally, a complete NAND gate is shown in Fig. 14. The
gate can be thought of as composed of the following steps:

� input 2 is copied to the upper left, and that copy trans-
formed by a z-converter to the upper right, placing
the z pulse for the NAND gate at the top of the figure;

� after the copy of input 2 is used, input 2 is restored with
an inverse pulse to the upper left;

� input 2 is then transformed to the upper right by a y-
converter;

� input 1 is copied to the upper right, to a position
collinear with the z- and y-converted versions of the
other input;

� a final actuator pulse converts the z pulse at the top to
the output of the NAND gate.

Note that the output of the NAND has used two diag-
onals, which again shows why a second speed is needed if

Computing with Solitons, Figure 13
The introduction of a second speed makes true FANOUT possi-
ble. For simplicity, in this and the next figure, data and opera-
tor pulses are indicated by solid dots, and the y operator pulses
are not shown. The paths of actuator pulses are indicated by
dashed lines. Reprinted with permission from [34]. Copyright by
the American Physical Society

we are to use the NAND output as an input to subsequent
logical operations. The y operator pulses, middle compo-
nents in the three-collision COPY and converter gates, are
not shown in the figure, but room can always be made for
them to avoid accidental collisions by adding only a con-
stant amount of space.

Universality

It should be clear now that any sequence of three-colli-
sion gates can be implemented in this way, copying data
out of the memory column to the upper left or right, and
performing NAND operations on any two at a time in the
way shown in the previous section. The computation can
proceed in a breadth-first manner, with the results of each
successive stage being stored above the earlier results. Each
additional gate can add only a constant amount of height



Computing with Solitons C 1385

Computing with Solitons, Figure 14
Implementation of a NAND gate. A second speed will be nec-
essary to use the output. Reprinted with permission from [34].
Copyright by the American Physical Society

and width to the medium, so the total area required is no
more than proportional to the square of the number of
gates.

The “program” consists of down-moving y and z op-
erator pulses, entering at the top with the down-moving
data, and actuator pulses that enter from the left or right
at two different speeds. In the framemoving with the data,
the data and operator pulses are stationary and new re-
sults are deposited at the top of thememory column. In the
laboratory frame the data pulses leave the medium down-
ward, and new results appear in the medium at positions
above the old data, at the positions of newly entering z
pulses.

Discussion

We have shown that in principle any computation can
be performed by shining time-gated lasers into a com-
pletely homogeneous nonlinear optical medium. This re-
sult should be viewed as mathematical, and whether the
physics of vector soliton collisions can lead to practi-
cal computational devices is a subject for future study.
With regard to the economy of the model, the question
of whether time gating is necessary, or even whether two
speeds are necessary, is open.

We note that the result described here differs from the
universality results for the ideal billiard ball model [13],

the Game of Life [7], and Lattice Gasses [32], for exam-
ple, in that no internal mirrors or structures of any kind
are used inside the medium. To the author’s knowledge,
whether internal structure is necessary in these other cases
is open.

Finally, we remark that the model used is reversible
and dissipationless. The fact that some of the gate opera-
tions realized are not in themselves reversible is not a con-
tradiction, since extra, “garbage” solitons [13] are pro-
duced that save enough state to run the computation back-
wards.

Multistable Soliton Collision Cycles

Bistable and multistable optical systems, besides being of
some theoretical interest, are of practical importance in of-
fering a natural “flip-flop” for noise immune storage and
logic. We show in this section that simple cycles of col-
lisions of solitons governed by the Manakov equations
can have more than one distinct stable set of polarization
states, and therefore these distinct equilibria can, in the-
ory, be used to store and process information. The mul-
tistability occurs in the polarization states of the beams;
the solitons themselves do not change shape and remain
the usual sech-shaped solutions of theManakov equations.
This phenomenon is dependent only on simple soliton
collisions in a completely homogeneous medium.

The basic configuration considered requires only that
the beams form a closed cycle, and can thus be realized in
any nonlinear optical medium that supports spatial Man-
akov solitons. The possibility of using multistable systems
of beam collisions broadens the possibilities for practi-
cal application of the surprisingly strong interactions that
Manakov solitons can exhibit, a phenomenon originally
described in [26]. We show here by example that a cycle
of three collisions can have two distinct foci surrounded
by basins of attractions, and that a cycle of four collisions
can have three.

The Basic Three-Cycle and Computational
Experiments

Figure 15 shows the simplest example of the basic scheme,
a cycle of three beams, entering in states A, B, and C, with
intermediate beams a, b, and c. For convenience, we will
refer to the beams themselves, as well as their states, as A,
B, C, etc. Suppose we start with beamC initially turned off,
so that AD a. Beam a then hits B, thereby transforming it
to state b. If beam C is then turned on, it will hit A, closing
the cycle. Beam a is then changed, changing b, etc., and the
cycle of state changes propagates clockwise. The question
we ask is whether this cycle converges, and if so, whether
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Computing with Solitons, Figure 15
The basic cycle of three collisions. Reprinted with permission
from [35]. Copyright by the American Physical Society

it will converge with any particular choice of complex pa-
rameters to exactly zero, one, two, ormore foci. We answer
the question with numerical simulations of this cycle.

A typical computational experiment was designed by
fixing the input beams A, B, C, and the parameters k1 and
k2, and then choosing points a randomly and indepen-
dently with real and imaginary coordinates uniformly dis-
tributed in squares of a given size in the complex plane.
The cycle described above was then carried out until con-
vergence in the complex numbers a, b, and c was obtained
to within 10–12 in norm. Distinct foci of convergence were
stored and the initial starting points a were categorized by
which focus they converged to, thus generating the usual
picture of basins of attraction for the parameter a. Typi-
cally this was done for 50,000 random initial values of a,
effectively filling in the square, for a variety of parameter
choices A, B, and C. The following results were observed:

� In cases with one or two clear foci, convergence was
obtained in every iteration, almost always within one
or two hundred iterations.

� Each experiment yielded exactly one or two foci.
� The bistable cases (two foci) are somewhat less com-

mon than the cases with a unique focus, and are char-
acterized by values of kR between about 3 and 5 when
the velocity difference� was fixed at 2.

Figure 16 shows a bistable example, with the two foci
and their corresponding basins of attraction. The param-
eter k is fixed in this and all subsequent examples at 4˙ i
for the right- and left-moving beams of any given collision,
respectively. The second example, shown in Fig. 17, shows
that the basins are not always simply connected; a sizable
island that maps to the upper focus appears within the
basin of the lower focus.

A Tristable Example Using a Four-Cycle

Collision cycles of length four seem to exhibit more com-
plex behavior than those of length three, although it is dif-

Computing with Solitons, Figure 16
The two foci and their corresponding basins of attraction in the
first example, which uses a cycle of three collisions. The states of
the input beams are A D �0:8 � i � 0:13, B D 0:4 � i � 0:13,
C D 0:5 C i � 1:6; and k D 4 ˙ i. Reprinted with permission
from [35]. Copyright by the American Physical Society

Computing with Solitons, Figure 17
A second example using a cycle of three collisions, show-
ing that the basins need not be simply connected. The states
of the input beams are A D 0:7� i � 0:3, B D �1:1� i � 0:5,
C D 0:4C i � 0:81; and k D 4˙ i. Reprinted with permission
from [35]. Copyright by the American Physical Society
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Computing with Solitons, Figure 18
A case with three stable foci, for a collision cycle of length four.
The states of the input beams are A D �0:39 � i � 0:45, B D
0:22 � i � 0:25, C D 0:0C i � 0:25, D D �0:51 C i � 0:48; and
k D 4˙ i. Reprintedwith permission from [35]. Copyright by the
American Physical Society

ficult to draw any definite conclusions because the param-
eter spaces are too large to be explored exhaustively, and
there is at present no theory to predict such highly non-
linear behavior. If one real degree of freedom is varied as
a control parameter, we canmove from bistable to tristable
solutions, with a regime between in which one basin of
attraction disintegrates into many small separated frag-
ments. Clearly, this model is complex enough to exhibit
many of the well-known features of nonlinear systems.

Fortunately, it is not difficult to find choices of param-
eters that result in very well behavedmultistable solutions.
For example, Fig. 18 shows such a tristable case. The small-
est distance from a focus to a neighboring basin is on the
order of 25% of the interfocus distance, indicating that
these equilibria will be stable under reasonable noise per-
turbations.

Discussion

The general phenomenon discussed in this section raises
many questions, both of a theoretical and practical nature.
The fact that there are simple polarization-multistable cy-
cles of collisions in aManakov system suggests that similar
situations occur in other vector systems, such as photore-
fractive crystals or birefringent fiber. Any vector system
with the possibility of a closed cycle of soliton collisions

becomes a candidate for multistability, and there is at this
point really no compelling reason to restrict attention to
theManakov case, except for the fact that the explicit state-
change relations make numerical study much easier.

The simplified picture we used of information travel-
ing clockwise after we begin with a given beam a gives us
stable polarization states when it converges, plus an idea
of the size of their basins of attractions. It is remarkable
that in all cases in our computational experience, except
for borderline transitional cases in going from two to three
foci in a four-cycle, this circular process converges consis-
tently and quickly. But understanding the actual dynamics
and convergence characteristics in a real material requires
careful physical modeling. This modeling will depend on
the nature of the medium used to approximate the Man-
akov system, and is left for future work. The implemen-
tation of a practical way to switch from one stable state
to another is likewise critically dependent on the dynam-
ics of soliton formation and perturbation in the particular
material at hand, and must be studied with reference to
a particular physical realization.

We remark also that no iron-clad conclusions can be
drawn from computational experiments about the num-
bers of foci in any particular case, or the number possi-
ble for a given size cycle—despite the fact that we reg-
ularly used 50,000 random starting points. On the other
hand, the clear cases that have been found, such as those
used as examples, are very characteristic of universal be-
havior in other nonlinear iterated maps, and are sufficient
to establish that bi- and tristability, and perhaps higher-
mode multistability, is a genuine mathematical charac-
teristic, and possibly also physically realizable. It strongly
suggests experimental exploration.

We restricted discussion in this section to the simplest
possible structure of a single closed cycle, with three or
four collisions. The stable solutions of more complicated
configurations are the subject of continuing study. A gen-
eral theory that predicts this behavior is lacking, and it
seems at this point unlikely to be forthcoming. This forces
us to rely on numerical studies, from which, as we point
out above, only certain kinds of conclusions can be drawn.
We are fortunate, however, in being able to find cases that
look familiar and which are potentially useful, like the
bistable three-cycles with well separated foci and simply
connected basins of attraction.

It is not clear however, just what algorithms might be
used to find equilibria in collision topologies with more
than one cycle. It is also intriguing to speculate about
how collision configurations with particular characteris-
tics can be designed, how they can be made to interact, and
how they might be controlled by pulsed beams. There is
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promise that when the ramifications of complexes of vec-
tor soliton collisions are more fully understood they might
be useful for real computation in certain situations.

Application to Noise-Immune Soliton Computing

Any physical instantiation of a computing technology
must be designed to be immune from the effects of noise
buildup from logic stage to logic stage. In the familiar com-
puters of today, built with solid-state transistors, the noise-
immunity is provided by physical state restoration, so that
voltage levels representing logical “0” and “1” are restored
by bistable circuit mechanisms at successive logic stages.
This is state restoration at the physical level.

For another example, proposed schemes for quantum
computing would be impractical without some means of
protecting information stored in qubits from inevitable
corruption by the rest of the world. The most common
method proposed for accomplishing this is error correc-
tion at the software level, state restoration at the logical
level.

In the collision-based scheme for computing with
Manakov solitons described in Sect. “Manakov Soliton
Computing”, there is no protection against buildup of er-
ror from stage to stage, and some sort of logical state-
restoration would be necessary in a practical realization.
The bistable collision cycles ofManakov solitons described
in this section, however, offer a natural computational
building block for soliton computation with physical state
restoration. This idea is explored in [27]. Figure 19 illus-
trates the approach with a schematic diagram of a NAND
gate, implemented with bistable cycles to represent bits.
The input bits are stored in the collision cycles (1) and (2),
which have output beams that can be made to collide with

Computing with Solitons, Figure 19
Schematic of NANDgate usingbistable collision cycles. Reprinted
with permission from [27]. Copyright by Old City Publishing

input beam A of cycle (3), which represents the output bit
of the gate. These inputs to the gate, shown as dashed lines,
change the state of beam A of the ordinarily bistable cycle
(3) so that it becomes monostable. The state of cycle (3) is
then steered to a known state. When the input beams are
turned off, cycle (3) returns to its normal bistable condi-
tion, but with a known input state. Its state then evolves
to one of two bits, and the whole system of three collision
cycles can be engineered so that the final state of cycle (3)
is the NAND of the two bits represented by input cycles (1)
and (2). (See [27] for details.)

A computer based on such bistable collision cycles is
closer in spirit to present-day ordinary transistor-based
computers, with a natural noise-immunity and state-
restoration based on physical bistability. As mentioned in
the previous subsection, however, the basic bistable cy-
cle phenomenon awaits laboratory verification, and much
remains to be learned about the dynamics, and eventual
speed and reliability of such systems.

Experiments

The computation schemes described in the previous sec-
tions obviously rely on the correct mathematical model-
ing of the physics proposed for realization. We next de-
scribe experiments that verify some of the required soli-
ton phenomenology in optical fibers. Specifically, we high-
light the experimental observation of temporal vector soli-
ton propagation and collision in a birefringent optical
fiber [28]. This is both the first demonstration of temporal
vector solitons with two mutually-incoherent component
fields, and of vector soliton collisions in a Kerr nonlinear
medium.

Temporal soliton pulses in optical fiber were first pre-
dicted by Hasegawa and Tappert [14], followed by the first
experimental observation byMollenauer et al. [24]. In sub-
sequent work, Menyuk accounted for the birefringence in
polarization maintaining fiber (PMF) and predicted that
vector solitons, in which two orthogonally polarized com-
ponents trap each other, are stable under the proper op-
erating conditions [21,22]. For birefringent fibers, self-
trapping of two orthogonally polarized pulses can occur
when XPM-induced nonlinearity compensates the bire-
fringence-induced group velocity difference, causing the
pulse in the fiber’s fast axis to slow down and the pulse in
the slow axis to speed up. The first demonstration of tem-
poral soliton trapping was performed in the sub picosec-
ond regime [15], in which additional ultrashort pulse ef-
fects such as Raman scattering are present. In particular,
this effect results in a red-shift that is linearly proportional
to the propagation distance, as observed in a later temporal
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soliton trapping experiment [25]. Recently, soliton trap-
ping in the picosecond regime was observed with equal
amplitude pulses [18]. However, vector soliton propaga-
tion could not be shown, because the pulses propagated
for less than 1.5 dispersion lengths. In other work, phase-
locked vector solitons in a weakly birefringent fiber laser
cavity with nonlinear coherent coupling between compo-
nents were observed [12].

The theoretical model for linearly birefringent fiber
is the following coupled nonlinear Schrödinger equation
(CNLSE):
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where t is the local time of the pulse, z is propagation dis-
tance along the fiber, and Ax;y is the slowly varying pulse
envelope for each polarization component. The parame-
ter ˇ1x;y is the group velocity associated with each fiber
axis, and ˇ2 represents the group velocity dispersion, as-
sumed equal for both polarizations. In addition, we neglect
higher order dispersion and assume a loss less medium
with an instantaneous electronic response, valid for pi-
cosecond pulses propagating in optical fiber.

The last two terms of Eqs. (9) account for the nonlin-
earity due to SPM and XPM, respectively. In linearly bire-
fringent optical fiber, a ratio of 2/3 exists between these
two terms. When this ratio equals unity, the CNLSE be-
comes the integrable Manakov system of Eqs. (4). On the
other hand, solutions of Eqs. (9) are, strictly speaking, soli-
tary waves, not solitons. However, it was found in [36] that
the family of symmetric, single-humped (fundamental or
first-order) solutions, to which the current investigation in
this section belongs, are all stable. Higher-order solitons,
characterized by multiple humps, are unstable. Further-
more, it was shown in [37] that collisions of solitary waves
in Eqs. (9) can be described by application of perturba-
tion theory to the integrable Manakov equations, indicat-
ing the similarities between the characteristics of these two
systems.

Experimental Setup and Design

The experimental setup is shown in Fig. 20. We synchro-
nized two actively mode-locked erbium-doped fiber lasers
(EDFLs)—EDFL1 at 1.25GHz repetition rate, and EDFL2
at 5GHz. EDFL2 was modulated to match with the lower

Computing with Solitons, Figure 20
Experimental setup. EDFL: Erbium-doped fiber laser; EDFA: Er-
bium-doped fiber amplifier; MOD: modulator; D: tunable delay
line; PLC: polarization loop controller; 2:1: fiber coupler; LP: lin-
ear polarizer; �/2: half-wave plate; HB-PMF and LB-PMF: high
and low birefringence polarizationmaintaining fiber; PBS: polar-
ization beam splitter; OSA: optical spectrum analyzer. Reprinted
with permission from [28]. Copyright by the American Physical
Society

repetition rate of EDFL1. Each pulse train, consisting of
2 ps pulses, was amplified in an erbium-doped fiber ampli-
fier (EDFA) and combined in a fiber coupler. To align po-
larizations, a polarization loop controller (PLC) was used
in one arm, and a tunable delay line (TDL) was employed
to temporally align the pulses for collision. Once com-
bined, both pulse trains passed through a linear polarizer
(LP) and a half-wave plate to control the input polarization
to the PMF. Approximately 2mof high birefringence (HB)
PMF preceded the specially designed 500m of low bire-
fringence (LB) PMF used to propagate vector solitons. Al-
though this short length of HB-PMF will introduce some
pulse splitting (on the order of 2–3 ps), the birefringent
axes of the HB- and LB-PMF were swapped in order to
counteract this effect. At the output, each component of
the vector soliton was then split at a polarization beam
splitter, followed by an optical spectrum analyzer (OSA)
for measurement.

The design of the LB-PMF required careful control
over three characteristic length scales: the (polarization)
beat length, dispersion length Ld, and nonlinear length
Lnl. A beat length Lb D /
n D 50 cm was chosen
at a wavelength of 1550 nm, where 
n is the fiber bire-
fringence. According to the approximate stability criterion
of [8], this choice allows stable propagation of picosecond
vector solitons. By avoiding the sub picosecond regime,
ultrashort pulse effects such as intrapulse Raman scatter-
ing will not be present. The dispersion D D 2� cˇ2/2 D
16 ps/km nm and Ld D 2T2

0 /jˇ2j � 70 m, where T0 D
TFWHM/1:763 is a characteristic pulse width related to the
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full width at half maximum (FWHM) pulse width. Since
Ld 	 Lb, degenerate four-wave mixing due to coherent
coupling between the two polarization components can
be neglected [23]. Furthermore, the total propagation dis-
tance is greater than 7 dispersion lengths.

Polarization instability, in which the fast axis com-
ponent is unstable, occurs when Lnl D (�P)�1 is of the
same order of magnitude or smaller than Lb, as observed
in [6]. The nonlinearity parameter � D 2�n2/Aeff D

1:3 (kmW)�1, with Kerr nonlinearity coefficient n2 D
2:6 � 10�20 m2/W and measured effective mode area
Aeff D 83)m2. In the LB-PMF, the fundamental vector
soliton power P � 14W, thus Lnl D 55 m	 Lb, mitigat-
ing the effect of polarization instability.

Vector Soliton Propagation

We first studied propagation of vector solitons using both
lasers independently. The wavelength shift for each com-
ponent is shown in Fig. 21a as a function of the input
polarization angle � , controlled through the half-wave
plate. Due to the anomalous dispersion of the fiber at this
wavelength, the component in the slow (fast) axis will
shift to shorter (longer) wavelengths to compensate the
birefringence. The total amount of wavelength shift be-
tween components 
x y D 
ˇ1/D D 0:64 nm, where

ˇ1 D jˇ1x � ˇ1y j D 10:3 ps/km is the birefringence-
induced group velocity difference and dispersion D D
2� cˇ2/2 D 16 ps/km nm.

As � approaches 0ı (90ı), the vector soliton ap-
proaches the scalar soliton limit, and the fast (slow) axis
does not shift in wavelength, as expected. At � D 45ı,
a symmetric shift results. For unequal amplitude solitons,
the smaller component shifts more in wavelength than
the larger component, because the former experiences
more XPM. Numerical simulations of Eqs. (9), given by
the dashed lines of Fig. 21a, agree very well with the ex-
perimental results. Also shown in Fig. 21 are two cases,
� D 45ı and 37ı, as well as the numerical prediction.
The experimental spectra show some oscillatory features
at 5 GHz, which are a modulation of the EDFL2 repetition
rate on the optical spectrum. A sample input pulse spec-
trum from EDFL1 is shown in the inset of Fig. 21, which
shows no modulation due to the limited resolution of the
OSA. Vector solitons from both lasers produced similar
results. In this and all subsequent plots in this section, the
slow and fast axis components are depicted by solid and
dashed lines, respectively.

As the two component amplitudes become more un-
equal, satellite peaks become more pronounced in the
smaller component. These features are also present in the

simulations, but are not as dominant (cf. Fig. 21d and e).
We attribute this to the input pulse, which is calibrated for
the � D 45ı case, because the power threshold for vector
soliton formation in this case is largest due to the 2/3 fac-
tor between SPM and XPMnonlinear terms in the CNLSE.
As the input is rotated towards unequal components, there
will be extra power in the input pulse, which will radiate in
the form of dispersive waves as the vector soliton forms.
Due to the nature of this system, these dispersive waves
can be nonlinearly trapped, giving rise to the satellite fea-
tures in the optical spectra. This effect is not as prevalent
in the simulations because the threshold was numerically
determined at each input angle � .

Vector Soliton Collision

To prepare the experiment for a collision, we operated
both lasers simultaneously, detuned in wavelength to al-
low for dispersion-induced walkoff, and adjusted the de-
lay line in such a way that the collision occurred halfway
down the fiber. We define a collision length Lcoll D
2TFWHM/D
, where
 is the wavelength separation be-
tween the two vector solitons. For our setup,
 D 3 nm,
and Lcoll D 83:3 m. An asymptotic theory of soliton colli-
sions, in which a full collision takes place, requires at least
5 collision lengths. The total fiber length in this experiment
is equal to 6 collision lengths, long enough to ensure suf-
ficient separation of solitons before and after collision. In
this way, results of our experiments can be compared to
the asymptotic theory, even though full numerical simu-
lations will be shown for comparison. To quantify our re-
sults, we introduce a quantity R � tan2 �, defined as the
amplitude ratio between the slow and fast components.

Recall that in Sect. “Manakov Solitons”, we intro-
duced the Manakov equations (Eqs. (4)), and described
collision-induced transformations of the polarization state
of the soliton, which come about due to the asymp-
totic analysis of the soliton collision. The polarization
state is the ratio between the two components � �
Ax /Ay D cot� exp(i
�), and is therefore a function of
the polarization angle � and the relative phase 
� be-
tween the two components. In the context of the exper-
iments described in this section, these state transforma-
tions (Eqs. (5) and (7)) predict that the resulting energy
exchange will be a function of amplitude ratios R1;2, wave-
length separation 
, and the relative phase 
�1;2 be-
tween the two components of each soliton, where soliton 1
(2) is the shorter (longer) wavelength soliton.

A word of caution is in order at this point. An in-
teresting consequence of the 2/3 ratio between SPM and
XPM, which sets the birefringent fiber model apart from
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Computing with Solitons, Figure 21
Arbitrary-amplitude vector soliton propagation. aWavelength shift vs. angle to fast axis�, numerical curves given by dashed lines;
b and d experimental results for� D 45ı and 37ı with EDFL2, respectively. Inset: input spectrum for EDFL1; c and e corresponding
numerical simulations of� D 45ı and 37ı, respectively. The slow and fast axis components are depicted by solid and dashed lines,
respectively. Reprinted with permission from [28]. Copyright by the American Physical Society

the Manakov model, is the relative phase between the two
components. For the Manakov soliton, each component
‘feels’ the same amount of total nonlinearity, because the
strengths of both SPM and XPM are equal. Therefore, re-
gardless of the polarization angle, the amount of total non-
linear phase shift for each component is the same (even
though the contributions of SPM and XPM phase shifts

are in general not equal). As a result, the relative phase be-
tween the two components stays constant during propa-
gation, as does the polarization state. This is not the case
for vector solitons in birefringent fiber. For the case of
equal amplitudes, each component does experience the
same amount of nonlinear phase shift, and therefore the
polarization state is constant as a function of propagation
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Computing with Solitons, Figure 22
Demonstration of phase-dependent energy-exchanging collisions. a–c Short HB-PMF; d–f long HB-PMF; a,d experiment, without
collision; b, e experiment, with collision; c,f simulated collision result with c	�2 D 90ı and f	�2 D 50ı. Values of slow-fast am-
plitude ratio R are given above each soliton. The slow and fast axis components are depicted by solid and dashed lines, respectively.
Reprinted with permission from [28]. Copyright by the American Physical Society

distance. However, for arbitrary (unequal) amplitudes, the
total phase shift for each component will be different. Con-
sequently, the relative phase will change linearly as a func-
tion of propagation distance, and the polarization state will
not be constant. As a result, the collision-induced change
in polarization state, while being a function of the ampli-
tude ratios R1;2 and wavelength separation 
, will also
depend upon the collision position due to the propaga-
tion dependence of the relative phase 
�1;2(z). To bypass
this complication, we ensure that all collisions occur at the
same spatial point in the fiber.

Because only one half-wave plate is used in our experi-
ment (see Fig. 20), it was not possible to prepare each vec-
tor soliton individually with an arbitrary R. In addition,

due to the wavelength dependence of the half-wave plate,
it was not possible to adjust
 without affecting R.

First, we investigated the phase dependence of the col-
lision. This was done by changing the length of the HB-
PMF entering the LB-PMF, while keeping R and 
 con-
stant. As a result, we could change 
�1;2 due to the bire-
fringence of the HB-PMF. Approximately 0.5m of HB-
PMF was added to ensure that the total amount of tem-
poral pulse splitting did not affect the vector soliton for-
mation. The results are shown in Fig. 22, where Fig. 22a–c
and d–f correspond to the short and long HB-PMFs, re-
spectively. Figure 22a and d show the two vector solitons,
which propagate independently when no collision occurs;
as expected, the two results are similar because the OSA
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Computing with Solitons, Figure 23
Additional energy-exchanging collisions. a,d Experiment, without collision; b,e experiment, with collision; c,f simulated collision re-
sult, using	�2 D 90ı inferred from the experiment of Fig. 22. Values of slow-fast amplitude ratioR are given above each soliton. The
slow and fast axis components are depicted by solid and dashed lines, respectively. Reprinted with permission from [28]. Copyright
by the American Physical Society

measurement does not depend on 
�1;2. The result of the
collision is depicted in Fig. 22b and e, along with the cor-
responding simulation results in Fig. 22c and f.

In both of these collisions, an energy exchange be-
tween components occurs, and two important relations
are satisfied: the total energy in each soliton and in each
component is conserved. It can be seen that when one
component in a soliton increases as a result of the col-
lision, the other component decreases, with the opposite
exchange in the second soliton. The difference between
these two collisions is dramatic, in that the energy redis-
tributes in opposite directions. For the simulations, ide-
alized sech pulses for each component were used as ini-
tial conditions, and propagation was modeled without ac-
counting for losses. The experimental amplitude ratio was
used, and (without loss of generality [16,19,26]) 
�2 was

varied while 
�1 D 0. Best fits gave
�2 D 90ı (Fig. 22c)
and 50ı (Fig. 22f). Despite the model approximations, ex-
perimental and numerical results all agree to within 15%.

In the second set of results (Fig. 23), we changed R
while keeping all other parameters constant. More specif-
ically, we used the short HB-PMF, with initial phase dif-
ference 
�2 D 90ı, and changed the amplitude ratio. In
agreement with theoretical predictions, the same direction
of energy exchange is observed as in Fig. 22a–c.

Spatial Soliton Collisions

Wemention here analogous experiments with spatial soli-
tons in photorefractive media by Anastassiou et al. In [4],
it is shown that energy is transferred in a collision of vec-
tor spatial solitons in a way consistent with the predictions
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for the Manakov system (although the medium is a sat-
urable one, and only approximates the Kerr nonlinearity).
The experiment in [5] goes one step farther, showing that
one soliton can be used as an intermediary to transfer en-
ergy from a second soliton to a third. We thus are now at
a point where the ability of both temporal and spatial vec-
tor solitons to process information for computation has
been demonstrated.

Future Directions

This article discussed computing with solitons, and at-
tempted to address the subject from basic physical prin-
ciples to applications. Although the nonlinearity of fibers
is very weak, the ultralow loss and tight modal confine-
ment make them technologically attractive. By no means,
however, are they the only potential material for soli-
ton-based information processing. Others include pho-
torefractive crystals, semiconductor waveguides, quadratic
media, and Bose–Einstein condensates, while future mate-
rials research may provide new candidate systems.

From a computing perspective, scalar soliton collisions
are insufficient. Although measurable phase and position
shifts do occur, these phenomena cannot be cascaded to
affect future soliton collisions and therefore cannot trans-
fer information from one collision to the next. Meaningful
computation using soliton collisions requires a new degree
of freedom; that is, a new component. Collisions of vector
solitons display interesting energy-exchanging effects be-
tween components, which can be exploited for arbitrary
computation and bistability.

The vector soliton experiments of Sect. “Experiments”
were proof-of-principle ones. The first follow-up experi-
ments with temporal vector solitons in birefringent fiber
can be directed towards a full characterization of the colli-
sion process. This can be done fairly simply using the ex-
perimental setup of Fig. 20 updated in such a way as to al-
low independent control of two vector soliton inputs. This
would involve separate polarizers and half-waveplates, fol-
lowed by a polarization preserving fiber coupler.

Cascaded collisions of temporal solitons also await
experimental study. As demonstrated in photorefractive
crystals with a saturable nonlinearity [5], one can show
that information can be passed from one collision to the
next. Beyond a first demonstration of two collisions is
the prospect of setting up a multi-collision feedback cycle.
Discussed in Sect. “Multistable Soliton Collision Cycles”,
these collision cycles can be bistable and lead to interest-
ing applications in computation.

Furthermore, the recent work of Ablowitz et al. [2]
shows theoretically that the useful energy-redistribution

properties of vector soliton collisions extend perfectly to
the semi-discrete case: that is, to the case where space is
discretized, but time remains continuous. This models,
for example, propagation in an array of coupled nonlin-
ear waveguides [10]. The work suggests alternative phys-
ical implementations for soliton switching or computing,
and also hints that the phenomenon of soliton information
processing is a very general one.
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Glossary

Backbone In a lattice percolation problem above the per-
colation threshold, that fraction of the infinite cluster
with two disjoint connections to infinity.

Correlation length (�) Length scale in a randomly struc-
tured system over which the system cannot be re-
garded as homogeneous.

Critical exponent Exponent characterizing the dominant
behavior of an observable quantity near a percolation
threshold; e. g. � � constant � (pc � p)�� as p " pc.

Effective medium approximation Approximate descrip-
tion of an inhomogeneous system obtained by match-
ing averaged local fluctuations in properties in a self-
consistent manner.

Flux Vector-valued function (in a continuum) or signed
scalar (in a discrete system) quantifying transport or
conduction rates.

Lattice Discrete structure (network/graph) of sites
(nodes/vertices) connected by bonds (links/edges),
including periodic lattices, random lattices, and tree-
like or self-similar pseudolattices.

Percolation theory Idealized model of a random medi-
um. In the classical discrete case, the bonds of a lattice
are independently open with probability p (Bernoulli
bond percolation) or the sites of a lattice are indepen-
dently occupied with probability p (Bernoulli site per-
colation). There are various continuum analogues.

Percolation threshold (pc) Dividing point in parameter
space separating cases where long-range connectivity
is precluded (infinite connected sets exist with proba-
bility 0) from those where long-range connectivity oc-
curs (infinite connected sets exist with positive proba-
bility).

Percolative system Random two-phase continuous or
discrete system in which one phase is deemed void or
non-conducting; usually a percolation threshold exists
in such systems.

Potential (V) Function distributed over space or over the
sites of a network from which steady-state transport or
conduction may be determined.

Pseudolattice A non-periodic discrete structure of sites
(nodes/vertices) and bonds (links/edges), most com-
monly either topologically tree-like or geometrically
self-similar.
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Random walk Model of random motion, especially on
lattices, consisting of a sequence of steps separated by
constant or random time intervals.

Recurrent random walk Random walk process on a lat-
tice for which the walker returns to the starting site
with probability 1.

Renormalization Converting a system, either exactly or
approximately, to a related system with a different
characteristic length scale.

Transient random walk Random walk process on a lat-
tice for which the walker has probability less than 1 of
returning to the starting site.

Definition of the Subject

The problem of determining the macroscopic structural
and transport properties of microscopically non-uniform
materials has a long history and is of such central impor-
tance that it finds applications in an astonishingly wide
range of areas of science and technology, from develop-
mental biology to xerography [109,140,141]. Consider sys-
tems that consist of two phases, each of which is homoge-
neous in its properties, mixed in some way to create an in-
homogeneous material. Let one phase occupy a fraction �
of the volume. If � 
 1, so that the inhomogeneous struc-
ture is in some sense dilute, the possibility arises of deter-
mining the effective properties of thematerial as an expan-
sion in powers of � . Simple examples of this, when the di-
lute phase consists of identical spheres distributed in some
reasonable manner, are the prediction variously associated
with the names of Maxwell, Clausius, Mossotti, Lorenz,
Lorentz and others that spheres of dielectric permittivity
�1 embedded in a matrix of permittivity �0 produce an ef-
fective permittivity �� given by

�� � �0

�� C 2�0
�

�1 � �0

�1 C 2�0
� ; (1)

and the prediction of Einstein [43,44] that the effective vis-
cosity �� of a random suspension of rigid, spheres occupy-
ing a volume fraction � in a liquid of viscosity � is given
by �� D �

�
1C 5

2� C o(�)
�
as � ! 0. Analogous calcula-

tions can be performed for many other “dilute” systems,
leading to predictions at low volume fraction for effective
electrical conductivity and other attributes. Simple exam-
ples demonstrate that as the volume fraction � increases,
quantitative information on exactly how the phases are
distributed becomes essential for accurate prediction of, or
even construction of decent bounds for, effective proper-
ties—knowing the volume fractions of the phases is not
enough.

We address inhomogeneous systems and especially
two-phase systems—both continua and lattices—that are
randomly structured, with particular emphasis on systems
in which only one phase (with relative abundance �) sus-
tains transport. The simplest suchmodels arise by defining
steady-state transport processes or randommotions on the
occupied phase in the lattice percolation model (� Per-
colation Phase Transition) of Broadbent and Hammer-
sley [25,62,63,64] or its continuum analogues. (� Con-
tinuum Percolation). We call all such models percolative
models. They exhibit threshold behavior at � D �c, sepa-
rating globally nonconducting states when the transport-
sustaining phase is sufficiently rare (0 � � < �c) from
conducting states when the transport-sustaining phase is
sufficiently abundant (�c < � � 1). When the transport-
sustaining phase only sparsely spans a large region, that is,
just above the percolation threshold �c, asymptotic power-
law dependence of the transport properties on � � �c is
observed, but many results now deemed well-known still
evade rigorous proof.

Introduction

We address problems of transport and conduction, both
in continua and on lattices, where there are randomly
distributed local transport properties, especially the cases
where there are two phases present (for continua) or there
are bonds or sites of two types present (for lattices). Al-
though we later pay most attention to the lattice case, for
the present and in Sect. “Continuum Models: Steady-State
Phenomena” we discuss primarily continua in which two
material phases with different properties are present. Fre-
quently, one of these phases is empty space (void space).
Within regions comprising only one phase, all properties
of the system are uniform. The properties of regions con-
taining both phases depend not only on the relative pro-
portions of each phase present, but also on the way the
phases are distributed. The fundamental question to be an-
swered is this: if we pretend that the system is homoge-
neous, as it might indeed appear if we viewed a very large
piece of it from a distance, what are the effective transport
properties of the system?

A complete solution of the problem is not to be ex-
pected if the microstructure is elaborate or especially sub-
tle, but sufficient progress has been made since the 1950s
that for a number of conceptually simplemodels, some ex-
act results and many approximate results of decent qual-
ity are available. The two cases amenable to treatment are
periodic microstructure and random microstructure. The
former case, which is not our present concern, presents
few conceptual challenges and is increasingly amenable
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to numerical calculation, since the determination of the
global properties of the system can usually be reduced to
a study of a single finite region (the fundamental repeat
unit) and this is usually computationally tractable.

Interest in modeling systems in which small (usually
identical) pieces of one phase are randomly distributed in
some way and the remaining phase occupies the rest of
space goes back at least to James Clerk Maxwell (1831–
1879), Ludvig Valentin Lorenz (1829–1891) and Hendrik
Antoon Lorentz (1853–1928). The work of these authors
in the latter half of the nineteenth century and some an-
tecedents, culminating in results such as Eq. (1), is re-
viewed by Landauer [94], Markov [102] and Milton [109].
In the first two decades of the twentieth century the prob-
lem was addressed by Einstein [43,44] and others, but four
major conceptual developments were needed to bring the
subject beyond its infancy.

(a) In 1935 Bruggeman [27], building on ideas of ear-
lier authors but arguing with much greater clarity, devel-
oped an effective medium approximation, in which an un-
known overall property of the composite system, such as
its effective conductivity �eff, is computed in an approxi-
mate but self-consistent manner that takes account of fluc-
tuations in the corresponding local property. In the ex-
treme case in which one phase is nonconducting, Brugge-
man’s approach predicts that for sufficiently small volume
fraction � of the conducting phase, there is no conductiv-
ity, but there is a critical volume fraction �c of the con-
ducting phase above which there is conduction, with ef-
fective conductivity �eff � constant � (� � �c) as � # �c.
Bruggeman’s original treatment pays no attention to the
manner in which the phases are randomly or periodically
distributed.

(b) In 1965, Beran [11,12] established the foundations
of a statistical study of effective properties of random me-
dia, in which the random placement of phases is statisti-
cally quantified. In particular, Beran brought out the im-
portance of considering individual realizations of a ran-
dom system equipped with a proper probability structure,
and drew attention to the important issue of ergodicity,
which in this context concerns the relation between vol-
ume averages (averages of properties over large volumes in
a single realization) and ensemble averages (averages over
many realizations).

(c) In 1957, Broadbent and Hammersley [25,62,63,64]
considered a lattice model of random media, motivated
by a problem of gas mask design for British coal min-
ers. Although quantified transport was not part of their
original model—they only addressed connectivity—this
work is at the conceptual heart of modern discussions.
In their model, now known as, the percolation theory lat-

tice is randomly stripped so that either individual bonds
remain with probability p (bond percolation) or indi-
vidual sites remain with probability p (site percolation);
the parameter p is the analogue of volume fraction �

in a two-phase random continuum, with what remains
of the lattice viewed as a conducting phase in the origi-
nal system. There is a well-defined relative abundance p
of the conducting phase, called the percolation threshold
pc, above which there is long-distance connectivity and
transport is possible. Although the percolation threshold
plays for the lattice model a role analogous to the crit-
ical volume fraction predicted by Bruggeman’s effective
medium approximation (and indeed effective medium ap-
proximations can be set up for lattice systems), the ex-
istence of a precise percolation threshold pc was rigor-
ously established in 1957, and its value is known ex-
actly for some lattices and approximately but to very high
precision for other lattices. The probability that a given
site belongs to an infinite connected cluster of the ac-
tive phase when that phase has relative abundance p is
the percolation probability P1(p), and it is accepted that
P1(p) � constant � (p � pc)ˇ as p # pc, with ˇ D 5/36
in simple two-dimensional lattice systems and ˇ � 1
more generally. A number of the techniques and con-
cepts that have developed over 50 years for lattice-based
percolation theory have now found their way into natu-
ral continuous-medium analogues [104]. Both the lattice
and continuum percolation models have many applica-
tions [109,138,140,166].

(d) That percolation ideas would be significant in
physics was realized almost immediately [5] following the
1957 paper of Broadbent and Hammersely. The final con-
ceptual step needed was first articulated in 1968 by Zi-
man [174]: the stochastic geometry underlying percola-
tion theory, though essential to the description of trans-
port in random media, does not completely characterize
the transport properties: there is also the specific contri-
bution of the transport mechanism. The natural attempt
to connect a transport coefficient such as effective con-
ductivity �eff(p) to the percolation probability P1(p) by
writing �eff(p) / P1(p) [42] was refuted by experiments
in 1971 of Last and Thouless [95] on the conductivity of
a sheet of colloidal graphite with holes randomly punched
in it in a manner appropriate to simulate site percola-
tion on the square lattice. The experiments suggested that
�eff(p) � constant � (p � pc)t as p # pc, with t > 1	 ˇ.
The subtlety of the problem arises from the fact that
just above the percolation threshold, the sample-spanning
structure is tenuous and tortuous, with significant implica-
tions on observable quantities that characterize the trans-
port process.
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The developments stemming from the approximate
work of Bruggeman and the rigorous work of Beran [(a)
and (b) above] are well covered in the expansive texts of
Milton [109] and Torquato [166]. The bulk of the present
article is devoted to random medium problems—both
continuous and discrete, though favoring the latter—with
a percolative aspect [(c) and (d) above]. Steady-state con-
tinuum problems are discussed first in Sect. “Continuum
Models: Steady-State Phenomena”, with the physical con-
texts addressed in Sect. “Contexts”. These contexts are also
claimed by advocates of the analogous lattice models dis-
cussed in Sect. “Lattice Models: Steady-State Phenomena”,
to which we pay more attention. The model on which
we primarily focus is the random resistor network (intro-
duced in Sect. “The RandomResistor Problem”), which re-
veals most of the key features of random media, especially
the existence of percolation thresholds and the subtlety
of the active paths in the system close to the percolation
threshold. Although many important and elegant results
are now available for geometrical and topological aspects
of the underlying percolation process, as discussed in the
books by Bollobas and Riordan [21], Grimmett [59] and
Hughes [75], and� Percolation Phase Transition, consid-
erable work is still needed to resolve major questions con-
cerning the random resistor network and related systems.

We do not consider the mechanical properties (such
as elastic modulii or fracture resistance) of random me-
dia, although many of the ideas and results presented here
have been extended to mechanical properties in the lit-
erature. Less restricted surveys of the properties of ran-
dom media can be found in the major texts of Mil-
ton [109], Sahimi [140,141] and Torquato [166]. Time-
evolving problems in randomly structured media are of
great interest, but our discussion in Sect. “Random Mo-
tion in a Random Environment” strongly emphasizes the
model of random walk on a random lattice derived from
a percolation process, poetically described as the ant in the
labyrinth [24,33,75].

ContinuumModels: Steady-State Phenomena

Despite the enormous efforts expended on discrete inho-
mogeneous and percolative systems, most scientific appli-
cations that motivate these studies arise in materials per-
haps most naturally treated as continua. We briefly sum-
marize several contexts in which percolative systems arise
and review selected findings for continua that expose ma-
jor concepts later discussed more extensively for the more
tractable discrete analogues. Examples considered

(i) are scalar, so that we have scalar transport coefficients
rather than tensors;

(ii) involve real potentials, so we consider only steady
direct current electrical conduction, rather than fre-
quency-dependent alternating current conduction;

(iii) have no explicit time dependence, and
(iv) have linear constitutive response.

The readermay refer to the expansive texts of Milton [109]
and Sahimi [140,141] for discussions without the restric-
tions (i)–(iv).

Contexts

Problems Equivalent to Electrical Conduction In a va-
riety of physical contexts the following mathematical
problem arises. Let ˝ be a domain (a connected spatial
region), let �(r) (which we shall call a transport coefficient)
be a prescribed function of position r in ˝ , and let r de-
note the usual gradient operator. We are to find a potential
V (r) that satisfies the equation

r � (�rV ) D 0; r 2 ˝ ; (2)

subject to prescribed conditions on the boundary @˝ of˝ ,
usually either the Dirichlet boundary condition [V (r) pre-
scribed], the Neumann [n � rV prescribed, where n is
a unit vector normal to @˝ and, for consistency, the sur-
face integral of n � rV over @˝ is zero], or Dirichlet and
Neumann conditions applied to disjoint components of
@˝ . The potential V , which is uniquely defined for the
Dirichlet boundary-value problem and is unique up to an
additive constant for the pure Neumann boundary-value
problem, is associated with a vector field

E D �rV ; (3)

and the field E and the transport coefficient � determine
a flux vector

J D �E : (4)

Equation (2) can be interpreted as a statement of a conser-
vation law under steady-state conditions for a substance
carried by the flux vector J.Where the transport coefficient
has surfaces of discontinuity (as is the case in two-phase
media), one interprets the partial differential equations as
holding in the distributional sense and the boundary con-
ditions of continuity of V and of n � �rV (where n is nor-
mal to the phase interface) follow.

The canonical example of the problem embodied in
Eqs. (2)–(4) is steady state (direct current) electrical con-
duction, with V the electrostatic potential, E the electric
field, J the electric current, and � the electrical conductiv-
ity. Six different interpretations of the same mathematical
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Conduction and Diffusion in Percolating Systems, Table 1
Mathematically equivalent potential theory problems

Transport coefficient Flux law Potential–field relation
Electrical conductivity 
 J D 
E E D �rV from Maxwell’sr � E D 0
Dielectric permittivity � DD �E E D �rV from Maxwell’sr � E D 0
Magnetic permeability� B D �H H D �rV from Maxwell’sr � H D 0

Transport coefficient Flux–potential relation
Thermal conductivity � Fourier’s Law (temperature T) Q D ��rT
Diffusivity D Fick’s Law (pressure P, viscosity �) q D �(k/�)rP
Permeability k Darcy’s Law (concentration c) J D �Drc

problem are given in Table 1. For the first three interpreta-
tions, the potential V is the consequence of a fundamental
physical equation of the formr � E D 0. In the remaining
examples in Table 1), the flux law J D �E and the poten-
tial–field relation E D �rV do not have individual fun-
damental physical interpretations.

Caveats to the Electrical Interpretation In our discus-
sion we shall use the terminology appropriate to electrical
conductivity, however in interpreting the results in other
contexts several caveats are needed. For time-dependent
diffusive processes, we really wish to solve the equation

@c
@t
D r � (Drc) ; (5)

the electrical conduction analogue applies only to the
steady state. Similar issues arise for heat conduction. For
diffusion, problems in which the tracer is injected at an
isolated point (a point source) are of great interest. In the
extreme case in which one phase sustains diffusion and the
other does not, the effect of placing the source at an ar-
bitrary point in the phase that sustains diffusion depends
critically on whether the source falls in a conducting re-
gion of finite extent or of infinite extent and these issues
are not covered by a discussion confined to the electrical
conduction analogue.

Although we have included porous medium perme-
ability in Table 1, this exact equivalence to the electrical
conduction problem only applies when we work at length
scales large compared to pore sizes, so that the notion of
permeability—whether constant or variable—is meaning-
ful. A problem of great interest arises when one considers
fluid flow through the void space of a medium consisting
of an impermeable solid phase and a void phase [139]. In
this case, there is no local partial differential equation at
all for the solid phase, while in the void space the fluid is
subject to the low Reynolds number limit of the Navier–
Stokes equations.

The Idea of Homogenization

If the local conductivity � is bounded, but fluctuates in
some manner, one may seek a “homogenized” description
of the medium, replacing the variable conductivity prob-
lem r � (�rV) D 0 by a uniform conductivity problem
r � (�effrV) D 0 that matches it in some sense that needs
to be made precise, with the constant effective conductivity
�eff to be determined. A porous medium, viewed as a two-
phase void/solid system asmentioned above, homogenizes
in a different manner, since the equations for the desired
uniform system, embodying Darcy’s Law, are structurally
different from the equations that govern the flow in the
pore space [139]. We do not discuss this case here.

There are two basic rigorous approaches. One, on
which we focus in the present article, is introduced in
Sect. “Effective Conductivities”. The other, which is gen-
erally described as homogenization theory, may be briefly
summarized as follows. There are three length scales in
the problem: a microscale, on which the structure fluc-
tuates (perhaps strongly), a mesoscale over which un-
structured continuum behavior emerges, and amacroscale
over which parameters defined at the mesoscale may vary
slowly. One may define volume averages hEi and hJi of the
electric field over some representative domain large com-
pared to the length scale on which microstructure fluctu-
ates (that is, a mesoscale domain) and introduce a homog-
enized conductivityb� defined by

hJi D b�hEi : (6)

Homogenization is successful if, in an appropriate limit
as the microscale dimension is sent to zero, a well-de-
finedb� emerges. The theory of homogenization has been
well worked out for periodic microstructures [4,10], which
are not our concern here, but is more challenging for
the random microstructure case, although considerable
progress has also been made there [56,79]; surveys of re-
cent work will be found in the texts of Milton [109] and
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Torquato [166]. The first strong results were derived for
uniformly elliptic partial differential operators, which in
the present context means that for some constants ˛ and ˇ
we have 0 < ˛ � � � ˇ <1, precluding the analysis of
percolative systems, but extensions to percolative systems
are discussed in the book of Jikov, Kozlov andOleinik [79].
Percolative systems are subtle because the length scale
on which the inhomogeneity is important—the correla-
tion length—diverges at the percolation threshold; and the
detailed geometrical arrangement of the conducting and
non-conducting phases is very important except perhaps
for very low or very high volume fractions of the conduct-
ing phase. It should be emphasized that in homogenizing
random media, the determination of exact values ofb� , ei-
ther by formula or in terms of an algorithm for easy, highly
precise computation, largely remains a distant goal. Estab-
lishing the existence of a well-definedb� and determining
any of its nontrivial qualitative properties is already a ma-
jor achievement.

Effective Conductivities

As an alternative to the homogenization approach out-
lined above, one may simply define effective properties of
an inhomogeneous system by a black box approach. In the
electrical analogy, and considering three dimensions for
definiteness, take a finite rectangular prism�M < x < M,
�M < y < M, 0 � z � L, occupied by the inhomoge-
neous conductor, with all boundaries save for z D 0 and
z D L being insulated (n � �rV D 0). If one specifies the
potential to be V D V0 at z D 0 and V D 0 at z D L, and
the z-component of the current through the surface x D 0
is J(x, y) per unit area, then a reasonable definition of the
effective conductivity �eff is

�eff D lim
L!1

lim
M!1

1
V0/L

Z M

�M

Z M

�M

J(x; y)dxdy
(2M)2

; (7)

where L/M is held constant as L, M !1. This is the
most natural definition for physical experiments or com-
puter simulation and the one we adopt below in our
more detailed discussion of discrete models. Actually, for
a randomly-structured two-phase system, unless one es-
tablishes that for the particular statistical model of the mi-
crostructure, the limit is well-defined and takes the same
value for almost all realizations of the microstructure (that
is, the limit exists and takes a unique value with probabil-
ity 1), the integral has to be averaged over all realizations
of the microstructure before the limit L;M !1 is taken.

An alternative definition replaces the insulated bound-
ary conditions on all faces other than z D 0 or z D L by

V D V0(L � z)/L. One could alternatively set up a defini-
tion of effective conductivity by prescribing a uniform in-
jection of current per unit area across the face z D 0 and
studying the induced potential difference.

Golden and Papanicolaou [56] have examined the rela-
tion between the black box definition of effective conduc-
tivity for a finite region and the definition from homog-
enization, and shown their equivalence under the condi-
tions of uniform ellipticity. Stronger results applicable to
percolative systems will be found in Jikov et al. [79].

While results on the existence of a well-defined effec-
tive conductivity �eff are of course of significant interest,
one really wants to determine its value.

Exact Results Few nontrivial exact results on the ef-
fective conductivity are available. Consider a one-dimen-
sional conductor of length L, comprising N independent
random conducting elements of length �, with the kth
element having conductivity �k and sustaining a poten-
tial drop Vk. Then the current flowing is J D �kVk/�, the
same in each element, and the field is

1
L

NX

kD1

Vk D
1

N�

NX

kD1

J�
�k
! Jh��1i ; (8)

where we have taken the limit N !1 and used the
Strong Law of Large Numbers [47]. Hence we have the ex-
act result that

�eff D
1
h��1i

: (9)

For two-dimensional systems there are a number of “phase
interchange” or “duality” results, due to Keller [82] and
others, discussed carefully by Milton [109]. In particular,
an infinite chessboard, with the white squares having con-
ductivity �w and the black squares having conductivity �b
produces an exact effective conductivity

�eff D
p
�w�b : (10)

Bounds The electrical energy dissipation rate associated
with a potential distribution V and corresponding electric
field E and current J in the finite 2M � 2M � L rectangular
prism of Sect. “Effective Conductivities” is

EfVg D
Z M

�M

Z M

�M

Z L

0
J � E dx dy dz

D

Z M

�M

Z M

�M

Z L

0
� jrV j2dx dy dz :

(11)
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Consider a potential V that satisfies the partial differ-
ential equation r � (�rV ) D 0 in the interior and the
boundary conditions v D V0 on z D 0, V D 0 on z D L
and n � �rV D 0 on other surfaces: we call this an ad-
missible potential. Let W, a trial potential, be any other
function that satisfies the same boundary conditions but
may not satisfy the partial differential equation. If we
write � DW � V , expand EfWg D EfV C �g and use
the Divergence Theorem and the boundary conditions,
we easily show that EfWg � EfVg, so that admissible
potentials minimize energy dissipation. That is, we have
a variational principle. It can be shown under reasonable
conditions that

�eff �
1

(V0/L)2(2M)2L

Z M

�M

Z M

�M

Z L

0
� jrWj2dx dy dz ;

(12)

so that trial potentials can be used to construct rigorous
upper bounds on the effective conductivity. A comple-
mentary variational principle that leads to lower bounds
on the effective conductivity can be derived by analyzing
trial current distributions. The variational approach has
its origin in work in 1955 of Brown [26] and has been de-
veloped in diverse contexts by many authors (Brown, Be-
ran, Prager, Hashin and Shtrikman, Davies, . . . ) with vary-
ing degrees of rigor [109,166]. Bergman [15] introduced
an alternative approach to variational methods for deriv-
ing bounds on effective conductivities, based on complex
variable techniques. Bergman’s work and many important
consequences are reviewed by Milton [109].

The most easily derived bounds hold without restric-
tion on the distribution of phases in a multiphase system,
and also apply for continuously varying local conductivi-
ties:

1
h�i
� �eff � h�i ; (13)

where angle brackets denote the volume average. These
bounds, first identified in 1912 by Wiener [168], are the
best possible general bounds, since they become equali-
ties in the case of slabs of homogeneous material parallel
to the face z D 0 (conductors in series—�eff D 1/h��1i)
or no variation in conductivity with z (conductors in
parallel—�eff D h�i). If no additional assumptions are
made except for statistical isotropy, the 1962 bounds of
Hashin and Shtrikman [67] become the best possible.
For high and low conductivity phases with volume frac-
tions �high and �low and conductivities �high � �low, the
Hashin–Shtrikman bounds in d dimensions (d D 2 or 3)

are

�low C
d�high�low(�high � �low)

d�low C �low(�high � �low)
� �eff

� �high �
d�low�high(�high � �low)

d�high � �high(�high � �low)
: (14)

If we consider the case of a percolative system, where
we have �low D 0, �high D �1 and for brevity we write
�high D � (that is, � is the volume fraction for the con-
ducting phase) the lower bounds in (13) and (14) become
trivial (�eff � 0) and neither upper bound is very strong,
as shown by Fig. 1. For the case of spheres with indepen-
dently located centers (technically, Poisson points) and ei-
ther constant radii, or random radii with a reasonable dis-
tribution, it can be rigorously established [104] that for
sufficiently small � , the probability that there is an infi-
nite connected region of the conducting phase is zero and
consequently the effective conductivity will be zero below
a percolation threshold �c. Numerical simulations with
Poisson-centered conducting spheres of constant radius
show that �c � 0:2895˙ 0:0005 [135]: the gray rectan-

Conduction and Diffusion in Percolating Systems, Figure 1
Bounds on the effective conductivity �eff for a conducting
phase of conductivity �1 randomly and homogeneously dis-
tributed at volume fraction �, with remaining space occupied
by a nonconducting phase. The gray area lies below the perco-
lation threshold estimate �c � 0:2895˙ 0:0005 of Rintoul and
Torquato [135] for overlapping conducting spheres in a non-
conducting matrix. The solid discs are numerical estimates of
Kim and Torquato [87] for overlapping non-conducting spheres
in a conducting matrix, where �c � 0:03. Upper broken line: el-
ementary (“parallel”) bound �eff/�1 � �. Solid curve: Hashin–
Shtrikman bound �eff/�1 � 2�/(3��) [67]. Lower broken line:
effective medium approximation �eff/�1 � (3/2)(�� 1/3) for
� � 1/3 from work of Bruggeman [27]
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gle in Fig. 1 spans the interval 0 � � � �c for this system,
and parts of the upper bound curves (13) and (14) that in-
tersect the Gray rectangle miss the threshold behavior en-
tirely and are misleadingly uninformative for this specific
system.

In Fig. 1 we also show as discs numerical estimates [87]
of the conductivity in the case where the randomly placed
spheres are non-conducting, the rest of space is con-
ducting and the percolation threshold is much smaller
(�c � 0:03 [87]); physicists call this the Swiss cheesemodel.
TheHashin–Shtrikman upper bound (14) works better be-
cause the percolation threshold is so low, but the Hashin–
Shtrikman lower bound remains useless. Much better
bounds than those shown are available for non-percolative
problems, especially if additional information about corre-
lations between phase locations is available [109,166].

Approximations Clarifying the work of earlier authors,
in 1935 Bruggeman [27] derived an effective medium ap-
proximation for the effective conductivity. This approach
represents an uncontrolled approximation—it does not
give rigorous bounds and a priori estimation of its ac-
curacy is not possible. One considers a spherical inclu-
sion of unspecified constant conductivity within a uniform
medium whose conductivity is taken to be the unknown
effective conductivity �eff, which will be estimated “self-
consistently”. For a prescribed constant field E at infinity,
the field within the inclusion is calculated. The require-
ment that, when averaging over material properties within
the inclusion, the average field in the inclusion does not
differ from the field at infinity yields an approximate equa-
tion for �eff,

�
3�eff

� C 2�eff

	
D 1 : (15)

In the case in which � D �1 with probability � , corre-
sponding to a volume fraction � of the conducting phase,
this approximation predicts that for a percolative system

�eff D
3
2

�
� �

1
3

�
�1 : (16)

The physical requirement that �eff � 0 leads one to inter-
pret this as predicting that �eff D 0 for 0 � � � 1/3, so
that there is a threshold for the conductivity at � D 1/3.

As shown in Fig. 1, this approximation closely con-
forms to the Hashin–Shtrikman upper bound near � D 1.
Although it has the desirable feature of predicting a con-
ductivity threshold, the actual predicted threshold (1/3) is
not particularly close to numerical estimate for randomly
placed spheres with independent centers (0.2895) and is

very far from the estimated threshold for the Swiss cheese
model (0.03).

Differences Between Continuum and Discrete Models

The considerable emphasis in the literature on discrete
(lattice) models is partly motivated by the folklore of uni-
versality, under which, apart from some reasonable con-
ditions that exclude direct, long-range connections and
other oddities, qualitative features and associated criti-
cal exponents of analogous problems depend only on di-
mensionality. While this appears to be broadly true, there
are some significant exceptions, two of which we mention
here.

(a) A parameter value where properties of the infi-
nite system which are elsewhere analytic lose analyticity is
called a critical point. In the percolation model of Broad-
bent and Hammersley [25,62,63,64] on periodic lattices,
there is only one critical point associated with global con-
nectedness [106], namely the percolation threshold, and
this coincides with the only critical point for the effec-
tive conductivity. Following on work of Kozlov [93], Jikov
et al. [79] have discussed carefully a random chessboard,
where the plane is divided into equal squares, colored
independently. Squares are black (conductivity �b) with
probability � and white (conductivity �w) with probabil-
ity 1 � �. For � D 1/2, Eq. (10) holds, but more impor-
tantly, in the random chessboard model there are effec-
tively two thresholds for a given color, one for long-dis-
tance connectivity using corner connections and one for
long-distance connectivity through adjoining edges of the
squares. If we let pc � 0:59 denote the site percolation
threshold of the square lattice (� Percolation Thresholds,
Exact), then the following results hold as �b ! 0 with �w
held fixed. For 0 � � � 1 � pc, the white phase has large
components connected via edges of squares and

lim

b!0

�eff D �w f (�) > 0 :

For 1 � pc < � < pc neither color has large components
connected via edges of squares, but both colors have large
components connected via corners, and

c1(�)
p
�w�b � �eff � c2(�)

p
�w�b :

For pc < � < 1, we have �b � �eff � c3(�)�b. Berlyand
and Golden [16] have established the stronger result that
for 1 � pc < � < pc, �eff D

p
�w�b C O(�b) as �b ! 0

with �w held fixed. Torquato et al. [167] have reported nu-
merical studies.

(b) The universality concept presupposes that all anal-
ogous systems in the same dimension have the same crit-
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ical exponents for a given system property. Thus, for ex-
ample, in a percolative continuous system where � is the
volume fraction of the conducting phase, we expect to see

�eff � constant � (� � �c)t as � # �c : (17)

where the conductivity exponent t (the general existence
of which remains to be established, even for specific two
and three dimensional systems) is independent of mi-
crostructure, and the same for lattices and continua in
a given dimension. This expectation turns out to be wrong,
with hopes being dashed by computational studies of
Feng et al. [48] on the Swiss cheese model introduced in
Sect. “Bounds”: in two dimensions the lattice and Swiss
cheese continuummodel exponents are close together and
possibly coincident; in three dimensions the exponent t for
the Swiss cheese continuum is about 0.5 larger than the ex-
ponent t for the simple cubic lattice.

LatticeModels: Steady-State Phenomena

Notwithstanding the caveats exposed in Sect. “Differences
Between Continuum and Discrete Models”, we turn to
a detailed discussion of discrete systems. We consider lat-
tices (also known as networks or graphs) of sites (also
known as nodes or vertices) connected by bonds (also
called links or edges). The number of bonds attached to
a site is its coordination number (also called degree or va-
lence), and two sites that are attached to the same bond are
called nearest-neighbour sites. The most commonly stud-
ied lattices are periodic in structure, the simplest example
being the hypercubic latticeZd of sites with integer coordi-
nates, connected by bonds of unit length, so that each site
has coordination number 2d. Other important infinite net-
works are sometimes called pseudolattices to distinguish
them from periodic structures. The most important ex-
amples of pseudolattices are self-similar or fractal struc-
tures [100] (� Scaling Properties, Fractals, and the Renor-
malization Group Approach to Percolation) and tree-like
structures, especially the Cayley tree or Bethe lattice [165]
of coordination number z, in which there are no closed
loops.

Key Results from Percolation Theory

In percolation theory for lattices sites, are declared oc-
cupied or vacant in some random way and bonds are
declared open or closed in some random way. A site is
deemed to belong to a cluster of size n � 1 (where n may
be finite or infinite) if it is present and connected via open
bonds to n � 1 other sites; a vacant site is a cluster of size
0. In the (Bernoulli) bond problem, all sites are occupied,

and bonds are independently declared open with probabil-
ity p and closed with probability 1� p. In the (Bernoulli)
site problem, sites are occupied with probability p and va-
cant with probability 1 � p, and a bond is declared open if
and only if the two sites it joins are both occupied. Every
bond percolation problem is equivalent to a site percola-
tion problem on a related lattice, so that it suffices to state
general results for site percolation, although in many ex-
amples modeling transport and conduction, the language
of bond percolation is more appropriate.

Viewed at sufficiently low resolution, a realization of
bond or site percolation other than at the percolation
threshold appears homogeneous. A measure of the length
scale over which inhomogeneous structure is important is
furnished by the correlation length �(p). One way of defin-
ing this precisely on Zd is to let �m denote the probability
that the sites at 0 and (m; 0; 0; : : : ; 0) belong to a common
finite cluster. Then �(p) D � limm!1 m�1 ln �m .

Rigorous General Results The following results are rig-
orously proven [21,59,75] for Bernoulli site percolation,
provided that the lattice or pseudolattice is homogeneous
in the sense that all sites are equivalent (as is the case
for Zd and the Bethe lattice), and the number of sites at
most n bonds distant from a given site grows no faster than
c exp(an�), where a > 0, c > 0 and � < 1.
(i) There exists a percolation threshold pc > 0 such that

the probability P1(p) of a chosen site belonging to an
infinite cluster is zero for p < pc and strictly greater
than zero for p > pc.

(ii) The probability Pn(p) that a chosen site belongs to
a cluster of size n decays exponentially rapidly with
increasing n when p < pc.

The exponential decay of Pn(p) ensures the finiteness of
the mean cluster size �(p) D

P1
nD0 nPn(p) for p < pc.

The sum remains meaningful for p > pc if we exclude the
infinite cluster n D1 and �(p)/(1 � P1(p)) becomes the
mean cluster size, conditioned on the cluster being finite.
A result related to (ii) establishes that on Zd, the correla-
tion length is well-defined and finite for p < pc.
(iii) The mean cluster size �(p) is finite for p < pc but

�(p) � ppc(pc � p)�1 when p < pc, so that �(p)!
1 as p " pc.

(iv) For a given value of p, there is a number k0 (which
may take no values other than 0, 1 or1) such that
the number of distinct infinite clusters of occupied
sites on the lattice takes the value k0 with probability
1. When P1(p) D 0, k0 D 0.

For some pseudolattices, such as the Bethe lattice, if
P1(p) > 0 then k0 D 1; however, for a class of lattices
which includes normal periodic lattices, if 0 < P1(p) < 1
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then k0 D 1. That is, when an infinite cluster exists it is
unique.
(v) For p > pc a site is part of the backbone if it lies on

the infinite cluster, and within that cluster there are
two independent paths to infinity. If B(p) is the prob-
ability that a given site belongs to the backbone then
B(p) � p�1P1(p)2.

For a discussion of the determination of and actual values
of site and percolation thresholds for particular lattices, see
� Percolation Thresholds, Exact.

Heuristics A heuristic scaling theory for percolation
theory (� Scaling Properties, Fractals, and the Renor-
malization Group Approach to Percolation introduced in
1979 by Stauffer [153] and analogies between percolation
and statistical mechanics first exhibited in 1972 by Fortuin
and Kasteleyn [51,52] lead to the following folklore [75].
There are critical exponents that describe the non-analytic
behavior of important attributes of the percolation model
at the percolation threshold. If we use the proportional-
ity symbol / as a short notation, so that f (p) / g(p) as
p! pc means that f (p)/g(p)! nonzero constant, then
the critical exponents are defined as follows:

cluster size distribution at pc

Pn(pc) / n�1�1/ı as n!1 ;
(18)

mean cluster size below pc
�(p) / (pc � p)�� as p " pc ;

(19)

mean cluster size above pc
�(p) / (pc � p)�� 0 as p # pc ;

(20)

correlation length below pc
�(p) / (pc � p)�� as p " pc ;

(21)

correlation length above pc
�(p) / (pc � p)��0 as p # pc ;

(22)

percolation probability

P1(p) / (p � pc)ˇ as p # pc ;
(23)

backbone probability

B(p) / (p � pc)ˇbb as p # pc :
(24)

For the Bethe lattice, it is established that ı D 2, � D 1,
ˇ D 1 and ˇbb D 2 [75], but for standard lattices even
the existence of critical exponents in the sense explained
above is not rigorously established, although as noted be-
low, a few weaker results consistent with this picture, such
as limp#pc ln[P1(p)]/ ln(p � pc) D 5

36 for site percolation
on the triangular lattice, are now proven.

Folklore asserts that exponents are the same for the all
site and bond problems in a given dimension (universal-

ity), vary significantly with the dimension d in low dimen-
sions, and are independent of dimension for d � 6, where
they take the so-called mean-field values ˇ D � D 1 and
� D 1

2 . (These values are rigorously established by work of
Hara and Slade [66] for standard percolation for d � 19,
and for a spread-out model of percolation for d � 6.) At
d D 6, the prefactors in the dominant asymptotic forms
that define the critical exponents may be modified by the
inclusion of a power of ln jp � pcj. It is generally believed
that � D � 0 and � D �0. On modest hypotheses on lat-
tice structure it is rigorously established [75] from work of
various authors that, provided the exponents exist, ˇ � 1,
� � 1, � /d � � � � , and � � 2/d, but two much more in-
formative scaling relations are accepted:

� C 2ˇ D ˇ(ı C 1) (25)

in all cases, and for d � 6,

d� D 2ˇ C � : (26)

All credible numerical evidence supports the existence
of critical exponents consistent with these scaling laws,
they are rigorously established for site percolation on the
triangular lattice [148], and natural probabilistic condi-
tions equivalent to (26) for bond percolation on Zd are
known [22].

Rigorous Results for TwoDimensions For several two-
dimensional lattices a number of exact results are known:
in particular pc D 1/2 for site percolation on the triangu-
lar lattice (coordination number 6) and bond percolation
on the square lattice (coordination number 4). In these
particular problems it has also been rigorously established
that the percolation probability P1(p) is continuous for
0 � p � 1, so that there is no infinite cluster present right
at the percolation threshold. This result is believed to be
true, but remains unproven, in three dimensions.

Major innovations in probability since 2000, primar-
ily associated with the work of Lawler, Schramm, Smirnov
and Werner, have led to the following results being rig-
orously established for the case of site percolation on the
two-dimensional triangular lattice [148]:

P1(p) D (p � 1
2 )

5/36Co(1) as p # 1
2 ; (27)

�(p) D jp � 1
2 j
�43/18Co(1) as p! 1

2 ; (28)

�(p) D jp � 1
2 j
�4/3Co(1) as p! 1

2 : (29)

This is almost (but not quite) a proof of existence of critical
exponents in the sense of physicists, and moreover shows
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that the scaling relations (25) and (26) hold in this one par-
ticular case and the accepted folklore for two dimensions
that

ˇ D 5
36 ; � D � 0 D 43

18 ; � D �0 D 4
3 ; (30)

arrived at from scaling arguments, statistical mechanical
arguments, heuristic arguments and numerical evidence,
is indeed correct in this one particular case. The exact
backbone exponent ˇbb remains unknown, but it has been
shown to be determined by the leading eigenvalue of a dif-
ferential operator [96].

The Random Resistor Problem

The canonical discrete model of transport and conduction
is the random resistor network, in which the bonds of a lat-
tice or some less regular network are resistors of random
resistance. A more extended discussion of this model, in-
cluding proofs of many results stated here, will be found
in Hughes [75]; for the Dirichlet, Thomson and Rayleigh
Principles discussed below see also Doyle and Snell [40].
The first study of random resistor networks may fairly
be ascribed to 1971 work of Kirkpatrick [88,89], although
an equivalent system had already been studied as early as
1956 by Fatt [45] as a model for porous media, with hy-
draulic conductivities of bonds playing the role of resis-
tance and pressure playing the role of voltage.

Problem Definition If we use Greek subscripts to index
bonds of the lattice (each bond being assigned a nominal
direction of orientation), then the (direct) current I and
the potential difference V across a particular bond ˛ are
related by Ohm’s Law I D G˛V , where G˛ is the conduc-
tance of bond ˛ (the reciprocal of the resistance). Current
is a signed quantity. If the potential at site s0 is less than
that at site s then the current flowing from s to s0 is posi-
tive.

It is customary to assume that the conductances of dif-
ferent bonds are independent, identically distributed ran-
dom variables. Note that one might consider more gener-
ally the case in which I D G˛(V) where G˛ is a nonlinear
function with several random parameters, but this prob-
lem is both subtle [29] and difficult [19,20,61,83,105,161]
and will not be discussed here; see Sahimi [141].

If the bonds of a random resistor network have inde-
pendent, identically distributed conductances governed by
the probability density function

f (g) D (1 � p)ıC(g)C ph(g); 0 < p < 1 ; (31)

where h(g) is the conditional probability of the conduc-
tance, given that the conductance is nonzero, we call the

network the general percolation conduction problem. We
use the notation ıC(g) to distinguish a delta function that
acts on the right from the usual symmetric delta function
ı(x). The specific case in which h(g) D ı(g � g0), that is,

f (g) D (1� p)ıC(g)C pı(g � g0)); 0 < p < 1 ; (32)

will be called the standard percolation conduction prob-
lem. The definitions (31) and (32) are directly associated
with bond percolation. A standard percolation problem
for site percolation arises on assigning each bond that links
two occupied sites the conductance g0, and making all
other bonds non-conducting.

In general, we have a lattice with a potential (voltage)
Vs at each site s and a current irs flowing from site r to site
s along a bond of conductance Grs D Gsr (or, equivalently,
resistance Rrs D 1/Grs). From Ohm’s Law

irs D Grs(Vr � Vs) (33)

and Kirchhoff’s Law of conservation of currentP
s irs D Ir, we have

X

s
Grs(Vr � Vs) D Ir ; (34)

where Ir is the current supply into site r, positive if current
is injected and negative if it is withdrawn. At most sites r,
we have Ir D 0, but we impose the additional physical re-
quirement that

P
r Ir D 0, the sum being taken over all

sites where current is injected or withdrawn.When appro-
priate boundary conditions are imposed on finite pieces of
periodic lattice, or on finite networks more generally, the
problem is completely specified and numerical determina-
tion of the potential distribution over the sites and the as-
sociated currents is possible; from this estimates of an ef-
fective conductivity �eff that we define in Sect. “Lattices of
Dimension d � 2” below emerge.

Bounds for General Resistor Networks Before address-
ing the specific case of periodic lattices, we consider ar-
bitrary finite networks. The effective conductance Ceff

ab be-
tween two sites a and b and its reciprocal, the effective re-
sistance Reff

ab between the sites, are defined by

Ceff
ab D

1
Reff
ab
D

I
Va � Vb

; (35)

if a current I injected at site a and withdrawn at site b
is associated with a potential difference Va � Vb between
the sites. (Effective conductivities arise by scaling effective
conductances with appropriate measures of network size.)
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Variational principles enable bounds on the effective con-
ductance to be deduced.

DIRICHLET’S PRINCIPLE. Consider a finite resistor
network with bond conductances Grs (0 � Grs <1) and
with a specified potential difference V between sites a
and b. Let fWsg be a trial potential distribution , that is,
any set of real numbers subject to the requirement that
Wa �Wb D V . Let fVsg be an admissible potential distri-
bution, that is, a set of real numbers satisfying the Kirch-
hoff–Ohm Law (34) for s ¤ a or b, as well as the con-
straint Va � Vb D V . Then the effective conductance be-
tween sites a and b is given by

Ceff
ab D

1
2V2

X

r;s
Grs(Vr�Vs)2 �

1
2V2

X

r;s
Grs(Wr�Ws)2 :

(36)

THOMSON’S PRINCIPLE. Consider a finite resistor net-
work with bond resistances Rrs (0 � Rrs <1) and
a specified current Ia injected at site a and with-
drawn at site b. Let f jsrg be a trial current distribution,
that is: jrs D � jsr ;

P
s jrs D 0 if r ¤ a and r ¤ b; andP

s jas D Ia D �
P

s jbs. Let fisrg be an admissible current
distribution, that is, a trial current distribution for which
Ohm’s Law Vr � Vs D irsRrs holds. Then the effective re-
sistance between sites a and b is given by

Reff
ab D

1
2I2a

X

r;s
i2rsRrs �

1
2I2a

X

r;s
j2rsRrs : (37)

The sums in the inequalities in Dirichlet’s and Thom-
son’s Principles may be interpreted as the rate of energy
dissipation corresponding to the potential distribution or
the current distribution respectively. These two principles
assert that admissible potential and current distributions
minimize the rate of energy dissipation. From these two
principles a number of important results follow, including
the following.

RAYLEIGH’S MONOTONICITY PRINCIPLE. For finite
resistor networks, the resistance between two sites does
not decrease if the resistances of some or all of the bonds
are increased.

Exactly Solvable Models In one dimension, N random
resistors in series yield an effective conductivity (here the
overall conductance per unit length) �eff D hG�1i�1; the
argument is the same as that used above for a random one-
dimensional continuum. A slightly less trivial problem for
which exact results are available is the standard percola-
tion conduction problem on a Bethe lattice of coordina-
tion number z [70,75,156,157]. Pick an arbitrary site s0 of

the lattice, set that site to have potential V0 and prescribe
that the potential is zero at the periphery of the tree (that
is, the potential decays asymptotically to zero as we move
outwards from s0 along any infinite path of open bonds
that may be present). If a current I0 flows from site s0
into the tree, then the tree conductance may be defined as
T D I0/V0. Where the average is taken over all realizations
of the system, it can be shown rigorously that hTi is zero
for p < pc D (z � 1)�1 and

hTi �
2zg0c
z � 2

[p(z � 1) � 1]2 as p # pc ; (38)

where c � 0:761 is a constant. Since pc D 1/(z � 1) for the
Bethe lattice, this result is consistent with the hypothe-
sis that long-distance conduction is possible in the stan-
dard percolation conduction problem (32) if and only if
p > pc. It is sometimes argued that the Bethe lattice cor-
rectly represents the critical behavior of periodic lattices
of sufficiently high dimensionality and that would imply
that effective conductivity �eff defined in Sect. “Lattices
of Dimension d � 2” satisfies �eff / (p � pc)2 as p # pc.
Straley [159] has identified the flaw in this argument—in
a Bethe lattice of finite size, a significant fraction of all sites
are at the boundary—and has given a definition of the ef-
fective conductivity �eff of a Bethe lattice that gives bonds
in all regions of the lattice comparable significance and
leads to �eff / (p � pc)3 as p # pc.

For some remarks concerning self-similar pseudolat-
tices for which exact results are available, see Sect. “Con-
duction on Fractals”.

Lattices of Dimension d � 2

For random resistor problems more appropriately related
to transport and conduction problems in d-dimensional
space, we consider periodic lattices. There have been nu-
merical investigations of the standard percolation con-
duction on topologically random lattices created by the
Voronoï algorithm [77,78], but we shall not pursue these
extensions of the theory.

Defining the Conductivity Consider the specific case
of a finite hypercube �L cut from from the simple
hypercubic lattice Zd, with (LC 1)d sites at locations
s D (s1; s2; : : : ; sd ) with integer coordinates subject to the
inequalities 0 � s j � L. The faces s1 D 0 and s1 D L are
subjected to a potential difference V , so that there is a po-
tential gradientV/L. In three dimensions, this corresponds
to a cubic array of conducting elements sandwiched be-
tween two perfectly conducting plates. Boundary condi-
tions on the other faces should be unimportant when L is
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large, but in numerical work periodic boundary conditions
are often used (the faces s j D 0 and s j D L are joined for
j D 2, . . . d). If a total current I flows in response to the im-
posed potential difference, then the current per unit area
(that is, per site) of the face s1 D 0 is I/(LC 1)d�1. We
therefore define the (specific) conductivity of the lattice as

lim
L!1

I/(LC 1)d�1

V/L
D lim

L!1

L2�d I
V

: (39)

For the random resistor network, one needs to discuss the
existence of this limit for each realization ! of the lattice
and one is especially interested in the mean value of the
limit, which we take as defining the effective conductivity
of the system:

�eff D lim
L!1

hL2�d I/Vi D lim
L!1

˝
L2�dCL

˛
; (40)

where CL D I/V is the conductance between the faces of
the hypercube�L .

For a considerable period the existence of a well-de-
fined effective conductivity remained unproven, with the
case of percolative problems providing an especially severe
challenge, but this hurdle was eventually overcome [79]. In
particular, for percolative problems it is now established
there is a well-defined �eff(p). The averages over realiza-
tions in Eq. (40) can be dropped, with the limit existing
with probability 1, and being 0 for p < pc and strictly pos-
itive for p > pc

Bounding the Conductivity The Dirichlet and Thomp-
son Principles and Rayleigh’s Monotonicity Law are stated
for the case in which current is injected at one site and
withdrawn at another, but by introducing appropriate
links of zero resistance, the laws apply equally well to the
case in which a potential difference V is maintained across
two parallel faces of the hypercube �L used in the defi-
nition of the effective conductivity, and a current I flows
between the parallel faces.

THE SERIES AND PARALLEL BOUNDS. For a random
resistor network on the simple hypercubic lattice Zd with
independent, identically distributed bond conductances,
the conductance CL between two parallel faces of the hy-
percube�L satisfies the inequalities

L�1(LC1)d�1hG�1i�1 � hCLi � L�1(LC1)d�1hGi; (41)

where the random variable G corresponds to the conduc-
tance of any one bond of the lattice.

Hence hL2�dCLi is bounded above as L!1 if the
individual bond conductances G have finite mean, and is
also bounded away from zero if the individual bond resis-
tances (1/G) have finite mean. Under these conditions, if

�eff exists, then from Eq. (40), we have

hG�1i�1 � �eff � hGi : (42)

Hammersley [65] has used Dirichlet’s Principle to de-
rive some stronger results than the series and parallel
bounds (42) for independent conductances. Chayes and
Chayes [30] used variational principles to derive a not di-
rectly useful lower bound on the conductivity for the stan-
dard percolation conduction problem, and the following
more encouraging upper bound.

UPPER BOUND OF CHAYES AND CHAYES. For
the standard bond percolation conduction problem on
the d-dimensional hypercubic lattice, with open bonds
having conductance g0, the effective conductivity �eff(p)
satisfies the inequality

�eff(p) � g0 Prfa given bond is part of the backboneg :
(43)

The conductivity exponent for the percolation conduc-
tion problem is defined by writing

�eff(p) / (p � pc)t as p # pc : (44)

There is no rigorous proof, even in two dimensions, of
the existence of the critical exponent, even in the weak
sense that t D limp#pc ln[�eff(p)]/ ln(p � pc). However,
from the result (v) in Sect. “Rigorous General Results”
and the upper bound of Chayes and Chayes we know that
the conductivity is identically zero below the percolation
threshold, as one’s intuition demands, and if the accepted
critical exponents do exist then we have the inequality

t � ˇbb � 2ˇ ; (45)

where ˇbb is the backbone exponent and ˇ is the exponent
for the percolation probability P1(p). From numerical es-
timates ˇbb � 0:52 in two dimensions, and we know that
2ˇ D 5

18 � 0:28, while t > 1 (see Sect. “Numerical Esti-
mates of the Conductivity Critical Exponent t”), so neither
equality is very sharp.

Scaling Theory for the Conductivity Straley [158] de-
veloped a heuristic scaling argument to describe the con-
ductivity of a random resistor network for which the prob-
ability density function for the individual bond conduc-
tances is

f (g) D (1 � p)ı(g � a)C pı(g � b) ; (46)

where a 
 b. The effective conductivity �eff changes in
the obvious manner when the units of conductivity or



1408 C Conduction and Diffusion in Percolating Systems

length change. A prefactor � in the conductivity can be
regarded as accounting for this. Straley proposed that �eff
is a homogeneous function near the percolation threshold:

�eff(p) � �S([p � pc]�1; a��1�A; �b�1�B) ; (47)

with the approximation assumed valid when each argu-
ment of S is less than unity. The function S is singular when
any of its arguments vanishes. The parameter  embod-
ies the interrelations via scaling of the parameters a, b and
p � pc. Setting a D 0,  D jp � pcj and � D Bb gives

�eff(p) � jp � pcjBbS(sgn[p � pc]; 0; 1) : (48)

This case describes the conductivity of the classical perco-
lation conduction problem, so we are led to the conclusion
that S(�1; 0; 1) D 0 and S(1; 0; 1) > 0, and we identify B
with the conductivity exponent t. If instead we set 1/b D 0,
 D jp � pcj and � D �Aa, we obtain

�eff(p) � jp � pcj�AaS(sgn[p � pc]; 1; 0) : (49)

This case describes the superconductivity problem in
which a fraction 1 � p of the bonds are normal conduc-
tors, while the remaining bonds have infinite conductance,
so we conclude that S(�1; 1; 0) <1 and S(1; 1; 0) D1
and we identify A with the Superconductivity exponent s.
Thus

�eff(p) � �S([p � pc]�1; a��1�s ; �b�1�t) : (50)

If we now take p D pc and 0 < a < b <1, then setting
tCs D a/b and � D bt , we obtain

�eff(pc) � aub1�uS(0; 1; 1) ; (51)

where the exponent u is given by

u D t/(sC t) : (52)

Special Results for two Dimensions Each two-dimen-
sional lattice L with well-defined faces (polygons with the
bonds as sides, not crossed by any bonds) is associated
with a dual lattice LD, obtained by placing a site of LD

in every face of L and joining sites of LD by bonds if
the original faces of L share a common bond in L. The
square lattice is its own dual lattice; the triangular lat-
tice and the hexagonal lattice form a dual pair. Duality is
central to the exact determination of percolation thresh-
olds in two dimensions � Percolation Thresholds, Ex-
act, but also has useful implications for the random resis-
tor problem [17,101,160], which parallel the phase inter-
change relations for two-dimensional continua (Sect. “Ef-
fective Conductivities”). For the square lattice, if the prob-
ability density function for bond conductances is

f (g) D (1 � p)ı(g � a)C pı(g � b) ; (53)

then the effective conductivity �eff(p) satisfies the equation

�eff(p)�eff(1 � p) D ab ; (54)

and in particular �eff( 12 ) D
p
ab. In the notation of Stra-

ley’s scaling theory (Sect. “Scaling Theory for the Con-
ductivity”), this implies that u D 1

2 for the square lattice,
and so s D t for the square lattice. Although this does not
prove rigorously that the conductivity exponent t and su-
perconductivity exponent s coincide for the square lattice,
it is taken as evidence for the claim that s D t for all rea-
sonable two-dimensional lattices. Numerical evidence is
strongly against this result remaining true in higher di-
mensions.

It can also be shown from duality that for the square
lattice, if

f (g) D
1

gD
p
2�

exp
�
�
(log g � log g0)2

2D2

�
; (55)

then �eff D g0.

Effective Medium Approximations The effective me-
dium ideas of Sect. “Approximations” were adapted to
the estimation of the conductivity of random resistor net-
works on periodic lattices by Kirkpatrick [88,89]. A much
fuller modern account than given here of the implementa-
tion of effective medium ideas for lattice systems and the
application of the ideas to more subtle problems and in
different contexts, will be found in Sahimi [140].

The random network is replaced by a network that is
uniform with unknown bond conductance g�, except for
one special bond, which has conductance G. Let the lattice
have coordination number z. It can be shown that the av-
erage fluctuation in current or potential difference across
the special bond due to its differing in conductance from
g� vanishes provided that

�
G � g�

g� C (2/z)(G � g�)

	
D 0 ; (56)

and this gives a self-consistent approximate determination
of g�. For the square and simple cubic lattices, g� is an
approximation for �eff. For other lattices, �eff is a constant
multiple of g�. In the case of a percolative conductance
distribution, the approximation produces an estimate of
the percolation threshold.

For the standard percolation conduction problem (32),
where a fraction p of the bonds has nonzero conduc-
tance g0, the effective medium approximation produces
g�/g0 � (p � 2/z)/(1 � 2/z) and as bond conductances
must be non-negative this prediction is interpreted as
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meaning that

g�
g0
�

8
<

:

0; p � 2/z;
p � 2/z
1 � 2/z

; p > 2/z :
(57)

That is, the effective medium approximation predicts that
the percolation threshold is 2/z. This is fortuitously ex-
act for the square lattice bond problem and reasonable
for the triangular bond and honeycomb bond problems
(� Percolation Thresholds, Exact), but works less well in
three dimensions. The construction of effective medium
approximations for site percolation problems is more del-
icate [75].

The major qualitative deficiency of the effective
medium approximation is the conductivity exponent pre-
diction: it asserts that t D 1 for all dimensions. This
is already a poor approximation in two dimensions
(t � 1:3—see Table 2) and is grossly misleading in three
dimensions (t � 2—see Table 3). The effective medium
approximation also predicts that the critical exponent is
unchanged if the standard percolation conduction prob-
lem is replaced by the more general model (31), provided
that the mean resistance of conducting bonds is finite, that
is,

Z 1

0
g�1h(g)dg <1 : (58)

When the conditional probability density function for the
conductance of bonds of nonzero conductance has the
asymptotic form h(g) / g�˛ as g # 0 with 0 < ˛ < 1, so
that the condition (58) is violated, the effective medium
approximation predicts that t D 1/(1 � ˛) [75,92].

The effective medium approximation works well in
non-percolative systems, and in percolative systems has
some use when p is close to 1.

Renormalization By analogy with statistical mechanics
applications, any process by which a lattice system is re-
placed by a similar lattice with bonds of different lengths is
called (real-space or position-space ) renormalization. Such
a process can be performed exactly on some self-similar
pseudolattices, but not on standard periodic lattices.

Numerical estimates of the effective conductivity based
on simulation of finite lattice fragments often use an algo-
rithm in which a finite subnetwork is replaced by a single
effective bond for which the conductance may be calcu-
lated exactly [32,57,97]. This is especially effective near the
percolation threshold, and is sometimes loosely described
as an exact renormalization procedure [32]. The name is
a little misleading, since the new random resistor network

cannot generally be embedded in a natural way within the
original underlying lattice structure.

There was considerable interest in real-space renor-
malization in the 1970s and 1980s, as it gave approximate
predictions for critical exponents that differ from the so-
calledmean-field (high dimension) values of the geometri-
cal exponents of percolation theory, and from the effective
mediumpredictions of the conductivity exponent. Like the
effective medium approximation, real-space renormaliza-
tion is an uncontrolled approximation for which a pri-
ori estimates of the quality of the approximation are not
available. For detailed accounts of real-space renormal-
ization ideas applied to percolation and conduction, see
Sahimi [140] and � Scaling Properties, Fractals, and the
Renormalization Group Approach to Percolation.

The effect of renormalization is to reduce the correla-
tion length in the system, moving the system away from
the percolation threshold. Sahimi et al. [144] have given
an improved, though still uncontrolled approximation, in
which approximate renormalization is used to map the
system to parameter values where the effective medium
approximation is more accurate. This renormalized effec-
tive medium approximation effectively increases the inter-
val in which the effective medium approximation works,
but like all effective medium treatments cannot accurately

Conduction and Diffusion in Percolating Systems, Figure 2
Effective conductivity of the simple cubic lattice bond problem
for the standard percolation conductionmodel (32).Monte Carlo
simulation data (circles [89] give clear evidence that the con-
ductivity exponent t exceeds 1. The curves represent uncon-
trolled approximations: EMA, simple effective medium approx-
imation [89]; CEMA, cluster effective medium approximation [1];
REMA, hybrid theory (renormalized effective medium approxi-
mation) [144]. Figure reproduced from [144]
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portray the ultimate asymptotic behavior as p # pc. An ex-
ample of the resulting approximation is given in Fig. 2,
together with the simple effective medium approxima-
tion [89], an alternative improved effective medium ap-
proximation [1] and simulation data [89]. The reader
should note from the simulation data, which the approxi-
mate curve of Sahimi et al. matches well except very close
to the threshold, the clear nonlinear behavior of the con-
ductivity, in striking contrast to the global linear behavior
predicted by the simple effective medium theory and the
ultimate linear behavior also predicted by the improved
approximations near their predicted approximate perco-
lation thresholds.

Numerical Estimates of the Conductivity Exponent t
Although it is possible to estimate the conductivity ex-
ponent t from an approximate determination of �eff(p)
on an interval including pc, greater computational ef-
ficiency comes from the extension of the finite scaling
ideas of Fisher [49] to the percolation conduction prob-
lem [32,57,97,112,143].

We explain the argument for the hypercubic latticeZd,
but the argument should apply for all periodic lattices. As
the percolation threshold is approached, the correlation
length �(p) in the infinite lattice diverges:

�(p) / jp � pcj�� : (59)

Although in principle the critical exponents for the corre-
lation length for p > pc (�0) and for p < pc (�) could dif-
fer, they have been proved rigorously to coincide for site
percolation on the triangular lattice and there is no ev-
idence to support their being different for other lattices.
The argument is therefore written out in terms of �.

Consider the finite hypercube�L � Zd introduced in
Sect. “Defining the Conductivity”. The finite lattice �L
will represent the infinite lattice to a good approximation
provided that �(p)
 L. We assume that the conductivity
�L(p) of the finite lattice depends on jp � pcj only through
the ratio �(p)/L / (Ljp � pcj�)�1, and we write

�L(p) � L�� f (Ljp � pcj�) : (60)

Since the conductivity is nonzero at p D pc for some re-
alizations of the finite lattice, f (0) ¤ 0. We assume that
f (u) / u� as u!1 so that �L(p) / L��[Ljp � pcj�]�.
To recover the appropriate asymptotic law (44) for the
conductivity of the infinite lattice, that is, �eff / (p � pc)t

as p! pCc , we require  D � (to cancel out the L-depen-
dence), and to obtain the correct dependence on p � pc,
we need t D �. Hence

�L(p) � L�t/� f (Ljp � pcj�) (61)

and in particular

�L(pc) � L�t/� f (0) : (62)

The best available estimates of t come from the use of this
asymptotic relation to determine t/� and then using the
exact value � D 4

3 for d D 2 or independent numerical es-
timates of � for d � 3.

In comparison with estimating the purely geometric or
topological parameters of a percolation model, conductiv-
ity estimates are comparatively expensive in terms of com-
puter time. There is a trade-off between having high pre-
cision in the values of the average conductivity of the fi-
nite lattice and having large enough L values to use the
asymptotic relation (62). The most precise estimates of
t/� presently available come from Monte Carlo simula-
tions, in which a random subset of the possible realiza-
tions of the lattice is generated for a sequence of values
of L. Although the difference equations for the potential
can be solved by standard techniques of numerical lin-
ear algebra, it is more efficient to perform a sequence of
transformations that replace locally complicated small sec-
tions of the conducting backbone of the system by equiv-
alent single bonds [32,57,97]; this is especially effective
in two dimensions. An alternative technique for two-di-
mensional systems can be devised using transfer matri-
ces, with the conductivity of one realization of an infinite
strip of width L being estimated for a sequence of values
of L [38,39], and a generalization of this method that works
in higher dimensions is also available [28,72]. Other effi-
cient methods of solving the relevant linear equations are
also known [91].

Finite-size scaling arguments also apply to the super-
conductivity problem in which a fraction p of the bonds
have infinite conductance, and one finds that

�L(pc) / Ls/� as L!1 : (63)

A selection of the better estimates for t/� and s/� and cor-
responding predictions for t and s are given in Table 2
(d D 2) and Table 3 (d D 3), together with a few estimates
not derived via finite-size scaling. A number of plausible
conjectures on relations between various exponents, based
on heuristic arguments or phenomenological relations ob-
served from early numerical estimates, are now compre-
hensively refuted [57,75]. Grassberger [57] has carefully
assessed the relative merits of different schemes for esti-
mating t/� in two dimensions, and notes major issues with
the quality of random number generators used for some
simulations, and problems arising from inappropriate as-
sumptions concerning correction to scaling terms for the
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Conduction and Diffusion in Percolating Systems, Table 2
Estimates of the conductivity (t) and superconductivity (s) exponents in two dimensions. Where values of t/ or s/ are given, these
values were obtained first by finite-size scaling or related ideas, and the values of t or swere subsequently deduced. In two dimen-
sions it is known that  D 4

3 exactly (asterisked entries use this value to compute t or s from t/ or s/), and also that s D t exactly,
but no such results are available for d D 3

t/� t Source
0:95˙ 0:05 Real metal-insulator mixtures [123]
0:95˙ 0:01 1:28˙ 0:03 Transfer matrix [38]
0:968˙ 0:005 	 1:291� transfer matrix (bond) [170]
0:970˙ 0:009 	 1:293� Enumerate random walks on backbone [73]
	 0:972 	 1:296� Simulation of random walks [131]
0:973C0:005

�0:003 1:297C0:007
�0:004 Finite-size scaling [98]

0:975˙ 0:005 	 1:300� transfer matrix (site)[170]
0:979˙ 0:006 	 1:305� finite-size scaling [132]

1:31˙ 0:04 Monte Carlo [50]
0:9825˙ 0:0008 1:3100˙ 0:0011� Finite-size scaling (bond and site) [57]

s/� s Source
0:9745˙ 0:0015 1:299˙ 0:002 Special purpose computer [118]
0:977˙ 0:010 	 1:303� Transfer matrix [72]

Conduction and Diffusion in Percolating Systems, Table 3
Estimates of the conductivity (t) and superconductivity (s) exponents in three dimensions. Where values of t/ or s/ are given, these
values were obtained first by finite-size scaling or related ideas, and the values of t or s were subsequently deduced. Neither  nor
pc are known exactly and estimates are sensitive to choices made by the cited authors. All estimates are for the simple cubic lattice,
except for the randomwalk estimate [136] for the simple cubic lattice site problem

t/� � used t Source
2:095˙ 0:016 0:89˙ 0:01 1:867˙ 0:035 Finite-size scaling [143]
2:26˙ 0:04 Special purpose computer [120]
2:276˙ 0:012 0:88˙ 0:02 2:003˙ 0:047 Finite-size scaling [55]
2:282˙ 005 Current distributionmoments [8]
2:305˙ 0:015 	 0:88 	 2:0 Finite-size scaling [32]

2:02˙ 0:02 Monte Carlo as p! pc [32]
	 2:315 Generalized transfer matrix [28]
2:48˙ 0:07 Random walks [136]

s/� � used s Source
0:782˙ 0:019 Finite-size scaling [137]
0:85˙ 0:04 	 0:88 	 0:75 Tranfer matrix [72]
0:835˙ 0:005 Special purpose computer [119]

square lattice bond problem. The square lattice site prob-
lem, and the bond problems on the triangular and honey-
comb lattices, are better behaved [57,133]. Early estimates
of t and s by finite-size scaling for lattices with unknown
percolation thresholds are partly compromised by inac-
curacy in numerical estimates of thresholds, but in some
cases numerical estimates of thresholds are now avail-
able to extravagant precision (e. g., square lattice site prob-
lem, pc D 0:592 746 5˙ 0:000 000 4; simple cubic lattice
site problem, pc D 0:311 607 7˙ 0:000 000 4 [37]).

A weak inequality relating the critical exponents t
and � can be deduced on the basis of finite-size scaling.
For finite fragments of the square lattice, a duality argu-
ment shows that there is probability 1

2 that the fragment
is spanned by a conducting path at p D 1

2 . Each such re-
alization of the system gives a conductance between the
connected sides of the lattice which is no smaller than aL-2,
this worst case arising when there is a single path passing
through all lattice sites. It follows that for the square lattice,
�L(pc) � (a/2)ML�2 and so t � 2� in two dimensions.
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Conduction on Fractals Some progress has been made
for percolation conduction problems on self-similar frac-
tal structures [100], which have been proposed as possi-
ble models for the backbone of large clusters at the per-
colation threshold [53]. The plane Sierpinski lattice (trian-
gular gasket) has percolation threshold pc D 1, but unlike
the linear chain which also has pc D 1, the Sierpinski lat-
tice has nontrivial finite-size scaling behavior, and the ana-
logue of t/� is log(5/3)/ log(2) � 0:73 [53]. The analogue
of s/� has been evaluated numerically for this system as
0:27˙ 0:03 [162]. For a further discussion of fractal struc-
tures in the context of percolation see � Scaling Proper-
ties, Fractals, and the Renormalization Group Approach
to Percolation.

Structural Speculations

Despite recent spectacular advances in the understanding
of two-dimensional percolation mentioned in Sect. “Rig-
orous Results for two Dimensions”, an adequate theory for
the conductivity exponent t and superconductivity expo-
nent s remains elusive, even in two dimensions. A number
of attempts have been made to model the structure of the
backbone just above the percolation, and to model what
physicists have called the “incipient infinite cluster” at the
percolation threshold pc, in the hope of predicting the val-
ues of t, s and related “dynamical” exponents of percolat-
ing systems.

The Backbone The backbone in a percolating system in-
cludes all sites with two independent connections to in-
finity. Only the backbone can carry current in the ran-
dom resistor problem, although because of local symme-
tries, not all bonds of the backbone will carry nonzero cur-
rent. On periodic lattices, the existence of a well-defined
nonzero backbone probability B(p) for p > pc ensures (as
a consequence of ergodic theory [18]) a well-defined den-
sity of backbone sites, and so the number BL(p) of sites
with two disjoint connections to the boundary in a hy-
percube of side L is asymptotically a multiple of LdB(p)
as L!1. Natural finite-size scaling analysis [155] (cf.
Sect. “Numerical Estimates of the Conductivity Criti-
cal Exponent t” above) based on the functional form
BL(p) D L�b(Ljp � pcj�) with b(z) / z� as z!1 and
the requirement that B(p) / (p � pc)ˇbb as p # pc leads
to the conclusion that d D � C  and ˇbb D �. Thus, in
particular, BL(pc) / Ldbb , where dbb D d � ˇbb/� is a for-
mula believed to hold by physicists for d � 6, interpreted
by them as the fractal dimension [100] of the backbone
at the percolation threshold, and estimated by simulation.
Grassberger [57] estimates that dbb D 1:6432˙ 0:0008

from a careful study of the square lattice site and bond
percolation problems. The occurrence of this noninteger
exponent suggests delicate structure of the backbone just
above the percolation threshold.

The first attempts to model the backbone in detail
and thereby make predictions about the conductivity ex-
ponent t date from 1975 and 1976 and are due to de
Gennes [34] and Skal and Shklovskii [147]. In their view,
the backbone consisted of a “superlattice” of nodes con-
nected by macrobonds or links. If the node spacing is es-
timated as �(p), the correlation length, and the conductiv-
ity of a macrobond is given by g(p) / (p � pc)� for some
exponent �, then the effective conductivity is predicted to
scale as

�eff(p) � �(p)2�d g(p) / (p � pc)(d�2)�C� ; (64)

the factor of �(p)2�d being motivated by Eq. (39). This
prediction implies that the conductivity exponent is
t D �(d � 2)C �, and it was suggested [34] that � D 1 in
all dimensions. However, Chayes and Chayes [31] proved
rigorously that � > � in all dimensions, implying that
t > �(d � 1). For d D 2, this gives t > 4

3 , a result which
is no longer credible given the precision recently attained
in numerical estimates and the simple superlattice model
is unviable.

Problems with the superlattice model were already
noted by Kirkpatrick [90] in 1978. He proposed instead
a self-similar fractal model, and this idea was further pur-
sued by Gefen et al. [53]. An implication of the self-similar
fractal model that t � (d � 1)� is consistent with numeri-
cal data in low dimensions, but fails for d D 6, where it is
accepted that � D 1

2 and t D 3.
The most plausible picture of the backbone structure

just above the percolation threshold is inelegantly de-
scribed as the “nodes–links–blobs” model [151,152], with
approximately self-similar structures over smallest scales
linked together in some way by tortuous, quasi-one-di-
mensional links but the structure is far from completely
characterized.

The Incipient Infinite Cluster Since the percolation
probability P1(p) is proven rigorously to be zero at the
percolation threshold for several two-dimensional perco-
lation problems, there is with probability 1 no infinite clus-
ter present at the percolation threshold. The incipient infi-
nite cluster at the percolation threshold in the sense orig-
inally used by physicists is therefore a dubious construct.
Kesten has given a rigorous discussion of two mathemati-
cally respectable candidates for the incipient infinite clus-
ter [59,86], using appropriately defined conditional prob-
abilities.
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(i) Take p > pc and work with conditional probabilities,
conditioning on the event that the origin is part of an
infinite cluster. Then take the limit p # pc.

(ii) Take p D pc and work with conditional probabilities,
conditioning on the event that the origin belongs to
a connected cluster that reaches the boundary of a box
of side length 2n centered on the origin. Then take the
limit as n!1.

For bond percolation on the square lattice, these two ap-
parently different definitions have been proved consis-
tent [86]. Moreover, for this specific problem, it can be
shown that the expected number of sites of the incipient
infinite cluster in a box of side 2n is (to within a slowly-
varying prefactor) n2�� , where the exponent � governs
the decay of the probability that the origin is connected
to a box of side 2n. It has been proved that for the trian-
gular lattice bond problem, � D 5

24 [148], and this should
be generally true for two dimensions. In physicists’ termi-
nology, this shows that the fractal dimension of the incipi-
ent infinite cluster in two dimensions is diic D 43

24 � 1:792,
which is outside the 1983 estimates diic D 1:90˙ 0:1 [130]
and diic D 1:900˙ 0:009 [81].

The theory of the incipient infinite cluster and its re-
lation to finite-size scaling considerations are completely
resolved in two dimensions [23,76]. Some illuminating
if less complete conclusions are available in higher di-
mensions [23]. Physicists’ scaling theories suggest that
diic D d � ˇ/� for 2 � d � 6 [155]. However, it is not the
incipient infinite cluster but rather the backbone that is
core to the determination of the conductivity exponent, so
that these results do not go far enough for the present pur-
poses.

RandomMotion in a Random Environment

One may replace the steady-state transport and conduc-
tion processes discussed in Sect. “Continuum Models:
Steady-State Phenomena” and “Lattice Models: Steady-
State Phenomena” for continua and lattices respectively by
time-dependent analogues. Our discussion of the contin-
uum version is very brief.

Continuum Problems

As noted in Sect. “Caveats to the Electrical Interpretation”,
problems of diffusion in random media are easily defined.
An account of the homogenization of the diffusion Eq. (5),
including references to earlier work, will be found in Jikov
et al. [79]. In particular for random media subject a uni-
form ellipticity condition (equivalent to bounding the lo-

cal diffusivity away from zero) and with a spatially station-
ary distribution of the local diffusivity, the system can be
homogenized for almost all realizations of the random dif-
fusivity distribution, and the corresponding homogenized
diffusivity is independent of the realization. Percolative
problems, where the diffusivity is zero at a given arbitrary
point with nonzero probability are more difficult to ana-
lyze, but Jikov et al. [79] give a proof that for the random
chessboard (squares with diffusivities 0 or 1 with proba-
bilities 1 � p and p respectively), the scaled displacement
X(t) of a diffusion process commencing in the conducting
phase converges in distribution to a zero mean, isotropic
bivariate normal random variable. If D0 denotes the ho-
mogenized diffusivity for the steady-state problem treated
like a steady conduction problem, then the diffusivity gov-
erning the time-dependent problem is D0/P1(p), where
P1(p) is the density of the infinite conducting cluster (and
indeed equal to the percolation probability for site perco-
lation on the square lattice).

For a discussion of many aspects and applications of
diffusion in condensed matter physics, an area that has
sustained interest in the properties of heterogeneous and
randomly microstructured materials for a long time, see
the collection edited by Heitjans and Kärger [71]. One in-
teresting diffusion problem that we do not address, since it
does not manifest percolation properties, arises when one
phase acts as an irreversible trap. The survival probabil-
ity diffusing objects in the presence of dilute random traps
decays as exp(�kt3/5) at large times t in three dimensions
rather than the naively expected exp(�kt), due to the un-
expected statistical importance of rare, large trap-free re-
gions [58,74,80].

Lattice Problems

The lattice-basedmodels for stochastic transport processes
in random environments that we address may loosely be
described as random walks, since they derive conceptu-
ally from the random walk problems first posed by in 1905
by Pearson [126] and in 1919 by Pólya [128,129], but the
precise meaning of the phrase random walk varies widely
in the literature. The classic account of the traditional
theory of discrete time, translationally invariant random
walks on Zd is Spitzer [150]; substantial extensions to the
theory needed for more general problems will be found
in Doyle and Snell [40], Hughes [74,75], Telcs [163] and
Woess [169]. The most recent comprehensive rigorous re-
views of random walks in random environments are the
papers by Zeitouni [172,173]. For other discussions of
random walks in random environments see the books by
Hughes [75] and Révész [134].
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Nearest-Neighbour Stepping Discrete-Time Random
Walk We consider the case in which the probability that
a walker presently at site s0 next steps to site s is p(sjs0),
nonzero only when s is a nearest neighbor of s0. The walk
is called recurrent if there is probability 1 that the walker
eventually returns to the starting site and transient other-
wise. A recurrent walker is certain to visit all sites accessi-
ble to it, and visits its own starting site infinitely often (with
probability 1). A transient walker revisits the starting site
at most finitely many times.

The walk is of Pólya type if p(sjs0) D 1/z(s0), where
z(s0) is the coordination number of s0, that is, all nearest-
neighbor steps are equally likely. Pólya’s most famous re-
sult is that for Pólya walk on Zd, the walk is recurrent for
d D 1 and d D 2, but transient for d � 3. Translationally
invariant walks are well-suited to Fourier analysis. This is
how much of the classical theory is derived, and the dis-
crete time evolution is simplified by generating function
methods [74,150]. In particular, for Pólya walks onZd, the
position distribution of the random walker is asymptoti-
cally Gaussian (normal) at large times and the probability
pn(s0) that the walker will be found at the starting site s0
after n steps decays in proportion to n�d/2.

The number Sn of distinct sites visited in the first n
steps is of interest in a number of contexts [74]; in the
probability literature this quantity is sometimes mislead-
ingly called the range of the random walk. For classical
Pólya walks on Zd, the mean number of distinct sites vis-
ited has the asymptotic behavior [115]

hSni �

8
<̂

:̂

(8n/�)1/2; d D 1 ;
�n/ ln n; d D 2 ;
(1 � R)n; d � 3 ;

(65)

where R is the probability of eventual return to the start-
ing site. The following more general results hold [74] for
translationally invariant walks on periodic lattices. For
transient walks, hSni � (1 � R)n. For recurrent walks, if
pn(s0) � constant � n�H/2 with 0 < H < 2, or equiva-
lently,

1X

nD0

pn(0)�n � constant� (1� �)H/2�1 as � " 1 ; (66)

then

hSni � constant � nH/2 : (67)

The case H D 2 induces logarithmic prefactors. The ex-
ponent H is variously described as the harmonic dimen-
sion [74], spectral dimension or fraction dimension [2],
and H D d for the simplest problems on Z or Z2.

For randomwalk problems where the generating func-
tion and Fourier analysis techniques used to derive the
preceding results are not available, the important ques-
tions to addressed in other ways are as follows.

(i) Is the walk recurrent or transient?
(ii) Is the walk diffusive (large-nGaussian or normal lim-

iting behavior) and if so, what is the value of diffusion
constant?

(iii) In non-diffusive cases, how does the mean-square
displacement grow with n?

(iv) What is the value of the harmonic dimension?

Canonical Models for Random Environments Ran-
dom environments for random walkers to experience may
be constructed in various ways. One simple way is to as-
sign to each bond of the lattice Zd (or some other peri-
odic lattice) an independent nonzero weight, which might
be interpreted as the conductance of a random resistor.
If Gr;s D Gr;s denotes the conductance of a bond joining
nearest-neighbor sites r and s, then the transition proba-
bility may be defined to be

p(sjs0) D
Gs;s0P
s00 Gs00;s0

; (68)

the sum over s00 being restricted to nearest neighbors of s0.
If all bonds emanating from a given site have equal con-
ductance, the walk is of Pólya type.

Consider the following two problems on the infinite
conducting lattice just introduced:

� a discrete-time random walk, governed by (68) starting
from site s0;

� electrical conduction between site s0 and infinity.

Then it can be shown [40] that the walk is transient if and
only if the total resistance between s0 and infinity is finite.
This result, and various other relations between random
walks and electric networks [40,75,117], represent one of
the most important avenues for progress in the study of
random walks in random environments.

Pemantle and Peres [127] have shown that for inde-
pendent, identically distributed conductances, the ques-
tion of recurrence or transience of this model can be set-
tled (for all realizations of the environment save for a set of
zero probability) by an analysis of Pólya random walk on
the random lattice arising from the bond percolation on
the same lattice. The original walk is transient if and only
if for some p with pc < p < 1 the Pólya walk on the infi-
nite cluster in the bond percolation problem is transient.
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Master Equations and Generalized Master Equations
Differential-difference equations of the form

d
dt

c(s; t) D
X

s0
W(s; s0)c(s0; t) � M(s)c(s; t) (69)

describe a process in which the concentration of a mobile
substance at site s evolves by transfer of substance from
other sites (gaining substance at rate W(s; s0)c(s0; t) from
site s0) and loss of substance to other sites (total rate of
loss M(s)c(s; t) to all other sites). If the substance is to be
globally conserved, one needs

M(s) D
X

s0
W(s0; s) (70)

and if

p(s; t) D
c(s; t)

P
s0 c(s0; t)

(71)

denotes the normalized concentration then what physi-
cists call themaster equation [122],

d
dt

p(s; t) D
X

s0
[W(s; s0)p(s0; t)�W(s0; s)p(s; t)] ; (72)

results. This equation is interpreted as the law governing
the probability of the position of some type of random
walk process in continuous time, and indeed is a standard
equation from the theory of Markov processes.

To obtain a richer class of possible behaviors, physi-
cists have also considered generalized master equations
[84], where the transition rates W(s; s0) are replaced by
memory kernelsW(s; s0; t):

d
dt

p(s; t) D
Z t

0

X

s0
[W(s; s0; t � t0)p(s0; t0)

�W(s0; s; t � t0)p(s; t0)]dt0 : (73)

For Eqs. (72) and(73) the transition rates or memory ker-
nels are often nonzero only for nearest-neighbor sites.
Simple models of random media arise by imposing sym-
metry,

W(s; s0) D W(s0; s) or W(s; s0; t) D W(s0; s0; t);

and making the rate coefficients W(s; s0) or parameters in
the memory kernelsW(s; s0; t) independent random vari-
ables. If we introduce Laplace transforms, writing

bf (u) D
Z 1

0
e�ut f (t)dt ; (74)

then the transformedmaster and generalizedmaster equa-
tions for a process started at the origin site 0 become

ubp(s; u) � ıs;0 D
X

s0
W(s; s0)[bp(s0; u) �bp(s; u)]; (75)

ubp(s; u)� ıs;0 D
X

s0

bW(s; s0; u)[bp(s0; u)�bp(s; u)]: (76)

In both cases, the Laplace transform equations are able to
be interpreted as the equations governing a random resis-
tor network, with all sites having an additional connec-
tion to zero potential (an earth connection) of conduc-
tance u. If we attempt to match Eq. (75), with random
rates W(s; s0), to an equivalent uniform system with rates
W�, then it should be anticipated that W� is a function
of the variable u, since the relative importance of the earth
connection at s compared to its connections to other sites
will fluctuate over the lattice. Consequently, as discussed
in Sect. “Exactly and Approximately Solved Continuous-
Time Problems”, the appropriate real-time description of
the system may be expected to correspond to a uniform
memory kernel generalized master equation, rather than
a simple, uniform transition rate master equation.

Exactly Solved Discrete-Time Problems Elegant exact
results are scarce for random processes in random envi-
ronments, with the strongest and most informative results
limited to one dimension (that is, on Z), where percola-
tive problems become essentially trival: for p < 1 a Pólya
walker is confined to a finite interval and essentially its po-
sition has a limiting distribution (to be more precise, the
positions after even or odd numbers of steps have limit-
ing distributions, which may be different). Averaging over
all realizations of the environment we find that the mean-
square displacement after n steps is o(n). This unusual be-
havior is an artifact of averaging: as n increases, in more
and more realizations the walker’s displacements have sat-
urated and only the effects of increasingly rare large in-
tervals contribute to the continued growth of the mean-
square displacement, and various properties of the system
can be deduced by appropriate averaging over the posi-
tions of the left and right boundary sites [121].

A less trivial one-dimensional model introduced in
1972 by Temkin [164] brings out the subtle possibilities
for random walks in random environments. Consider the
stepping law

p(l jl 0) D Al 0ıl ;l 0C1 C (1 � Al 0 )ıl ;l 0�1 ; (77)

where fAl g is a set of independent, identically distributed
random variables. Let an overbar denote an average over
all realizations of the set fAl g. Solomon [149] has shown
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that: a walker initially stepping right is certain to return if
and only if log[(1 � A)/A] � 0; a walker initially stepping
left is certain to return if and only if log[A/(1 � A)] � 0,
and the walk is recurrent if and only if log[A/(1 � A)] D 0.
In 1982, Sinai [146] produced the astonishing result that in
the recurrent case, on the additional assumption that Al is
bounded away from 0 and 1, the mean-square displace-
ment is O(ln4 n), in place of the standard O(n) for one-
dimensional Pólya walkers.

Exactly and Approximately Solved Continuous-Time
Problems Alexander et al. [3] have discussed exactly
solvable one-dimensional master equations with indepen-
dent, identically distributed random transition rates. If the
probability density function for the rates is denoted by
f (w), they show that the mean-square displacement grows
as 2W0 t, and the random system is equivalent in its long-
time properties to a uniform system in which all transition
rates areW0, where

1
W0
D

Z 1

0

f (w)dw
w

; (78)

so long as the integral on the right is finite. When this
is not the case, the random motion is sub-diffusive : if
f (w)! f (0) > 0 as w ! 0 then the mean-square dis-
placement grows as t/ ln t, while if f (w) / w�˛ as w ! 0
the mean-square displacement grows as t(2�2˛)/(2�˛) (dis-
tribution-induced nonuniversality). There are several of
other approaches to exactly solvable one-dimensional
master equation problems, including asymmetric rate
problems [75].

A number of authors have extended the idea of an
effective medium approximation from the random resis-
tor problem (Sect. “Effective Medium Approximations”)
or other contexts to the problem of random master equa-
tions. For historical details and a full account of the anal-
ysis see Sahimi et al. [142] or Hughes [74]. As noted in
Sect. “Master Equations and Generalized Master Equa-
tions”, in the Laplace transform domain, the master equa-
tion with random coefficients is equivalent to a random re-
sistor network, and the uniform transition rate produced
by the matching procedure is a function of the transform
variable, so that the approximately equivalent uniform sys-
tem is governed by a generalized master equation. In the
percolative case in which the rate coefficient associated
with a bond is nonzero only with probability p < 1, the
approximately equivalent uniform system does not sup-
port motion if p < 2/z (the predicted percolation thresh-
old, where z is the coordination number of the underly-
ing lattice on which the percolation process is realized).
For p # 2/z, the effective diffusion constant D(p) (a con-

stant multiple of the time derivative of the mean-square
displacement) is predicted to vanish linearly with p � 2/z
for the standard case where all nonzero rate coefficients
are equal, but the exponent is predicted to change in more
general cases if the average of W�1 is infinite, whereW is
the random rate associated with an arbitrary bond, condi-
tional on the rate being nonzero.

In one dimension, the effective medium approxima-
tion reproduces a number of the exact results of Alexan-
der et al. [3]. Its predictions for higher-dimensional sys-
tems, while not of great accuracy, do have one inter-
esting aspect. Generalized master equations with mem-
ory kernels W(s; s0; t) D �(t)p(sjs0) are naturally asso-
ciated with continuous-time random walk processes in
which the walker waits for a random time with prob-
ability density function  (t) between successive steps,
and then moves with the stepping law p(sjs0). The clas-
sic exponential waiting time density  (t) D � exp(�� t)
arises if and only �(t) D �ıC(t) and the generalized mas-
ter equation reduces to the ordinary master equation in
this case. In general, the connection between � and  
is most simply expressed in terms of the Laplace trans-
form: b (u) D b�(u)/[u Cb�(u)] [74,85]. Any form of non-
diffusive behavior that may arise is naturally associated
with a non-exponential waiting time density, and for
p < 2/z � pc the associated waiting time is predicted to
be defective, that is,

Z 1

0
 (t)dt < 1 (79)

and the equivalent continuous time random walker takes
only finitely many steps. An alternative approach to mod-
eling nondiffusive behavior of possible relevance to per-
colative systems can be developed using fractional calculus
ideas [107,108].

The Ant in the Labyrinth

We conclude our survey of transport and conduction in
random environments, with a discussion for discrete-ran-
dom walks of the problem of the ant in the labyrinth,
introduced in 1975 by Brandt [24] and proposed by de
Gennes [33] as a probe of the geometry of percolation. The
ant, a random walker, moves through a random labyrinth
generated by applying site or bond percolation to a peri-
odic lattice [24,33,75,110,111,113]. Because the analogue
of a strong ellipticity condition is not satisfied for these
percolative problems, many of the more general results
from rigorous analyzes of random walks in random en-
vironments [172,173] do not apply.
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Models Let the original lattice from which the labyrinth
is made have coordination number z. Then at a site s of
the labyrinth, the coordination number will be Z!(s) � z,
where Z!(s) is determined by the specific realization ! of
site or bond percolation used in constructing the labyrinth.
There are two canonical choices for the ant’s mode of step-
ping through the labyrinth, the distinction between them
having been clearly drawn by Mitescu and Roussenq [111]
and Majid et al. [99].

myopic ant (Pólya case) —On arrival at site s, the ant
looks at the Z!(s) adjacent sites onto which it is permit-
ted to step, assigns each of them probability 1/Z!(s) and
chooses one of them at random.

blind ant —On arrival at site s, the ant attempts to
move to one of the z adjacent sites on the original lattice. If
this move is not allowed for the labyrinth, the ant remains
at site s.

In a given time interval, a blind ant visits fewer distinct
sites than a myopic ant.

It is generally believed that the qualitative properties of
myopic (Pólya) ants and blind ants are similar, but there
is an important difference when the ant is introduced on
a finite cluster [111]: the “equilibrium” probability distri-
butions of the ant, approached asymptotically as the num-
ber of steps grows without bound, differ for the two mod-
els. The existence of equilibrium probability distributions
on finite clusters can be discussed from the point of view
of Markov chains [46], where such distributions are called
“invariant measures”.

Simulations suggest [41,113,125,145] that when the
mean-square displacement hR2

ni is averaged over environ-
ments, as n!1 we have

˝
R2
n(p)

˛

D

8
<̂

:̂

R2
1 � A(p) expf[�n/�(p)]w g C � � � ; p < pc ;

Bn2k C � � � ; p D pc ;
CD(p)n C � � � ; p > pc ;

(80)

where any dependence of a quantity on p or n is explic-
itly indicated. Here D(p) is an effective diffusion constant
and the exponent k, which would be 1/2 for classical diffu-
sion, is dimension-dependent, with k < 1/2 in low-dimen-
sional systems. In particular, estimates of k for the simple
cubic lattice are 0:20˙ 0:01 [125] and 0:200˙ 0:002 [41].
The value of the exponent w was initially believed close to
1 [113] in three dimensions, but later evidence [125] sug-
gests that w � 0:4 in three dimensions.

In the mathematical literature, careful distinctions are
drawn between results that apply to the annealed case (cor-

responding to averaging over all realizations of the dis-
ordered system) and the quenched case (involving state-
ments about realizations ! of the disorder. For p � pc the
ant commences with probability 1 on a cluster of finite
size, and in any individual realization ! of the system, the
mean-square displacement will converge to a finite value
(blind case) or oscillate between two finite values (myopic
case for some lattices, where oscillations can occur if the
cluster divides into sites accessible only after an even num-
ber of steps and sites accessible only after an odd number
of steps). For p D pc, at a given value of n the displacement
will have saturated (that is, be close to its asymptotic value)
in some environments but not in others. This partitioning
of the realizations of the environments, and the tortuous
structure of large clusters that are not yet fully explored by
the ant, give rise to the nonclassical exponent k < 1/2.

Scaling Theory for the Ant in the Labyrinth Heuristic
work [9,69,75,124,155] raises attractive possible connec-
tions between exponents characterizing the asymptotic be-
havior of the ant in the labyrinth and the geometrical ex-
ponents of percolation theory. A number of rigorous scal-
ing relations involving various exponents that character-
ize randomwalk and electrical conduction on lattices have
been derived by Telcs [163], but these are not sufficiently
informative to establish rigorously the results now briefly
described or to enable exponent values to be predicted.

We shall denote averages for walks, conditioned on
the walks taking place on clusters of m sites, by h�im .
Consider first the expected number of distinct sites vis-
ited. At the percolation threshold, if there is some kind
of effective harmonic dimension for large clusters (cf.
Sect. “Lattice Problems”), which one might loosely call
the harmonic dimension of the incipient cluster (cf.
Sect. “The Incipient Infinite Cluster”) and denote by
Hiic, then the expected number of distinct sites visited
by a walker on a cluster of m sites should evolve as
hSnim / nHiic/2 for 1
 hSnim 
 m. The scaling hypoth-
esis [124] hSnim � nHiic/2�(m/nHiic /2) and the asymptotic
law Pm(p) / m�1�1/ı for the cluster size distribution gives
a simple prediction [6,124] for the mean number of dis-
tinct sites visited, averaged both over cluster sizes and over
walks on individual clusters:

hSni �
1X

mD1

m�1�1/ınHiic/2�(m/nHiic/2) � n(1�1/ı)Hiic /2 ;

(81)

the last result arises from approximating the sum by
an integral. Three-dimensional simulations give hSni /
n0:54˙0:02 [124].
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Conduction and Diffusion in Percolating Systems, Figure 3
Simulations of the ant in the labyrinth [113]: myopic ants (Pólya walkers) on the simple cubic lattice under site percolation
(pc � 0:31) for four values of p. Simulation data (erratic curves) shows the mean-square displacement after N steps, averaged over
realizations of the environment when a fraction p of all sites are occupied: a shows p < pc (p1 D 0:22, p2 D 0:27), with the smooth
curves least-squares fits to R2

1
� A(p) exp[�n/�(p)]; b shows p > pc (p1 D 0:35, p4 D 0:40), with the straight-line asymptotes cor-

responding to effectively diffusive behaviour and �k corresponding to the number of steps needed for diffusive behaviour to be
manifest for pD pk (Figure reproducedwith permission from [114])

A similar analysis may be performed for the mean-
square displacement at the percolation threshold [54,75].
If the fractal dimension of the incipient infinite clus-
ter is denoted by diic (cf. Sect. “The Incipient Infinite
Cluster”) one may propose that the mean-square dis-
placement on clusters of size m is hR2

nim / n2�iic for
1 
 hR2

ni
1/2
m 
 m1/diic . The naturally associated scal-

ing assumption hR2
nim � n2�iic (m1/diic /n2�iic ) predicts

the mean-square displacement averaged both over cluster
sizes and over walks on individual clusters to be

hR2
ni �

1X

mD1

m�1�1/ın2�iic (m1/diic /n2�iic )

� n2�iic[1�diic /(2ı)] :

(82)

The accepted scaling relations diic D (ˇ C � )/� and � D
ˇ(ı � 1) give the alternative form hR2

ni / n2�iic[1�ˇ /(2�)]

and simulation data is consistent with this picture [68].
A conjecture of Alexander and Orbach [2] published

in 1982 suggesting that Hiic D 4/3 for all dimensions d
briefly raised the possibility that the conductivity expo-
nent t could be simply related to geometrical exponents
in percolation theory, and that other dynamical exponents
related to random walk processes could be determined.
Given the known geometrical exponents in two dimen-
sions, the Alexander–Orbach conjecture predicted that
t D 91/72 � 1:2639 in two dimensions. It is now generally
accepted that the Alexander–Orbach conjecture, while an
excellent approximation, is not precisely correct [9,116].

A number of other observable quantities can be
estimated by scaling arguments [9,75,155]. For exam-
ple, just below the percolation threshold, it is pre-
dicted [154] that the mean-square displacement (aver-
aged over all walks and realizations) has the limiting value
R2
1 / (pc � p)2��ˇ .

Rigorous Results for Discrete Time The most impor-
tant rigorous result is probably the following theorem,
which shows that Pólya’s simple criterion for transience
d � 3 is not destroyed by the percolation process, pro-
vided the system is above the percolation threshold, and
the ant starts on the infinite cluster [60].

Theorem 1 (Theorem of Grimmett, Kesten and Zhang)
For myopic ants (Pólya walkers) walking on the infinite
cluster generated by bond percolation on the simple hyper-
cubic lattice at p > pc, the walk is transient with probabil-
ity 1 if d � 3.

As with most rigorous results in this area, the proof is of
antisocial length. However, Rayleigh’s Monotonicity Law
and the correspondence between random walks and elec-
tric circuits makes it relatively straightforward to show
that the recurrence of the ordinary Pólya walk on the
square latticeZ2 ensures the recurrence of myopic antmo-
tion on every realization of an infinite cluster in bond or
site percolation on the square lattice.

For walks on the incipient infinite cluster, a nebu-
lous concept made precise by either of the equivalent ap-
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proaches of Kesten discussed in Sect. “The Incipient In-
finite Cluster”, it is known [86] that the general behavior
is subdiffusive (jXn j D O(n1/2��) for some � > 0) for the
square lattice bond problem, but the exact exponent char-
acterizing the growth of jXnj is unknown.

Rigorous Results for Continuous Time For the natu-
ral master-equation analogue of the myopic ant (corre-
sponding to a myopic ant executing a continuous-time
random walk with an exponential waiting time density of
mean waiting time 1 at all sites) several exact results that
mirror known results for Pólya walks on periodic lattices
are available. In stating these results, we assume that our
labyrinth is generated by bond percolation on Zd with
d � 2 and p > pc, we write C!1 to denote the (unique
with probability 1) infinite cluster in the realization ! of
the random environment, and we assign coordinates such
that the the origin 0 is a site of the infinite cluster.We write
Pr ! to denote probabilities associated with random walks
in the fixed realization ! of the environment. The posi-
tion at time t of a random walker starting from the origin
at time 0 is Xt . We say that a result holds for almost all
environments if it holds with probability 1, where proba-
bility is measured with respect to the realizations of bond
percolation for the given value of p.

The following results, published in 2004 [7,103],
go further than results previously established only for
d D 2 [35,36] and show that there is no anomalous be-
havior above the percolation threshold for the myopic ant
problem for all d � 2: in the long time limit, the process
strongly resembles classical diffusion.

Mathieu and Remy [103] have proved that there exists
c1(p; d) (independent of time or the realization ! of the
environment) such that for almost all environments, the
quenched bound

sup
y2C!1

Pr !fXt D yg �
c1(p; d)
td/2

(83)

holds. This result confirms the transience of the walk for
d � 2, a result already known from the theorem of Grim-
mett, Kesten and Zhang [60] for the discrete-time walk,
stated in Sect. “Rigorous Results for Discrete Time”.Math-
ieu and Remy also establish the analogous result to (83) for
site percolation on the two-dimensional square lattice, and
an annealed lower bound proportional to t�d/2 for bond
percolation on Zd.

Barlow [7] has constructed upper and lower bounds
for the quenched transition density

q!t (x; y) D
1

Z!(y)
Pr !fXtC� D y jX� D xg (84)

that hold with probability 1 for sufficiently large time t:

c1(d; p)
td/2

exp
h
�
c2(d; p)

t
jx� yj21

i
� q!t (x; y)

�
c3(d; p)
td/2

exp
h
�
c4(d; p)

t
jx� yj21

i
:

(85)

Here if x D (x1; x2; : : : ; xd ) and y D (y1; y2; : : : ; yd ), one
defines

jx� yj1 D
dX

kD1

jxk � yk j : (86)

Sufficiently large t is quantified by t � supfjx� yj1; S!x g,
where the finite but realization-dependent quantities S!x
deal with problems associated with an initial period of
potentially anomalous behavior. Barlow’s results establish
the essentially diffusive asymptotic behavior of the walk.
For further results in the quenched case, see Berger and
Biskup [13].

The above results pertain only to walks of Polyá type
on the infinite cluster for p > pc. For a discussion of biased
random walks on the infinite cluster in two-dimensional
percolation, see Berger et al. [14].

Future Directions

Problems of transport and conduction in random sys-
tems subject to the kinds of uniform ellipticity restric-
tions that preclude percolation phenomena have be-
come increasingly well understood, though the address
by Zeitouni [171] at the 2002 International Congress of
Mathematicians summarizes a number of areas in which
progress on the problem of random walk in a random en-
vironment remains to be made. Moreover, an adequate
theoretical understanding does not entirely remove the
tedious problem of accurately estimating overall system
properties.

The situation concerning truly percolative problems
remains less satisfactory. The generally classical behavior
of such systems above the percolation threshold means
that, for modeling purposes in science and technology, one
often may reasonably replace the random system by a uni-
form analogue, in much the same way as one can do this
for systems with ellipticity restrictions, but with the im-
portant caveat that close to the percolation threshold, the
length or time scales at which the uniform treatment is ac-
curate may in practice be unacceptably large. A fuller un-
derstanding therefore of processes at or near the percola-
tion threshold remains the greatest challenge.

There has been spectacular progress since the late
1970s with the understanding (both heuristic and rigor-
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ous) of the geometrical side of percolation theory, espe-
cially for lattices. We have elegant results on the exis-
tence of classical or mean-field behavior for large dimen-
sion d, and the knowledge (though gaps in rigor remain)
that mean-field behavior applies for d � 7 and in a slightly
weaker sense for d D 6 but not for smaller d. More im-
portantly, through rigorous work on conformal invari-
ance and on Schramm–Loewner evolution processes, ex-
act two-dimensional values of geometrical critical expo-
nents and exact two-dimensional scaling relations are now
properly established. An analogous rigorous account of
dynamical exponents characterizing transport in two-di-
mensional percolating systems is perhaps not too much
to ask for, though the way is not yet clear. It would be
surprising indeed if there were significant progress in the
short term on the rigorous analysis of three-dimensional
systems at or near the percolation threshold.
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Glossary

Thalamocortical system The network of highly intercon-
nected cortical areas and thalamic nuclei that com-
prises a large part of the mammalian brain. The cor-
tex is the wrinkled surface of the brain, the thalamus
is a small walnut-sized structure at its center. An in-
tact thalamocortical system is essential for normal con-
scious experience.

Theory of neuronal group selection (TNGS) A large-
scale selectionist theory of brain development and
function with roots in evolutionary theory and im-
munology. According to this theory, brain dynamics
shape and are shaped by selection among highly vari-
ant neuronal populations guided by value or salience.

Neural correlate of consciousness Patterns of activity in
brain regions or groups of neurons that have privileged

status in the generation of conscious experience. Ex-
planatory correlates are neural correlates that in addi-
tion account for key properties of consciousness.

Dynamic core A distributed and continually shifting co-
alesence of patterns of activity among neuronal groups
within the thalamocortical system. According to the
TNGS, neural dynamics within the core are of high
neural complexity by virtue of which they give rise to
conscious discriminations.

Neural complexity A measure of simultaneous func-
tional segregation and functional integration based on
information theory. A system will have high neural
complexity if each of its components can take on many
different states and if these states make a difference to
the rest of the system.

Small-world networks Networks in which most nodes
are not neighbors of one another, but most nodes can
be reached from every other by a small number of hops
or steps. Small-world networks combine high cluster-
ing with short path lengths. They can be readily identi-
fied in neuroanatomical data, and they are well suited
to generating dynamics of high neural complexity.

Metastability Dynamics that are characterized by segre-
gating and integrating influences in the temporal do-
main; metastable systems are neither totally stable nor
totally unstable.

Definition of the Subject

How do conscious experiences, subjectivity, and apparent
free will arise from their biological substrates? In the mid
1600s Descartes formulated this question in a form that
has persisted ever since [1]. According to Cartesian dual-
ism consciousness exists in a non-physical mode, raising
the difficult question of its relation to physical interactions
in the brain, body and environment. Even in the late twen-
tieth century, consciousness was considered by many to be
outside the reach of natural science [2], to require strange
new physics [3], or even to be beyond human analysis al-
together [4]. Over the last decade however, there has been
heightened interest in attacking the problem of conscious-
ness through scientific investigation [5,6,7,8,9]. Succeed-
ing in this inquiry stands as a key challenge for twenty-
first century science.

Conventional approaches to the neurobiology of con-
sciousness have emphasized the search for so-called ‘neu-
ral correlates’: Activity within brain regions or groups of
neurons that has privileged status in the generation of con-
scious experience [10]. An important outcome of this line
of research has been that consciousness is closely tied to
neural activity in the thalamocortical system, a network of
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cortical areas and subcortical nuclei that forms a large part
of the vertebrate brain [11,12]. Yet correlations by them-
selves cannot supply explanations, they can only constrain
them. A promising avenue toward explanation is to focus
on key properties of conscious experience and to identify
neural processes that can account for these properties; we
can call these processes explanatory correlates. This article
clarifies some of the issues surrounding this approach and
describes ways of characterizing quantitatively the com-
plexity of neural dynamics as a candidate explanatory cor-
relate.

Complexity is a central concept within many branches
of systems science and more generally across physics,
statistics, and biology; many quantitative measures
have been proposed and new candidates appear fre-
quently [13,14,15]. The complexity measures described in
this article are distinguished by focusing on the extent to
which a system’s dynamics are differentiated while at the
same time integrated. This conception of complexity ac-
counts for a fundamental feature of consciousness, namely
that every conscious experience is composed of many dif-
ferent distinguishable components (differentiation) and
that every conscious experience is a unifiedwhole (integra-
tion). According to the theoretical perspective described
here, the combination of these features endows conscious-
ness with a discriminatory capability unmatched by any
other natural or artificial mechanism.

While the present focus is on consciousness and its un-
derlying mechanisms, it is likely that the measures of com-
plexity we describe will find application not only in neuro-
science but also in a wide variety of natural and artificial
systems.

Introduction

Consciousness

Consciousness is that which is lost when we fall into
a dreamless sleep and returns when we wake up again. As
William James emphasized, consciousness is a process and
not a ‘thing’ [5]. Conscious experiences have content such
as colors, shapes, smells, thoughts, emotions, inner speech,
and the like, and are commonly accompanied by a sense of
self and a subjective perspective on the world (the ‘I’). The
phenomenal aspects of conscious content (the ‘redness’ of
red, the ‘warmth’ of heat, etc.) are in philosophical termi-
nology called qualia [16].

It is important to distinguish between conscious level,
which is a position on a scale from brain-death and coma
at one end to vivid wakefulness at the other, and con-
scious content, which refers to composition of a conscious
scene at a given (non-zero) conscious level. Obviously,

Consciousness and Complexity, Figure 1
Conscious level is correlated with the range of possible con-
scious contents. PVS = persistent vegetative state, MCS = mini-
mally conscious state. Adapted from [21]

conscious level and conscious content are related inas-
much as the range of possible conscious contents increases
with conscious level (see Fig. 1). It is also possible to differ-
entiate primary (sensory) consciousness from higher-order
(meta) consciousness [6,17]. Primary consciousness refers
to the presence of perceptual conscious content (colors,
shapes, odors, etc.). Higher-order consciousness (HOC)
refers to the fact that we are usually conscious of be-
ing conscious; that is, human conscious contents can re-
fer to ongoing primary conscious experiences. HOC is
usually associated with language and an explicit sense of
selfhood [18] and good arguments can be made that pri-
mary consciousness can exist in principle in the absence of
HOC, and that in many animals it probably does [19,20].

Consciousness as Discrimination

There are many aspects of consciousness that require ex-
planation (see Table 1). However, one especially salient as-
pect that has been too often overlooked is that every con-
scious scene is both integrated and differentiated [22]. That
is, every conscious scene is experienced ‘all of a piece’,
as unified, yet every conscious scene is also composed of
many different parts and is therefore one among a vast
repertoire of possible experiences: When you have a par-
ticular experience, you are distinguishing it from an enor-
mous number of alternative possibilities. On this view,
conscious scenes reflect informative discriminations in
a very high dimensional space where the dimensions re-
flect all the various modalities that comprise a conscious
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Consciousness and Complexity, Table 1
Thirteen features of consciousness that require theoretical ex-
planation. Items 1–6 are to some degree open to quantita-
tive measurement whereas items 7–13 are more readily under-
stood through logical and qualitative analysis. This list is drawn
from [23] and a related list appears in [17]

1 Consciousness is accompanied by irregular, low-amplitude,
fast (12–70 Hz) electrical brain activity.

2 Consciousness is associated with activity within the
thalamocortical complex, modulated by activity in
subcortical areas.

3 Consciousness involves distributed cortical activity related
to conscious contents.

4 Conscious scenes are unitary.
5 Conscious scenes occur serially – only one conscious scene

is experienced at a time.
6 Conscious scenes are metastable and reflect rapidly

adaptive discriminations in perception and memory.
7 Conscious scenes comprise a wide multimodal range of

contents and involvemultimodal sensory binding.
8 Conscious scenes have a focus/fringe structure;

focal conscious contents are modulated by attention.
9 Consciousness is subjective and private,

and is often attributed to an experiencing ‘self’.
10 Conscious experience is reportable by humans,

verbally and non-verbally.
11 Consciousness accompanies various forms of learning. Even

implicit learning initially requires consciousness of stimuli
from which regularities are unconsciously extracted.

12 Conscious scenes have an allocentric character. They show
intentionality, yet are shaped by egocentric frameworks.

13 Consciousness is a necessary aspect of decision making
and adaptive planning.

experience: sounds, smells, body signals, thoughts, emo-
tions, and so forth (Fig. 2).

Because the above point is fundamental, it is useful to
work through a simple example (adapted from [22,24]).
Consider a blank rectangle that is alternately light and dark
(Fig. 3a,b). Imagine that this rectangle is all there is, that
you are seated in front of it, and that you have been in-
structed to say “light” and “dark” as appropriate. A simple
light-sensitive diode is also in front of the screen and beeps
whenever the screen is light. Both you and the diode can
perform the task easily, therefore both you and the diode
can discriminate these two states: lightness and darkness.
But each time the diode beeps, it is entering into one of
a total of two possible states. It is minimally differentiated.
However, when you say “light” or “dark” you are report-
ing one out of an enormous number of possible experi-
ences. This point is emphasized by considering a detailed
image such as a photograph (Fig. 3c). A conscious person

will readily see this image as distinct both from the blank
rectangle and from a scrambled version of the same image
(Fig. 3d). The diode, however, would classify both images
and the rectangle as “light” (depending on its threshold),
because it is insufficiently differentiated to capture the dif-
ferences between the three.

Consider now an idealized digital camera. The elec-
tronics inside such a camera will enter a different state
for the scrambled image than for the non-scrambled im-
age; indeed, there will be a distinct state for any partic-
ular image. A digital camera is capable of much greater
differentiation than the diode, but it is still not capable of
discrimination because it is minimally integrated. In ide-
alized form it is a collection of many independent light-
sensitive diodes that must, to a good approximation, re-
main functionally independent from each other. From the
perspective of this camera the image and the scrambled
image are equivalent. We (as conscious organisms) can
tell the difference between the two is because we integrate
the many different parts of the image to form a coherent
whole. We perceive each part of the image in relation to
all the other parts, and we perceive each image in relation
to all other possible images and possible conscious experi-
ences that we may have. Successful discrimination there-
fore requires both integration and differentiation, and it
can be hypothesized that it is this balance that yields the
unity and diversity central to conscious experience.

Experimental evidence as well as intuition testifies
to the fundamental nature of integration and differenti-
ation in consciousness. A striking example is provided
by so-called ‘split brain’ patients whose cortical hemi-
spheres have been surgically separated. When presented
with two independent visuospatial memory tasks, one to
each hemisphere, they perform both very well [25]. In con-
trast, normal subjects cannot avoid integrating the inde-
pendent signals into a single conscious scene which yields
a much harder problem, and performance is correspond-
ingly worse. In general, normal subjects are unable to per-
form multiple tasks simultaneously if they both require
conscious input and they cannot makemore than one con-
scious decision within the so-called ‘psychological refrac-
tory period’, a short interval of a few hundred millisec-
onds [26].

A loss of differentiation can be associated with the
impoverishment of conscious contents following brain
trauma. In ‘minimally conscious’ or ‘persistent vegetative’
states the dynamical repertoire of the thalamocortical sys-
tem is reduced to the extent that adaptive behavioral re-
sponses are excluded [21]. In less dramatic cases focal cor-
tical lesions can delete specific conscious contents; for ex-
ample, damage to cortical region V4 can remove color
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Consciousness and Complexity, Figure 2
The figure shows anN-dimensional neural space corresponding to the dynamic core (see Sect. “Consciousness and Complexity”). N is
the number of neuronal groups that, at any time, are part of the core, where N is normally very large (much larger than is plotted).
The appropriate neural reference space for the conscious experience of ‘pure red’ would correspond to a discriminable point in the
space (marked by the red cross). Focal cortical damage can delete specific dimensions from this space

dimensions from the space of possible experiences (cere-
bral achromatopsia [27]; c.f., Fig. 2). Reportable conscious
experience is also eliminated during generalized epilep-
tic seizures and slow-wave sleep. Neural activity in these
states is again poorly differentiated, showing hypersyn-
chrony (epilepsy) or a characteristic synchronous ‘burst
pause’ pattern (sleep) [22].

Consciousness and Complexity

The Dynamic Core Hypothesis

The notion that consciousness arises from neural dynam-
ics that are simultaneously differentiated and integrated is
expressed by the dynamic core hypothesis (DCH). This hy-
pothesis has two parts [22,28]:

� A group of neurons can contribute directly to con-
scious experience only if it is part of a distributed
functional cluster (the dynamic core) that, through
reentrant interactions in the thalamocortical system,
achieves high integration in hundreds of milliseconds.

� To sustain conscious experience, it is essential that this
functional cluster be highly differentiated, as indicated
by high values of complexity.

The concept of a functional cluster refers to a subset of
a neural system with dynamics that displays high statis-
tical dependence internally and comparatively low statisti-
cal dependence with elements outside the subset: A func-
tional cluster ‘speaks mainly to itself’ [29]. Conceiving of

the dynamic core as a functional cluster implies that the
boundaries of the neural substrates of consciousness are
continually shifting, with neuronal groups exiting and en-
tering the core according to the flow of conscious contents
and the corresponding discriminations being made. Reen-
try refers to the recursive exchange of signals among neu-
ral areas across massively parallel reciprocal connections
and which in the context of the DCH serve to bind the
core together. It is important to distinguish reentry from
‘feedback’ which refers to the recycling of an error sig-
nal from an output to an input [30,31]. The interpreta-
tion of complexity in the context of the DCH is the subject
of Sect. “Neural Complexity”; for now we remark that it
provides a quantitative measure of neural dynamics that is
maximized by simultaneous high differentiation and high
integration.

The Theory of Neuronal Group Selection

The DCH emerged from the theoretical framework pro-
vided by the ‘theory of neural group selection’ (TNGS),
otherwise known as ‘neural Darwinism’ [18,32,33]. This
section summarizes some of this essential background.

The TNGS is a biological perspective on brain pro-
cesses with roots in evolutionary theory and immunology.
It suggests that brain development and dynamics are se-
lectionist in nature, and not instructionist, in contrast to
computers which carry out explicit symbolic instructions.
Four aspects of selectionist processes are emphasized: di-
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Consciousness and Complexity, Figure 3
a A light-colored rectangle. b A dark-colored rectangle. c A de-
tailed image (the summit of Mount Whitney, California).
d A scrambled version of the same image. A simple light-sensi-
tive diodewould be able todiscriminate a fromb, but not among
a, c, and d, since all these images would appear as ‘light’. An ide-
alized digital camera would enter a different state for each im-
age a, b, c, and d, but would not discriminate between c and d
because the camera does not integrate the various parts of each
image to form a coherent whole. We can discriminate among all
images because (i) our brain is capable of sufficient differentia-
tion to enter a distinct state for each image, and (ii) our brain is
capable of integrating the various parts of each image to form
a coherent whole

versity, amplification/reproduction, selection, and degen-
eracy. Diversity in the brain is reflected in highly variant
populations of neuronal groups where each group con-
sists of hundreds to thousands of neurons of various types.
This variation arises as a result of developmental and epi-
genetic processes such as cell division, migration, and ax-
onal growth; subsequent strengthening and weakening of
connections among cells (synapses) via experience and
behavior generates further diversity. Amplification and se-
lection in the brain are constrained by value, which reflects
the salience of an event and which can be positive or neg-
ative as determined by evolution and learning. Value is
mediated by diffuse ascending neural pathways originat-
ing, for example, in dopaminergic, catecholaminergic, and
cholinergic brainstem nuclei [34]. As a result of value-de-
pendent synaptic plasticity, connections among neuronal
groups that support adaptive outcomes are strengthened,
and those that do not are weakened. Finally, degeneracy
emphasizes that in adaptive neural systems many struc-

turally different combinations can perform the same func-
tion and yield the same output. Degeneracy is a key feature
of many biological systems that endows them with adap-
tive flexibility [35,36]. It is conspicuously absent in artifi-
cial systems that are correspondingly fragile (some artifi-
cial systems make use of ‘redundancy’ which differs from
degeneracy in that specific functional units are explicitly
duplicated; redundancy provides the robustness but not
the flexibility of degeneracy).

According to the TNGS, primary consciousness arises
when brain areas involved in ongoing perception are
linked via reentry to brain areas responsible for a value-
based memory of previous perceptual categorizations. On
this view, primary consciousness manifests as a ‘remem-
bered present’ (akin to William James’ ‘specious present’)
by which an animal is able to exploit adaptive links be-
tween immediate or imagined circumstances and that an-
imal’s previous history of value-driven behavior (Fig. 4).

The TNGS and the dynamic core hypothesis are
closely related [17,18]. They share the general claim that
the neural mechanisms underlying consciousness arose in
evolution for their ability to support multimodal discrimi-
nations in a high-dimensional space. In addition, the reen-
trant interactions linking immediate perception to value-
category memory are precisely those that are suggested to
bind together the dynamic core. Finally, the vast diversity
of neural groups is central both to the original TNGS in
providing a substrate for selection and to the DCH, in pro-
viding an essential component of neural complexity.

Consciousness and the Dynamic Core

We can now summarize the DCH and its origin in the
TNGS. Consciousness is entailed by extensive reentrant
interactions among neuronal populations in the thalam-
ocortical system, the so-called dynamic core. These inter-
actions, which support high-dimensional discriminations
among states of the dynamic core, confer selective advan-
tages on the organisms possessing them by linking current
perceptual categorizations to value-dependent memory.
The high dimensionality of these discriminations is pro-
posed to be a direct consequence of the rich complexity
of the participating neural repertoires. Just as conscious
scenes are both differentiated and integrated at the phe-
nomenal level to yield high-dimensional discriminations,
so too are the reentrant dynamics of their underlying neu-
ral mechanisms differentiated and integrated. Critically
according to the TNGS, conscious qualia are the high-di-
mensional discriminations entailed by this balance of dif-
ferentiation and integration as reflected in high complex-
ity.
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Consciousness and Complexity, Figure 4
Primary consciousness and HOC in the TNGS. Signals related to value and signals from the world are correlated and produce value-
category memories. These memories are linked by reentry to current perceptual categorization, resulting in primary consciousness.
Higher-order consciousness depends on further reentry between value-category memory and current categorization via areas in-
volved in language production and comprehension. Reprinted from [17]

Any theory of consciousness must confront the ques-
tion of whether conscious experiences have causal effects
in the physical world [37]. Responding positively reflects
common sense but it seems contrary to science to sug-
gest non-physical causes for physical events. Respond-
ing negatively respects the causal closure of the physical
world but appears to suggest that conscious experiences
are ‘epiphenomenal’ and could in principle be done with-
out (an implication that may be particularly troubling for
experiences of ‘free will’ [38]). The TNGS addresses this
quandary via the notion of entailment. According to the
TNGS, dynamic core processes entail particular conscious
experiences in the same way that the molecular structure
of hemoglobin entails its particular spectroscopic proper-
ties: it simply could not be otherwise [18]. Therefore, al-
though consciousness does not cause physical events, there
exist particular physical causal chains (the neural mecha-
nisms underlying consciousness) that by necessity entail
corresponding conscious experiences: The conscious ex-
perience cannot be ‘done without’.

Measuring Consciousness and Complexity

Having covered basic elements of the DCH and its origin
in the TNGS, we turn now to the issue of measuring com-
plexity in neural dynamics. To be useful in this context,
candidate measures should satisfy several constraints. We
have already mentioned that a suitable measure should re-

flect the fact that consciousness is a dynamic process [5],
not a thing or a capacity. This point is particularly impor-
tant in light of the observation that conscious scenes arise
ultimately from transactions between organisms and envi-
ronments, and these transactions are fundamentally pro-
cesses [39]. (This characterization does not, however, ex-
clude ‘off-line’ conscious scenes, for example those expe-
rienced during dreaming, reverie, abstract thought, plan-
ning, or imagery). A suitable measure should also take ac-
count of causal interactions within a neural system, and
between a neural system and its surroundings – i. e., bodies
and environments. Finally, to be of practical use, a suitable
measure should also be computable for systems composed
of large numbers of neuronal elements.

Obviously, the quantitative characterization of com-
plexity can constitute only one aspect of a scientific theory
of consciousness. This is true at both the neural level and at
the level of phenomenal experience. At the neural level, no
single measure could adequately describe the complexity
of the underlying brain system (this would be akin, for ex-
ample, to claiming that the complex state of the economy
could be described by the gross domestic product alone).
At the phenomenal level, conscious scenes have many di-
verse features [18,19], several of which do not appear to
be readily quantifiable (see Table 1). These include sub-
jectivity, the attribution of conscious experience to a self,
and intentionality, which reflects the observation that con-
sciousness is largely about events and objects. A critical is-
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sue nevertheless remains: how can measurable aspects of
the neural underpinnings of consciousness be character-
ized [32,132]?

Neural Complexity

A fundamental intuition about complexity is that a com-
plex system is neither fully ordered (e. g., a crystal) nor
fully disordered (e. g., an ideal gas). This intuition is com-
patible with the central theme of the DCH, namely that the
neural dynamics within the dynamic core should be both
integrated and differentiated. The following definition of
neural complexity (CN), first proposed in 1994 [40], sat-
isfies these intuitions and provides a practical means for
assessing the complexity of neural and other systems.

Mathematical Definition

Consider a neural system X composed of N elements
(these may be neurons, neuronal groups, brain regions,
etc.). A useful description of the dynamical connectivity of
X is given by the joint probability distribution of the activ-
ities of its elements. Assuming that this function is Gaus-
sian, this is equivalent to the covariance matrix of the sys-
tem’s dynamics COV(X). Importantly, COV(X) captures
the total effect of all (structural) connections within a sys-
tem upon deviation from statistical independence of the
activities of a pair of elements, and not just the effect of

Consciousness and Complexity, Figure 5
Measuring integration and differentiation in neural dynamics. a Neural complexity CN is calculated as the ensemble averagemutual
information (MI) between subsets of a given size and their complement, summedover all subset sizes (k) (adapted from Fig. 2 in [46]).
Small circles represent neuronal elements and red arrows indicate MI between subsets and the remainder of the system. b Informa-
tion integration˚ is calculated as the effective information (EI) across the ‘minimum information bipartition’ (MIB). To calculate EI
for a given bipartition (j), one subset is injected with maximally entropic activity (orange stars) and MI across the partition is mea-
sured. c Causal density cd is calculated as the fraction of interactions that are causally significant according to amultivariate Granger
casuality analysis. A weighted (and unbounded) version of causal density (cdw) can be calculated as the summed magnitudes of all
significant causal interactions (depicted schematically by arrowwidth). Reprinted with permission from [132]

any direct anatomical connection linking them [41]. Given
COV(X) and assuming that the dynamics of X are covari-
ance stationary (i. e., having unchanging mean and vari-
ance over time) the entropy of the system H(X) is given
by:

H(X) D 1
2 ln

�
(2�e)N jCOV(X)j



where j:j denotes the matrix determinant [42]. H(X) mea-
sures the overall degree of statistical independence exhib-
ited by the system; i. e., its degree of differentiation. Know-
ing the entropy of a system allows calculation of the mu-
tual information (MI) between two systems, or between
two subsets of a single system. The MI between systems
(or subsets) A and B measures the uncertainty about A
that is accounted for by the state of B and is defined as
MI(A; B) D H(A)C H(B) � H(AB) [43].

The integration of X, I(X), measures the system’s over-
all deviation from statistical independence. All elements in
a highly integrated system are tightly coupled in their ac-
tivity. With xi denoting the ith element of X, I(X) can be
calculated as:

I(X) D
NX

iD1

H(xi) � H(X) :

I(X) is equivalent to the measure ‘multi-information’
which was introduced several decades ago [44]. Having ex-
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pressions for MI, H(X), and I(X) allows CN(X) to be ex-
pressed in two equivalent ways. First, CN(X) can be calcu-
lated by summing the average MI between subsets of vari-
ous sizes, for all possible bipartitions of the system:

CN(X) D
X

k

D
MI



Xk

j ; X � Xk
j

�E
; (1)

where Xk
j is the jth bipartition of size k, and h:i is the aver-

age across index j (Fig. 5a). CN(X) can also be expressed in
terms of integration:

CN(X) D
X

k

�
k
n
I(X)�

D
I


Xk

j

�E�
; (2)

where hI(Xk
j )i is the average integration of all subsets of

size k. CN(X) will be high if small subsets of the system
show high statistical independence, but large subsets show
low statistical independence. In other words, CN(X) will
be high if each of its subsets can take on many different
states and if these states make a difference to the rest of the
system.

Because the full CN(X) can be computationally expen-
sive to calculate for large systems, it is useful to have an ap-
proximation that considers only bipartitions consisting of
a single element and the rest of the system. There are three
mathematically equivalent ways of expressing this approx-
imation, which is denoted C(X):

C(X) D H(X) �
NX

kD1

H (xi jX � xi )

D
X

i

MI(xi ; X � xi) � I(X)

D (n � 1) I(X) � n hI(X � xi)i ; (3)

where H(xi jX� xi) denotes the conditional entropy of
each element xi given the entropy of the rest of the system
X � Xi . These three expressions are equivalent for all X,
whether they are linear or non-linear, and neither CN(X)
nor C(X) can adopt negative values.

Recently, De Lucia et al. [45] have developed a dif-
ferent approximation to CN(X) that is calculated directly
from topological network properties (i. e., without need-
ing covariance information). Theirmeasure of ‘topological
CN(X)’ is based on the eigenvalue spectrum of the connec-
tivity matrix of a network. While topological CN(X) offers
substantial savings in computational expense it carries the
assumption that the network is activated by independent
Gaussian noise and therefore cannot be used to measure
neural complexity in conditions in which a network is cou-
pled to inputs and outputs (see Subsect. “Complexity and
Behavior” below).

Connectivity and Complexity

There is a growing consensus that features of neuro-
anatomical organization impose important constraints on
the functional dynamics underlying cognition [47,48]. Ac-
cordingly, several studies have addressed the relation-
ship between structural connectivity and neural complex-
ity [49,50,51,52,53].

One useful approach employs evolutionary search pro-
cedures (genetic algorithms [54]) to specify the connection
structure of simple networks under various fitness (cost)
functions. A population of networks X1 : : :XN is initial-
ized (‘generation zero’) with each member having random
connectivity. Each network Xi is then evaluated accord-
ing to a fitness function [for example, maximize C(X)] and
those that score highly, as compared to the other networks
in the population, are subjected to a small amount of ran-
dom ‘mutation’ (i. e., small random changes in connec-
tivity) and proceed to the next ‘generation’. This proce-
dure is repeated for many generations until the population
contains networks that score near-optimally on the fitness
function, or until the experimenter is satisfied that no fur-
ther improvement is likely.

Sporns and colleagues applied a version of evolution-
ary search to find distinctive structural motifs associated
with H(X), I(X), and C(X) [49]. In this study, the initial
population consisted of ten networks each with N = 32
nodes and K = 256 connections and with fixed identical
positive weights wij. The fitness function was determined
by the value of H(X), I(X), or C(X) calculated from the
covariance matrix of each network, assuming activation
by covariance-stationary Gaussian noise. In each case they
found that the resulting networks had distinctive struc-
tural features, as revealed both by simple visual inspec-
tion and by analysis using a variety of graph-theoretic
measures. Networks optimized for H(X) contained mostly
reciprocal connections without any apparent local clus-
tering. Networks optimized for I(X) were highly clus-
tered (i. e., neighboring nodes connect mainly to each
other [55]) and had a long characteristic path length (i. e.,
a high mean separation between any two nodes in terms
of number of intervening nodes). Finally, networks op-
timized for C(X) had high clustering (and high recipro-
cal connectivity) coupled with a short characteristic path
length. Strikingly, these networks were very similar to the
so-called ‘small world’ class of network in which dense
groups of nodes are connected by a relatively small num-
ber of reciprocal ‘bridges’ [55]. These networks also had
a high proportion of ‘cycles’ (routes through the network
that return to their starting point) and very low wiring
lengths [49].
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Consciousness and Complexity, Figure 6
Target fixation model. a The agent controls head-direction (H) and eye-direction (not shown) in order to move a gaze point (G)
towards a target (T). b Neural network controller. The six input neurons are shown on the left and the four output neurons on the
right. Eachpair of inputs (v,e,h) responds to x; y displacements: ‘v’ neurons todisplacements ofG fromT, ‘h’ neurons todisplacements
of H from an arbitraryorigin (‘straight ahead’), and ‘e’ neurons to displacements of H from the eye-direction. The four output neurons
control head direction (H) and eye-direction relative to the head (H). For clarity only four of the 22 interneurons are shown. Thin gray
lines show synaptic connections. Only a subset of the 256 connections are shown. Adapted from [59]

Sporns et al. extended the above findings by calculat-
ing C(X) for networks reflecting the known cortical con-
nectivity of both the macaque visual cortex and the en-
tire cat cortex. In both cases covariance matrices were
obtained by assuming linear dynamics, equal connection
strengths, and activation by covariance-stationary Gaus-
sian noise. They found that both networks gave rise to
high C(X) as compared to random networks with equiv-
alent distributions of nodes and connections. Indeed, the
networks seemed to be near-optimal for C(X) because ran-
dom rewiring of connections led in almost all cases to a re-
duction in C(X) [49].

In a separate study using a non-linear neuronal net-
work model including excitatory and inhibitory units,
Sporns showed that regimes of high C(X) coincided with
‘mixed’ connection patterns consisting of both local and
long-range connections [56]. This result lines up with the
previous study [49] in suggesting an association between
small-world properties and complex dynamics. In addi-
tion, Sporns and Kötter found that networks optimized
for the number of functional ‘motifs’ (small repeating pat-
terns) had high C(X) but those optimized for structural
motifs did not [57] suggesting that high complexity re-
flects the presence of large functional repertoires. Finally,
C(X) seems to associate with fractal patterning, but not in
a simple sense that fractal networks are optimal for com-
plexity [53,58]. Rather, fractality seems to be one among
several structural attributes that contribute to the emer-
gence of small-world features and complex dynamics. To-
gether, these results indicate that only certain classes of
network are able to support dynamics that combine func-
tional integration with functional segregation and that
these networks resemble in several ways those found in
neuroanatomical systems.

Complexity and Behavior

An important claim within the DCH is that complex dy-
namics provide adaptive advantages during behavior. To
test this claim, Seth and Edelman examined the relation-
ship between behavior and neural complexity in a sim-
ple agent-based computational model [59]. They evolved
networks similar to those in [49] (N = 32, K = 256) by
selecting for their ability to guide target fixation behav-
ior in a simulation model requiring coordination of ‘head’
and ‘eye’ movements (Fig. 6). Networks were evolved in
both ‘simple’ and ‘complex’ environments where environ-
mental complexity was reflected by unpredictable target
movement and by variation in parameters affecting head
and eye movement. Consistent with the DCH, networks
supporting target fixation in rich environments showed
higher C(X) than their counterparts adapted to simple
environments. This was true both for dynamics exhib-
ited during behavior in the corresponding environments
(‘interactive’ complexity), and for dynamics evoked with
Gaussian noise (‘intrinsic’ complexity).

Sporns and Lungarella explored the relationship be-
tween C(X) and behavior in a different way [60]. As
in [59], networks acted as neural controllers during per-
formance of a task (in this case, control of a simulated arm
to reach for a target). However, instead of evolving for suc-
cessful behavior, networks were evolved directly for high
C(X). Strikingly, selecting for high C(X) led to networks
that were able to perform the task, even though perfor-
mance on the task had not been explicitly selected for. Fi-
nally, Lungarella and Sporns asked how C(X) depends on
sensorimotor coupling by comparing neural dynamics of
a robotic sensory array in two conditions: (i) unperturbed
foveation behavior, and (ii) decoupling of sensory input
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and motor output via ‘playing back’ previously recorded
motor activity [61]. They found significantly higher C(X)
when sensorimotor coupling was maintained.

Taken together, the above results suggest a strong link
between high neural complexity and flexible, adaptive be-
havior. Of course, in none of these studies is any claim
made that the corresponding networks are in any sense
conscious.

Extensions and Limitations

The concept of neural complexity has been extended to
characterize the selectional responses of neural systems
to inputs in terms of ‘matching’ complexity CM [62]. CM
measures how well the intrinsic correlations within a neu-
ral system fit the statistical structure of a sensory stimu-
lus. Simulations show that CM is high when intrinsic con-
nectivity is modified so as to differentially amplify those
intrinsic correlations that are enhanced by sensory in-
put, possibly reflecting the capacity of a neurally complex
system to ‘go beyond the information given’ in a stimu-
lus [62]. Despite this possibility CM has not been investi-
gated as thoroughly as has CN.

CN has several limitations. In its full form it is compu-
tationally prohibitive to calculate for large networks, but
in approximation it is less satisfying as a measure. Also,
CN does not reflect complexity in the temporal domain
since functional connections are analyzed at zero-lag [23].
Finally, CN does not take into account directed (causal)
dynamical interactions for the simple reason that MI is
a symmetric measure. This last point is addressed by the
alternative measures described below.

Information Integration

The most prominent alternative to CN is ‘information in-
tegration’ (˚) [24,63]. Unlike CN, ˚ reflects causal inter-
actions because it is based on ‘effective information’ (EI),
a directed version of MI that relies on the replacement of
the outputs of different subsets of the studied system with
maximum entropy signals.

Mathematical Definition

˚ is defined as the effective information across the in-
formational ‘weakest-link’ of a system, the so-called min-
imum information bipartition (MIB; Fig. 5b). It is calcu-
lated by the following procedure [63].

Given a system of N elements, identify all possible bi-
partitions of the system. For each bipartition AjB, replace
the outputs from A by uncorrelated noise (i. e., maximally
entropic activity), and measure how differentiated are the

responses of its complement (B). This is the effective
information (EI) between A and B:

EI(A! B) D MI(AHmax; B) ;

where MI(AHmax; B) is the mutual information between A
and B when the outputs from A have maximal entropy.
EI(A!B) measures the capacity for causal influence of
partition A on its complement B (i. e., all possible effects
of A on B). Given that EI(A!B) and EI(B!A) are not
necessarily equal, one can define:

EI(A$ B) D EI(A! B)C EI(B! A) :

The minimum information bipartition (MIB) is the bi-
partition for which the normalized EI(A$ B) is lowest.
Normalization is accomplished by dividing EI(A$ B) by
minfHmax(A);Hmax(B)g, so that effective information is
bounded by the maximum entropy available. The result-
ing MIB corresponds to the informational weakest link of
the system, and the ˚ value of the system is the non-nor-
malized EI(A$B) across the MIB.

A further stage of analysis has been described [63] in
which a system can be decomposed into ‘complexes’ by
calculating ˚ for different subsets of elements; a complex
is a subset having ˚ > 0 that is not included in a larger
subset with higher˚ . For a given system, the complex with
the maximum value of ˚ is called the ‘main complex’.

Information Integration, Connectivity, and Complexity

Aswith neural complexity it is useful to explore what kinds
of network structure lead to high values of ˚ . Because of
computational constraints only comparatively small net-
works have been investigated for their ability to generate
high ˚ (i. e., N = 8, K = 16 as opposed to N = 32, K =
256 as in [49]). In an initial study, networks optimized
for˚ had highly heterogeneous connectivity patterns with
no two elements having the same sets of inputs and out-
puts [63]. At the same time, all nodes tended to emit and
receive the same number of connections. These two prop-
erties arguably subserve functional segregation and inte-
gration, respectively [63].

Although both ˚ and CN depend on a combination
of functional integration and segregation, they are sensi-
tive to different aspects of network dynamics. CN reflects
an average measure of integration that, unlike ˚ , does not
require heterogeneous connectivity. On the other hand,
unlike CN, ˚ is determined by the value of an informa-
tional measure (EI) across only a single bipartition (the
MIB) and is not modified by dynamical transactions across
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the remainder of the network. Finally, asmentioned above,
˚ but not CN is sensitive to causality.

Limitations and Extensions

As with CN,˚ does not measure complexity in the tempo-
ral domain [23]. There are also substantial limitations at-
tendingmeasurement of˚ for non-trivial systems. First, it
is not possible in general to replace the outputs of arbitrary
subsets of neural systems with uncorrelated noise. An al-
ternative version of ˚ can be envisaged in which ‘transfer
entropy’ (TE) [64], a directed version of MI, is substituted
for EI. TE can be calculated from the dynamics generated
by a neural system during behavior and therefore does not
require arbitrary perturbation of a system; it measures the
actual causal influence across partitions whereas EI mea-
sures the capacity for causal influence. However, a version
of ˚ based on TE does not in general find the informa-
tional ‘weakest link’ (MIB) of a system since the MIB de-
pends on capacity and not on transient dynamics.

Second, unlike CN there is presently no well-defined
approximation for˚ that removes the need to examine all
possible bipartitions of a system.However, it may be possi-
ble to make use of some informal heuristics. For example,
bipartitions for which the normalized value of EI will be at
a minimum will be most often those that cut the system in
two halves, i. e., midpartitions [63]. Similarly, a represen-
tative rather than exhaustive number of perturbations may
be sufficient to obtain at least an estimated value of˚ [63].

The Information Integration Theory of Consciousness

˚ occupies a central place in the ‘information integra-
tion theory of consciousness’ (IITC, [24]). According to
this theory, consciousness is information integration as
measured by ˚ . The nature of the conscious content in
a system with high ˚ is determined by the particular
informational relationships within the main complex (the
complex with the highest ˚). While there are many sim-
ilarities between the DCH and the IITC, most obviously
that both make strong appeal to a measure of complexity,
there are also important differences of which we empha-
size two:

(i) Because ˚ measures the capacity for information in-
tegration, it does not depend on neural activity per se.
The IITC predicts that a brain where no neurons were
active, but in which they were potentially able to re-
act, would be conscious (perhaps of nothing). Simi-
larly, a brain in which each neuron were stimulated
to fire as an exact replica of your brain, but in which
synaptic interactions had been blocked, would not be

conscious [24]. The DCH has neither of these impli-
cations.

(ii) On the IITC ˚ is an adequate measure of the ‘quan-
tity’ of consciousness, therefore any system (biological
or artificial) with sufficiently high ˚ would necessar-
ily be conscious. According to the DCH, high CN is
necessary but not sufficient for consciousness.

Point (ii) is particularly important in view of the find-
ing that an arbitrarily high ˚ can be obtained by a system
as simple as a Hopfield network, which is a fully connected
network with simple binary neuronal elements [23]. By
choosing the synaptic strengths according to an exponen-
tial rule it can be shown that the corresponding ˚ value
scales linearly with network size, such that ˚(X) = N bits
for a network X of size N nodes. On the IITC this re-
sult leads to the counterintuitive conclusion that a suffi-
ciently large Hopfield network will be conscious. Another
challenge for the IITC in this context is the fact that the
probability distributions determining entropy values (and
therefore by extension˚ values) depend on subjective de-
cisions regarding the spatial and temporal granularity with
which the variables in a system are measured ([23,65] but
see [24]).

Causal Density

A balance between dynamical integration and differen-
tiation is likely to involve dense networks of causal in-
teractions among neuronal elements. Causal density (cd)
is a measure of causal interactivity that captures both
differentiated and integrated aspects of these interac-
tions [23,66]. It differs from CN by detecting causal inter-
actions, differs from ˚ by being sensitive to dynamical in-
teractions across the whole network, and differs from both
by being based not on information theory but instead on
multivariate autoregressive modeling.

Mathematical Definition

Causal density (cd) measures the fraction of interactions
among neuronal elements in a network that are causally
significant (Fig. 5c). It can be calculated by applying
‘Granger causality’ [67,68], a statistical concept of causality
that is based on prediction: If a signal x1 causes a signal x2,
then past values of x1 should contain information that
helps predict x2 above and beyond the information con-
tained in past values of x2 alone [67]. In practice, Granger
causality can be tested using multivariate regression mod-
eling [69]. For example, suppose that the temporal dynam-
ics of two time series, x1(t) and x2(t) (both of length T),
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can be described by a bivariate autoregressive model:

x1(t) D
pX

jD1

A11; j x1(t � j)C
pX

jD1

A12; j x2(t � j)C �1(t)

x2(t) D
pX

jD1

A21; j x1(t � j)C
pX

jD1

A22; j x2(t � j)C �2(t)

(4)

where p is the maximum number of lagged observations
included in the model (the model order, p < T), A con-
tains the coefficients of the model, and �1, �2 are the resid-
uals (prediction errors) for each time series. If the vari-
ance of �1 (or �2) is reduced by the inclusion of the x2
(or x1) terms in the first (or second) equation, then it is
said that x2 (or x1) G-causes x1 (or x2). In other words,
x2 G-causes x1 if the coefficients in A12 are jointly sig-
nificantly different from zero. This relationship can be
tested by performing an F-test on the null hypothesis that
A12; j D 0, given assumptions of covariance stationarity
on x1 and x2. The magnitude of a significant interaction
can be measured either by the logarithm of the F-statis-
tic [70] or, more simply, by the log ratio of the prediction
error variances for the restricted (R) and unrestricted (U)
models:

gc2!1 D

8
<

:
log

var(�1R(12))
var(�1U)

; if gc2!1 is significant

0 ; otherwise,

where �1R(12) is derived from the model omitting the A12; j
(for all j) coefficients in Eq. (4) and �1U is derived from the
full model, where gc2!1 refers to G-causality from x2 to
x1.

Importantly, G-causality is easy to generalize to the
multivariate case in which the G-causality of x1 is tested
in the context of multiple variables x2 : : : xN . In this case,
x2 G-causes x1 if knowing x2 reduces the variance in
x1’s prediction error when the activities of all other vari-
ables x3 : : : xn are also included in the regression model.
Both bivariate andmultivariate G-causality have been use-
fully applied to characterizing causal interactions in simu-
lated [71,72] and biological [73] neural systems.

Following a Granger causality analysis, both normal-
ized (cd) and non-normalized (cdw) versions of causal den-
sity of a network X with N nodes can be calculated as:

cd(X) D
˛

N(N � 1)
;

cdw(X) D
1

N(N � 1)

NX

iD1

NX

jD1

gc j!i

where ˛ is the total number of significant causal interac-
tions and N(N � 1) is the total number of pairwise inter-
actions among elements. While normalized causal density
is bounded to the range [0,1] the non-normalized version
is unbounded.

High causal density indicates that elements within
a system are both globally coordinated in their activity
(in order to be useful for predicting each others activity)
and at the same time dynamically distinct (reflecting the
fact that different elements contribute in different ways
to these predictions). Therefore, as with both CN and ˚ ,
cd reflects both functional integration and functional seg-
regation in network dynamics.

Conditions Leading to High Causal Density

In terms of connectivity, computational models show that
both fully connected networks (having near-identical dy-
namics at each node) and a fully disconnected networks
(having independent dynamics at each node) have low cd
and cdw; by contrast, randomly connected networks have
much higher values [71]. More detailed connectivity stud-
ies remain to be conducted.

An initial attempt to analyze behavioral conditions
leading to high causal density was made by [66] revisiting
the model of target fixation described previously [59]. To
recapitulate, in this model networks were evolved in both
‘simple’ and ‘complex’ environments where environmen-
tal complexity was reflected by unpredictable target move-
ment and by variation in parameters affecting head and
eye movement (Fig. 6). Causal density in this model was
calculated from first-order differenced time series of the
ten sensorimotor neurons and it was found that highest
values of causal density occurred for networks evolved and
tested in the complex environments. These results mir-
rored those obtained with CN, indicating an association
between a high value of a complexity measure and adap-
tive behavior in a richly structured environment.

Extensions and Limitations of Causal Density

A practical problem for calculating causal density is that
multivariate regression models become difficult to esti-
mate accurately as the number of variables (i. e., network
elements) increases. For a network of N elements, the to-
tal number of parameters in the corresponding multivari-
ate model grows as pN2, and the number of parameters to
be estimated for any single time series grows linearly (as
pN), where p is the model order (Eq. (4)). We note that
these dependencies are much lower than the factorial de-
pendency associated with˚ and CN, andmay therefore be
more readily circumvented. One possible approach may
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involve the use of Bayesian methods for limiting the num-
ber of model parameters via the introduction of prior con-
straints on significant interactions [74]. In neural systems,
such prior constraints may be derived, for example, on the
basis of known neuroanatomy or by anatomically based
clustering procedures.

Several other extensions to causal density are sug-
gested by enhancements to the statistical implementation
of Granger causality:

� Non-linear G-causality methods based, for example,
on radial-basis-function kernels allow causal density
to detect both linear and non-linear causal interac-
tions [75,76].

� Partial G-causality (based on partial coherence) en-
hances robustness to common input from unobserved
variables, supporting more accurate estimates of causal
density in systems that cannot be fully observed [77].

� G-causality has a frequency-dependent interpreta-
tion [70,73] allowing causal density to be assessed in
specific frequency bands.

Causal Density and Consciousness

Although causal density is not attached to any particular
theory of consciousness, it aligns closely with the DCH
because it is inherently a measure of process rather than
capacity. Causal density cannot be inferred from network
anatomy alone, but must be calculated on the basis of ex-
plicit time series representing the dynamic activities of
network elements during behavior. It also depends on all
causal interactions within the system, and not just on those
interactions across a single bipartition, as is the case for˚ .
Finally, causal density incorporates the temporal dimen-
sion more naturally than is the case for either CN or ˚ ;
while the latter measures functional interactions at zero-
lag only, causal density incorporates multiple time lags as
determined by the order parameter p (Eq. (4)).

The foregoing descriptions make clear that although
existing formal measuresmay have heuristic value in iden-
tifying functional integration and functional segregation
in neural dynamics, they remain inadequate in varying de-
grees. CN can reflect process, can be computed for large
systems in approximation, but does not capture causal in-
teractions. ˚ captures causal interactions, is infeasible to
compute for large neural systems, and can be shown to
grow without bound even for certain simple networks.
Also, ˚ is a measure of capacity rather than process but
this is a deliberate feature of the IITC. cd reflects all causal
interactions within a system and is explicitly a measure of
process, but it also is difficult to compute for large systems.

An additional and important practical limitation of CN,˚ ,
and cd is that they apply only to statistically stationary dy-
namics.

Empirical Evidence

We turn now to empirical evidence relevant to the DCH.
Much of this evidence comes from patients with focal
brain lesions and neuroimaging of healthy subjects us-
ing functional magnetic resonance imaging (fMRI), elec-
troencephelography (EEG) and magnetoencephalography
(MEG). Although current experimental methods are not
sufficiently powerful to confirm or refute the DCH, their
application, separately and in combination, yields much
useful information. A detailed review appears in [17]; be-
low we select some pertinent features.

Involvement of the Thalamocortical System

A wealth of experimental evidence attests to thalamocor-
tical involvement in consciousness, as demonstrated by
both clinical studies and by experiments using normal
subjects. Clinical studies show that damage to non-spe-
cific (intralaminar) thalamic nuclei can abolish conscious-
ness in toto [78], whereas damage to cortical regions of-
ten deletes specific conscious features such as color vision,
visual motion, conscious experiences of objects and faces,
and the like [79]. No other brain structures show these dis-
tinctive effects when damaged.

Conscious functions in normal subjects are usefully
studied by comparison with closely matched controls who
perform the function unconsciously, an approach known
as ‘contrastive analysis’ [80,81,82]. An emerging consen-
sus among contrastive studies is that conscious contents
correspond to widespread thalamocortical activation as
compared to unconscious controls [81]. For example, De-
haene and colleagues have shown widespread fMRI activa-
tion peaks in parietal, prefrontal, and other cortical regions
for conscious perception of visual words, as compared to
unconscious inputs which activated mainly primary visual
cortex [83]. Along similar lines, a recent fMRI study of
motor sequence learning showed a shift from widespread
cortical involvement during early learning (when con-
scious attention is required) to predominantly subcortical
involvement during later learning phases (when skill pro-
duction is comparatively ‘automatic’) [84].

Dynamical Correlates: Binocular Rivalry

A classical example of contrastive analysis makes use of
the phenomenon of binocular rivalry, in which different
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images are projected to each eye [85]. Despite the inte-
grative nature of consciousness these images, if sufficiently
different, are not combined into a single composite; rather,
conscious experience alternates between them. Srinivasan
and colleagues used magnetoencephalography to measure
brain responses to flickering visual stimuli under rivalrous
conditions [86,87]. A vertical grating flickering at one fre-
quency was presented to one eye and a horizontal grat-
ing flickering at another frequency was presented to the
other; these different frequencies allowed stimulus-specific
brain responses to be isolated in the neuromagnetic sig-
nal, a technique known as ‘frequency tagging’ [88]. As ex-
pected for such stimuli, subjects perceived only one grat-
ing at any given time. It was found that the power of the
frequency-tag of a stimulus was higher by 30–60% across
much of the cortical surface when that stimulus was per-
ceptually dominant compared to when it was perceptually
suppressed. Moreover, there was a large increase in coher-
ence among distant brain regions, consistent with the idea
that conscious perception is associated with widespread
integration of neural dynamics mediated by reentry. Al-
though this coherence increase is not a direct test of the
DCH it is consistent with the theory and underscores the
value of looking for dynamical correlates of consciousness.

Cosmelli and colleagues have used a similar paradigm
to show that development of a perceptual dominance pe-
riod arises in neural terms as an extended dynamical
process involving the propagation of activity throughout
a distributed brain network beginning in occipital regions
and extending into more frontal regions [89]. Such a ‘wave
of consciousness’ might reflect underlying integrative pro-
cesses that lead to the formation of a dynamic core [90].
Chen and colleagues modified the rivalry paradigm so
that subjects saw both gratings with both eyes but had
to differentially pay attention to one or the other [91].
Power increases but not coherence increases were found
for the attended stimulus, suggesting that attention may
not involve the same global integrative processes impli-
cated in consciousness. Finally, Srinivasan has shown that
coherence increases during dominance are due partly to
increased phase locking to the external stimulus and partly
to increased synchrony among intrinsic network elements,
again in line with the idea that consciousness involves
coalescence of a distributed functional cluster within the
brain [92].

Sleeping, Waking, and Anesthesia

Binocular rivalry involves constant conscious level and
changing conscious content. Experimental evidence rele-
vant to conscious level comes from studies involving tran-

sitions between sleeping and waking, anesthesia, epileptic
absence seizures and the like. Many studies have tracked
changes in endogenous activity across these various tran-
sitions but direct assessments of specific complexity mea-
sures are mostly lacking. Nonetheless, current findings
are broadly consistent with the DCH. As noted in Sub-
sect. “Consciousness as Discrimination”, absence seizures
and slow-wave sleep (but not rapid-eye-movement sleep)
are characterized by hypersynchronous neural activity that
may correspond to reduced functional segregation [22].
Anesthesia has particular promise for further experimen-
tal study because global anesthetic states can be induced
via a wide variety of pharmacological agents having di-
verse physiological effects. Moreover, proposed unifying
frameworks, such as Mashour’s ‘cognitive unbinding’ the-
ory [93], share with the DCH the idea that loss of con-
sciousness can arise from diminished functional integra-
tion. In line with Mashour’s proposal, John and col-
leagues have observed at anesthetic loss-of-consciousness
(i) functional disconnection along the rostrocaudal (front-
to-back) axis and across hemispheres (measured by coher-
ence changes), and (ii) domination of the EEG power spec-
trum by strongly anteriorized low frequencies [94].

The development of transcranial magnetic stimula-
tion (TMS) has opened the possibility of studying effec-
tive (causal) connectivity in the brain. TMS non-invasively
disrupts specific cortical regions by localized electromag-
netic induction. Massimini and colleagues combined high-
density EEG with TMS to test whether effective connec-
tivity among distant brain regions is diminished during
sleep [95]. Applying a TMS pulse to premotor cortex dur-
ing quiet wakefulness led to a sequence of waves propa-
gating throughout the cortex, but this widespread propa-
gation was mostly absent during non-rapid eye movement
(slow wave) sleep.While these results do not allow calcula-
tion of any specific complexity measure they are consistent
with both the IITC and the DCH.

In summary, it is clear that enhanced experimental and
analytical methods are needed in order to test adequately
whether CN (or other specific measures) are modulated
as predicted by the DCH. Initial attempts to calculate CN
directly from neural dynamics have not been successful
(see [96] for a review) although a link to complexity is sug-
gested by the discovery of small-world networks in func-
tional brain dynamics [96,97].

Related Theoretical Proposals

Dynamical Systems Theory and Metastability

We have already mentioned that the measures of com-
plexity discussed in this article apply only to statistically
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stationary dynamics (Subsect. “Causal Density and Con-
sciousness”). This restriction contrasts sharply with an
alternative tradition in theoretical neuroscience that fo-
cuses on non-stationary brain dynamics and which em-
phasizes the tools of dynamical systems theory. This al-
ternative tradition can be traced back to early sugges-
tions of Turing [98] and Ashby [99] and was concisely
expressed by Katchalsky in 1974: “. . . waves, oscillations,
macrostates emerging out of cooperative processes, sud-
den transitions, patterning, etc., seem made to order to
assist in the understanding of integrative processes in the
nervous system” [100]. More recently the dynamical sys-
tems approach has been championed in neuroscience by,
among others, Haken [101] under the rubric ‘coordina-
tion dynamics’ and Freeman who has produced a steady
stream of papers exploring dynamical principles in brain
activity [102,103]. Valuable reviews of work in this tradi-
tion can be found in [104,105,106].

A key concept in the dynamical systems approach is
‘metastability’ which describes dynamics that are “distin-
guished by a balanced interplay of integrating and seg-
regating influences” (see p. 26 in [107]). While this defi-
nition is obviously similar to the intuition driving neural
complexity, metastability has been fleshed out, not in the
concepts of information theory or time-series analysis, but
instead in the language of attractor dynamics. A dynam-
ical system inhabits a metastable regime when there are
no stable fixed points but only partial attraction to cer-
tain phase relationships among the system variables. At
the level of neural dynamics metastability may reflect the
ongoing creation and dissolution of neuronal assemblies
across distributed brain regions [105,107,108]. A now clas-
sical experimental example of metastability comes from
a study in which subjects were asked to flex a finger in re-
sponse to a periodic tone, initially in a syncopated man-
ner [107]. As the frequency of the tone increases, the
syncopated response becomes harder to maintain until
a critical point is reached at which the subject switches
to a synchronous mode of response. Strikingly, this be-
havioral phase transition is accompanied by a correspond-
ing transition in the patterning of neuromagnetic cortical
signals. At the critical point, where there is partial attrac-
tion to both syncopated and synchronous responsemodes,
both behavioral and neural dynamics are dominated by
metastability. For other evidence of metastability in the
brain see [109].

Metastability characterizes an important aspect of
conscious experience, namely that conscious events are
rapidly adaptive and fleeting [17]. Consciousness is re-
markable for its present-centeredness [5,6]. Immediate ex-
perience of the sensory world may last at most a few sec-

onds and our fleeting cognitive present is surely less than
half a minute in duration. This present-centeredness has
adaptive value for an organism by allowing time enough
to recruit a broad network of task-related neural resources
while permitting neural dynamics to evolve responses to
subsequent events. Thus, conscious experience can be de-
scribed by an interplay of segregating and integrating in-
fluences in both the temporal (metastability) and spatial
(complexity) domains. A key theoretical challenge is to
work out in greater detail the relationship between these
two concepts.

Global Workspace Theory

Beginning in 1988 [80] Baars developed a cognitive the-
ory of consciousness under the rubric ‘global workspace
(GW) theory’ [80,81,110]. The cornerstone of GW theory
is the idea that consciousness involves a central resource
(the GW) which enables distribution of signals among nu-
merous otherwise informationally encapsulated and func-
tionally independent specialized processors. GW theory
states that mental content becomes conscious mental con-
tent when it gains access to the GW such that it can influ-
ence a large part of the brain and a correspondingly wide
range of behaviors. A key aspect of GW theory is that con-
scious contents unfold in an integrated, serial manner but
are the product of massively parallel processing among the
specialized processors. The integrated states of the GW
follow each other in a meaningful but complex progres-
sion that depends on multiple separate processes, each of
which might have something of value to add to the on-
going constitution of the GW. Although these notions are
compatible with the DCH, they do not by themselves spec-
ify dynamical properties to the same level of detail.

A dynamical approach to GW theory has been pursued
by Wallace [112] and separately by Dehaene, Changeux
and colleagues [111,113,114]. Wallace adopts a graph-the-
oretic perspective proposing that the GW emerges as a ‘gi-
ant component’ among transient collections of otherwise
unconscious processors. The formation of a giant com-
ponent in graph theory denotes a phase transition at
which multiple sub-networks coalesce to form a large
network including the majority of network nodes [115].
Dehaene and colleagues have built a series of computa-
tional models inspired by GW theory, to account for a va-
riety of psychological phenomena including ‘attentional
blink’ [111], ‘inattentional blindness’ [114], and effortful
cognitive tasks [113]. These models are based on the con-
cept of a ‘neuronal global workspace’ in which sensory
stimuli mobilize excitatory neurons with long-range cor-
tico-cortical axons, leading to the genesis of global activ-
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Consciousness and Complexity, Figure 7
A schematic of the neuronal global workspace. A central global
workspace, constituted by long-range cortico-cortical connec-
tions, assimilates other processes according to their salience.
Other automatically activated processors donot enter the global
workspace. Adapted from [111]

ity patterns among so-called ‘workspace neurons’ (Fig. 7).
This model, and that of Wallace both, predict that con-
sciousness is ‘all or nothing’ – i. e., a gradual increase in
stimulus visibility should be accompanied by a sudden
transition (ignition) of the neuronal GW into a corre-
sponding activity pattern. As withWallace, although some
dynamic properties of the neuronal GW have beenworked
out and are compatible with the DCH, a rigorous account
of how themodel relates to neural complexity has not been
attempted.

Neuronal Synchrony and Neuronal Coalitions

The association of neural synchrony with consciousness
arose from its proposed role as a mechanism for solving
the so-called ‘binding problem’, which in general terms
refers to the problem of coordinating functionally segre-
gated brain regions. The binding problem is most salient
in visual perception for which the functional and anatom-
ical segregation of visual cortex contrasts sharply with
the unity of a visual scene. Since the 1980s a succession
of authors have proposed that the binding problem is
solved via neuronal synchronization [116,117] and both
experimental evidence [118,119] and computational mod-
els have borne out the plausibility of this mechanism [31].
In the 1990s, starting with an early paper by Crick and
Koch [7], this proposal grew into the hypothesis that con-
sciousness itself is generated by transient synchroniza-
tion among widely distributed neuronal assemblies, with
particular emphasis on oscillations in the gamma band
(� 40 Hz) [39,120]. In support of this idea we have al-

ready seen that conscious perception correlates with in-
creased synchrony of a (non-gamma-band) visual ‘fre-
quency tag’ [87], and several studies have reported asso-
ciations between gamma-band synchrony and conscious-
ness [121,122,123]. However, synchrony-based theories of
binding (and by extension consciousness) remain contro-
versial [124] and there is not yet evidence that disrup-
tions of gamma-band synchrony lead to disruptions of
conscious contents [12].

From the perspective of the DCH a deeper concern
with the synchrony hypothesis is that it accounts only for
integration, and not for the combination of integration
and differentiation that yields the discriminatory power of
consciousness. In a recent position paper [125], Crick and
Koch reversed their previous support for gamma-band
synchrony as a sufficient mechanism for consciousness,
favoring instead the notion of competition among ‘coali-
tions’ of neurons in which winning coalitions determine
the contents of consciousness at a given time. Such neu-
ronal coalitions bear similarities to the decades-old notion
of Hebbian assemblies [126] on a very large and dynamic
scale. They also suggest that unconscious processing may
consist largely of feed-forward processing whereas con-
sciousness may involve standing waves created by bidi-
rectional signal propagation, a proposal advanced as well
by Lamme [127]. Crick and Koch note that the ‘coalition’
concept is similar to the dynamic core concept [125] al-
though lacking in the detailed formal specification of the
latter.

A possible role for gamma-band synchrony in both
the DCH and in Crick and Koch’s framework is that it
may facilitate the formation but not the ongoing activity
of the core (or a coalition) [125]. In this light it is sug-
gestive that correlations between gamma-band synchrony
and consciousness tend to occur at early stages of con-
scious perception [121,122].

Outlook

Scientific accounts of consciousness continue to confront
the so-called ‘hard problem’ of how subjective, phenom-
enal experiences can arise from ‘mere’ physical interac-
tions in brains, bodies, and environments [128,129]. It
is possible that new concepts will be required to over-
come this apparent conceptual gap [130]. It is equally
likely that increasing knowledge of the mechanisms un-
derlying consciousness will lead these philosophical co-
nundrums to fade away, unless they have empirical con-
sequences [81,125]. In short, to expect a scientific resolu-
tion to the hard problem as it is presently conceived may
be to misunderstand the role of science in explaining na-
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ture. A scientific theory cannot presume to replicate the
experience that it describes or explains; a theory of a hur-
ricane is not a hurricane [18]. If the phenomenal aspect
of experience is irreducible, so is the fact that physics has
not explained why there is something rather than nothing,
and this ontological limit has not prevented physics from
laying bare many mysteries of the universe.

The approach described in this article is one of de-
veloping explanatory correlates of consciousness, namely
properties of neural dynamics that are experimentally
testable and that account for key properties of conscious
experience. Thanks to accelerating progress in experimen-
tal techniques and increased attention to theory, the out-
look for this approach is healthy. We close by suggesting
some key areas for further study:
Development of a large-scale model of a dynamic core

Although progress in large scale neural network mod-
eling has been rapid [131], we currently lack a suf-
ficiently detailed model of environmentally coupled
thalamocortical interactions needed to test the mech-
anistic plausibility of the DCH. Having such a model
should also allow substantive connections to be drawn
between the DCH and GW theory.

Development of new experimental methods New meth-
ods are needed to track neuronal responses at suffi-
cient spatio-temporal resolutions to support accurate
estimation of CN and other complexity measures dur-
ing different conscious and unconscious conditions.
Among current methods fMRI has poor time reso-
lution and measures neural activity indirectly, while
MEG/EEG lacks spatial acuity and is unable to record
details of thalamic responses.

Complexity andmetastability New theory is needed to
relate the class of complexity measures described in
this article to metastability, which analyzes functional
segregation and integration in the temporal domain.

Emergence and ‘downward causality’ New theory is also
needed to better understand how global dynamical
states arise from their basal interactions and how these
global states can constrain, enslave, or otherwise affect
properties at the basal level [39]. Applied to conscious-
ness and to cognitive states in general, such downward
causality can suggest functional roles and may even
help reconcile the phenomenology of free-will with
physiological fact.
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Glossary

Site percolation Assuming a lattice in which the sites can
be occupied, with a probability ps, two sites are as-
sumed locally connected if they are nearest neighbors
and occupied. A group of sites in which each of its’ sites
is occupied and locally connected to at least one other
site in the group is called a connected cluster. If there is
a cluster that connects the edges of an “infinite” lattice,
the cluster is called the percolation cluster. The lowest
ps for which such a cluster is found is called the perco-
lation threshold, psc.

Bond percolation Assuming a lattice, the segment be-
tween nearest neighbor sites is called a bond. A bond
can be occupied with a probability pb. Two bonds are
locally connected if they are both occupied and have
a common site. A group of bonds in which each is con-
nected to at least one other bond is called a connected
cluster of bonds. If the span of this cluster is infinite
we have a “percolation cluster” and the lowest pb for
which such a cluster is formed is called the bonds per-
colation threshold, pbc .

Critical behavior Percolation can be modeled as a phase
transition and thus various properties have a power-
low dependence on jp � pcj for small values of
jp � pcj/pc. The exponent that describes this depen-
dence is called the critical exponent.

Universal and non universal behavior If the critical ex-
ponent depends only on the dimensionality of the sys-
tem, we say that the critical behavior is universal. If the
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exponent depends on other parameters of the system,
we say that the behavior is non universal.

Continuum percolation In a system of objects one can
define a local connectivity criterion such as the overlap
of pores in porous media. The objects are assumed to
be randomly distributed in space, they may have vari-
ous and variable shapes and sizes and theymay interact
with each other. A group of objects such that each ob-
ject is locally connected to at least one other object in
the group is a connected cluster. The cluster that has an
infinite span is the “percolating” cluster in the contin-
uum and the lowest concentration of objects that yield
such a cluster defines the percolation threshold.

Critical fractional volume The content of the objects at
the onset of global connectivity, i. e. the percolation
threshold, is usually characterized in the continuum
by the measurable fractional volume content of the ob-
jects of interest in the system. This volume at the per-
colation threshold is the critical fractional volume.

Excluded volume In the case where the local connectivity
is determined by a partial overlap of the volumes of
two equal objects, the volume in space in which the
two centers of the two objects can be, and must be, in
order to have such an overlap is defined as the excluded
volume of the object. If the objects are not equal one
has to define a corresponding average.

Average bonds per object The average number of objects
that are locally connected to a given object in the sys-
tem. This quantity, at the percolation threshold, Bc, is
the quantity that characterizes topologically the onset
of global connectivity i. e. the onset of percolation.

“Pointedness” The parameter that can be defined qual-
itatively as the degree of deviation from sphericity of
a given object. The manifestation of this property for
different objects, that have the same excluded volume,
is that with its increase the value of Bc decreases.

Critical behavior of dynamical properties The critical
behavior of a property that has to do with flow in the
system, such as electrical conductivity and fluid per-
meability. In the continuum, it is related to the distri-
bution of the local values of the dynamical parameter
associated with a given bond. If the average of this pa-
rameter effects the global critical behavior of the sys-
tem, its contribution is added to the “universal” critical
behavior that is found in lattices.

The random void and the inverted random void sys-
tems A system of pores or topologically similar systems

which are reminiscent of the “Swiss Cheese”. In the
random void (RV) case one is concerned with the net-
work excluding the pores. The mirror image of this
system, i. e. when one is concerned with the network

that consists of the pores (or particles that can coa-
lesce) is called the inverted random void (IRV) system.
In these systems the “neck” formed by the separa-
tion (RV) or the overlap (IRV) of two adjacent pores
determines the local dynamical property.

Tunneling percolation The conduction process in a sys-
tem where the “local connectivity” is not determined
by a geometrical contact but is determined electron-
ically. This is in particular by inter-object tunneling.
The corresponding connected system exhibits a perco-
lation-like critical behavior of the dynamical proper-
ties.

“Physically controlled percolation” When an externally
applied quantity, such as an electric field or mechan-
ical pressure, affects the parameters that characterize
the percolation-like behavior, one may call the corre-
sponding phenomena “physically controlled percola-
tion”.

Definition of the Subject

In this review we will describe the two main features that
are very different in lattice percolation and in continuum
percolation and which bring about new concepts that are
not encountered in the “more traditional” and well de-
veloped theory of percolation in lattices [121]. The origin
of the difference is that in continuum percolation we are
dealing with “real” objects that have sizes and shapes, and
that are randomly distributed in space, while in lattices we
are dealing with abstract mathematical objects such as dots
and line segments in a priori defined locations. The result
is that in the continuum we have to use different quan-
tities to describe the percolation threshold and we obtain
a much richer variability of the corresponding behaviors
of the dynamical properties, such as the electrical trans-
port. To equip the reader with the basic concepts needed
for the discussion of continuum percolation we also in-
clude a short introduction to the relevant principles of lat-
tice percolation and thenwe discuss in some detail the very
basic concepts and achievements in continuum percola-
tion. Finally, we discuss open questions and possible fu-
ture developments associated with this field.

Percolation theory is concerned with the effects of local
and global connectivity on the geometrical and dynamical
properties of systems. Within the limited scope of this re-
view we cannot discuss the numerous systems and many
properties associated with continuum percolation and we
deal only with the principles of this field. However, in or-
der to illustrate the great variety of systems and properties
that constitute this area of research, we mention now sin-
gle, typical, examples of the most conspicuous of those.
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Continuum percolation encompasses all the many
body systems from the smallest, the elementary parti-
cles systems [104], to the largest, the galactic-cosmolog-
ical systems [109]. Correspondingly continuum percola-
tion was applied to discuss and describe structures and
phenomena in physics, chemistry, earth sciences and bi-
ology, as well as communication and traffic networks.
As some typical examples, let us mention, the electri-
cal properties of numerous composites [128], porous me-
dia [125], microemulsions [36,69], disordered semicon-
ductors [137], disordered superconductors [91], molecu-
lar [75] and macromolecular [39] liquids, nano-tubes in
composites [45,64] and suspensions [64], quantum dot
composites [27], thin metal films [118], layered materi-
als [47], quasi-crystals [98], chemical networks [92] and
transport in them [96], biological networks [134] and flow
in them [117], bioinformatics [99], and ecological systems
[132]. Then there are the properties associated with the
flow of charge carriers, such as electrical conductivity [10],
the flow of liquids such as the permeability [88], as well as
corresponding processes [77] such as displacements [133],
drainage [6], dispersion [107], hydrological flows [31] and
diffusion [130]. Very closely related is the class of rheolog-
ical properties [57] such as the viscosity [84]. The possible
variation in the local (“bond strength”) parameters makes
the concepts of continuum percolation also applicable to
information and traffic management [135]. Finally, there
are the related areas of the elastic [81], the dielectric [67]
and the magnetic [122] properties, and their relation to
electrical properties [28,85,93].

In this review we will limit ourselves to a discussion
of the percolation threshold and electrical conductivity,
as they are the most studied properties in “real systems”,
with the hope that the principles that are understood to
govern this property will be sufficient for approaching the
understanding of the various systems and properties such
as those mentioned above. In particular this review is ex-
pected to be also helpful for the analysis of related be-
haviors such as the electrical noise [127], piezoresistiv-
ity [71,128], magneto-transport [29], alternating current
conductivity [43], and the effects of interplay between elec-
trical and elasto-thermal properties [8]. An example of
a generalization of the concepts used in the discussion of
the electrical conductivity to other properties is the ex-
tension of the theory [127] and the experimental anal-
ysis [102] of the electrical conductivity to the electrical
noise.

Turning to the historical highlights of the development
of lattice percolation theory and continuum percolation
theory we realize that by the very nature of this limited
and subjective review there will be many important works

that will not be mentioned here and need to be summa-
rized in a more expanded review. We point out however
that our previous reviews [11,17,26,32] cover the basic un-
derstanding of the present subject for the corresponding
years.

The history of percolation theory is usually consid-
ered to begin with the works of Flory in 1941 [60] and
Stockmayer in 1943 [123] on gelation, and, by definition,
as a flow problem in the work of Broadbent and Ham-
mersley in 1957 [33], who also coined the name of the
corresponding processes as percolation phenomena [136].
These works were followed by very many works that con-
solidated the concepts associated with the theory of per-
colation on lattices. Excellent general reviews on lattice
percolation were given by Zallen in 1983 [136], Stauffer
and Aharony in 1992 [121], and Sahimi in 1994 [105] and
some aspects of it were considered in more specialized re-
views such as by Kirkpatrick in 1973 [80], Shklovskii and
Efros in 1984 [114], Isichenko in 1992 [77] and Sahimi in
1998 [106].

The principal concepts, that were developed for lattices
were the site and bond occupation probabilities, p, and
the resulting clusters, that are groups of occupied sites or
bonds that are connected by having pairs of occupied sites
(or bonds) when the latter are nearest neighbors. The cor-
responding theory was concerned with the properties of
the clusters that enable this connectivity, and in particular
those of the infinite-spanning cluster, when it exists. The
onset of this cluster at a given occupation probability, pc,
is associated with the onset of global connectivity as well
as with the possible onsets of “flows” through the systems.
The major developments of percolation theory were then
along two lines that will be emphasized in this review: the
determination of the onset of global connectivity, and the
variation of geometrical and dynamical properties of such
systems as the percolation threshold is approached. The
corresponding developments in the 1960’s culminated in
the 1969 work of Kasteleyn and Fortuin (that is detailed
in Fortuin and Kasteleyn [62]). They were able to show
that the p transition through pc can be described as a sec-
ond order phase transition [119], thus justifying a poste-
riori the previous findings that the above various prop-
erties behave as power laws of jp � pcj, with powers that
are only dimensionally dependent. The latter behavior as
p! pc is known as the critical behavior, and the inde-
pendence of the exponents on other system parameters is
referred to as the universal critical behavior of the quan-
tities in percolation systems. While the initial motivation
to consider percolation problems was to account for the
behavior of “real” systems, the considerations of such sys-
tems and the realization that they cannot be simply dis-



1446 C Continuum Percolation

cussed using the terms of lattice systems was postponed to
the 1970’s. Since “real” systems are made of objects and
these are randomly dispersed in the continuum, the corre-
sponding research field of “real” systems became synony-
mous with the later coined concept of “continuum” perco-
lation.

The first major step in trying to account generally
for more realistic systems can be considered the finding
of Scher and Zallen (hereafter S&Z) in 1970 [108]. They
found that for properly placed hard core spheres in lat-
tice points, the onset of global connectivity will take place
at a volume fraction of the objects in the system, �c, that
is nearly a constant for all possible lattices in a given di-
mension D. This is in contrast with the relatively wide
range of pc values for the various lattices in the same D,
thus suggesting that at �c there is an onset of a funda-
mental topological connectivity. Similar invariants were
found by Powell in 1979 [97] who essentially used a model
in which “conducting” and “non-conducting” spheres fill
a box under “gravitation”. Another approach, which re-
lates to problems of flow via porous-like media or impurity
band conduction-like systems, was taken by Holcomb and
Rehr in 1969 [76], and Pike and Seager in 1974 [95]. They
considered essentially the fractional occupied volume of
spherical pores, when the local connectivity is defined by
partial overlap of the pores, at the onset of global con-
nectivity. They also found invariants in the case for sys-
tems for which no volume can be attached to the object
such as widthless sticks in a two dimensional system [25].
A very significant insight into the problem of percola-
tion thresholds of systems in the continuum was provided
by Shante and Kirkpatrick (hereafter S&K) in 1971 [112].
They confirmed that the underlying topology of the con-
nected objects, i. e. the average number of connected per-
meable spheres, per given sphere, at the onset of percola-
tion, is the same as that of the “fine grid” lattice. It took
then more than a decade until Balberg and co-workers in
1983 [14,20] and 1984 [21,22] provided the generalization
of the above concepts to zero-volume and “soft-core” non-
parallel objects. They systematically established the con-
cepts of the average excluded volume, hVexi, and the num-
ber of bonds per object, Bc. Consequently the quantity
Bc D �chVexi, where �c is the number of objects per unit
volume at the onset of percolation, became the guide for
the phenomenological theory of the percolation threshold
in the continuum [131] and its application [30]. For exam-
ple, these concepts of hVexi and Bc have enabled the expla-
nation of the nearly zero volume of the conducting phase
needed for the onset of percolation in many systems [9]
and the analysis of the various cases where the objects are
not entirely permeable [17].

The first step towards a rigorous derivation of re-
sults in continuum percolation is probably the sugges-
tion of Coniglio, DeAngelis and Forlani who developed,
in 1977 [44], a series expansion in the objects density, �, to
describe the average size of the finite clusters in fluid sys-
tems. This utilization of liquid theory [74] was translated
to the prediction of the �c values for partially permeable
spheres by DeSimone, Stratt and Demoulini in 1986 [49],
and to an analytic prediction of trends, in the Bc depen-
dence on the type of the objects, by Bug, Safran and Web-
man in 1985 [34]. Extension of the latter approach and the
application of extrapolation methods (by fitting the results
to the known average cluster size dependence on j� � �cj)
finally yielded very accurate predictions for Bc [3,53]. In
particular the work of Drory et al. in 1997 [56] has lent
a firm basis for a rigorous theory for percolation thresh-
olds in the continuum, which followed Drory’s works in
1996 [50,51] and 1997 [52] that proved that continuum
percolation is also a second order-like phase transition.
An insight concerning the variation of Bc (that is much
less straightforward than the variation of �c) from a sys-
tem of one type of objects to a system of another type of
objects was suggested by Alon, Balberg and Drory who
introduced the concept of “pointedness” in 1991 [4]. Re-
cently, some works on permeable systems in high dimen-
sions have shown that applying intuition for the prediction
of various specific behaviors is not always justified [63,68].
The case at hand was the finding of Wagner, Balberg and
Klein, in 2006 [131], that for D!1 the value of Bc can
become smaller than the intuitively expected unity [136].

Turning to the critical behavior of percolation systems
in the continuum, we note that the study of the dynam-
ical properties, and in particular the study of the electri-
cal resistivity, became an intensive area of research in the
1970’s. The first work to test experimentally the predicted
properties on “real” systems can be considered to be the
study of Abeles, Pinch andGittleman in 1975 [2] regarding
the critical behavior of the electrical resistivity of granular
metals [1] at the onset of metallic conduction. They found
that the conductivity exponent that characterizes the crit-
ical behavior, t, was 1.9 in accordance with the universal
values predicted for lattices. This was followed by numer-
ous works that yielded the same conclusion on other elec-
trical properties, such as the electrical noise [40]. In fact
various experiments on “real” systems have also confirmed
the lattice-like geometrical-structural exponents, such as
the correlation length exponent, � [18,79] and the fractal
dimension of the percolation cluster, Df [113]. In parallel,
the developments in computers and consequent computer
simulations in the 1980’s have enabled quite accurate sim-
ulations for the determination of the critical exponents in
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continuum systems, yielding again very good agreement
with the universal predictions [20]. On the other hand,
the many experimental results that did not conform with
the universal predictions [7,94] were largely ignored by the
mainstream of the research. Even the “toy” model of non-
universal behavior of the electrical resistivity, proposed by
Kogut and Straley (hereafter K&S) in 1979 [82], was by-
passed for a few years, until it became the cornerstone of
the understanding of non universal behavior of the dy-
namical properties. This overlooking of the theory of K&S
was apparently for a good reason, since all that time there
was no known link to connect the features of the con-
tinuum system with the parameters of their “toy” model.
This “missing” link was provided by the work of Halperin,
Feng and Sen in 1985 [72]. They showed that non univer-
sality can be a fundamental property of dynamical prop-
erties in continuum systems. By finding the distribution
function of the pore sizes, in sedimentary rock-like sys-
tems, they were able to show its immediate consequence
regarding the resistors value distribution, and thus the ap-
pearance of non universality in accordance with the model
of K&S. Their finding opened the way then to the under-
standing of the many dynamical properties in the various
continuum systems that were mentioned above. In partic-
ular, soon after these findings, in 1987, Balberg showed
[10] that tunneling conduction in random systems can
also be mapped onto a K&S-like resistor distribution. This
realization has enabled, at least, the qualitative interpreta-
tion of the numerous experimental results in the broadest
group of studied continuum systems, i. e. composite ma-
terials, and the broadest group of studied properties, i. e.
the various electrical transport properties. The very simple
theoretical predication that was derived for the latter case
yielded, however, critical exponents that were much larger
than the many experimentally observed values that were
reported in the literature [26]. The other difficulty with
the corresponding physical picture was that it did not ex-
plain how is it that systems in which all the particles are
electrically connected on the one hand, and in which there
is no geometrical connectivity, between any pair of them,
on the other hand, yield behaviors that are identical to
those obtained in bona fide percolation systems [13]. The
two problems have been resolved in principle only very
recently, the first by Grimaldi and Balberg in 2006 [70],
and the other by Toker et al. in 2003 [124]. These develop-
ments will be described in more detail below.

Introduction

Percolation phenomena are associated with the conse-
quences of the connectivity in systems composed of el-

ementary members that are distributed in some random
manner, after a criterion for the connectivity between two
such elements is defined. The corresponding theory that
deals with those phenomena tries to describe geometrical
structures of connected parts in those systems as well as
their dynamical properties. The most interesting and con-
sequently the most studied manifestations of percolation
phenomena are those taking place in the close proximity
to the onset of global connectivity in the system. This on-
set is known as the percolation threshold, and the behavior
of the geometrical and dynamical properties in the vicin-
ity of this threshold is known as the critical behavior of
the percolation system. It was shown that this critical be-
havior can be described as a second-order phase transition
and thus, close enough to the percolation threshold, the
various properties are given by power laws [121] that are
reminiscent of the dependencies found in the most well-
known phase transitions [119] such as the simplest mag-
netic transitions [116].

There are thousands of papers that have been written
on the theory and the applications of percolation in the
continuum. These applications are found in very many
fields of physics, chemistry, biology, geophysics and com-
munications, and there are very many relevant properties
that are discussed in terms of the concepts of this theory.
Since all these cannot be summarized within the frame-
work of the present review we will concentrate here on
the theory and the understanding of the principal concepts
and on the major experimental manifestations of the the-
ory and its consequences. In particular we will focus on the
central essential concept of the percolation threshold in the
continuum and on the dynamical property that was stud-
ied more than any other property in corresponding sys-
tems, i. e., the electrical conductivity.

Since the fundamental concepts that are used for the
description of percolation in the continuum are based
on the great advancements made in the theory of lattice
percolation, we will start this review by briefly outlining
the principles of the latter theory. Following the fact that
there are excellent textbooks [106,121,136] and many re-
view articles on lattice percolation, this background will
be given very briefly in Sect. “Lattice Percolation”. It is
expected that this brief background will be sufficient for
the understanding of the basic ideas of continuum perco-
lation that will be discussed then in more detail here, in
Sects. “Principal Issues in Continuum Percolation”, “Per-
colation Thresholds in the Continuum”, and “The Criti-
cal Behavior of the Dynamical Properties in the Contin-
uum”. In those sections we will put emphasis on the prop-
erties of continuum percolation that cannot be extrapo-
lated simply from their lattice counterparts. For example,
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the almost zero-percolation threshold as well as the non
universal behavior of various physical properties do not
follow the scenarios of, and expectations from, lattice per-
colation. Finally, in Sect. “Future Directions” we consider
the major issues in continuum percolation the solution of
which seem to be important in order to deepen our under-
standing of this and related fields of research. In Sect. “Bib-
liography” we provide a rather very limited list of papers
relevant to the subjects considered here with the hope that
this will be sufficient as a guide for the application of con-
tinuum percolation theory in various and many related re-
search areas.

Lattice Percolation

To introduce the above mentioned basic concepts we start
by considering the very simple model of the two dimen-
sional square lattice that is illustrated in Fig. 1. Let us as-
sume a probability, p, that a lattice site is occupied, and
denote the occupied sites by full circles. The step that is
very important here, and will be very crucial when we dis-
cuss continuum percolation, is the definition of the local
connectivity between members in a given system. In the
present lattice these members are the occupied sites and
two such sites are defined to be connected if they are first
nearest neighbors. In the particular case shown in Fig. 1
the number of nearest neighbors of a given site (the coor-
dination number of the lattice), z, is 4. We can now de-
fine a (connected) cluster size as the number of sites such
that each of them is connected to at least one (same or
other) occupied site in the cluster. In Fig. 1 we see then
clusters of size 1, size 2, size 4 and a larger cluster that
connects opposite edges of the system. The latter is called
the spanning cluster. In percolation theory we are con-
cerned mainly with “infinite” systems, i. e. with systems
where the details (e. g. the sites themselves and the inter-
site distances) aremuch smaller than the size of the system.
Correspondingly, in an “infinite” system we call the span-
ning cluster, the percolation, or the infinite, cluster. The
illustration given in Fig. 1 reflects then a finite (small) por-
tion of the infinite system. Such small portions are used be-
low for the description and definitions of local and global
quantities of the system, but it has to be remembered that
quantitative characterizations of the various properties are
considered meaningful only in the (statistically sufficient)
“infinite” system limit.

From Fig. 1 it is easy to appreciate that the number
of clusters and their sizes will grow as the site occupa-
tion, p, increases, as can be derived quantitatively by var-
ious models and simulations [121,136]. The most impor-
tant consequence, however, is that there will be a value of

Continuum Percolation, Figure 1
A two dimensional illustration of a portion of an infinite lattice.
The open circles represent lattice sites and the full circles repre-
sentoccupied lattice sites. The segments connecting twonearest
neighbor occupied sites represent a local connection or a bond.
In this illustration there are finite clusters of connected sites (of
size 1, 2 and 4) and a “spanning” cluster that connects two oppo-
site edges of the system. In a system of infinite size the latter is
known as the “infinite” or the “percolation” cluster. (From [32])

p, that is known in the literature as pc, such that for p < pc
there will be no percolation cluster, while for p � pc there
will be such a cluster. This pc is known as the perco-
lation threshold of the lattice. The behavior of the var-
ious geometrical or physical properties for p values in
the close proximity of pc is known as the critical behav-
ior. The above mentioned considerations of the percola-
tion as a phase transition yield then that these properties
will be well described by power laws of the proximity to
the threshold jp � pcj/pc. For example, the average cluster
size, S, is defined usually [121] as the average number of
sites in a cluster, per an occupied site in the lattice. The av-
erage that is thus found for the finite clusters in the lattice,
behaves, for both, p > pc and p < pc, as

S / jp � pcj�� : (1)

In particular, the phase transition-like behavior yields that
exponents, such as � , depend only on the lattice dimen-
sion D, and are thus independent of the details (e. g. the
lattice type) of the system. This property is known as
the universality and the corresponding dependence on
jp � pcj as the universal behavior. The universal values
of � are, for example, 2.4 for D D 2 and 1.8 for D D 3. The
other important property of the clusters is their geometri-
cal extent, i. e. their effective (e. g. gyration) radius (say, in
units of the lattice spacing). The corresponding average for
the finite clusters in the lattice (e. g., per sites connected to
a given site in the cluster; Stauffer and Aharony [121]) de-
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fines then the “connectivity” length in the system, � . This
length, as to be expected from the above discussion, be-
haves as

� / jp � pcj�� ; (2)

where � is a “universal” exponent. The quantity � , known
also as the correlation length, is the most important pa-
rameter of the system since it characterizes its connectivity
and provides the basic length scale for dealing with the be-
havior of the properties of interest in the system. The well
known values of ( are 1.33 for D D 2 and 0.88 for D D 3.

We note in passing that in Fig. 1 we may also consider
the occupancy of the bonds (i. e. the segments between the
sites) for which the local bond connectivity criterion is the
occupation of two bonds that share a site [129]. It is ob-
vious that for a given lattice there is a simple numerical
factor that relates the site occupancy, ps, and the bond oc-
cupancy, pb [136]. Below, we will use then the more gen-
eral p concept to describe both quantities except when the
difference between the two types of occupancy needs to be
emphasized.

Turning to the dynamic properties associated with the
connectivity of the system in lattices we consider now the
global conductance of a system, G. This is the dynamic
property that we will discuss in Sect. “The Critical Be-
havior of the Dynamical Properties in the Continuum”.
for continuum systems. Viewing then the system shown
in Fig. 1 as consisting of “bonds” (between two occupied
sites), let us assume that each bond is a resistor bar of
a given resistance value. In such a system there will be elec-
trical conduction from right to left or from top to bottom,
only if there is a spanning cluster. Examining the system il-
lustrated in Fig. 1 from this point of view, we see that only
a fraction of the 18 resistor-bonds in this cluster (15 from
left to right or 11 from top to bottom) will participate in
the conduction in the respective direction. On the other
hand, there will be a few resistance-bonds (3 from left to
right, or 7 from top to bottom) that do not participate in
the conduction process. The bonds of the first type belong
to the backbone of the percolation cluster while the others
are known as the “dead ends” of the percolation cluster.

Let us consider now the structure of the backbone net.
We can imagine the backbone as (say, a cubic) net of
“links” and “nodes”. These “links” intersect then at the
“nodes” that define the corresponding net. The average
length of the links is easily appreciated to be of the order
of � , since the “holes” in the backbone net can encapsu-
late only finite clusters, and these, as we saw above, have
their diameter distributed around � . Turning to the struc-
ture of the links, we can look at it from a geometrical point
of view or an electrical point of view. In the first picture let

us consider those bonds in the link that connect two sites
in the link such that there is no other “indirect” connec-
tion between them within the distance � (i. e. when only
the members of the link) are included. We call the corre-
sponding bond a “singly connected bond”. From the elec-
trical point of view the latter bonds are simply those that
carry the same current as the link (say, through a plane
that intersects the link, but only through members of the
link). The parts of the backbone that are confined between
two adjacent “singly connected bonds” are known as the
“blobs” of the backbone. Hence, since the system will con-
duct only for p > pc, the backbone can be envisioned as
consisting of, say, a square or a cubic, network of “links”
that are made of series connections of “singly connected
bonds” and “blobs”. Themodel described here is known as
the links-nodes-blobs (the LNB) model [32,114,120,121].

Considering the expected resistance of a cubic (or hy-
percubic) LNB network let us assume that the resistance of
a link is R� . If the sample size is L we have then, on the av-
erage, L/� links that connect one edge of the sample with
its counterpart. Correspondingly, there will be (L/�)D�1

parallel links between these “opposite-edges”, where D is
the dimensionality of the system. Since the link’s resistance
is R� , the resistance of the whole network RL will be given
by

RL D R� (�/L)D�2 : (3)

The crucial step here is then “only” to estimate the value
of R� [32,114]. The corresponding easiest approach (that
can be termed also the lattice approach) is to assume
that all the bond-resistors have the same resistance value
r0 [121,122]. In passing we note that when the resistors’
values come from a distribution, even if a lattice structure
is assumed as the platform of the resistors network, the
problem is classified as a problem in continuum percola-
tion. This follows of course the fact that in “real” (or con-
tinuum) systems a distribution in the resistance values of
the local resistors is usually expected (see Sect. “The Local
Resistors and Their Distributions”). The deviation from
the simple r0 assumption that is used in lattice models will
be shown in Sect. “The Critical Behavior of the Dynamical
Properties in the Continuum” to lead to the very differ-
ent and rich behaviors that are encountered in continuum
percolation.

However, with the above assumption of all resistors
having the same value r0, we can estimate the value of R�
in the LNB model as follows. We saw that the link con-
sists of singly connected bonds and blobs. Let us determine
first how many singly connected bonds we expect to have
in a link of length � . Assuming a lattice with p > pc and
assuming that there are L1 such bonds in this link [114],
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let us cut out (p � pc)/p of the bonds in the whole lat-
tice. The number of singly connected bonds that will be
cut in a link will be then L1(p � pc)/p. If, upon the in-
crease of L1 as p! pc, this quantity reaches unity, there
will be on the average one singly connected bond miss-
ing in a link and “all” the links will not conduct. In the
limit of � !1 (i. e. (p � pc)/pc 
 1) we approach then
the onset of “no percolation” with L1 / (p � pc)�1. If we
neglect the blobs (that, following the above, are aggregates
of parallel resistors and thus have lower resistance than the
same length chain of singly connected resistors), the re-
sistance of the link can be estimated by its lower bound
of R� D r0L1 / (p � pc)�1. Since the blobs do contribute
to the resistance of the link, one expects that R� > r0L1
and that R� will behave as (p � pc)�� where � is an expo-
nent that is dimensional-dependent.While the calculation
of the value of � is not straightforward [122], it can be well
approximated by fractal models [48]. That the value of � is
larger, but not much larger, than unity is to be expected,
since, as in the “dilution” of the network of links (when
p! pc), there is also a dilution in the local structure of
the blobs, and the links will approach the limit of a chain
of singly connected bonds. In other words as p! pc the
resistance RL will be affected by both the dilution of the
links in the network Eq. (3) and the dilution of the resis-
tors in the blobs. The latter effect means a “stronger” (in
comparison with the one that would be encountered in
a link that is made only of “singly connected bonds”) di-
vergence of the sample resistance as p! pc and thus it
is manifested by � that are, for D < 6, larger than 1. In-
deed, it was found that � � 1:3 for D D 2 and � � 1:1 for
D D 3 [121]. All the above results can be summarized now
by presenting the critical behavior of the global resistance,
RL , in a percolation system of size L, by

RL(� 1/G) / (p � pc)�t ; (4)

where t is the critical exponent of the global conductance
G, that is given, in view of the above, by

t D (D � 2)� C � : (5)

The numerical t values that were derived by various cor-
responding analytical approximations, or Monte Carlo
simulations, are known as the universal values of the
conductivity exponent, tun. These values are, in particu-
lar [121,136], 1.3 for D D 2 and� 2 for D D 3. The devi-
ation from these “lattice” values that represent the behav-
ior of the “global network” in lattices will be discussed in
Sect. “The Critical Behavior of the Dynamical Properties
in the Continuum”.

Principal Issues in ContinuumPercolation

In the previous section we have briefly reviewed the princi-
pal concepts of lattice percolation where the systems have
sites (or bonds) on lattices and these can be empty or oc-
cupied with a probability ps(pb). This yields a percolation
threshold pc that depends on the particular lattice of in-
terest. The physical properties on the other hand, all of
which are associated with the existence of the correspond-
ing bonds in the system, are all characterized by the same
single-valued physical parameters. In continuum percola-
tion the system is composed of objects (or structures) that
are randomly placed in space, that may be of various sizes
and various shapes and, if non-spherical, may have a distri-
bution of their orientations. Correspondingly, the physical
parameters that characterize the bonds may vary from one
bond to another in a manner that may or may not be de-
termined solely by the local geometry and environment of
the bond. The two most significant issues that are of con-
cern in continuum percolation are then the connectivity
of the system, as reflected by the percolation threshold, in
systems of objects, and the possibility of a different criti-
cal behavior of the geometrical and physical properties in
comparison with that of lattices.

Tomake this general discussion more specific, we start
by an illustration of a well known prototype of a two di-
mensional continuum percolation system which consists
of randomly distributed circles, as shown in Fig. 2. The cir-
cles in this model can be described as permeable, overlap-
ping, interpenetrating, or of “soft core”. Such a system can
represent a metal sheet in which holes have been drilled at
random. In this case the electrical conduction between op-
posite edges of the sample is carried by the “background”
(the sample without the holes) of the sheet. We call this
“interpretation” of the system, the random void (RV), or
the “Swiss Cheese” model. The system shown in Fig. 2 can
be also considered as representing a mirror image of the
RV system, i. e. to be taken to represent pores (filled, say,
with a conducting liquid) in a porous medium, or a collec-
tion of isolated and fused metallic grains embedded in an
insulating matrix as in granular metals. In these cases, the
conducting parts are the pores or the grains, and their net-
work provide the global conductivity of the system. The
transport in the latter system can be of course of a liq-
uid or an electrical charge. Correspondingly, this view of
the system is known as the inverted random void (IRV)
model.

In the latter model the criterion for local connectivity
(that is equivalent to the simple bond connection in lattice
percolation) is rather simple; two circles are connected if
they partially overlap. While (as we will see later) the local
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Continuum Percolation, Figure 2
A two dimensional illustration of a continuum system. The cir-
cles are distributed randomly and two of them are considered
connected if they partially overlap. There are finite clusters here
as well as an “infinite” cluster of connected circles. A small finite
portion of the system is enclosed in the square shown at the cen-
ter. (From [130])

connectivity criterion is not always so simple in contin-
uum systems, this one is easy to understand intuitively and
thus it is the most abundant model in continuum percola-
tion. In what follows, and in particular, for the discussion
of the “connecting criteria” and their interpretation in the
continuum, we will usually illustrate our arguments by fig-
ures that show small portions of the infinite system, such
as the area enclosed in the square that confines the center
of Fig. 2.

It is already the first examination of the system shown
in Fig. 2 that makes one appreciate the fundamental ques-
tions of continuum percolation: how to define quantita-
tively the percolation threshold in such a system (there is
no apparentmeaning to p), and how the local degree of ob-
jects overlap determines the local and global geometrical
and dynamical properties of the system. We will discuss
these two issues in Sects. “Percolation Thresholds in the
Continuum” and “The Critical Behavior of the Dynamical
Properties in the Continuum” of our review. In contrast,
we will not describe here the numerous natural and arti-
ficial systems for which the consequences of these issues
are of great significance, leaving these for more specific re-
views to come. We provided, however, a small represen-
tative list of such systems in Sect. “Definition of the Sub-
ject”.

Percolation Thresholds in the Continuum

The Basic Concepts

The first attempt to characterize the percolation thresh-
old in the continuum, which is usually credited as the
beginning of the field of continuum percolation, was the
1970 [108] work of Scher and Zallen (S&Z), who based
their argument on the “behavior” of a regular lattice, such
as the one shown in Fig. 3. There, the red (say, the conduct-
ing) spheres occupy lattice sites, with a probability ps, as in
the lattice models described in Sect. “Lattice Percolation”.
The green (insulating) spheres correspond to empty sites
in the lattice. The local connectivity criterion here is sim-
ply the red spheres occupation of nearest neighbor sites,
as in the lattice, but here, if we consider the spheres as ob-
jects, the connectivity between two adjacent spheres, can
be looked upon, as defined by a single point contact be-
tween two such spheres. Hence, if the diameter of the hard
core spheres is equal to the lattice spacing the connectiv-
ity of the network stays the same as in the corresponding
lattice. We can consider then the fractional volume of the
conducting (red) phase which is simply given by � D ps f ,
where f is the filling factor of the system (the maximum
fraction of the volume in a given lattice that can be filled
by hard spheres of equal volume). Correspondingly, one
can define the percolation threshold by the total occupied
volume fraction of the conducting spheres, i. e. �c D psc f .
It is obvious then that � � �c / ps � psc, and that the crit-
ical behavior of a given property � in this case will be de-
termined by

� / (� � �c)� ; (6)

where � is the corresponding-lattice critical exponent.
S&Z noticed that �c, unlike psc (or pbc ), is nearly a dimen-
sional invariant, yielding values very close to 45 (area %)
for all 2D lattices and very close to 16 (vol.%) for all 3D lat-
tices. This brought them to the important realization that
if we “shake” the system shown in Fig. 3 to yield a disor-
dered system of touching spheres, its topology will not be
significantly modified, and following the above close in-
variance, both � and �c will be as good parameters for the
characterization of the disordered arrangement of spheres,
as ps and psc are for lattices. The latter system can be also
envisioned as a result of randomly dropping red and green
spheres “gravitationally” into a container so that the “grav-
itation” secures the (single point) contacts between adja-
cent spheres [97]. Following the above concluded topol-
ogy, it was of no surprise then that the latter approach con-
firmed the ideas and the results of S&Z.

We note of course that the above systems is by no
means general or a prototype of a continuum system.
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Continuum Percolation, Figure 3
A small portion of a square lattice that is comprised by “conduct-
ing” (red) and “insulating” (green) circles. The local connectivity
is defined here by the “single point” contact of two red circles,
and the global connectivity is determined by the spanning clus-
ter of touching red circles

Rather, it represent an example of simple mapping of
a continuum problem onto a lattice problem. While the
use of the fractional volume as a parameter, which is equiv-
alent in a way to ps in lattices, was an important step in
launching a theory for continuum percolation, their �c
values were misused later, and to this date, for the char-
acterization of continuum systems that are very different
than the ones for which these, very particular values (se-
cured single-point contacts), were calculated. For exam-
ple, consider a system of red spheres that are embedded
randomly in a continuous insulating matrix. Such a sys-
tem represents many common composites (see Sect. “The
Critical Behavior of the Dynamical Properties in the Con-
tinuum”). It can be easily appreciated that �c D 16 vol.%
in such a system of hard spheres yields a very sparse com-
posite [1] and that the metallic (touching grain) conduc-
tion will be set at a much higher vol.% (of the order of
50 vol.% in the granular metals that constitute in fact an
IRV system; Fonseca and Balberg [61]).Moreover, in prac-
tice there is no random system in which the “contact” or
the “bond” between non permeable elements is “automat-
ically” provided (if at all, it is approached only at the very
high close packing limit of � > 64 vol.% [136,138]. Hence,
there is no resemblance between the abundant common
composite (with a continuous insulating matrix) and the
models of S&Z and Powell, and thus the value of �c =
16 vol.% is by no means a general approximate-invariant.
This problem was discussed in more detail by Balberg and
Binenbaum in 1987 [17].

In 1971 [112] Shante and Kirkpatrick (S&K) ap-
proached the percolation problem from the opposite end,

i. e., considering permeable objects as in the case shown
in Fig. 2. Like S&Z, it was obvious to S&K that the most
promising approach to continuum systems was to try and
map them onto a lattice problem, for which the theory was
quite developed in the 1970’s. They took what may be con-
sidered the most important single step in correlating lat-
tice percolation and continuum percolation, proving that,
at least in a specific systems, the topology of the two can
be mapped onto each other. Their approach took into ac-
count an earlier empirical observation of Dalton, Domb
and Sykes in 1964 [46] that in lattices, where z (the coordi-
nation number of the sites) approaches infinity, the value
of zpsc extrapolates to 4.5 in 2D and to 2.8 in 3D. The quan-
tity zpsc is, however, the average number of near-neighbors
that are connected to a given site and it can be considered
then as the number of occupied “bonds” per site. Hence,
the quantity zpsc can be interpreted simply as the number
of the occupied neighbor sites of a given site at the onset
of percolation in the z!1 limit. On the other hand, if
one considers a system of permeable objects one can “im-
plant” them anywhere in space. In particular for perme-
able spheres, the density of the possible centers of spheres
which overlap a given sphere is also unlimited.

Following this observation, S&K conjectured that the
topology of the z!1 lattice and the continuum of per-
meable spheres is the same at the onset of percolation,
i. e., that the number of “occupied” bonds per site, or the
number of overlapping spheres for a given sphere, will be
the same. Topologically, then, these two systems are ex-
pected to have the same onset of global connectivity. To
test this idea, S&K considered the fact that the probability
of randomly choosing a geometrical point that will be out
of a given sphere of a volume v, in a unit size system, is
(1 � v). The probability that this point will be out of all the
�c spheres in this unit volume system, at the percolation
threshold, is (1 � v)�c . In a large system that is statistically
sufficient (i. e., v 
 1 but �c !1) we can write the lat-
ter quantity as e�v�c . On the other hand, the probability of
a point to be in any of the spheres (at the onset of perco-
lation) is simply �c, the fractional volume that is covered
by the �c spheres. Hence, �c D 1 � e�v�c . For a perme-
able sphere of radius a, in order not to overlap “another”
sphere, its center has to be at a distance of 2a from the
center of the “first” sphere. Correspondingly, the volume
in which the center of the second sphere is not “allowed”
to be (if no overlap is permitted) is not v but, rather, 8v, or
for hyperspheres in a D dimensional system it is, v2D . On
the other hand, the average number of centers of spheres
that overlap a given sphere is simply �cv2D . We have then
that the quantity �cv2D , is the critical number of bonds per
sphere (or center, or site), Bc. Applying now their above
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conjecture, i. e. that Bc D zpsc(z !1) one finds that

�Dc D 1 � exp(�Bc/2D) ; (7)

for a system of hyperspheres of dimension D.
Using the above mentioned “lattice” values of Bc for

D D 2 and D D 3, with the prediction of Eq. (7), S&K
found an excellent agreement with the Monte Carlo find-
ings of �2c D 68 area % and �3c D 29 vol.%. In fact the Bc
values were confirmed directly for permeable spheres later
(in 1987 [16]) by Balberg and Binenbaum. The most im-
portant step of S&K was then the recognition of the fact
that the number of bonds per site is the proper topolog-
ical parameter to describe the connectivity in continuum
as well as in lattice systems. In passing we note that follow-
ing the above argument for any system of parallel aligned
“regular objects” (such as boxes or cylinders) the relation
Bc D �cv2D is expected to be obeyed [21,115].

In 1984 [22] Balberg et al. realized that the ideas of
S&K can be generalized to non spherical objects, and even
to objects that have no “volumes” of their own. Such is the
case of two dimensional “widthless sticks” [20,25], where
the local connectivity criterion is the intersection of two
sticks, and the onset of percolation does not require any
area of the sticks. This is in contrast with the systems
mentioned so far. The way this generalization was con-
ducted [9] followed the procedure of S&K with the topo-
logical expectation that for any system (regardless of the
particular objects) Bc is the meaningful general topologi-
cal parameter, and as such, it is expected to be a finite in-
variant. Following the Bc values in lattices of various di-
mensions [136], their values are intuitively expected to be
between 1 and 5. In particular, Bc is always the number of
the “other” objects centers (or sites) within the “excluded
volume” Vex of a given object, where the latter is the vol-
ume in which the centers of two objects must be in order
for them to overlap. As such, the quantity Vex is well de-
fined for any permeable (or partially permeable object, see
below). This yields that, in general, Bc D Vex�c. Naturally,
the simple relation we had above for spheres Eq. (7) can
be generalized now to all dimensions and for all types of
permeable objects of a finite volume. This is done by not-
ing that we can write �c by using, instead of v�c as above,
the relation, v�cVex/Vex D vBc/Vex for an object of hyper-
volume v and a hyper-excluded volume, Vex, thus yielding
that

�c D 1 � e�Bc(v/Vex) : (8)

In 1986 [9] Balberg noted that Eq. (8) has far-reach-
ing consequences, since it says that we can have a con-
nected system with very minute content of the “percolat-

ing” or “conducting” phase (v�c or �c) involved. This fol-
lows from the fact, seen in Eq. (8), that �c can be as small
as desired provided that v/Vex is very as small as requireds.
Indeed, this result was able to explain the �c ! 0 values
in porous systems, such as sedimentary rocks [7,110] and
geological cracks [58], as well as in cermets such as cellular
composites [94,128] in which the conducting phase is ar-
ranged along lines or planes [101]. Moreover, the fact that
for lattices we have always finite psc (or pbc ) values that are
larger than 0.3 for 2D and larger than 0.1 for 3D, made
this result, of �c values as small as desired, quite surpris-
ing, and demonstrated that the mapping of the continuum
onto lattices is not as simple as might have been conjec-
tured from the pioneering works of S&Z and S&K (who
were concerned only with systems of spheres).

The above generalization is also very useful for systems
with distributions of object sizes, shapes and orientations,
when a proper determination of the average excluded vol-
ume of the system, hVexi, is carried out [22,53]. Hence, the
above Bc D �cVex relation can be generalized to:

Bc D �chVexi : (9)

This result is very significant and important from the point
of view of applications since if Bc is nearly an invariant
(as to be expected topologically in view of the above, i. e.
its value changes only in a very limited range, see also
Sect. “The Origin of the Different Bc Values in Systems
of Different Objects” below) for various objects, one can
predict the variation of �c with the variation of the hVexi
values in a group of objects. Hence, by assuming a con-
stant Bc, trends in the behavior of percolation thresholds,
�c, as a function of the object’s parameters, can be evalu-
ated readily [9,37,83,103]. Moreover, one can predict the
actual vol.% of the conducting phase (�c or �cv) by just
knowing the values of Bc and hVexi that can be well ap-
proximated by models (see below).

It turns out that the application of the concepts exhib-
ited by Eqs. (8) and (9), beyond the very simple solution
of Vex D 2Dv suggested for spheres (and for parallel con-
vex shaped objects by Pike and Seager [95], and by Skal
and Shklovskii, in 1974 [115]), has enabled the application
of the above considerations to very many continuum sys-
tems. This was done in particular by the use and/ormodifi-
cation of the most celebrated model of non trivial systems,
i. e., that of the three dimensional continuum system of
capped cylinders [22]. These capped cylinders (of length L,
radius W/2 and two capped spheres of radius W/2) span
objects from spheres to cylinders with a single “close to
an invariant” (see Sect. “The Origin of the Different Bc
Values in Systems of Different Objects”), value of Bc. The
basis of this model has been applied recently by Berham
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Continuum Percolation, Figure 4
The volume and the excluded volume of two adjacent capped
cylinders. The latter is for two cylinders (i and j) the angle be-
tween which is � . (From [22])

and Sastry in 2007 [30] even to rather non-regular “wavy”
shaped objects. The system of capped cylinders became
then the prototype of continuum percolation systems of
“non trivial” (non spherical) permeable and non-perme-
able objects. The volume of this capped cylinder is simply
v D (4�/3)(W/2)3 C �(W/2)2L, but its average excluded
volume, shown in Fig. 4, is given by

hVexi D (32�/3)(W/2)3C8(W/2)2LC4(W/2)L2hsin �i ;
(10)

where � is the angle between the two of possible intersect-
ing cylinders, and the average is over the particular dis-
tribution of the � values [22,89]. The “non trivial” aspect
is manifested by the fact that hVexi is not proportional to
v, and that in the large aspect ratio case (i. e. L 	W) we
have that v/hVexi / W/L, while for the small aspect ra-
tio case we recover the above mentioned, trivial v/Vex =
1/8 result for spheres. The system described here can be
shown to represent very many natural and artificial sys-
tems where the objects are elongated [38] or have a negli-
gible volume [101]. We note also that another system that
is very helpful for the description of various systems is that
of disks with a radius a, and a thickness t. These disks have
a volume v D �a2t, while their excluded volume, in the
isotropic orientation case, is given by Vex D �2a3 [37]. It
is apparent that in the thin disk limit (t 
 a), we get that
v/Vex / t/a, explaining the very small �c values observed,

as mentioned above, in sedimentary rocks, in systems of
geological cracks and in cellular composites. In passing
we note that the low dimensionality of the conducting
phase inclusions in these systems explains the correlation
between low percolation thresholds and the high critical
conductivity-exponents (that are associated with low di-
mensional tunneling systems, see Sect. “The Average Re-
sistance in the Case of Tunneling-Percolation”).

Following the above, let us try and guess now the possi-
ble variations of Bc as one goes from systems that consist of
permeable (soft-core) spheres to quasi-permeable spheres
with a hard core of radius b and a wrapping soft shell with
a thickness of a � b. We mentioned already that Bc is 2.8
in the 3D soft core limit. We also know then, as found di-
rectly [17], that the value of Bc decreases, in the transition
with the increase b, towards a value of 1.5. What we have
available empirically are, those limits, the fact that what in-
fluences the behavior are volume quantities, and the above
expectation that Bc will decrease between the two limits as
b/a! 0. Hence, we can simply expect empirically that

Bc D 1:5C 1:3
�
1 � (b/a)3

�
: (11)

Considering the above mentioned topological meaning of
Bc we recall that for lattices we realized already that in
the z !1 limit, Bc D 2:8, and we note that for the other
limit we can apply the conjecture of Ziman in 1979 [138]
(following the fact that zpbc is an invariant in lattices such
that zpbc D 1:5 in 3D) that the smallest z (existing or imag-
inary) needed for percolation in 3D lattices, is 1.5. In this
case we expect then that the approximation:

Bc D 1:5C 1:3
�
1 � (1:5/z)

�
; (12)

will be reasonable for lattices. If the connecting topology
in the continuum and in lattices is the same (as found
to be the case in the b/a! 0 limit by S&K), Bc should
scale equally well with (b/a)3 or 1:5/z. Indeed, as is clearly
seen in Fig. 5, Monte Carlo simulations on a series of
systems that represent the “soft core” to the “hard core”
transition [17] have confirmed this mapping of the con-
tinuum system onto the lattice system. This establishes
that, indeed, the underlying connectivity is the same in
lattices and in continuum systems of partially permeable
spheres (i. e., beyond the soft core S&K limit). A repro-
duction of the corresponding Bc values themselves can
be achieved and explained phenomenologically as we will
see in the following section. We noted already that from
the practical point of view, one can generally predict the
percolation threshold �c once one knows the value of
Bc (or an approximate of it) and the value of Vex. In
the present case we have the value of Bc (Eq. (11)) and
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Continuum Percolation, Figure 5
Monte Carlo results for the dependence of the critical number of
spheres in the system, Nc (denoted by circles, solid curve) and Bc
(denoted by squares, dashed curves) on the spheres’ b/a ratio in
a continuum system of semi-permeable spheres. Also shown is
the dependence of Bc on (1:5/z)1:3 for three dimensional lattice
systems. (From [16])

Vex D (32�/3)(a3 � b3). Hence, as the hard core limit is
approached, and Bc gets the value of 1.5, we expect that
�c (D Nc for a system of a unit volume) will diverge (of
course up to the close packing limit that is possible). This
is well exhibited by the Monte Carlo determination of Nc
that is shown in Fig. 5.We note that the above derived phe-
nomenological behavior does not tell us why the value of
Bc itself decreases in the b/a! 1 and z! 1.5 limits (see
Sect. “The Origin of the Different Bc Values in Systems of
Different Objects”).

A somewhat different view of the hard core-soft shell
problem leads us to examine continuum percolation prop-
erties that can be considered to be even more remote from
those of lattice systems. A conspicuous case of such a prop-
erty is the effect of objects interaction due to a poten-
tial associated with the objects [41,90]. To introduce this
scenario, we can consider the above hard core-soft shell
sphere as being composed of a region of infinite repulsive
interaction at distances r (from its center) smaller than 2b,
and a shell of zero potential for r > 2b. We may further
look at the problem as a one in which the density of the
objects is not uniform around an object (here e. g. � D 0
for r < 2b and � D �s for r > 2b). If we use then the cor-
responding radial distribution function gR (r) of the par-
ticles (or objects’ centers), the average number of bonds
per site will be given by B D h�i

R 2a
0 gR(r)d3r, where h�i

is the average density of objects in the whole system and
a is the radius of the soft shell (that determines the lo-
cal connectivity of the system). If we have a more compli-
cated potential (i. e. when gR(r) has values different from
0 or 1 as above), B, and thus Bc, will depend on the pa-
rameters of this distribution, such as on the interaction

potential that determines the �(r) dependence [4]. A case
that was considered in detail and is relevant, for example,
to microemulsions [69], is that of an attractive potential
shell that “wraps” the hard core (b � r � (1C )b) and
has a constant, non-zero value, in the interval of b. In
that case, it has been shown first by Bug et al. [35] (and
later by Drory, Balberg and Berkowitz [54,55]) that inter-
actions can raise or lower the percolation thresholds, i. e.,
the value of the global �c value, according to the details of
the magnitude of the potential and the ratios between b, 
and a.

Physically, this competition is not too surprising, since
the attractive potential will cause the increase of the den-
sity of objects in the attractive potential region, but for
a globally given �, it will cause a reduction of the den-
sity outside this region. The two effects will be manifested
by an increased probability for the formation of the con-
nected clusters, on the one hand, but by the reduction of
the connectivity between different clusters, on the other
hand. The interesting observations are then the non-triv-
ial results of the interplay between these two effects that is
determined by the system parameters, i. e. by the depen-
dence of the values of Bc and �c on them.

From the point of view of continuum percolation the-
ory, the important conclusion is that even in this explicit
interaction case we can characterize the system by its Bc
value, correlate it with system parameters, and apparently
generalize it to systems where the mapping onto lattice
models is, conceptually and/or computationally, not obvi-
ous. On the other hand, it is apparent that such derivations
can account for general connectivity problems where � or
other “bonding strength” parameters are not uniform in
space or in the network.

The Generalized Thresholds and the Critical Behavior
in the Continuum

Let us turn now to see how the above mentioned quan-
tities play a role in the determination of the most im-
portant parameter in the study of the critical behavior,
i. e. the proximity to the percolation threshold. Follow-
ing the fact that Bc D �chVexi, we simply have the relation
B � Bc / � � �c. Hence, for B very close to Bc and � very
close to �c (which is the interesting “critical” range), we
can further generalize this relation (by using Eq. (8)) to

� � �c / B � Bc / � � �c : (13)

This relation is a very important one from the practical
point of view, since � is the only parameter that one can
determine readily in experimental studies. However, the
requirement for small � � �c values must be kept then in
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mind when the critical behavior is studied in continuum
systems. In fact, another very important precaution has to
be taken into account when studying the critical behav-
ior as a function of � � �c. We saw above that in many
(e. g. sedimentary rocks and cellular composites) systems,
�c can be very small. Hence, a small � � �c (with re-
spect to unity) does not actually tell us about the proxim-
ity to the threshold. The parameter that one should con-
sider is a normalized proximity to the threshold, such as
(� � �c)/�c. We note that the latter problem is not se-
vere in lattices of the “practical” (D D 2 or D D 3) di-
mensions because psc and pbc for all these lattices are larger
than 0.12 [136]. On the other hand, as noted by Grimaldi
and Balberg in 2006 [70], the overlooking of the above two
precautions is one of the reasons that when considering
experimental results, improper comparisons with lattice-
like critical behavior have been suggested. Following the
above discussion on the soft core-hard core transition we
also note that in the small B � Bc limit, Eq. (13) covers all
systems, including those where � represents te hard core
fractional volume in partially permeable (hard-core/soft-
shell) objects. This is easy to appreciate since at the close
vicinity of the percolation threshold the ratio of the hard
core volume to the entire (hard core and soft shell) volume
can be considered a constant and since we know that the
relation given by Eq. (13) holds in limit as shown by the
S&Z case. Indeed, many computer simulations on many
continuum systems [15,65,66], where the systems are well
defined (and �c can be approached much more closely
than in the experimental studies on “real” systems), have
revealed the critical behavior of lattices. This is quite an
important realization when one tries to explain the critical
behavior in composites, considering the fact that the rig-
orous development that we described above was given for
permeable objects.

From our above discussion we can expect then the
same critical behavior for all types of objects, and may fur-
ther conjecture that this is the case when other local con-
nectivity criteria are applied. In fact, thus far all Monte
Carlo simulations have confirmed these expectations. We
note, however, that a high precision study of �c and the
critical exponents of a system of permeable spheres, was
claimed to indicate a small variations with respect to the
corresponding lattice values of the same exponents [100].
This conclusion can be contrasted by the fact that rigorous
exact mapping of the permeable circles system onto the
fine grid lattice system was demonstrated by McCarthy al-
ready in 1987 [86]. As of now, however, further work will
be needed in order to determine whether the above small
deviation is a matter of accuracy or proximity to �c (see
the discussion following Eq. (13) above), or if there is still

something more fundamental here that has not been satis-
factorily studied thus far.

The Origin of the Different Bc Values in Systems
of Different Objects

So far we have taken Bc to be an empirical parameter, as
are the psc and pbc quantities in lattice percolation, and the
application of the relation given by Eq. (9) was proven ex-
tremely useful for the determination of trends in the vari-
ation of measurable percolation thresholds (i. e., �c) when
a constant (system independent, for a class of materials,
e. g. boxes with a different aspect ratio) Bc value was as-
sumed. However, the various values of Bc, while being
confined to the 1–5 range (see above) are not the same for
systems of objects of different shapes. These differences are
important to understand since, as we discussed above, this
is the only parameter that accounts for the global topo-
logical connectivity of percolation systems in the contin-
uum. We note in passing that while the Bc values can be
derived rigorously (see Sect. “Rigorous Determination of
the Percolation Threshold”), their relation to the particu-
lar objects in the system under consideration is not a priori
transparent from the corresponding derivations. At this
point we concentrate then on the reasons for the different
Bc values for different “types” of objects. For example, Bc is
2.8 for permeable spheres and is only 2.6 for parallel perme-
able cubes.While this difference seemsminute (in compar-
ison with the larger differences to be mentioned below), it
is a convenient case for the illustration of the concept of
“pointedness” that enables to explain the observed differ-
ences in the Bc values.

The reason for the above mentioned variations in the
Bc values had hardly been considered prior to the work
of Alon, Balberg, and Drory in 1991 [4] that yielded an
insight into the apparent “different topology” associated
with different objects. They derived this understanding us-
ing a heuristic or “semi-rigorous” argument, which will be
illustrated here by the different Bc values for spheres and
cubes, as well as by the variation of Bc in the soft core to
hard core transition.

Let us consider then a system of permeable spheres of
radius r0 and a system of parallel permeable cubes with an
edge a0. Choosing their size such that they have the same
excluded volume hVexi (in this case, also the same vol-
ume), we note that hVexi D (4�/3)(2r0)3 D (2a0)3. Now
let us consider the maximum distance between the centers
of two spheres that can overlap. This distance is 2r0, and
thus the possible distances, l, between the centers of two
partially overlapping spheres is in the range 0 � l � 2r0.
In contrast, for three dimensional cubes that are also con-
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nected by a partial overlap (and have the same hVexi), the
corresponding range is 0 � l �

p
3a0, i. e., 0 � l � 2:7r0.

Hence, since the density of the centers of the objects is uni-
form in both cases, on the average, two partially overlap-
ping cubes can “on the average span” a larger distance than
that of partially overlapping spheres. Correspondingly, in
order to span an “infinite” cluster, we will need a smaller
number of cubes than spheres, i. e., the value of �c will
be smaller in the case of cubes compared with the case
of spheres. Since we have chosen Vex to be the same in
the above two systems, the corresponding value of �c and
thus the value of Bc(D �cVex) will be lower in the case of
the cubes. Of course, the exact ratio between the Bc val-
ues of the two systems cannot be derived from the qual-
itative-simple illustration given here, but a more refined
argument has been shown to heuristically yield such ratios
exactly [4].

Since the apparent difference between the cube and the
sphere is that the former has corners (“points”), one can
say that the “pointedness” (that was defined by Alon, Bal-
berg and Drory accurately) brings about the lower value of
Bc. We can correspondingly conclude that since the aver-
age “covered” l “per excluded volume” will be larger with
a higher aspect ratio of elongated objects, such as boxes
that are isotropically distributed in space, we can further
expect that for elongated boxes, of the same hVexi, the
value of �c will decrease with this ratio. For these, as men-
tioned above, the corresponding trend of the decrease of
Bc with the aspect ratio was confirmed both rigorously and
computationally [53,131] to decrease from about 2.7 to 1.2
for aspect ratios between 1 and 500. The latter trend was
confirmed also for other types of permeable elongated ob-
jects [30,103].

A similar argument can apply for spheres of a hard
core of radius b and a soft shell with a wrapping thick-
ness of a � b. The “local span” of the two objects’ in the
b D 0 case is in the 0 � l � 2a range, while for the hard-
core sphere with a soft shell it is 2b � l � 2a, so that the
average l value is larger in the latter case. Correspondingly,
for the same average � in the system, the “span” of larger-
hard core spheres will be larger, or the value of �c will be
smaller in the hard core-soft shell case, suggesting the de-
crease of Bc from 2.8 to 1.5, as we saw already in Fig. 5.
The above result is of great conceptual importance, since
it shows that while the phenomenological theory of the
excluded volume theory was developed for permeable ob-
jects, all consequences regarding the trends in the values of
the percolation thresholds (such as the effect of the aspect
ratio) apply also upon the approach to the hard core limit.
This can be illustrated simply by replacing W by W � 2b,
where b is the hard core radius, in Eq. (10), and noting

that as the aspect ratio increases the last term will even-
tually become the dominant term for any 2b/W ratio. In
fact from the above arguments concerning the aspect ra-
tio and the soft core to hard core transition, we conclude
that the two effects can be compounded. This is also im-
portant from the practical point of view, since one can be
guided, for example, for “real” composites that are com-
posed of hard core objects [19], by the many works and
the numerous simulations [21] that were concerned with
the corresponding (easier to study) systems of permeable
objects. A case in point is the decrease of the percolation
threshold in carbon-black-polymer composites as the con-
ducting particles become elongated (or, as better known,
of “higher structure” [10,11,102]).

Rigorous Determination of the Percolation Threshold

Thus far we have considered the derivation of the concepts
and the empirical trends in the behavior of the percola-
tion thresholds as a function of the correlation between,
and the properties of, the individual objects, as well as the
corresponding global averages such as the anisotropy of
a system. However, as we saw above, the particular funda-
mental values of the thresholds were either derived from
lattice quasi-invariants (notably pscz for z!1), heuristic
arguments or computer simulations. Noting that a “com-
plete” theory with a firm basis requires a rigorous deriva-
tion of the fundamental quantities from first principles,
it is always a challenge to achieve such a derivation and
the theoretical justification for the experimental and com-
putational observations and their trends. This challenge
was recognized also for the problem at hand, i. e., the rig-
orous finding of the “fundamental-topological” percola-
tion threshold Bc (e. g., Bc D 4:5 for circles and Bc D 2:8
for spheres), which we encountered in the previous sec-
tions.

The above challenge was appreciated in 1977 [73]
when Haan and Zwanzig considered the existence of
bonds, defined by the overlap of permeable objects, and
applied a graph theory for the analogous lattice-bond per-
colation problem. This attempt, which involved a lengthy
cluster enumeration and high-order overlap integrals, has
not been followed however by others, probably because
of the latter reasons. The breakthrough in trying to find
a rigorous route which is physically more transparent can
be attributed then to the work of Coniglio, DeAngelis and
Forlani in that year#160;[44]. They applied for the above
purpose the formalism of the connectedness functions that
is well known in the theory of liquids [74]. For the sake of
brevity we will describe here their approach by the follow-
ing simple “intuitive” arguments.
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If we define a local (direct) connectedness criterion
(e. g., overlap between permeable spheres) and a global
connectedness (e. g., being on the same cluster), we can
derive a direct connectedness function C(x; y), such that
if r is the vector x � y connecting “directly” the two ob-
jects at x and at y, �(r)C(r)d3r is the probability that given
a particle at r D 0, there will be a particle, in the volume
d3r around r, that is locally connected to the particle at
r D 0. Here, �(r) is the particles’ (or objects’) density in
the system. The quantity C(x; y) accounts, in addition to
the direct connection, for all possible additional “indirect”
connections between the “directly connected” these two
particles, and thus it can be presented by corresponding
“closed diagrams” [56]. Similarly, one can define a “total”
pair connectedness function g(z; y) between two objects
(say, at z and at y) which involves all the connecting (di-
rect and indirect) routes between them. The function g(r)
(where r D y � z) can be defined then by the probabil-
ity, �(r)g(r)d3r, of finding a particle in the volume element
d3r around r, which is connected (i. e., belonging to the
same cluster) to the particle that is given to exist at r D 0.
Since g(x; y) is composed of “direct” connectivity steps
such as C(x; z) and C(z; y), the “total” g(x; y) function
can be expressed by the corresponding (Ornstein-Zernike)
“chain” rule

g(x; y) D C(x; y)C
Z
�(z)C(x; z)g(z; y)d3z ; (14)

where �(z) is the density of particles (or centers of objects)
in a volume of d3z around z. For simplicity we will assume
in the following that �(z) D �, where � is a constant-uni-
form density in our problem. The crucial step that con-
nects relation (14) with the present continuum percola-
tion problem, i. e. with the average cluster size, is the con-
sideration of its Fourier transform. For a “wave vector” k
this relation yields that for the transformed functions C(k)
and g(k) we will have that g(k) D C(k)/(1 � �C(k)). If we
are interested in the integral

R
g(r)d3r, i. e. in the Fourier

transform g(0) � g(k D 0), we get in particular that

g(0) D C(0)/(1 � �C(0)) : (15)

The new important step made in the work of Coniglio,
DeAngelis and Forlani in 1977 [44] was that, as can be ap-
preciated intuitively, the average cluster size S in the sys-
tem is simply given by

S D 1C
Z
�g(r)d3r ; (16)

where the unity here represents the given initial object
(with a center at, say, r D 0), �d3r is the probability of
finding an object center in the space element d3r, and g(r)

is essentially the percolation correlation function [121],
i. e., the probability that, if there are objects centers at
r D 0 and r, they will be on the same cluster. From Eq. (16)
we have that �g(0) D S � 1 and thus using Eq. (15), we
obtain that

S D 1/(1 � �C(0)) : (17)

Hence, knowing that at the threshold S !1, we get that
�c D 1/C(0), and thus, in principle, “all that is left” is to
calculate C(0).

There are basically two approaches for the calculation
of C(0). The first one is immediately called for by Eq. (14),
from which it is apparent that if another relation between
g(x; y) and C(x; y) is known, one can solve both func-
tions and then find the value of S. Such a relation can
be derived from corresponding approximations. One of
these approximations, known as the Percus–Yevick clo-
sure [74]), was used for the solution of the problem at
hand. Since the application of this closure was of a lim-
ited success [49]), and since it would require a deviation
from the simple outline of our main argument regarding
the rigorous derivation of �c, it will not be detailed here.

The conceptually simpler and physically more trans-
parent approach to the problem can be attributed to the
suggestion of Bug, Safran andWebman in 1985 [34]. They
were able to determine the initial terms in a (diagram-
matic) series expansion of the form C(0) D

P
cn�n , and

to relate the initial coefficients to the concept of the ex-
cluded volume. This already enabled them to derive the
trends in the behavior of the thresholds. However, this
use, of what one may call an order-by-order (or series)
approach, did not yield (in that work) actual values for
the thresholds. The full utilization of this order-by-order
approach came in the work of Drory and coworkers in
1990 [3], 1991 [53] and 1997 [56]. In passing we note that
Drory also got in 1996 [51] and 1997 [52] a firm basis for
the conjecture that continuum percolation is a phase tran-
sition, as proven previously [62] to be the case of lattice
percolation.

Turning to the utilization of the latter approach we
noticed already that in principle, C(0) D 1/�c. However,
in practice, this does not provide directly an accurate
enough value for �c for the rather short series that were
obtained thus far. On the other hand a more successful, al-
beit biased, approximation has yielded, as mentioned be-
low, very accurate results. For the description of the latter
we start then from Eq. (17) using the well understood re-
lation that we had considered before, i. e., replacing � by
B D �Vex. Hence, the aim of the procedure is to determine
the, by now, well understood and well-characterized pa-
rameter Bc. Following the above, we can write S in terms
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of a power series of the form S D
P

anBn , which is sim-
ilar to the form used for the derivation of S by a power
series of p in lattice percolation [121] In the present
case, having the quantity C(0) expressed as a power se-
ries of the form C(0) D

P
bnBn enables the compari-

son of the coefficients on both sides of Eq. (17), yielding
then relations between the coefficients an and bn. Here,
for example, a0 D 1, b0 D 0, a1 D b1, a2 D b2 C b1a1,
a3 D b3 C b2a1 C b1a2, and a4 D b4 C b3a1 C b2a2 C
b1a3. Having these relations and implementing the fact
(see Eq. (1)) that S has a critical behavior of the form

S / jB � Bcj
�� ; (18)

where � is the well-established critical exponent for lat-
tices and, as expected from universality, also for the con-
tinuum (see above), one can fit the series of S to the be-
havior described by Eq. (18), in order to find the value
of Bc. Of course the “only” input needed for the imple-
mentation of this procedure is then the determination of,
as many bn coefficients as possible and a good extrapola-
tion of S. However, the derivation of the coefficients bn is
not trivial and becomes more and more complicated with
increasing n [53]. So far these values of bn have been deter-
mined up to n D 5 for permeable hyperspheres, yielding,
however, very accurate values for Bc that are only a few %
off the Monte Carlo estimates for corresponding D D 2 to
D D 6 systems [3]. Similar successes for systems of elon-
gated boxes [53] and hard core-soft shell cubes [56] have
been already obtained. In spite of those achievements, fur-
ther basic and computational developments in the study
of this subject are called for. These will be outlined in
Sect. “Future Directions”.

The Critical Behavior of the Dynamical Properties
in the Continuum

As we pointed out above, within the limited framework of
this review, it will not be possible to consider all the many
various dynamical properties (mentioned in Sect. “Defi-
nition of the Subject”) that are determined by the added
locally variable features in continuum systems and com-
pare their behaviors with those derived for lattices. Cor-
respondingly, we will confine our discussion to the con-
ceptually most conspicuous representative, which is also
the most studied, dynamical property, i. e., the electrical
conductivity. It can be shown, as done by Rubin et al. in
1999 [102] for the electrical noise, that the basic arguments
associated with the critical behaviors of the other proper-
ties are similar in principle, and that the specific details of
those behaviors can be derived along the same lines that
are used here for the electrical conductivity.

In the previous sections, we saw that one property that
makes continuum percolation an area of a much wider
diversity and application, in comparison with what one
finds in lattice percolation, is the percolation threshold.
The global properties of a percolation system were own
there to depend on the details of the systems, where these
may vary inmany respects from one system to another. On
the other hand, as far as the critical behavior is concerned,
we have seen that the global behaviors of the geometrical-
statistical properties are expected to be exactly the same as
those found in lattices, provided that one uses the topo-
logical concept of bonds per site. In those cases a simple
mapping, which is intuitively straightforward, of the “per-
colating phase” content onto the lattice occupation prob-
ability, can be made. Following the fact that for a given
lattice there is a constant ratio between pb and ps [136],
we will simply use here p and pc as a generalized “con-
ducting phase” content and describe the critical behavior
of the dynamical properties in the continuum using these
parameters. When needed however, the relation between
these and the commonly measurable quantities, such as
the corresponding partial volume contents of the conduct-
ing phase, � and �c, will be emphasized.

Does the above behavior of the geometrical-statistical
properties give us a hint as to the critical behavior of the
dynamic (or “physical”) properties of the system? To an-
swer this question, let us consider the two possible features
that are fixed in lattices, andmay be random (or follow an-
other distribution) in the continuum. This is easy to do by
reexamining the system shown in Fig. 2 as a system of per-
meable spheres. In this figure we can see that the contin-
uum randomness is manifested by the positions of the cen-
ters of the spheres and the random-like degrees of overlap
between two adjacent spheres. If these spheres are envi-
sioned as pores filled with a conducting fluid, the latter
feature determines the local resistance between a pair of
them. This will yield a distribution in the resistance val-
ues of the actual resistors that connect pairs of pores in the
system. The simplest approach to evaluate the contribu-
tion of the latter effect (that has no counterpart in lattice
percolation) to the global conductance of the system is to
assign a resistor, with a resistance value that is taken from
the corresponding distribution, to the occupied bonds on
a given lattice [111]. A more direct simulation of the sys-
tem that involves also the random “implantation” of the
spheres has also been shown [23] to yield the predicted re-
sults that will be given below. The purpose of the follow-
ing discussion is then to show how corresponding distri-
butions of the local resistance values can guide us to the
determination of the critical behavior in “real” continuum
systems.
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The simplest system to realize then is the lattice sys-
tem of Fig. 1, when one assumes that the “bond” or the
conducting “bar” between two occupied nearest neighbor
sites corresponds to a resistor, the value of which is taken
from a given distribution. A priori, one does not foresee
too much of a surprise here, and a “universal” (lattice-
like) behavior of the conductivity is expected, except that
the individual local resistance value, r0 (associated with
R� ; see Eq. (3)), will be replaced now by an average value
of the local resistors, hri. In fact, the finding of a univer-
sal value for t in many “real” systems [2,19,25] suggested
that this distribution-effect will not yield a critical behavior
that is different from the behavior in lattices, as appears to
be the case for the geometrical-statistical properties. Con-
sidering this problem Kogut and Straley (K&S) developed
in 1979 [82] a simple “toy” model that suggested that for
some distributions, the above universality will hold, while
for others, it will not. It took six years, however, until the
missing link of the “toy” distribution and “real”, or con-
tinuum, systems was made by Halperin, Feng and Sen in
1985 [72], and attention was given finally to the results
of K&S. The work of K&S, which can be considered as
the cornerstone of the field of “non-universal” behavior of
dynamical properties in the continuum, will be reviewed
below, after a modified-generalized account of the basic
physics that is involved in their model will be given.

What apparently took the above-mentioned six years
in order to understand, even in principle, the emerging
numerous experimental observations of non-universal t
values in the 1970’s and 1980’s (i. e., t ¤ tun; [10,11,94]),
and to appreciate the theory of K&S, was the unsatisfied
need to find a distribution function of the resistors values
in a given “real”, natural or artificial, system. This break-
through came then with the work of Halperin, Feng and
Sen in 1985 [72], who were able to show that in sedimen-
tary rocks the values of the local resistors are essentially
distributed according to the “toy model” function of K&S.
In fact, it will be emphasized all along this part of the re-
view that the determination of the resistors distribution
function is the crucial step for the understanding of the
critical behavior of the electrical conductivity (or other dy-
namical properties) in a given continuum system. The ba-
sic physics of this key issue, which has not been reviewed
before, will be described below in some detail.

The Basic Physics of the Non-universal Behavior
of the Conductivity

The physics of the critical behavior of the global resistance
in continuum systems can be described as follows. Sup-
pose we have a distribution f (g) of the values of the in-

dividual conductors (the resistors that occupy the bonds)
in our infinite lattice. Let us assume that the system has
a fractional bond occupation p and that the percolation
threshold is pc such that p > pc.

We have seen that in lattice percolation (Sect. “Lattice
Percolation”) the resistance of the system can be written as

RLD r0ARL
�
1 (L/�)

2�D ; (19)

whereAR is some constant (i. e., � , or p � pc, independent)
parameter that accounts for the local and global geometry
of the system and r0 is the resistance value of the individ-
ual occupied bond in the system. The question of interest
here is then the behavior of RL , when we have a distri-
bution of the individual resistance values (as expected in
continuum systems) rather than a single r0 value. Let us
denote the conductance of the individual resistor by g, so
that the local value of the resistance is given by g�1. Now
suppose that the g values are taken from a distribution f (g)
that is confined to the range g1 � g � g2. Let us also as-
sume that in our system there is a largest possible g2 value
(e. g., a zero distance tunneling or a complete overlap of
IRV spheres; see Sect. “The Local Resistors and Their Dis-
tributions”, below). Themost important assumption in the
following consideration is however that there is no corre-
lation between the location of the resistor in space and its
value, and thus one would expect that if there is such a dis-
tribution, r0 in Eq. (19) should be simply replaced by hri
where

hri D hg�1i D

g2Z

g1

g�1 f (g)dg : (20)

We note in passing that such an average is meaningful if
it is taken on 1/g (rather than on g), since it is the series
connection of resistors that determines the resistance of
the link (see Eq. (3)).

In principle, g1 can be any value in the interval
0 < g1 � g2 (a g1 D 0 value corresponds to an unoccu-
pied bond), and it is apparent that for a well defined fi-
nite-constant g1 > 0 value, the critical behavior described
by Eq. (19), with hri replacing r0, will be the same as in
Eqs. (3)–(5), i. e., the universal (lattice-like) critical be-
havior will be obtained. What if g1 ! 0 (but g1 ¤ 0; see
above)? In this case it is apparent that the result will de-
pend on f (g). If f (g) decreases as g ! 0, the value of the
average hri, as defined by Eq. (20), will be finite, as above.
On the other hand, if f (g) is a constant or it increases to-
wards g D 0 (i. e. f (g) diverges at g D 0), the value of hri
will be 1. In other words, if there are “enough” g ! 0
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conductors in the system, the average will be determined
by them and we will also get that RL !1.

To consider however the behavior of RL in more detail
(i. e. the way in which hri diverges) for a non-decreasing
f (g) distribution as g ! 0, we use the following estimate
of hri for the g1 ! 0 case as follows. Let us list the values of
the local conductances in the system in a descending order.
Now, electrical conductance in the system is only possi-
ble if p > pc, and thus we can choose the fraction (or sub-
set), pc of the p local conductors in the system, that con-
tains the “top” g, pc-values from that list. Following our
basic assumption that there is no correlation between the
location of the bond and its attached g value, we can use
the fact that any randomly selected subset of pc conduc-
tors is, by definition, a percolating cluster, and conclude
that the above chosen pc subset of the top value conduc-
tors constitute a percolation cluster. Of course, the largest
conductance value in the system, g2, is also the largest pos-
sible g value in the so chosen subset. For convenience let
us choose now the value of g2, by the relation F(g2) D 1,
where F(g) is the indefinite integral of the function f (g).
This is done without loss of generality since all other g val-
ues in the system can be normalized accordingly. Then, the
lowest g value of the conductors in the above subset pc of
p has the corresponding normalized value gc. Mathemati-
cally, this gc value is given then by

p

2

6
4

g2Z

gc

f (g)dg

3

7
5 D pc : (21)

This yields that F(gc) D (p � pc)/p, and thus that
gc D F�1[(p � pc)/p], where F�1 is the inverse function
of F. We have then a very significant result that connects
the conductors’ values in the system with the proximity
to the percolation threshold. In particular, it is the nature
of the F�1 function that determines the “pace” at which
gc ! 0, as p is made to become closer to pc. The very im-
portant observation here is that for p D pc we have to ex-
haust all the resistors in the system and thus gc D 0. The
question that we would like to resolve is, following the
variation of gc as p approaches pc, how will hri change as
a consequence of this variation.

As above, we can distinguish here between three cases,
but now we can also get some physical insight as to the
corresponding critical behaviors. If f (g) is a constant (in
the 0 � g � 1 interval) gc will approach 0 at exactly the
same “pace” as p � pc. If f (g) increases as g ! 0 (i. e. f (g)
diverges as g ! 0), gc will approach g D 0 “faster” than
p � pc, and if f (g) decreases toward g D 0; gc will ap-
proach g D 0 at a “slower pace” than p approaches pc. In

other words, 1/gc which is a measure of the resistors that
determine the value of hri (see below), will not diverge in
the latter case when p! pc. On the other hand, if 1/gc
diverges as p! pc there is a possibility that a dynamic
property that depends on g will also diverge then. Corre-
spondingly then the above p � pc dependence of 1/gc on
p � pc dependence of hrimay contribute to a non univer-
sal behavior of RL .

In order to derive a quantitative determination of the
critical behavior ofRL let us try now to evaluate the behav-
ior of hri. Above, we have selected a subset of the conduc-
tors in the system (i. e. a subset of the resistors that partic-
ipate in the conduction process). The average resistance of
this subset is

hrci D

g2Z

gc

g�1 f (g)dg : (22)

Any other subset of pc resistors will have an hri which is
larger than hrci (or equal to it), and thus hrci yields the
lowest estimate of hri that can be inserted in Eq. (19) in-
stead of the r0 value in Eq. (19). Considering the fact that
we are concerned with p! pc and that gc ! 0, the con-
tribution of the very low g-values (with values of g < gc)
to the “measured” network resistance becomes negligible
as gc ! 0. This is in particular so if the values of g are
changing by orders of magnitude as g ! 0 [87]. Hence,
this hrci of the “bypassing” network becomes a “more and
more” accurate estimate for the value of hri in the gc ! 0
limit, and consequently a reasonable replacement for r0 in
Eq. (19).

Let us try and get a physical feeling for the correspond-
ingly expected critical behavior, i. e., for the dependence
of RL on (p � pc). For that purpose we follow the depen-
dence of hrci on (p � pc) by considering the behavior of
1/gc when p! pc. The above mentioned “list” of conduc-
tors, as p is made to decrease (i. e., some of these occupied
bonds are eliminated as pc is approached), we have to go
“down the list” of the conductors in the system, in order
to choose pc bonds from the new p, so that the smallest gc
involved is smaller (or at most equal) in comparison with
the gc value of the larger (i. e. “former”) p. Of course, it
is not enough that gc will just become smaller as p! pc,
since if the availability of these low-value gc conductors
becomes scarce as p! pc, they will not contribute signif-
icantly to the network (or to the average hrci) and there
will be an effective constant hrci value (which is indepen-
dent of p � pc) that will determine the resistance hri and
thus the global resistance of the system (see examples be-
low, and in the following sections). If this is not the case,
the effect of hri on RL is clear then; not only changes of the
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network connectivity (Eq. (19)) take place as p! pc, but
also, the average resistor value that contributes to the con-
duction can diverge, yielding an additional p � pc diver-
gence to the “universal” contribution of Eq. (19). Hence,
a compounded, non-universal (or non lattice-like) behav-
ior can be obtained.

For a more quantitative illustration of the above dis-
cussion let us consider the simple case of f (g) D 1 in the
interval 0 g � 1. In this case we have from (Eq. (22))
that hrci / log(1/gc) and from (Eq. (21)) that gc / p � pc.
Hence, substituting hrci instead of r0 in Eq. (19) will pro-
vide a logarithmic divergence to RL , as p! pc, in addi-
tion to the power law divergence of the global or the “lat-
tice-like” contribution. It is also apparent then that it is
enough that when f (g) increases towards g D 0 (i. e., f (g)
diverges as g ! 0), a stronger (say, power law) divergence
of hrci with p � pc will be obtained. On the other hand,
there will be no divergence of hrci if f (g) decreases (in
this case f (g) diminishes) towards g D 0. In the latter case
we have that the approach of p to pc is associated with
the “disappearance” of the large (1/g) resistors, while in
the former, this approach is associated with the “appre-
ciable” availability of these resistors (“at the expense” of
the smaller (1/g) resistors). From the above analysis we see
that the crossover between the diverging and non diverg-
ing hrci, as p! pc, occurs when f (g) “overcomes” the in-
crease in the “summation” of the resistors, as reflected by
the (dg/g) term in Eq. (22). This is easy to comprehend
in the LNB picture as a competition between the possible
introduction of large (1/g) resistors in the links (the f (g)
effect), and the rate of increase in the “weighted” values of
the “needed” individual resistors in the link (the dg/g ef-
fect) as the links become longer (i. e. as p! pc). This sce-
nario of the “need to supply enough high-resistance resis-
tors” in order to get the divergence of hrci as p! pc, will
be important as we turn to consider “real” continuum sys-
tems. Physically, we found here an important principle of
the hrci behavior, the appearance of non universal behav-
ior will be determined by the competition between the f (g)
and the dg/g effects. One notes is passing that for other
dynamical properties (that are described by functions of g
other that 1/g) the “dg/g” effect will be changed accord-
ingly [42].

In “real” systems, however, the f (g) distributions may
be more complicated than described above, yielding be-
haviors that were not accounted for in the literature un-
til very recently [70,71]. To illustrate such a distribution
and to summarize the above discussion, let us consider an
f (g) function that is peaked at some value gm and dimin-
ishes towards both, g D 1 and g D 0. Such a distribution
from g2 D 0:4 to g1 D 0 is illustrated in Fig. 6. As p is de-

Continuum Percolation, Figure 6
An illustration of a peaked distribution of the local conductances
in a continuum system, as well as the variation of the participat-
ing g-values as g! 0. The relation between the approach of gc
to the g! 0 limit and the corresponding direction of the p� pc
variations is indicated by the arrows in the figure. The principal
equations that determine gc and the approximated average re-
sistor in the sample hri are also given

creased towards pc, the gc values “move first” along the
f (g) part where f (g) increases faster than 1/g. Over this
range, i. e. 0:4 � gc � gm, we have (see above) the condi-
tions that yield a diverging-like behavior of hrci. Hence,
as the decrease of p is associated with the decrease of gc,
we will get an apparent non universal behavior. Contin-
uing with the decrease of p to the p-range for which f(g)
decreases with 1/g (i. e. the 0 g � gm range), the ap-
parent behavior of hrci will become of the type that does
not have a divergence and will thus yield a universal-like
behavior of the system in the corresponding p-range. We
note that while, strictly speaking, the critical behavior (i. e.,
at the p! pc limit) is universal for this f (g), in “practice”,
i. e., when the p values are somewhat removed from pc,
the behavior observed (i. e. for g > gm) may be charac-
terized as non universal. In fact, considering the increase
in the “pace” in which f (g) varies with 1/g in the g > gm
regime, one would expect for the large g (or large p) values,
a behavior that is close to the universal behavior, and then
that this behavior will turn to a more pronounced non
universal-like behavior as g and p are decreasing (but still
for g > gm). This pronounced behavior will be weakened
however, as gm will be approached, until upon the decrease
of f (g) for g < gm a universal behavior is obtained. Hence,
a peak in the “local” t value is expected for some p (i. e.
at the inflection point of f (g) in the gm < g < 0:4 inter-
val) and a transition from a non universal-like to a univer-
sal behavior will be obtained at some lower p. Examining
the various experimental data in the literature [128] that
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suggested a non universal behavior for cases where f (g)
is expected to be of the form shown in Fig. 6, one must
conclude that the p value that corresponds to the gm peak
lies below the p values-limit available in the acquisition of
the experimental data. In fact, the range of the g values
between g2 and gm usually consists of a few orders of mag-
nitude in the variation of g [70] and thus the experimental
data that is fitted to a range of a few orders of magnitude
in RL , while appearing to represent a single “non univer-
sal” t value, does not disclose the variation in the value of
t as p! pc, due to the relatively limited range of the lat-
ter (see also Sect. “The Average Resistance in the Case of
Tunneling-Percolation” below).

TheModel of Kogut and Straley and Beyond

As we have shown above, the crucial factor in the de-
termination of the critical behavior of an average dy-
namical property is the variation of its extreme value as
p � pc ! 0. K&S have proposed a particular distribution
of the local conductances in a system which can exhibit
the three basic behaviors that we mentioned above. This
distribution (which as we show below turned out to be
very useful for the description of best known real systems)
yielded then analytic expressions for the diverging or non
diverging hrci values as p! pc. The distribution that they
suggested was

f (g) D 1/(1 � ˛)g�˛ ; (23)

which is normalizable for ˛ < 1, in the range 1 > g > 0.
For this distribution one gets from Eq. (21) that

gc D
�
(p � pc)/p

�1/(1�˛) (24)

and from Eq. (22), that

hrci D
�
(1 � ˛)/˛

��
g�˛c � 1

�
: (25)

We see here the three behaviors described above as fol-
lows. If ˛ D 0 we have that f (g) D 1 as discussed above. If
˛ < 0, hrci is not diverging as p! pc and it is the constant
(1 � ˛)/(�˛), i. e., the system behaves in the g ! 0 limit
as if it is made of local resistors all having the latter value.
If ˛ > 0, we get that in the interesting regime of p! pc
(i. e., where gc ! 0),

hrci �
�
(1 � ˛)/˛

�
g�˛c /

�
(p � pc)

��˛/(1�˛)
: (26)

We recall that the resistance of the sample is approximated
by RL / hrci(p � pc)�tun , where tun describes the effect
of the connectivity of the global network of the system
(Eqs. (3)–(5)). Correspondingly, the critical behavior of

the electrical conductivity of the system, which determines
the critical exponent t (see Eq. (4)), will be given now by

t D tun C ˛/(1 � ˛) : (27)

In what follows we will show that the mapping of the most
conspicuous systems in the continuum onto the K&S dis-
tribution is possible and that it is associated with the corre-
sponding local geometrical parameters. We will also note
the very important case where this mapping is not sim-
ple and other approaches must be taken in order to de-
termine hri and thus the RL dependence on p � pc, as the
percolation threshold is approached. For example, the ap-
plication of the Effective Medium Approximation (EMA)
by Grimaldi and Balberg in 2006 [70] yielded the confir-
mation of the rather more complicated behavior that was
discussed above in relation to Fig. 6, on the one hand, and
which explained the moderate t � tun (that are in the 1–
10 range) values that were obtained in numerous compos-
ites [128], on the other hand.

The Local Resistors and Their Distributions

As pointed out above, the conductors’ distribution, as
given by K&S was considered to be quite abstract until
this resistors value distribution was suggested for some
real systems by Halperin, Feng and Sen in 1985 [72]. Once
this distribution is given, its mapping onto the K&S dis-
tribution is, as shown below [12], quite straight forward.
Another way to derive the corresponding critical behavior
was based on the use of a physically more transparent and
more rigorous approach [59]. The corresponding findings
were the very crucial steps that have finally explained the
universal and non universal behaviors of “real” systems. In
passing, we note that a posteriori, the critical behavior esti-
mated by the above consideration of hrci, is also confirmed
by the latter approach, as will be shown below.

Since both approaches have been given in detail in the
literature, we will only outline here the principal steps in
their utilization for the determination of the correspond-
ing t values. Starting then with the first approach, let us
assume that the resistance of a local resistor in the system,
1/g, is determined by a single local geometrical parame-
ter, ", and that the distribution of the " values in the sys-
tem, h("), is known. The distribution function of the local
conductor values, f (g) is simply given then by [10]

f (g) D h(")(d"/dg) : (28)

“All one has to find” then, from the local configuration that
occur in the system, are the h(") function (which is usually
not easy to do; see below) and the function "(g) (which is
usually easy to do).
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Continuum Percolation, Figure 7
The three major configurations of “real” systems in the contin-
uum. The red color represents the conducting phase, and the
yellow color represents the insulating phase in the systems. The
bars and the resistors represent the “necks” and the correspond-
ing dominant local resistors in the system. The configurations
represent, from right to left, the random void, the inverted ran-
dom void and the percolation tunneling models

There are three principal local configurations that were
studied in detail. Let us discuss these configurations and
consider the single geometrical parameter, ", that de-
scribes them. These three configurations are illustrated in
Fig. 7, where the “conducting” phase is colored in red and
the “insulating” phase is colored in yellow. Starting from
the random void (RV, sedimentary rock-like system, or
a metallic bulk in which holes were punched out), that is
also known as the Swiss cheese-like system, we can assume
that the distance between the surfaces of the spherical
pores is ", and there is a “neck” of volume (2

p
b")CD"

D�1

between them. Here, b is the radius of the pore and CD is
a constant (which is 1 in D D 2 and �/4 in D D 3). This
neck determines the resistance of the neck that is associ-
ated with the two adjacent spheres [72] since beyond this
“neck” the local resistance in the system is relatively small.
The value of the local resistor in the system is well ap-
proximated then by the resistance of the “neck” which is
given by �0(2

p
b")/CD"

D�1, where �0 is the resistivity of
the conducting medium. Hence, the resistance of the lo-
cal resistor is varied with " as 1/g / "3/2�D (i. e., the local
conductance can be expressed by g / "D�3/2).

In the second configuration, known as the inverted
random void (IRV) system, such as a granular metal above
the onset of metallic conductivity [61], or a system of
pores filled with a conducting liquid [32,59] the overlap
between two spheres can be characterized by the param-
eter " D 2b � r, where r is the distance between the cen-
ters of the adjacent spheres. Correspondingly, the neck

for conduction here is approximated to be 2
p
"b long,

and it has a cross section of CD(b")(D�1)/2 (CD D 2 in
D D 2 and CD D � in D D 3), yielding that g / "D/2�1.
For the above two cases we have then that g / "m , where
m D D � 3/2 in the RV model and m D D/2 � 1 in the
IRV model.

The third case is that of conduction between two
spheres that do not overlap for which the distance be-
tween their centers is r and the distance between their
surfaces is r � 2b. In that case, the conduction between
the two spheres is by tunneling and the charge transfer
probability between the surfaces is expected to decrease
as exp[�(r � 2b)/2d], where 2d is the effective (say, the
WKB) tunneling decay coefficient. This percolation-tun-
neling (PT) case will be considered in Sects. “The Tunnel-
ing Percolation Problem”, “The Average Resistance in the
Case of Tunneling-Percolation”.

Let us turn now to the corresponding h(") and f (g)
distributions in the first two cases. Noting that the deriva-
tion, theoretically or experimentally, of these distributions
is themost difficult part (see above and below) in our prob-
lem, one can consider the first suggestion of a “real” h(")
dependence, and its use in the present context, to be the
breakthrough that lead to the understanding of the non
universal behavior of the dynamic properties in “real” sys-
tems. This was achieved, as pointed out already, in the
1985 [72] work of Halperin Feng and Sen, who showed
that in porous media h(") is a constant, h0, for "! 0.
The corresponding distribution is, however, normalizable
since h(") tapers off with increasing ", above a certain
value of " (as is obvious from the finite size of the sys-
tem, see below). Being interested in the smallest " values,
i. e., the largest resistors in the system, one can easily ap-
ply the “recipe” given by Eq. (28). Using then the general
g / "m relation, wherem is the relevant exponent, we have
that f (g) / dg/d" / h0g(1�m)/m and thus, that the ˛
value of K&S is 1 � 1/m. In the above RV case, for which
m D D � 3/2, we have then that t � tun D ˛/(1 � ˛) D
m � 1 D D � 5/2. Hence, from the consideration of K&S,
it is easy to conclude that for D D 2 a universal behavior
will be found, while for D D 3, a value of t � tun D 1/2 is
predicted, as confirmed indeed by the corresponding sim-
ulations of Sen, Roberts and Halperin in 1985 [111].

The above procedure was generalized by Balberg in
1998 [12] for any power law distribution of the h(") /
"�! type which, following the above, yields that f (g) /
g(1�m�!)/m and correspondingly (see Eq. (27)) that t �
tun D (m C ! � 1)/(1 � !). Of course we note that we
must have that ! < 1, so that the distribution is normaliz-
able. For the three dimensional RV case we will generally
get then that t� tun D (D� 5/2C!)/(1�!). It is impor-
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tant to note that if ! varies from one " range to another,
the behavior obtained will be more complicated. In partic-
ular, transitions between universal-like and non universal-
like behaviors may be obtained as p! pc. Such a varia-
tion, with the consequences of a nonemonotonic h("), and
thus a non monotonic f (g), has not been considered in the
literature for this case. However, following the above dis-
cussion of Fig. 6, one can account for now such transitions.
In fact, a similar situation in principle, was evaluated very
recently for the percolation tunneling problem, that will be
described in Sect. “The Average Resistance in the Case of
Tunneling-Percolation”. A mapping similar to that of the
RVmodel was obtained for the IRVmodel [12,23] yielding
that ˛ � 0 for D � 4, and thus the divergence of the con-
ductance is obtained (for the ! D 0 case) only for D � 5.

Let us derive now these results in a physically more
transparent manner [59,72]. We start by assuming the
LNB model and try to find the relation between the pa-
rameter ", that is relevant to the value of the resistors, and
the proximity parameter p � pc, so that a relation such as
that of the K&S model can be found between the average
local resistance hrci and p � pc. For the "! 0 limit, which
corresponds to the larger 1/g resistors (that must be in-
cluded in the network when p! pc), we assume, as above,
that h(") D h0 and that g / "�m . The corresponding hrci
is determined then by

hrci /
#Z

ı

h0"�m d" ; (29)

where � is the " value above which h(") tapers off with
increasing ", and ı is the smallest " value (which is asso-
ciated with the smallest g value), in a typical link, that is
made of L1 singly connected bonds. The probability that "
will be larger than a given ı for a bond in this link is
simply 1�

R ı
0 h0 d", and thus for all L1 bonds in the link

it is (1 �
R ı
0 h0 d")L1 D exp(�ıL1h0). This means that at

ı � 1/L1h0 this probability starts to become significantly
smaller than unity, and thus this relation provides a good
estimate of ı, i. e. that ı / 1/L1. Having this value and con-
sidering that ı 
 � and that m > 1 (see above), we get
from Eq. (29) that

hrci / h0ı�mC1 � hm0 Lm�11 / (p�pc)1�m : (30)

This result yields, as above, (see Eqs. (26) and (27)) that
t D tun C (m � 1). As we saw for the RV model, m D
D � 3/2, and thus for the corresponding three dimen-
sional system we get t D tun C 1/2, in accordance with
the above result that was obtained from the K&S model.

Similarly, for the IRV model we got that m D D/2 � 1,
and thus for D D 3, we have that m < 1 and ˛ < 0 yield-
ing that t D tun. We can further attach the distribution
term "�! as above and get that instead of the relation of
ıL1h0 � 1 we will have that ı(1�!)L1h0/(1 � !) � 1 and
thus, that in the more general case, hrci / h0ı�mC1�! �

hm0 L(!Cm�1)/(1�!)
1 / (p�pc)�(!Cm�1)/(1�!) or t D tunC

(m C ! � 1)/(1 � !), where ! is as above [12].

The Tunneling Percolation Problem

Before turning to the problem of the average value of the
local resistor in the case of tunneling percolation, let us ex-
amine the unique relation between tunneling and percola-
tion [13]. Tunneling is essentially the principal mechanism
of electrical conduction inmost classes of composite mate-
rials. This is to be distinguished from the cases that involve
a coalescence of particles encounters one that in granu-
lar metals [2], porous media (the IRV model; see above)
and microemulsions [69], where the onset of a continu-
ous geometrical network is associated with the onset of
a global “metallic” conductivity. In most other cases, such
as in granular metals in the dielectric regime [1] and in
various semiconductor composites [26,27], the conductiv-
ity between the particles (or objects) is generally controlled
by tunneling.

As one considers the tunneling in the percolation-sys-
tems context, one notices that it challenges our above un-
derstanding of continuum percolation as follows. In lat-
tices (S&Z-like), or in the above RV and IRV systems,
the geometrical connectivity and the electrical connectiv-
ity are very clear and both are associated with the geo-
metrical continuity of the conducting phase. This is also
the case when we can define a soft shell that wraps the
hard-core so that the overlaps of the soft shells provides
a continuous conducting phase, as can be envisioned to
be the case in microemulsions [35]. When the conductiv-
ity is provided only by tunneling, there is no geometri-
cal connectivity (or continuity) but there is electrical con-
nectivity. The latter connectivity, however, is problematic,
since all the conducting objects are connected electrically
to each other (albeit with a different “strength” that is de-
termined by the exponential decay of the tunneling prob-
ability). Hence, the system has a “zero span” of the geo-
metrical connectivity and an “infinite span” of the electri-
cal connectivity. It appears then to be quite surprising [13]
that systems corresponding to this “counter” percolation
configuration, such as many types of composites, exhibit
computational [24,78] or experimental [128] well-defined
percolation thresholds with a universal or a non univer-
sal critical behavior. This problem was essentially clarified
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only recently as to be described below. We note then in
passing that until quite recently the very many experimen-
tal or computational studies on numerous composite sys-
tems that were discussed in terms of a bona-fide percola-
tion critical behavior have done so with no justification.

The first explanation for the above paradox was given
only very recently by Toker et al. in 2003 [124]. They con-
cluded, by examining the fractal dimension of the “elec-
trical” percolation network (that was derived from local
probe microscopy on real composites), that if the tunnel-
ing decay parameter is very small compared with the size
of the objects (say, spheres), in practice, only the network
of adjacent neighbors (see above) determines the global
measurable conductivity of the system. In that case the
percolation threshold is simply associated with by the con-
centration of “near neighbor” objects, such as in the case
of a system of objects of a “large” hard-core and a thin soft
shell. In this case the percolation tunneling problem can
be mapped onto such a model. The dynamical properties
are determined then by the local resistors distribution (see
also Sect. “The Average Resistance in the Case of Tunnel-
ing-Percolation”) as in the above given discussion.

When this is not the case, i. e. when the tunneling dis-
tance is of the order of the size of the conducting objects,
such as the case in granular metals [1,26,124] or quan-
tum dot semiconductors [27] in the dielectric regime, the
observation of a percolation threshold and a critical be-
havior is less obvious. It turns out that the solution to
this problem can be based on the same model as in the
above case if we take into account the accumulated in-
formation that we have on the radial distribution (RDF),
G(r), of a collection of hard spheres. This function that is
defined [138] as the probability G(r)dr to find a particle
center within the interval r and r C dr from a given parti-
cle, shows that there is an evolution of the peak of “nearly
touching” particles as we go from the dilute, or small b,
limit to the (hard core) dense spheres limit, i. e. as the par-
ticles size and/or density increase. In particular, the com-
mon conclusion of all the corresponding models is that the
larger the particles phase content (i. e. the particles density
and/or their size) the narrower the “tail” of the near neigh-
bors separations. This is equivalent in the present con-
text to the statement that more particles will overlap their
neighbors within the narrow shell, d, that is of the order of
the tunneling distance. In other words, the way the hard
spheres arrange themselves yields a preferred conduction
network that can be looked upon as made of an IRV sys-
tem with the soft shell, the thickness of which is of the or-
der of the tunneling decay constant. Hence, the model is
much like the one proposed above for the b >> d case. It
is of course appreciated that as the system becomes very

dilute it also becomes reminiscent of the near neighbor
hopping model [114]. Indeed, a close examination of the
dependence of the conductivity on the conducting phase
content in granular metals [26] reveals a density regime
in which both, percolation and hopping, can simultane-
ously account for the experimental data, while only a per-
colation model can account for the data obtained on the
“large spheres” system of Carbon black-Polymer compos-
ites [102].

The Average Resistance in the Case
of Tunneling-Percolation

The determination of the average local resistance in the
tunneling-percolation problem was solved thus far ac-
curately only for the 1D (or quasi 1D; see below) sys-
tems [10,11]. At higher dimensions, the lack of analytic ex-
pressions for the f (g) distribution does not enable a simple
evaluation of the corresponding critical behavior. How-
ever, with the information already available [5,126] it is
possible, as described below, to obtain a good physical un-
derstanding and derive semi-quantitative results for the
critical behavior [78].

We start then with the simple case of a linear chain
of geometrically, but not electrically, isolated “metallic”
spheres [71], the hard core radius of which is b and the
average distance between which is 2a (D 1/N1, where N1
is the average number of spheres per unit length). The
random distribution of the distances of the centers of the
nearest neighbor spheres from a given sphere center in the
corresponding 1D system is the well-known 1D Hertz dis-
tribution [10,11,126] that can be written as [26]

h1(r) D
�
1/(2a � 2b)

�
exp

�
� (r � 2b)/(2a � 2b)

�
; (31)

where r is the distance from the center of the reference
sphere. On the other hand, the local tunneling conduc-
tance between two such spheres is simply given by

g D g0exp
�
� (r � 2b)/2d

�
; (32)

where g0 is a corresponding geometrical-physical constant
and 2d is the tunneling decay constant. For the calcula-
tion of the average value of the local resistance we will ne-
glect the resistance between “non-adjacent” spheres, i. e.,
we assume that b	 d. Applying Eqs. (28), (31) and (32),
we get that for the nearest neighbor connections (or
bonds; [10,11,26])

f1(g) / exp
�
(r � 2b)/2d

��
1� d/(a � b)

�
/ g�˛ ; (33)

where,

˛ D 1 � d/(a � b) : (34)
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Following the above K&S prediction (Eq. (27)) for the ex-
ponent t we get then that

t � tun D (a � b)/d � 1 : (35)

Considering the discussion in Sect. “The Basic Physics of
the Non-universal Behavior of the Conductivity”, regard-
ing Eq. (22), we see that if d is larger than (a � b), there is
not “enough” supply of distant neighbors, or large resistors
(“the f (g) effect”), to overcome the needed 1/g resistors
(“the dg/g effect”) and thus to yield the diverging hrci. In
contrast, if d < a � b, even though the “supply” (Eq. (31))
decreases with increasing r (i. e. with decreasing g values),
this “supply” is enough for the “fastly” increasing 1/g val-
ues, to yield an increase in f (g) as g ! 0. This is an impor-
tant observation that results from the fact that we have two
terms in Eq. (28) so that the behavior of f (g) is not neces-
sarily the behavior expected by just examining h1(r). Phys-
ically then, as above, in the d < a � b case the decrease in
the available small g values (or the large r values) is slower
than the increase in the value of the large resistors, 1/g,
as r!1 or (Eq. (32)). Correspondingly, one obtains the
divergence of f (g) (Eq. (33)) as g ! 0 i. e., when p ap-
proaches pc. This description is manifested quantitatively
of course by the above mapping of the tunneling resistor
problem onto the K&S model, with an ˛ value that de-
termines the transition between a non-diverging to a di-
verging distribution, i. e. ˛ D 0, which in the present case
corresponds to d/(a � b) D 1 (Eq. (34)).

For completeness, let us present the physically more
transparent procedure for the determination of t � tun,
such as the one of Halperin, Feng and Sen in 1985 [72],
which we outlined in Sect. “The Local Resistors and Their
Distributions”, but this time for the tunneling-percolation
problem. This approach [102] is similar then to the one
considered for the RV and IRVmodels, but for the present
problem we assume that the largest distance between two
adjacent spheres in the link is s (rather than the smallest
distance, ı, in the RV and IRV problems).We are above in-
terested then in the probability that the largest r in the link
of L1 singly connected resistors is smaller than some pre-
chosen s. This probability (following Eq. (31) and the pro-
cedure given in Sect. “The Local Resistors and Their Dis-
tributions”) is simply f1� exp[�(s� 2b)/(2a � 2b)]gL1 D
expf�L1exp[(s � 2b)/(2a � 2b)]g. Correspondingly, this
probability starts to be small at a value of about exp(�1),
and thus the condition for s being the largest “bond-
length” in the link is that L1 � 1/exp[(s � 2b)/(2a � 2b)].
On the other hand, the average resistance in the link, hrci,
is now proportional to

R s
2b expf[(r � 2b)/(2a � 2b)] �

[(r�2b)/2d]gdr. The dominant term in the integral is then
expf[(s � 2b)/(2a � 2b)][1 � (a � b)/d]g, or in view of

the above, the dominant term of hrci is L
�[1�(a�b)/d]
1 /

(p� pc)1�[(a�b)/d] . Correspondingly, we get (as we already
found above from our mapping of the problem onto the
K&S distribution) that in this relatively simple 1D case,
t � tun D (a � b)/d � 1.

This finding has been adopted not only for the rela-
tivle simple 3D cases where the above h1(r) distribution is
still appropriate [71] but also, very recently, to general 3D
random systems. The simpler cases include cellular com-
posites in which the system can be assumed to be made of
insulating (say, cubic) blocks, and of conducting channels
with a diameter just wider than 2b which include metallic
spheres of diameter 2b. The channels are further assumed
to coincide with the edges of the insulating cubes [71,78].
In practice, however, the comparison of the prediction of
Eq. (35) with experimental observations on “real” cellular
composites [128] shows that the above predictions yield
t values that are very exaggerated. If one tries to provide
then a “more realistic” model of such a composite, one
must also assume that the chains are not infinite and that
thier number per unit length, N1, (and thus a) may vary
from one chain to the other, according to the make of the
composite. This is even to the degrees that (a � b)/d may
be larger or smaller than unity in different chains. The cor-
responding distribution ofN1 in the chainsmay affect then
the critical behavior by yielding an effective “global” ˛. For
this case that was considered in detail by Grimaldi et al. in
2003 [71], it is obvious that the chains’ N1(D 1/2a) val-
ues will contribute to a universal behavior (high N1) or
to a non universal (low N1) behavior of the system. The
global behavior will be determined then finally by the dis-
tribution of the various Ni’s values in the system.

A priori one may think that this model of Grimaldi et
al. should apply to systems of higher dimensions as one
approaches the percolation threshold, since in the Links,
Nodes, Blobs (LNB) model we consider a conducting net-
work of such large chains that are, at first sight, one dimen-
sional in nature. At second sight one notices two prob-
lems with that assumption. First, the distribution func-
tion of the nearest neighbor sites in the D > 1 case, hD(r),
is different from the one given in Eq. (31) and, second,
and more severe, the LNB link is made of singly con-
nected bonds that are determined by the connectivity of
the D > 1 network and not (necessarily) by the first near-
est neighbors, as in the simple 1D case.

Before giving the recent ”exact“ solution to the prob-
lem [78] let us see the basic underlying physics of it. The
global conductance as p! pc can be concluded semi-
quantitavely by noting that for the very large (r � 2b)
values (that are relevant to the critical behavior), the
h3(r � 2b) distribution function is expected to decrease
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as exp[�(r/2a)3] for all neighbors [5]. Here, a is the av-
erage (see below) distance between neighboring sphere
centers in the above 3D system. Hence, “finally” (i. e., for
the largest r’s or smallest g’s) the “supply” of the g’s (i. e.
the function h3(r � 2b)) will not meet the “demand” of
Eq. (32). This situation is different then from the situation
described above (Eq. (33)) for the 1D case of d < a � b,
for any value of d/(a � b). Correspondingly, as demon-
strated below, for these large r’s, f (g) will be a decreas-
ing function of 1/g. Strictly speaking, for the general 3D
system the “ultimate” (i. e. at the p! pc limit) the crit-
ical behavior will be universal as discussed in Sect. “The
Basic Physics of the Non-universal Behavior of the Con-
ductivity”. However, the latter limit is rather experiamen-
tally [70] and so far computationallay [78] a non accessible
(see below) and thus there is a great interest in the criti-
cal behavior of the system on route to this limit. To con-
sider the latter behavior let us use the 1990 [126] result
of Torquato, Lu and Robinstein for the 3D distribution
function of the inter-particle distances of the first nearest
neighbors, h3(r). The latter result can guide us in predict-
ing the behavior of the more general D > 1 systems.

The relevant dominant term that as implied by their
h3(r) is

H3(r � 2b) / A(�)(r � 2b)2

exp
˚
�
�
8A(�)/b3

� �
r3 � (2b)3

��
; (36)

where, A(�) D [�v(1C �v)/(1 � �v)3], v is the hard core
spheres volume (4�/3)b3 in a system of a unit volume
and � is their concentration (i. e., per unit volume of
the sample). This concentration is related to the above
2a(> 2b) parameter (i. e. the average distance between the
sphere-centers of two nearest neighbors) that, we sim-
ply define it here by

R1
2b h3(r)rdr [70]. A very rough, but

geometrically more transparent, estimate of a (which is
enough for the present discussion of the basic physics of
the problem) can be given by assuming that the spheres
are implanted randomly (as in the a	 b case). In this case
a is associated with the average “territory” of a sphere, and
is thus given by the relation

(4�/3)a3� D 1 : (37)

Returning to Eq. (36), we can follow the behavior of
f (g) by applying Eqs. (28), (32) and (36) in a way that
yielded Eq. (33). The first feature that we encounter in
H3(r � 2b), and which has no counter part in h1(r � 2b),
is a peak at some rm that is of the order of 2(a � b).
For r < rm both H3(r � 2b) and the resistance term
1/g / exp[(r � 2b)/2d] increase with increasing r and
thus f (g) increases with 1/g. The rate of this increase may

be very large for the small r � 2b values due to the domi-
nance of the (r � 2b)2 term in Eq. (36) that can be trans-
lated to a g�˛ behavior with ˛ > 1 for a limited g range,
in some cases [24]. Of course, this strong dependence will
be weakened for larger r’s (smaller g’s) as follows. Since
H3(r � 2b) stops increasing at rm it is obvious that the
maximum rate of the increase of f (g) with 1/g will be ob-
tained at some intermediate value rp that is smaller than
rm. This yields then a corresponding gp value (Eq. 32) such
that gp > gm. However, the increase of f (g) with 1/g does
not necessarily stop at gm. To see that let us now con-
sider the r > rm regime. The dominant term ofH3(r � 2b)
there is the exponential decrease of this function and thus,
using the procedure suggested by Eqs. (33) and (36), we
can express f (g) now as f (g) / g�˛(r) where now we have
a “local ˛” that is given by:

˛(r) D 1 �
˚
2d
�
8A(�)/b3

� �
r2 C br C (2b)2

��
: (38)

Noting that r is a measure of 1/g we have here then, un-
like the constant ˛ of the 1D case, a “locally” varying ˛(r).
Hence, for the r > rm regime we will have that for small
(in comparison with 2a � 2b), r � 2b values, ˛(r) > 0, i. e.
f (g) will still be increasing with increasing 1/g. For larger
r’s however, ˛(r) will “eventually” become negative and
thus f (g) will decrease with 1/g. Denoting the r value,
at which ˛(r) D 0, by rt, we can summarize the behav-
ior of f (g) as follows. For small 1/g values f (g) increases
with g, obtaining a maximum rate of this increase at some
gp which is larger than gm. Then, at some gt (such that
gt < gm) f (g) will decrease as a function of 1/g. Following
now the premise of our model (as described in Sect. “The
Basic Physics of the Non-universal Behavior of the Con-
ductivity”) i. e. the increase of 1/gc with the decrease of
p � pc) we can now predict the critical behavior of the
global conductance of the system and in particular the cor-
responding critical exponent as p approaches pc. For p
far above pc; hrci will have a diverging-like behavior with
p � pc and thus a non universal value will be obtained for
t. The value of this non universal t will reach its maximum
at a p value, pp, and then, for still smaller p values, it will
decrease until at a low enough p value, pt, it will become
the universal value tun. Hence, as we saw above, strictly
speaking, the critical (i. e. in the p! pc limit) behavior of
the general D > 1 systems will always be the universal be-
havior.

Since the value of 1/gc and thus the values of hrci and
hri diverge as p � pc ! 0, minute variations in the value
of p cause very strong (orders of magnitude) variations in
the former quantities. This implies that the variations that
we described above for 1/g, and thus for f (g), actually take
place over a narrow range of p when it is close to pc. The



Continuum Percolation C 1469

first implication of that is that the use of a constant a (say,
the one that applies to pc) in the above equations (e. g.
Eq. (37)) is a very good approximation. The second im-
plication is that the “locally” (r range, g range or p range,
see also Eq. (38)) determined value of t should be defined
differentially as

t D d[lnG]/d[ln(p � pc)] ; (39)

where G is the global conductance of the system. Using
this definition and the gc dependence on p � pc, the above
behavior of f (g) can be translated to a p (or a p � pc)
dependence of t. We concluded above that far from pc,
t will increase with decreasing p � pc until it obtains its
maximum, and from there on (i. e. for smaller p values)
it will decrease until it reaches the corresponding univer-
sal value. The questions that arise are, of course, at what
p, and for what value of t � tun will the peak t-value and
the t-value transition happen, and how does this behav-
ior depend on the parameters of the system [78]. The
mathematical expression for the above described behaior
has been developed very recently by Johner et al. [78] us-
ing the application of the Effective Medium Approxima-
tion (EMA). In that case, one essentially usses a lattice
model, but with a distribution of bond or g-values taken
by using the f 3(g) function that is obtained by applying
Eqs. (28), (32) and (36) to the basic EMA equation. They
were able to show then that:

t � tun D
�
(a � b)/d

� ˚
ln
�
yp/

�
p � pc

���2/3
; (40)

where, y D exp[2b/(2a � 2b)]3. It is easy to appreciate
that this expression follows the expected behavior as ot-
lined above.

Following our above discussion and the result given
in Eq. (40), it is apparent that we cannot have a simple-
complete mapping of the D > 1 systems (Eq. (38)) onto
the K&S model as we had for the 1D model (Eq. (33)).
On the other hand, the constant parameter ˛, of Eqs. (33)
and (34), can be applied for the characterization of
the above general D > 1 systems, since the three rele-
vant length scales for all (D � 1) tunneling models are
still the same i. e., a (see above), b and d. Using then
˛ D 1 � d/(a � b) as the system characterization param-
eter, we show in Fig. 8 the above differential t(p � pc)
dependence, as obtained by the application of the Effec-
tiveMediumApproximation (EMA) to the 3D percolation
tunneling system [70]. In this approximation, one notes
that tun D 1, but this (EMA value) is not important in the
present context, since we are interested here in t � tun. The
results shown in Fig. 8, confirm then the above mentioned
expectations and in particular that (as in the 1D case) the

Continuum Percolation, Figure 8
The dependence of the (differential) conductivity exponent as
calculated using the Effective Medium Approximation for a sys-
tem of spheres, where 2b is their diameter and 2d is the tun-
neling decay constant. The results are presented for various val-
ues of the 1D parameter ˛, such that the higher the values of ˛,
the smaller the local conductance values that are involved in the
global conductance. (From [70])

larger the value of ˛ (in the 0 � ˛ � 1 interval), i. e. the
smaller the tunneling decay range in comparison with the
inter-particle distances r (or, the smaller the correspond-
ing g-values that are involved in the conduction), themore
pronounced the non universal-like behavior (the larger the
t values) that accompanies the conduction process. How-
ever, in contrast with the D D 1 case, the t > tun values are
maintained only over a limited p � pc range, and “even-
tually” (as p! pc) a decrease of t towards the value of
tun takes place. In addition to this main result, i. e., the
confirmation of the peak in the t dependence on p and
its decrease to tun, as p approaches pc, we can derive fur-
ther conclusions regarding the ˛ dependence of the curves.
First, for very small values of ˛, a non universal behavior
will hardly be observed, and second, even though the shift
of the t(p) peak with increasing ˛ is very small, it is obvi-
ous from our comparison of Eqs. (32) and (36) that this
increase shifts the peak towards lower p � pc values. As to
the meaning of this shift in practice, let us note that for
a given type of a system (i. e., b and d fixed), the larger the
value of a (the smaller the value of p), the more dilute the
system. Correspondingly, as apparent from the smaller g
values involved in the conduction process then, the decay
of H3(r) in Eq. (36) will be “slower”, and the non univer-
sal behavior will be also emphasized by the extension of
the non universal behavior values into the lower p � pc
regime. A similar argument can be derived from Eq. (38)
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since the smaller the value of d/b the larger the value of
˛(r) i. e. the value of t for a given r. In passing, we also
note that the parameters that determine the critical behav-
ior can be controlled externally. For example, a voltage ap-
plication effect on d, or a pressure application and tem-
perature change on a, will change the value of ˛ and thus
the value of t. In that case, we expect to get a new class of
phenomena that may be called “physically controlled per-
colation”.

Considering the corresponding numerous data in the
literature [128], one finds that there is no convincing di-
rect experimental or Monte Carlo evidence, on a genuine
continuum system, for the variation of t(p) as predicted
in Fig. 8, but there is some indirect evidence for that be-
havior (see below). The main reason for not observing the
peaked t(p) dependence in the experimental and compu-
tational works seems to be the accuracy of these data, or
more importantly, the limited p � pc range that is actu-
ally accessible in the corresponding studies. For the ex-
perimental data, the latter effect can be appreciated as fol-
lows [70]. The proximity to the percolation threshold is
usually given, as in Fig. 8, by the parameter p � pc. How-
ever, this is not a good parameter for that purpose of the
description of the proximity to the threshold in continuum
systems. If both p and pc are small, a small p � pc does not
mean that the system is in close proximity to the critical
regime. Rather, a quantity such as (p � pc)/pc is a better
indication of the proximity to the threshold. The problem
is not too severe in lattices when one considers the resis-
tors distribution imposed on lattices [88,111] since the pc
values are larger than 0.1 for two and three dimensions.
This problem may be very severe, however, when one in-
terprets experimental data in the continuum, where the
proximity parameter is given in terms of the fractional
occupied volume � , and the corresponding critical frac-
tional volume �c, i. e. by (� � �c). Here, while both, � and
�c can be very small, (� � �c)/�c can be quite large, indi-
cating that the system is far from the critical region. In this
case, single, high, non universal-like, t values, are not too
surprising in view of the above discussion, and the lim-
ited (� � �c)/�c range hardly enables one to detect devia-
tions from a single t value [70]. Computer simulations, on
the other hand, “suffer” from finite size effects, and while
a variable t(p) behavior has been found [24,78], it has not
yet been established to be beyond the influence of such ef-
fects.

However, more convincing, though indirect, confir-
mation of the t value variation with p � pc seems to be in-
dicated by the experimental data on other electrical prop-
erties such as the resistance noise. For this property, the
variation of the corresponding exponent, as a function of

� � �c, was found to indicate the decrease of t as � ap-
proaches �c [40,42,85]. Hence, in view of the above, the
transitions from a non universal behavior to a universal
behavior seem to be well understood and well accounted
for semiquantitatively, but further work is needed in order
to examine this effect more quantitatively.

Future Directions

The relevance of the connectivity to the many areas of sci-
ence mentioned in Sect. “Definition of the Subject”, makes
the achievements in the theory of continuum percolation
of great importance to numerous natural and artificial sys-
tems. In particular, the understanding and conclusions de-
rived from this theory in the last forty years serve as guides
to the analysis and understanding of the various properties
of these systems. Naturally then, future studies of contin-
uum percolation are expected to proceed along two direc-
tions. The first is the further development of the theory
itself and issues of principle and depth of understanding,
such as the ones emphasized in the present review. The
other direction is the application of the general conclu-
sions and principles derived from the first direction for
the understanding of the systems and properties such as
those mentioned in Sect. “Definition of the Subject”. The
latter direction deserves quite a few reviews that will center
on particular types of systems (say, solid composites and
porous media) or particular properties (such as electrical
noise and heterogeneous-fluid viscosity). Considering the
wide scope of these many issues, we will mention here, as
examples, only a couple of them that are relevant to sys-
tems and properties that became of wide interest only very
recently.

On the very basic-scientific level, the establishment
of continuum percolation as a phase transition that can
be mapped onto the lattice percolation phase transition
is desired, in order to determine rigorously and conclu-
sively that the critical behavior of the geometrical-statisti-
cal properties is the same. Another fundamental theoreti-
cal problem is the derivation of the percolation thresholds
and critical exponents rigorously. The first question that
arises in that context is whether this can be done by an-
other approach than the common one used thus far, i. e.,
the application of the theory of liquids, and whether such
an approach can yield better results than that of the lat-
ter application. The second question is whether within the
rather developed application of the theory of liquids, one
can find a way to facilitate its implementation to the de-
gree that will enable unbiased determination of percola-
tion thresholds and critical exponents, as well as its appli-
cation for “less trivial” objects than those considered thus



Continuum Percolation C 1471

far. On the more fundamental level of the latter problem,
it is very interesting to know why this application is so
successful for the description of the percolation behavior,
even though the theory of liquids was not designed for the
study of phase transitions.

Considering the empirical approach to the theory we
note that the usefulness and the generalization of the con-
cept of “pointedness” have not been studied extensively,
in spite of its impressive predications concerning trends
in the behavior of percolation thresholds in the contin-
uum. The transparent physical-geometrical meaning of
this concept calls then for its further utilization on the
one hand, and for trying to understand the reasons for its
success on the other hand. In particular we note that at
present, the latter approach can be used much more read-
ily and for many more systems than the above mentioned
rigorous approach that is based on the theory of liquids.
A specific problem that needs attention in order to derive
a more complete understanding of the percolation thresh-
old in continuum percolation is the value of Bc at the hard-
core limit

Turning to the behavior of the dynamical properties,
it appears that most of the basic principles of the corre-
sponding theory are well understood by now. However,
the problem of variable “bond strengths” is not well ac-
counted for, in general, and beyond the “strong-interac-
tion” limit (e. g., tunneling only to nearest neighbors) in
particular. The meaning of the percolation threshold in
corresponding systems and the predictions of the corre-
sponding critical behaviors, are still open. In particular,
the evaluation of the “residual” conductivity in compar-
ison with the dominant percolation-like subnetwork has
not been given thus far. For this, there is the need for
the other corresponding parameters that characterize the
charge, the mass, or energy, transfer between the objects
in the system. It further appears however, that the most
important information that one needs, when these princi-
ples are applied for the understanding of particular con-
tinuum systems, is the distribution function of the sizes
and shapes of the objects in the system, as well as their
separations. As emphasized in this review, this informa-
tion is usually scarce, thus limiting the possible applica-
tions of the general understanding and principles outlined
in Sect. “The Critical Behavior of the Dynamical Properties
in the Continuum” to specific systems. Here, the utiliza-
tion of very modern experimental characterization tech-
niques, such as local probe microscopies, should provide
the link needed for the above application. On the theoret-
ical-computational end, the distribution functions associ-
ated with the structure, and thus with the dynamical phys-
ical properties, need to be derived, in order to appreciate

trends in the critical behavior (i. e., the values of the critical
exponents) in various systems. These trends will become
amenable for examination, however, only with the ability
to produce or find systems where the percolation thresh-
old can be approached much more closely than at present,
in the experiments, and to create much larger systems (in
order to avoid finite size effects) in the computations. Such
developments are expected to yield the (generally missing
so far) information on the dependence of the critical ex-
ponents on the proximity to the percolation threshold. It
appears then that the meaning of the percolation thresh-
old, when farther than closest neighbors are involved (such
as in the case of tunneling-percolation systems where the
“interaction” range is not much smaller than the size of the
objects), as well as the critical behavior of such systems, be-
yond the intuitive picture suggested in Sect. “The Critical
Behavior of the Dynamical Properties in the Continuum”,
is very much called for.

Let us now turn to outline a few typical (of the numer-
ous) questions associated with specific systems, in order to
illustrate the issues and systemswhose understanding rests
on the concepts mentioned above. Such are the effects of
charging and quantum confinement within correspond-
ing particles that are embedded in a percolating system.
The understanding of the interplay between these effects
and the effects of the neighboring network is still in its in-
fancy. This interplay has been shown recently to have pro-
nounced effects not only on the transport, but also on the
phototransport in such systems. Also, the effects of spe-
cial features of the network, such as its fractal dimension,
on the dynamical behavior are still a matter of contro-
versy. Again, local probe microscopy, on the experimental
end, and corresponding theoretical-computational work,
on the other end, may resolve the corresponding prob-
lems. Another issue of great interest is the consideration of
objects that are more complicated in their shape than the
convex objects dealt with in the present review. Such are
the systems that are of great present interest, i. e., carbon
nanotube composites, where the objects can be described
as having a “wavy” shape. One question that arises there,
and that was dealt with only very recently, is the effect of
this “wavyness” on the percolation threshold. A broader
issue that is relevant to many systems, but for which no
systematic discussion has been given thus far, is the re-
lation between the trends in the critical behavior of the
electrical, mechanical and rheological properties, in corre-
sponding solids or molten composites. These are of great
importance in the fields of chemical-material and electri-
cal-material engineering.

Finally, a subject that has not been discussed in the
context of continuum percolation, and, as we saw above,
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is mainly concerned with global properties of systems, is
the statistics of finite clusters where there is, or there is
no, interaction between the objects. This is of great im-
portance for systems where the finite clusters as such de-
termine the properties of interest, such as in cases where
there is a charge transfer by a delocalization process. This
is of importance, for example, in the cases of illumination-
generated charge carriers, since there, the local connectiv-
ity of the system around the particle, in which the carri-
ers were optically generated, determines the probability of
their separation and thus the “deconfinement” and corre-
sponding elimination of the radiative recombination.
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Glossary

Degree of freedom (Sub)set of a physically reconfig-
urable system whose configuration can always be spec-
ified by a single variable.

Kinematics Geometric (and differential geometric) mod-
els of mechanical systems, not including effects of dy-
namics (masses, forces, inertias, etc.).

Robot A physically reconfigurable system that has multi-
ple degrees of freedom and is (at least partially) com-
puter-controlled.

Actuators Devices used to transfer mass (herein portions
of a robot system) from one place to another within the
system’s environment.

Sensors Devices used to infer information, usually either
about the internal state of a system, or about external
environment surrounding that system.

Control Use of sensors and actuators to reconfigure a sys-
tem (herein robots) according to a desired plan.

Continuum Continuous in nature; herein usually the
backbone/core of a robot.

OctArm Continuum robot manipulator inspired by octo-
pus arms.

AWE (“Animated Work Environment”) Reconfigurable
environment featuring continuum robot components,
focused on work environments featuring computing.

Definition of the Subject

In this article, we discuss some of the key issues involved
in the design and implementation of the emerging class
of “invertebrate-like” continuum robots. Using two case
studies of continuum robots developed recently at Clem-
son University, we overview the issues involved in realiz-
ing continuum robots and their deployment. The potential
of these types of robots for enhanced productivity in novel
applications is discussed.

In the first case study, we describe the design of the
“OctArm” continuum manipulator robot hardware, and
discuss the results of field testing of these novel “trunk-
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like” robots. OctArm robots are able to adapt their shape
to their environment, to access difficult-to-reach areas,
and to perform adaptive grasping using their entire arms.
Lessons learned and implications for future robot manip-
ulators in the field are discussed.

In the second case study, we describe the new “An-
imated Work Environment” (AWE) concept. AWE is
an articulated, programmable, interior environment and
chassis, embedded with integrated digital technologies.
Featuring a continuum, morphing robot surface con-
trolled by a user-friendly interface, AWE is characterized
as adaptive and robust when applied to a range of work
activities and working populations currently not accom-
modated by robotics.

The OctArm and AWE were selected as case studies
to represent the potential broad range of application of
continuum robots: the former suggests how continuum
robots might operate in environments too harsh and haz-
ardous for routine human activity, and the latter offers the
promise of continuum robots in everyday interior envi-
ronments supporting human collaboration and productiv-
ity.

Introduction

Industrial robot manipulators typically feature a small fi-
nite number (typically 4–6) of serially-connected rigid
links. This is well-matched to factory “pick-and-place” ap-
plications, but such manipulators have not been gener-
ally successful in tackling more complex tasks (such as in-
teracting with humans) in less structured environments.
A frequently considered question in robot manipulator re-
search is: “what happens as the number of joints becomes
much larger, and ultimately increases towards infinity?”
Examples of serial rigid-link systems with many joints
exist in nature (snakes, mammalian and fish backbones,
for example), and these biological “existence proofs” have
provided motivation and insight for robot analysts and
hardware designers for many years. This interest has re-
sulted in the development of several special sub-classes of
manipulators, collectively known as redundant manipula-
tors [86].

A manipulator is said to be (kinematically) redundant
if its configuration (joint) space degrees of freedom exceed
its task space degrees of freedom. Hence, since spatial (end
effector) task motions are generally six-dimensional, seven
or eight degree of freedom spatial rigid-link manipulators
are usually considered to be redundant. A manipulator is
generally considered to be hyperredundant if its configura-
tion (joint) space degrees of freedom greatly exceed its task
space degrees of freedom. Hyperredundant manipulators

have enhanced potential to use their extra joints for whole
arm grasping/manipulation and maneuvering within tight
obstacle fields. Their anticipated applications therefore in-
clude operations in congested environments (disaster re-
lief, medical applications, etc.).

The field of hyperredundant manipulators has evolved
in two major directions: “vertebrate-like” rigid-link
designs, and “invertebrate-like” continuum manipula-
tors [86]. Here we describe recent developments in con-
tinuum robots. Continuum robots are most typically de-
fined by their “continuous backbone structures” – struc-
tures without the skeletal design of traditional rigid-link,
robot manipulators [66,78]. Defined by this unusual struc-
ture, continuum robots may be described as “invertebrate-
like” as opposed to the “vertebrate-like” nature of tradi-
tional robots [33]. Much research in the area takes in-
spiration from biology, and has often been strongly in-
fluenced by the design and functionality of invertebrate
structures such as octopus arms [46,50,79,81] and ele-
phant trunks [19,30,46,76,85]. As continuum designs can
be scaled down to very small sizes [69,72,73], potential ap-
plications include medicine [4,12,68,75,82].

The main feature of continuum structures is their in-
herent smoothness. Instead of bending at discrete points
(joints, or “elbows”) along the “backbone”, they can
smoothly bend anywhere along their structure. Several de-
signs, including the OctArm robots discussed in this ar-
ticle, additionally feature the ability to extend (elongate)
along the length of the backbone. Almost all continuum
robot designs exhibit significant compliance, i. e. they in-
herently present a “soft” rather than “stiff” interface to the
environment.

Two functions in particular define the potential ad-
vantages of continuum robots: operation in congested en-
vironments and whole-arm grasping. In congested envi-
ronments, the lack of “elbows” and the ability to bend at
many locations allows continuum structures to “snake”
in and through very tight obstacle fields. (Snakes are ver-
tebrates, but their “links” are small and many, and their
general movements match that of continuum structures.)
There are numerous important arenas in which key ap-
plications of traditional robotics are currently impracti-
cal (many surgical applications, search and rescue oper-
ations in collapsed buildings, etc.) and where the effective
deployment of continuum structures exhibiting snake-like
behaviors would make a significant contribution to Soci-
ety.

In whole-arm grasping, continuum robots again prove
their potential advantage: their smooth and compliant na-
ture allows them to gently interact with the world by
adapting their shape to that of environmental objects (i. e.



Continuum Robots C 1477

contact along a continuum of the robot) [67]. Note that
this is the form of adaptive manipulation used by biologi-
cal continuum structures such as elephant trunks and oc-
topus arms.

In the following case studies, we outline the design
and development of two very different types of continuum
robot design, the “OctArm” series of manipulator, and the
“AWE” continuum surface. In both cases, the ability of the
continuum robot structures to bend smoothly is key to en-
abling the innovative application scenarios.

Case Study 1: Trunk ContinuumRobots – OctArm

Introduction to Octarm Robots

Continuum robot hardware designs can be sub-divided
(via their means of actuation) into the categories of “ex-
trinsically actuated” and “intrinsically actuated”. Extrinsi-
cally actuated continuum robots have their actuators lo-
cated outside the continuum structure itself, and typically
transmit power to the continuum structure though ten-
dons. Intrinsically actuated continuum robots have the ac-
tuators embedded in the continuum structure.

At Clemson, we have developed continuum robot
hardware actuated both extrinsically and intrinsically. In
this section, we discuss the OctArm series of intrinsically
actuated continuum arms developed over the past several
years under funding from DARPA. The OctArm design
was significantly influenced by the underlying design of
octopus arms [46,50,70]. Key OctArm design goals were
to keep the arm as “soft” and compliant as possible, while
incorporating the actuators in the body of the arm.

The resulting robots feature a serially arranged set of
“sections”. Each section corresponds roughly to a link in
a conventional rigid link robot [71]. The variables deter-
mining changes in shape of each section correspond con-
ceptually to “joint angles” in conventional robot arms.
However, the shape of each section in the OctArm design
is determined by two or more variables in a coupled non-
linear relationship. A series of kinematicmodels have been
developed in order to command the OctArms into desired
shapes. These models are easily generalized to a wide va-
riety of previously proposed and constructed continuum
robots.

Overview of Octarm Robots

The OctArm series of continuum robots feature three (or
four) sections, each section having three degrees of free-
dom, for a total of nine (or twelve) degrees of freedom per
arm (see Fig. 1, showing a three-section version) [64]. Each
section has two degrees of bending freedom, and one de-

Continuum Robots, Figure 1
Three-section Octarm V continuum robot

gree of extension. The bending and extension in a section
are achieved via variation of pressure in three “air mus-
cles” (McKibben actuators) built into the system (in fact,
the air muscles – tubes in the figure – form the majority of
the arm structure).

The arms are approximately one meter long, with
a roughly circular cross-sectional profile, and are tapered
from base to tip. The air pressure in the actuators is con-
trolled via commercial pressure regulators, which form the
inner loop of the feedback control system. At a higher
level, commands to the pressure regulators are provided
via a real-time kernel on a PC-104 system, with wireless
interface to an operator control PC/joystick. The control
code is written in C+. Algorithm development and user
interface code utilize Matlab and Simulink modules [20].

The shape of the arms ismeasured via cables integrated
into the arm. The cables change length as the arm moves;
changes in cable length are then measured by encoders at
the base; and the shape of the arm is inferred by changes
in the cable length, following a geometric model. This ap-
proach gives a good approximate shape of the arm, which
is displayed to the operator via a graphical interface, driven
by the sensor information in real-time.

Related Work

Continuum robot hardware designs (usually arms/trunks
or fingers/whiskers, though some robot snake/worm [33]
designs also fit the classification) have appeared in the lit-
erature since the early 1960’s [2]. Although there have
been many proposed continuum robot designs [51], and
numerous hardware realizations [3,10,15,29,35,36,37,47,
53,61,62,84], until recently they have largely been “lab-
oratory curiosities”, used for a few “proof-of-concept”
demonstrations and then abandoned. The main reason for
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this has been a lack of underlying theory, corresponding to
traditional robot kinematics and dynamics, to enable the
coordination of their degrees of freedom. This deficiency
meant that even “simple” tasks such as moving the tip of
the robots in a straight line were difficult if not impossible
to achieve. This in turn has made it very difficult to apply
continuum robots to real tasks.

However, in the last ten years, a complete and general
body of theory (at least for kinematics) has been estab-
lished [38,39,40,58,59]. Our group at Clemson University
has been a major contributor to this theory [24,25,26,30,
31,32,41,43,44,45,74,80] building on existing pioneer ef-
forts [13,14,16,17,83]. This emerging body of understand-
ing now enables the consistent coordination of the de-
grees of freedom within general continuum structures.
Programming of continuum robots can now theoretically
be done in terms of “task space” and “configuration space”
in an analogous way to that for conventional robots.

At Clemson, the first author’s group has demonstrated
the ability for the “OctArm” continuum robot hardware
to successfully maneuver through complex obstacle fields
and grasp andmanipulate objects of many different shapes
over a wide range (orders ofmagnitude) of size andweight,
and with widely different physical characteristics (rigid,
soft, flexible . . . ) [8,9,18]. The following section describes
the deployment of the OctArm hardware in realistic field
trials.

Example Octarm Field Trials

The OctArm system underwent extensive field trials in the
spring of 2005 and 2006 at the Southwest Research Insti-
tute (SwRI) in San Antonio, Texas, USA [42,52]. The SwRI
testbed is specially designed for the systematic evaluation
of robotic systems in the field. The test environment in-
cludes rubble piles and a dry riverbedwhich can be flooded
to create turbulent conditions. The main goal for the tri-
als was to evaluate the ability of the OctArm system to
stably and adaptively grasp a wide range of objects under
a variety of conditions. For the field tests, OctArm V was
mounted on a Foster–Miller TALON platform (shown in
Fig. 2).

The OctArm base was attached to the second link
of the TALON robot arm. The control valves and two
air tanks provided nine channels of controlled pneumatic
pressure. The control computer was mounted on the back
of the TALON. The TALON and arm were controlled via
wireless connection. The system was operated under joy-
stick control via the wireless link and in view of the oper-
ator. More details of the user interface used are described
in [20].

Continuum Robots, Figure 2
OctArm Vmounted on Foster–Miller TALON system

Continuum Robots, Figure 3
Cone stacking task

Tasks included stacking and unstacking traffic cones
(see Fig. 3). The ability of the system to grasp objects,
such as spheres and cylinders, over a wide range of
scales was recorded. These tasks are inherently problem-
atic for traditional parallel jaw-end effectors. The opera-
tions were timed, videotaped, and recorded in detail to
provide a baseline performance measure for continuum
robots under the above conditions.

The system was also operated in water. Submerged in
water (shown in Fig. 4), the OctArm attempted to grasp
various payloads and to maintain grasps under turbulent
flow. This tested the potential of the system for robust
grasping under disturbances. The system was operated as
well alongside rubble piles. This provided an initial bench-
mark for remote operation in congested environments.
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Continuum Robots, Figure 4
Grasp in turbulent water

During the trials, the OctArm grasped and manipu-
lated various sized cylinders and spheres. The system was
able to successfully conform to the varying shapes of these
payloads, demonstrating an ability to adapt to environ-
mental conditions not found in traditional manipulators.
The continuum system was able to successfully grasp both
spherical (balls) and elongated objects (pieces of wood)
within the underwater environment, and to maintain the
grasps despite significant flow.

The results of the trials clearly demonstrated that con-
tinuum robot arms exhibit more adaptive and versatile op-
eration than do conventional robot manipulators. Note
that the continuum arm in these trials featured no shape
sensing; the shapes displayed to the user was inferred
only from the pressures at the actuator input valves. This
proved a highly inaccurate estimate, as external effects
such as sag due to gravity or external loading were not ac-
counted for in any way. Shortly after the trials described in
this section were performed, we integrated shape sensors
into the design in order to reduce this inaccuracy.

Case Study 2: ContinuumRobot Surfaces – AWE

Introduction to AWE

Our second case study features a novel robotic system
where the continuum “trunk” is expanded into a contin-
uum “surface”. The surface forms a key part of our “An-
imated Work Environment” (AWE), aimed at work ac-
tivities and working populations currently not accommo-
dated by robotics [27,28].

A recent trend in the nature, place and organization of
working life is the growing complexity of work, the emer-
gence of new working populations (older workers, under-

skilled workers, telecommuters and flexible shift workers),
and the increasing likelihood that workers are working, at
least part-time, at home. As the home becomes more an
office, the office is becoming more a home, where “hot
desks,” lounges, sofas, WI-FI and internal networks have
replaced office cubicles and hard-wired, isolated worksta-
tions. These dramatic transformations in the nature of
work, combined with unprecedented new technologies as-
sociated with working life, suggest a re-evaluation of the
relations between workers, their technologies and their
work environments, and a redesign of the work environ-
ment itself as a socially and technologically responsive sys-
tem occupying both home and office.

While investigators continue to realize promising
components of the “intelligent” work environment – pro-
jectors, screens, tablets, sensors, actuators and other digital
devices – our collaborative team is focused upon a novel
but wholly compatible aspect of the “intelligent” work
environment: the physical work space itself. The AWE
concept challenges knowledge and understanding in both
Architecture and Engineering by defining the “robot as
a room” and the “room as a robot.” This is a redefinition
of what constitutes Architecture and Robotics and is not
only a conceptual leap in the respective disciplines, but
a fully appropriate, even necessary response to a condition
in working life that is both social and technological.

The need to “program the room” both stimulates and
is enabled by existing and ongoing efforts in Informa-
tion Technology and “intelligent environments.” More
broadly, AWE challenges present understanding in both
Architecture and Computer and Information Science and
Engineering by recognizing computer software, networks
and devices not as isolated aspects of a digital society but as
constituents of an integral environmental system, far more
productive and more accessible than any of its parts. In
this way, the AWE concept aims to expand the vision of
researchers, developers and manufacturers of information
technologies to recognize the physical environment as an
integral and necessary part of the dynamic interaction be-
tween people and the digital realm.

Overview of AWE

The ongoing dramatic transformation in working life, in-
cluding the introduction of ever new digital technolo-
gies, presents problems and opportunities to all work-
ers, particularly to segments of the working population
that are emerging and neglected: telecommuters, flexible
shift workers, single parents, elders, recent immigrants,
the obese, the handicapped and, other individuals requir-
ing special accommodations.
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Continuum Robots, Figure 5
AWE concept – SLEEPING

Continuum Robots, Figure 6
AWE concept – COMPOSING

This dramatic shift in the nature, place and organi-
zation of working life motivates our research which, in
the simplest of terms, involves the designing, prototyping,
demonstrating and evaluating of a prototypical “robot-
room” with embedded Information Technologies that we
call an “Animated Work Environment” (AWE) (Figs. 5
and 6).

The strength of AWE is made clearer by recognizing
what it isn’t: it isn’t a building, or a room, or a “stand-
alone” device, or a software application, or a piece of furni-
ture. Instead, AWE is a user-friendly, programmable envi-
ronment, both digital and analog, high-tech and low-tech,
fitted to home and office, that users adjust along a con-
tinuum, providing the sense of being more “at home” or
more “at work,” more leisurely or more productive, more
efficient or more innovative, while facilitating multiple ac-
tivities.

In concept, AWE is envisioned as an information-
rich environment featuring the ability to continuously
“morph” its continuum surfaces to accommodate a wide
range of user needs. At the core of this environment
(though not exclusively comprising it) are smooth, con-
tinuously deformable “smart” continuum surfaces whose
configuration, and hence functionality, are user-control-
lable. In addition to this novel aspect, AWE embodies
a range of “off-the-shelf” Information Technology (IT)

components: embedded commercially-available sensors
that, when suitably exploited, make AWE user-friendly
and intelligent; radio-frequency identification (RFID) tags
that allow AWE to associate printed and digital materials;
and integrated display screens, scanners, projectors, key-
boards and audio speakers thatmake AWEuseful as a total
work environment programmable to suit a range of work
needs and situations.

Related Work

Few precedents for AWE are found in the work environ-
ments being researched and developed by IT and the ar-
chitectural design industries. The most promising of these
efforts are perhaps IBM’s “Blue Space” [34] and IDEO’s
“Q” [65], both important steps towards integrating IT and
Design. Compared to our vision of AWE, however, “Blue
Space” contains fewer and more timid “smart” compo-
nents and a narrower range of embedded IT peripherals;
and “Q,” accommodates only one userwhomust be seated,
supports a far more limited range of work activities, and
cannot be reconfigured in the way AWE promises. A more
enticing integration of design and IT is found in numer-
ous efforts offered by Phillips as “Ambient Intelligence” 0;
but as single products rather than complex environments,
these too fall short of AWE’s promise.

Additionally, while numerous research efforts in ubiq-
uitous computing [6,7,22,23,60] are viewed by the AWE
team as significant, compatible, and parallel efforts to our
own research, the difference between the AWE project
and these efforts is made clear by a compelling research
project from University of Massachusetts titled “NeTS:
Animated Spaces for the Digital Society” [60]. While this
project’s title and broad objective to “bridge the gap be-
tween the physical and digital worlds” sounds strikingly
similar to our own, “NeTS” focuses on employing Radio
Frequency Identification to link objects with their place-
ment in a room, rather than creating, as envisioned for
AWE, the physical room itself, rendered intelligent and
embedded with a range of IT technologies. Our AWE re-
search effort focuses less on developing and interfacing in-
dividual IT elements that might be embedded in AWE,
and more on cultivating the dynamic, reinforcing and re-
configurable relationships between the digital and physi-
cal (i. e. environmental) realms responsive to workers and
working life in a digital society.

Precedents that most significantly impact our develop-
ment of AWE, a robot-room, are those few where Archi-
tectural and CISE researchers collaborate to realize intel-
ligent physical environments. In broad theoretical terms,
the AWE team is inspired by two such convergences
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drawn fromWilliam Mitchell’s trilogy of books on IT and
the built environment [55,56,57]. The first is Mitchell’s vi-
sion of the building as a computer: “The building of the
near future will function more and more like large com-
puters” [56]. The second is Mitchell’s vision of the build-
ing as a robot: “Our buildings will become . . . robots for
living in” [56].

It is worth noting that Mitchell moves easily between
MIT’s School of Architecture and its Media Lab, and that
his vision of the building-as-robot is not altogether radical
when we recognize that the first known treatise of archi-
tecture, by Vitruvius, laid claims to machine design as the
proper domain of architecture [49,77]. Indeed, the “smart
house” projects by Mitchell’s group [48] and others, and,
more significantly, the programmable, robotic wall by dE-
COi [21] and robotic pavilions by Kas Oosterhuis [63],
hint at the promise of converging architectural design, in-
terface design and robotic design. AWE draws from these
precedents the open source, chassis/plug-in strategy of
MIT’sHouse [48], the seamless integration of IT and archi-
tecture suggested by the MIT/FPC Media House [54], and
the real-time configurability of the programmable WEB
pavilion of Oosterhuis [63].

However as “houses,” “walls,” and “pavilions,” these
significant precedents for our research, by definition, are
not explicitly designed for specified human activities and
so, suffer from being too diffuse; whereas AWE, oper-
ating at the smaller scale of the room, employing novel
morphing surfaces, and devoted to facilitating working
life, makes more of its association of new technologies,
the physical environment and very particular social con-
ditions.

Example AWE Scenario
The following scenario begins to illustrate the operation
and promise of AWE.

Situation Laura, a single-mother/biologist, presents her
research proposal before a committee in two weeks.
Laura’s proposal draws significantly from documents
in digital format, notes from a recent conference,
a video she made, and several books. She is working
on her proposal mostly at home but also at her faculty
office. Meanwhile Laura’s nephew Roberto, a college
student, is visiting from Latin America.

Before AWE Laura’s documents are spread over the desk,
computer, floor, and filing cabinet of her home office.
Books are opened, face-down, to critical pages. One of
these books and two of the digital papers are most im-
portant to her proposal. She’s periodically disrupted by
her four-year old child, Eric, who pulls materials off

Laura’s desk when he wants her attention. Laura senses
that her nephew Roberto has a real interest in science,
but she doesn’t know how to sustain this interest over
his visit, and, anyhow, he’s on vacation – easily dis-
tracted and easily bored.

Working with AWE for the first time AWE is installed
and ready to operate in Laura’s living room (Fig. 5).
It looks to her more like a dining room table than
an office desk, a cubicle, or a work station. Laura
quickly recognizes six prominent icons on AWE’s
work surface that read: COMPOSING, PRESENTING,
COLLABORATING, MEETING, VIEWING, PLAY-
ING.

As Laura urgently needs to work on her research proposal,
she imagines COMPOSING best defines her needs and
engages that icon. Quickly and steadily, four ribbons de-
scend from the ceiling, each embedded with a computer
screen arrayed at eye level when seated at the work sur-
face (Fig. 6). The four screens light-up and a keyboard and
mouse pop up from the work surface. In the short time
that AWE sets itself up for COMPOSING, Laura discovers
a toggle option marked SMART / PROGRAM and decides
on toggling SMART mode. Nothing happens; that is, until
Laura has organized her printed materials and coffee cup
on AWE’s work surface and sits before its array of four lit
screens.

Laura takes notice of a slowly moving curtain encir-
cling one end of AWE’s work surface to provide privacy
and sound dampening for COMPOSING. Laura’s scien-
tific mind correctly infers that AWE, in its simple intelli-
gence, has recognized that she is presently seated, COM-
POSING, and so is likely to require this kind of gentle en-
closure to facilitate her work. She also senses that AWE
has adjusted its overhead lighting to facilitate her focused
work. But the desk is too low for Laura’s height. Laura
moves her hand towards the work surface where she sees
the outline of a hand,marked RISE, at which point the sur-
face rises to a height at which Laura is comfortable. The
surface stops rising when Laura removes her hand. Laura
now presses and holds the COMPOSING button to save
this particular setting and then types “Laura – Research
Presentation” to define this personal setting. At a later oc-
casion, Laura can simply press COMPOSING to return
AWE to this configuration.

Laura now assigns four digital documents to the four
digital screens: two screens display the twomost important
articles, a third displays the video, and the fourth screen
displays the titles of some non-digital documents Laura is
using to compose the presentation – her handwritten con-
ference notes, nine printed articles, and four books. Laura
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clicks on the title of a particular printed article she’s soon
to need, and the screen reports to her that this article (with
attached RFID tag), is located in slot-24 of AWE’s physi-
cal filing system. The lit door over file slot-24 helps Laura
quickly locate and retrieve the article.

Laura now touches, one at a time, the two screens dis-
playing the two most important articles for her proposal
and these, in AWE’s simple intelligence, follow Laura’s
hand, extending and slightly twisting to a more accessi-
ble position for her. In a like manner, Laura sends the
two screens displaying the video and the non-digital doc-
uments a short distance away and above her so that she is
aware of, but not distracted by them.

Forty minutes into her work, Laura becomes aware of
her son Eric, growing restless. But Eric, seeing his mother
intently working through AWE’s translucent privacy cur-
tain, entertains himself for another five minutes. Then, the
inevitable: Eric, intent on getting his mother’s attention,
lunges for the printed article Laura has just retrieved. At
that moment, Laura toggles the icon on AWE’s work sur-
face labeled COVER/UNCOVER to COVER. A thin but
sturdy surface originates from below, covering Laura’s ma-
terials that had been distributedmethodically by her across
the work surface. The new surface provides space for Laura
and Eric to color some pictures for ten minutes – their
pact.

After ten minutes of coloring, Eric seems content to
entertain himself for a little while longer, and Laura toggles
UNCOVER to reveal the organization of her work sur-
face again. Laura decides it’s time to rehearse the first seg-
ment of her presentation. Simply engaging the PRESENT-
ING icon establishes the new configuration (Fig. 7). (Al-
ternatively, Laura could select INTENT INFERENCING
in AWE’s set-up menu, so that AWE begins configuring
the PRESENTING mode when it recognizes Laura stand-
ing in a location where one would give a presentation.)
In PRESENTING mode, three of AWE’s display screens

Continuum Robots, Figure 7
AWE concept – Presenting

retract into the ceiling and the fourth screen, displaying
Laura’s developing Powerpoint presentation, spins 180 de-
grees to face her. Three projectors also are turned on: one
projects the Powerpoint presentation on the wall surface
next to Laura while the other two projectors display, on
two adjacent walls, the visual sensation of a small lecture
hall where one might make a presentation. AWE’s lighting
and acoustics are likewise adjusted to simulate the atmo-
sphere of the hall.

After 30 minutes of rehearsing, Laura remembers its
time she drop Eric at the day care and then, to return to
her faculty office for a scheduled appointment. Before leav-
ing the house, Laura withdraws, from a USB port in AWE,
a portable storage device containing the digital informa-
tion held in her home-based AWE system.

Stopped at a red traffic light on her way to the Uni-
versity, Laura has an epiphany about her developing pro-
posal. Upon entering her faculty lab where AWE is also in-
stalled, Laura inserts the portable storage device into AWE
to quickly match the AWE configuration she left at home.
Without having to reach for a notepad and without losing
the time of transcription, Laura is easily integrating her
“epiphany” into the developing presentation. Laura also
adjusts AWE’s on-screen ATMOSPHERE settings to bet-
ter approximate, for her next rehearsal, the sense of the
conference room where she will finally present her pro-
posal.

At home, Roberto employs AWE to viewmaterials that
Laura has given him access to. Among these is a recording
of Laura’s earlier conversation with Roberto about AWE
and her developing work, presented by AWE as a video
for Roberto to review and examine. Roberto, a college stu-
dent, prefers lounging in an upholstered chair to sitting at
a desk. Using AWE’s simple intelligence, Roberto adjusts
AWE’s work surface from the default VIEWING configu-
ration to a slightly tilted and lower configuration that bet-
ter suits his lounging. As well, Roberto elects to bring the
single screen displaying Laura’s video more proximate to
him, guiding the screen with his hand. Roberto saves this
VIEWING figuration as, simply, “Roberto” for future re-
trieval.

When Laura returns from the University, Roberto ex-
citedly announces to his aunt that using AWE, he’s discov-
ered a curious link between something she’s considering in
her research and research activities occurring in his native
country, which he discovered on the internet.

When Roberto grows tired from all his explorations fa-
cilitated by AWE, Laura, with a simple activation of the
COMPOSING option, recovers the physical organization
of her materials as before, and continues developing her
presentation.
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In sum, AWE affords responsiveness to needs – partic-
ular and dynamic, cognitive and kinesthetic – of individual
users in fluid social organizations and work patterns.

Summary

The two case studies discussed in this article demon-
strate the potential for continuum structures to transform
the nature of robot applications. The OctArm continuum
robots described herein have successfully grasped andma-
nipulated objects over a wide range of sizes and scales in
the laboratory, demonstrating the ability to adapt their
shape to that of a wide variety of payloads. Additionally,
the field tests demonstrated the ability of the continuum
robots to operate successfully in realistic application envi-
ronments, both in air and in water, and to maintain grasp-
stability under dynamic disturbances.

AWE, by recognizing the physical environment as an
integral aspect of the dynamic interaction between people
and the digital realm, constitutes an early, socially signif-
icant initiative featuring continuum robots by a team of
“collaborative environment designers,” defined by Mark
Burry as “architects” working “along with their new col-
laborating experts . . . in computer science . . . and engi-
neering” [11].

Future Directions

The AWE environment, featuring continuum robot sur-
faces, is a “look at the future” for continuum robotics.
AWE is a direct extension of the activities within Clem-
son University’s Animated Architecture Lab, a research
and teaching body founded by the second author in which
engineering, architecture and the social sciences converge.
The AWE project is currently being realized, as a result of
these efforts, as a working prototype at full-scale.

Our ongoing efforts with the OctArm robots focus on
enhanced designs incorporating significantly higher arm
strength, and on the integration of sensors to guide re-
mote operation in congested obstacle fields. We anticipate
“multi-arm” versions of the hardware being developed in
the near future.
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State variables quantities describing the state of a system;
in this note they will be denoted by u; in the present
setting, u will be either a function defined on a subset
ofR �Rn , or a function of time taking its values in an
Hilbert spaceH.

Space domain the subset of Rn on which state variables
are defined.

Partial differential equation a differential equation con-
taining the unknown function as well as its partial
derivatives.

State equation a differential equation describing the evo-
lution of the system of interest.

Control function an external action on the state equa-
tion aimed at achieving a specific purpose; in this note,
control functions they will be denoted by f ; f will be
used to denote either a function defined on a subset of
R �Rn , or a function of time taking its values in an
Hilbert space F. If the state equation is a partial dif-
ferential equation of evolution, then a control function
can be:

1. distributed if it acts on the whole space domain;
2. locally distributed if it acts on a subset of the space

domain;
3. boundary if it acts on the boundary of the space do-

main;
4. optimal if it minimizes (together with the corre-

sponding trajectory) a given cost;
5. feedback if it depends, in turn, on the state of the

system.

Trajectory the solution of the state equation uf that cor-
responds to a given control function f .

Distributed parameter system a system modeled by an
evolution equation on an infinite dimensional space,
such as a partial differential equation or a partial in-
tegro-differential equation, or a delay equation; un-
like systems described by finitely many state vari-
ables, such as the onesmodeledby ordinary differential
equations, the information concerning these systems is
“distributed” among infinitely many parameters.

1A denotes the characteristic function of a set A � Rn ,
that is,

1A(x) D

(
1 x 2 A
0 x 2 Rn n A

@t ; @xi denote partial derivatives with respect to t and xi,
respectively.

L2(˝) denotes the Lebesgue space of all real-valued square
integrable functions, where functions that differ on
sets of zero Lebesgue measure are identified.

H1
0(˝) denotes the Sobolev space of all real-valued func-
tions which are square integrable together with their
first order partial derivatives in the sense of distribu-
tions in ˝ , and vanish on the boundary of ˝ ; simi-
larly H2(˝) denotes the space of all functions which
are square integrable together with their second order
partial derivatives.

H�1(˝) denotes the dual of H1
0(˝).

H n�1 denotes the (n � 1)-dimensional Hausdorff mea-
sure.

H denotes a normed spaces over R with norm k � k, as
well as an Hilbert space with the scalar product h�; �i
and norm k � k.

L2(0; T ;H) is the space of all square integrable func-
tions f : [0; T]! H; C([0; T];H) (continuous func-
tions) and H1(0; T ;H) (Sobolev functions) are simi-
larly defined .

Given Hilbert spaces F and H, L(F;H) denotes the (Ba-
nach) space of all bounded linear operators� : F ! H
with norm k�k D supkxkD1 k�xk (when F D H, we
use the abbreviated notation L(H)); �� : H ! F de-
notes the adjoint of � given by h��u; �i D hu; ��i
for all u 2 H, � 2 F.

Definition of the Subject

Control theory (abbreviated, CT) is concerned with sev-
eral ways of influencing the evolution of a given system by
an external action. As such, it originated in the nineteenth
century, when people started to use mathematics to ana-
lyze the perfomance of mechanical systems, even though
its roots can be traced back to the calculus of variation,
a discipline that is certainly much older. Since the second
half of the twentieth century its study was pursued inten-
sively to address problems in aerospace engineering, and
then economics and life sciences. At the beginning, CTwas
applied to systems modeled by ordinary differential equa-
tions (abbreviated, ODE). It was a couple of decades after
the birth of CT—in the late sixties, early seventies—that
the first attempts to control models described by a partial
differential equation (abbreviated, PDE) were made. The
need for such a passage was unquestionable: too many in-
teresting applications, from diffusion phenomena to elas-
ticity models, from fluid dynamics to traffic flows on net-
works and systems biology, can be modeled by a PDE.

Because of its peculiar nature, control of PDE’s is
a rather deep and technical subject: it requires a good
knowledge of PDE theory, a field of enormous interest in
its own right, as well as familiarity with the basic aspects of
CT for ODE’s. On the other hand, the effort put into this
research direction has been really intensive. Mathemati-
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cians and engineers have worked together in the construc-
tion of this theory: the results—from the stabilization of
flexible structures to the control of turbulent flows—have
been absolutely spectacular.

Among those who developed this subject are A. V. Bal-
akrishnan, H. Fattorini, J. L. Lions, and D. L. Russell, but
many more have given fundamental contributions.

Introduction

The basic examples of controlled partial differential equa-
tions are essentially two: the heat equation and the and the
wave equation. In a bounded open domain ˝ � Rn with
sufficiently smooth boundary � the heat equation

@tu D 
u C f in QT
:
D (0; T) �˝ (1)

describes the evolution in time of the temperature u(t; x)
at any point x of the body˝ . The term
u D @2x1uC� � �C
@2xn u, called the Laplacian of u, accounts for heat diffusion
in˝ , whereas the additive term f represents a heat source.
In order to solve the above equation uniquely one needs to
add further data, such as the initial distribution u0 and the
temperature of the boundary surface � of˝ . The fact that,
for any given data u0 2 L2(˝) and f 2 L2(QT ) Eq. (1) ad-
mits a unique weak solution uf satisfying the boundary
condition

u D 0 on ˙T
:
D (0; T) � � (2)

and the initial condition

u(0; x) D u0(x) 8x D (x1; : : : ; xn) 2 ˝ (3)

is well-known. So is the maximal regularity result ensuring
that

u f 2 H1 �0; T ; L2(˝)

\ C

�
[0; T];H1

0(˝)


\ L2
�
0; T ;H2(˝)


(4)

whenever u0 2 H1
0(˝). If problem (1)–(3) possesses

a unique solution which depends continuously on data,
then we say that the problem is well-posed.

Similarly, the wave equation

@2t u D 
u C f in QT (5)

describes the vibration of an elastic membrane (when
n D 2) subject to a force f . Here, u(t; x) denotes the dis-
placement of the membrane at time t in x. The initial con-
dition now concerns both initial displacement and veloc-
ity:

8x 2 ˝

(
u(0; x) D u0(x)
@tu(0; x) D u1(x) :

(6)

It is useful to treat the above problems as a first order evo-
lution equation in a Hilbert spaceH

u0(t) D Au(t)C B f (t) t 2 (0; T) ; (7)

where f (t) takes its valued in another Hilbert space F, and
B 2 L(F;H). In this abstract set-up, the fact that (7) is re-
lated to a PDE translates into that the closed linear op-
erator A is not defined on the whole space but only on
a (dense) subspace D(A) � H, called the domain of A;
such a property is often referred to as the unboundedness
of A.

For instance, in the case of the heat equation (1),
H D L2(˝) D F, and A is defined as

(
D(A) D H2(˝) \ H1

0(˝)
Au D 
u ; 8u 2 D(A) ;

(8)

whereas B D I.
As for the wave equation, since it is a second order dif-

ferential equation with respect to t, the Hilbert space H
should be given by the product H1

0(˝) � L2(˝). Then,
problem (5) is turned into the first order equation

U 0(t) DAU(t)C B f (t) t 2 (0; T) ;

where

U D
�

u
v

�
; B D

�
0
I

�
; F D L2(˝) :

Accordingly,A : D(A) � H ! H is given by
8
ˆ̂
<

ˆ̂:

D(A) D
�
H2(˝) \ H1

0(˝)

� H1

0(˝)

AU D

 
0 I
A 0

!

U D

 
v
Au

!

8U 2 D(A) ;

where A is taken as in (8).
Another advantage of the abstract formulation (7) is

the possibility of considering locally distributed or bound-
ary source terms. For instance, one can reduce to the same
set-up the equation

@tu D 
u C 1! f in QT ; (9)

where 1! denotes the characteristic function of an open
set ! � ˝, or the nonhomogeneus boundary condition of
Dirichlet type

u D f on ˙T ; (10)

or Neumann type

@u
@�
D f on ˙T ; (11)
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where � is the outward unit normal to � . For Eq. (9), B
reduces to multiplication by 1!—a bounded operator on
L2(˝); conditions (10) and (11) can also be associated to
suitable linear operators B—which, in this case, turn out
to be unbounded. Similar considerations can be adapted
to the wave equation (5) and to more general problems.

Having an efficient way to represent a source term is
essential in control theory, where such a term is regarded
as an external action, the control function, exercised on the
state variable u for a purpose, of which there are two main
kinds:

� positional: u(t) is to approach a given target in X, or
attain it exactly at a given time t > 0;

� optimal: the pair (u; f ) is to minimize a given func-
tional.

The first criterion leads to approximate or exact controlla-
bility problems in time t, as well as to stabilization prob-
lems as t!1. Here, the main tools will be provided by
certain estimates for partial differential operators that al-
low to study the states that can be attained by the solution
of a given controlled equation. These issues will be ad-
dressed in Sects. “Controllability” and “Stabilization” for
linear evolution equations. Applications to the heat and
wave equations will be discussed in the same sections.

On the other hand, optimal control problems require
analyzing the typical issues of optimizations: existence re-
sults, necessary conditions for optimality, sufficient condi-
tions, robustness. Here, the typical problem that has been
successfully studied is the Linear Quadratic Regulator that
will be discussed in Sect. “Linear Quadratic Optimal Con-
trol”.

Control problems for nonlinear partial differential
equations are extremely interesting but harder to deal
with, so the literature is less rich in results and techniques.
Nevertheless, among the problems that received great at-
tention are those of fluid dynamics, specifically the Euler
equations

@tu C (u � r)u Crp D 0

and the Navier–Stokes equations

@tu � �
u C (u � r)u Crp D 0

subject to a boundary control and to the incompressibility
condition div u D 0.

Controllability

We now proceed to introduce the main notions of con-
trollability for the evolution equation (7). Later on in this

section we will give interpretations for the heat and wave
equations.

In a given Hilbert space H, with scalar product h�; �i
and norm k � k, let

A : D(A) � H ! H

be the infinitesimal generator of a strongly continuous semi-
group etA, t � 0, of bounded linear operators on X. In-
tuitively, this amounts to saying that u(t) :D etAu0 is the
unique solution of the Cauchy problem
(
u0(t) D Au(t) t � 0
u(0) D u0 ;

in the classical sense for u0 2 D(A), and in a suitable gen-
eralized sense for all u0 2 H. Necessary and sufficient con-
ditions in order for an unbounded operator A to be the in-
finitesimal generator of a strongly continuous semigroup
are given by the celebrated Hille–Yosida Theorem, see,
e. g. [99] and [55].

Abstract Evolution Equations

Let F be another Hilbert space (with scalar product and
norm denoted by the same symbols as for H), the so-
called control space, and let B : F ! H be a linear opera-
tor, that we will assume to be bounded for the time being.
Then, given T > 0 and u0 2 H, for all f 2 L2(0; T ; F) the
Cauchy problem

(
u0(t) D Au(t)C B f (t) t � 0
u(0) D u0

(12)

has a uniquemild solution u f 2 C([0; T];H) given by

u f (t) D etAu0 C
Z t

0
e(t�s)AB f (s) 8t � 0 (13)

Note 1 Boundary control problems can be reduced to the
same abstract form as above. In this case, however, B in
(12) turns out to be an unbounded operator related to suit-
able fractional powers of �A, see, e. g., [22].

For any t � 0 let us denote by �t : L2(0; t; F)! H the
bounded linear operator

�t f D
Z t

0
e(t�s)AB f (s) ds 8 f 2 L2(0; t; F) : (14)

The attainable (or reachable) set from u0 at time t,
A(u0; t) is the set of all points in H of the form u f (t) for
some control function f , that is

A(u0; t)
:
D etAu0 C�tL2(0; t; F) :
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We introduce below themain notions of controllability for
(7). Let T > 0.

Definition 1 System (7) is said to be:

� exactly controllable in time T ifA(u0; T) D H for all
u0 2 H, that is, if for all u0; u1 2 H there is a control
function f 2 L2(0; T ; F) such that u f (T) D u1;

� null controllable in time T if 0 2A(u0; T) for all
u0 2 H, that is, if for all u0 2 H there is a control func-
tion f 2 L2(0; T ; F) such that u f (T) D 0;

� approximately controllable in time T if A(u0; T)
is dense in H for all u0 2 H, that is, if for all
u0; u1 2 H and for any " > 0 there is a control func-
tion f 2 L2(0; T ; F) such that ku f (T) � u1k < ".

Clearly, if a system is exactly controllable in time T,
then it is also null and approximately controllable in
time T. Although these last two notions of controllability
are strictly weaker than strong controllability, for specific
problems—like when A generates a strongly continuous
group—some of them may coincide.

Since controllability properties concern, ultimately,
the range of the linear operator �T defined in (14), it is
not surprising that they can be characterized in terms of
the adjoint operator ��T : H ! L2(0; T ; F), which is de-
fined by

Z T

0

˝
��Tu(s); f (s)ids D hu0; �T f i

8u 2 H ; 8 f 2 L2(0; T ; F) :

Such a characterization is the object of the following theo-
rem. Notice that the above identity and (14) yield

��Tu(s) D B�e(T�s)A
�

u 8s 2 [0; T] :

Theorem 1 System (7) is:

� exactly controllable in time T if and only if there is
a constant C > 0 such that

Z T

0

��B�etA
�

u
��2dt � Ckuk2 8u 2 H ; (15)

� null controllable in time T if and only if there is a con-
stant C > 0 such that

Z T

0

�
�B�etA

�

u
�
�2dt � C

�
�eTA

�

u
�
�2 8u 2 H ; (16)

� approximately controllable in time T if and only if, for
every u 2 H,

B�etA
�

u D 0 t 2 [0; T] a.e. H) u D 0 : (17)

To benefit the reader who is more familiar with optimiza-
tion theory than abstract functional analysis, let us explain,
by a variational argument, why estimate (16) implies null
controllability. Consider, for every " > 0, the penalized
problem

min
˚
J"( f ) : f 2 L2(0; T ;H)

�
;

where

J"( f ) D
1
2

Z T

0
k f (t)k2 dt C

1
2"
ku f (T)k2

8 f 2 L2(0; T ;H) :

Since J" is strictly convex, it admits a unique minimum
point f". Set u" D u f" . Recalling (13) we have, By Fermat’s
rule,

0 D J0"( f")g D
Z T

0
h f"(t); g(t)i dt

C
1
"
hu"(T); �T gi 8g 2 L2(0; T ;H) : (18)

Therefore, passing to the adjoint of�T ,

Z T

0

D
f"(t)C

1
"

�
��Tu"(T)


(t); g(t)

E
dt D 0

8g 2 L2(0; T ;H) ;

whence, owing to (14),

f"(t) D �
1
"

�
��Tu"(T)


(t) D �B�v"(t)

8t 2 [0; T] ; (19)

where v"(t)
:
D 1

"
e(T�t)A�u"(T) is the solution of the dual

problem
(
v0 C A�v D 0 t 2 [0; T]
v(T) D 1

"
u"(T) :

It turns out that

1
2

Z T

0
k f"(t)k2 dt C

1
"
ku"(T)k2 � Cku0k2

8" > 0 (20)

for some positive constant C. Indeed, observe that, in view
of (19),
( ˝
u0" � Au" C BB�v" ; v"

˛
D 0 ; u"(0) D u0˝

v0" C A�v" ; u"
˛
D 0 ; v"(T) D 1

"
u"(T) :
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So,
Z T

0

�
d
dt
hu" ; v"i C

��B�v"
��2
�
dt D 0 ;

hence

1
"
ku"(T)k2 C

Z T

0

��B�v"
��2 dt D hu0 ; v"(0)i : (21)

Now, apply estimate (16) with u D u"(T)
"

and note that
v"(T � t) D etA� u"(T)

"
to obtain

Z T

0

�
�B�v"(t)

�
�2 dt � C kv"(0)k2

for some positive constant C. Hence, (20) follows from
(21) and (19).

Finally, from (20) one deduces the existence of
a weakly convergent subsequence f" j in L2(0; T ; F). Then,
called f 0 the weak limit of f" j , u" j (t)! u f0 (t) for all
t 2 [0; T]. So, owing to (20), u f0 (T) D 0.

Heat Equation

It is not hard to see that the heat equation (9) with Dirich-
let boundary conditions (2) fails to be exactly controllable.
On the other hand, one can show that it is null controllable
in any time T > 0, hence approximately controllable. Let
! be an open subset of˝ such that ! � ˝.

Taking

H D L2(˝) D F ; B f D 1! f 8 f 2 L2(˝)

and A as in (8), one obtains that, for any u0 2 L2(˝) and
f 2 L2(QT ), the initial-boundary value problem
8
<̂

:̂

@tu D 
u C 1! f in QT

u D 0 on ˙T

u(0; x) D u0(x) x 2 ˝
(22)

has a unique mild solution u f 2 C([0; T]; L2(˝)). More-
over, multiplying both sides of equation (9) by u and inte-
grating by parts, it is easy to see that

@xi u 2 L2(QT ) 8i D 1; : : : ; n : (23)

Notice that the above property already suffices to explain
why the heat equation cannot be exactly controllable: it is
impossible to attain a state u1 2 L2(˝) which is not com-
patible with (23).

On the other hand, null controllability holds true in
any positive time.

Theorem 2 Let T > 0 and let ! be an open subset of ˝
such that ! � ˝. Then the heat equation (9) with homoge-
neous Dirichlet boundary conditions is null controllable in
time T, i. e., for every initial condition u0 2 L2(˝) there is
a control function f 2 L2(QT ) such that the solution uf of
(22) satisfies u f (T; �) � 0. Moreover,
“

QT

j f j2dxdt � CT

Z

˝

ju0j2dx

for some positive constant CT.

The above property is a consequence of the abstract result
in Theorem 1 and of concrete estimates for solutions of
parabolic equations. Indeed, in order to apply Theorem 1
one has to translate (16) into an estimate for the heat op-
erator. Now, observing that both A and B are self-adjoint,
one promptly realizes that (16) reduces to

Z T

0

Z

!

jv(t; x)j2dxdt � C
Z

˝

jv(T; x)j2dx (24)

for every solution v of the problem
(
@tv D 
v in QT

v D 0 on ˙T :
(25)

Estimate (24) is called an observability inequality for the
heat operator for obvious reasons: problem (25) is not
well-posed since the initial condition is missing. Neverthe-
less, if, “observing” a solution v of such a problem on the
“small” cylinder (0; T) � !, you find that it vanishes, then
you can conclude that v(T; �) � 0 in the whole domain˝ .
Thus, v(0; �) � 0 by backward uniqueness.

In conclusion, as elegant as the abstract approach to
null controllability may be, one is confronted by the dif-
ficult task of proving observability estimates. In fact, for
the heat operator there are several ways to prove inequality
(24). One of the most powerful, basically due to Fursikov
and Imanuvilov [65], relies on global Carleman estimates.
Compared to other methods that can be used to derive ob-
servability, such a technique has the advantage of applying
to second order parabolic operators with variable coeffi-
cients, as well as to more general operators.

Global Carleman estimates are a priori estimates in
weighted norms for solutions of the problem

(
@tv D 
v C f in QT

v D 0 on ˙T :
(26)

regardless of initial conditions. The weight function is usu-
ally of the form

 r(t; x)
:
D �(t)

�
e2rk�k1;˝ �er�(x)


(t; x) 2 QT ; (27)
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where r is a positive constant, � is a given function in
C2(˝) such that

r�(x) ¤ 0 8x 2 ˝ ; (28)

and

�(t) :D
1

t(T � t)
0 < t < T :

Note that

� > 0 ; �(t)!1 t ! 0 ; T

 r > 0 ;  r(t; x)!1 t # 0 ; t " T :

Using the above notations, a typical global Carleman esti-
mate for the heat operator is the following result obtained
in [65]. Let us denote by �(x) the outword unit normal to
� at a point x 2 � , and by

@�

@�
(x) D r�(x) � �(x)

the normal derivative of � at x.

Theorem 3 Let ˝ be a bounded domain of Rn with
boundary of class C2, let f 2 L2(QT ), and let � be a func-
tion satisfying (28). Let v be a solution of (26). Then there
are positive constants r; s0 and C such that, for any s > s0,

s3
“

QT

�3(t)jv(t; x)j2e�2s r dxdt

� C
“

QT

j f (t; x)j2e�2s r dxdt

C Cs
Z T

0
�(t)dt

�

Z

�

@�

@�
(x)

ˇ̌
ˇ
ˇ̌
@v
@�

(t; x)

ˇ̌
ˇ
ˇ̌

2

e�2s r dH n�1(x) (29)

It is worth underlying that, thanks to the singular behavior
of � near 0 and T, the above result is independent of the
initial value of v. Therefore, it can be applied, indifferently,
to any solution of (26) as well as to any solution of the
backward problem
(
@tv C
v D f in QT

v D 0 on ˙T :

Moreover, inequality (29) can be completed adding first
and second order terms to its left-hand side, each with its
own adapted power of s and � .

Instead of trying to sketch the proof of Theorem 3,
which would go beyond the scopes of this note, it is in-
teresting to explain how it can be used to recover the ob-
servability inequality (24), which is what is needed to show
that the heat equation is null controllable. The reason-
ing—not completely straightforward—is based on the fol-
lowing topological lemma, proved in [65].

Lemma 1 Let˝ � Rn be a bounded domain with bound-
ary� of class Ck, for some k � 2, and let! � ˝ be an open
set such that ! � ˝.

Then there is function � 2 Ck (˝) such that

(
(i) �(x) D 0 and @�

@�
(x) < 0 8x 2 �

(i i) fx 2 ˝jr�(x) D 0g � ! :
(30)

Now, given a solution v of (25) and an open set! such that
! � ˝ , let ! 0 �� ! 00 �� ! be subdomains with smooth
boundary. Then the above lemma ensures the existence of
a function � such that

fx 2 ˝jr�(x)D 0g � ! 0 :

“Localizing” problem (25) onto ˝ 0 :D ˝ n ! 0 by a cutoff
function � 2 C1(Rn) such that

0 � � � 1 ; � � 1 on Rn n! 00 ; � � 0 on ! 0 ;

that is, taking w D �v, gives

(
@tw D 
w C h in Q0T

:
D (0; T) �˝ 0

w(t; �) D 0 on @˝ 0 D @˝ [ @! 0 ;
(31)

with h :D �v
�C 2r� � ru. Since r� ¤ 0 on ˝ 0, The-
orem 3 can be applied to w on Q0T to obtain

s3
“

Q0T

�3jwj2e�2s rdxdt

� C
“

Q0T

jhj2e�2s rdxdt

C Cs
Z T

0
�dt

Z

�

@�

@�

ˇ̌
ˇ
ˇ
@w
@�

ˇ̌
ˇ
ˇ

2
e�2s r dH n�1

C Cs
Z T

0
�dt

Z

@!0

@�

@�

ˇ̌
ˇ̌@w
@�

ˇ̌
ˇ̌
2
e�2s r dH n�1

� C
“

Q0T

jhj2e�2s rdxdt
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for s sufficiently large. On the other hand, for any 0 < T0 <
T1 < T ,

s3
“

Q0T

�3jwj2e�2s rdxdt

� s3
Z T1

T0
dt
Z

˝n!

�3jwj2e�2s rdxdt

�

Z T1

T0
dt
Z

˝n!

jvj2dx

Therefore, recalling the definition of h,

Z T1

T0
dt
Z

˝n!

jvj2dx � C
“

Q0T

jhj2e�2s rdxdt

� C
Z T

0
dt
Z

!00n!0

�
jr2�j2v2 C jr�j2jrvj2

�
e�2s rdx

� C
Z T

0
dt
Z

!

jvj2dx C C
Z T

0
dt

�

Z

!00n!0
jrvj2e�2s rdx :

Now, fix T0 D T/3 ; T1 D 2T/3 and use Caccioppoli’s in-
equality (a well-known estimate for solution of elliptic and
parabolic PDE’s)

Z T

0
dt
Z

!00n!0
jrvj2e�2s r dx

� C
Z T

0
dt
Z

!

jvj2e�2s r dx ;

to conclude that
Z 2T/3

T/3
dt
Z

˝n!

jvj2 dx � C
Z T

0
dt
Z

!

jvj2 dx

or
Z 2T/3

T/3
dt
Z

˝

jvj2 dx � (1C C)
Z T

0
dt
Z

!

jvj2 dx

for some constant C. Then, the dissipativity of the heat op-
erator (that is, the fact that

R
˝ jv(t; x)j

2dx is decreasing
with respect to t) implies that

Z

˝

v2(T; x) dx �
3
T

Z 2T/3

T/3
dt
Z

˝

v2(t; x) dx

� (1C C)
3
T

Z T

0
dt
Z

!

v2(t; x) dx ;

which is exactly (24).

Wave Equation

Compared to the heat equation, the wave equation (5) ex-
hibits a quite different behavior from the point of view of
exact controllability. Indeed, on the one hand, there is no
obstruction to exact controllability since no regularizing
effect is connected with wave propagation. On the other
hand, due to the finite speed of propagation, exact control-
lability cannot be expected to hold true in arbitrary time,
as null controllability does for the heat equation.

In fact, a typical result that holds true for the wave
equation is the following, where a boundary control of
Dirichlet type acts on a part �1 � � , while homogeneous
boundary conditions are imposed on �0 D � n �1:

8
<̂

:̂

@2t u D 
u in QT

u D f 1�1 on ˙T

u(0; x) D u0(x) ; @tu(0; x) D u1(x) x 2 ˝
(32)

Observe that problem (32) is well-posed taking

u0 2L2(˝) ; u1 2 H�1(˝)

f 2L2(0; T ; L2(� ))

u 2C([0; T]; L2(˝)) \ C1([0; T];H�1(˝)) :

Theorem 4 Let ˝ be a bounded domain of Rn with
boundary of class C2 and suppose that, for some point
x0 2 Rn ,
(
(x � x0) � �(x) > 0 8x 2 �1
(x � x0) � �(x) � 0 8x 2 �0 :

Let

R D sup
x2˝
jx � x0j :

If T>2R, then, for all (u0; u1); (v0; v1) 2 L2(˝) � H�1(˝)
there is a control function f 2 L2(0; T ; L2(� )) such that the
solution uf of (32) satisfies

u f (T; x) D v0(x) ; @tu f (T; x) D v1(x) :

As we saw for abstract evolution equations, the above ex-
act controllability property is proved to be equivalent to
an observability estimate for the dual homogeneous prob-
lem using, for instance, the Hilbert Uniqueness Method
(HUM) by J.-L. Lions [86].

Bibliographical Comments

The literature on controllability of parabolic equations and
related topics is so huge, that no attempt to provide a com-
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prehensive account of it would fit within the scopes of
this note. So, the following comments have to be taken as
a first hint for the interested reader to pursue further bib-
liographical research.

The theory of exact controllability for parabolic equa-
tions was initiated by the seminal paper [58] by Fattorini
and Russell. Since then, it has experienced an enormous
development. Similarly, the multiplier method to obtain
observability inequalities for the wave equation was de-
veloped in [17,73,74,77,86]. Some fundamental early con-
tributions were surveyed by Russell [108]. The next es-
sential progress was made in the work by Lebeau and
Robbiano [83] and then by Fursikov and Imanuvilov in
a series of papers. In [65] one can find an introduc-
tion to global Carleman estimates, as well as applica-
tions to the controllability of several ODE’s. In partic-
ular, the presentation of this paper as for observability
inequalities and Carleman estimates for the heat opera-
tor is inspired by the last monograph. General perspec-
tives for the understanding of global Carleman estimates
and their applications to unique continuation and con-
trol problems for PDE’s can be found in the works by
Tataru [113,114,115,116]. Usually, the above approach
requires coefficients to be sufficiently smooth. Recently,
however, interesting adaptations of Carleman estimates to
parabolic operators with discontinuous coefficients have
been obtained in [21,82].

More recently, interest has focussed on control prob-
lems for nonlinear parabolic equations. Different ap-
proaches to controllability problems have been proposed
in [57] and [44]. Then, null and approximate controlla-
bility results have been improved by Fernandez–Cara and
Zuazua [61,62]. Techniques to produce insensitizing con-
trols have been developed in [117]. These techniques have
been successfully applied to the study of Navier–Stokes
equations by several authors, see e. g. [63].

Fortunately, several excellent monographs are now
available to help introduce the reader to this subject. For
instance, the monograph by Zabczyk [121] could serve as
a clean introduction to control and stabilization for finite-
and infinite-dimensional systems.Moreover, [22,50,51], as
well as [80,81] develop all the basic concepts of control and
system theory for distributed parameter systems with spe-
cial emphasis on abstract formulation. Specific references
for the controllability of the wave equation byHUM can be
found in [86] and [74]. More recent results related to series
expansion and Ingham type methods can be found in [75].
For the control of Navier–Stokes equations the reader is
referred to [64], as well as to the book by Coron [43], which
contains an extremely rich collection of classical results
and modern developments.

Stabilization

Stabilization of flexible structures such as beams, plates,
up to antennas of satellites, or of fluids as, for instance, in
aeronautics, is an important part of CT. In this approach,
one wants either to derive feedback laws that will allow
the system to autoregulate once they are implemented, or
study the asymptotic behavior of the stabilized system i. e.
determine whether convergence toward equilibrium states
as times goes to infinity holds, determine its speed of con-
vergence if necessary or study howmany feedback controls
are required in case of coupled systems.

Different mathematical tools have been introduced to
handle such questions in the context of ODE’s and then
of PDE’s. Stabilization of ODE’s goes back to the work of
Lyapunov and Lasalle. The important property is that tra-
jectories decay along Lyapunov functions. If trajectories
are relatively compact in appropriate spaces and the sys-
tem is autonomous, then one can prove that trajectories
converge to equilibria asymptotically. However, the con-
struction of Lyapunov functions is not easy, in general.

This section will be concerned with some aspects of
the stabilization of second order hyperbolic equations, our
model problem being represented by the wave equation
with distributed damping

8
<̂

:̂

@t tu �
u C a(x)ut D 0 in ˝ �R ;

u D 0 on ˙ D (0;1) � �
(u; @tu)(0) D (u0; u1) on ˝ ;

(33)

in a bounded domain ˝ � Rn with a smooth bound-
ary � . For n D 2, u(t; x) represents the displacement
of point x of the membrane at time t. Therefore, equa-
tion (33) describes an elastic system. The energy of such
a system is given by

E(t) D
1
2

Z

˝

�
jut(t; x)j2 C jru(t; x)j2

�
dx :

When a � 0, the feedback term a(x)ut models friction:
it produces a loss of energy through a dissipation phe-
nomenon. More precisely, multiplying the equation in
(33) by ut and integrating by parts on ˝ , it follows that

E0(t) D �
Z

˝

a(x)jut j2 dx � 0 ; 8t � 0 : (34)

On the other hand, if a � 0, then the system is conserva-
tive, i. e., E(t) D E(0) for all t � 0.
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Another well-investigated stabilization problem for
the wave equation is when the feedback is localized on
a part � 0 of the boundary � , that is,

8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

@t tu �
u D 0 in ˝ �R
@u
@�
C ut D 0 on ˙0 D (0;1) � �0

u D 0 on ˙1 D (0;1) � (� n �0)
(u; @tu)(0) D (u0; u1)

(35)

In this case, the dissipation relation (34) takes the form

E0(t) D �
Z

�0

jut j2 dH n�1 � 0 ; 8t � 0 :

In many a situation—such as to improve the quality of
an acoustic hall—one seeks to reduce vibrations to a min-
imum: this is why stabilization is an important issue in
CT. We note that the above system has a unique station-
ary solution—or, equilibrium—given by u � 0. Stabiliza-
tion theory studies all questions related to the convergence
of solutions to such an equilibrium: existence of the limit,
rate of convergence, different effects of nonlinearities in
both displacement and velocity, effects of geometry, cou-
pled systems, damping effects due to memory in viscoelas-
tic materials, and so on.

System (33) is said to be:

� strongly stable if E(t)! 0 as t !1;
� (uniformly) exponentially stable if E(t) � Ce�˛tE(0)

for all t � 0 and some constants ˛ > 0 and C � 0, in-
dependent of u0; u1.

This note will focus on some of the above issues, such as
geometrical aspects, nonlinear damping, indirect damping
for coupled systems and memory damping.

Geometrical Aspects

A well-known property of the wave equation is the so-
called finite speed of propagation, which means that, if the
initial conditions u0; u1 have compact support, then the
support of u(t; �) evolves in time at a finite speed. This ex-
plains why, for the wave equation, the geometry of˝ plays
an essential role in all the issues related to control and sta-
bilization.

The size and localization of the region in which the
feedback is active is of great importance. In this paper such
a region, denoted by !, is taken as a subset of ˝ of posi-
tive Lebesgue measure. More precisely, a is assumed to be

continuous on˝ and such that

a � 0 on ˝ and a � a0 on ! ; (36)

for some constant a0 > 0. In this case, the feedback is said
to be distributed. Moreover, it is said to be globally dis-
tributed if ! D ˝ and locally distributed if˝ n ! has pos-
itive Lebesgue measure.

Two main methods have been used or developed to
study stabilization, namely the multiplier method and mi-
crolocal analysis. The one that gives the sharpest results is
based on microlocal analysis. It goes back to the work of
Bardos, Lebeau and Rauch [17], giving geodesics sufficient
conditions on the region of active control for exact con-
trollability to hold. These conditions say that each ray of
geometric optics should meet the control region. Burq and
Gérard [25] showed that these results hold under weaker
regularity assumptions on the domain and coefficients of
the operators (see also [26,27]). These geodesics condi-
tions are not explicit, in general, but they allow to get decay
estimates of the energy under very general hypotheses.

The multiplier method is an explicit method, based
on energy estimates, to derive decay rates (as well as ob-
servability and exact controllability results). For bound-
ary control and stabilization problems it was developed
in the works of several authors, such as Ho [38,73], J.-L.
Lions [86], Lasiecka–Triggiani, Komornik–Zuazua [76],
and many others. Zuazua [123] gave an explicit geomet-
ric condition on ! for a semilinear wave equation sub-
ject to a locally distributed damping. Such a condition
was then relaxed K. Liu [87] (see also [93]) who intro-
duced the so-called piecewise multiplier method. Lasiecka
and Triggiani [80,81] introduced a sharp trace regularity
method which allows to estimate boundary terms in en-
ergy estimates. There also exist intermediate results be-
tween the geodesics conditions of Bardos–Lebeau–Rauch
and the multiplier method, obtained by Miller [95] using
differentiable escape functions.

Zuazua’s multiplier geometric condition can be de-
scribed as follows. If a subset O of ˝ is given, one can
define an "-neighborhood of O in ˝ as the subset of
points of ˝ which are at distance at most " of O. Zuazua
proved that if the set ! is such that there exists a point
x0 2 Rn—an observation point—for which ! contains an
"-neighborhood of � (x0) D fx 2 @˝ ; (x � x0) � �(x) �
0g, then the energy decays exponentially. In this note, we
refer to this condition as (MGC).

If a vanishes for instance in a neighborhood of the two
poles of a ball ˝ in Rn , one cannot find an observation
point x0 such that (MGC) holds. K. Liu [87] (see also [93])
introduced a piecewise multiplier method which allows to
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choose several observation points, and therefore to handle
the above case.

Introduce disjoint lipschitzian domains ˝ j of ˝ ,
j D 1; : : : ; J, and observation points x j 2 RN , j D 1; : : : ;
J and define

� j(x j) D fx 2 @˝ j ; (x � x j) � � j(x) � 0g

Here �j stands for the unit outward normal vector to the
boundary of˝ j. Then the piecewisemultiplier geometrical
condition for ! is:

! �N"



[

J
jD1� j(x

j) [
�
˝n [

J
jD1 ˝ j

�
(PWMGC)

It will be denoted by (PWMGC) condition in the sequel.
Assume now that a vanishes in a neighborhood of the

two poles of a ball inRn . Then, one can choose two subsets
˝1 and˝2 containing, respectively, the two regions where
a vanishes and apply the piecewise multiplier method with
J D 2 and with the appropriate choices of two observation
points and ". Themultipliermethod consists of integrating
by parts expressions of the form

Z T

t

Z

˝



@2t u �
u C a(x)ut

�
Mu dx dt D 0

80 � t � T ;

where u stands for a (strong) solution of (33), with an
appropriate choice of Mu. Multipliers have generally the
form

Mu D (m(x) � ru C c u) (x) ;

where m depends on the observation points and  

is a cut-off function. Other multipliers of the form
Mu D 
�1(ˇu), where ˇ is a cut-off function and 
�1

is the inverse of the Laplacian operator with homogeneous
Dirichlet boundary conditions, have also used.

The geometric conditions (MGC) or (PWMGC) serve
to bound above by zero terms which cannot be controlled
otherwise. One can then prove that the energy satisfies an
estimate of the form

Z T

t
E(s) ds

� cE(t)C
Z T

t

 Z

˝

a(x)jut j2 C
Z

!

jut j2
!

ds

8t � 0 : (37)

Once this estimate is proved, one can use the dissipa-
tion relation to prove that the energy satisfies integral in-
equalities of Gronwall type. This is the subject of the next
section.

Decay Rates, Integral Inequalities
and Lyapunov Techniques

The Linear Feedback Case Using the dissipation rela-
tion (34), one has

Z T

t

Z

˝

ajutj2 dx ds �
Z T

t
�E0(s) ds � E(t)

8 0 � t � T :

On the other hand, thanks to assumption (36) on a

Z T

t

Z

!

u2t dx ds �
1
a0

Z T

t

Z

˝

ajut j2 dx ds

�
1
a0

E(t) 80 � t � T :

By the above inequalities and (37), E satisfies

Z T

t
E(s) ds � cE(t) ; 80 � t � T : (38)

Since E is a nonincreasing function and thanks to this in-
tegral inequality, Haraux [71] (see also Komornik [74])
proved that E decays exponentially at infinity, that is

E(t) � E(0) exp


1 � t/c) ; 8t � c : (39)

This proof is as follows. Define

�(t) D exp(t/c)
Z 1

t
E(s) ds 8t � 0 :

Thanks to (38) � is nonincreasing on [0;1), so that

�(t) � �(0) D
Z 1

0
E(s) ds :

Using once again (38) with t D 0 in this last inequality and
the definition of � , one has
Z 1

t
E(s) ds � cE(0) exp(�t/c) 8t � 0 :

Since E is a nonnegative and nonincreasing function

cE(t) �
Z t

t�c
E(s) ds �

Z 1

t�c
E(s) ds

� cE(0) exp(�(t � c)/c) ;

so that (39) is proved.
An alternative method is to introduce a modified (or

perturbed) energy E" which is equivalent to the natural
one for small values of the parameter " as in Komornik and
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Zuazua [76]. Then one shows that this modified energy
satisfies a differential Gronwall inequality so that it decays
exponentially at infinity. The exponential decay of the nat-
ural energy follows then at once. In this case, the modified
energy is indeed a Lyapunov function for the PDE. The
natural energy cannot be in general such a Lyapunov func-
tion due to the finite speed of propagation (consider initial
data which have compact support compactly embedded in
˝n!).

There are also very interesting approaches using the
frequency domain approach, or spectral analysis such as
developed by K. Liu [87] Z. Liu and S. Zheng [88]. In the
sequel, we concentrate on the integral inequality method.
Thismethod has been generalized in several directions and
we present in this note some results concerning extensions
to

� nonlinear feedback
� indirect or single feedback for coupled system
� memory type feedbacks

Generalizations to Nonlinear Feedbacks Assume now
that the feedback term a(x)ut in (33) is replaced by a non-
linear feedback a(x)�(ut) where � is a smooth, increasing
function satisfying v�(v) � 0 for v 2 R, linear at 1 and
with polynomial growth close to zero, that is: �(v) D jvjp

for jvj � 1 where p 2 (1;1).
Assume moreover that ! satisfies Zuazua’s multiplier

geometric condition (MGC) or Liu’s piecewise multiplier
method (PWMGC). Then using multipliers of the space
and time variables defined as E(s)(p�1)/2 Mu(x) where
Mu(x) are multipliers of the form described in section 5.1
and integrating by parts expressions of the form

Z T

t
E(s)(p�1)/2

�

Z

˝

�
@2t u �
u C a(x)�(ut)


Mu(x) dx ds D 0 ;

one can prove that the energy E of solutions satisfies the
following inequality for all 0 � t � T

Z T

t
E(pC1)/2(s) dt

� cE(pC1)/2(t)C c
Z T

t
E(p�1)/2(s)

�

�Z

˝

�(ut)2 C
Z

!

jut j2
�
:

One can remark than an additional multiplicative weight
in time depending on the energy has to be taken. This

weight is E(p�1)/2. Then as in the linear case, but in a more
involved way, thanks to the dissipation relation

E0(t) D �
Z

˝

a(x)ut�(ut) ; (40)

one can prove that E satisfies the following nonlinear inte-
gral inequality

Z T

t
E(pC1)/2(s) ds � cE(t) ; 80 � t � T :

Thanks to the fact that E is nonincreasing, a well-
known result by Komornik [74] shows that E is polyno-
mially decaying, as t�2/(p�1) at infinity. The above type re-
sults have been obtained by many authors under weaker
form (see also [40,41,71,98,122]).

Extensions to nonlinear feedbacks without growth
conditions close to zero have been studied by Lasiecka and
Tataru [78], Martinez [93], W. Liu and Zuazua [89], Eller
Lagnese and Nicaise [56] and Alabau–Boussouira [5]. We
present the results obtained in this last reference since they
provide optimal decay rates.

Themethod is as follows. Define respectively the linear
and nonlinear kinetic energies

( R
! jutj

2 dx ;
R
˝ ja(x)�(ut)j

2 dx ;

and use a weight function in time f (E(s)) which is to be de-
termined later on in an optimal way. Integrating by parts
expressions of the form

Z T

t
f (E(s))

Z

˝

�
@2t u�
uCa(x)�(ut )


Mu(x) dx ds D 0 ;

one can prove that the energy E of solutions satisfies the
following inequality for all 0 � t � T

Z T

t
E(s) f (E(s)) ds � c f (E(t))C c

Z T

t
f (E(s))

�

�Z

˝

ja(x)�(ut)j2 C
Z

!

jut j2
�
: (41)

The difficulty is to determine the optimal weight un-
der general growth conditions on the feedback close to 0,
in particular for cases for which the feedback decays to 0
faster than polynomials.

Assume now that the feedback satisfies

g(jvj) � j�(v)j � Cg�1(jvj) ; 8jvj � 1 ; (42)
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where g is continuously differentiable on R strictly in-
creasing with g(0) D 0 and
8
<̂

:̂

g 2 C2([0; r0]) ; r0 sufficiently small ;
H(:) D p:g(p:) is strictly convex on

�
0; r20

�
;

g is odd :

Moreover, � is assumed to have a linear growth at infinity.
We define the optimal weight function f as follows.

We first extendH to a function Ĥ define on all R

Ĥ(x) D

(
H(x) if x 2

�
0; r20

�
;

C1 otherwise ;

then, define a function F as follows:

F(y) D

8
<̂

:̂

Ĥ�(y)
y

if y 2 (0;C1) ;

0 if y D 0 ;

where Ĥ� stands for the convex conjugate of Ĥ, that is

Ĥ�(y) D sup
x2R
fx y � Ĥ(x)g :

Then the optimal weight function f is determined in the
following way

f (s) D F�1(s/2ˇ) s 2
�
0; 2ˇr20


;

where ˇ is of the form max(�1; �2E(0)), �1 and �2 being
explicit positive constants.

One can prove that the above formulas make sense,
and in particular that F is invertible and smooth. More
precisely, F is twice continuously differentiable strictly in-
creasing, one-to-one function from [0;C1) onto [0; r20).
Note that since the feedback is supposed to be linear at
infinity, if one wants to obtain results for general growth
types of the feedback, one can assume convexity of H only
in a neighborhood of 0.

One can prove from (41) that there exists an (explicit)
T0 > 0 such that for all initial data, E satisfies the following
nonlinear integral inequality

Z T

t
E(s) f (E(s)) ds � T0E(t) 80 � t � T : (43)

This inequality is proved thanks to convexity argu-
ments as follows. Thanks to the convexity of Ĥ, one can
use Jensen’s inequality and (42), so that

Z

˝t

ja(x)�(ut)j2 dx � �1(t)Ĥ�1

�

�
1

�1(t)

Z

˝

a(x)ut�(ut ) dx
�

In a similar way, one proves that

Z

!t

jut j2 dx � �2(t)Ĥ�1
�

1
�2(t)

Z

˝

a(x)ut�(ut) dx
�

where ˝ t and !t are time-dependent sets of respective
Lebesgue measures �1(t) and �2(t) on which the velocity
ut(t; x) is sufficiently small. Using the above two estimates,
together with the linear growth of � at infinity, one proves

Z T

t
f (E(s))

�Z

˝

ja(x)�(ut)j2 C
Z

!

jut j2
�

�

Z T

t
f (E(s))Ĥ�1

�
1
c

Z

˝

a(x)ut�(ut) dx
�

Using then Young’s inequality, together with the dis-
sipation relation (40) in the above inequality, one obtains

Z T

t
f (E(s))

�Z

˝

ja(x)�(ut)j2 C
Z

!

jut j2
�

� C1

Z T

t
Ĥ?

�
f (E(s)


dsC C2E(t) ;

(44)

where Ci > 0 i D 1; 2 is a constant independent of the ini-
tial data. Using the dissipation relation (40) in the above
inequality, this gives for all 0 � t � T

Combining this last inequality with (41) gives

Z T

t
E(s) f (E(s)) ds � ˇ

Z T

t
(Ĥ)?

�
f (E(s)


dsC C2E(t)

where ˇ is chosen of the form max(�1; �2E(0)), �1 and �2
being explicit positive constants to guarantee that the ar-
gument E of f stays in the domain of definition of f . Thus
(43) is proved, thanks to the fact that the weight function
has been chosen so that

ˇĤ?( f (E(s)) D
1
2
E(s) f (E(s)) 8 0 � s :

Therefore E satisfies a nonlinear integral inequality with
a weight function f (E) which is defined in a semi-explicit
way in general cases of feedback growth.

The last step is to prove that a nonincreasing and
nonnegative absolutely continuous function E satisfying
a nonlinear integral inequality of the form (43) is decay-
ing at infinity, and to establish at which rate this holds. For
this, one proceeds as in [5].

Let � > 0 and T0 > 0 be fixed given real numbers and
F be a strictly increasing function from [0;C1) on [0; �),
with F(0) D 0 and limy!C1 F(y) D �.
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For any r 2 (0; �), we define a function Kr from (0; r]
on [0;C1) by

Kr(�) D
Z r

�

dy
yF�1(y)

; (45)

and a function  r which is a strictly increasing function
from [ 1

F�1(r) ;C1) onto [ 1
F�1(r) ;C1) by

 r(z) D z C Kr(F(
1
z
)) � z; 8z �

1
F�1(r)

; (46)

One can prove that if E is a nonincreasing, absolutely
continuous function from [0;C1) on [0;C1), satisfying
0 < E(0) < � and the inequality

Z T

t
E(s)F�1(E(s)) ds � T0E(S) ; 8 0 � t � T ; (47)

then E satisfies the following estimate:

E(t) � F

 
1

 �1r ( t
T0 )

!

; 8t �
T0

F�1(r)
; (48)

where r is any real such that

1
T0

Z C1

0
E(�)F�1(E(�)) d� � r � � :

Thus, one can apply the above result to E with � D r20
and show that lim t !C1E(t) D 0, the decay rate being
given by estimate (48).

If g is polynomial close to zero, one gets back that the
energy E(t) decays as t

�2
p�1 at infinity. If g(v) behaves as

exp(�1/jvj) close to zero, then E(t) decays as 1/(ln(t))2 at
infinity.

The usefulness of convexity arguments has been first
pointed out by Lasiecka and Tataru [78] using Jensen’s
inequality and then in different ways by Martinez [93]
(the weight function does not depend on the energy)
and W. Liu and Zuazua [89] and Eller Lagnese and
Nicaise [56]. Optimal decay rates have been obtained
by Alabau–Boussouira [5,6] using a weight function de-
termined through the theory of convex conjugate func-
tions and Young’s (named also as Fenchel–Moreau’s) in-
equality. This argument was also used by W. Liu and
Zuazua [89] in a slightly different way and combined
to a Lyapunov technique. Optimality of estimates in [5]
is proved in one-dimensional situation and for bound-

ary dampings applying optimality results of Vancosteno-
ble [119] (see also Martinez and Vancostenoble [118]).

Indirect Damping for Coupled Systems

Many complex phenomena are modeled through coupled
systems. In stabilizing (or controlling) energies of the vec-
tor state, one has very often access only to some com-
ponents of this vector either due to physical constraints
or to cost considerations. In this case, the situation is to
stabilize a full system of coupled equation through a re-
duced number of feedbacks. This is called indirect damp-
ing. This notion has been introduced by Russell [109] in
1993.

As an example, we consider the following system:

(
@2t u �
u C @tu C ˛v D 0
@2t v �
v C ˛u D 0

in ˝ �R ; u D 0 D v on @˝ �R : (49)

Here, the first equation is damped through a linear dis-
tributed feedback, while no feedback is applied to the sec-
ond equation. The question is to determine if this coupled
system inherits any kind of stability for nonzero values of
the coupling parameter ˛ from the stabilization of the first
equation only.

In the finite dimensional case, stabilization (or con-
trol) of coupled ODE’s can be analyzed thanks to a power-
ful rank type condition named Kalman’s condition. The
situation is much more involved in the case of coupled
PDE’s.

One can show first show that the above system fails to
be exponentially stable (see also [66] for related results).
More generally, one can study the stability of the system

(
u00 C A1u C Bu0 C ˛v D 0
v00 C A2v C ˛u D 0

(50)

in a separable Hilbert space H with norm j � j, where
A1;A2 and B are self-adjoint positive linear operators in
H. Moreover, B is assumed to be a bounded operator. So,
our analysis applies to systems with internal damping sup-
ported in the whole domain ˝ such as (49); the reader is
referred to [1,2] for related results concerning boundary
stabilization problems (see also Beyrath [23,24] for local-
ized indirect dampings).

In light of the above observations, system (50) fails to
be exponentially stable, at least when H is infinite dimen-
sional and A1 has a compact resolvent as in (49). Indeed
it is shown in Alabau, Cannarsa and Komornik [8] that
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the total energy of sufficiently smooth solutions of (50) de-
cays polynomially at infinity whenever j˛j is small enough
but nonzero. From this result we can also deduce that any
solution of (50) is strongly stable regardless of its smooth-
ness: this fact follows by a standard density argument since
the semigroup associated with (50) is a contraction semi-
group.

A brief description of the key ideas of the approach de-
veloped in [2,8] is as follows. Essentially, one uses a finite
iteration scheme and suitable multipliers to obtain an esti-
mate of the form

Z T

0
E(u(t); v(t))dt � c

jX

kD0

E(u(k)(0); v(k)(0))

8 T � 0 ; (51)

where j is a positive integer and E denotes the total energy
of the system

E(u; v) D
1
2
�
jA1/2

1 uj2 C ju0j2


C
1
2
�
jA1/2

2 vj2 C jv0j2

C ˛hu; vi :

Once (51) is proved, an abstract lemmadue to Alabau [1,2]
shows that E(u(t); v(t)) decays polynomially at 1. This
abstract lemma can be stated as follows.

Let A be the infinitesimal generator of a continuous
semi-group exp(tA) on an Hilbert spaceH , and D(A) its
domain. For U0 in H we set in all the sequel U(t) D
exp(tA)U0 and assume that there exists a functional E de-
fined on C([0;C1);H ) such that for every U0 in H ,
E(exp(:A)) is a non-increasing, locally absolutely contin-
uous function from [0;C1) on [0;C1). Assume more-
over that there exist an integer k 2 N? and nonnegative
constants cp for p D 0; : : : k such that

Z T

S
E(U(t))dt �

kX

pD0

cpE(U (p)(S))

80 � S � T ;8U0 2 D(Ak) : (52)

Then the following inequalities hold for every U0 in
D(Akn) and all 0 � S � T where n is any positive integer:

Z T

S
E(U(�))

(� � S)n�1

(n � 1)!
d� � c

knX

pD0

E(U (p)(S)) ; (53)

and

E(U(t)) � c
knX

pD0

E(U (p)(0))t�n

8t > 0 ; 8U0 2 D(Akn) ;

where c is a constant which depends on n.
First (53) is proved by induction on n. For n D 1, it re-

duces to the hypothesis (52). Assume now that (53) holds
for n and let U0 be given in D(Ak(nC1)). Then we have

Z T

S

Z T

t
E(U(�))

(� � t)n�1

(n � 1)!
d�dt

� c
knX

pD0

Z T

S
E(U (p)(t))dt

8 0 � S � T ;8U0 2 D(Akn):

SinceU0 is in D(Ak(nC1)) we deduce thatU (p)(0) D ApU0

is in D(Ak) for p 2 f0; : : : kng. Hence we can apply the
assumption (52) to the initial data U (p)(0). This together
with Fubini’s Theorem applied on the left hand side of the
above inequality give (53) for nC 1. Using the property
that E(U(t)) is non increasing in (53) we easily obtain the
last desired inequality.

Applications to wave-wave,wave-Petrowsky equations
and various concrete examples hold.

The above results have been studied later on by Batkai,
Engel, Prüss and Schnaubelt [18] using very interesting
resolvent and spectral criteria for polynomial stability of
abstract semigroups. The above abstract lemma in [2]
has also been generalized using interpolation theory. One
should note that this integral inequality involving higher
order energies of solutions is not of differential nature,
unlike Haraux’s and Komornik’s integral inequalities. An-
other approach based on decoupling techniques and for
slightly different abstract systems have been introduced by
Ammar Khodja Bader and Ben Abdallah [12].

Spectral conditions have also been studied by Z.
Liu [88] and later on by Z. Liu and Rao [90], Loreti and
Rao [92] for peculiar abstract systems and in general for
coupled equations only of the same nature (wave-wave for
instance), so that a dispersion relation for the eigenvalues
of the coupled system can be derived. Also these last re-
sults are given for internal stabilization only. Because of
the above limitations, Z. Liu–Rao and Loreti–Rao’s results
are less powerful in generality than the ones given by Al-
abau, Cannarsa and Komornik [8] and Alabau [2]. More-
over results through energy type estimates and integral
inequalities can be generalized to include nonlinear indi-
rect dampings as shown in [7]. On the other side spectral
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methods are very useful to obtain optimal decay rates pro-
vided that one can determine at which speed the eigenval-
ues approach the imaginary axis for high frequencies.

Memory Dampings

We consider the following model problem
8
ˆ̂̂
<̂

ˆ̂̂
:̂

utt(t; x) �
u(t; x)C
R t
0 ˇ(t � s)
u(s; x) ds D

ju(t; x)j�u(t; x)
u(t; �)j@˝ D 0
(u(0; �); ut (0; �)) D (u0; u1)

(54)

where 0 < � � 2
N�2 holds. The secondmember is a source

term. The damping
Z t

0
ˇ(t � s)
u(s; x) ds

is of memory type.
The energy is defined by

Eu(t) D
1
2
kut(t)k2L2(˝) dx

C
1
2

�
1 �

Z t

0
ˇ(s) ds

�
kru(t)k2L2(˝)

�
1

� C 2
ku(t)k�C2

L�C2(˝)

C
1
2

Z t

0
ˇ(t � s)kru(t) � ru(s)k2L2(˝) ds

The damping term produces dissipation of the energy, that
is (for strong solutions)

E0u(t) D �
1
2
ˇ(t)kru(t)k2

C
1
2

Z t

0
ˇ0(t)kru(s) � ru(t)k2 ds � 0

One can consider more general abstract equations of the
form

u00(t)C Au(t) �
Z t

0
ˇ(t � s)Au(s) ds D rF(u(t))

t 2 (0;1) (55)

in a Hilbert space X, where A : D(A) � X ! X is an ac-
cretive self-adjoint linear operator with dense domain, and
rF denotes the gradient of a Gâteaux differentiable func-
tional F : D(A1/2)! R. In particular, equation (54) fits
into this framework as well as several other classical equa-
tions of mathematical physics such as the linear elasticity
system.

We consider the following assumptions.

Assumptions (H1)

1. A is a self-adjoint linear operator on X with dense do-
main D(A), satisfying

hAx; xi � Mkxk2 8x 2 D(A) (56)

for some M > 0.
2. ˇ : [0;1)! [0;1) is a locally absolutely continuous

function such that
Z 1

0
ˇ(t)dt < 1 ˇ(0) > 0 ˇ0(t) � 0

for a.e. t � 0 :

3. F : D(A1/2)! R is a functional such that
1. F is Gâteaux differentiable at any point x 2 D(A1/2);
2. for any x 2 D(A1/2) there exists a constant c(x) > 0

such that

jDF(x)(y)j � c(x)kyk; for any y 2 D(A1/2);

where DF(x) denotes the Gâteaux derivative of F in
x; consequently, DF(x) can be extended to the whole
space X (and we will denote by rF(x) the unique
vector representingDF(x) in the Riesz isomorphism,
that is, hrF(x); yi D DF(x)(y), for any y 2 X);

3. for any R > 0 there exists a constant CR > 0 such
that

krF(x) � rF(y)k � CRkA1/2x � A1/2yk

for all x; y 2 D(A1/2) satisfying kA1/2xk ; kA1/2yk �
R.

Assumptions (H2)

1. There exist p 2 (2;1] and k > 0 such that

ˇ0(t) � �kˇ1C 1
p (t) for a.e. t � 0

(here we have set 1
p D 0 for p D 1).

2. F(0) D 0, rF(0) D 0, and there is a strictly increas-
ing continuous function  : [0;1)! [0;1) such that
 (0) D 0 and

jhrF(x); xij �  (kA1/2xk)kA1/2xk2 8x 2 D(A1/2) :

Under these assumptions, global existence for suffi-
ciently small (resp. all) initial data in the energy space
can be proved for nonvanishing (resp. vanishing) source
terms.
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It turns out that the above energy methods based on
multiplier techniques combined with linear and nonlinear
integral inequalities can be extended to handle memory
dampings and applied to various concrete examples such
as wave, linear elastodynamic and Petrowsky equations for
instance. This allows to show in [10] that exponential as
well as polynomial decay of the energy holds if the kernel
decays respectively exponentially or polynomially at infin-
ity.

The method is as follows. One evaluates expressions of
the form
Z T

t
hu00(s)C Au(s)�

Z t

0
ˇ  Au(s)� rF(u(s);Mui ds

where the multipliers Mu are of the form �(s)(c1(ˇ 
u)(s) C c2(s)u) with � which is a differentiable, nonin-
creasing and nonnegative function, and c1 being a suitable
constant, whereas c2 may be chosen dependent on ˇ.

Integrating by parts the resulting relations and per-
forming some involved estimates, one can prove that for
all t0 > 0 and all T � t � t0

Z T

t
�(s)E(s) ds � C�(0)E(t)C

Z T

t
�(s)

�

Z s

0
ˇ(s � �)

��A1/2u(s) � A1/2u(�)
��2 d� ds ;

If p D 1, that is if the kernel ˇ decays exponentially, one
can easily bound the last term of the above estimate by
cE(t) thanks to the dissipation relation.

If p 2 (2;1), one has to proceed differently since the
term
Z T

t
�(s)

Z s

0
ˇ(s � �)

��A1/2u(s) � A1/2u(�)
��2 d� ds

cannot be directly estimated thanks to the dissipation rela-
tion. To bound this last term, one can generalize an argu-
ment of Cavalcanti and Oquendo [37] as follows. Define,
for any m � 1,

'm(t) :D
Z t

0
ˇ1� 1

m (t � s)kA1/2u(s) � A1/2u(t)k2ds ;

t � 0 : (57)

Then, we have for any T � S � 0

Z T

S
E

m
p
u (t)

Z t

0
ˇ(t � s)kA1/2u(s) � A1/2u(t)k2dsdt

� CE
p

pCm
u (S)

 Z T

S
E
1C m

p
u (t)'m(t)dt

! m
pCm

(58)

for some constant C > 0. Suppose that, for some m � 1,
the function 'm defined in (57) is bounded. Then, for any
S0 > 0 there is a positive constant C such that

Z 1

S
E
1C m

p
u (t)dt � C



E

m
p
u (0)C k'mk

m
p
1

�
Eu(S)

8 S � S0 : (59)

One uses this last result first withm D 2 noticing that '2 is
bounded and � D E2/p . This gives a first energy decay rate
as (t C 1)�p/2. This estimate shows that '1 is bounded.
Then one applies once again the last result withm D 1 and
� D E1/p . One deduces then that E decays as (t C 1)�p

which is the optimal decay rate expected.
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For an introduction to the multiplier method, we refer
the interested reader to the books of J.-L. Lions [86], Ko-
mornik [74] and the references therein. The celebrated
result of Bardos Lebeau and Rauch is presented in [86].
A general abstract presentation of control problems for
hyperbolic and parabolic equations can be found in the
book of Lasiecka and Triggiani [80,81]. Results on spec-
tral methods and the frequency domain approach can be
found in the book of Z. Liu [88]. There also exists an in-
teresting approach developed for bounded feedback oper-
ators by Haraux and extended to the case of unbounded
feedbacks by Ammari and Tucsnak [11]. In this approach,
the polynomial (or exponential) stability of the damped
system is proved thanks to the corresponding observabil-
ity for the undamped (conservative) system. Such observ-
ability results for weakly coupled undamped systems have
been obtained for instance in [3].

Many other very interesting issues have been studied
in connection to semilinear wave equations, see [34,123]
and the references therein, and damped wave equations
with nonlinear source terms [39].

Well-posedness and asymptotic properties for PDE’s
with memory terms have first been studied by Dafer-
mos [53,54] for convolution kernels with past history
(convolution up to t D �1), by Prüss [103] and Prüss
and Propst [102] in which the efficiency of different mod-
els of dampings are compared to experiments (see also
Londen Petzeltova and Prüss [91]). Decay estimates for
the energy of solutions using multiplier methods com-
bined with Lyapunov type estimates for an equivalent en-
ergy are proved in Munoz Rivera [97], Munoz Rivera and
Salvatierra [96], Cavalcanti and Oquendo [37] and Giorgi
Naso and Pata [67] and many other papers.



1502 C Control of Non-linear Partial Differential Equations

Optimal Control

As for positional control, also for optimal control prob-
lems it is convenient to adopt the abstract formulation in-
troduced in Sect. “Abstract Evolution Equations”. Let the
state space be represented by the Hilbert space H, and the
state equation be given in the form (12), that is

(
u0(t) D Au(t)C B f (t) t 2 [0; T]
u(0) D u0 :

(60)

Recall that A is the infinitesimal of a strongly continu-
ous semigroup, etA, in H, B is a (bounded) linear opera-
tor from F (the control space) to H, and uf stands for the
unique (mild) solution of (60) for a given control function
f 2 L2(0; T ;H).

A typical optimal control problem of interest for PDE’s
is the Bolza problem which consists in
8
<̂

:̂

minimizing the cost functional
J( f ) :D

R T
0 L(t; u f (t); f (t))dt C `

�
u f (T)



over all controls f 2 L2(0; T ; F) :
(61)

Here, T is a positive number, called the horizon, whereas L
and ` are given functions, called the running cost and final
cost, respectively. Such functions are usually assumed to be
bounded below.

A control function f� 2 L2(0; T ; F) at which the above
minimum is attained is called an optimal control for prob-
lem (61) and the corresponding solution u f� of (60) is said
to be an optimal trajectory. Alltogether, fu f� ; f�g is called
an optimal (trajectory/control) pair.

For problem (61) the following issues will be addressed
in the sections below:

� the existence of controls minimizing functional J;
� necessary conditions that a candidate solution must sat-

isfy;
� sufficient conditions for optimality provided by the dy-

namic programming method.

Other problems of particular interest to CT for PDE’s
are problems with an infinite horizon (T D 1), problems
with a free horizon T and a final target, and problems with
constraints on both control variables and state variables.
Moreover, the study of nonlinear variants of (60), includ-
ing semilinear problems of the form

(
u0(t) D Au(t)C h(t; u(t); f (t)) t 2 [0; T]
u(0) D u0 ;

(62)

is strongly motivated by applications. The discussion of all
these variants, however, will not be here pursued in detail.

Traditionally, in optimal control theory, state variables
are denoted by the letters x; y; : : :, whereas u; v; : : : are re-
served for control variables. For notational consistency, in
this section u(�) will still denote the state of a given system
and f (�) a control function, while � will stand for a fixed
element of control space F.

Existence of Optimal Controls

From the study of finite dimensional optimization it is a fa-
miliar fact that the two essential ingredients to guarantee
the existence of minima are compactness and lower semi-
continuity. Therefore, it is clear that, in order to obtain
a solution of the optimal control problem (60)–(61), one
has to make assumptions that allow to recover such prop-
erties. The typical hypotheses that are made for this pur-
pose are the following:

� coercivity: there exist constants c0 > 0 and c1 2 R such
that

`(�) � c1 and L(t; u; �) � c0k�k2 C c1
8(t; u; �) 2 [0; T] � H � F (63)

� convexity: for every (t; u) 2 [0; T] � H

� 7! L(t; u; �) is convex on F : (64)

Under the above hypotheses, assuming lower semicon-
tinuity of ` and of the map L(t; �; �), it is not hard to show
that problem (60)–(61) has at least one solution. Indeed,
assumption (63) allows to show that any minimizing se-
quence of controls f fkg is bounded in L2(0; T ;H). So, it
admits a subsequence, still denoted by f fkg which con-
verges weakly in L2(0; T ;H) to some function f . Then, by
linearity, u fk (t) converges to u f (t) for every t 2 [0; T]. So,
using assumption (64), it follows that f is a solution of
(60)–(61).

The problem becomes more delicate when the Tonelli
type coercivity condition (63) is relaxed, or the state equa-
tion is nonlinear as in (62). Indeed, the convergence of
u fk (t) is no longer ensured, in general. So, in order to re-
cover compactness, one has to make further assumptions,
such as the compactness of etA, or structural properties of
L and h. For further reading, one may consult the mono-
graphs [22,85], and [79], for problems where the running
and final costs are given by quadratic forms (the so-called
Linear Quadratic problem), or [84] and [59] for more gen-
eral optimal control problems.

Necessary Conditions

Once the existence of a solution to problem (60)–(61) has
been established, the next important step is to provide
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conditions to detect a candidate solution, possibly show-
ing that it is, in fact, optimal. By and large the optimality
conditions of most common use are the ones known as
Pontryagin’s Maximum Principle named after the Russian
mathematician L.S. Pontryagin who greatly contributed to
the development of control theory, see [100,101].

So, suppose fu�; f�g, where u� D u f� is a candidate
optimal pair and consider the so-called adjoint system
8
<̂

:̂

�p0(t) D A�p(t)C @uL(t; u�(t); f�(t)) D 0
t 2 [0; T] a.e.

p(T) D @`(u�(T)) ;

where @uL(t; u; �) and @`(u) denote the Fréchet gradients
of the maps L(t; �; �) and ` at u, respectively. Observe that
the above is a backward linear Cauchy problem with ter-
minal condition, which can obviously be reduced to a for-
ward one by the change of variable t ! T � t. So, it ad-
mits a unique mild solution, labeled p�, which is called the
adjoint state associated with fu�; f�g.

Pontryagin’s Maximum Principle states that, if fu�;
f�g is optimal, then

hp�(t); B f�(t)i C L(t; u�(t); f�(t)) D
min
�2F

�
hp�(t); B�i C L(t; u�(t); �)

�

t 2 [0; T] a.e. (65)

The name Maximum Principle rather than Minimum
Principle, as it would be more appropriate, is due to the
fact that, traditionally, attention was focussed on themax-
imization—instead of minimization—of the functional in
(61). Even today, in most models from economics, one is
interested in maximizing payoffs, such as revenues, utility,
capital and so on. In that case, (65) would still be true, with
a “max” instead of a “min”.

At first glance, it might be hard to understand the rev-
elance of (65) to problem (61). To explain this, introduce
the function, called theHamiltonian,

H (t; u; p) D min
�2F

�
hp; B�i C L(t; u; �)

�

(t; u; p) 2 [0; T] � H � H : (66)

Then, Fermat’s rule yields B�pC @�L(t; u; �) D 0 at ev-
ery � 2 F at which the minimum in (66) is attained.
Therefore, from (65) it follows that

B�p�(t)C@�L(t; u�(t); f�(t)) D 0 t 2 [0; T] a.e. (67)

which provides a much-easier-to-use optimality condi-
tion.

There is a vast literature on necessary conditions for
optimality for distributed parameter systems. The set-up
that was considered above can be generalized in several
ways: one can consider nonlinear state equations as in
(62), nonsmooth running and finals costs, constraints on
both state and control, problems with infinite horizon or
exit times. Further reading and useful references on most
of these extensions can be found in the aforementioned
monographs [22,79,84,85], and in [59] which is mainly
concerned with time optimal control problems.

Dynamic Programming

Though useful as it may be, Pontryagin’s Maximum Prin-
ciple remains a necessary condition. So, without further
information, it does not suffice to prove the optimality of
a give trajectory/control pair. Moreover, even when the
map � 7! @�L(t; u; �) turns out to be invertible, the best
result identity (67) can provide, is a representation of f�(t)
in terms of u�(t) and p�(t): not enough to determine
f�(t), in general.

This is why other methods to construct optimal con-
trols have been proposed over the years. One of the most
interesting ones is the so-called dynamic programming
method (abbreviated, DP), initiated by the work of R. Bell-
man [20]. Such a method will be briefly described below in
the set-up of distributed parameter systems.

Fix T > 0, s such that 0 � s � T , and consider the op-
timal control problem

to minimize

Js;v( f ) D
Z T

s
L


t; us;vf (t); f (t)

�
dt C `



us;vf (T)

�

(68)

over all control functions f 2 L2(s; T ; F), where us;vf (t) is
the solution of the controlled system

(
u0(t) D Au(t)C B f (t) t 2 [s; T]
u(s) D v :

(69)

The value function U associated to (68)-(69) is the real-
valued function defined by

U(s; v) D inf
f2L2(s;T ;F)

Js;v( f ) 8(s; v) 2 [0; T]�H : (70)

A fundamental step of DP is the following result, known
as Bellman’s optimality principle.
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Theorem 5 For any (s; v) 2 [0; T] � H and any f 2
L2(s; T ; F)

U(s; v) �
Z r

s
L


t; us;vf (t); f (t)

�
dt C U



r; us;vf (r)

�

8r 2 [s; T] :

Moreover, f �(�) is optimal if and only if

U(s; v) D
Z r

s
L


t; us;vf (t); f (t)

�
dt C U



r; us;vf (r)

�

8r 2 [s; T] :

The connection between DP and optimal control is based
on the properties of the value function. Indeed, applying
Bellman’s optimality principle, one can show that, if U is
Fréchet differentiable, then
8
<̂

:̂

@sU(s; v)C hAv; @vU(s; v)i CH (s; v; @vU(s; v)) D 0
(s; v) 2 (0; T) � D(A)

U(T; v) D `(v) v 2 H

where H is the Hamiltonian defined in (66). The above
equation is the celebrated Hamilton–Jacobi equation of
DP. To illustrate its connections with the original opti-
mal control problem, a useful formal argument—that can,
however, be made rigorous—is the following. Consider
a sufficiently smooth solutionW of the above problem and
let (s; v) 2 (0; T) � D(A). Then, for any trajectory/control
pair fu; f g,

d
dt

W(t; u(t)) D @sW(t; u(t))C h@vW(t; u(t));Au(t)

C B f (t)i
D h@vW(t; u(t)); B f (t)i
�H (t; u(t); @vW(t; u(t)))
� �L(t; u(t); f (t))

(71)

by the definition ofH . Therefore, integrating from s to T,

`(u(T)) �W(s; v) � �
Z T

s
L(t; u(t); f (t))dt;

whence Js;v( f ) � W(s; v). Thus, taking the infimum over
all f 2 L2(s; T ; F),

W(s; v) � U(s; v) 8(s; v) 2 (0; T) � D(A) : (72)

Now, suppose there is a control function f� 2 L2(s; T ; F)
such that, for all t 2 [s; T],

h@vW(t; u�(t)); B f�(t)i C L(t; u�(t); f�(t))
D H (t; u�(t); @vW(t; u�(t))) ; (73)

where u�(�) D us;vf� (�). Then, from (71) and (73) it follows
that

d
dt

W(t; u�(t)) D �L(t; u(t); f (t)) ;

whence

W(s; v) D Js;v( f�) � U(s; v) :

From the above inequality and (72) it follows that
W(s; v) D U(s; v) for all (s; v) 2 (0; T) � D(A), hence for
all (s; v) 2 (0; T) � H sinceD(A) is dense inH. So, f� is an
optimal control.

Note 2 The above considerations lead to the following
procedure to obtain optimal an optimal trajectory:

� find a smooth solution of the Hamilton–Jacobi equa-
tion;

� for every (t; v) 2 (0; T) � D(A) provide a feedback
f (t; v) such that

h@vW(t; v); B f (t; v)i C L(t; v; f (t; v))
D H (t; v; @vW(t; v))

� solve the so-called closed loop equation
(
u0(t) D Au(t)C B f (t; u(t)) t 2 [s; T]
u(s) D v

Notice that not only is trajectory u optimal, but the
corresponding control f is given in feedback form as well.

Linear Quadratic Optimal Control

One of the most successful applications of DP is the so-
called Linear Quadratic optimal control problem. Con-
sider problem (68)–(69) with costs L and ` given by

L(t; u; �) D hM(t)u; ui C hN(t)�; �i
8(T; u; �) 2 [0; T] � H � F

and

`(u) D hDu; ui 8u 2 H ;

where

� M : [0; T]! L(H) is continuous, M(t) is symmetric
and hM(t)u; ui � 0 for every (t; u) 2 [0; T] � H;

� N : [0; T]! F is continuous, N(t) is symmetric and
hN(t)�; �i � c0j�j2 for every (t; �) 2 [0; T] � F and
some constant c0 > 0;
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� D 2 L(H) is symmetric and hDu; ui � 0 for every
u 2 H.

Then, assumptions (63) and (64) are satisfied. So, a solu-
tion to (68)–(69) does exist. Moreover, it is unique because
of the strict convexity of functional Js;v .

In order to apply DP, one computes the Hamiltonian

H (t; u; p) D min
�2F

h
hp; B�i C hM(t)u; ui C hN(t)�; �i

i

D hM(t)u; ui �
1
4
hBN�1(t)B�p; pi ;

where the above minimum is attained at

��(t; p) D �
1
2
N�1(t)B�p : (74)

Therefore, the Hamilton–Jacobi equation associated to the
problem is
8
ˆ̂̂
<̂

ˆ̂̂
:̂

@sW(s; v)C hAv; @vW(s; v)i C hM(s)v; vi
� 1

4 hBN
�1(s)B�@vW(s; v); @vW(s; v)i D 0

8(s; v) 2 (0; T) � D(A)
w(T; v) D hDv; vi 8v 2 H

It is quite natural to search a solution of the above problem
in the form

W(s; v) D hP(s)v; vi 8(s; v) 2 [0; T] � H ;

with P : [0; T]! L(H) continuous, symmetric and such
that hP(t)u; ui � 0. Substituting into the Hamilton–Jacobi
equation yields
8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

hP0(s)v; vi C h[A�P(s)C P(s)A]v; vi C hM(s)v; vi
�hBN�1(s)B�P(s)v; P(s)vi D 0

8(s; v) 2 (0; T) � D(A)
hP(T)v; vi D hDv; vi 8v 2 H

Therefore, P must be a solution of the so-called Riccati
equation
8
<̂

:̂

P0(s)C A�P(s)C P(s)ACM(s)
�P(s)BN�1(s)B�P(s) D 0 8s 2 (0; T)

P(T) D D

Once a solution P(�) of the Riccati equation is known, the
procedure described in Note 2 can be applied. Indeed, re-
calling (74) and the fact that @vW(t; v) D 2P(t)v, one con-
cludes that f (t; v) D �N�1(t)B�P(t)v is a feedback law.
So, solving the closed loop equation
(
u0(t) D [A� BN�1(t)B�P(t)]u(t) t 2 (s; T)
u(s) D v

one obtains the unique optimal trajectory of problem
(68)–(69).

In sum, by DP one reduces the original Linear
Quadratic optimal control problem to the problem of find-
ing the solution of the Riccati equation, which is easier to
solve than the Hamilton–Jacobi equation.

Bibliographical Comments

Different variants of the Riccati equation have been suc-
cessfully studied by several authors in connection with
different state equations and cost functionals, including
boundary control problems and problems for other func-
tional equations, see [22,79] and the references therein.
Sometimes, the solution of the Riccati equation related to
a linearizedmodel provides feedback stabilization for non-
linear problems as in [104].

Unfortunately, the DP method is hard to implement
for general optimal control problems, because of several
obstructions: nonsmoothness of solutions to Hamilton–
Jacobi equations, selection problems that introduce dis-
continuities, unboundedness of the coefficients, numer-
ical complexity. Besides the Linear Quadratic case, the
so-called Linear Convex case is the other example that
can be studied by DP under fairly general conditions,
see [14]. For nonlinear optimal control problems some
of the above difficulties have been overcome extending
the notion of viscosity solutions to infinite dimensional
spaces, see [45,46,47,48,49], see also [28,29,30,31,32,33]
and [112]. Nevertheless, finding additional ideas to make
a generalized use of DP for distributed parameter systems
possible, remains a challenging problem for the next gen-
erations.

Future Directions

In addition to all considerations spread all over this arti-
cle on promising developments of recent—as well as es-
tablished—research lines, a few additional topics deserve
to be mentioned.

The one subject that has received the highest atten-
tion, recently, is that of numerical approximation of con-
trol problems, from the point of view of both controlla-
bility and optimal control. Here the problem is that, due
to high frequency spurious numerical solutions, stable al-
gorithms for solving initial-boundary value problems do
not necessarily yield convergent algorithms for computing
controls. This difficulty is closely related to the existence
of concentrated numerical solutions that escape the obser-
vation mechanisms. Nevertheless, some interesting results
have been obtained so far, see, e. g., [124,125].
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Several interesting results for nonlinear control prob-
lems have been obtained by the return method, devel-
oped initially by Coron [42] for a stabilization problem.
This and other techniques have then been applied to
fluid models ([68,69]), the Korteweg–de Vries equation
([105,106,107]), and Schrödinger type equations ([19]),
see also [43] and the references therein. It seems likely that
these ideas, possibly combined with other techniques like
Carleman estimates as in [70], will lead to new exiting re-
sults in the years to come.

A final comment on null controllability for degener-
ate parabolic equations is in order. Indeed, many prob-
lems that are relevant for applications are described by
parabolic equation equations in divergence form

@tu D r�(A(x)ru)Cb(x)�ruCc(t; x)uC f in QT ;

or in the general form

@tu D Tr [A(x)r2u]Cb(x)�ruCc(t; x)uC f in QT ;

where A(x) is a symmetric matrix, positive definite in
˝ but possibly singular on � . For instance, degenerate
parabolic equations arise in fluid dynamics as suitable
transformations of the Prandtl equations, see, e. g., [94].
They can also be obtained as Kolmogorov equations of
diffusions processes on domains that are invariant for
stochastic flows, see, e. g., [52]. The latter interpretation
explains why they have been applied to biological prob-
lems, such as gene frequency models for population genet-
ics (see, e. g., the Wright–Fischer model studied in [111]).

So far, null controllability properties of degenerate
parabolic equations have been fully understood only in di-
mension one: for some kind of degeneracy, null controlla-
bility holds true (see [36] and [9]), but, in general, one can
only expect regional null controllability (see [35]). Since
very little is known on null controllability for degenerate
parabolic equations in higher space dimensions, it is con-
ceivable that such a topic will provide interesting problems
for future developments.
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Glossary

Game theory Discipline that studies strategic situations.
Cooperative game Strategic situation involving coali-

tions, whose formation assumes the existence of bind-
ing agreements among players.

Characteristic or coalitional function The most usual
way to represent a cooperative game.

Solution concept Mapping that assigns predictions to
each game.

Core Solution concept that assigns the set of payoffs that
cannot be improved upon by any coalition.

Shapley value Solution concept that assigns the average
of marginal contributions to coalitions.

Definition of the Subject

Cooperative game theory It is one of the two counter-
parts of game theory. It studies the interactions among
coalitions of players. Its main question is this: Given
the sets of feasible payoffs for each coalition, what pay-
off will be awarded to each player? One can take a posi-
tive or normative approach to answering this question,
and different solution concepts in the theory lean to-
wards one or the other.

Core It is a solution concept that assigns to each coop-
erative game the set of payoffs that no coalition can
improve upon or block. In a context in which there
is unfettered coalitional interaction, the core arises as
a good positive answer to the question posed in coop-
erative game theory. In other words, if a payoff does
not belong to the core, one should not expect to see it
as the prediction of the theory if there is full coopera-
tion.

Shapley value It is a solution that prescribes a single pay-
off for each player, which is the average of all marginal
contributions of that player to each coalition he or she
is amember of. It is usually viewed as a good normative
answer to the question posed in cooperative game the-
ory. That is, those who contribute more to the groups
that include them should be paid more.

Although there were some earlier contributions, the of-
ficial date of birth of game theory is usually taken to be
1944, year of publication of the first edition of the Theory
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of Games and Economic Behavior, by John von Neumann
and Oskar Morgenstern [42]. The core was first proposed
by Francis Ysidro Edgeworth in 1881 [13], and later rein-
vented and defined in game theoretic terms in [14]. The
Shapley value was proposed by Lloyd Shapley in his 1953
PhD dissertation [37]. Both the core and the Shapley value
have been applied widely, to shed light on problems in dif-
ferent disciplines, including economics and political sci-
ence.

Introduction

Game theory is the study of games, also called strategic
situations. These are decision problems with multiple de-
cision makers, whose decisions impact one another. It is
divided into two branches: non-cooperative game theory
and cooperative game theory. The actors in non-cooper-
ative game theory are individual players, who may reach
agreements only if they are self-enforcing. The non-co-
operative approach provides a rich language and develops
useful tools to analyze games. One clear advantage of the
approach is that it is able to model how specific details of
the interaction among individual players may impact the
final outcome. One limitation, however, is that its predic-
tions may be highly sensitive to those details. For this rea-
son it is worth also analyzing more abstract approaches
that attempt to obtain conclusions that are independent
of such details. The cooperative approach is one such at-
tempt, and it is the subject of this article.

The actors in cooperative game theory are coalitions,
that is, groups of players. For the most part, two facts, that
coalitions can form and that each coalition has a feasible
set of payoffs available to its members, are taken as given.
Given the coalitions and their sets of feasible payoffs as
primitives, the question tackled is the identification of final
payoffs awarded to each player. That is, given a collection
of feasible sets of payoffs, one for each coalition, can one
predict or recommend a payoff (or set of payoffs) to be
awarded to each player? Such predictions or recommen-
dations are embodied in different solution concepts.

Indeed, one can take several approaches to answer-
ing the question just posed. From a positive or descrip-
tive point of view, one may want to get a prediction of the
likely outcome of the interaction among the players, and
hence, the resulting payoff be understood as the natural
consequence of the forces at work in the system. Alterna-
tively, one can take a normative or prescriptive approach,
set up a number of normative goals, typically embodied
in axioms, and try to derive their logical implications. Al-
though authors sometimes disagree on the classification of
the different solution concepts according to these two cri-

teria – as we shall see, the understanding of each solution
concept is enhanced if one can view it from very distinct
approaches –, in this article we shall exemplify the positive
approach with the core and the normative approach with
the Shapley value. While this may oversimplify the issues,
it should be helpful to a reader new to the subject.

The rest of the article is organized as follows. Sect. “Co-
operative Games” introduces the basic model of a coop-
erative game, and discusses its assumptions as well as the
notion of solution concepts. Sect. “The Core” is devoted
to the core, and Sect. “The Shapley Value” to the Shapley
value. In each case, some of the main results for each of the
two are described, and examples are provided. Sect. “Fu-
ture Directions” discusses some directions for future re-
search.

Cooperative Games

Representations of Games. The Characteristic Function

Let us begin by presenting the different ways to describe
a game. The first two are the usual ways employed in non-
cooperative game theory.

The most informative way to describe a game is called
its extensive form. It consists of a game tree, specifying the
timing of moves for each player and the information avail-
able to each of them at the time of making a move. At the
end of each path of moves, a final outcome is reached and
a payoff vector is specified. For each player, one can de-
fine a strategy, i. e., a complete contingent plan of action to
play the game. That is, a strategy is a function that specifies
a feasible move each time a player is called upon to make
a move in the game.

One can abstract from details of the interaction (such
as timing of moves and information available at each
move), and focus on the concept of strategies. That is, one
can list down the set of strategies available to each player,
and arrive at the strategic or normal form of the game. For
two players, for example, the normal form is represented
in a bimatrix table. One player controls the rows, and the
other the columns. Each cell of the bimatrix is occupied
with an ordered pair, specifying the payoff to each player
if each of them chooses the strategy corresponding to that
cell.

One can further abstract from the notion of strategies,
which will lead to the characteristic function form of rep-
resenting a game. From the strategic form, one makes as-
sumptions about the strategies used by the complement of
a coalition of players to determine the feasible payoffs for
the coalition (see, for example, the derivations in [7,42]).
This is the representation most often used in cooperative
game theory.
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Thus, here are the primitives of the basic model in co-
operative game theory. Let N D f1; : : : ; ng be a finite set of
players. Each non-empty subset of N is called a coalition.
The set N is referred to as the grand coalition. For each
coalition S, we shall specify a set V(S) � RjSj containing
jSj-dimensional payoff vectors that are feasible for coali-
tion S. This is called the characteristic function, and the
pair (N;V) is called a cooperative game. Note how a re-
duced form approach is taken because one does not ex-
plain what strategic choices are behind each of the pay-
off vectors in V(S). In addition, in this formulation, it is
implicitly assumed that the actions taken by the comple-
ment coalition (those players in N n S) cannot prevent S
from achieving each of the payoff vectors in V(S). There
are more general models in which these sorts of external-
ities across coalitions are considered, but we shall ignore
them in this article.

Assumptions on the Characteristic Function

Some of the most common technical assumptions made
on the characteristic function are the following:

(1) For each S � N , V(S) is closed. Denote by @V (S) the
boundary of V(S). Hence, @V (S) � V(S).

(2) For each S � N , V (S) is comprehensive, i. e., for each
x 2 V(S), fxg �RjSjC � V(S).

(3) For each x 2 RjSj,

@V (S) \


fxg CRjSjC

�

is bounded.
(4) For each S � N , there exists a continuously differen-

tiable representation of V(S), i. e., a continuously dif-
ferentiable function gS : RjSj ! R such that

V (S) D fx 2 RjSjjgS (x) � 0g :

(5) For each S � N , V (S) is non-leveled, i. e., for every
x 2 @V(S), the gradient of gS at x is positive in all its
coordinates.

With the assumptions made, @V(S) is its Pareto frontier,
i. e., the set of vectors xS 2 V(S) such that there does not
exist yS 2 V(S) satisfying that yi � xi for all i 2 S with at
least one strict inequality.

Other assumptions usually made relate the possibili-
ties available to different coalitions. Among them, a very
important one is balancedness, which we shall define next:

A collection T of coalitions is balanced if there ex-
ists a set of weights w(S) 2 [0; 1] for each S 2 T such that
for every i 2 N ,

P
S2T ;S
figw(S) D 1. One can think of

these weights as the fraction of time that each player de-
votes to each coalition he is a member of, with a given
coalition representing the same fraction of time for each
player. The game (N;V) is balanced if xN 2 V (N) when-
ever (xS ) 2 V (S) for every S in a balanced collection T .
That is, the grand coalition can always implement any
“time-sharing arrangement” that the different subcoali-
tions may come up with.

The characteristic function defined so far is often re-
ferred to as a non-transferable utility (NTU) game. A par-
ticular case is the transferable utility (TU) game case, in
which for each coalition S � N, there exists a real number
v(S) such that

V(S) D

(

x 2 RjSj :
X

i2S

xi � v(S)

)

:

Abusing notation slightly, we shall denote a TU game by
(N; v). In the TU case there is an underlying nummeraire –
money – that can transfer utility or payoff at a one-to-one
rate from one player to any other. Technically, the theory
of NTU games is far more complex: it uses convex analysis
and fixed point theorems, whereas the TU theory is based
on linear inequalities and combinatorics.

Solution Concepts

Given a characteristic function, i. e., a collection of sets
V(S), one for each S, the theory formulates its predictions
on the basis of different solution concepts. We shall con-
centrate on the case in which the grand coalition forms,
that is, cooperation is totally successful. Of course, solu-
tion concepts can be adapted to take care of the case in
which this does not happen.

A solution is a mapping that assigns a set of payoff vec-
tors in V (N) to each characteristic function game (N;V ).
Thus, a solution in general prescribes a set, which can be
empty, or a singleton (when it assigns a unique payoff vec-
tor as a function of the fundamentals of the problem). The
leading set-valued cooperative solution concept is the core,
while one of the most used single-valued ones is the Shap-
ley value for TU games.

There are several criteria to evaluate the reasonable-
ness or appeal of a cooperative solution. As outlined above,
in a normative approach, one can propose axioms, abstract
principles that one would like the solution to satisfy, and
the next step is to pursue their logical consequences. His-
torically, this was the first argument to justify the Shapley
value. Alternatively, one could start by defending a solu-
tion on the basis of its definition alone. In the case of the
core, this will be especially natural: in a context in which
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players can freely get together in groups, the prediction
should be payoff vectors that cannot be improved upon by
any coalition. One can further enhance one’s positive un-
derstanding of the solution concept by proposing games
in extensive form or in normal form played non-coopera-
tively by players whose self-enforcing agreements lead to
a given solution. This is simply to provide non-cooper-
ative foundations or non-cooperative implementation to
the cooperative solution in question, and it is an important
research agenda initiated by John Nash in [25], referred to
as the Nash program (see [34] for a recent survey). To-
day, there are interesting results of these different kinds
for many solution concepts, which include axiomatic char-
acterizations and non-cooperative foundations. Thus, one
can evaluate the appeal of the axioms and the non-coop-
erative procedures behind each solution to defend a more
normative or positive interpretation in each case.

The Core

The idea of agreements that are immune to coalitional de-
viations was first introduced to economic theory by Edge-
worth in [13], which defined the set of coalitionally stable
allocations of an economy under the name “final settle-
ments.” Edgeworth envisioned this concept as an alterna-
tive to competitive equilibrium [43], of central importance
in economic theory, and was also the first to investigate
the connections between the two concepts. Edgeworth’s
notion, which today we refer to as the core, was rediscov-
ered and introduced to game theory in [14]. The origins
of the core were not axiomatic. Rather, its simple and ap-
pealing definition appropriately describes stable outcomes
in a context of unfettered coalitional interaction.

The core of the game (N;V) is the set of payoff vectors

C(N;V ) D fx 2 V(N) : 6 9S � N; xS 2 V(S)n@V (S)g :

In words, it is the set of feasible payoff vectors for the grand
coalition that no coalition can upset. If such a coalition S
exists, we shall say that S can improve upon or block x,
and x is deemed unstable. That is, in a context where any
coalition can get together, when S has a blocking move,
coalition S will form and abandon the grand coalition and
its payoffs xS in order to get to a better payoff for each
of the members of the coalition, a plan that is feasible for
them.

Non-Emptiness

The core can prescribe the empty set in some games.
A game with an empty core is to be understood as a sit-
uation of strong instability, as any payoffs proposed to the
grand coalition are vulnerable to coalitional blocking.

Example Consider the following simple majority 3-player
TU game, in which the votes of at least two players makes
the coalition winning. That is, we represent the situation
by the following characteristic function: v(S) D 1 for any S
containing at least two members, v(fig) D 0 for all i 2 N.
Clearly, C(N; v) D ;. Any feasible payoff agreement pro-
posed to the grand coalition will be blocked by at least one
coalition.

An important sufficient condition for the non-emptiness
of the core of NTU games is balancedness, as shown
in [32]:

Theorem 1 (Scarf [32]) Let the game (N;V) be balanced.
Then C(N;V ) 6D ;.

For the TU case, balancedness is not only sufficient, but it
becomes also necessary for the non-emptiness of the core:

Theorem 2 (Bondareva [9]; Shapley [39]) Let (N; v) be
a TU game. Then, (N; v) is balanced if and only if C(N;
v) 6D ;.

The Connections with Competitive Equilibrium

In economics, the institution of markets and the notion of
prices are essential to the understanding of the allocation
of goods and the distribution of wealth among individu-
als. For simplicity in the presentation, we shall concen-
trate on exchange economies, and disregard production
aspects. That is, we shall assume that the goods in ques-
tion have already been produced in some fixed amounts,
and now they are to be allocated to individuals to satisfy
their consumption needs.

An exchange economy is a system in which each agent i
in the set N has a consumption set Zi � Rl

C of commod-
ity bundles, as well as a preference relation over Zi and an
initial endowment !i 2 Zi of the commodities. A feasi-
ble allocation of goods in the economy is a list of bundles
(zi )i2N such that zi 2 Zi and

P
i2N zi �

P
i2N !i . An al-

location is competitive if it is supported by a competitive
equilibrium. A competitive equilibrium is a price-alloca-
tion pair (p; (zi )i2N ), where p 2 Rl n f0g is such that

� for every i 2 N, zi is top-ranked for agent i among all
bundles z satisfying that pz � p!i ,

� and
P

i2N zi D
P

i2N !i .

In words, this is what the concept expresses. First, at the
equilibrium prices, each agent demands zi, i. e., wishes to
purchase this bundle among the set of affordable bundles,
the budget set. And second, these demands are such that
all markets clear, i. e., total demand equals total supply.
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Note how the notion of a competitive equilibrium re-
lies on the principle of private ownership (each individ-
ual owns his or her endowment, which allows him or her
to access markets and purchase things). Moreover, each
agent is a price-taker in all markets. That is, no single indi-
vidual can affect the market prices with his or her actions;
prices are fixed parameters in each individual’s consump-
tion decision. The usual justification for the price-taking
assumption is that each individual is “very small” with re-
spect to the size of the economy, and hence, has no market
power.

One difficulty with the competitive equilibrium con-
cept is that it does not explain where prices come from.
There is no single agent in the model responsible for com-
ing up with them. Walras in [43] told the story of an auc-
tioneer calling out prices until demand and supply coin-
cide, but in many real-world markets there is no auction-
eer. More generally, economists attribute the equilibrium
prices to the workings of the forces of demand and supply,
but this appears to be simply repeating the definition. So,
is there a different way one can explain competitive equi-
librium prices?

As it turns out, there is a very robust result that an-
swers this question. We refer to it as the equivalence prin-
ciple (see, e. g., [6]), by which, under certain regularity con-
ditions, the predictions provided by different game-theo-
retic solution concepts, when applied to an economy with
a large enough set of agents, tend to converge to the set
of competitive equilibrium allocations. One of the first re-
sults in this tradition was provided by Edgeworth in 1881
for the core. Note how the core of the economy can be de-
fined in the space of allocations, using the same definition
as above. Namely, a feasible allocation is in the core if it
cannot be blocked by any coalition of agents when making
use of the coalition’s endowments.

Edgeworth’s result was generalized later by Debreu
and Scarf in [11] for the case in which an exchange econ-
omy is replicated an arbitrary number of times (Anderson
studies in [1] the more general case of arbitrary sequences
of economies, not necessarily replicas). An informal state-
ment of the Debreu–Scarf theorem follows:

Theorem 3 (Debreu and Scarf [11]) Consider an ex-
change economy. Then,

(i) The set of competitive equilibrium allocations is con-
tained in the core.

(ii) For each non-competitive core allocation of the origi-
nal economy, there exists a sufficiently large replica of
the economy for which the replica of the allocation is
blocked.

The first part states a very appealing property of competi-
tive allocations, i. e., their coalitional stability. The second
part, known as the core convergence theorem, states that
the core “shrinks” to the set of competitive allocations as
the economy grows large.

In [3], Aumann models the economy as an atom-
less measure space, and demonstrates the following core
equivalence theorem:

Theorem 4 (Aumann [3]) Let the economy consists of an
atomless continuum of agents. Then, the core coincides with
the set of competitive allocations.

For readers who wish to pursue the topic further, [2] pro-
vides a recent survey.

Axiomatic Characterizations

The axiomatic foundations of the core were provided
much later than the concept was proposed. These char-
acterizations are all inspired by Peleg’s work. They in-
clude [26,27], and [36] – the latter paper also provides
an axiomatization of competitive allocations in which core
convergence insights are exploited.

In all these characterizations, the key axiom is that of
consistency, also referred to as the reduced game property.
Consistency means that the outcomes prescribed by a so-
lution should be “invariant” to the number of players in
the game.More formally, let (N;V) be a game, and let � be
a solution. Let x 2 �(N;V). Then, the solution is consis-
tent if for every S � N , xS 2 �(S;VxS ), where (S;VxS ) is
the reduced game for S given payoffs x, defined as follows.
The feasible set for S in this reduced game is the projec-
tion of V(N) at xNnS , i. e., what remains after paying those
outside of S:

VxS (S) D fyS : (yS ; xNnS ) 2 V(N)g :

However, the feasible set of T � S, T ¤ S, allows T to
make deals with any coalition outside of S, provided that
those services are paid at the rate prescribed by xNnS :

VxS (T) D fyT 2 [Q�NnS (yT ; xQ ) 2 V(T [ Q)g :

It can be shown that the core satisfies consistency with
respect to this reduced game. Moreover, consistency is the
central axiom in the characterization of the core, which,
depending on the version one looks at, uses a host of other
axioms; see [26,27,36].

Non-cooperative Implementation

To obtain a non-cooperative implementation of the core,
the procedure must embody some feature of anonymity,
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since the core is usually a large set and it contains payoffs
where different players are treated very differently. For in-
stance, if the procedure always had a fixed set of moves,
typically the prediction would favor the first mover, mak-
ing it impossible to obtain an implementation of the entire
set of payoffs.

The model in [30] builds in this anonymity by assum-
ing that negotiations take place in continuous time, so that
anyone can speak at the beginning of the game, and at any
point in time, instead of having a fixed order. The player
that gets to speak first makes a proposal consisting of nam-
ing a coalition that contains him and a feasible payoff for
that coalition. Next, the players in that coalition get to re-
spond. If they all accept the proposal, the coalition leaves
and the game continues among the other players. Other-
wise, a new proposal may come from any player in N. It is
shown that, if the TU game has a non-empty core (as well
as any of its subgames), a class of stationary self-enforc-
ing predictions of this procedure coincide with the core. If
a core payoff is proposed to the grand coalition, there are
no incentives for individual players to reject it. Conversely,
a non-core payoff cannot be sustained because any player
in a blocking coalition has an incentive to make a proposal
to that coalition, who will accept it (knowing that the al-
ternative, given stationarity, would be to go back to the
non-core status quo). [24] offers a discrete-time version
of the mechanism: in this work, the anonymity required is
imposed on the solution concept, by looking at the order-
independent equilibria of the procedure.

The model in [33] sets up a market to implement the
core. The anonymity of the procedure stems from the ran-
dom choice of broker. The broker announces a vector
(x1; : : : ; xn), where the components add up to v(N). One
can interpret xi as the price for the productive asset held by
player i. Following an arbitrary order, the remaining play-
ers either accept or reject these prices. If player i accepts,
he sells his asset to the broker for the price xi and leaves
the game. Those who reject get to buy from the broker, at
the called out prices, the portfolio of assets of their choice if
the broker still has them. If a player rejects, but does not get
to buy the portfolio of assets he would like because some-
one else took them before, he can always leave the mar-
ket with his own asset. The broker’s payoff is the worth
of the final portfolio of assets that he holds, plus the net
monetary transfers that he has received. It is shown in [33]
that the prices announced by the broker will always be his
top-ranked vectors in the core. If the TU game is such that
gains from cooperation increase with the size of coalitions,
a beautiful theorem of Shapley in [41] is used to prove that
the set of all equilibrium payoffs of this procedure will co-
incide with the core. Core payoffs are here understood as

those price vectors where all arbitrage opportunities in the
market have been wiped out. Also, procedures in [35] im-
plement the core, but do not rely on the TU assumption,
and they use a procedure in which the order of moves can
be endogenously changed by players. Finally, yet another
way to build anonymity in the procedure is by allowing
the proposal to be made by brokers outside of the setN, as
done in [28].

An Application

Consider majority games within a parliament. Suppose
there are 100 seats, and decisions are made by simple ma-
jority so that 51 votes are required to pass a piece of legis-
lation.

In the first specification, suppose there is a very large
party – player 1 –, who has 90 seats. There are five small
parties, with 2 seats each. Given the simple majority rules,
this problem can be represented by the following TU char-
acteristic function: v(S) D 1 if S contains player 1, and
v(S) D 0 otherwise. The interpretation is that each win-
ning coalition can get the entire surplus – pass the desired
proposal. Here, a coalition is winning if and only if player
1 is in it. For this problem, the core is a singleton: the en-
tire unit of surplus is allocated to player 1, who has all the
power. Any split of the unit surplus of the grand coalition
(v(N) D 1) that gives some positive fraction of surplus to
any of the small parties can be blocked by the coalition of
player 1 alone.

Consider now a second problem, in which player 1,
who continues to be the large party, has 35 seats, and each
of the other five parties has 13 seats. Now, the character-
istic function is as follows: v(S) D 1 if and only if S either
contains player 1 and two small parties, or it contains four
of the small parties; v(S) D 0 otherwise. It is easy to see
that now the core is empty: any split of the unit surplus
will be blocked by at least one coalition. For example, the
entire unit going to player 1 is blocked by the coalition of
all five small parties, which can award 0.2 to each of them.
But this arrangement, in which each small party gets 0.2
and player 1 nothing, is blocked as well, because player 1
can bribe two of the small parties (say, players 2 and 3) and
promise them 1/3 each, keeping the other third for itself,
and so on. The emptiness of the core is a way to describe
the fragility of any agreement, due to the inherent instabil-
ity of this coalition formation game.

The Shapley Value

Now consider a transferable utility or TU game in charac-
teristic function form. The number v(S) is referred to as
the worth of S, and it expresses S’s initial position (e. g.,
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the maximum total amount of surplus in nummeraire –
money, or power – that S initially has at its disposal.

Axiomatics

Shapley in [37] is interested in solving in a fair and unique
way the problem of distribution of surplus among the
players, when taking into account the worth of each coali-
tion. To do this, he restricts attention to single-valued so-
lutions and resorts to the axiomatic method. He proposes
the following axioms on a single-valued solution:

(i) Efficiency: The payoffs must add up to v(N), which
means that all the grand coalition surplus is allocated.

(ii) Symmetry: If two players are substitutes because they
contribute the same to each coalition, the solution
should treat them equally.

(iii) Additivity: The solution to the sum of two TU games
must be the sum of what it awards to each of the two
games.

(iv) Dummy player: If a player contributes nothing to ev-
ery coalition, the solution should pay him nothing.

(To be precise, the name of the first axiom should be dif-
ferent. In an economic sense, the statement does imply ef-
ficiency in superadditive games, i. e., when for every pair
of disjoint coalitions S and T, v(S)C v(T) � v(S [ T). In
the absence of superadditivity, though, forming the grand
coalition is not necessarily efficient, because a higher ag-
gregate payoff can be obtained from a different coalition
structure.)

The surprising result in [37] is this:

Theorem 5 (Shapley [37]) There is a unique single-val-
ued solution to TU games satisfying efficiency, symmetry,
additivity and dummy. It is what today we call the Shapley
value, the function that assigns to each player i the payoff

Shi(N; v) D
X

S;i2S

(jSj � 1)!(jNj � jSj)!
jNj!

[v(S)�v(Snfig)]:

That is, the Shapley value awards to each player the aver-
age of his marginal contributions to each coalition. In tak-
ing this average, all orders of the players are considered to
be equally likely. Let us assume, also without loss of gener-
ality, that v(fig) D 0 for each player i.

What is especially surprising in Shapley’s result is that
nothing in the axioms (with the possible exception of the
dummy axiom) hints at the idea of marginal contributions,
so marginality in general is the outcome of all the axioms,
including additivity or linearity. Among the axioms uti-
lized by Shapley, additivity is the one with a lower norma-

tive content: it is simply a mathematical property to jus-
tify simplicity in the computation of the solution. Young
in [45] provides a beautiful counterpart to Shapley’s theo-
rem. He drops additivity (as well as the dummy player ax-
iom), and instead, uses an axiom of marginality. Marginal-
ity means that the solution should pay the same to a ple-
yar in two games if his or her marginal contributions to
coalitions is the same in both games.Marginality is an idea
with a strong tradition in economic theory. Young’s result
is “dual” to Shapley’s, in the sense that marginality is as-
sumed and additivity derived as the result:

Theorem 6 (Young [45]) There exists a unique single-
valued solution to TU games satisfying efficiency, symme-
try and marginality. It is the Shapley value.

Apart from these two, [19] provides further axiomatiza-
tions of the Shapley value using the idea of potential and
the concept of consistency, as described in the previous
section.

There is no single way to extend the Shapley value to
the class of NTU games. There are three main extensions
that have been proposed: the Shapley -transfer value [40],
the Harsanyi value [16], and the Maschler–Owen consis-
tent value [23]. They were axiomatized in [5,10,17], re-
spectively.

The Connections with Competitive Equilibrium

As was the case for the core, there is a value equiv-
alence theorem. The result holds for the TU domain
(see [4,8,38]). It can be shown that the Shapley value pay-
offs can be supported by competitive prices. Furthermore,
in large enough economies, the set of competitive pay-
offs “shrinks” to approximate the Shapley value. However,
the result cannot be easily extended to the NTU domain.
While it holds for the -transfer value, it need not obtain
for the other extensions. For further details, the interested
reader is referred to [18] and the references therein.

Non-cooperative Implementation

Reference [15] was the first to propose a procedure that
provided some non-cooperative foundations of the Shap-
ley value. Later, other authors have provided alterna-
tive procedures and techniques to the same end, includ-
ing [20,21,29,44].

We shall concentrate on the description of the pro-
cedure proposed by Hart and Mas-Colell in [20]. Gener-
alizing an idea found in [22], which studies the case of
ı D 0 – see below –, Hart and Mas-Colell propose the fol-
lowing non-cooperative procedure. With equal probabil-
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ity, each player i 2 N is chosen to publicly make a fea-
sible proposal to the others: (x1; : : : ; xn) is such that the
sum of its components cannot exceed v(N). The other
players get to respond to it in sequence, following a pre-
specified order. If all accept, the proposal is implemented;
otherwise, a random device is triggered. With probability
0 � ı < 1, the same game continues being played among
the same n players (and thus, a new proposer will be cho-
sen again at random among them), but with probability
1 � ı, the proposer leaves the game.He is paid 0 and his re-
sources are removed, so that in the next period, proposals
to the remaining n � 1 players cannot add up tomore than
v(N n fig). A new proposer is chosen at random among
the set N n fig, and so on.

As shown in [20], there exists a unique stationary self-
enforcing prediction of this procedure, and it actually co-
incides with the Shapley value payoffs for any value of ı.
(Stationarity means that strategies cannot be history de-
pendent). As ı ! 1, the Shapley value payoffs are also ob-
tained not only in expectation, but with independence of
who is the proposer. One way to understand this result,
as done in [20], is to check that the rules of the procedure
and stationary behavior in it are in agreement with Shap-
ley’s axioms. That is, the equilibrium relies on immediate
acceptances of proposals, stationary strategies treat substi-
tute players similarly, the equations describing the equilib-
rium have an additive structure, and dummy players will
have to receive 0 because no resources are destroyed if they
are asked to leave. It is also worth stressing the important
role in the procedure of players’ marginal contributions to
coalitions: following a rejection, a proposer incurs the risk
of being thrown out and the others of losing his resources,
which seem to suggest a “price” for them.

In [21], the authors study the conditions under which
stationarity can be removed to obtain the result. Also, [29]
uses a variant of the Hart and Mas-Colell procedure, by
replacing the random choice of proposers with a bidding
stage, in which players bid to obtain the right to make pro-
posals.

An Application

Consider again the class of majority problems in a parlia-
ment consisting of 100 seats. As we shall see, the Shap-
ley value is a good way to understand the power that each
party has in the legislature.

Let us begin by considering again the problem in
which player 1 has 90 seats, while each of the five small
parties has 2 seats. It is easy to see that the Shapley value,
like the core in this case, awards the entire unit of surplus
to player 1: effectively, each of the small parties is a dummy

player, and hence, the Shapley value awards zero to each of
them.

Consider a second problem, in which player 1 is a big
party with 35 seats, and there are 5 small parties, with 13
seats each. The Shapley value awards 1/3 to the large party,
and, by symmetry, 2/15 to each of the small parties. To see
this, we need to see when the marginal contributions of
player 1 to any coalition are positive. Recall that there are
6! possible orders of players. Note how, if player 1 arrives
first or second in the room in which the coalition is form-
ing, his marginal contribution is zero: the coalition was
losing before he arrived and continues to be a losing coali-
tion after his arrival. Similarly, his marginal contribution
is also zero if he arrives fifth or sixth to the coalition; in-
deed, in this case, before he arrives the coalition is already
winning, so he adds nothing to it. Thus, only when he ar-
rives third or fourth, which happens a third of the times,
does he change the nature of the coalition, from losing to
winning. This explains his Shapley value share of 1/3. In
this game, the Shapley value payoffs roughly correspond
to the proportion of seats that each party has.

Next, consider a third problem in which there are two
large parties, while the other four parties are very small.
For example, let each of the large parties have 48 seats
(say, players 1 and 2), while each of the four small par-
ties has only one seat. Now, the Shapley value payoffs are
0.3 to each of the two large parties, and 0.1 to each of
the small ones. To see this, note that the marginal con-
tribution of a small party is only positive when he comes
fourth in line, and out of the preceding three parties in the
coalition, exactly one of them is a large party, i. e., 72 or-
ders out of the 5! orders in which he is fourth. That is,
(72/5!) � (1/6) D 1/10. In this case, the competition be-
tween the large parties for the votes of the small parties
increases the power of the latter quite significantly, with
respect to the proportion of seats that each of them holds.

Finally, consider a fourth problem with two large par-
ties (players 1 and 2) with 46 seats each, one mid-size
party (player 3) with 5 seats, and three small parties, each
with one seat. First, note that each of the three small par-
ties has become a dummy player: no winning coalition
where he belongs becomes losing if he leaves the coali-
tion, and so players 4, 5 and 6 are paid zero by the Shap-
ley value. Now, note that, despite the substantial differ-
ence of seats between each large party and the mid-size
party, each of them is identical in terms of marginal con-
tributions to a winning coalition. Indeed, for i D 1; 2; 3,
player i’s marginal contribution to a coalition is positive
only if he arrives second or third or fourth or fifth (and
out of the preceding players in the coalition, exactly one
is one of the non-dummy players). Note how the Shap-
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ley value captures nicely the changes in the allocation of
power due to each different political scenario. In this case,
the fierce competition between the large parties for the
votes of player 3, the swinging party to form a majority,
explains the equal share of power among the three.

Future Directions

This article has been a first approach to cooperative game
theory, and has emphasized two of its most important so-
lution concepts. The literature on these topics is vast, and
the interested reader is encouraged to consult the general
references listed below. For the future, one should expect
to see progress of the theory into areas that have been
less explored, including games with asymmetric informa-
tion and gameswith coalitional externalities. In both cases,
the characteristic function model must be enriched to take
care of the added complexities.

Relevant to this encyclopedia are issues of complexity.
The complexity of cooperative solution concepts has been
studied (see, for instance, [12]). In terms of computational
complexity, the Shapley value seems to be easy to compute,
while the core is harder, although some classes of games
have been identified in which this task is also simple.

Finally, one should insist on the importance of novel
and fruitful applications of the theory to shed new light
on concrete problems. In the case of the core, for exam-
ple, the insights of core stability in matching markets have
been successfully applied by Alvin Roth and his collabora-
tors to the design of matching markets in the “real world”
(e. g., the job market for medical interns and hospitals, the
allocation of organs from doners to patients, and so on) –
see [31].
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Glossary

Characteristic function form game
A characteristic function form game consists of a set
of players and a characteristic function that gives each
group of players, called a coalition, a value or a set
of payoff vectors that they can gain by themselves. It
is a typical representation of cooperative games. For
characteristic function form games, several solution
concepts are defined such as von Neumann – Morgen-
stern stable set, core, bargaining set, kernel, nucleolus,
and Shapley value.

Abstract game An abstract game consists of a set of out-
comes and a binary relation, called domination, on the
outcomes. Von Neumann and Morgenstern presented
this game form for general applications of stable sets.

Strategic form game A strategic form game consists of
a player set, each player’s strategy set, and each player’s
payoff function. It is usually used to represent non-co-
operative games.

Imputation An imputation is a payoff vector in a char-
acteristic function form game that satisfies group ra-
tionality and individual rationality. The former means
that the players divide the amount that the grand coali-
tion of all players can gain, and the latter says that each
player is assigned at least the amount that he/she can
gain by him/herself.

Domination Domination is a binary relation defined on
the set of imputations, outcomes, or strategy combina-
tions, depending on the form of a given game. In char-
acteristic function form games, an imputation is said
to dominate another imputation if there is a coalition
of players such that they can realize their payoffs in the
former by themselves, and make each of them better
off than in the latter. Domination given a priori in ab-
stract games can be also interpreted in the same way.
In strategic form games, domination is defined on the
basis of commonly beneficial changes of strategies by
coalitions.
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Internal stability A set of imputations (outcomes, strat-
egy combinations) satisfies internal stability if there is
no domination between any two imputations in the
set.

External stability A set of imputations (outcomes, strat-
egy combinations) satisfies external stability if any im-
putation outside the set is dominated by some imputa-
tion inside the set.

von Neumann–Morgenstern stable set A set of imputa-
tions (outcomes, strategy combinations) is a von Neu-
mann–Morgenstern stable set if it satisfies both inter-
nal and external stability.

Farsighted stable set A farsighted stable set is a more so-
phisticated stable set concept mainly defined for strate-
gic form games. Given two strategy combinations x
and y, we say that x indirectly dominates y if there ex-
ist a sequence of coalitions S1; : : : ; Sp and a sequence
of strategy combinations y D x0; x1; : : : ; xp D x such
that each coalition S j can induce strategy combination
x j by a joint move from x j�1, and all members of S j

end up with better payoffs at xp D x compared to the
payoffs at x j�1. A farsighted stable set is a set of strat-
egy combinations that is stable both internally and ex-
ternally with respect to the indirect domination. A far-
sighted stable set can be defined in abstract games and
characteristic function form games.

Definition of the Subject

The von Neumann–Morgenstern stable set for solution
(hereafter stable set) is the first solution concept in coop-
erative game theory defined by J. von Neumann and O.
Morgenstern. Though it was defined cooperative games
in characteristic function form, von Neumann and Mor-
genstern gave a more general definition of a stable set in
abstract games. Later, J. Greenberg and M. Chwe cleared
a way to apply the stable set concept to the analysis of
non-cooperative games in strategic and extensive forms.
Though general existence of stable sets in characteristic
function form games was denied by a 10-person game pre-
sented by W.F. Lucas, stable sets exist in many important
games. In voting games, for example, stable sets exist, and
they indicate what coalitions can be formed in detail. The
core, on the other hand, can be empty in voting games,
though it is one of the best known solution concept in co-
operative game theory. The analysis of stable sets is not
necessarily straightforward, since it can reveal a variety of
possibilities. However, stable sets give us deep insights into
players’ behavior in economic, political and social situa-
tions such as coalition formation among players.

Introduction

For studies of economic or social situations where players
can take cooperative behavior, the stable set was defined by
vonNeumann andMorgenstern [31] as a solution concept
for characteristic function form cooperative games. They
also defined the stable set in abstract games so that one
can apply the concept to more general games including
non-cooperative situations. Greenberg [9] and Chwe [3]
cleared a way to apply the stable set concept to the analysis
of non-cooperative games in strategic and extensive forms.

The stable set is a set of outcomes satisfying two stabil-
ity conditions: internal and external stability. The internal
stability means that between any two outcomes in the set,
there is no group of players such that all of its members
prefer one to the other and they can realize the preferred
outcome. The external stability means that for any out-
come outside the set, there is a group of players such that
all of its members have a commonly preferred outcome in
the set and they can realize it. Though general existence
was denied by Lucas [18] and Lucas and Rabie [21], the
stable set has revealed many interesting behavior of play-
ers in economic, political, and social systems.

Von Neumann and Morgenstern (also Greenberg) as-
sumed only a single move by a group of players. Har-
sanyi [13] first pointed out that stable sets in character-
istic function form games may fail to cover “farsighted”
behavior of players. Harsanyi’s work inspired Chwe’s [3]
contribution to the formal study of foresight in social en-
vironments.

Chwe paid attention to a possible chain of moves such
that a move of a group of players will bring about a new
move of another group of players, which will further cause
a third group of players to move, and so on. Then the
group of players moving first should take into account
a sequence of moves that may follow, and evaluate their
profits obtained at the end. By incorporating such a se-
quence of moves, Chwe [3] defined a more sophisticated
stable set, which we call a farsighted stable set in what fol-
lows. Recent work by Suzuki and Muto [51,52] showed
that the farsighted stable set providesmore reasonable out-
comes than the original (myopic) stable set in important
classes of strategic form games.

The rest of the chapter is organized as follows. Sec-
tion “Stable Sets in Abstract Games” presents the defini-
tion of a stable set in abstract games. Section “Stable Set
and Core” shows basic relations between the two solu-
tion concepts of stable set and core. Section “Stable Sets
in Characteristic Function form Games” gives the defini-
tion of a stable set in characteristic function form games.
Section “Applications of Stable Sets in Abstract and Char-
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acteristic Function Form Games” first discusses general
properties of stable sets in characteristic function form
games, and then presents applications of stable sets in ab-
stract and characteristic function games to political and
economic systems. Section “Stable Sets and Farsighted Sta-
ble Sets in Strategic Form Games” gives the definitions of
a stable set and a farsighted stable set in strategic form
games. Section “Applications of Farsighted Stable Sets in
Strategic Form Games” discusses properties of farsighted
stable sets and their applications to social and economic
situations. Section “Future Directions” ends the chapter
with remarks. Section “Bibliography” offers a list of ref-
erences.

Stable Sets in Abstract Games

An abstract game is a pair (W;�) of a set of outcomes W
and an irreflexive binary relation � on W, where irreflex-
ivity means that x � x holds for no element x 2 W. The
relation � is interpreted as follows: if x � y holds, then
there must exist a set of players such that they can induce x
from y by themselves and all of them are better off in x.

A subset K of W is called a stable set of abstract game
(W;�) if the following two conditions are satisfied:

1. Internal stability: For any two elements x; y 2 K; x � y
never holds.

2. External stability: For any element z … K, there must
exist x 2 K such that x � z.

We explain more in detail what the external and inter-
nal stability conditions imply in the definition of a sta-
ble set. Suppose players have common understanding that
each outcome inside a stable set is “stable” and that each
outcome outside the set is “unstable”. Here the “stability”
means that no group of players has an incentive to devi-
ate from it, and the “instability” means that there is at least
one group of players that has an incentive to deviate from
it. Then the internal and external stability conditions guar-
antee that the common understanding is never disproved,
and thus continues to prevail.

In fact, suppose the set is both internally and externally
stable, and pick any outcome in the set. Then by internal
stability, no group of players can be better off by deviating
from it and inducing an outcome inside the set. Thus no
group of players reaches an agreement to deviate, which
makes each outcome inside the set remain stable. Devi-
ating players may be better off by inducing an outcome
outside the set; but outcomes outside the set are com-
monly considered to be unstable. Thus deviating players
can never expect that such an outcome will continue. Next

pick any outcome outside the set. Then by external stabil-
ity, there exists at least one group of players who can be-
come better off by deviating from it and inducing an out-
come inside the set. The induced outcome is considered to
be stable since it is in the set. Hence the group of players
will deviate. Hence each outcome outside the set remains
unstable.

Stable Set and Core

Another solution concept that is widely known is a core.
For a given abstract game G D (W;�), a subset C of W
is called the core of G if C D fx 2 Wj there is no y 2
W with y � xg. From the definition, the core satisfies
internal stability. Thus the core C of G is contained in
any stable set of G if the latter exists. To see this, sup-
pose that C 6� K for a stable set K , and C is non-empty,
i. e., C ¤ ;. (If C D ;, then clearly C � K.) Pick any el-
ement x 2 CnK. Since x … K, by external stability there
exists y 2 K with y � x, which contradicts x 2 C.

When the core of a game satisfies external stability, it
has very strong stability. It is called the stable core. The
stable core is the unique stable set of the game.

Stable Sets in Characteristic Function formGames

An n-person game in characteristic function form with
transferable utility is a pair (N; v) of a player set
N D f1; 2; : : : ; ng and a characteristic function v on the
set 2N of all subsets of N such that v(;) D 0. Each subset
of N is called a coalition. The game (N; v) is often called
a TU-game. A characteristic function form game without
transferable utility is called an NTU-game: its characteris-
tic function gives each coalition a set of payoff vectors to
players. For NTU-games and their stable sets, refer to Au-
mann and Peleg [1] and Peleg [35]. In this section, here-
after, we deal with only TU characteristic function form
games, and refer to them simply as characteristic function
form games.

Let (N; v) be a characteristic function form game. The
characteristic function v assigns a real number v(S) to each
coalition S � N. The value v(S) indicates the worth that
coalition S can achieve by itself.

An n-dimensional vector x D (x1; x2; : : : ; xn) is called
a payoff vector. A payoff vector x is called an imputation if
the following two conditions are satisfied:

1. Group rationality:
Pn

iD1 xi D v(N),
2. Individual rationality: xi � v(fig) for each i 2 N .

The first condition says that all players cooperate and share
the worth v(N) that they can produce. The second condi-
tion says that each player must receive at least the amount
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that he/she can gain by him/herself. Let A be the set of all
imputations.

Let x; y be any imputations and S be any coalition. We
say that x dominates y via S and write this as x domS y if
the following two conditions are satisfied:

1. Coalitional rationality: xi > yi for each i 2 S,
2. Effectivity:

P
i2S xi � v(S).

The first condition says that every member of coalition S
strictly prefers x to y. The second condition says that coali-
tion S can guarantee the payoff xi for each member i 2 S
by themselves. We say that x dominates y (denoted by
x dom y) if there exists at least one coalition S such that
x domS y.

It should be noted that a pair (A, dom) is an abstract
game defined in Sect. “Stable Sets in Abstract Games”. It
is easily seen that “dom” is an irreflexive binary relation
on A. A stable set and the core of game (N; v) are defined
to be a stable set and the core of the associated abstract
game (A, dom), respectively.

Since von Neumann and Morgenstern defined the sta-
ble set, its general existence had been one of the most im-
portant problems in game theory. The problem was even-
tually solved in a negative way. Lucas [18] found the fol-
lowing 10-person characteristic function form game in
which no stable set exists.

A game with no stable set: Consider the following 10-
person game:

N D f1; 2; : : : ; 10g ;
v(N) D 5 ; v(f1; 3; 5; 7; 9g) D 4 ;

v(f3; 5; 7; 9g) D v(f1; 5; 7; 9g) D v(f1; 3; 7; 9g) D 3 ;
v(f1; 2g) D v(f3; 4g) D v(f5; 6g) D v(f7; 8g)

D v(f9; 10g) D 1 ;
v(f3; 5; 7g) D v(f1; 5; 7g) D v(f1; 3; 7g) D v(f3; 5; 9g)

D v(f1; 5; 9g) D v(f1; 3; 9g) D 2 ;
v(f1; 4; 7; 9g) D v(f3; 6; 7; 9g) D v(f5; 2; 7; 9g) D 2 and

v(S) D 0 for all other S � N :

Though this game has no stable set, it has a nonempty
core. A game with no stable set and an empty core was also
found by Lucas and Rabie [21].

We remark on a class of games in which a stable core
exists. As mentioned before, if a stable set exists, it always
contains the core, which is of course true also in char-
acteristic function form games. Furthermore, in charac-
teristic function form games, there is an interesting class,
called convex games, in which the core satisfies external
stability. That is, the core is a stable core. A characteris-
tic function form game (N; v) is a convex game if for any

S; T � N with S � T and for any i … T; v(S[fig)�v(S) �
v(T[fig)�v(T), i. e., the bigger coalition a player joins, the
larger the player’s contribution becomes. In convex games,
the core is large and satisfies external stability. For the de-
tails, refer to Shapley [45].

Though general existence is denied, the stable set pro-
vides us with very useful insights into many economic, po-
litical, and social issues. In the following, we will present
some stable set analyzes applied to those issues.

Applications of Stable Sets in Abstract
and Characteristic Function FormGames

Symmetric Voting Games

This section deals with applications of stable sets to voting
situations. Let us start with a simple example.

Example 1 Suppose there is a committee consisting of
three players 1, 2 and 3. Each player has one vote. Deci-
sions are done according to a simple majority rule. That is,
to pass a bill, at least two votes are necessary.

Before analyzing players’ behavior, we first formulate
the situation as a characteristic function form game. Let
the player set be N D f1; 2; 3g. Since a coalition of a simple
majority of players can pass any bill, we give value 1 to such
coalitions. Other coalitions can pass no bill. We thus give
them value 0. Hence the characteristic function is given by

v(S) D

(
1 if jSj � 2 ;
0 if jSj � 1 ;

where jSj denotes the number of players in coalition S. The
set of imputations is given by

AD fx D (x1; x2; x3)jx1C x2C x3 D 1; x1; x2; x3 � 0g :

One stable set of this game is given by the set K consist-
ing of three imputations, (1/2; 1/2; 0); (1/2; 0; 1/2); (0; 1/
2; 1/2). A brief proof is the following. Since each of the
three imputations has only two numbers 1/2 and 0, in-
ternal stability is trivial. To show external stability, take
any imputation x D (x1; x2; x3) from outside K . Suppose
first x1 < 1/2. Since x … K, at least one of x2 and x3
is less than 1/2. We assume x2 < 1/2. Then (1/2; 1/2; 0)
dominates x via coalition f1; 2g. Next suppose x1 D 1/2.
Since x … K; 0 < x2; x3 < 1/2. Thus (0; 1/2; 1/2) domi-
nates x via coalition f2; 3g. Finally suppose x1 > 1/2. Then
x2; x3 < 1/2, and thus (0; 1/2; 1/2) dominates x via coali-
tion f2; 3g. Thus the proof of external stability is com-
plete. This three-point stable set indicates that a two-per-
son coalition is formed, and that players in the coalition
share equally the outcome obtained by passing a bill.
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This game has another three types of stable sets. First,
any set K1

c D fx 2 Ajx1 D cg with 0 � c < 1/2 is a stable
set. The internal stability of each K1

c is trivial. To show ex-
ternal stability, take any imputation x D (x1; x2; x3) … K1

c .
Suppose x1 > c. Define by y1 D c; y2 D x2 C (x1 �
c)/2; y3 D x3C (x1 � c)/2. Then y 2 K1

c and y domf2;3g x.
Next suppose x1 < c. Notice that at least one of x2 and x3
is less than 1�c since c < 1/2. Suppose without loss of gen-
erality x2 < 1� c. Since c < 1/2, we have (c; 1� c; 0) 2 K1

c
and (c; 1 � c; 0) domf1;2g x. Thus external stability holds.
This stable set indicates that player 1 gets a fixed amount c
and players 2 and 3 negotiate for how to allocate the rest
1 � c. Similarly, any sets K2

c D fx 2 Ajx2 D cg and
K3
c D fx 2 Ajx3 D cg with 0 � c < 1/2 are stable sets.

The three-person game of Example 1 has no other sta-
ble set. See von Neumann and Morgenstern [31]. The for-
mer stable set is called a symmetric (or objective) stable set,
while the latter types are called discriminatory stable sets.

As a generalization of the above result, symmetric sta-
ble sets are found in general n-person simple majority vot-
ing games. An n-person characteristic function form game
(N; v) with N D f1; 2; : : : ; ng is called a simple majority
voting game if

v(S) D

(
1 if jSj > n/2 ;
0 if jSj � n/2 :

A coalition S with v(S) D 1, i. e., with jSj > n/2, is called
a winning coalition. A winning coalition including no
smaller winning coalitions is called a minimal winning
coalition. In simplemajority voting games, a minimal win-
ning coalition means a coalition of (nC 1)/2 players if n is
odd, or (n C 2)/2 players if n is even. The following theo-
rem holds. See Bott [2] for the proof.

Theorem 1 Let (N; v) be a simple majority voting game.
Then the following hold.

(1) If n is odd, then the set

K D h2/(nC 1); : : : ; 2/(nC 1)„ ƒ‚ …
nC1
2

; 0; : : : ; 0„ ƒ‚ …
n�1
2

i

is a stable set where the symbol hxi denotes the set of all
imputations obtained from x through permutations of its
components.

(2) If n is even, the set

K D hfx 2 Aj x1 D : : : D xn/2„ ƒ‚ …
n
2

� x(n/2)C1 D : : : D xn„ ƒ‚ …
n
2

gi

is a stable set, where

AD
�
x D (x1; : : : ; xn)

ˇ̌
ˇ̌

nX

iD1

xi D 1; x1; : : : ; xn � 0
�

and hYi D [
x2Y
hxi .

It should be noted from (1) of Theorem 1 that when the
number of players is odd, a minimal winning coalition is
formed. Themembers of the coalition share equally the to-
tal profit. On the other hand, when the number of players
is even, (2) of Theorem 1 shows that every player may gain
a positive profit. This implies that the grand coalition of
all players is formed. In negotiating for how to share the
profit, two coalitions, each with n/2 players, are formed
and profits are shared equally within each coalition. Since
at least n/2C 1 players are necessary to win when n is
even, an n/2-player coalition is the smallest coalition that
can prevent its complement from winning. Such a coali-
tion is called a minimal blocking coalition. When n is
odd, an (nC 1)/2-playerminimal winning coalition is also
a minimal blocking coalition.

General Voting Games

In this section, we present properties of stable sets and
cores in general (not necessarily symmetric) voting games.
A characteristic function from game (N; v) is called a sim-
ple game if v(S) D 1 or 0 for each nonempty coalition
S � N . A coalition S with v(S) D 1 (resp. v(S) D 0) is
a winning coalition (resp. losing coalition). A simple game
is called a voting game if it satisfies (1) v(N) D 1, (2) if
S � T , then v(S) � v(T), and (3) if S is winning, then
N � S is losing. The first condition implies that the grand
coalition N is always winning. The second condition says
that a superset of a winning coalition is also winning. The
third condition says that there are no two disjoint win-
ning coalitions. It is easily shown that the simple majority
voting game studied in the previous section satisfies these
conditions. A player has a veto if he/she belongs to every
winning coalition. As for cores of voting games, the fol-
lowing theorem holds.

Theorem 2 Let (N; v) be a voting game. Then the core of
(N; v) is nonempty if and only if there exists a player with
veto.

Thus the core is not a useful tool for analyzing voting situa-
tions with no veto player. In simple majority voting games,
no player has a veto, and thus the core is empty. The fol-
lowing theorem shows that stable sets always exist.
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Theorem 3 Let (N; v) be a voting game. Let S be a mini-
mal winning coalition and define a set K by

K D
�
x 2 A

ˇ̌
ˇ̌
X

i2S

xi D 1; xi D 08i … S
�
:

Then K is a stable set.

Thus in voting games, a minimal winning coalition is al-
ways formed, and they gain all the profit. For the proofs
of these theorems, see Owen [34]. Further results on sta-
ble sets in voting games are found in Bott [2], Gries-
mer [12], Heijmanns [16], Lucas et al. [20], Muto [26,28],
Owen [32], Rosenmüller [36], Shapley [43,44].

Production Market Games

Let us start with a simple example.

Example 2 There are four players, each having one unit of
a rawmaterial. Two units of the rawmaterial are necessary
for producing one unit of an indivisible commodity. One
unit of the commodity is sold at p dollars.

The situation is formulated as the following character-
istic function form game. The player set is N D f1; 2; 3; 4g.
Since two units of the raw material are necessary to pro-
duce one unit of the commodity, the characteristic func-
tion v is given by

v(S) D 2p if jSj D 4 ; v(S) D p if jSj D 3; 2 ;
v(S) D 0 if jSj D 1; 0 :

The set of imputations is

AD fx D (x1; x2; x3; x4)jx1 C x2 C x3 C x4 D 2p;
x1; x2; x3; x4 � 0g :

The following set K is one of the stable sets of the game:

K D hfx D (x1; x2; x3; x4) 2 Ajx1 D x2 D x3 � x4gi :

To show internal stability, take two imputations x D (x1;
x2; x3; x4) with x1 D x2 D x3 � x4 and y D (y1; y2; y3;
y4) in K . Suppose x dominates y. Since x1 D x2 D x3 �
p/2 � x4, the domination must hold via coalition fi; 4g
with i D 1; 2; 3. Then we have a contradiction 2p DP4

iD1 xi >
P4

iD1 yi D 2p, since y 2 K implies that the
largest three elements of y are equal. To show external sta-
bility, take z D (z1; z2; z3; z4) … K. Suppose z1 � z2 �
z3 � z4. Then z1 > z3. Define y D (y1; y2; y3; y4) by

yi D

8
<̂

:̂

z3 C
z1 C z2 � 2z3

4
for i D 1; 2; 3 ;

z4 C
z1 C z2 � 2z3

4
for i D 4 :

Then y 2 K and y domf3;4g z, since y3 > z3; y4 > z4 and
y3 C y4 � p D v(f3; 4g).

This stable set shows that in negotiating for how to share
the profit of 2p dollars, three players form a coalition and
share equally the gain obtained through collaboration. At
least two players are necessary to produce the commodity.
Thus a three-player coalition is the smallest coalition that
can prevent its complement from producing the commod-
ity, i. e., a minimal blocking coalition.Wewould claim that
in the market a minimal blocking coalition is formed and
that profits are shared equally within the coalition.

An extension of the model was given by Hart [14] and
Muto [27]. Hart considered the following productionmar-
ket with n players, each holding one unit of a rawmaterial.
To produce one unit of an indivisible commodity, k units
of raw materials are necessary. The associated production
market game is defined by the player set N D f1; 2; : : : ; ng
and the characteristic function � given by

�(S) D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂
ˆ̂̂
ˆ̂̂
ˆ̂:

0 if 0 � jSj < k ;
p if k � jSj < 2k ;
:::

jp if jk � jSj < ( jC 1)k ;
:::

hp if hk � jSj < n ;

;

where n D hk C r and h; r are integers such that h � 1
and 0 � r � k � 1. When h D 1,

�(S) D

(
0 if jSj < k ;
p if jSj � k :

The following theorem holds.

Theorem 4 Suppose h D 1. Let t D n � k C 1 and n D
tu C w where u;w are integers such that u � 1 and
0 � w � t � 1. Then the following set K is a stable set.

K D hfx D (x1; : : : ; xn) 2 Aj
x1 D : : : D xt � xtC1 D : : : D x2t

� : : : � xtuC1 D : : : D xn D 0i ;

where

AD
�
x D (x1; : : : ; xn)

ˇ̌
ˇ̌

nX

iD1

xi D p; x1; : : : ; xn � 0
�

is the set of imputations.

The theorem shows that in negotiating for how to share
the profit, minimal blocking coalitions, i. e., coalitions of
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n � k C 1 players, are formed and within each coalition,
profits are shared equally. Players failing to form a coali-
tion gain nothing. When h � 2, the following theorem
holds.

Theorem 5 Suppose h � 2. Let

K D
Dn
x D (x1; : : : ; xn) 2 A

ˇ̌
ˇ

x1 D � � � D xn�kC1 �
p
k
� xn�kC2 D � � � D xn

oE
;

where

AD
�
x D (x1; : : : ; xn)

ˇ̌
ˇ̌

nX

iD1

xi D hp; x1; : : : ; xn � 0
�
:

Then K is a stable set if and only if

n � (hC 1)(k � 1) :

Therefore if n is large or k is small, then a minimal block-
ing coalition is formed and the rest of the players also
form a coalition. Within each coalition, profits are shared
equally.

The next example deals with the case in which more than
one raw materials are necessary to produce a commodity.

Example 3 Two types of raw materials P and Q are
needed, one unit each, to produce one unit of an indivis-
ible commodity, which is sold at p dollars. Player 1 holds
one unit of raw material p, and each of players 2 and 3
holds one unit of raw material Q.

This situation is formulated as the following character-
istic function form game. The player set is N D f1; 2; 3g.
Since one unit of raw materials P and Q are necessary to
produce the commodity, the characteristic function � is
given by

�(N) D p ;
�(f1; 2g) D �(f1; 3g) D p ; �(f2; 3g) D 0 ;
�(f1g) D �(f2g) D �(f3g) D 0 ; �(;) D 0 :

The set of imputations is

AD fx D (x1; x2; x3)jx1Cx2Cx3 D p; x1; x2; x3 � 0g :

The following set K is one of the stable sets in this game:

K D fx D (x1; x2; x3) 2 Ajx2 D x3g :

To show internal stability, take two imputations x D
(x1; x2; x3) and y D (y1; y2; y3) in K and suppose x dom-
inates y. Then the domination must hold via coali-
tions f1; 2g; f1; 3g since values of other coalitions (except

f1; 2; 3g) are 0. If x domf1;2g y, then x1 > y1 and x2 > y2
hold. Thus we have a contradiction p D

P3
iD1 xi >P3

iD1 yi D p. The domination via f1; 3g leads to the same
contradiction. To show external stability, take any impu-
tation z D (z1; z2; z3) … K. Then z2 ¤ z3. Without loss of
generality, let z2 < z3. Define y D (y1; y2; y3) by

yi D

8
ˆ̂̂
<

ˆ̂̂
:

z1 C
z3 � z2

3
for i D 1 ;

z2 C
z3 � z2

3
for i D 2 ;

z2 C
z3 � z2

3
for i D 3 :

Then y 2 K and y domf1;2g z, since y1 > z1; y2 > z2 and
y1 C y2 < �(f1; 2g). This stable set shows that in negoti-
ating for how to share the profit p dollars, players 2 and 3
form a coalition against player 1 and share equally the gain
obtained through collaboration.

There exist other stable sets in which players 2 and 3
collaborate but they do not share equally the profit. More
precisely, the following set

K D fx D (x1; x2; x3) 2 Aj
x2 and x3 move towards the same directiong

is a stable set, where “move towards the same direction”
means that if x2 increases then x3 increases, and if x2 de-
creases then x3 decreases.

A generalization of the results above is given by the follow-
ing theorem due to Shapley [42]. Shapley’s original theo-
rem is more complicated and holds in more general mar-
kets.

Theorem 6 Suppose there are m players, 1; : : : ;m, each
holding one unit of raw material P, and n players,
m C 1; : : : ;mC n, each holding one unit of raw mate-
rial Q. To produce one unit of an indivisible commodity,
one unit of each of raw materials Pand Q is necessary. One
unit of commodity is sold at p dollars. In this market, the
following set K is a stable set.

K D fx D (x1; x2; : : : ; xmCn) 2 Aj
x1 D � � � D xm; xmC1 D � � � D xmCng :

where

AD
�
x D (x1; : : : ; xm; xmC1; : : : ; xmCn)

ˇ
ˇ̌
ˇ

mCnX

iD1

xi D p �min(m; n); x1; : : : ; xmCn � 0
�
;

is the set of imputations of this game.
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This theorem shows that players holding the same rawma-
terial form a coalition and share equally the profit gained
through collaboration.

For further results on stable sets in production market
games, refer to Hart [14], Muto [27], Owen [34]. Refer also
to Lucas [19], Owen [33], Shapley [41], for further general
studies on stable sets.

Assignment Games

The following two sections deal with markets in which
indivisible commodities are traded between sellers and
buyers, or bartered among agents. The first market is the
assignment market originally introduced by Shapley and
Shubik [47].

An assignment market consists of a set of n(� 1) buy-
ers B D f1; : : : ; ng and a set of n sellers F D f10; : : : ; n0g.
Each seller k0 2 F is endowed with one indivisible com-
modity to sell, which is called object k0. Thus F also de-
notes the set of n objects in the market. The objects are
differentiated. Each buyer i 2 B wants to buy at most
one of the objects, and places a nonnegative monetary
valuation uik0(� 0) for each object k0 2 F. The matrix
U D (uik0 )(i;k0)2B�F is called the valuation matrix. The
sellers place no valuation for any objects. An assignment
market is denoted by M(B; F;U). We remark that an as-
signment market with jBj ¤ jFj can be transformed into
the market with jBj D jFj by adding dummy buyers resp.
sellers, and zero rows resp. columns correspondingly to
valuation matrix U.

For each coalition S � B [ F with S \ B ¤ ; and
S \ F ¤ ;, we define assignment problem P(S) as follows:

P(S) : m(S) D max
x

X

(i;k0)2(S\B)�(S\F)

uik0xik0

s:t:
X

k02S\F

xik0 � 1 for all i 2 S \ B ;

X

i2S\B

xik0 � 1 for all k0 2 S \ F ;

xik0 � 0 for all (i; k0) 2 (S \ B) � (S \ F) :

Assignment problem P(S) has at least one optimal inte-
ger solution (see Simonnard [49]), which gives an opti-
mal matching between sellers and buyers in S that yields
the highest possible surplus in S. Without loss of gener-
ality, we assume that the rows and columns of valuation
matrix U are arranged so that the diagonal assignment x�

with x�i i 0 D 1; i D 1; : : : ; n, is one of the optimal solutions
to P(B [ F).

For a given assignment market M(B; F;U), we define
the associated assignment game G to be the characteris-

tic function form game (B [ F; v). The player set of G
is B [ F. The characteristic function v is defined as fol-
lows: v(S) D m(S) for each S � F [ B with S \ B ¤ ;
and S \ F ¤ ;. For coalitions only of sellers or buyers,
they cannot produce surplus from trade. Thus v(S) D 0
for each S with S � B; S � F, or S D ;. The imputation
set of G is

AD
n
(w; p) 2 <B

C�<
F
C

ˇ
ˇ̌X

i2B

wiC
X

k02F

pk0 D v(B[F)
o
:

Shapley and Shubik [47] proved that for any assign-
ment game G, the core C is given by the set of opti-
mal solutions to the dual problem of assignment problem
P(B [ F), i. e.,

C D f(w; p) 2 Ajwi C pk0 � uik0 D v(fi; k0g)
for each (i; k0) 2 B � Fg ;

and thus the core is nonempty. They also showed that sell-
ers’ core payoff vector p gives market prices of the respec-
tive objects at which the demand and supply equilibrates
for each object.

The general existence of stable sets in assignment
games is still unsolved. However, as mentioned in Sect.
“Stable Set and Core”, if a game has the stable core, i. e.,
the core with external stability, then it is the unique sta-
ble set of the game. Thus we consider when an assignment
game has the stable core.

Given an assignment market M(B; F;U), we say that
valuation matrix U satisfies the dominant diagonal condi-
tion if all of its diagonal entries are row and column maxi-
mums, i. e.,

ui i 0 D maxfuik0 jk0 2 Fg
D maxfuji 0 j j 2 Bg for each i D 1; : : : ; n :

The dominant diagonal condition implies that each buyer i
can yield themaximum surplus by purchasing the object of
seller i0. Thus the players do not have to compete for part-
ners. They come to bemore concerned with the bargaining
with his/her best matched partner. Then it is proved that
valuation matrix U satisfies the dominant diagonal condi-
tion if and only if the core of G includes the imputations�
w; p


and

�
w; p


, where wi D 0; pi 0 D ui i 0 ;wi D ui i 0 ,

and p
i 0
D 0 for each i 2 N. Furthermore, the following

theorem holds.

Theorem 7 Let M(B; F;U) be any assignment market
with jBj D jFj. The associated assignment game G has the
stable core if and only if valuation matrix U satisfies the
dominant diagonal condition.
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It is also proved that an assignment game G is convex if
and only if valuation matrix U satisfies that uik0 D 0 for
each (i; k0) 2 B � F with i ¤ k. This implies that the core
has the von Neumann–Morgenstern stability in a larger
class of assignment games including convex assignment
games. For more details, refer to Solymosi and Ragha-
van [50].

House Barter Games

In this section, we consider amarket in which only indivis-
ible commodities are bartered. This market was originally
considered by Shapley and Scarf [46].

The market we consider has n(� 2) players, each en-
dowed with one indivisible commodity, e. g., a house. Let
N D f1; : : : ; ng be the set of players. The n indivisible
commodities are differentiated. The commodity initially
owned by player i is called house i. ThusN also denotes the
set of houses in the market. We assume that each player
wants to own exactly one house, and no player disposes
any house. Each player i has a complete, reflexive, and
transitive preference relation Ri on N. Here, jRi h denotes
that player i prefers house j at least as well as house h. Let
jPi h denote that player i strictly prefers j to h, and jIi h
denote that player i is indifferent between j and h. Defin-
ing players’ preferences this way, we assume that each
player strictly prefers owning a house to owning no house.
The bundle R D (Ri )i2N of players’ preference relations is
called a preference profile.

There is no divisible good such as money in the mar-
ket. The players only exchange their houses to make a mu-
tually beneficial trade. Thus an allocation of the market is
defined to be a bijection x from N onto N, where x(i) de-
notes the house assigned to player i in x. An allocation can
be regarded as a permutation of N. An allocation x is also
indicated by the vector x D (x1; : : : ; xn) with xi D x(i)
for each i 2 N . Let A be the set of allocations. The mar-
ket above is referred to as house barter market M(N; R),
or briefly marketM.

Let x; y be any allocations of marketM. For each coali-
tion S � N , let x(S) be the set of houses assigned to the
members of S in x, i. e.,

x(S) D f j 2 Nj j D x(i) for some i 2 Sg :

We say that x weakly dominates y (denoted by x wdom y)
if there exists a coalition S satisfying the following condi-
tions:

1. x(i)Ri y(i) for each i 2 S with Pi holding for at least one
i 2 S,

2. x(S) D S.

The second condition is the effectivity condition, which
requires that each player i in S can obtain house x(i) by
exchanging their own endowments. We say that x strongly
dominates y (denoted by x sdom y) if x(i)Pi y(i) for each
i 2 S, and x(S) D S. We use the notations x wdomS y and
x sdomS y to indicate the associated coalition S.

An allocation x is said to be individually rational if
x(i)Ri i for each player i 2 N . An allocation x is Pareto effi-
cient if there exists no allocation y 2 Awith ywdomN x. If
there is no y 2 A with y sdomN x, then x is weakly Pareto
efficient. The three sets of individually rational, Pareto ef-
ficient, and weakly Pareto efficient allocations are denoted
by IR; PA, andWPA, respectively.

We define cores and stable sets of market M by
cores and stable sets of the associated house barter games
(A;wdom) and (A; sdom), which are the abstract games
with the outcome sets given by the allocation set A, and
the binary relations on A given by the weak and strong
dominations, respectively.

A nonempty subset of A is referred to as a wdom sta-
ble set of market M if it is a stable set of abstract game
(A;wdom). A nonempty subset of A is referred to as
a sdom stable set stable set of marketM if it is a stable set of
abstract game (A; sdom). The wdom and sdom stable sets
are the stable sets defined by the weak and strong domi-
nations, respectively. A subset of A, which may be empty,
is called the strict core of market M if it is the core of ab-
stract game (A;wdom). The core of market M is the core
of abstract game (A; sdom). The strict core and the core
of marketM are the cores defined by the weak and strong
dominations, respectively.

From the definitions above, a wdom stable set is a sub-
set of PA, and an sdom stable set is a subset ofWPA. How-
ever, both wdom and sdom stable sets may not be subsets
of IR. The strict core is a subset of PA\ IR. The core is
a subset ofWPA\ IR.

Shapley and Scarf [46] proved that the core is non-
empty for any house barter market M(N; R). However,
since external stability is not imposed on the core, the core
does not necessarily coincide with an sdom stable set. In
fact, the following example shows that there is a house
barter market with no sdom stable set.

Example 4 Let M1 be the market with the player set
N D f1; 2; 3g and the following preference profile:

1) 2 P1 3 P1 1 ;
2) 3 P2 1 P2 2 ;
3) 1 P3 2 P3 3 ;

MarketM1 has six allocations: x1 D (2; 3; 1); x2 D (2;
1; 3); x3 D (1; 3; 2); x4 D (3; 2; 1); x5 D (3; 1; 2); x6 D
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(1; 2; 3). From the preference profile, x1 is clearly a core
allocation. Allocation x1 strongly dominates x5 and
x6. Let X D fx2; x3; x4g. We note that x1 does not
strongly dominate any xk 2 X. Here, suppose market
M1 has an sdom stable set K . Then the external sta-
bility of K implies x1 2 K and K \ X ¤ ;. Note that
x2 sdomf1;2g x4; x4 sdomf1;3g x3, and x3 sdomf2;3g x2. This
together with the internal stability of K implies that K can
contain only one allocation xk 2 X. However, the alloca-
tion xk strongly dominates only one allocation in Xnfxkg.
This means that K does not have external stability, which
is a contradiction. Thus, there exists no sdom stable set in
marketM1.

Market M1 however has a nice feature: the singleton fx1g
is the strict core, and x1 weakly dominates all the other
allocations x2; : : : ; x6. In addition, every player shows
only strict preferences. Noticing these facts, Roth and
Postlewaite [38] proved that for any house barter mar-
ket M(N; R), if each player has a strict preference rela-
tion, then the strict core is a singleton, and it is the unique
wdom stable set, i. e., the wdom stable core. Wako [54]
proved that this property is extended as follows:

Theorem 8 For any house barter market M(N; R), if the
strict core SC is nonempty, then it is the unique wdom sta-
ble set. Furthermore, for any x; y 2 SC; x(i)Ii y(i) for each
i 2 N.

Even if some players do not have strict preference rela-
tions, the strict core is characterized as the wdom sta-
ble core as far as it is nonempty. The wdom stable core
SC of market M has nice properties. First, each alloca-
tion x 2 SC is individually rational, Pareto efficient, and
not weakly dominated by any other allocations since x is
a strict core allocation. Secondly, any allocation outside SC
is weakly dominated by some allocation in SC, since SC is
a wdom stable set. Thirdly, even if SC contains different
allocations, we may choose any one of them, since they are
indifferent for each player.

However, the strict core can be empty when indif-
ferences are allowed in preference relations. Shapley and
Scarf [46] already discussed this point by the following ex-
ample.

Example 5 Let M2 be the market with the player set
N D f1; 2; 3g and the following preference profile:

1) 2 P1 3 I1 1 ;
2) 1 I2 3 P2 2 ;
3) 2 P3 1 I3 3 ;

It can be verified that the strict core of M2 is empty,
and that the sets V1 D f(2; 3; 1); (2; 1; 3)g and V2 D

f(1; 3; 2); (3; 1; 2)g are both wdom stable sets of M2. Thus
Theorem 8 does not carry over to the cases with the strict
core being empty.

Quint and Wako [40] then gave a necessary and suffi-
cient condition for the strict core to be nonempty. For
each player i 2 N and each nonempty coalitionS � N , let
Bi (S) be the set of player i’s most-preferred house in S,
i. e., Bi(S) D fh 2 SjhRi j for each j 2 Sg. We call a par-
tition T D fT1; : : : ; Tmg of N a partition by minimal self-
mapped sets (PMSS) if each Tk 2 T satisfies the following
conditions:

Tk D
[

i2Tk

Bi
�
Nn [k�1

lD1 Tl

and there

is no S � Tk with S D
[

i2S

Bi
�
Nn [k�1

lD1 Tl

:

There exists at least one PMSS for any market M.
When there are more than one PMSSs, each PMSS con-
sists of the same sets with only the order of some sets be-
ing different. We say that group Tk 2 T is a lower (resp.
higher) group of Tl 2 T if k > l (resp. k < l). The fact that
T D fT1; : : : ; Tmg is a PMSS means that for each player i
of any given group Tk 2 T , the houses most preferred by i
among the endowments of groups Tk and lower are all
owned in his/her group Tk . The following theorem holds.

Theorem 9 Let T D fT1; : : : ; Tmg be a PMSS of a given
house barter market M(N; R). Then the strict core is non-
empty if and only if there exists an allocation x 2 A such
that

x(Tk) D Tk and x(i) 2 Bi
�
Nn [k�1

lD1 Tl


for each i 2 Tk and each Tk 2 T :

The necessary and sufficient condition above requires that
in any group Tk 2 T , each player i 2 Tk can obtain his/her
most-preferred houses (among those owned in groups Tk
and lower) through a feasible exchange within his/her own
group Tk. We refer to this condition as segmentability.
Suppose a house barter market has segmentability, and
that some players in a group Tk of PMSS T have more
preferable houses in higher groups. However, such houses
can be exchanged within the higher groups in a mutu-
ally beneficial way, and by the definition of a PMSS, no
player in the higher groups has an incentive to trade with
lower groups. In this sense, the market is segmented into
distinct groups. It follows from Theorems 8 and 9 that in
house barter markets, segmentability is necessary and suf-
ficient for the existence of the wdom stable core. Quint
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and Wako [40] gave a polynomial-time algorithm to ex-
amine segmentability of a given house barter market. The
following example shows a house barter market with seg-
mentability.

Example 6 Let M3 be the market with the player set
N D f1; 2; 3; 4; 5; 6g and the following preference profile:

1) 2 P1 3 P1 5 P1 4 P1 1 P1 6 ;
2) 1 I2 3 P2 4 P2 6 P2 5 P2 2 ;
3) 1 P3 2 P3 3 P3 4 P3 5 P3 6 ;
4) 2 P4 5 P4 6 P4 3 P4 4 P4 1 ;
5) 1 I5 4 P5 5 P5 3 P5 6 P5 2 ;
6) 3 P6 6 P6 1 P6 2 P6 4 P6 5 :

Although market M3 has two PMSSs, T D fT1 D f1; 2;
3g; T2 D f4; 5g; T3 D f6gg and T 0 D fT 01 D f1; 2; 3g; T

0
2 D

f6g; T 03 D f4; 5gg, the differences are only the order of the
groups. The wdom stable core ofM3 is the set K D f(2; 3;
1; 5; 4; 6)g.

The house barter market was also discussed by Mou-
lin [25] from a wide perspective of cooperative microeco-
nomics and game theory. Ehlers [5] initiated a study on
stable sets of two-sided matching games, which were orig-
inally studied by Gale and Shapley [8]. For a comprehen-
sive study on two-sidedmatching games, refer to Roth and
Sotomayor [39].

Stable Sets and Farsighted Stable Sets
in Strategic FormGames

We first defined a stable set in an abstract game in
Sect. “Stable Sets in Abstract Games”. This means that we
can also define a stable set of a strategic form game. In this
section we introduce a more sophisticated stable set con-
cept: a farsighted stable set of a strategic form game.

Let G D (N; fXigi2N ; fuigi2N) be an n-person strate-
gic form game, where N D f1; 2; : : : ; ng is the set of play-
ers, Xi is the set of strategies of player i, and ui is player i’s
payoff function, ui : X D X1 � X2 � � � � � Xn ! < (the
set of real numbers).

For any two strategy combinations x D (x1; : : : ; xn);
y D (y1; : : : ; yn) 2 X, we say that x is induced from
y via coalition S � N if yi D xi for each i 2 NnS, that
is, the combination x is reached from y by moves only
of players in S. It is easily seen from the definition that
if x is induced from y via coalition S; y is induced from x
via coalition S. Thus we write this inducement relation as
x $S y. We say that x indirectly dominates y (denoted by
x � y) if there exist a sequence of strategy combinations
y D x0; x1; : : : ; xp�1; xp D x and a sequence of coalitions

S1; : : : ; Sp such that for each j D 1; : : : ; p; x j�1 $S j x j

and ui (x) > ui (x j�1) for each i 2 S j . We sometimes say
that x indirectly dominates y starting with S1 (denoted by
x �S1 y) to specify the set of players which deviates first
from y.

We hereupon remark that in the definition of indi-
rect domination we implicitly assume that joint moves by
groups of players are neither once-and-for-all nor binding,
i. e., some players in a deviating group may later make an-
other move with players within or even outside the group.
It should be noted that the indirect domination defined
above is borrowed from Chwe [3]. Though Harsanyi [13]
first proposed the notion of indirect domination, his defi-
nition was given in characteristic function form games.

When p D 1 in the definition of indirect domination,
we simply say that x directly dominates y, which is denoted
by x �d y. When we want to specify a deviating coalition,
we say that x directly dominates y via coalition S, which
is denoted by x �d

S y. This direct domination in strategic
form games was defined by Greenberg [9].

Let pairs (X;�) and (X;�d ) be the abstract games as-
sociated with game G. A farsighted stable set of G is de-
fined to be a stable set of abstract game (X;�) with indi-
rect domination. A stable set of abstract game (X;�d ) with
direct domination is simply called a stable set of G .

Applications of Farsighted Stable Sets
in Strategic FormGames

Existence of farsighted stable sets in strategic form games
remains unsolved. Nevertheless, it has turned out through
applications that farsighted stable sets give much sharper
insights into players’ behavior in economic, political, and
social situations than (myopic) stable sets with direct dom-
inations. In what follows, we show the analyses of far-
sighted stable sets in the prisoner’s dilemma and two types
of duopoly market games in strategic form.

Prisoner’s Dilemma

To make discussion as clear as possible, we will focus on
the following particular version of the prisoner’ s dilemma
shown below. Similar results hold in general prisoner’ s
dilemma games.

Prisoner’s Dilemma:
Player 2

Cooperate Defect

Player 1 Cooperate 4; 4 0; 5
Defect 5; 0 1; 1
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Cooperative Games (Von Neumann–Morgenstern Stable Sets), Figure 1

Here! denotes a direct domination. For example, “(Cooperate, Cooperate)
2�!(Cooperate,Defect) means (Cooperate, Defect) d

f2g

(Cooperate,Cooperate). “(Cooperate, Cooperate)
12 (Defect, Defect)” means (Cooperate, Cooperate)d

f1;2g

(Defect, Defect)

We first present a farsighted stable set derived when two
players use only pure strategies. In this case, the set of
strategy combinations is X = {(Cooperate, Cooperate),
(Cooperate, Defect), (Defect, Cooperate), (Defect, De-
fect)}, where in each combination, the former (resp. the
latter) is player 1’s (resp. 2’s) strategy.

The direct domination relation of this game is summa-
rized as in Fig. 1.

From Fig. 1, no stable set (with direct domination) ex-
ists in the prisoner’s dilemma. However, since (Cooper-
ate, Cooperate)� (Cooperate, Defect), (Defect,Cooperate)
and there is no other indirect domination, the singleton
{(Cooperate, Cooperate)} is the unique farsighted stable
set with respect to �. Hence if the two players are far-
sighted and make a joint but not binding move, the far-
sighted stable set succeeds in showing that cooperation of
the players results in the unique stable outcome.

We now study stable outcomes in the mixed extension
of the prisoner’s dilemma, i. e., the prisoner’s dilemma
with mixed strategies played. Let X1 D X2 D [0; 1] be the
sets of mixed strategies of players 1 and 2, respectively,
and let t1 2 X1 (resp. t2 2 X2) denote the probability that
player 1 (resp. 2) plays “Cooperate”. It is easily seen that
the minimax payoffs to players 1 and 2 are both 1 in this
game.We call a strategy combination that gives both play-
ers at least (resp. more than) their minimax payoffs, an
individually rational (resp. a strictly individually rational)
strategy combination. We then have the following theo-
rem.

Theorem 10 Let

T D f(t1; t2)j1/4 < t1 � 1 ; t2 D 1g[
f(t1; t2)jt1 D 1; 1/4 < t2 � 1g ;

and define the singleton K1(t1; t2) D f(t1; t2)g for each
(t1; t2) 2 T. Let K2 D f(0; 0); (1; 1/4)g and K3 D f(0; 0);
(1/4; 1)g. Then the sets K2;K3, and any K1(t1; t2) with
(t1; t2) 2 T are farsighted stable sets of the mixed extension
of the prisoner’s dilemma. There are no other types of far-
sighted stable sets in the mixed extension of the prisoner’s
dilemma.

This theorem shows that if the two players are farsighted
and make a joint but not binding move in the prisoner’s
dilemma, then essentially a single Pareto efficient and
strictly individually rational strategy combination results
as a stable outcome. i. e., K1(t1; t2). We, however, have two
exceptional cases K2;K3 that (Defect, Defect) could be sta-
ble together with one Pareto efficient point at which one
player gains the same payoff as in (Defect, Defect).

n-Person Prisoner’s Dilemma

We consider an n-person prisoner’s dilemma. Let N D
f1; : : : ; ng be the player set. Each player i has two strate-
gies: C (Cooperate) and D (Defect). Let Xi D fC;Dg for
each i 2 N. Hereafter we refer to a strategy combination
as a state. The set of states is X D

Q
i2N Xi . For each

coalition S � N, let XS D
Q

i2S Xi and X�S D
Q

i2S c Xi ,
where Sc denotes the complement of S with respect
to N. Let xs and x�s denote generic elements of XS and
X�S , respectively. Player i’s payoff depends not only on
his/her strategy but also on the number of other coop-
erators. Player i’s payoff function ui : X ! < is given by
ui (x) D fi(xi ; h), where x 2 X; xi 2 Xi (player i’s choice
in x), and h is the number of players other than i playing C.
We call the strategic form game thus defined an n-person
prisoner’s dilemma game.

For simplifying discussion, we assume that all players
are homogeneous and each player has an identical pay-
off function. That is, f i’s are identical, and simply written
as f unless any confusion arises. We assume the following
properties on the function f

Assumption 1

(1) f (D; h) > f (C; h) for all h D 0; 1; : : : ; n � 1
(2) f (C; n � 1) > f (D; 0)
(3) f (C; h) and f (D; h) are strictly increasing in h.

Property (1) means that every player prefers playing D to
playing C regardless of which strategies other players play.
Property (2) means that if all players play C, then each
of them gains a payoff higher than the one in (D; : : : ;D).
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Property (3) means that if the number of cooperators in-
creases, every player becomes better off regardless of which
strategy he/she plays.

It holds from Property (1) that (D; : : : ;D) is the
unique Nash equilibrium of the game. Here for x; y 2 X,
we say that y is Pareto superior to x if ui (y) � ui (x) for
all i 2 N and ui (y) > ui (x) for some i 2 N . The state
x 2 X is said to be Pareto efficient if there is no y 2 X
that is Pareto superior to x. By Property (2), (C; : : : ;C)
is Pareto superior to (D; : : : ;D). Together with Property
(3), (C; : : : ;C) is Pareto efficient.

Given a state x, we say that x is individually ratio-
nal if for all i 2 N; ui(x) � miny�i2X�i maxyi2Xi ui (y). If
a strict inequality holds, we say that x is strictly individu-
ally rational. It holds from (1), (3) of Assumption 8.1 that
miny�i2X�i maxyi2Xi ui (y) D f (D; 0).

The following theorem shows that any state that is
strictly individually rational and Pareto efficient is itself
a singleton farsighted stable set. That is, any strictly in-
dividually rational and Pareto efficient outcome is sta-
ble if the players are farsighted. Refer to Suzuki and
Muto [51,52] for the details.

Theorem 11 For n-person prisoner’s dilemma game, if x
is a strictly individually rational and Pareto efficient state,
then fxg is a farsighted stable set.

Duopoly Market Games

We consider two types of duopoly: Cournot quantity-
setting duopoly and Bertrand price-setting duopoly. For
simplifying discussion, we will consider a simple duopoly
model in which firms’ cost functions and amarket demand
function are both linear. Similar results, however, hold in
more general duopoly models.

There are two firms 1,2, each producing a homoge-
neous good with the same marginal cost c > 0. No fixed
cost is assumed.

(1) Cournot duopoly: Firms’ strategic variables are
their production levels. Let x1 and x2 be production levels
of firms 1 and 2, respectively. The market price p(x1; x2)
for x1 and x2 is given by

p(x1; x2) D max(a � (x1 C x2); 0) ;

where a > c. We restrict the domain of production of
both firms to 0 � xi � a � c ; i D 1; 2. This is reasonable
since a firm would not overproduce to make a nonpositive
profit. When x1 and x2 are produced, firm i’s profit is given
by

�i(x1; x2) D (p(x1; x2) � c)xi :

Thus Cournot duopoly is formulated as the following
strategic form game

GC D (N; fXigiD1;2 ; f�igiD1;2) ;

where the player set is N D f1; 2g, each player’s strategy
set is a closed interval between 0 and a � c, i. e., X1 D

X2 D [0; a� c], and their payoff functions are �i ; i D 1; 2.
Let X D X1 � X2. The joint profit of two firms is maxi-
mized when x1 C x2 D (a � c)/2.

(2) Bertrand duopoly: Firms’ strategic variables are
their price levels. Let

D(p) D max (a � p; 0)

be the market demand at price p. Then the total profit at p
is
Y

(p) D (p � c)D(p) :

We restrict the domain of price level p of both firms to
c � p � a. This assumption is also reasonable since a firm
would avoid a negative profit. The total profit

Q
(p) is

maximized at p D (aC c)/2, which is called a monopoly
price.

Let p1 and p2 be prices of firms 1 and 2, respectively.
We assume that if firms’ prices are equal, then they share
equally the total profit, otherwise all sales go to the lower
pricing firm of the two. Thus firm i’s profit is given by

�i (pi ; p j) D

8
<̂

:̂

Q
(pi ) if pi < p j

Q
(pi )/2 if pi D p j

0 if pi > p j

for i; j D 1; 2; i ¤ j :

Hence Bertrand duopoly is formulated as the strategic
form game

GB D
�
N; fYigiD1;2; f�igiD1;2


;

where N D f1; 2g;Y1 D Y2 D [c; a], and �i (i D 1; 2) is i’s
payoff function. Let Y D Y1 � Y2.

It is well-known that a Nash equilibrium is uniquely
determined in either market: x1 D x2 D (a � c)/3 in the
Cournot market, and p1 D p2 D c in the Bertrandmarket.

The following theorem holds for the farsighted stable
sets in Cournot duopoly.

Theorem 12 Let (x1; x2) 2 X be any strategy pair with
x1 C x2 D (a � c)/2. Then the singleton f(x1; x2)g is a far-
sighted stable set. Furthermore, every farsighted stable set
is of the form f(x1; x2)g with x1 C x2 D (a � c)/2 and
x1; x2 � 0.
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As mentioned before, any strategy pair (x1; x2) with
x1 C x2 D (a � c)/2 and x1; x2 � 0 maximizes two firms’
joint profit. This suggests that the von Neumann–
Morgenstern stability together with firms’ farsighted be-
havior produce joint profit maximization even if firms’
collaboration is not binding.

As for Bertrand duopoly, we have the following the-
orem, which claims that the monopoly price pair is itself
a farsighted stable set, and no other farsighted stable set
exists. Therefore the von Neumann–Morgenstern stability
together with firms’ farsighted behavior attain efficiency
(from the standpoint of firms) also in Bertrand duopoly.
Refer to Suzuki and Muto [53] for the details.

Theorem 13 Let p D (p1; p2) be the pair of monopoly
prices, i. e., p1 D p2 D (aC c)/2. Then the singleton fpg is
the unique farsighted stable set.

For studies of stable sets with direct domination in
duopoly market games, refer to Muto and Okada [29,30].
Properties of stable sets and Harsanyi’s original farsighted
stable sets in pure exchange economies are investigated
by Greenberg et al. [10]. For further studies on stable sets
and farsighted stable sets in strategic form games, refer to
Kaneko [17], Mariotti [24], Xue [55,56], Diamantoudi and
Xue [4].

Future Directions

In this paper, we have reviewed applications of von Neu-
mann–Morgenstern stable sets in abstract games, charac-
teristic function form games, and strategic form games to
economic, political and social systems.

Stable sets give us insights into coalition formation
among players in the systems in question. Farsighted sta-
ble sets, especially applied to some economic systems,
show that players’ farsighted behavior leads to Pareto ef-
ficient outcomes even though their collaboration is not
binding. The stable set analysis is also applicable to games
with infinitely many players. Those analyses show us new
approaches to large economic and social systems with in-
finitely many players. For the details, refer to Hart [15],
Einy et al. [7], Einy and Shitovitz [6], Greenberg et al. [11],
Shitovitz and Weber [48], and Rosenmüller and Shi-
tovitz [37]. There is also a study on the linkage between
common knowledge of Bayesian rationality and achieve-
ment of stable sets in generalized abstract games. Refer to
Luo [22,23] for the details.

Analyses of social systems by applying the concepts of
farsighted stable sets as well as stable sets must further ad-
vance theoretical studies on games in which players inher-
ently take both cooperative and non-cooperative behavior.

Those studies will in turn have impacts on developments
of economics, politics, sociology, and many applied social
sciences.
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Glossary

Autonomous information system An autonomous in-
formation system is an information system existing as
an independent entity.

Intelligent query answering Intelligent query answering
is an enhancement of query-answering into a sort
of intelligent system (capable or being adapted or
molded). Such systems should be able to interpret in-
correctly posed questions and compose an answer not
necessarily reflecting precisely what is directly referred
to by the question, but rather reflecting what the inter-
mediary understands to be the intention linked with
the question.

Knowledge base Knowledge base is a collection of rules
defined as expressions written in predicate calculus.
These rules have a form of associations between con-
juncts of values of attributes.

Ontology Ontology is an explicit formal specification of
how to represent objects, concepts and other entities
that are assumed to exist in some area of interest and
relationships holding among them. Systems that share
the same ontology are able to communicate about the
domain of discourse without necessarily operating on
a globally shared theory. A system commits to ontol-
ogy if its observable actions are consistent with the def-
initions in the ontology.

Semantics The meaning of expressions written in some
language as opposed to their syntax which describes
how symbols may be combined independently of their
meaning.

Definition of the Subject

One way to make a Query Answering System (QAS) in-
telligent is to assume the hierarchical structure of their at-
tributes. Such systems have been investigated by Cuppens
and Demolombe [3], Gal and Minker [4], and Gaaster-
land et al. [6], and they are called cooperative. Queries
submitted to them are built, in a classical way, from val-
ues of attributes describing objects in an information sys-
tem S and from two-argument functors “and”, “or”. In-
stead of “or”, we use the symbol “+”. Instead of “and”,
we use the symbol “*”. Let us assume that QAS is associ-
ated with an information system S. Now, if query q sub-
mitted to QAS fails, then any attribute value listed in q
can be generalized and the number of objects support-
ing q in S may increase. In cooperative systems, these
generalizations are controlled either by users [4], or by
methods based on knowledge discovery [12]. Conceptu-
ally, a similar approach has been proposed by Lin [11].

He defines a neighborhood of an attribute value which we
can interpret as its generalization (or its parent in the cor-
responding hierarchical attribute structure). When query
fails, then the query answering system is trying to replace
values in a query by new values from their correspond-
ing neighborhoods. QAS for S can also collaborate and
exchange knowledge with other information systems. In
all such cases, it is called intelligent. In papers [14,15] the
query answering strategy was based on a guided process
of knowledge (rules) extraction and knowledge exchange
among systems. Knowledge extracted from information
systems collaborating with S was used to construct new
attributes in S and/or impute null or hidden values of at-
tributes in S. This way we do not only enlarge the set of
queries which QAS can successfully answer but also in-
crease the overall number of retrieved objects and their
confidence. Some attributes in S can be distinguished. We
usually call them decision attributes. Their values repre-
sent concepts which can be defined in terms of the remain-
ing attributes in S, called classification attributes. Query
languages for such information systems are built only from
values of decision attributes and from two-argument func-
tors “+”, “*” [16]. The semantics of queries is defined in
terms of semantics of values of classification attributes.
Precision and recall of QAS is strictly dependent on the
support and confidence of the classifiers used to define
queries.

Introduction

Responses by QAS to submitted queries do not always
contain the information desired and although they may
be logically correct, can sometimes be misleading. Re-
search in the area of intelligent query answering recti-
fies these problems. The classical approach is based on
a cooperative method called relaxation for expanding an
information system and related to it queries [3,4]. The
relaxation method expands the scope of a query by re-
laxing the constraints implicit in the query. This allows
QAS to return answers related to the original query as
well as the literal answers which may be of interest to the
user.

This paper concentrates onmulti-hierarchical decision
systems which are defined as information systems with
several hierarchical distinguished attributes called deci-
sion attributes. Their values are used to build queries. We
give the theoretical framework for modeling such systems
and its corresponding query languages. Standard interpre-
tation and the classifier-based interpretation of queries are
introduced and used to model the quality (precision, re-
call) of QAS.
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Multi-hierarchical Decision System

In this section we introduce the notion of a multi-hier-
archical decision system S and the query language built
from atomic expressions containing only values of the de-
cision attributes in S. Classifier-based semantics and the
standard semantics of queries in S are proposed. The set
of objects X in S is defined as the interpretation domain
for both semantics. Standard semantics identifies all ob-
jects in X which should be retrieved by a query. Classifier-
based semantics gives weighted sets of objects which are
retrieved by queries. The notion of precision and recall of
QAS in the proposed setting is introduced. We use only
rule-based classifiers to define the classifier-based seman-
tics. By improving the confidence and support of the clas-
sifiers we improve the precision and recall of QAS.

Definition 1 By a multi-hierarchical decision system we
mean a triple S D (X;A[ D;V), where X is a nonempty,
finite set of objects, D D fd[i] : 1 � i � kg is a set of hi-
erarchical decision attributes, A is a nonempty finite set
of classification attributes, andV D

S
fVa : a 2 A[ Dg is

a set of their values.
We assume that: Va, Vb are disjoint for any a; b 2

A [ D, such that a ¤ b, a : X ! Va is a partial function
for every a 2 A[ D.

Definition 2 By a set of decision queries (d-queries) for S
we mean a least set TD such that:

� 0; 1 2 TD ,
� if w 2

S
fVa : a 2 Dg, then w;�w 2 TD ,

� if t1; t2 2 TD , then (t1 C t2), (t1  t2) 2 TD .

Definition 3 Decision query t is called simple if t D t1 
t2  : : :  tn and

(8 j 2 f1; 2; : : : ; ng)
h


t j 2
[
fVa : a 2 Dg

�

_


t j D�w ^ w 2

[
fVa : a 2 Dg

�i
:

Definition 4 By a set of classification terms (c-terms)
for S we mean a least set TC such that:

� 0; 1 2 TC ,
� if w 2

S
fVa : a 2 Ag, then w;�w 2 TC ,

� t1; t2 2 TC , then (t1 C t2); (t1  t2) 2 TC .

Definition 5 Classification term t is called simple if
t D t1  t2  : : :  tn and

(8 j 2 f1; 2; : : : ; ng)
h


t j 2
[
fVa : a 2 Ag

�

_


t j D�w ^ w 2

[
fVa : a 2 Ag

�i
:

Definition 6 By a classification rule we mean any expres-
sion of the form [t1 ! t2], where t1 is a simple classifica-
tion term and t2 is a simple decision query.

Definition 7 Semantics MS of c-terms in S D (X;
A[ D;V) is defined in a standard way as follows:

� MS(0) D 0, MS(1) D X,
� MS(w) D fx 2 X : w D a(x)g for any w 2 Va , a 2 A,
� MS(�w) D fx 2 X : (9v 2 Va )[v D a(x) & v ¤ w]g

for any w 2 Va , a 2 A,
� if t1, t2 are terms, then

MS(t1 C t2) D MS(t1) [ MS(t2) ;
MS (t1  t2) D MS(t1) \ MS(t2) :

Now, we introduce the notation used for values of deci-
sion attributes. Assume that the term d[i] also denotes
the first granularity level of a hierarchical decision at-
tribute d[i]. The set fd[i; 1]; d[i; 2]; d[i; 3]; : : :g repre-
sents the values of attribute d[i] at its second granular-
ity level. The set fd[i; 1; 1]; d[i; 1; 2]; : : : ; d[i; 1; ni ]g rep-
resents the values of attribute d at its third granular-
ity level, right below the node d[i; 1]. We assume here
that the value d[i; 1] can be refined to any value from
fd[i; 1; 1]; d[i; 1; 2]; : : : ; d[i; 1; ni ]g, if necessary. Simi-
larly, the set fd[i; 3; 1; 3; 1]; d[i; 3; 1; 3; 2]; d[i; 3; 1; 3; 3];
d[i; 3; 1; 3; 4]g represents the values of attribute d at its
fourth granularity level which are finer than the value
d[i; 3; 1; 3].

Now, let us assume that a rule-based classifier is used
to extract rules describing simple decision queries in S. We
denote that classifier by RC. The definition of semantics
NS of c-terms is RC independent whereas the definition of
semanticsMS of d-queries is RC dependent.

Definition 8 Classifier-based semantics MS of d-queries
in S D (X;A[ D;V) is defined as follows:

If t is a simple d-query in S and fr j D [t j ! t] : j 2 Jtg
is a set of all rules defining t which are extracted from S
by classifier RC, then MS(t) D f(x; px ) : (9 j 2 Jt)(x 2
MS(t j)[px D ˙fconf( j) � sup( j) : x 2 MS(t j) & j 2 Jtg/
˙fsup( j) : x 2 MS(t j) & j 2 Jtg], where conf( j); sup( j)
denote the confidence and the support of the rule [t j ! t],
correspondingly.

Definition 9 Attribute value d[ j1; j2; : : : ; jn] in S D
(X;A[ D;V ) is dependent on d[i1; i2; : : : ; ik] in S, if one
of the following conditions hold:

1) n � k & (8m � n) [im D jm ],
2) n > k & (8m � k) [im D jm ].
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Otherwise, d[ j1; j2; : : : ; jn] is called independent from
d[i1; i2; : : : ; ik] in S.

Example 1 The attribute value d[2; 3; 1; 2] is dependent
on the attribute value d[2; 3; 1; 2; 5; 3]. Also, d[2; 3; 1; 2;
5; 3; 2; 4] is dependent on d[2; 3; 1; 2; 5; 3].

Definition 10 Let SD
�
X;A[ fd[1]; d[2]; : : : ; d[k]g;V


,

w 2 Vd[i] , and IVd[i] be the set of all attribute values in
Vd[i] which are independent from w.

Standard semantics NS of d-queries in S is defined as
follows:

� NS(0) D 0, NS(1) D X,
� if w 2 Vd[i] , then NS(w) D fx 2 X : d[i](x) D wg, for

any 1 � i � k
� if w 2 Vd[i], then NS(� w) D fx 2 X : (9v 2 IVd[i])

[d[i](x) D v]g, for any 1 � i � k
� if t1, t2 are terms, then

NS (t1 C t2) D NS (t1) [ NS(t2) ;
NS(t1  t2) D NS (t1) \ NS(t2) :

Definition 11 Let S D (X;A[ D;V), t is a d-query in S,
NS(t) is its meaning under standard semantics, andMS(t)
is its meaning under classifier-based semantics. Assume
that NS (t) D X1 [ Y1, where X1 D fxi ; i 2 I1g;Y1 D
fyi ; i 2 I2g. Assume also that MS(t) D f(xi ; pi ) : i 2
I1g [ f(zi ; qi ) : i 2 I3g and fyi ; i 2 I2g \ fzi ; i 2 I3g D ;.

By precision of a classifier-based semantics MS on a d-
query t, we mean

Prec(MS ; t) D [˙fpi : i 2 I1g C˙f(1 � qi ) : i 2 I3g]
/[card(I1)C card(I3)] :

By recall of a classifier-based semantics MS on
a d-query t, we mean

Rec(MS ; t) D [˙fpi : i 2 I1g]/[card(I1)C card(I2)] :

Example 2 Assume that NS(t)Dfx1; x2; x3; x4g,MS(t) D
f(x1; p1); (x2; p2); (x5; p5); (x6; p6)g. Then:

Prec(MS ; t) D [p1 C p2 C (1 � p5)C (1 � p6)]/4 ;
Rec(MS ; t) D [p1 C p2]/4 :

CooperativeQuery Answering

There are cases when classical Query Answering Systems
fail to return any answer to a d-query q but still a satisfac-
tory answer can be found. For instance, let us assume that
in a multi-hierarchical decision system S D (X;A[D;V),

where D D fd[1]; d[2]; : : : ; d[k]g, there is no single ob-
ject whose description matches the query q. Assuming that
a distance measure between objects in S is defined, then
by generalizing q, we may identify objects in S whose de-
scriptions are closest to the description of q. This problem
is similar to the problem when the granularity of an at-
tribute value used in a query q is finer than the granularity
of the corresponding attribute used in S. By replacing such
attribute values in q by more general values used in S, we
may retrieve objects from S which satisfy q.

Definition 12 The distance ıS between two attribute val-
ues d[ j1; j2; : : : jn], d[i1; i2; : : : ; im] in S D (X;A[D;V ),
where j1 D i1, p � 1, is defined as follows:

1) if [ j1; j2; : : : ; jp] D [i1; i2; : : : ; ip] and jpC1 ¤ ipC1,
then ıS

�
d[ j1; j2; : : : ; jn]; d[i1; i2; : : : ; im]

�
D 1/2p�1

2) if n � m and [ j1; j2; : : : ; jn] D [i1; i2; : : : ; in], then
ıS
�
d[ j1; j2; : : : ; jn]; d[i1; i2; : : : ; im]

�
D 1/2n

The second condition, in the above definition, represents
the average case between the best and the worth case.

Example 3 Following the above definition of the distance
measure, we get:

1. ıS
�
d[2; 3; 2; 4]; d[2; 3; 2; 5; 1]

�
D 1/4

2. ıS
�
d[2; 3; 2; 4]; d[2; 3; 2]

�
D 1/8

Let us assume that q D q(a[3; 1; 3; 2]; b[1]; c[2]) is a d-
query submitted to S. The notation q(a[3; 1; 3; 2]; b[1];
c[2]) means that q is built from a[3; 1; 3; 2]; b[1]; c[2]
which are the atomic attribute values in S. Additionally,
we assume that attribute a is not only hierarchical but also
it is ordered. It basically means that the difference between
the values a[3; 1; 3; 2] and a[3; 1; 3; 3] is smaller than be-
tween the values a[3; 1; 3; 2] and a[3; 1; 3; 4]. Also, the
difference between any two elements in fa[3; 1; 3; 1]; a[3;
1; 3; 2]; a[3; 1; 3; 3]; a[3; 1; 3; 4]g is smaller than between
a[3; 1; 3] and a[3; 1; 2].

Now, we outline a possible strategy which QAS can fol-
low to solve q. Clearly, the best solution for answering q is
to identify objects in S which precisely match the d-query
submitted by the user. If it fails, we try to identify ob-
jects which match d-query q(a[3; 1; 3]; b[1]; c[2]). If we
succeed, then we try d-queries q(a[3; 1; 3; 1]; b[1]; c[2])
and q(a[3; 1; 3; 3]; b[1]; c[2]). If we fail, then we should
succeed with q(a[3; 1; 3; 4]; b[1]; c[2]). If we fail with
q(a[3; 1; 3]; b[1]; c[2]), then we try q(a[3; 1]; b[1]; c[2])
and so on.
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Cooperative Multi-hierarchical Query Answering Systems, Ta-
ble 1
Multi-hierarchical decision system S

X e f g . . . . . . a b c d
x1 e[1 f [1] . . . . . . . . . a[1] b[2] c[1; 1] d[3]
x2 e[2] f [1] . . . . . . . . . a[1; 1] b[2; 1] c[1;1;1] d[3;1;2]
x3 e[2] f [1] . . . . . . . . . a[1;1;1] b[2;2;1] c[2; 2] d[1]
x4 e[1] f [2] . . . . . . . . . a[2] b[2; 2] c[1; 1] d[1; 1]

To present this cooperative strategy in a more pre-
cise way, we use an example and start with a very simple
dataset. Namely, we assume that S has four decision at-
tributes which belong to the set fa; b; c; dg. System S con-
tains only four objects listed in Table 1.

Now, we assume that d-query q D a[1; 2]  b[2] 
c[1; 1]  d[3; 1; 1] is submitted to the multi-hierarchical
decision system S (see Table 1). Clearly, q fails in S.

Jointly with q, also a threshold value for a minimum
support can be supplied as a part of a d-query. This thresh-
old gives the minimal number of objects that need to be
returned as an answer to q. When QAS fails to answer q,
the nearest objects satisfying q have to be identified.

The algorithm for finding these objects is based on the
following steps:

If QAS fails to identify a sufficient number of objects
satisfying q in S, then the generalization process starts.
We can generalize either attribute a or d. Since the value
d[3; 1; 2] has a lower granularity level than a[1; 1], then
we generalize d[3; 1; 2] getting a new query q1 D a[1; 2] 
b[2] c[1; 1]d[3; 1]. But q1 still fails in S. Now, we gener-
alize a[1; 1] getting a new query q2 D a[1]b[2]c[1; 1]
d[3; 1]. Objects x1, x2 are the only objects in S which
support q2.

If the user is only interested in one object satisfying the
query q, then we need to identify which object in fx1; x2g
has a distance closer to q.

Clearly,

ıS [q; x1] D ıS
�
[a[1; 2]; b[2]; c[1; 1]; d[3; 1; 1]];
[a[1]; b[2]; c[1; 1]; d[3]]

�

D 1/4C 0C 0C 1/4 D 1/2 ;
ıS [q; x2] D ıS

�
[a[1; 2]; b[2]; c[1; 1]; d[3; 1; 1]];
[a[1; 1]; b[2; 1]; c[1; 1; 1]; d[3; 1; 2]]

�

D 1/4C 1/4C 1/8C 1/8 D 3/4 ;

which means x1 is the winning object.
Note that the cooperative strategy only identifies ob-

jects satisfying d-queries and it identifies objects to be re-

turned by QAS to the user. The confidence assigned to
these objects depends on the classifier RC.

Future Directions

We have introduced the notion of system-based semantics
and user-based semantics of queries. User-based seman-
tics are associated with the indexing of objects by a user
which is time consuming and unrealistic for very large sets
of data. System-based semantics are associated with auto-
matic indexing of objects in X which strictly depends on
the support and confidence of classifiers and depends on
the precision and recall of a query answering system. The
quality of classifiers can be improved by a proper enlarge-
ment of the set X and the set of features describing them
which differentiate the real-life objects from the same se-
mantic domain as X in a better way. An example, for in-
stance, is given in [16]. The quality of a query answering
system can be improved by its cooperativeness. Both pre-
cision and recall of QAS is increased if no-answer queries
are replaced by generalized queries which are answered by
QAS on a higher granularity level than the initial level of
queries submitted by users. Assuming that the system is
distributed, the quality of QAS for multi-hierarchical deci-
sion system S can also be improved through collaboration
among sites [14,15].

The key concept of intelligentQAS based on collabora-
tion among sites is to generate global knowledge through
knowledge sharing. Each site develops knowledge inde-
pendently which is used jointly to produce global knowl-
edge. Assume that two sites S1 and S2 accept the same on-
tology of their attributes and share their knowledge in or-
der to solve a user query successfully. Also, assume that
one of the attributes at site S1 is confidential. The confi-
dential data in S1 can be hidden by replacing them with
null values.However, users at S1 may treat them asmissing
data and reconstruct them with the knowledge extracted
from S2 [10]. The vulnerability illustrated in this exam-
ple shows that a security-aware data management is an es-
sential component for any intelligent QAS to ensure data
confidentiality.
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Glossary

Coordination dynamics Coordination Dynamics, de-
fined broadly as the science of coordination, describes,
explains and predicts how patterns of coordination
form, adapt, persist and change in living things. In co-
ordination dynamics the parts communicate via mu-
tual information exchange and information is mean-
ingful and specific to the forms coordination takes.
Coordination dynamics embraces both spontaneous
self-organizing tendencies and the need to guide or
direct them in specific ways in a single conceptual
framework. Life, brain, mind and behavior are hy-
pothesized to be linked by virtue of sharing a common
underlying coordination dynamics.

Synergies Synergies (aka coordinative structures) are
functional groupings of structural elements (e. g. neu-
rons, muscles, joints) that are temporarily constrained
to act as a single coherent unit. They arise inmany con-
texts on many levels of biological organization, from
the genetic to the social. Synergies are the key to under-
standing biological coordination and as such are the
significant units of coordination dynamics. The syn-
ergy hypothesis is an hypothesis about how Nature
handles biological complexity.

Self-organization The ‘self’ in the word self-organization
refers to the ability of an open system that exchanges
matter, energy and information with the environment,
to organize itself. Spontaneous patterns arise solely as
a result of the dynamics of the system with no specific
ordering influence imposed from the outside and no
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homunculus-like agent inside. Nonequilibrium phase
transitions are the hallmark of self-organization in liv-
ing things.

Collective variables Collective variables (aka order pa-
rameters in physics or coordination variables in coordi-
nation dynamics) are relational quantities that are cre-
ated by the cooperation among the individual parts of
a system. Yet they, in turn, govern the behavior of the
individual parts. This is sometimes referred to as circu-
lar or reciprocal causality. In coordination dynamics,
the identification of coordination variables depends on
the level of description. What is “macro” at one level
may be “meso” or “micro” at another.

Control parameters Control parameters refer to natu-
rally occurring environmental conditions or intrinsic,
endogenous factors that move the system through its
repertoire of patterns and cause them to change. Ex-
perimentally, you only know for certain you have iden-
tified a control parameter if, when varied, it causes the
system’s behavior to change qualitatively or discontin-
uously, i. e., to change its functional state.

Metastability Metastability arises due to broken symme-
try in the coordination dynamics where the unstable
and stable fixed points (phase- and frequency-locked
states) have disappeared due to tangent or saddle-node
bifurcations leaving behind only remnants of the fixed
points. Metastability is the simultaneous realization of
two competing tendencies: the tendency of the compo-
nents to couple together and the tendency of the com-
ponents to express their intrinsic independent behav-
ior. Metastability has been hailed as a new principle of
organization in complex living systems, including the
brain, reconciling apparent contraries such as individ-
ual and collective, part and whole, competition and co-
operation, integration and segregation, and so forth.

Definition of the Subject

Even before man speculated about the nature and
sources of his own experiences, he was probably cu-
rious about the agencies by which animal motion
was affected. Life andmotion are almost synonymous
terms. Franklin Fearing [48]

In his preface to the Principia, Isaac Newton speculated
that not just the motions of the planets, the Moon and the
tides could be explained by the forces of attraction and
repulsion, but all other natural phenomena as well. De-
spite the hubris, “self-motion”, Newton recognized, “was
beyond our understanding” [64]. Three and a half cen-
turies later, the problem remains: the goal-directed co-
ordinated movements of animals are not mere mechan-

ical consequences of the laws of physics, at least as we
know them. Despite the many remarkable applications of
physics to biology and entire fields devoted to them (e. g.
biomechanics, biophysics, nanophysics, etc.) and despite
the successes of modern molecular biology, the great un-
resolved problem of biology remains: how complex liv-
ing things are coordinated in space and time. To recog-
nize that coordination is often purposeful and goal-di-
rected does not at all mean a return to vitalism. But it does
pose the scientific challenge of extending physics to un-
derstand coordination in living things. Coordination dy-
namics is a response to this challenge: it is a conceptual
framework and research program that deals fundamen-
tally with animate (and animated) self-organizing dynam-
ical systems (see also [181,182]). That is, it deals with an-
imate organisms anchored to and engaged in their sur-
rounding worlds. Table 1 compares some of the features of
classical mechanics and coordination dynamics. The Table
is not intended to be inclusive or to convey the idea that
there have been no candidate “paradigms” between clas-
sical mechanics and coordination dynamics. For present
purposes, “the complex systems” paradigm may represent
the most recent break from or extension of classical me-
chanics. In the complex systems paradigm, self-organiza-
tion would replace organization, open systems would re-
place closed systems, change, disorder and process would
replace stasis, order and equilibrium, etc. [163]. Coordina-
tion dynamics goes a step further. In coordination dynam-
ics it is not organization versus self-organization, order
versus disorder, closed versus open systems, reductionism
versus emergentism, etc., but rather both aspects that are
necessary for an exhaustive account of phenomena and
a deeper understanding of coordination in living things.
Hence, rather than view these features in opposition, they
are better viewed as complementary [100,104,110].

Coordination represents one of themost striking, most
taken for granted, yet least understood features of all living
things. Imagine a living system whose component parts
and processes, on any level of description one choose to
examine, did not interact with each other or with their
surrounds. Such a collective “cell,” “organ,” “organism”
or “society” would possess neither structure nor function.
Coordination can be seen almost everywhere we look,
whether in the regulatory interactions among genes that
affect how an organism develops and how some diseases
like cancer occur, the tumbling and twisting of the bac-
terial flagellum, the coordinated responses of organisms
to constantly varying environmental stimuli, the coordi-
nation among nerve cells that produce basic forms of lo-
comotion in vertebrates and invertebrates, the coordina-
tion among cell assemblies of the brain that underlies our
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Coordination Dynamics, Table 1
Some complementary features of classical mechanics and coordination dynamics

Classical Mechanics Coordination Dynamics
machines; organized “organisms ”; self-organized
inanimate animate
motion coordination (function); animation
matter materially instantiated; organization
forces information (semantic) and information exchange; couplings
fundamental dimensions (M, L, T) collective or coordination variables
space, time spatiotemporal
linear; smooth dynamics essentially nonlinear; bifurcations; multi- and metastable
deterministic fluctuations/variability play key role
decomposable; “emergent ”; synergistic;
motion of whole = sum of motion of the parts motion of whole > sum of motion of the parts
homogeneous parts, elements, components heterogeneous units and connectivity
micro versus macro level distinction level independent strategy; ‘one level down ’
fixed laws extensible laws; regularities
context-free context-dependent
machine/artifactual perspective on order organic/natural perspective on order

awareness, ability to think, remember, decide and act, the
miraculous coordination between the lungs, larynx, lips
and tongue that belies a child’s first word, the learned co-
ordination among fingers and brain that allows the skilled
pianist to play a concerto, the congruence of motion and
emotion in dance, drama and everyday life, the coordina-
tion between people – like rowers in a racing eight – work-
ing together to achieve a common goal. Everything is co-
ordinated.

What do we mean by the word coordination? Coor-
dination is not only spatial and temporal order. Rather,
it refers to different kinds and degrees of functional or-
der among interacting parts and processes in space and
time. Newtonian mechanics may define limits on how bi-
ological systems are coordinated, but it says nothing about
their functional organization, per se. How are complex liv-
ing things coordinated in space and time? What is the na-
ture of the basic interactions that give rise to patterns of co-
ordinated behavior? Why do they take the form they do?
These questions lie at the heart of understanding coordi-
nation. Given the ubiquity of coordinated behavior in liv-
ing things, one might have expected its lawful basis to have
been uncovered many years ago. However, it is only in the
last 25 years or so, and under quite peculiar circumstances,
that basic laws for a quantitative description of coordina-
tion have been found.

Introduction

A centipede was happy quite,
Until a frog in fun said:

“Pray tell which leg comes after which?”
This raised her mind to such a pitch,
She lay distracted in the ditch,
Considering how to run. Anon

Coordination Dynamics – the science of coordination –
refers to the concepts, methods and tools used to describe,
explain and predict how patterns of coordination form,
adapt, persist, and change in living things. It is about
identifying coordinated patterns in the behavior of liv-
ing things and expressing how these patterns evolve and
change in terms of dynamical laws or rules. The dynam-
ics here refers to equations of motion for key coordination
variables or order parameters [73] that characterize coor-
dinated patterns of behavior on multiple levels of descrip-
tion. As the name implies, the dynamics deals with coordi-
nation, not (or not only) with matter in motion: coordina-
tion dynamics (see Table 1). Through an intimate relation-
ship between theory, experiment, analysis and modeling,
Coordination Dynamics seeks to identify the laws, prin-
ciples and mechanisms underlying coordinated behavior
within and between different levels of organization, ex-
plicitly addressing the connection between levels. Thus,
a goal of Coordination Dynamics is to identify the na-
ture of the functional and context-dependent coordina-
tion within a part of a system (e. g., the firing of cells in
the heart or neurons in a part of the brain), between dif-
ferent parts of a system (e. g., parts of the brain, parts
of the body, members of an audience) and between dif-
ferent kinds of system (e. g., stimuli and responses, or-
ganisms and environments, humans and robots, etc.). In
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coordination dynamics, the coupling between things is
realized by many mechanisms, but is fundamentally in-
formational in nature. That is, Coordination dynamics
deals specifically with meaningfully coupled, self-organiz-
ing systems: the parts communicate via mutual informa-
tion exchange and information is meaningful and specific
to the forms coordination takes. As a source of biologi-
cal order and pattern, self-organization has received much
less attention than the teleonomic, directed nature of liv-
ing things captured by terms like “program”, “blueprint”,
“template” and so forth. Instead of treating them as op-
posing theories, Coordination Dynamics unites the spon-
taneous, self-organizing nature of coordination and the
obviously directed, agent-like properties characteristic of
animate nature into a single framework [100,104,110]. It
does this by studying how functionally meaningful in-
formation arises from spontaneous self-organizing pro-
cesses and how it in turn modifies, guides and directs
them.

Coordination Dynamics is both multi- and interdis-
ciplinary, engaging relevant aspects and subfields of psy-
chology, philosophy, biology, neuroscience, computer sci-
ence, engineering, mathematics and physics. For Coordi-
nation Dynamics, a complete understanding of coordina-
tion phenomena on any given level of description requires:
i) specifying the individual coordinating elements and
their properties; ii) identifying key parameters, bound-
ary and task conditions that constrain coordination; and
(iii) showing how interactions among coordinating ele-
ments produce or generate patterns of coordination. By
demonstrating in specific cases how the nonlinear cou-
pling among the parts produces coordinated behavior Co-
ordination Dynamics demystifies the popular term “emer-
gence”. Even more subtly, a certain régime of Coordina-
tion Dynamics calledmetastability resolves the longstand-
ing dichotomy between the whole and the parts by ex-
plicitly showing how the individual parts of the system
may retain a certain degree of autonomy while still co-
ordinating as a whole. To the extent that they transcend
the particular mechanisms through which coordination
is realized, the principles of Coordination Dynamics may
be said to be “universal” and hence have the potential
to describe and explain coordinated behavior in a num-
ber of fields ([75]; see also � Movement Coordination
and � Social Coordination, from the Perspective of Co-
ordination Dynamics). In the case of movement coordi-
nation, for example, Coordination Dynamics provides the
basic laws for a quantitative description of phenomena
that are observed when humans interact in a certain way
with themselves, with other humans and with their envi-
ronment [59,100].

History of CoordinationDynamics:
Synergy and Rhythmic Order

Coordination Dynamics arose as a response to the fun-
damental problem of control and coordination in com-
plex, biological systems: the problem of degrees of free-
dom. Consider an ordinarymovement of the human body.
The body itself consists of over 790 muscles and 100 joints
that have co-evolved in a complex environment with a ner-
vous system that contains � 1012 neurons and neuronal
connections. On the sensory side, billions of receptor el-
ements embedded in skin, joints and muscles inform the
mover about his movement. Clearly, any ordinary hu-
man activity requires the cooperation among very many
structurally diverse elements – a miracle that we take for
granted (e. g. [164]). How does nature compress the very
high dimensional state space of such a complex system
into something lower dimensional and controllable? An
attractive hypothesis proposed by the Russian physiologist
Bernstein (1896–1966 [17]) is that in complex living sys-
tems, the individual elements are not controlled directly
but are rather organized into collectives called synergies.
Synergies are functional groupings of structural elements
(e. g. neurons, muscles, joints) that are temporarily con-
strained to act as a single coherent unit. Just as new states
of matter form under certain conditions when a group of
atoms behaves as a single particle (e. g., the Bose–Einstein
condensate) so a new state of biological function emerges
when large ensembles of different elements form a syn-
ergy. The synergy hypothesis is therefore an hypothesis
about how Nature handles biological complexity. Syner-
gies may appear in many contexts on many levels of bi-
ological organization, from the genetic to the social. De-
pending on context, synergies can accomplish different
functions using some of the same anatomical components
(e. g., those used for speaking and chewing) and the same
function using different components (e. g. writing one’s
name with a pen attached to the big toe). Once assembled,
the degrees of freedom composing a synergy take care of
themselves in a relatively autonomous organization. The
assembling and disassembling of synergies may be said to
be “soft” demanding little energy: synergies are ready to
become something else at an instant. They are the “atoms”,
the significant units of biological function [105,107].

The hallmark of a synergy is that the individual ele-
ments adjust to mutual fluctuations and to fluctuations in
the external force field (and more generally, the synergy’s
environment) in order to sustain integrity of function. As
a consequence, natural variations (which from the scien-
tist’s view may be seen as “errors”) that occur in the indi-
vidual elements of the synergy are compensated by adjust-
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ments (“covariations”) in other members of the synergy in
such a way as to maintain a given function stable. Retain-
ing stability is, for a synergy, the retaining of functional
integrity [105,204]. Stability, therefore, plays a key role in
coordination dynamics, where the great challenge is to dis-
cover what the stability is of. Since the key variables of co-
ordination are not known a priori in living things, they
must be identified through empirical research. This, as we
shall see, follows a particular strategy.

In the late 1970s and early 80s technological devel-
opments and sophisticated computer methods for ana-
lyzing complex, multidegree of freedom movements en-
abled stringent experimental tests of the synergy hy-
pothesis to be carried out [112,120]. Invariably, the
experiments, which ranged from postural control to
speech production and complex finger and limb move-
ments ([105,107,136,201,204] for reviews), showed: a) that
a perturbation to any part of the putative synergy is rapidly
compensated for by remotely linked elements in such
a way as to preserve system function; b) that the same ele-
ments are used in different functions in different ways; c)
that different elementsmay accomplish the same function;
and d) that the adjustments observed could in all cases
be said to be meaningful, task- and context-specific. All
this evidence for the existence of synergies attests to the
tremendous redundancy or degeneracy of biological sys-
tems [46].

All scientific journeys begin with a single step.
The identification of synergies as significant structural–
functional units of biological coordination was an impor-
tant one for the development of Coordination Dynam-
ics. Synergies simplify control by reducing the number
of variables that must be independently specified: as con-
straints, they make control and coordination of complex,
multivariable systems possible. But understanding goes far
beyond identification. How are synergies formed? What
principles govern their assembly? And how does one syn-
ergy change spontaneously to another as internal or exter-
nal conditions change? How can distinct synergies co-exist
among the same set of components? And how are individ-
ual components of the synergy engaged and disengaged as
circumstances change?

Insights into these questions come from the work of
a largely unheralded genius called Erich von Holst [215],
a behavioral physiologist who spent his life studying co-
ordination in a wide variety of creatures – from worms
to man. Von Holst’s research will not give us answers to
all the questions about synergies but it will provide key
insights into the essence of coordination and a stepping
stone to finding the underlying principles. Using an exper-
imental model system that allowed him to measure an ele-

mentary synergy – the to and fro motions of the fins of the
swimming dogfish Labrus under carefully controlled wa-
ter flow conditions – von Holst identified at least three ba-
sic types of coordination: absolute coordination, in which
component parts are locked together in time (like the syn-
chronized flashing of fireflies, a couple making love or
phase synchrony between parts of the brain); partial or
relative coordination, in which the component parts ‘lock
in’ only transiently and then break apart as circumstances
change (like a little boy walking hand in hand with his fa-
ther on the beach; dad must slow down and/or son add
a step so that they can stay together); and no coordination
at all, in which the component parts behave quite inde-
pendently (as occurs in the locomotion of millipedes and
centipedes when the same little boy chops off their mid-
dle legs, or perhaps after persistent, long term practice in
playing the piano or the violin). Various blends, mixes and
transitions between these coordinated behaviors were also
observed – always matching the exigencies of the internal
and external environment.

Why might some kind of common principle exist for
such diverse phenomena? The reason is that the same basic
coordination phenomena seem to cut across a wide range
of levels, creatures and functions. Among those observed
are: patterns of coordination remain stable in time despite
continuous, and often unexpected perturbations; the ease
with which component parts and processes are flexibly en-
gaged and disengaged as functional demands or environ-
mental conditions change; the existence of multiple coor-
dination patterns – so-called multifunctionality – that ef-
fectively satisfy the same set of circumstances; the selection
of particular coordination patterns that are exquisitely tai-
lored to suit the current needs of the organism; adaptation
of coordination to changing internal and external contin-
gencies; smooth and abrupt transitions from one coordi-
nated pattern to another; transitions from partially to fully
coordinated patterns and vice-versa; persistence of a coor-
dinated pattern evenwhen conditions that led to the estab-
lishment of the pattern have changed (a kind of memory),
and so forth. Such phenomena appear so commonly and
so consistently as to suggest the existence of an underly-
ing lawfulness or regularity that transcends the differences
between systems. Nature, as the saying goes, operates with
ancient themes. Or maybe nature just is what it is.

Conceptual Foundations of CoordinationDynamics:
Self-organizingDynamical Systems

Given we accept the empirical facts about synergies and
rhythmic order in the nervous system and the movements
of living things, what concepts, methods and tools do we
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use to understand them? Were synergies simply rigid me-
chanical entities built by an engineer or an intelligent de-
signer, control theory with its programs, reference levels,
comparators, feedforward and feedback error correcting
mechanisms and so forth, might have seemed an obvious
place to look for explanatory tools. A program instructs
the parts of a system what to do and when to do it. Feed-
back may then be used to correct errors in the outcome.
But now what? The system receives an error signal: How
does it know which of its many parts to correct? In a com-
plex system composed of very many components it may
take a very long time to come up with a solution, a prob-
lem computer scientists refer to as an NP-complete prob-
lem, where NPmeans “non-deterministic polynomial time
complete”. Biology with its degeneracy and redundancy
has no such problem. “Error” signals from one part of
a synergy are rapidly compensated by other members. So
if anything, the machine perspective on order and regula-
tion (Table 1) seems to compound the problem rather than
solve it.

Coordination Dynamics takes its inspiration from
a natural, organic perspective, i. e., how nature handles
complexity (Table 1). It is well-known that pattern for-
mation in open, nonequilibrium physical and chemical
systems such as fluids, lasers and chemical reactions can
emerge spontaneously. These patterns arise solely as a re-
sult of the dynamics of the system with no specific order-
ing influence imposed from the outside environment and
no homunculus-like agent inside. Such “self-organized”
pattern formation is a cooperative phenomenon that re-
sults from the interaction of large numbers of interacting
subsystems [73,152]. It should be stressed here that there
is no “self” inside the system responsible for prescribing or
coding the emergent pattern. The ‘self’ in self-organization
comes from the fact that given the ability to exchange mat-
ter, energy and information with the environment, the sys-
tem organizes itself. That the organism is an open system
is one of two essential criteria for life postulated by Fran-
cis Crick in Of Molecules and Men [33], yet it has received
much less attention in biology than Crick’s other criterion,
the need for organisms to reproduce and pass on ‘copies’
of themselves to their descendants. Here already we see
a dichotomy between a complex system’s natural order-
ing tendencies and the need (at least in living systems) to
guide that order in specific ways. Coordination dynamics
(Table 1) reconciles this dichotomy by viewing these two
fundamental aspects as complementary ([100,104,110]).

In his general theory of nonequilibrium phase transi-
tions called “synergetics” Haken [73] showed that close to
critical points where a so-called control parameter crosses
a threshold, very complex, high-dimensional systems can

be completely described by a much lower dimensional dy-
namics specified in terms of only a few collective variables
or order parameters. What do these terms mean? Con-
trol Parameters refer to naturally occurring environmen-
tal conditions or intrinsic, endogenous factors that on first
blush appear analogous to what an experimental scientist
might call an independent variable. But the concept is en-
tirely different, and the implications for experimental de-
sign far reaching [96]. The role of control parameters is
to move the system through its repertoire of patterns and
cause them to change. In fact, you only know for certain
you have identified a control parameter if, when varied,
it causes the system’s behavior to change qualitatively or
discontinuously, i. e., to change state. In a dynamical sys-
tem, when a parameter changes smoothly, the attractor in
general also changes smoothly. Sizeable changes in the in-
put have little or no effect on the resulting output. How-
ever, when the control parameter passes through a criti-
cal point or threshold in an intrinsically nonlinear dynam-
ical system an abrupt change in the attractor can occur.
This sensitive dependence on parameters is called a bifur-
cation in mathematics, or a nonequilibrium phase transi-
tion in physical theories of pattern formation [73]. Indeed,
control parameters are often referred to in mathematics as
bifurcation parameters. Qualitative change does not mean
that quantification is impossible. To the contrary, qual-
itative change is at the heart of pattern formation and,
provided care is taken to evaluate system timescales (e. g.,
how quickly the control parameter is changed relative to
the typical time of the system to react to perturbations;
see [121]) quantitative predictions ensue that can be tested
experimentally (see Sect. “The TheoreticalModeling Strat-
egy of Coordination Dynamics: Symmetry and Bifurca-
tions”).

Collective variables are relational quantities that are
created by the cooperation among the individual parts of
a system. Yet they, in turn, govern the behavior of the in-
dividual parts. This is sometimes referred to as circular or
reciprocal causality. In self-organizing systems the stran-
glehold of linear causality is broken. At best, simple cause-
effect relations are the exception, not the rule. Depending
on where the system lives in the space of its parameters,
many causes can produce the same effect or the same cause
can have multiple effects. One can intuit why the concept
of collective or coordination variable is central to a science
of coordination. The reason is that interactions in such
systems are so complicated that understanding may only
be possible in terms of system-specific collective or coor-
dination variables. The latter are not necessarily “macro-
scopic quantities”. In coordination dynamics, the identi-
fication of coordination variables depends on the level of
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description. What is “macro” at one level may be “meso”
or “micro” at another. This strategy of folding together all
aspects within the dynamics of collective or coordination
variables embraces the full complexity of living things on
a given level of description without proliferating arbitrary
divisions (for a nice discussion see [203]).

In nonequilibrium systems, the enormous compres-
sion of degrees of freedom near critical points arises be-
cause events occur on different timescales: the faster in-
dividual elements in the system become “enslaved” to the
slower, “emergent” collective variables [73]. Alternatively,
one may conceive of a hierarchy of timescales for vari-
ous processes involved in coordination. On a given level
of the hierarchy are coordination variables subject to con-
straints (e. g., of the task) that act as boundary conditions
on the coordination dynamics. At the next level down are
component processes and events that typically operate on
faster timescales. Notice for the ‘tripartite scheme’ of Co-
ordination Dynamics (see pp. 66–67 in [100]) the key is
to choose a level of description and understand the rela-
tion between adjacent levels, not reduce to some “funda-
mental” lower level (Table 1). In coordination dynamics,
no level is any more or less fundamental than any other.
A complete description of a phenomenon always requires
three adjacent tiers: The boundary conditions and control
parameters that establish the context for particular coor-
dination phenomena to occur; the collective level and its
dynamics; the component level and its dynamics includ-
ing the nonlinear coupling between components.

Dynamic instability is the generic mechanism under-
lying self-organized pattern formation and change in all
(open) systems coupled to their internal or external envi-
ronments [153]. Near instability the individual elements,
in order to accommodate to current conditions, must or-
der themselves in new or different ways. The patterns that
emerge at nonequilibrium phase transitions may be de-
fined as attractive states of the collective variable dynam-
ics. That is, the collective variable may converge in time
to a certain limit set or attractor solution, a nonequilib-
rium steady state. Attractors can be fixed points, in which
all initial conditions converge to some stable rest state. At-
tractors can also be periodic, exhibiting preferred rhythms
or orbits on which the system settles regardless of where it
starts. Or, there can be so-called strange attractors; strange
because they exhibit deterministic chaos, a type of irregu-
lar behavior resembling random noise, yet often contain-
ing pockets of quite ordered behavior. Stable fixed point,
limit cycle and chaotic solutions as well as a wide variety
of other transient and irregular behaviors are possible in
the same system, depending on the values of control pa-
rameters (and their time dependence). Moreover, fluctua-

tions are always present, constantly testingwhether a given
pattern is stable. Fluctuations are not just noise; rather, by
probing the stability of existing states they allow the system
to discover new, more adaptive patterns that suit the pre-
vailing circumstances (boundary conditions, control pa-
rameters; Table 1).

How might these conceptual tools aid our understand-
ing of biological coordination? On first blush, it might
seem a gigantic leap from the physics and mathematics of
pattern formation in nonequilibrium systems to the prob-
lem of coordination in living things. Yet in science, anal-
ogy often plays a major role in bringing about conceptual
breakthroughs. Although initially the analogy may seem
far-fetched, great science often starts with a vague idea
which, when followed by crucial experiments and math-
ematical theory renders the vague idea exact. A key as-
pect to appreciate is that cooperative phenomena in phys-
ical systems are typically independent of the particular
molecular machinery or material substrate that instanti-
ates them. This is because the elementary components are
the same, i. e. homogeneous. On the other hand, in living,
evolved things the component elements are often quite dif-
ferent. Thus any theory of coordination of living things
will have to take into account the heterogeneity of its com-
ponent elements. Perhaps as a consequence of inherent
heterogeneity (and no doubt the advancement of technol-
ogy) the tendency in biology is to focus more and more
on specific processes at ever smaller and smaller scales. As
a result, building huge data bases may sometimes appear
to take precedence over finding scientific laws [55].

Finding Dynamical Laws of Coordination

What if biological coordination were shown to be a self-
organized phenomenon? Might that be a springboard
to finding laws of coordination? In the sense of T.S.
Kuhn [131] such questions appear to call out for a new
paradigm, special entry points where irrelevant details
may be pruned away exposing the essential aspects one is
trying to understand. Inspired by synergetics (and para-
doxical though it may seem) the key to determining if co-
ordination as a self-organized phenomenon is to focus on
qualitative change, places where abrupt switches or bifur-
cations in coordination occur. Qualitative change is cru-
cial because it affords a clear distinction between one co-
ordination pattern and another, thereby enabling one to
identify the key collective variables or order parameters that
define coordination states and their coordination dynam-
ics. If a complex system is changing smoothly and lin-
early it is hard to distinguish the variables that matter, so-
called state variables, from the ones that don’t. Qualita-
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tive change may also be used to infer relevant quantities in
more naturalistic settings. In situations where many vari-
ables may be changing in uncontrolled ways, the one(s)
that change(s) abruptly are likely to be the most meaning-
ful, both for the phenomena themselves and our under-
standing of them [96]. Likewise, any parameter that in-
duces qualitative behavioral change qualifies as a control
parameter. This is the reason why stability is so impor-
tant. As a control parameter crosses a critical value the
previously stable pattern becomes unstable and the system
switches to a different pattern that is now stable beyond the
critical point. The quite general predictions of nonequi-
librium phase transition theory are a strong enhancement
of fluctuations (critical fluctuations) and a strong increase
in the pattern’s relaxation time (critical slowing down) as
the transition is approached. Obviously, if nonequilibrium
phase transitions are a basic mechanism of self-organiza-
tion and if, as hypothesized, the forces of evolution and
self-organization form the core of biological order and co-
ordination, it should be possible to discover nonequilib-
rium phase transitions and their signature features in real
experiments. If not, the theory that coordination in living
things is due fundamentally to self-organization must go
the way of all beautiful theories that are negated by the
facts.

Empirical Foundations of CoordinationDynamics:
Pattern Generation, Stability and Phase Transitions

In coordination dynamics, the payoff of knowing collec-
tive variables and control parameters is high: they enable
one to obtain the dynamical rules of behavior on a chosen
level of description. By adopting the same strategy “one
level down”, the individual components and their dynam-
ics may be studied and identified. It is the nonlinear inter-
action between the parts that creates coordinative patterns
of the whole thereby building a bridge across levels of de-
scription (Table 1). This ability to derive phenomena from
lower levels of description is at the core of what scientists
usually mean by the word “understanding”. In general, in
complex living systems it is difficult to isolate the compo-
nents and study their dynamics. The reason is that the in-
dividual components seldom exist outside the context of
the functioning whole, and have to be studied as such.

If phase transitions hold the key to finding laws of
coordination, where should we look for them? A cen-
tral criterion for a law-based approach to coordination
is reproducibility of the phenomenon in question. Al-
though not everything is rhythmic, rhythms represent
a wide variety of coordinated behaviors in a very large
number of different biological systems at very many lev-

els [24,70,71,97,119,174,212,215] and seem like an obvi-
ous entry point. One only has to look at the extensive
field of so-called “central pattern generators” (CPGs) in in-
vertebrate and vertebrate neurobiology to find remarkable
similarities in the patterns that living creatures produce.
Terms such as “swimming” CPG, “flight” CPG, and “lo-
comotor” CPG reflect the reproducibility of patterns and
their functional significance. Synchronization and desyn-
chronization, frequency- and phase-locking are ubiqui-
tous features of such patterns reflecting a high degree of
neural and behavioral coordination (see Sects. “History
of Coordination Dynamics: Synergy and Rhythmic Or-
der” and “Coordination of Multiple Components: From
Quadrupeds to Brains”).

What then of phase transitions? And what connection
exists, if any, between rhythms and phase transitions? It is
well-known that quadrupeds and indeed many creatures
including birds and fish exhibit characteristic gaits and
may switch flexibly between them depending on circum-
stances. In the neurobiology literature, a key question is
always “where are the switches in this thing”? [1]. Rather
than assume the existence of switches, a priori, the sci-
entific approach of coordination dynamics is to investi-
gate the necessary and sufficient conditions that give rise
to switching. Inspired by theories of self-organization in
nature, coordination dynamics asks if switching may take
the form of a nonequilibrium phase transition. The idea is
not so far fetched as it seems. Many years ago, order-order
transitions were hypothesized by Erwin Schrödinger [178]
to be a crucial principle of biological organization and hy-
pothesized to be the “new laws in the organism” [109].

Three Deceptively Simple Experiments

To investigate order-order transitions experimentally,
consider an experimental paradigm introduced some years
ago in which human beings are asked to move their two
index fingers back and forth rhythmically [94,95]. In one
condition (call it parallel, Fig. 1) they are told to alter-
nate finger movements at a comfortable rate, one finger
flexing in time as the other extends. In another separate
condition (call it mirror) they are told to flex both fin-
gers together and extend both fingers together at the same
time. The key part of the experiment is that participants
are instructed to increase the speed at which they perform
these movements. For better experimental control a pac-
ing metronome whose frequency can be systematically in-
creased (say every 10 cycles called a plateau) may be used
for subjects to follow. The main results are shown in Fig. 1
and described in the figure’s caption.
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Coordination Dynamics, Figure 1
Phase transitions in bimanual movements. Left side. On the top are the two experimental conditions (parallel, antiphase and mir-
ror, in phase) in the Kelso paradigm. The lower plot shows the time series of the finger movements in a representative run. As rate
increases, trials initiated in the antiphase pattern spontaneously switch to the in-phasemirror pattern. The critical frequency is iden-
tified with an arrow. In contrast, trials initiated in the in-phase pattern do not switch as frequency increases (not shown). Right side.
Distributions of relative phase between finger movements for plateaus of increasing frequency of movement. Initially the relative
phase is concentrated at � radians, indicating antiphase is a stable pattern. On plateau 2, relative phase is concentrated around 0
and � radians, showing the bistability of antiphase and inphase coordination. For higher frequency plateaus the relative phase is
concentrated at 0 radians, indicating that inphase is the only stable pattern of coordination (adapted from [7] with permission)

Experimental studies of bimanual rhythmicmovement
demonstrate that humans in the absence of learning pro-
cedures are able to produce two patterns of coordination
at low frequency values, but only one – the symmetrical,
in-phase mode – as frequency is scaled beyond a critical
value. This is a remarkable result given the complexity of
the nervous system, the body and their interaction with the
world.

Consider another example, this time involving a hu-
man coordinating with an environmental signal [115,218].
In this experimental setup a single limb or finger is moved
such that peak flexion occurs in between the beats of a pac-
ing metronome, i. e. in a syncopated fashion. When the
metronome frequency is increased, once again a critical
value is reached where participants switch spontaneously
to coordinating peak flexion on the beat, i. e. in a pattern
of synchronization with the metronome. No such switch-
ing occurs when subjects begin in the synchronized mode
of coordination. Wemay refer to these effects as a very ba-
sic example of coordination between an organism and its
environment.

Now, consider the case of two people interacting with
each other, an elementary form of interpersonal or so-
cial coordination. In this situation, each individual is in-
structed to oscillate a limb (the lower leg in this case) in

the same or opposite direction to that of the other per-
son [170]. In order to do the task, there must be a medium
of interaction (vision, sound, touch, smell. . . ) through
which humans can couple. In this case, the two people
watch each other (for details of this and other work see
� Social Coordination, from the Perspective of Coordi-
nation Dynamics). Then, either by an instruction from
the experimenter or by following a metronome whose fre-
quency is systematically increased, the social dyad speeds
up their movements. When moving their legs up and
down in the same direction, the two members of the dyad
remain synchronized across a broad range of speeds. How-
ever, when moving their legs in the opposite direction
(one person’s leg extending at the knee while the other’s
is flexing), such is not the case. Once again at a cer-
tain critical rate participants change their behavior spon-
taneously so that their legs now move in the same direc-
tion.

The ‘nonlinear’ paradigm of coordination dynamics as
illustrated in these three simple experiments has led to
a wide range of investigations in many fields and a sur-
prising variety of contexts (see Sect. “Collective Minds”
for brief summary; also Books and Reviews) including de-
tailed studies of underlying brain mechanisms using the
full armamentarium of imaging technologies. Although
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Coordination Dynamics, Figure 2
A pattern of generic results from combined brain and behavioral studies of coordination (adapted from [81]). On the left are be-
havioral results showing how relative phase variability is initially higher and increases more rapidly with the control parameter of
frequency for syncopated antiphase (filled squares) than synchronized inphase coordination (open circles) with an external event.
On the right are corresponding brain activations that comprise a network that is exquisitely sensitive to the stability of antiphase
coordination. Areas depicted are left and right ventral premotor cortex (vPMC), pre supplementary motor area (pre-SMA) and right
insula. The X Y Z Talairach coordinate of the peak voxel for each region is provided. Notice how the behavioral and brain data track
each other

the findings would take us too far afield for present pur-
poses ([19,20,191]; for reviews see [59,81]) two particular
results are worth noting. First is that the basic paradigm
has led to the first direct evidence of phase transitions
in the human brain seen using both large scale electrode
EEG [143,216] and SQuID arrays [35,61,62,108,123,124].
Second, and even more telling, is that fMRI evidence in-
dicates that regardless of whether one is coordinating the
two hands or coordinating with an external signal, a com-
mon network concerned with the stability of coordination
is involved (see [81,156] for reviews).

The pattern of experimental findings described in this
section illustrates an important conceptual distinction be-
tween coordination dynamics and other theories of self-
organization [163]. In the latter, at bifurcation points or
phase transitions, the system switches to a new, higher
level of organization called a dissipative structure. Dissipa-
tive structures are so named because, compared with the
“simpler” structures or patterns they replace, they require
more energy to sustain them (ibid., p.xv). Not so in the
order-order transitions of coordination dynamics. In co-

ordination dynamics, the new organization that appears
at bifurcation points is ‘simpler’ than the one it replaces
and requires less energy. For example, brain electrical ac-
tivity actually drops across the antiphase to inphase tran-
sition even though the system is being driven faster [124].
In Fig. 2, blood oxygen level dependent (BOLD) activity
in certain brain regions is shown to increase as the sta-
bility of the antiphase pattern decreases. It is obvious that
the increasing metabolic energy demands of the brain for
antiphase relative to inphase coordination will diminish
once the transition to in phase occurs. Thus, the key prin-
ciple behind the ‘simpler’ self-organizing structures that
emerge in coordination dynamics are based, not (or not
only) upon energy per se as in the theory of dissipative
structures, but on the system’s information processing de-
mands. Intuitively, the antiphase pattern is more difficult
to coordinate as rate or frequency is increased causing the
system to switch to a pattern that is easier to perform un-
der the current conditions. Importantly, coordination dy-
namics replaces vague terms such as ‘task difficulty’ and
‘task complexity’ by quantitative behavioral measures of
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stability and quantitative brain measures of BOLD and
neuroelectric activity.

The TheoreticalModeling Strategy of Coordination
Dynamics: Symmetry and Bifurcations

The three pieces of experimental evidence described above
cut across entirely different kinds of things and events (au-
ditory, visual and proprioceptive sensations, finger and leg
movements, people and brains, etc.). The common de-
nominator is that all these things and processes are mean-
ingfully coupled together in time under particular bound-
ary conditions (task instructions, environmental context,
manipulated parameters, etc.). The phenomena observed
hint at an aspect that any basic law should exhibit, namely
that although the patterns of coordination observed are re-
alized by different physical structures and physicochemi-
cal processes, laws and regularities are abstract and rela-
tional.

How then do we go about identifying the actual under-
lying laws? More specifically, how do we explain the coor-
dinative phenomena observed experimentally? As stressed
above, in contrast to certain physical systems like the laser,
in biological coordination the path from the microscopic
level to collective order parameters is not known and can-
not (yet?) be derived from first principles like conservation
laws. In coordination dynamics we have to: a) identify the
order parameters or coordination variables and their low-
dimensional dynamics empirically; b) determine the key
control parameters that move the system though its coor-
dinative states; and c) relate different levels though a study
of the individual subsystems and their nonlinear interac-
tion.

Determining the dynamics of coordination variables is
non-trivial. In all three experimental situations, the rela-
tive phase � or phase relation between the component el-
ements appears to qualify as a suitable order parameter or
coordination variable. The reasons are as follows: � char-
acterizes the patterns of spatiotemporal order observed, in
phase and anti-phase; � changes far more slowly than the
variables that describe the individual coordinating com-
ponents (e. g., position, velocity, acceleration, electromyo-
graphic activity of contracting muscles, neuronal ensem-
ble activity in particular brain regions, etc.); � changes
abruptly at the transition and is only weakly dependent on
parameters outside the transition; and � appears to obey
a dynamics in which the patterns may be characterized as
attractors or attractive states of some underlying dynami-
cal system. Since in all cases the frequency or rate clearly
drives the system through different coordination patterns

without actually prescribing them, frequency qualifies as
a control parameter.

Determining the coordination dynamics means map-
ping observed, reproducibly stable patterns onto attrac-
tors of the dynamics. A general strategy is to assume suffi-
ciently higher order dynamics and expand the vector field
of these dynamics in a Fourier series:

�̇ D f (�) D a0 C a1 sin(�)C a2 sin(2�)C : : :
C b1 cos(�)C b2 cos(2�)C : : : : (1)

Symmetry may be used to classify patterns and restrict the
functional form of the coordination dynamics. Symme-
try means “no change as a result of change”: pattern sym-
metry means a given pattern is symmetric under a group
of transformations. A transformation is an operation that
maps one pattern onto another, e. g. in the first experi-
mental case, left-right transformation exchanges homolo-
gous limbs within a bimanual pattern. If all relative phases
are equivalent after the transformation, then the pattern
is considered invariant under this operation. Symmetry
serves two purposes. First it serves as a pattern classifi-
cation tool allowing for the identification of basic coordi-
nation patterns that can be captured theoretically. Given
a symmetry group, one can determine all invariant pat-
terns. Second, imposing symmetry restrictions on the dy-
namics itself limits possible solutions and allows one to
arrive at a coordination dynamics that contains the pat-
terns as different stationary states of the same nonlinear
dynamical system. In other words basic coordination pat-
terns correspond to attractors of the relative phase for ade-
quate parameter values. For example, left-right symmetry
of homologous limbs leads to invariance under the trans-
formation � ! � so that the simplest dynamical system
that accommodates the experimental observations is:

�̇ D f (�) D �a sin(�) � 2b sin(2�) (2)

where � is the relative phase between the movements of
the two individuals, �̇ is the derivative of � with respect to
time, and the ratio b/a is a control parameter correspond-
ing to the movement rate in the experiment. An equivalent
formulation of Eq. (1) is

�̇ D �@V (�)/@� with V(�) D �a cos ��b cos 2�: (3)

In the literature, Eqs. (2) and (3) are the equations at the
collective level of the HKBmodel of coordinated behavior,
after Haken, Kelso and Bunz [76,106,139]. Figure 3 (top)
allows one to develop an intuitive understanding of the be-
havior of Eqs. (2),(3), as well as to connect the key concepts
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Coordination Dynamics, Figure 3
The potential, V(�) of Eq. (3) (with	! D 0) and Eq. (5) (with	! ¤ 0). Blackballs symbolize stable coordinated behaviors andwhite
balls correspond to unstable behavioral states (see text for details)

of stability and instability in self-organized dynamical sys-
tems to the observed experimental facts.

The dynamics can be visualized as a particle moving
in a potential function V (�). The minima of the poten-
tial are points of vanishing force, giving rise to stable so-
lutions of the elementary coordination dynamics. As long
as the speed parameter (b/a) is slow, meaning the cycle
period is long, Eq. (3) has two stable fixed point attrac-
tors, coordinative states at � D 0 and � D ˙� rad. Thus,
two coordinated behavioral patterns coexist for exactly the
same parameter values, the essentially nonlinear feature of
bistability (Table 1). Such bi- and in general multi-stabil-
ity is the dynamical signature of multifunctionality which
can be seen at many levels in living things. As the ratio
b/a is decreased,meaning that the cycle period gets shorter
as the system speeds up, the formerly stable fixed point
at � D ˙� rad becomes unstable, and turns into a repel-
lor (open circles). Any small perturbation will now kick
the system into the basin of attraction of the stable fixed
point corresponding to an in-phase coordination pattern
at � D 0. Notice also that once there, the system’s behavior
will stay in the in-phase attractor, even if the direction of
the control parameter is reversed. This is called hysteresis,
a basic form of memory in nonlinear dynamical systems.

What about the individual components? Research
has established that these take the form of self-sustain-
ing oscillators, archetypal of all time-dependent behav-
ior [12,14,47,92,93]. The particular functional form of the

oscillator need not occupy the reader here (see � Move-
ment Coordination which uses empirical facts and sym-
metry arguments to restrict and thereby identify the com-
ponent dynamics). More important is the nature of the
nonlinear coupling that produces emergent coordination.
The simplest, perhaps fundamental biophysical coupling
that guarantees all the observed emergent properties of co-
ordination: multistability, flexible switching among coor-
dination states and primitive memory, is:

K12 D
�
Ẋ1 � Ẋ2

 ˚
˛ C ˇ(X1 � X2)2

�
; (4)

where X1 and X2 are the individual components and
˛ and ˇ are coupling parameters. Notice that the ‘next
level up’, the level of coordinated behavioral patterns and
the dynamical rule that governs them (Eqs. (2) and (3)),
can be derived from the level below, the individual com-
ponents and their nonlinear interaction. One may call this
constructive reductionism: by focusing on adjacent levels,
under the boundary constraints of the task, the individ-
ual parts can be put together to create the behavior of the
whole.

The basic self-organized dynamics, Eqs. (2) and (3)
have been extended in numerous ways, only a few of which
are mentioned here.

� Critical slowing down and enhancement of fluctuations.
Introducing stochastic forces into Eqs. (2) and (3)
([175,210,211] see Chap. 11 in [74] and [101,121] for
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a thorough discussion) allows key predictions of coor-
dination dynamics to be tested and quantitatively eval-
uated [113,121,172]. Critical slowing is easy to under-
stand from Fig. 3 (top). As the minima at � D ˙� be-
come shallower and shallower, the time it takes to ad-
just to a small perturbation takes longer and longer.
Thus, the local relaxation time is predicted to increase
as the instability is approached because the restoring
force (given as the gradient of the potential) becomes
smaller. Likewise, the variability of � is predicted to
increase due to the flattening of the potential near the
transition point. Both predictions have been confirmed
in a wide variety of experimental systems, including
recordings of the human brain ([81,100,174] for re-
view).

� Symmetry breaking. Notice that Eqs. (2) and (3) are
symmetric: the dynamical system is 2� periodic and is
identical under left-right reflection (� is the same as
��). This assumes that the individual components are
identical, which as remarked upon earlier, is seldom the
case in living things where symmetries are broken all
the time.

In terms of the development of the theory, an important
experimental example of symmetry breaking is the case
of coordinating movement with a visual stimulus: visual
stimuli and limb movement are obviously not equivalent.
Thus � ! � symmetry cannot be assumed. This means
that symmetry partners of coordination patterns with sys-
tematic phase leads or lags do not coexist at the same pa-
rameter values. To accommodate this fact, a term 
! is
incorporated into the dynamics [115]:

�̇ D 
! � a sin� � 2b sin 2� ; and
V(�) D �
!� � a cos � � b cos 2�

(5)

for the equation of motion and the potential respectively.
Note that Eq. (5) falls out naturally from an analysis of

the oscillators, !1 and !2, viz.

�̇ D
!2
1 � !

2
2

2˝
C (˛ C 2ˇR2) sin � � ˇR2 sin 2� (6)

for


! D
!2
1 � !

2
2

2˝
� !1 � !2 (7)

with

a D �(˛ C 2ˇR2)

b D 1
2ˇR

2 :
(8)

Small values of 
! shift the attractive fixed points (Fig. 3
middle) in an adaptive manner. For larger values of 
!

the attractors disappear entirely (Fig. 3 bottom) causing
the relative phase to drift: no coordination between the
components appears to be possible. Note, however, that
the dynamics still retain some curvature (Fig. 3 bottom
right): even though there are no attractors there is still
attraction to where the attractors used to be. The reason
is that the difference (
!) between the individual com-
ponents is sufficiently large that they do their own thing,
while still retaining a tendency to cooperate. The intro-
duction of the symmetry breaking term 
! in Eq. (5)
changes the entire coordination dynamics (layout of the
fixed points, bifurcation structure) of the original HKB
system in which 
! D 0. This is important to realize
because it is the subtle interplay between the coupling
(k D b/a) and the symmetry breaking term
! in Eq. (5)
that gives rise tometastability.

Sometimes in the literature Eq. (5) is referred to collec-
tively as the Haken–Kelso–Bunz equation. Though con-
venient, this is technically incorrect and fails to recognize
both the intellectual contributions to its extension and the
conceptual consequences thereof. For reasons of symme-
try and simplicity, the original HKB equation did not con-
tain the symmetry breaking term, 
! [115] nor did it
treat fluctuations explicitly [175] both of which are cru-
cial for capturing the broad range of phenomena observed
and testing further predictions. In particular, without 
!
there is: a) no fixed point shift, a sign of adaptation to
changing circumstances, see Fig. 3 and 4; b) the bifurca-
tion is a saddle node not, as in the original HKB equation,
a pitchfork. These are different normal forms [98]; and c)
most important of all, the original HKB equation does not
and cannot exhibit metastability which is the key to un-
derstanding the complementary relationship between the
synergic tendency of the elements to couple (integration)
and at the same time to express their individual differences
(segregation). The oscillators in the original HKB formu-
lation were identical thereby excluding metastability. For
these reasons, it seems wise to refer to Eq. (5) (with its
stochastic aspect included) as the extendedHKB equation.

Equation (5) is a bit strange. Even though it is an order
parameter equation of motion that describes coordinative
behavior (in words, phi dot is a function of phi), it includes
also a parameter (
!) that arises as a result of differences
among the individual components. Equation (5) is thus
a strange mixture of the whole and the parts, the global
and the local, the cooperative and the competitive, the col-
lective and the individual. Were the components identi-
cal, 
! would be zero and we would not see component
differences affecting the behavior of the whole (Fig. 3 top
row). Equation (5) would simply reflect the behavior of the
collective untarnished by component properties, a purely
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Coordination Dynamics, Figure 4
Elementary coordination law (Eq. (5)). Surface formed by a family of flows of the coordination variable � (in radians) as a function
of its time derivative �̇ for increasing values of	!. For this example, the coupling is fixed: a D 1 and b D 1. When �̇ reaches zero
(flow line becoming white), the system ceases to change and fixed point behavior is observed. Note that the fixed points here refer
to emergent coordination states produced by nonlinearly coupled elements. Stable and unstable fixed points at the intersection of
the flow lines with the isoplane �̇ D 0 are represented as filled and open circles respectively. Three representative lines labeled
1 to 3 illustrate the different régimes of the coordination dynamics. Following the flow line 1 from left to right, two stable fixed
points (filled circles) and two unstable fixed points (open circles) exist. This flow belongs to the multistable (here bistable) régime of
dynamics. Following line 2 from left to right, one pair of stable and unstable fixed points is met on the left, but notice the complete
disappearance of fixed point behavior on the right side of the figure. That is, a qualitative change (bifurcation; phase transition) has
occurred due to the loss of stability of the coordination state near antiphase,� rad. The flow nowbelongs to themonostable régime.
Following line 3 from left to right, no stable or unstable fixed points exist yet a subtle form of coordination – neither completely
ordered (synchronized) nor completely disordered (desynchronized) – still remains. This is the metastable régime

emergent interaction – the HKB equation. It is the fact that
both the components and their (nonlinear) interaction ap-
pear at the same level of description that gives rise to the
array of coexisting tendencies characteristic of metastabil-
ity. The history of coordination (Sect. “History of Coor-
dination Dynamics: Synergy and Rhythmic Order”) may
now be seen in a new light: Eq. (5) is a basic representation
of a synergy, a low dimensional dynamic of a metastable
organization in which the tendency of the parts to act to-
gether coexists with a tendency of the parts to do their
own thing (see Chap. 4 in [100]). If indeed the synergy is
a unit of life and mind as proposed in [105,107] then it is
metastability that endows the synergy with robustness and
flexibility, enabling the same parts to participate in multi-
ple functions.

Metastable CoordinationDynamics

From States to Tendencies

Etymologically, ‘metastability’, comes from the latin ‘meta’
(beyond) and ‘stabilis’ (able to stand). In coordination dy-
namics, metastability corresponds to a régime near a sad-
dle-node or tangent bifurcation in which stable coordi-
nation states no longer exist (e. g., in-phase synchroniza-
tion where the relative phase between coordinating com-
ponents lingers at zero), but attraction remains to where
those fixed points used to be (see Fig. 3, bottom row).
This gives rise to a dynamical flow consisting of both phase
trapping and phase scattering.

To best visualize the emergence of metastability, Fig. 4
shows the flow of the dynamics for the elementary coor-
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Coordination Dynamics, Figure 5
How the key coordination variable or order parameter of the elementary coordination law (Eq. (5)) behaves over time. Shown is
a family of trajectories of the relative phase � over time (in Arbitrary Units) arising from a range of initial conditions sampled be-
tween 0 and 2� radians, in the multistable (a), monostable (b) and metastable régimes (c) of Eq. (5). For the uncoupled case (d) the
trajectories never converge indicating that the oscillations are completely independent of each other. Trajectories in themultistable
régime (a) converge either to an attractor located slightly above� D 0 radmodulo 2� or to another attractor located slightly above
� D � radmodulo 2� . In themonostable régime (b), trajectories converge to an attractor located slightly above� D 0 radmodulo
2�. In the trajectories of relative phase for the metastable régime (c unwrapped to convey continuity), there is no longer any per-
sisting convergence to the attractors, but rather a succession of periods of rapid drift (escapes) interspersed with periods inflecting
toward, but not remaining on the horizontal (dwells). Note dwells near� D 0 rad modulo 2� in the metastable régime (e. g. dwell
at about 4� rad annotated 1 in c) and nearby � D � rad modulo 2� (dwell at about 3� rad annotated 2 in c) are reminiscent of
the transient obtained for certain initial conditions in the monostable régime (Fig. 5b, annotation 3). The key point is that in the
metastable régime the system’s behavior is a blend of coupled and independent behavior

dination law (Eq. (5)) across a range of 
! values with
the coupling parameter, k D b/a D 1 fixed. Stable fixed
points (attractors) are presented as filled circles and un-
stable fixed points (repellors) as open circles. Here, fixed
points of the coordination dynamics correspond to phase-
and frequency relationships between oscillatory processes.

The surface shown in Fig. 4 defines three regions un-
der the influence of the symmetry breaking term 
!. In
the first region present in the lower part of the surface,
the system is multistable: two stable attracting fixed points
(filled circles) represent possible alternative states. Which
one the system settles in depends on initial conditions and
the size of the basin of attraction. In an intermediate re-
gion, following the line labeled 2 from left to right, the
weakest attractor near anti-phase (right side) disappears
after it collides with its associated repellor somewhere

near 
! D 1:3, but the strongest attractor (left side) is
still present as well as its repellor partner. Finally in the
third region in the upper part of the surface, the dynam-
ics become metastable. Following the line labeled 3 from
left to right, no fixed points exist anymore: this part of
the surface no longer intersects the isoplane �̇ D 0 where
the fixed points are located. Strictly speaking coordination
states qua frequency- and phase-synchrony no longer ex-
ist in the metastable régime of the coordination dynamics.
Metastability is thus a subtle blend of coupling and intrin-
sic tendencies in which behavior is neither completely or-
dered (synchronized) nor completely disordered (desyn-
chronized). Both tendencies coexist.

How do individual and coordination behavior evolve
in time in the metastable régime? A unique flow now
exists in which the dynamics may be characterized by
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places where the trajectory of the coordination variable
converges and pauses around the horizontal and places
where the trajectory drifts or diverges from the horizon-
tal. Let us define the former as a dwell time, and the lat-
ter as an escape time. In Fig. 5c we show two locations
for the dwell times: one that lingers a long time before es-
caping (e. g. Fig. 5c, annotation 1) slightly above the more
stable in-phase pattern near 0 rad (modulo 2�), and the
other that lingers only briefly (e. g. Fig. 5c, annotation 2)
slightly above� (modulo 2�). These inflections recur over
and over again as long as the system self-organizes in
the metastable régime, i. e. as long as it does not undergo
a phase transition to a locked or unlocked state. Despite
the complete absence of phase-locked attractors, the co-
ordinating elements in the metastable régime do not be-
have totally independently. Rather, their interdependence
takes the form of dwellings (phase gathering tendencies)
nearby the remnants of the fixed points (cf. Fig. 3 bot-
tom; Figs. 4, 5c) and may be nicely expressed by concen-
trations in the histogram of the relative phase (see Chap. 4
in [100]).

Recently metastability has been hailed as a “new prin-
ciple” of coordination in the brain and has been em-
braced by a number of neuroscientists as playing a role
in various cognitive functions, even consciousness itself
(e. g. [44,45,57,58,111,127,187,212]). According to a recent
review [49]:

Metastability is an entirely new conception of brain
functioning where the individual parts of the brain
exhibit tendencies to function autonomously at the
same time as they exhibit tendencies for coordinated
activity [19,20,97,100].

For Coordination Dynamics, metastability’s significance
lies not in the word itself but in what it means for un-
derstanding coordination in living things. In coordination
dynamics, as shown in its most elementary form (Eq. (5)),
metastability is not a concept or an idea, but a direct re-
sult of the broken symmetry of a system of (nonlinearly)
coupled (nonlinear) oscillators. Such a design principle for
the brain seems highly plausible given that rhythms in the
brain are ubiquitous, operate over a broad range of fre-
quencies and are strongly associated with various sensory,
motor and cognitive processes [10,24,100].

The Creation of Information

There is another reason for proposing metastable coordi-
nation dynamics as the essential way the brain and perhaps
all complex organizations work. It concerns an analogy to
how physicists understand how we know the universe we

live in. According to Quantum Mechanics, out of a uni-
verse in which quantum indeterminacy rules – the wave
function is spread out over all of space – nature selects an
alternative. Information is thereby created. The way this
is done in practice is that a device is built in which an in-
teractive material is placed in a physically, electrically or
chemically metastable state. According to the late quan-
tum measurement theorist, H.S. Greene [69]:

It is the observable transition between this metastable
state and a more stable state that conveys the essen-
tial information concerning a sub-microscopic event
that would otherwise go undetected . . . The func-
tional material of the detector must be macroscopic
and in a metastable state which allows the quantal
interaction to become manifest at the macroscopic
level. (see p. 173 in [69])

This is how some physicists view the creation of informa-
tion: bit from it, as it were (in contrast to John Archibald
Wheeler’s ‘it from bit’). Quantum Mechanics thus im-
plies the creation of new information in the process of
measurement and observation. Likewise, we have seen in
the human brain that information (as a marginally cou-
pled, phase-locked state) is created and destroyed in the
metastable régime of the coordination dynamics, where
tendencies for apartness and togetherness, individual and
collective, segregation and integration, phase synchrony
and phase scattering coexist. New information is created
because the system operates in a special régime where the
slightest nudge will put it into a new coordinated state.
In this way, the (essentially nonlinear) coordination dy-
namics creates new, informationally meaningful coordi-
nation states that can be stabilized over time. The stabil-
ity of information over time is guaranteed by the coupling
between component parts and processes and may consti-
tute a dynamic kind of (non-hereditary) memory. It does
not seem a big step then to say that once created, this
information can then guide, modify and direct the sys-
tem’s dynamics. As we shall see in Sect. “Modifying Coor-
dination: Meaningful Information” studies of intentional
change, environmental change, learning and so forth have
demonstrated both empirically and theoretically that an
intentional goal – as memorized information – acts in
the same information space as the coordination dynamics
([114,173]; see also [141).

Coordination ofMultiple Components:
FromQuadrupeds to Brains

Phase- and frequency synchronization, the coupling
among oscillatory processes, are an example, par excel-
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lence, of self-organization in natural systems [76,119,132,
161,219]. Think of the famous clocks on the wall, no two
exactly the same in frequency, but somehow ticking per-
fectly in time with each other. The weakest of coupling,
whether through vibration in the wall or displacement
of the air, enables the clocks to be mutually coordinated
without any coordinator at all. Similar phenomena have
been seen in the brain and have been hypothesized to play
a key role in “binding”: oscillations in the brain appear
to be coupled or “bound” together into a coherent net-
work when people attend to a stimulus, perceive, think
and act (e. g., [34,43,67,184,214]). For example, synchro-
nization in the so-called gamma band (approx. 30–50Hz)
has been proposed as a neural correlate of consciousness.
The Journal Science announced the synchronization ef-
fects observed in monkey cortex as “The Mind Revealed”
(see also [34]).

The brain, it seems, has latched on to phase synchrony
as a principle of self-organization. Though the connec-
tion is seldom made, phase- and frequency- synchroniza-
tion is typical of central pattern generators (CPGs), neu-
ral circuits in vertebrates and invertebrates that generate
timing sequences without feedback from the periphery or
the help of reflexes (see Sect. “Empirical Foundations of
Coordination Dynamics: PatternGeneration, Stability and
Phase Transitions”; [70,71]). Indeed, it is the temporal or-
der observed that allows us to talk about ‘pattern genera-
tors’ in the first place. Though the specific mechanisms are
obviously different between the visual cortex of the mon-
key and the stomatogastric ganglion of the lobster, the dy-
namic patterns are the same, hinting at the source of an
underlying principle [97,100,174]. But what form might
the coordination dynamics of the brain take?

Obviously when it comes to the brain there are, in
principle, very many regions to coordinate. In practice,
however, only a restricted set of regions appear to be func-
tionally connected during particular tasks (see, e. g. Fig. 2).
The idea, then, is that one could use the Central Pat-
tern Generator (CPG) design for quadrupedal locomo-
tion [32,66,176] as a basic model of interaction among
cortical pattern generators. This is not as far fetched as
it seems. It is likelier than not that the precursors to the
structure and function of the cerebral cortex are self-con-
tained circuits in the spinal cord and brainstem that gener-
ate intrinsic patterns of rhythmic activity [70,71,220]. Such
CPGs typically work by transforming tonic driving inputs
into detailed spatiotemporal patterns of (usually oscilla-
tory) activity. Several of the properties of CPGs are con-
served throughout evolution rendering them a likely can-
didate for the basic building blocks of the brain [72]. The
hypothesis proposed here is that cortical pattern genera-

Coordination Dynamics, Figure 6
A schematic of brain coordination dynamics among four brain
regions. Each circle represents an area of the brain capable of
intrinsic oscillation and the arrows correspond to connections
among brain areas giving rise to cortical pattern generation (see
text)

tors may underlie the coordination that is needed for ev-
erything the brain is purported to do – think, feel, remem-
ber, act, socialize, etc.

Following the footsteps of basic coordination dynam-
ics, in the quadruped analogy each “limb” corresponds
to a neural region capable of intrinsic oscillatory activity
and the patterns emerge from (broken) symmetries and
changes in coupling between neural regions. For exam-
ple, Fig. 6 shows a cartoon of the neuroanatomical con-
nections underlying the anterior-posterior coordination of
the hemispheres of the brain.

The relevant variables are four phase variables, �i j
(with i 2 fright, left hemisphereg; j 2 fanterior, posteriorg
characterizing the oscillatory behavior of each brain area
with respect to its timing. Much research on coordination
dynamics shows that the relative phase is a key coordi-
nation variable or order parameter although it is quite
possible that amplitudes and frequencies are important
variables too [4,57,111]. For the sake of simplicity, we
stick to the case of interareal cortical coordination be-
tween 4 brain regions, where a set of 3 relative phases
suffices to characterize any pattern uniquely.

As already illustrated, a key notion is to use symmetry
to classify patterns and restrict the functional form of the
coordination dynamics. Here, pattern symmetry means
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a given cortical pattern is symmetric under a group of
transformations. As we have noted, a transformation is an
operation that maps one pattern onto another, e. g. the an-
terior-posterior (a-p) transformation exchanges anterior
and posterior regions within a cortical pattern. If all rel-
ative phases are equivalent after the transformation, then
the pattern is considered invariant under this operation.

Symmetry serves as a pattern classification tool allow-
ing for the identification of basic cortical patterns that can
be captured theoretically. Given a symmetry group, one
can determine all invariant patterns. For example, certain
idealized cortical patterns are invariant under the symme-
try group generated by the following operations: exchange
of anterior and posterior, exchange of left and right, and
inversion of all phases (inversion of time). A good way to
illustrate these patterns is with phase pictograms.

Imposing symmetry restrictions on the dynamics itself
limits possible solutions and allows one to arrive at a co-
ordination dynamics that contains the patterns as different
stationary states of the same nonlinear dynamical system.
In other words basic cortical patterns correspond to attrac-
tive states of the relative phase for adequate parameter val-
ues:

�̇i j D

1X

nD1
fAn sin(n(�i j � � î j))

Homologous contralateral coupling (white arrows)

C Cn sin(n(�i j � �i ĵ))

Ipsilateral coupling (gray arrows)

C En sin(n(�i j � � î ĵ))g

Nonhomologous contralateral coupling (black arrows)

(9)

where An ;Cn and En are parameters and a hat over
an index means that the opposite value is taken, e. g. if
i D right, then î D left.

To analyze the solutions to the phase dynamics, for the
sake of simplicity the coordination dynamics may be re-
stricted to second order. Higher orders generate parame-
ter régimes where many patterns may coexist; first order
removes the possibility that some patterns may coexist.
Also, diagonal coupling (black arrows in Fig. 6) may be
neglected by setting En D 0. Notice that an effective di-
agonal coupling still exists because two couplings are suf-
ficient to stabilize any pattern of activity among 4 corti-
cal areas. Moreover, it is easier to generalize a system with
contralateral and ipsilateral couplings to systems in which
more areas are involved.

In sum, following exactly the basic theoretical model-
ing strategy (Eq. (1)) the dynamical system takes the fol-
lowing form:

�̇rp D A1[sin(�rp � �lp)C sin(�la)]
C A2[sin(2(�rp � �lp))C sin(2�la)]
C 2C1 sin(�rp)C 2C2 sin(2�lp)

�̇lp D A1[sin(�lp � �rp)C sin(�la)]
C A2[sin(2(�lp � �rp))C sin(2�la)]
C C1[sin(�lp � �la)C sin(�rp)]
C C2[sin(2�lp � �la))C sin(2�rp)]

�̇la D 2A1 sin(�la) � �lp)C 2A2 sin(2�la)
C C1[sin(�la � �lp)C sin(�rp)]
C C2[sin(2(�la � �lp))C sin(2�rp)] :

(10)

Solving �̇i j D 0 yields stationary solutions that corre-
spond to idealized cortical “gaits”. Trot, pace, gallop and
jump patterns may be identified as multistable or monos-
table solutions in various parameter régimes. Patterns of
lower symmetry can also be captured. Obviously the fore-
going analysis is intended for illustrative purposes only.
The examples provided in Fig. 7 and 8 are only a few of
very many possible cortical patterns that can be obtained
by further symmetry groups. It is important to empha-

Coordination Dynamics, Figure 7
Brain phase pictograms. Each brain area is represented as a cir-
cle. The spatial arrangement of the circles viewed from looking
downon the top of the head represents the brain’s hypothesized
anterior-posterior and left-right functional organization. Phase
is represented by the angle the stick makes on each circle, with
the reference phase being zero for the right frontal region. If all
phases are rotated by the same amount in the same direction,
the cortical coordination pattern remains the same. Thepatterns
in a, b, c and d are those idealized cortical patterns that remain
invariant under anterior-posterior, left-right and time inversion
operations. Notice that the relativephasebetweenany twobrain
regions is either inphase or antiphase
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size that not all patterns in a given symmetry group are
observable. Which ones are actually observed is dictated
by the coordination dynamics, in particular a given pat-
tern’s stabilitywhich, as we have seen, can bemeasured (cf.
Sect. “Empirical Foundations of Coordination Dynamics:
Pattern Generation, Stability and Phase Transitions”). As
in the simpler cases of coordination dynamics described
above, switching among cortical patterns is due, not to
switches per se but to instabilities – phase transitions or
bifurcations in the phase dynamics. Neuromodulators are
candidate control parameters capable of sculpting cortical
patterns by leading the system through instabilities [130].
Moreover, when the oscillatory frequencies in the anterior
and posterior regions of the brain are slightly different,
a kind of partial coordination among cortical regions may
occur. This is exactly themetastable coordination dynam-
ics of the brain as described in the previous section. Here
again, the key point is that the rules of the game appear to
be run by principles of coordination dynamics and sym-
metry. As always, experiments are now needed to test this
hypothesis. EEG measures of cross-frequency phase syn-
chrony of the human brain may reflect a start in this direc-
tion (e. g., [84,158]). More direct attempts are underway in
our laboratory [199].

Coordination Dynamics, Figure 8
Representative brain phase pictograms corresponding to corti-
cal patterns of lower symmetry. Here the anterior-posterior sym-
metry is dropped and the cortical patterns that remain form two
one parameter families. One family consists of in-phase ordering
within anterior and posterior areas and any fixed phase relation
between anterior and posterior regions (a,b). The other family
(c,d) consists of anti-phase relations within frontal and anterior
regions and any fixed phase relations between them

“CollectiveMinds”

The basic coordination dynamics for two and four non-
linearly interacting components (Eqs. (2)–(10)) can read-
ily be elaborated as a model of emergent coordinated be-
havior or “group cohesion” among very many anatomi-
cally different components (see, e. g. [5]). Self-organized
behavioral patterns such as singing in a group or mak-
ing a “wave” during a football game are common, yet
unstudied examples. By virtue of information exchange
nearest neighbors adjust their motions to each other gen-
erating, and being influenced by, their social environ-
ment. Recently, Néda and colleagues [148,149] have ex-
amined a simpler group activity: applause in theater and
opera audiences in Romania andHungary. After an excep-
tional performance, initially thunderous incoherent clap-
ping gives way to slower, synchronized clapping. Measure-
ments indicate that the clapping period suddenly doubles
at the onset of the synchronized phase, and slowly de-
creases as synchronization is lost. This pattern is a cultural
phenomenon in many parts of Europe: a collective request
for an encore. Increasing frequency (decreasing period) is
a measure of the urgency of themessage, and culminates in
the transition back to noise when the performers reappear.
These results are readily explained by a model of a group
of globally coupled nonlinear oscillators [132]:

d�k
dt
D !k C

K
N

NX

jD1

sin(� j � �k) (11)

in which a critical coupling parameter, Kc determines the
differentmodes of clapping behavior.K is a function of the
dispersion (D) of clapping frequencies:

Kc D

r
2
�3 D : (12)

During fast clapping, synchronization is not possible due
to the large dispersion of clapping frequencies. Slower,
synchronized clapping at double the period arises when
small dispersion appears. Period doubling rhythmic ap-
plause tends not to occur in big open-air concerts where
the informational coupling among the audience is small.
K can also be societally imposed. In Eastern European
communities during communist times, synchronization
was seldom destroyed because enthusiasm was often low
for the “great leader’s” speech. For people in the West, the
cultural information content of different clapping patterns
may be quite different. Regardless, the mathematical de-
scriptions for coordinated behavior – of social dyads and
the psychology of large groups – are remarkably similar.
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Modifying Coordination:Meaningful Information

Unlike the behavior of inanimate things, the self-organiz-
ing dynamics of animate behavior is based on informa-
tion (Table 1), though not in the standard sense of data
communicated across a channel [180]. In coordination
dynamics, collective or coordination variables are context-
dependent and intrinsically meaningful. Context-depen-
dence does not imply subjectivity and lack of reproducibil-
ity. Nor does it mean that every new context requires a new
collective variable or order parameter. As we have seen al-
ready, for example, within- and between-person coordi-
nated behaviors are described by the same self-organizing
coordination dynamics. One of the consequences of iden-
tifying the latter is that in order to modify or change the
system’s behavior, new information (in the form say, of an
environmental input, a task to be learned, or an intention
to change behavior) is expressed in terms of parameters
acting on system-relevant collective dynamics. On the one
hand, the benefit of identifying collective variables is that
they embrace the full complexity of the system and hence
provide the relevant information about what to modify.
On the other, the collective variable dynamics – prior to
the introduction of any new information – influences how
that information can be used. The upshot is that infor-
mation is not lying out there as mere data: information is
meaningful to the extent that it modifies, and is modified
by, the collective variable dynamics.

A minimum mathematical form for the full coordina-
tion dynamics which encompasses both spontaneous self-
organizing tendencies and specific parametric influences is

�̇ D f (�)C f inf(�) (13)

where the first term is the typical so-called “intrinsic dy-
namics” e. g., of Eq. (5) or Eq. (10) and the second term
represents ‘informational forcing’, i. e., a perturbation of
the vector field of the dynamics attracting the system to-
ward a required coordination pattern. It is important to
emphasize that the plus sign in Eq. (13) is for operational
purposes only, affording the measurement of the comple-
mentary contributions to the coordination dynamics of
both spontaneous and directed (parametric) influences.
The conceptual advantage of Eq. (13) is that information
acts in the same space as the collective variables that define
the intrinsic coordination patterns, i. e., those patterns that
characterize spontaneous coordination tendencies. Thus,
information is not arbitrary with respect to the dynamics.
A corollary of this formulation is that information has no
meaning outside its influence on the intrinsic dynamics.
They are cut, as Sheets-Johnstone [182] remarks, from the
same dynamic cloth.

Intentional Dynamics

Self-organizing processes, in the manner of Haken’s syn-
ergetics, provide a theoretical foundation for all forms of
coordination. However, we do not want to throw the baby
out with the bathwater. Coordinated behavior often has
a goal-directedness to it as well. We humans, for example,
have no doubt whatsoever that it is us, and us alone, that
direct the motions of our own bodies. Where do agency
and directedness come from? A clue comes from consid-
ering the elementary spontaneous movements we are born
with which consist of a large repertoire of spontaneous
(thus self-organized) movements – making a fist, kicking,
sucking, etc. etc. Only at some point does the child re-
alize – through his own movements and the kinaesthetic
sensations they give rise to – that these movements are his
own. If one attaches the string of a mobile to his foot, he
comes to realize that it is his kicking movements that are
causing the mobile to move in ways that he likes. The pre-
existing repertoire enables activities to happen before we
make them happen. Evolutionarily constrained self-orga-
nizing coordination tendencies (‘intrinsic dynamics’) thus
appear to lie at the origins of conscious agency. They are,
in the words of the philosopher Maxine Sheets-Johnstone,
“the mother of all cognition”, presaging every conscious
mind that ever said “I”. From spontaneous self-organized
behavior emerges the self – “I am” “I do” and from there
a huge range of potentialities (‘I can do’). “I-ness” arises
from spontaneity, and it is this “I” that directs human ac-
tion. As Sheets-Johnstone [182] cogently remarks, we lit-
erally discover ourselves in movement. In our spontaneity
of movement, we discover arms that extend, mouths that
open, knees that flex and so forth. We make sense of our-
selves as living things.

Following these insights, consider briefly how Coor-
dination Dynamics addresses the role of intentional in-
formation in bringing about behavioral change. How is
the process of intentionally switching among patterns of
coordination to be understood? According to the the-
ory, the relative stability of the intrinsic patterns plays
a role in determining how easily the system can switch
in and out of coordination states. As defined previously,
“intrinsic dynamics” expresses the fact that the system
(which may include the brain) – prior to any specific in-
put – already possesses a repertoire of behavioral patterns
that are unique to each individual. Theoretically, inten-
tion parametrizes the intrinsic dynamics in two ways: (i)
by destabilizing an ongoing pattern and stabilizing a tar-
get pattern [114,137,171]; and (ii) by stabilizing an in-
trinsically unstable pattern that under the current circum-
stances might otherwise become unstable and switch (see
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Chap. 5 in [100], [114]). Measurement of switching time
shows that intention both acts upon and is constrained
by the intrinsic dynamics of coordination. First, the sys-
tem switches far faster from less stable to more stable pat-
terns (as measured by variability) than vice-versa. Second,
the data show that it is possible to intentionally stabilize
intrinsically unstable patterns under conditions in which
they would normally switch. Both results are in excellent
agreement with theory [114,171,173].

The neural basis of the interaction between intrin-
sic brain dynamic activity and intentional pattern selec-
tion and switching is just beginning to be studied and
the results look very promising [39]. Spontaneous switch-
ing between patterns is known to be associated with in-
creased activity in prefrontal, premotor and parietal re-
gions [3,37,146], a network that is compatible with the
stability dependent circuits described in Fig. 2 (see also
Jantzen & Kelso, 2007). Increased activity reported in spe-
cific brain regions appears to reflect the loss of pattern sta-
bility that precedes spontaneous pattern switching. New
results from our laboratory show that there is greater activ-
ity in the basal ganglia (BG) – a region known to be crucial
for starting and controlling voluntary movements [68] –
when moving from a more to a less stable pattern [39].
The heightened level of activity in BG may be related to
the stability of the original pattern, the stabilization of the
selected pattern switched into or both. Regardless, this in-
triguing result suggests that the basal ganglia play a key
role in parametrizing the coordination dynamics.

Stimulus (Parametric) Stabilization and Change

Not only internally generated information is able to stabi-
lize and destabilize coordination states under suitable cir-
cumstances: coupling sound, vision or touch conditions
to specific aspects of an individual movement have been
shown, not only to modify the movement but to glob-
ally stabilize coordination [25,50,122,133]. Thus the role
of ‘stimuli’ in Coordination Dynamics is much more than
to trigger preset motor commands or provide feedback to
the motor system. To account for these kinds of effects,
Jirsa and colleagues [89] introduced the notion of para-
metric stabilization: coupling specific sensory input para-
metrically to a set of limit cycle oscillators (see also [4,91]):

ẍ1 C f (x1; ẋ1)ẋ1 C !2x1 D g(x1; ẋ1; x2; ẋ2)C "(t)x1
ẍ2 C f (x2; ẋ2)ẋ2 C !2x2 D g(x2; ẋ2; x1; ẋ1)C "(t)x2

(14)

where f is a nonlinear oscillator function, g represents the
HKB coupling (Eq. (4)), ! is the eigenfrequency of the

oscillator and "(t) represents sensory information. Here
again in Eq. (14) we see a key aspect of coordination dy-
namics, namely that perception and action, sensory in-
formation and the dynamics of movement are inextrica-
bly linked. Notice the linkage in this case is of a paramet-
ric, multiplicative nature which is necessary to account for
both the local changes to component trajectories produced
by sensory information (called ‘anchoring’) and the global
stabilization effects on the coordination dynamics. Fink et
al. [50] for example, were able to show that such localized
and specific sensory information was capable of shifting
(and thereby delaying) the critical point at which phase
transitions occurred.

A Brief Survey of Applications and Elaborations
of CoordinationDynamics

The foregoing discussion pertains to just two of the many
kinds of adaptive modification of coordination dynam-
ics that have been investigated in the literature. Here
only a flavor can be provided. The sample includes, but
is by no means limited to: the processes underlying the
ability of biological systems to stabilize intrinsically un-
stable systems [26,54,199]; the initiation (including ‘false
starts’) and coordination of discrete, discontinuous be-
haviors [52,80,86,112,188,189] including neurally-based
comparisons with those of a continuous, rhythmic na-
ture [166,185]; the spontaneous recruitment and anni-
hilation of biomechanical degrees of freedom to accom-
plish task and environmental conditions [21,23,51,118];
the coordination dynamics of trajectory formation [22,38]
and cursive handwriting [6]; the important role that per-
ception [145] and attention [2,27,147,190,193,194] play
in modulating coordinative stability; how practice and
learning alter the entire coordination repertoire by re-
shaping the landscape of the coordination dynamics us-
ing competitive and cooperative mechanisms [53,140,151,
177,222,223]; the stabilization and consolidation of new
memorized states of coordination and the dynamics of the
forgetting process [128,129]; how handedness amplifies
asymmetries in the coordination dynamics [2,201], and
so forth. The same concepts and methods have been ap-
plied to problems ranging from maintaining posture and
stabilizing postural sway [8,9,42,83] to understanding how
concurrent cognitive tasksmodulate coordination dynam-
ics [159,183].

Theoretical research at the neural level has pro-
gressed from phenomenological modeling at behavioral
(e. g. [60,76,89,115,118,175,201]) and brain levels [88,205]
to neurobiologically-grounded accounts of both uniman-
ual [56,63,125] and bimanual coordination [87] that are
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based on known cellular and neural ensemble proper-
ties of the cerebral cortex. Recent work [85] has extended
this neural theory to include the heterogeneous connectiv-
ity between neural ensembles in the cortex. Once general
laws of coordination at behavioral and brain levels have
been identified, it has proved possible to derive them from
a deeper theory founded on neuroanatomical and neuro-
physiological facts, thereby causally connecting different
levels of description [117] for review). The neural theory,
in turn, poses a number of challenges to experiment, such
as how synaptic and cellular properties are influenced by
learning, arousal and attention [103].

Remarkable applications of coordination dynamics
have occurred in expected directions (though none the
less remarkable for all that) including many physical ac-
tivities and sports such as the relation between respiration
and locomotion [36], juggling [13,79], gymnastics [142],
running [41], tennis [157], swimming [179], boxing [135],
skiing [154], golf [125] and even riding horses [134] to
name only a few, as well as in entirely unexpected direc-
tions, such as modeling coordination of infant breathing
as a way to understand the effects of premature birth [65],
studies of coordination dynamics in children with Devel-
opmental Coordination Disorder [213] and the introduc-
tion of coordination dynamics therapy to treat a wide vari-
ety of CNS disorders and diseases (e. g. [167,168,169]; see
also [207]). Principles of coordination dynamics have been
shown to apply to perceptual grouping as nicely illustrated
by the classic bistable properties of reversible figures such
as the Necker cube (e. g. [100]), pattern recognition [77],
the visual perception of spatiotemporal inphase and an-
tiphase moving stimuli [18,40,78,221] and speech catego-
rization [28,202]. In many cases the foregoing research
findings have expanded, if not overturned, conventional
explanations of phenomena that have seldom considered
dynamics.

Increase in research activity using the concepts and
methods of coordination dynamics has been such that the
term has taken on a life of its own in different fields. Thus,
it is commonplace in the literature to hear the words ‘cog-
nitive’, ‘brain’, ‘neural’, ‘social’, ‘behavioral’, ‘developmen-
tal’ ‘multimodal’, ‘postural’, etc., qualify and precede the
words coordination dynamics. The dynamical approach is
currently center stage in a number of fields, for exam-
ple, dynamical neuroscience (e. g., [90,160]), dynamical
cognitive science (e. g., [16,162,186,209]), behavioral [217]
and task [165] dynamics, dynamical social psychology
(e. g., [15,155,206]), dynamical systems accounts of devel-
opment (e. g., [135,149,191,192,204]; see also [195]) and its
implications are under careful consideration in philosoph-
ical circles (e. g. [11,29,30,31,198]).

Future Directions and Conclusions: The
Complementary Nature of CoordinationDynamics

General laws and principles of biological coordination –
to the extent they exist – are, by definition, abstract and
mathematical. Yet, these laws are always conditioned by
and realized by specific mechanisms and contexts. Over
the last twenty-five years, often using the field of animate
movement as an entry point it has been shown that the
same coordination dynamics applies to functional coordi-
nation in a wide variety of situations. Although the basic
laws for a quantitative description of the phenomena ob-
served when human beings (and human brains) move, in-
teract with the environment and with each other are the
same, the anatomical, mechanical and physiological mech-
anisms realizing these dynamics are obviously not. Laws
and mechanisms are complementary aspects of coordina-
tion dynamics.

Current research and theory views coordination as
arising from the mutual interplay of constraints on multi-
ple levels of description – ranging from the intrinsic prop-
erties and modes of interaction among cells and cellular
ensembles in brain circuitry to biomechanical influences at
the behavioral level all the way to cognitive and task con-
straints. Coordination dynamics is not only a theoretical
framework, but also a research program that explicitly at-
tempts to incorporate and connect known constraints at
multiple levels of description. For instance, coordination
dynamics successfully identified and later quantified the
form of the nonlinear coupling among interacting compo-
nents. In showing that the stability and change of coordi-
nation is due to nonlinear interactions among individual
components coordination dynamics removes some of the
mysticism behind the contemporary terms “emergence”
and “self-organization”. At the same time, coordination
dynamics expands and modifies the concept of self-orga-
nization in non-living systems by introducing new con-
cepts to account for the fact that coordination is not only
characterized by self-organization but also by directed or
supervised forms of coordination. The two origins or cor-
nerstones of coordination dynamics may be reconciled
by showing how meaningful information originates from
self-organizing processes and may in turn modify them.

In studies of coordinated movement, the field to which
coordination dynamics owes its origins, it has proven use-
ful to try to isolate the role of various constraints and
how they are mediated by the central nervous system. On
the one hand, this strategy has helped identify different
factors that serve to stabilize coordination under condi-
tions in which it may otherwise become unstable and sus-
ceptible to change. On the other hand, a focus on iso-
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lating particular constraints can lead, albeit unwittingly,
to dichotomies (e. g., coordination principles versus neu-
romuscular-skeletal mechanisms of implementation) that
may not be so useful. In reality it seems safe to conclude
that a coalition of constraints – acting on multiple levels –
impinges upon the stability of coordination depending on
task and environmental context and the mover’s intent.
For example, the multilevel theory offered by Kelso [100]
connects task goals (Level 1) to constraints on nonlinear
oscillators (Level 3), the interactions among which deter-
mine the coordinative patterns observed (Level 2). Thus,
rather than pose “abstract laws of coordination dynamics”
against “neuromuscular-skeletal determinants of coordi-
nation”, more important is to understand how the balance
between identified constraints plays itself out in the course
of any coordinated activity. Situations in which constraints
are placed in competition with each other often prove to be
highly revealing [122].

Throughout this article, every effort has been made to
articulate the key notions of coordination dynamics, both
conceptual and technical, and to present them in close
proximity in order to help both the novice and the expert
reader. The behavioral simplicity of the basic coordination
patterns studied in the laboratory is deceptive; their un-
derstanding, however, requires recent advances in physics
and mathematics. The theoretical concepts and methods
of coordination dynamics are likely to play an ever greater
role in the social, behavioral, economic, cognitive and neu-
rosciences, especially as the interactions among disciplines
continues to grow. Up to now, the use of nonlinear dy-
namics is still quite restricted, and often metaphorical.
One reason is that the tools are difficult to learn, and re-
quire a degree of mathematical sophistication. Their im-
plementation in real systems is nontrivial, requiring a dif-
ferent approach to experimentation and observation. An-
other reason is that the dynamical perspective is often
cast in opposition to more conventional theoretical ap-
proaches, instead of as an aid or complement to under-
standing. The former tends to emphasize decentraliza-
tion, collective decision-making and cooperative behavior
among many interacting elements. The latter tends to fo-
cus on individual psychological processes such as inten-
tion, perception, attention, memory and so forth. Yet there
is increasing evidence that intending, perceiving, attend-
ing, deciding, emoting and remembering have a dynamics
as well. The language of dynamics serves to bridge indi-
vidual and group processes. In each case, dynamics must
be filled with content, with key variables and parameters
obtained for the systems under study. A beauty about co-
ordination dynamics is that the coordination variables or
order parameters are semantic, relational quantities that

“enfold” different aspects together thereby reducing often
arbitrary divisions. Every system is different, but what we
learn about one may aid in understanding another. What
may be most important of all is to see animated living
things in the light of a theory – coordination dynamics –
that embraces both spontaneous self-organizing and di-
rected processes, the complementary nature.
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Glossary

ABS Automated Bond System. The original automated
limit-order market for bonds operated by the NYSE
that executed orders according to strict price/time pri-
ority. ABS was replaced by the NYSE Bonds Platform
in 2007.

Agency trade A bond transaction executed by a broker-
dealer on behalf of another party. A broker-dealers is
compensated by a commission on an agency trade.

Broker A firm that acts as an intermediary by executing
agency trades.

Broker-dealer A firm that engages in both agency trades
and principal trades.

Broker’s broker A broker-dealer that exclusively exe-
cutes agency trades of municipal bonds with other bro-
ker-dealers. Broker’s brokers do not execute principal
trades and they do not trade directly with public in-
vestors.

Commission A form of compensation that a customer
pays a broker-dealer for executing an agency trade.
Broker-dealers must explicitly disclose the commis-
sion to the customer as a separate item on the cus-
tomer’s trade confirmation.

Dealer A firm that engages in principal trades for its own
account.

FINRA Financial Industry Regulatory Authority. The
self-regulatory organization (SR0) created in July 2007

from the consolidation of NASD and the member reg-
ulation, enforcement and arbitration functions of the
NYSE. FINRA rules are approved by the SEC and en-
forced by themselves.

FIPS Fixed Income Pricing Service. The electronic sys-
tem operated by the National Association of Securi-
ties Dealers (NASD) from 1994 through 2002 to collect
and disseminate real-time quotations and hourly trade
reports for a subset of high-yield corporate bonds.
FIPS was retired in July 2002 with the implementation
of TRACE.

Market maker A specific designation made by a regula-
tory authority for a broker-dealer that holds itself out
to trade securities by publishing regular or continuous
quotations to buy (bid) or sell (offer). Currently, there
are no broker-dealers regulated as market makers in
the US corporate or municipal bond markets.

Mark-up and mark-down A form of compensation that
a customer pays a broker-dealer for executing a prin-
cipal trade. Customers pay a mark-up when they buy
a bond from a broker-dealer; they pay a mark-down
when they sell a bond to a broker-dealer. Unlike com-
missions, mark-ups and mark-downs do not need to
be disclosed on customer trade confirmations.

MSRB Municipal Securities Rulemaking Board. The self-
regulatory organization (SRO) charged with primary
rulemaking authority over broker-dealers in connec-
tion with their municipal bond transactions. MSRB
rules are approved by the SEC and enforced by FINRA
(formerly NASD).

NASD Formerly known as the National Association of
Securities Dealers. The self-regulatory organization
(SRO) charged with, among other things, primary
rulemaking authority over broker-dealers in connec-
tion with their corporate bond transactions. In July
2007, NASD and the member regulation, enforcement
and arbitration functions of the NYSE consolidated to
form FINRA.

NYSE New York Stock Exchange. Operates the NYSE
Bonds Platform (formerly ABS) trading system for ex-
change-listed corporate bonds.

OTC securities Over the-counter securities. Securities
that are not traded on an organized exchange.

Principal trade A bond transaction executed by a broker-
dealer for its proprietary account. The broker-dealer is
compensated by a mark-up or mark-down on a prin-
cipal trade.

Riskless principal trade A principal trade in which a bro-
ker-dealer purchases a bond to satisfy a previously re-
ceived order to buy, or a broker-dealer sells a bond to
satisfy a previously received order to sell. The trans-
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action is riskless to the broker-dealer because the firm
does not bear any inventory (price) risk.

RTTRS (or TRS) (Real-Time) Transaction Reporting
System. MSRB’s municipal bond transaction reporting
and dissemination system.

Serial offering A bond issuance in which several differ-
ent bonds are offered with different, often consecutive,
maturities. Municipal bonds are typically issued in se-
rial offerings.

SRO Self-regulatory Organization. A non-governmental
industry association that has statutory authority to reg-
ulate members through the promulgation and enforce-
ment of rules and regulations governing business prac-
tices. The SEC oversees SRO activities and approves
SRO rules.

SEC US Securities and Exchange Commission. The pri-
mary governmental overseer and regulator of US secu-
rities markets, including the corporate and municipal
bond markets. Broker-dealers and SROs are overseen
by the SEC’s Division of Trading and Markets (for-
merly Division of Market Regulation).

TRACE (formerly NASD TRACE) Transaction Report-
ing and Compliance Engine. FINRA’s corporate bond
transaction reporting and dissemination system.

Definition of the Subject

The subject of this article is the microstructure of the US
corporate and municipal bond markets. � Treasury Mar-
ket, Microstructure of the U.S. provide a complementary
discussion of the microstructure of the US Treasury bond
market.

Market microstructure is broadly defined as the study
of the economics of markets and trading. Market mi-
crostructure research covers a wide range of interrelated
topics including market structure and design issues (e. g.,
trading systems and rules); price formation and price dis-
covery; strategic trading behavior; market quality, liquid-
ity, and trading costs (explicit and implicit); information,
disclosure, and transparency; and consequences of regula-
tory policy (intended and unintended).

While much has been written on the microstructure
of equity markets since the mid-1980s, the bond markets
have only recently started receiving attention from aca-
demic researchers. The development of research in both
markets can largely be attributed to the availability of qual-
ity intraday trade, quote, and/or order data (“tick” data) to
empirical researchers.

The seminal theoretical work in market microstruc-
ture was conducted contemporaneously with the early eq-
uity market microstructure research, and much of the un-

derlying economics is general enough to be appropriate for
the bondmarkets. As a result, the significant contributions
of bond market research so far have been almost exclu-
sively empirical in nature. The last study featured in this
article by Green, Hollifield, and Schurhoff [23] is a notable
exception.

Conversely, the empirical methods developed specifi-
cally for the structure and design of equity markets are not
well-suited for the bond markets. Accordingly, many of
the important contributions of bond market microstruc-
ture research stem from not only the results and conclu-
sions, but also from the development of new empirical
methods. This article will provide details on some of these
methods as well as discuss the important results, conclu-
sions, and policy implications.

But, before moving on to a detailed discussion of bond
market microstructure research, an important question
needs to be answered.Why should we care about the bond
markets? We should care because the bond markets pro-
vide an important source of capital for issuers and an im-
portant source of securities for investors. In other words,
the bond markets are large. How large are they? The an-
swer to this question depends on one’s definition of size.

Figure 1 shows that an astonishingly large number, ap-
proximately 1.5 million, corporate and municipal bonds
are outstanding. The vast majority of these are municipal
bonds, which are typically issued in serial offerings con-
sisting of a set of up to 20 (or more) bonds issued at the
same time with different maturities. Thus, the number of
bonds dwarfs the number of equities.

In terms of total dollar amounts outstanding, Fig. 1
shows that US corporate and municipal bond markets
combined are roughly half the size of the US equity mar-
kets. The average daily trading volume in these bond mar-
kets is about $36 billion, which is about 1/3 of the average
daily trading volume of $115 billion in the equity markets.
While the discussion of the microstructure of the Treasury
bond markets is left to� TreasuryMarket, Microstructure
of the U.S., it is worth noting that total US bond market
trading volume (corporate, municipal, and Treasury) ex-
ceeds US equity market trading volume. Thus, no matter
what measure is used, it is apparent that the bond markets
offer important sources of capital for issuers and securities
for investors.

The remainder of this article proceeds as follows. Sec-
tion “Introduction” provides a historical overview of the
US corporate and municipal bond markets. Section “Early
Corporate and Municipal Bond Market Microstructure
Research” through “The Links Between Bond Market Mi-
crostructure Research and Other Finance and Economics
Research” review the significant contributions to the bond
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Corporate andMunicipal Bond Market Microstructure in the U.S., Figure 1
Comparison USmunicipal corporate and bondmarkets with US equity markets

market microstructure literature. Section “Early Corpo-
rate and Municipal Bond Market Microstructure Re-
search” reviews the early corporate and municipal bond
market microstructure research. Section “Fixed Income
Pricing Service (FIPS) Research” reviews the research en-
abled by the National Association of Securities Dealer’s
(NASD’s) Fixed Income Pricing Service that began in May
1994. Section “Municipal Bond Market Research” reviews
the municipal bond market research enabled by the Mu-
nicipal Securities Rulemaking Board’s (MSRB’s) transac-
tion data. Section “Transaction Reporting and Compli-
ance Engine (TRACE) Research” reviews the research en-
abled by the NASD’s Transaction Reporting and Compli-
ance Engine (TRACE) system that began in July 2002. Sec-
tion “The Links Between BondMarket Microstructure Re-
search and Other Finance and Economics Research” pro-
vides examples of how bond market microstructure re-
search is linked to other areas of finance and economics
research.

Introduction

Today, virtually all US corporate and municipal bond
trading occurs in over the-counter (OTC) dealer markets
with transparent prices. But, that was not always the case.
In the early 20th century there were active and transparent
markets for both corporate bonds andmunicipal bonds on
the New York Stock Exchange (NYSE). Then, bond trad-
ing began migrating to opaque OTC dealer markets. In
the late 20th century, post-trade transparency was added

to the both the corporate and municipal bond OTC mar-
kets.

What factors are responsible for the evolution of the
bond markets over the past century? What caused the mi-
gration of trading in the early 20th century? How (and
why) was post-trade transparency added to the bond mar-
kets in the late 20th century? The brief history of US corpo-
rate and municipal bond markets below provides answers
to these questions.

The Early 20th Century

Biais and Green [9] provide a fascinating historical
overview of the US corporate and municipal bond mar-
kets. Early 20th century NYSE bond trading took place
among the “bond crowd”. Bond trading originally took
place in the same trading room as stock trading, with the
bond crowd organizing around three trading booths in the
“bond corner” of the Exchange. In 1928, the NYSE opened
a separate trading room, the “bond room”, in response to
increases in trading volumes. Trading in the bond room
was separated into four different crowds. US corporate
and municipal bonds were traded in either the “active”
crowd or the “inactive” crowd. The inactive crowd was also
known as the “cabinet” crowd because bond orders were
written on slips of paper and filed in the bond cabinets.
Foreign bonds and Government securities each had their
own bond crowds. A small number of active bonds were
traded on the floor in an open outcry market.

NYSE bond trading was “order-driven”. The exchange
collected, posted, and matched public customer orders.
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Public investors paid commissions to brokers to facil-
itate their NYSE bond trades. All NYSE bond brokers
could observe the book of available orders and the recent
trades, and inform their customers about them. Thus,
NYSE bond trading enjoyed a very high level of “pre-trade
transparency” and “post-trade transparency”. Pre-trade
transparency refers to the dissemination of information
about trading interests. Pre-trade information can in-
clude price (bid and ask) and depth quotations, as well as
limit order prices and sizes. Post-trade transparency refers
to the dissemination of information about past trades.
While post-trade information includes not only prices,
such as trade execution times and volumes, post-trade
transparency in the bond markets is sometimes referred
to as simply “price transparency”. Madhavan [38] and
Harris [24] provide excellent discussions all the different
dimensions of transparency as well as the related market
microstructure literature.

In the late 1920s, municipal bond trading migrated to
the over the-counter (OTC) market. Corporate bond trad-
ing migrated to the OTC market in the 1940s. Biais and
Green [9] examine a number of potential explanations for
the decline in municipal and corporate bond trading on
the NYSE. They find that the decline of exchange trading
in bonds was not due to a decline in the supply of bonds
outstanding or a decline in listings in response to costly
rules and regulations promulgated by the newly created
SEC.

Biais and Green [9] find that the migration of bond
trading from the NYSE to the OTC markets coincided
with changes in the investor base. In the late 1920s, re-
tail investor interest in municipal bonds waned, as they
became more attracted to the higher returns on equities.
As retail interest in municipal bonds waned, institutions
became the dominant investor in the market. During the
1940s, a similar shift in the relative importance of retail
investors and institutional investors occurred in the cor-
porate bond market. Biais and Green [9] conclude that
the migration of bond trading from the NYSE to the OTC
markets was an evolution in response to the changing in-
vestor base.

Biais and Green [9] provide evidence that institutions
fared better in OTC bond markets and argue that the deal-
ers were happy to accommodate this new class of dom-
inant investors. Because liquidity was no longer concen-
trated on a centralized transparent exchange, retail in-
vestors were effectively forced into trading with dealers
in these decentralized opaque OTC markets. Not surpris-
ingly, retail investors faredjt worse in these markets. Both
municipal and corporate bond transaction costs increased
significantly for retail investors.

The Late 20th Century and Early 21st Century

While the most significant change in the bond markets in
the early 20th century was a migration of trading from the
exchange to OTC, the most significant change in the late
20th century was the introduction of price transparency.
Unlike trading migration, bond market transparency was
not caused by market forces. Rather, transparency was
added to the bond markets by direct regulatory interven-
tion.

The Municipal Securities Rulemaking Board (MSRB)
introduced price transparency to the municipal bondmar-
ket. TheMSRB was created by Congress in 1975 as the self-
regulatory organization (SRO) charged with primary rule-
making authority over broker-dealers in connection with
their municipal bond transactions.

The MSRB began publicly disseminating municipal
bond price information in January 1995. “Interdealer
Daily Reports” provided statistics on total interdealermar-
ket activity reported for the previous day, as well as in-
formation about price and volume for each security that
was “frequently traded” on that day. The MSRB defined
frequently traded securities to be securities with four or
more interdealer transactions on a particular day. The In-
terdealer Daily Report included the total par value traded,
the daily high and low price, and the average price of trades
having a par value between $100,000 and $1 million for
each frequently traded issue. Transaction price informa-
tion on securities with three or fewer interdealer transac-
tions on a particular day (“infrequently traded” securities)
was not disseminated.

In August 1998, the MSRB began producing “Com-
bined Daily Reports”. The Combined Daily Reports
merged information from customer and interdealer trans-
actions and provided daily high, low, and average prices
for frequently traded securities of municipal securities on
a one-day delayed basis. The frequently traded threshold
was four transactions per day, taking into account both
customer and interdealer transactions.

In January 2000, the MSRB began publicly dissem-
inating transaction details on individual trades in fre-
quently traded securities through “Daily Transaction Re-
ports”. Trade information on infrequently traded securi-
ties was still not disseminated until October 2000, when
the MSRB began producing “Monthly Comprehensive Re-
ports”. These reports provided information on a one-
month delayed basis for all transactions from the previous
month, including infrequently traded issues.

By June 2003, the MSRB was publicly disseminating
transaction details for all trades in all securities (frequently
traded and infrequently traded) on a one-day lag basis
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through “T+1 Daily Reports”. In January 2005, the MSRB
began disseminating prices on a real-time basis through
its Real-Time Transaction Reporting System (RTTRS or
TRS).

The National Association of Securities Dealers
(NASD) introduced price transparency to the corporate
bond market. NASD (now FINRA) is the self-regulatory
organization (SRO) charged with primary rulemaking
authority over broker-dealers in connection with their
corporate bond transactions. Regulatory concern for price
transparency spiked in the late 1980s and early 1990s.

At that time, the high-yield corporate bond market
faced unprecedented instability, highlighted by insider
trading scandals and the ultimate collapse of the dominant
dealer and underwriter Drexel Burnham Lambert. Con-
cern over future market instability, along with the recog-
nition of a need for better monitoring, led to regulatory
intervention that provided a small degree of transparency
in this market segment. The Fixed Income Pricing Service
(FIPS) began in 1994. FIPS was the result of the SEC en-
couraging NASD to develop an electronic reporting and
dissemination facility for non-convertible high-yield cor-
porate bonds.

But, FIPS only provided partial transparency for this
particular segment of the corporate bond market. While
every trade in FIPS-eligible bonds was reported to FIPS,
only summary information on a small subset (50 bonds)
of the most active bonds was disseminated to the pub-
lic. Alexander, Edwards, and Ferri [2] point out that some
members of the SEC staff at that time feared that adding
price transparency to less active bonds could possibly
harm the market. FIPS added both pre-trade transparency
and post-trade transparency to the market by dissemi-
nating quotations and hourly trade summaries, respec-
tively. The hourly trade summaries contained high and
low prices as well as total trading volume.

Many bond market participants and some SEC staff
felt that FIPS added a sufficient amount of transparency to
the corporate bond market. SEC Chairman Arthur Levitt
disagreed. In 1998, he gave a speech entitled The Impor-
tance of Transparency in America’s Debt Market in which
he famously quipped “The sad truth is that investors in
the corporate bond market do not enjoy the same ac-
cess to information as a car buyer or a homebuyer or,
dare I say, a fruit buyer”. To address the lack of price
transparency in the corporate bond market, he called on
NASD to take several related actions. He called on NASD
to adopt rules requiring dealers to report all corporate
bond transactions; to develop a system to receive all cor-
porate bond transaction information; to create a database
of the transactions, and in conjunction, create a surveil-

lance program to better detect fraud in corporate bonds;
and, to disseminate the bond transaction prices to the pub-
lic in order to help them make better investment deci-
sions.

NASD responded by developing the Transaction Re-
porting and Compliance Engine (TRACE) system, which
began operation in July 2002. Corporate bond dealers
were required to report all transaction in TRACE-eligi-
ble securities. TRACE-eligible securities included invest-
ment grade and high-yield debt, convertible and non-con-
vertible debt, and publicly issued debt and privately issued
(Rule 144A) debt. While all TRACE-eligible transactions
were reported to TRACE from the beginning of its op-
eration, the dissemination of the trade information was
phased-in over time. The phase-in approach was adopted
by NASD, and approved by the SEC, because of indus-
try concerns that adding transparency to the bond market
would somehow harm liquidity.

The TRACE phase-in approach began with the dis-
semination of trade information on the largest, highest-
rated bonds first. Price transparency was introduced to
smaller and lower-rated bonds over time. By February
2005, prices were transparent on effectively 99% of trades,
and by the end of that year, pricing information on all
TRACE-eligible trades was being disseminated on a real-
time basis to the public.

By the beginning of the 21st century, investors (and
market microstructure researchers) were able to access
an unprecedented amount of information about the OTC
municipal and corporate bond markets from the post-
trade transparency brought by TRS and TRACE, respec-
tively. It is worth noting that bond trading never com-
pletelymigrated to the OTCmarkets. The NYSE continues
to list and trade some bonds. The NYSE developed the Au-
tomated Bond System (ABS), a computerized limit-order
market for bonds, in an effort to encourage the migration
of trading back to the exchange. The displayed public limit
orders on ABS provided pre-trade transparency for some
bonds.

However, the vast majority of bonds are not listed on
the NYSE ABS or any other exchange, so all of the trading
in these bonds occurs in the OTC markets. Moreover, for
many of the bonds that are listed on the NYSE ABS, a ma-
jority of their trades still occur over the-counter. There-
fore, the early 21st century bond markets can be charac-
terized as dealer markets with a high degree of post-trade
transparency, but with virtually no pre-trade transparency.
It remains to be seen whether market forces, regulatory
initiatives, or some combination of the two will eventually
lead to the introduction of some form of pre-trade trans-
parency, the emergence of bond market-makers, and/or
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a migration of trading back to an order-driven market in
the US corporate and municipal bond markets.

Early Corporate andMunicipal BondMarket
Microstructure Research

Early bondmarket microstructure researchers were forced
to rely on data sources that covered only certain segments
of the market because comprehensive bond market data
simply did not exist. Bond dealers kept their own trad-
ing records because there was no central reporting facil-
ity. Bond dealers were not required to publicly disseminate
their trades. Researchers, as well as investors and regula-
tors, were able to see snapshots of parts of the bond mar-
kets, but no one was able to see the complete picture.

But, even with the data limitations, early bond mar-
ket researchers found creative ways to tease out useful in-
formation. Their initial findings shed the first light on the
opaque bond markets. For example, Schultz [42] provides
indirect evidence that higher bond market trading costs
may be attributable to the lack of transparency. Variants
of their original empirical methods continue to be used by
more recent researchers.

Any encyclopedic article on corporate bond market
microstructure research would be incomplete if it did not
mention the efforts of the Fixed Income Research Pro-
gram (FIRP), and more importantly its founder Profes-
sor Arthur Warga, in promoting early bond market re-
search. Art Warga’s influence on the development of the
bond market microstructure literature extends beyond his
own research. He collected, consolidated, cleaned, and or-
ganized various fragmented sources of bond market data
to create the Fixed Income Securities Database (FISD),
which he made accessible to academic and regulatory
researchers. Many within the market microstructure re-
search community informally refer to the FISD as simply
the “Warga database”.

Warga (1991)

Warga [44] uses an econometricmodel to investigate bond
pricing discrepancies that arise when researchers (and
commercial bond pricing services) use data from the two
different sources that were generally available in 1990. The
one source was exchange data in the form of actual trans-
action prices from the NYSE Automated Bond System
(ABS). The other source was OTC dealer data in the form
trader-quoted prices.

Warga [44] denotes the unobserved, true value of
bond i as P�i and the unobserved, true bid-ask spread as
BAi. He assumes that P�i is the midpoint of BAi. He also
assumes that the prices/quotes observed in both markets

are unbiased in the sense that they deviate from the true
unobserved prices/quotes by a random error term. Then,
for month-end NYSE transaction prices (PNY ):

PNYi D P�i C ui ;

and, for month-end Lehman Brothers bid quotes (PB):

PBi D P�i �
1
2
BAi C �i :

Combining these two equations and letting " D � C �
yields:

PBi � PNYi D �
1
2
BAi C "i :

Squaring both sides results in:

�
PBi � PNYi

2
D

1
4
(BAi)2 � (BAi) "i C "2i :

Assuming the random error terms are orthogonal to
prices/quotes, the expected squared price discrepancies is:

E
h�
PBi � PNYi

2i
D

1
4
(BAi )2 C �2"i ;

where �2" equals the variance of the discrepancy.
Warga [44] regresses the squared price discrepancies

on six observable liquidity-related variables – bond rat-
ing, duration, NYSE dollar trading volume, bond age, is-
sue amount outstanding, and the time of trade of the last
trade price on the NYSE – with the following equation:

�
PBi � PNYi

2
D ˛0 C ˛1MOODYSC ˛2DURTN

C˛3OUTSTDC˛4DVOLC˛5AGEC˛6TIMEC! :

Warga [44] finds that squared discrepancies are larger for
bonds with lower credit ratings, higher duration, smaller
issue sizes, lower trading volume, and trade prices that oc-
curred earlier in the day. While he finds that these vari-
ables are capable of explaining some of the observed vari-
ation in price discrepancies, he also concludes that com-
mingling exchange and dealer bond pricing data does not
induce any biases.

Hong andWarga (2000)

Hong and Warga [29] use a benchmark method to esti-
mate average daily effective spreads with newly available
trade data. They obtain exchange market data from the
NYSE ABS and OTC dealer market data from the Capital
Access International (CAI) database. CAI obtains trading
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data on insurance companies, mutual funds, and pension
funds from various regulatory filings.

They calculate the effective spread for a given bond on
a given day as the dollar-volume-weighted average price
transacted at the ask minus the dollar-volume-weighted
average price transacted at the bid:

NX

iD1

PAi W
A
i �

MX

jD1

PBj W
B
j ;

where PAi is the price of transaction i occurring at the ask,
WA

i is the dollar-value weight of transaction i, and N is
the number of transactions occurring at the ask for a given
bond on a given day. Similarly, PBj is the price of transac-
tion j occurring at the bid, WB

j is the dollar-value weight
of transaction j, and M is the number of transactions oc-
curring at the bid for a given bond on a given day.

Hong andWarga [29] find that the average daily effec-
tive spreads for corporate bond transactions occurring on
the NYSE ABS that involve at least 10 bonds is about $0.21
for investment grade bonds and about $0.19 for high-yield
bonds. For corporate bond trades occurring in the OTC
dealer market, they find that the average daily effective
spreads is about $0.13 for investment grade bonds and
about $0.19 for high-yield bonds. They note that these
spread estimates are smaller than previous estimates based
on data from an earlier period, which is consistent with
evidence that corporate bond spreads may have declined
over time.

Hong and Warga [29] also find that OTC dealer mar-
ket spreads exhibit much larger dispersion than NYSE
ABS spreads. The standard deviations of daily effective
spreads for the dealer market are two to three times larger
than those for the exchange market. This result suggests
that investors, particularly uninformed retail investors,
could benefit from more transparency in the OTC mar-
kets.

Schultz (2001)

Schultz [42] also uses CAI institutional trade data. He de-
velops an econometric model similar to Warga [44] to es-
timate average round trip corporate bond trading costs
from institutional trade data and estimated contempora-
neous bid quotes.

Schultz [42] estimates daily corporate bond bid quotes
from the month-end bid quotes available from the Warga
database. He develops a threestep estimation procedure
that uses daily Treasury bond bid quotes, based on the
observation that most of the day-to-day changes in in-

vestment grade corporate bond prices are explained by
changes in the level of risk-free interest rates.

The first step is to calculate a predicted month-end
quote for each corporate bond by taking its previous
month-end quote and multiplying it by the change in the
price of Treasury bonds of similar duration. The second
step is to subtract the predicted month-end quote from
the actual month-end quote. This calculation yields the
monthly pricing error from predicting that the change in
the corporate bond prices is exactly the same as the change
in Treasury bond prices. Themonthly pricing error is con-
verted to an average daily pricing error by dividing it by
the number of trading days in the month. The third step
is to estimate the bid quote for a particular within-month
trade date by starting with the previous end-of-month
quote and adding on the average daily pricing error times
the number trading days since the previous month end.

Schultz [42] finds that his bid quote estimates are ac-
curate for investment grade bonds, but not for high-yield
bonds. This is not surprising, since changes in high-yield
prices are more often due to changes in firm-specific factor
than changes in Treasury bond prices. Therefore, he does
not attempt to estimate trading costs for high-yield bonds
with this methodology.

For investment grade bonds, Schultz [42] estimates
round-trip transactions costs by regressing the difference
between the CAI trade prices and his estimate of the con-
temporaneous bid quote on a dummy variable that takes
the value of 1 for buys and 0 for sells:


i D ˛0 C ˛1D
Buy
i C "i ;

where 
i is the price of trade i minus estimated bid price
and DBuy

i equals one if trade i is a buy and zero otherwise.
The coefficient ˛i is an estimate of the average round-trip
transaction costs. His estimate of the average round-trip
transaction costs across all trades is about $0.27 per $100
of par value.

Schultz [42] also examines the determinants of corpo-
rate bond trading costs with the following regression:


i D ˛0 C ˛1D
Buy
i C ˛2Si C ˛3DInst

i C ˛4D
Deal
i

C ˛5DInst
i DDeal

i C ˛6DInst
i Si C ˛7DDeal

i Si C "i ;

where Si is the signed (positive for buys, negative for sells)
natural logarithm of the dollar trade size, DInst

i is a dummy
variable that takes a value of one for buys and negative
one for sells by one of the 20 most active institutions and
a value of zero otherwise, and DDeal

i is a dummy variable
that takes a value of one for buys and negative one for
sells if the trade involves one of the 12 active dealers and
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a value of zero otherwise. For the interactive term for ac-
tive institutions and dealers, DInst

i DDeal
i , the product of the

dummies is positive for buys and negative for sells when
the trade involves both an active institution and an active
dealer and a value of zero otherwise.

Schultz [42] finds that institutional corporate bond
trading costs decline with trade size. He does not find any
evidence that trading costs are related to credit rating. But,
this is not surprising given the fact that his analysis is lim-
ited to the four investment grade rating classes (Aaa, Aa,
A, Baa).

Schultz [42] finds that trading costs are lower when
a large bond dealer is used. In other words, small bond
dealers charge more than large ones. He also finds that
inactive institutions pay more than twice as much as ac-
tive institutions to trade the same bonds. Schultz [42] at-
tributes this result to the lack of transparency in the corpo-
rate bond market during his sample period. In an opaque
market, obtaining price information is costly, so only ac-
tive institutions will find it worthwhile to bear them.

Chakravarty and Sarkar (2003)

Chakravarty and Sarkar [12] use CAI data and benchmark
methods to calculate “traded bid ask-spreads” over one-
day, two-day, and five-day windows in the corporate, mu-
nicipal, and Treasury bond markets. Similar to Hong and
Warga [29], they define the traded bid-ask spread per day
as the difference between its mean daily selling price and
its mean daily buying price.

To check the sensitivity of their estimates to the re-
quirement of one buy trade and one sell trade for each
bond day, Chakravarty and Sarkar [12] calculate spreads
over non-overlapping two-day and five-day windows.
Their two-day traded bid-ask spread is calculated as the
difference between the two-day means of the selling prices
and the buying prices.

Chakravarty and Sarkar [12] find that the mean traded
bid-ask spread per day per $100 par value is $0.21 for cor-
porate bonds, $0.23 for municipal bonds, and $0.08 for
Treasury bonds. In all threemarkets, they find that spreads
increase with longer time-to-maturity, lower credit rat-
ings, and lower trading volume. These results suggest that
spreads are positively related to interest rate risk and credit
risk, and negatively related to trading activity. For corpo-
rate bonds, Chakravarty and Sarkar [12] find that spreads
increase with age.

Chakravarty and Sarkar [12] pool observations across
all three bond markets for cross-market comparisons. Af-
ter controlling for credit risk, Chakravarty and Sarkar [12]
find no significant difference in the spreads of corporate

bonds and Treasury bonds, but they find that municipal
bonds have higher spreads.

Fixed Income Pricing Service (FIPS) Research

FIPS provided new price and volume data that allowed
market microstructure researchers to conduct studies that
were not previously possible. Alexander, Edwards, and
Ferri [1] use FIPS volume data to test various hypotheses
about bond liquidity. Alexander, Edwards, and Ferri [2]
use FIPS returns and equity returns to tease out new evi-
dence on agency conflicts between stockholders and bond-
holders. Hotchkiss and Ronen [31] use FIPS returns and
equity returns to examine the relative informational effi-
ciency of the corporate bond market. Somewhat surpris-
ingly, they find that that informational efficiency of the
corporate bond market is similar to the stock market.

Alexander, Edwards, and Ferri (2000a)

Alexander, Edwards, and Ferri [1] examine the determi-
nants of trading volume of FIPS high-yield bonds using
a pooled time-series cross-sectional approach. They use
the following linear specification:

Trading Volumei t D ˇ0 C ˇ1Ln (Sizei t)C ˇ2Agei t
C ˇ3Private Equityi t C ˇ4Credit Ratingi t
C ˇ5Durationi t C ˇ6Price VariabilityC "i t ;

where the dependent variable, Trading Volume, is mea-
sured in three different ways for each bond i in each
month t. The three trading volume measures are the
natural log of the average daily number of trades
(Ln(Trades)), the natural log of the average daily number
of bonds traded (Ln(Bonds)), and average daily turnover
(Turnover). Ln(Size) is the natural logarithm of the issue’s
par value outstanding, Age is a dummy variable equal to
one if the issue has been outstanding for less than two
years, Private Equity is a dummy variable equal to one if
the issue has no public equity outstanding in any part of
the month, Credit Rating is a dummy variable equal to
one if the issue is rated below B- by Standard & Poor’s at
any point during the month, Duration is the bond’s modi-
fied duration, and Price Variability is the monthly average
absolute value of the daily percentage change in volume-
weighted price.

They find consistent results for all three measures of
trading volume. Larger issues and younger issues are more
heavily traded. They point out that the age result extends
earlier empirical results that found that the liquidity of
Treasury securities drops off a few months after issuance.
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Alexander, Edwards, and Ferri [1] also find that bonds
of firms without public equity trade more frequently than
bonds of firms with public equity. This last finding is in-
consistent with a disclosure hypothesis that predicts that
more relaxed disclosure rules for firms without public eq-
uity will lead lower liquidity, as measured by trading vol-
ume. However, it is consistent with the competing substi-
tution hypothesis that predicts that high-yield bonds of
private firms will attract trading volume that otherwise
would have occurred in the equity.

Alexander, Edwards, and Ferri (2000b)

Alexander, Edwards, and Ferri [2] use equity data and
FIPS bond data to investigate the relationship between
a firm’s stock return and its bond return. They exam-
ine the long-term co-movement between a firm’s bond
returns and its stock returns. They also examine stock
and bond returns around events typically associated with
agency conflicts to see whether their co-movements pro-
vide evidence of agency conflicts.

To examine the long-term co-movement between
a firm’s bond returns and its stock returns, Alexander, Ed-
wards, and Ferri [2] use three regression approaches. The
first approach is a time-series regression model:

RBit D ˇ0 C ˇ1XRSi t C ˇ2XRSi t�1 C ˇ3RBINDit

C ˇ4RBINDit�1 C "i t ;

where RBit is the bond return for firm i on day t, XRS
is the current (t) and lagged (t � 1) excess stock return,
and RBIND is the current (t) and lagged (t � 1) high-yield
bond index return, and "it is the residual bond return for
firm i on day t. The second approach is a pooled time-se-
ries cross-sectional model that uses the regression equa-
tion above and follows the pooling technique of Greene
(1993). The third approach is a cross-sectional regression
model that follows the approach of Fama and MacBeth.
For each sample day, the excess bond returns are regressed
on the current and lagged excess stock returns:

XRBit D ˇ0 C ˇ1XRSi t C ˇ2XRSi t�1 C "i t :

The estimates of ˇ1 in each of the three regressions
show whether the stock and bond returns tend to co-move
together (positive), in the opposite direction (negative), or
not at all (insignificant). Alexander, Edwards, and Ferri [2]
find that all three regressions produce similar results. The
ˇ1 estimates are positive and statistically significant, indi-
cating that excess bond returns are positively correlated
with excess stock returns. But, Alexander, Edwards, and

Ferri [2] point out the that the magnitudes of the coeffi-
cients suggest that the correlation is economically small.

To examine the behavior of stock and bond returns
around events typically associated with agency conflicts,
Alexander, Edwards, and Ferri [2] look at cumulative ex-
cess stock and bond returns around announcements of
corporate events that are typically associated with wealth
transfers from bondholders to stockholders, or vice versa.
Events include debt issuances and redemptions, stock is-
suances and repurchases, dividend changes, new credit
agreements, and others. They use Wilcoxon rank-sum
tests to determinewhether themeans of the cumulative ex-
cess bond returns around potentially wealth-transferring
events are significantly different from the returns other-
wise. They find that the means are significantly different
and that the mean cumulative excess bond returns around
the wealth-transferring events is negative, while the re-
turns are at other times are positive.

Thus, Alexander, Edwards, and Ferri [2] show that
wealth-transferring corporate events (from bondholders
to stockholders, or vice versa) can cause a firm’s bond re-
turns to diverge from its typical positive (weak) co-move-
ment with its stock returns. In addition, they point out that
this result is a likely factor in the weak long-term time-se-
ries correlations observed between stock and bond returns.

Hotchkiss and Ronen (2002)

Hotchkiss and Ronen [31] use FIPS data for 55 high-yield
bonds to examine the informational efficiency of the cor-
porate bond market relative to the market for the under-
lying stock. They find that stocks do not lead bonds in re-
flecting firm-specific information. They also find that pric-
ing errors for bonds are no worse than for the underlying
stocks, even on an intraday level.

Hotchkiss and Ronen [31] use a vector autoregression
(VAR) approach applied to daily and hourly returns with
a return-generating process that includes an interest rate
risk factor and an equity market (systematic) risk factor:

RBt D ˛t C

nbX

iD1

ˇB
i RBt�i C

niX

iD0

ˇL
i RLt�i

C

nsX

iD0

ˇM
i RMt�i C "t ;

where RBt is the FIPS bond portfolio return, RLt is the
Lehman Intermediate Government Bond Index return,
and RMt is the S&P 500 Index return. The number of lags
for the bond, interest rate, and stock returns are nb = 3,
ni = 0, and ns = 4, respectively. Hotchkiss and Ronen [31]
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include lagged bond returns (RBt�i ) to consider autocor-
relation-adjusted bond returns. They also consider a spec-
ification that replaces the Lehman index return with the
default risk-free return, RDt , as interest rate factor:

RBt D ˛t C

nbX

iD1

ˇB
i RBt�i C

niX

iD0

ˇD
i RDt�i

C

nsX

iD0

ˇM
i RMt�i C "t :

Finally, they add the underlying stock (firm-specific)
return, RSt :

RBt D ˛t C

nbX

iD1

ˇB
i RBt�i C

niX

iD0

ˇD
i RDt�i
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iD0

ˇM
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iD0

ˇS
i RSt�i C "t :

With these three regressions, Hotchkiss and Ro-
nen [31] find that high-yield bond returns exhibit a very
strong interest rate risk component and that this compo-
nent is significantly greater for higher-rated bonds. They
also find that high-yield bond returns exhibit a very strong
systematic risk component and that this component is
slightly weaker for higher-rated bonds.

To test whether stock returns lead bond returns,
Hotchkiss and Ronen [31] conduct Granger causality tests
at the daily and hourly levels. They estimate the VAR for
the variable set zt D [RBt ;RSt]0 using the specification:

zt D B1zt� j C B2zt� j C �t ;

where RBt is the bond return and RSt is the stock re-
turn, for day (hour) t, Bi are conformable matrices, and
�t is a disturbance vector. To test whether stock returns
Granger cause bond returns they estimate the following
bivariate VAR model using ordinary least squares (OLS):

RBt D c1 C
jX

iD1

aiRBt�iC

jX

iD1

biRSt�i C �1;t ;

where c is a constant, as and bs are coefficients, vt is the
disturbance vector, and j is the lag length. The null hy-
pothesis is that stock returns do not Granger cause bond
returns, or that H0 D

�
bi
�
D 0; for all i. Tests of whether

bond returns Granger cause stock returns are conducted
in a similar way. F-tests indicate that lagged stock returns
are not significant in explaining bond returns. Thus, stocks
do not lead bonds in reflecting firm-specific information.

The Granger causality test results also indicate that lagged
bond returns are not significant in explaining stock re-
turns.

Hotchkiss and Ronen’s [31] interpretation of the
Granger causality test results is that the contemporane-
ous correlations between stock returns and bond returns
are best described as a joint reactions to common factors.
This motivates an additional investigation of the compar-
ative reaction of stocks and bonds to firm-specific infor-
mation. To conduct this investigation, they examine how
quickly firm-specific information contained in earnings
announcements are incorporated into bond prices relative
to stock prices. First, they compare reported earnings to
the median of analysts’ earnings forecasts and calculate the
log forecast error:

FEi D ln
�
Ai
ı
Fi

;

where FEi is the log forecast error for firm i, Ai is the an-
nounced earnings per share, and Fi is the forecast earnings
per share. Next, they run the following regressions to ex-
amine whether earnings information is reflected in bond
returns or stock returns:

RB[�1;t] D ˛0 C ˛1  FEC ˛2  RM[�1;t] C "

RS[�1;t] D ˛0 C ˛1  FEC ˛2  RM[�1;t] C " ;

where RB and RS are the bond and stock returns, respec-
tively, for the period starting at day (hour) �1 prior to the
announcement and ending at dayC7 (hourC14) after the
announcement, and RM is the market (S&P 500 Index) re-
turn. Both the daily and hourly regression results indicate
that all information is quickly impounded into both bond
prices and stock prices.

Finally, Hotchkiss and Ronen [31] compare the mar-
ket quality for the high-yield FIPS bonds to the underly-
ing stocks by examining whether price errors of different
magnitudes are associated with the different markets. The
estimate the following market quality measure:

MQi D 1 � 2 
�
�2si
ı
�2Ri

;

where �2si is the variance of the pricing error described in
Hasbrouck [27] and �2Ri is the variance of the return. The
intuitive interpretation of this measure is the proportion
of the total return variance that is due to fundamental vari-
ance. In general, they find that the market quality measure
for bonds is no worse than for the underlying stocks.

Municipal BondMarket Research

With the MSRB’s introduction of central reporting and
price transparency to the municipal bond market, mi-
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crostructure researchers were able to make use of a com-
prehensive source quality transaction-level municipal
bond data for the first time. This new data provided re-
searchers the opportunity to develop new methods, ex-
amine existing microstructure issues in greater detail, and
identify new avenues of research.

Two prominent municipal bond studies, Harris and
Piwowar [26] and Green, Hollifield, and Schurhoff [22],
develop and use very differentmethods to examine various
economic aspects of trading in the municipal bond mar-
ket. These two studies provide independent sets of similar
and robust results that support two important conclusions
related to retail investors. The first is that municipal bonds
are expensive for retail investors to trade. Harris and Pi-
wowar [26] and Green, Hollifield, and Schurhoff [22] both
find that, unlike in equitymarkets,municipal bond trading
costs decrease with trade size.

The second is that “complexity” is costly for retail in-
vestors. Harris and Piwowar [26] find that “instrument
complexity” makes municipal bonds more expensive to
trade. Instrument complexity is measured in terms of at-
tached features, such as calls, puts, sinking funds, credit
enhancement, nonstandard interest payment frequencies,
and nonstandard interest accrual methods. Green, Holli-
field, and Schurhoff [22] find that “deal complexity”
also increases trading costs. Bond dealers charge higher
markups on more difficult trades.

Harris and Piwowar (2006)

Harris and Piwowar [26] estimate municipal bond trad-
ing costs using an econometric model. They denote the
unobserved “true value” of the bond at the time t asVt
and assume that the price of a trade, Pt, is equal to Vt
plus or minus a price concession that depends on whether
the trade is buyer-initiated or seller-initiated. The absolute
customer transaction cost, c(St), is estimated as the effec-
tive half-spread, measured as a percentage of the price.

IDt is an indicator variable that takes a value of 1 if the
trade was an interdealer trade or 0 if the trade was a cus-
tomer trade. Qt is an indicator variable that takes a value
of 1 if the customer was a buyer, �1 if the customer was
a seller, or 0 if it was an interdealer trade. This results in:

Pt D Vt C QtPt c(St)C IDt Ptıt

D Vt

�
1C

QtPt c(St)C IDt Ptıt
Vt

�
:

The continuously compounded bond price and “true
value” returns between trades t and s, rPts and rVts respec-
tively, are found by taking logs of both sides, making two

small approximations, and subtracting the same expres-
sion for trade s:

rPts D rVts C Qtc(St) � Qs c (Ss)C IDt ıt � IDs ıs :

The “true value” return rVts is represented with a fac-
tor model by decomposing it into the linear sum of a time
drift, a short-term municipal bond factor return, a long-
term municipal bond factor return, and a bond-specific
valuation factor, "ts:

rVts D Daysts
�
5% � CouponRate



C ˇAvgSLAvgCts ˇDifSLDif
C
ts "ts ;

where Daysts counts the number of calendar days be-
tween trades t and s, CouponRate is the bond coupon rate.
SLAvgts and SLDifts are the average and difference, respec-
tively, of continuously compounded short- and long-du-
ration factor returns between trades t and s. The first term
models the continuously compounded bond price return
that traders expect when interest rates are constant and
the bond’s coupon interest rate differs from a notional
five percent bond, the median coupon rate in their sam-
ple. The two index returns model municipal bond value
changes due to changes in interest rates and tax-exempt
yield spreads. Harris and Piwowar [26] use repeat sales
methods to estimate these indices. They assume that the
bond-specific valuation factor "ts has mean zero and vari-
ance given by

�2"ts D NSessions
ts �2Sessions

where NSessions
ts is the total number of full and partial trad-

ing sessions between trades t and s.
To model customer transaction costs, Harris and Pi-

wowar [26] consider several alternative functional forms
that are flexible enough to model very high average trad-
ing costs for small trade sizes and very low average trading
costs for large trade sizes. Harris and Piwowar [26] choose
following parsimonious expression:

c(St) D c0 C c1
1
St
C c2 log St C �t ;

where the first three terms specify the cost function that
represents average trade costs and �t represents the unex-
plained variation in the observed customer trading costs.
The constant term allows total transaction costs to grow
in proportion to size. The second term captures fixed costs
per trade and the third term allows the costs per bond to
vary by size.
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The Harris and Piwowar [26] time-series estimation
model is obtained by combining the last four equations:

rPts � Daysts
�
5% � CouponRate


D c0 (Qt � Qs )

C c1
�
Qt

1
St
� Qs

1
Ss

�
C c2

�
Qt log St � Qs log Ss



C ˇSLAvgSLAvgCts ˇSLDifSLDif
C
ts �ts ;

where the expression for the regression term, �ts, is given
by:

�ts D "ts C Qt�t � Qs�s C IDt ıt � IDs ıs :

The mean of the error term is zero and its variance is:

�2ts D NSessions
ts �2Sessions C Dts�

2
ı C (2 � Dts) �2� ;

where Dts represents the number (0, 1, or 2) of interdealer
trades involved in trades t and s. For each bond, Harris and
Piwowar [26] separately estimate their time-series transac-
tion cost estimation model using an iterated least squares
method, with the weight given by the inverse of the esti-
mates of �2ts. For a wide range of trade sizes, they calcu-
late weighted cross-sectional mean cost estimates across
all municipal bonds. Each bond’s weight is given by the
inverse of its estimation error variance at that trade size.

Harris and Piwowar [26] find that retail-size municipal
bond trades are substantially more expensive than similar-
sized equity trades. Average effective spreads in municipal
bonds are almost 2% for representative retail-size trades
($20,000). They point out that this is the equivalent of al-
most 4 months of total annual return for a bond with a 6%
yield-to-maturity.

Harris and Piwowar [26] also find that retail-size mu-
nicipal bond trades are more expensive than institutional-
size trades. Unlike in equities, municipal bond transaction
costs decrease with trade size. Harris and Piwowar [26]
also find that, unlike in equities, municipal bond trans-
action costs do not depend on trade frequency. They at-
tribute these results to the lack of price transparency in the
municipal bond market during their sample period.

To investigate how estimated transaction costs vary
across municipal bonds, Harris and Piwowar [26] conduct
cross-sectional weighted least squares regressions for var-
ious trade sizes. The dependent variable is the estimated
average transaction costs in a given municipal bond at
a given trade size. The weight for each bond observation
is given by the inverse of the estimation error variance of
its cost estimate. The independent variables include mea-
sures of credit quality, age, and instrument complexity.

Harris and Piwowar [26] show that bond trading costs
increase with credit risk, time to maturity, and time since

issuance. They also find that trading costs increase with
instrument complexity, and that retail investors are more
adversely affected by instrument complexity than institu-
tional investors. They conjecture that investors and issuers
might benefit if simpler bonds were issued.

Green, Hollifield, and Schurhoff (2007a)

Green, Hollifield, and Schurhoff [22] focus on trades that
can reasonably be assumed to represent two sides of a sin-
gle intermediated transaction, and employ a structural
model to decompose the cost faced by a customer into
a portion that represents the cost the dealer incurs and
a portion attributable to the dealer’s market power. They
formulate and estimate a simple structural bargaining
model that allows them to estimatemeasures of dealer bar-
gaining power and relate it to characteristics of the trades.

Green, Hollifield, and Schurhoff [22] use a theoreti-
cal model to seek evidence that the high costs of trad-
ing are due to dealer market power and to find out how
the exercise of market power depends on the characteris-
tics of the trade. They develop a simple theoretical model
of the interaction between dealers and their customers in
which the expected profits to the dealer reflect both the
dealer’s costs and his bargaining power relative to the cus-
tomer. Both of these, in turn, can be parametrized as func-
tions of observable variables, and estimated as a Stochas-
tic Frontier Model. The dealer’s cost is the stochastic fron-
tier, which represents the expected mark-up the customer
would obtain if dealers were always driven by their reser-
vation values, as they would be if the provision of dealer
services were perfectly competitive. The observed mark-
up, expressed in excess returns over a municipal bond in-
dex, can be written as:

pi � p�i
p�i

� Rindex;i

D

�
c (Xi ; �)

p�i
� E

�
Rindex;i

ˇ̌
Xi
�
C "i C �i ;

where pi is the dealer’s selling price, p�i is the dealer’s pur-
chase price, and Rindex;i is the municipal bond market in-
dex return.

The first term on the right-hand side of the equation
represents the dealer’s costs in excess of the expected mu-
nicipal bond index return, whereXi is a set of conditioning
variables observable to the buyer and seller and � is a set of
parameters to be estimated. They refer to this term as the
cost of intermediation.

The second and third terms capture how the observed
markup can differ from the dealer’s cost of intermediation.
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The second term, "i, is a symmetric, normally-distributed
error term:

"i �
ei
p�i
� �i ;

reflecting a zero-mean forecast error:

�i D Rindex;i � E
�
Rindex;i

ˇ̌
Xi

:

The third term, � i, is a one-sided, exponentially-dis-
tributed error term:

� �
�i
�
E
�
pi j Xi


� c (Xi ; �) � vi

�

p�i
;

reflecting the distribution of sellers’ reservation values (vi)
and dealer bargaining power.

Green, Hollifield, and Schurhoff [22] estimate re-
stricted and unrestricted versions of the following regres-
sion model via maximum likelihood:

pi � p�i
p�i

� Rindex;i D �0 C

LX

lD1

�l Xi l C "i C �i ;

with l D 1; : : :; L conditioning variables. The resid-
ual "i is normally distributed with standard deviation
b0…K

kD1e
bik Zk , with Zik for k D 1; : : :;K conditioning

variables. The residual � i is exponentially distributed with
mean and standard deviation a0…K

kD1e
aik Zk . In the “mar-

ket power” version of their model, all of the parameters
are unrestricted. In the restricted (“no market power”)
model, all of the parameters on the one-sided error are
constrained to zero: a0 D a1 D : : : D ak D 0.

The data used by Green, Hollifield, and Schurhoff [22]
includes both customer trades and interdealer trades. But,
because their data does not identify the specific broker-
dealer associated with a given trade, they must infer their
trades and profits indirectly by studying pairs of trades that
appear to be direct exchanges of bonds through a single
dealer. They assume that a customer buy transaction of
a given size of a given bond that occurs within a very short
time of customer sell transaction of the same size in the
same bond are most likely related. The reasonableness of
this assumption is confirmed by Harris and Piwowar [26],
whose data contains dealer identities.

Green, Hollifield, and Schurhoff [22] find that munic-
ipal bond dealers earn lower average markups on larger
trades, even though larger trades lead the dealers to bear
more risk of losses. Their results suggest that municipal
bond dealers exercise substantial market power, particu-
larly in retail-sized transactions. Their measures of market
power decrease in trade size and increase in variables that
indicate the complexity of the trade for the dealer.

Transaction Reporting
and Compliance Engine (TRACE) Research

TRACE not only brought unprecedented transparency to
corporate bond market investors, it also provided an un-
precedented opportunity for market microstructure re-
searchers to examine new issues. Chief among them was
the “natural experiment” of adding price transparency to
an opaque market. Three prominent studies (collectively,
“the TRACE studies”) that examined the introduction of
price transparency to the corporate bond market were Ed-
wards et al. [17], Bessembinder, Maxwell, and Venkatara-
man [7], and Goldstein, Hotchkiss, and Sirri [20].

These TRACE studies were very complementary in
terms of their contributions to the market microstructure
literature. To understand the full impact of this collective
research, it is important to remember that they were writ-
ten at a time when many market participants and some
regulators were concerned that public dissemination of
bond pricing data might have an adverse impact on liq-
uidity. Using different experimental designs and empiri-
cal methods, the TRACE studies produced similar results,
conclusions, and implications for regulatory policymak-
ers. Overall, the results in all three TRACE studies show
that public investors benefit significantly from the intro-
duction of price transparency.

Edwards et al. [17] estimate transaction costs for all
corporate bonds that trade at least nine times between
January 2003 and January 2005. Their TRACE data set
includes all reported OTC trades in corporate bonds,
whether transparent or not. Consistent with the results
of Harris and Piwowar [26] for the municipal bond mar-
ket, Edwards et al. [17] find that corporate bonds are ex-
pensive for retail investors to trade and that corporate
bond transaction costs decrease significantly with trade
size. They find that effective spreads in corporate bonds
average 1.24% of the price of representative retail-sized
trades ($20,000). They point out that this is the equiva-
lent of over 2 months of the total annual return for a bond
with a 6% yield to maturity, or 52 cents per share for a $40
stock. In cross-sectional tests, Edwards et al. [17] find that
transaction costs are lower for highly rated bonds, recently
issued bonds, and bonds close to maturity.

Edwards et al. [17] find that costs are lower for bonds
with transparent trade prices, and they drop when the
TRACE system starts to publicly disseminate their prices.
Their results suggest that introduction of price trans-
parency results in a drop in customer trading costs of at
least 5 basis points (bps). In 2003, public investors traded
approximately $2 trillion in bonds for which prices were
not disseminated. If the prices for these bonds had been
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TRACE-transparent, a quick back-of the-envelope calcu-
lation shows investors could have saved a minimum of $1
billion that year. Edwards et al. [17] point out that the $1
billion figure represents a lower bound for two reasons.
First, because many unsophisticated investors were un-
aware that prices became available, and because learning
how to use the price data takes, time, the long-run ben-
efits are undoubtedly much greater. Second, they do not
capture the initial reduction in trading costs at the initia-
tion of TRACE. Bessembinder, Maxwell, and Venkatara-
man [7] find that sophisticated institutional investors ben-
efited from an immediate reduction in trading costs of
about $1 billion.

Bessembinder, Maxwell, and Venkataraman [7] esti-
mate their trade execution costs for a sample of institu-
tional (insurance company) trades in corporate bonds be-
fore and after the initiation of public transaction report-
ing for some bonds through the TRACE system in July
2002. They find that the average reduction in one-way
trading costs or bonds eligible for TRACE transaction re-
porting is about 5 to 8 bps. This translates to a reduction
in trade execution costs of about 50%. Moreover, they find
a 20% reduction for bonds not eligible for TRACE report-
ing. Bessembinder, Maxwell, and Venkataraman [7] inter-
pret their results as suggesting that better pricing informa-
tion regarding some bonds also improves valuation and
execution cost monitoring for related bonds. They find no
evidence that market quality deteriorated in other dimen-
sions.

Bessembinder, Maxwell, and Venkataraman [7] also
find that larger trading cost reductions for less liquid and
lower-rated bonds, and for larger trades. They estimate
that their results equate to annual trading cost reduc-
tions of roughly $1 billion per year for the entire corpo-
rate bond market, reinforcing that market design can have
first-order effects, even for relatively sophisticated institu-
tional customers.

Goldstein, Hotchkiss, and Sirri [20] design and con-
struct a controlled experiment to examine the impact of
introducing price transparency on liquidity for BBB-rated
corporate bonds. They selected the 120 BBB-rated bonds
for which the NASD began disseminating trade data on
April 14, 2003. They simultaneously selected a control
sample of non-disseminated bonds.

Goldstein, Hotchkiss, and Sirri [20] find that DRT
spreads decrease for most BBB-rated corporate bonds
whose prices become transparent, and that this effect is
strongest for intermediate trade sizes. The only caveat to
this result is that they do not find any significant trans-
parency effect for the most thinly-traded bonds. Overall,
Goldstein, Hotchkiss, and Sirri [20] conclude that their

finds indicate that the introduction of post-trade price
transparency has a neutral or positive effect on market liq-
uidity.

The similar results and conclusions in the three com-
plementary TRACE studies collectively generate impor-
tant policy implications. Foremost, policymakers should
take comfort in the fact that there are few, if any, in-
stances in the combined results that show any harm to
investors from introducing price transparency to securi-
ties markets. To the contrary, the results show that both
retail and institutional investors benefit from price trans-
parency. The empirical results from the TRACE studies
support the well-founded economic theoretical arguments
that transparency should lower transaction costs, espe-
cially for smaller trades.

Speeches and testimony by US bond market regula-
tors, such as those listed in the bibliography, show that
these studies critically informed the debate over adding
price transparency to the US bond markets. Moreover,
they continue to provide important lessons for policy
makers in bond markets outside of the United States. The
bibliography also contains a partial listing of international
reports, discussion papers, and conference proceedings
that prominently cite the TRACE studies.

Edwards, Harris, and Piwowar (2007)

Edwards et al. [17] apply the Harris and Piwowar [26]
econometric approach to corporate bonds. They also ex-
tend the approach by allowing liquidity to be time varying.
This extension allows them to examine how the introduc-
tion of price transparency affects corporate bond transac-
tion costs.

Theymodel the unobserved value return rVts by decom-
posing it into the linear sum of a time drift, an average
bond index return, differences between index returns for
long and short term bonds and for high and low quality
bonds, and a bond-specific valuation factor, "ts.

rVts D Daysts
�
DriftRate


C ˇ1AveIndexRetts

C ˇ2DurationDifts C ˇ3CreditDifts C "ts ;

where Daysts counts the number of calendar days between
trades t and s,DriftRate is the bond coupon rate subtracted
from five percent, AveIndexRetts is the index return for
the average bond between trades t and s and DurationDifts
and CreditDifts are the corresponding differences between
index returns for long and short term bonds and high
and low credit risk bonds. The first term accounts for the
continuously compounded bond price return that traders
expect when interest rates are constant and the bond’s
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coupon interest rate differs from five percent. The three
factor returns account for bond value changes due to shifts
in interest rates and credit spreads. Edwards et al. [17] es-
timate the bond indices using repeat sale regression meth-
ods with terms that account for bond transaction costs. Fi-
nally, the bond-specific valuation factor "ts has mean zero
and variance given by

�2"ts D NSessions
ts �2Sessions ;

where NSessions
ts is the number of trading sessions and frac-

tions of trading sessions between trades t and s.
Edwards et al. [17] model customer transaction costs

using the following additive expression:

c(St) D c0 C c1
1
St
C c2 log St C c3St C c4S2t C �t ;

where �t represents variation in the actual customer trans-
action cost that is unexplained by the average transaction
cost function. This variation may be random or due to an
inability of the average transaction cost function to repre-
sent average trade costs for all trade sizes. They assume �t
has zero mean and variance given by �2� .

The first three terms of the cost function are the same
as in Harris and Piwowar [26], where the constant term al-
lows total transaction costs to grow in proportion to size,
the second term characterizes any fixed costs per trade,
and the third term allows for costs per bond to vary by
trade size. The two additional terms allow more flexibility
in the costs to vary by size. Because corporate bonds trade
more frequently than municipal bonds, Edwards et al. [17]
did not need to be as concerned about degrees of freedom
as Harris and Piwowar [26].

Combining the last three equations produces the Ed-
wards et al. [17] version of the Harris and Piwowar [26]
transaction cost estimation model:

rPts � Daysts
�
DriftRate


D c0 (Qt � Qs)

C c1
�
Qt

1
St
� Qs

1
Ss

�
C c2

�
Qt log St � Qs log Ss



C c3 (QtSt � QsSs)C c4
�
QtS2t � QsS2s



Cˇ1AveIndexRettsC ˇ2DurationDiftsCˇ3CreditDifts
C �ts ;

where the left hand side is simply the continuously com-
pounded bond return expressed as the equivalent rate on
a notional five percent coupon bond. Edwards et al. [17]
estimate their time-series model in the same way as Harris
and Piwowar [26].

Edwards et al. [17] extend Harris and Piwowar [26]
by introducing a pooled time-series regression model that

they use to estimate average transaction costs for each day
for a class of bonds. With this model, they are able to es-
timate the daily average transaction costs for bonds that
became transparent in 2003, and compare these estimates
to those for comparable bonds that were either TRACE-
transparent throughout 2003 or never TRACE-transpar-
ent in 2003.

The pooled time-series regression model that Edwards
et al. [17] use to estimate daily transaction costs differs in
two respects from the time-series regression model that
they use to estimate average transaction costs for a given
bond. First, they specify separate average transaction cost
functions, cT (St), for each day T in the sample. Second, to
minimize the total number of parameters to be estimated,
they use the three-parameter average cost function:

cT (St) D c0T C c1T
1
St
C c2T log St C �t :

For a given bond, the change in value between bond trades
is modeled as:

logVt � logVs D fs rS C
T�1X

JDSC1

rJ C ftrT C est ;

where S is the day on which trade s took place and T is the
day onwhich a subsequent trade t took place, rJ is the com-
mon index return (to be estimated) for day J and fs and ft ,
respectively, are the fractions of the S and T trading days
overlapped by the period spanned by transactions s and t.
This portion of the specification is the same as appears
in many paired trade regression index estimation proce-
dures. With these changes, the regression model is

rPts � Daysts
�
5% � CouponRate


D c0TQt � c0SQs

C c1TQt
1
St
� c1SQs

1
Ss
C c2TQt log St � c2SQs log Ss

C fs rS C
T�1X

JDSC1

rJ C ftrT C �ts :

They use iterated weighted least squares methods,
where the weights are equal to the predicted values of
the regression of the squared residuals on the indepen-
dent variables appearing in the residual variation ex-
pression. Edwards et al. [17] estimate the model using
a three-month wide sliding window that moves forward
one month at a time. The time series of coefficient esti-
mates are assembled from the center months of each of
the sliding regressions. They compute transaction costs for
various transaction sizes by evaluating the estimated trans-
action cost functions at the given transaction sizes. Using
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the estimated variance-covariance matrix of the estima-
tors, they also compute daily standard errors of the various
daily transaction cost estimates.

Bessembinder, Maxwell, and Venkataraman (2006)

Bessembinder, Maxwell, and Venkataraman [7] develop
and estimate an indicator variable regression model:


P D aC wXt C �SQ�t C ˛S
Q C !t ;

where
P is the change in the price of the bond from time
t � 1 to time t, a is the regression intercept, w is the frac-
tion of public information that is observable in the data
with realizations Xt, �S is the informational component
of the spread, ˛S is the non-informational component of
the spread (where ˛ D (1 � � )), Q�t is the market maker’s
estimate of bond value due to surprises in order flow,
Q
is the change in indicator variable Q (which takes a value
of 1 if the trade is a customer buy and�1 if it is a customer
sell) from time t � 1 to time t, and !t is the regression er-
ror term.

Bessembinder, Maxwell, and Venkataraman [7] de-
velop this regression model in the following way. Et(V )
is the market-maker’s estimate of the bond’s unobserved
true value (V) at time t conditional on whether the ob-
served trade is a customer buy or a customer sell. Transac-
tion prices are given by:

Pt D Et (V)C ˛SQt :

The market maker’s estimate of bond value at time t,
Et(V ), is her estimate from the prior period, Et�1(V), up-
dated to reflect surprises in order flow, Qt � Et�1 (Qt),
and public information revealed since the prior period, ��
Substitution yields:

Et (V ) D Et�1 (V)C �SQ�t C �t ;

where Q�t D Qt � Et�1 (Qt). To allow for the possibil-
ity that bond market order flow is positively autocor-
related, Bessembinder, Maxwell, and Venkataraman [7]
assume that it follows a simple AR1 process, so that
Et�1 (Qt) D � (Qt�1). The change in the price of the bond
from time t � 1 to time t is:

Pt � Pt�1 D �SQ�t C ˛SQt � ˛SQt�1 C �t :

Substituting 
P for Pt – Pt�1 and 
Q for Qt – Qt�1, this
expression can be rewritten as:


P D �SQ�t C ˛S
Q C �t :

To incorporate observable public information that af-
fects bond value, they assume that a fraction w of public

information becomes observable in the data with realiza-
tions Xt , while the remaining portion (1 � w) is due to un-
observable innovations Ut that represent statistical noise.
Substitution yields their regression model:


P D wXt C �SQ�t C ˛S
Q C !t ;

where ! D (1 � w)Ut . Bessembinder, Maxwell, and
Venkataraman [7] show that their model is equivalent to
the Madhavan et al. [39] model. Moreover, in the spe-
cial case of no autocorrelation in order flow (� D 0), their
model is equivalent to Huang and Stoll [33], Schultz [42]
and Warga [44].

Goldstein, Hotchkiss, and Sirri (2007)

Goldstein, Hotchkiss, and Sirri [20] use two different
methods to estimate transaction costs for a sample of
BBB-rated bonds. Their first method involves identify-
ing “dealer round-trip” (DRT) transaction chains. These
transaction chains involve a dealer purchasing a bond
from a customer and then selling that same bond to an-
other customer within a specified period of time. DRT
spreads are calculated as the difference between the cus-
tomer buy price at the end of the transaction chain and
the customer sell price at the beginning of the chain. Their
DRT method is similar to the methods used in the mu-
nicipal bond studies of Green et al. [22] and Biais and
Green [9], except their data contains individual dealer
identifiers. Goldstein, Hotchkiss, and Sirri [20] estimate
DRT spreads for transaction chains that occur with one-
day, five-day, and unlimited time intervals. They estimate
DRT spreads for various trade size groups.

Their second method is a regression method similar to
Warga [44] and Schultz [42]. For each trade size group,
Goldstein, Hotchkiss, and Sirri [20] estimate spreads by
regressing the difference between the transaction price for
a customer (T) and an estimated bid price (B) on a dummy
variable that equals one for customer buys and zero for
customer sells:

[T � B]i D ˛0 C ˛1D
Buy
i C "i ;

where estimated bid prices are obtained from Reuters
dealer bid price estimates from the end of the day prior
to the transaction. Reuters estimates are based on daily
quotes obtained directly from individual dealers.

Goldstein, Hotchkiss, and Sirri [20] estimate a second
regression to consider the effect of dissemination while
controlling for other bond characteristics impacting the
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spread:

[T � B]i D ˛0 C ˛1D
Buy
i C ˛2DDisseminatedBond

i

C ˛3DPost-disseminationPeriod
i

C ˛4DDisseminationBond�Post-disseminationPeriod
i

C ˛5X5 C � � � C ˛10X10 C "i ;

where additional dummies are included for disseminated
bonds, transactions that occur in the post-dissemination
period, and the interaction of these two dummies for
transaction in disseminated bonds that occur in the post-
dissemination period. As in Schultz [42] the additional
dummies are expressed a C1 for buys and �1 for sells.
Variables X5; : : :; X10 are six bond characteristics related
to spreads: trade size, time-to-maturity, age, issue amount,
average daily volume over the prior 30 days, and days since
last trade.

The Links Between BondMarketMicrostructure Re-
search and Other Finance and Economics Research

The discussion of bond market research has thus far been
presented solely within the framework of the market mi-
crostructure literature. However, some of the most inter-
esting bond market research is connected to other areas
of finance and economics. The instrument complexity re-
sults of Harris and Piwowar [26], for example, provide
evidence to support Carlin’s [11] formal model of strate-
gic price complexity in security design for retail markets.
Additionally, Chen, Lesmond, and Wei [13] provide an
example of how bond market microstructure research is
linked to asset pricing models in finance. Green, Holli-
field, and Schurhoff [23] develop a theoretical model that
is analogous to the costly consumer search models in the
broader economics literature.

Chen, Lesmond, andWei (2007)

Beginning with Amihud and Mendelson [3], market mi-
crostructure research has consistently shown that a liquid-
ity premium exists in equity markets. Recently, bond mar-
ket microstructure researchers have begun investigating
whether a liquidity premium also exists in bond markets.
One such paper is Chen, Lesmond, and Wei [13]. Their
investigation of the link between bond liquidity and cor-
porate yield spreads provides important implications for
the default risk literature.

Chen, Lesmond, and Wei [13] investigate whether liq-
uidity is priced in corporate yield spreads. They use several
approaches, including a regression approach that is an ex-
tension to the Lesmond, Ogden, and Trzcinka [36] (LOT)

approach developed for equities. The LOT approach as-
sumes that a zero return day (or a non-trading day) is
observed when the true price changes by less than the
transaction costs. Because marginal informed investors
will only trade on information if the trade yields expected
profits net of transaction costs, an individual bond’s trad-
ing costs represent a threshold that must be exceeded be-
fore its return will reflect new information. The premise of
this approach is that if the value of the information is in-
sufficient to exceed the costs of trading, then the marginal
investor will either reduce trading or not trade, causing
a zero return.

Chen, Lesmond, and Wei [13] extend the LOT ap-
proach to corporate bonds by applying a two-factor re-
turn-generating model to estimate bond trading costs:

R�j;t D ˇ j1Duration�j;t
R f t

C ˇ j2Duration�j;t
S&P Indext C " j;t ;

where R�j;t is the unobserved “true” return for bond j on
day t that investors would bid given zero trading costs. The
daily change in the 10-year risk-free interest rate, 
R f t ,
is the factor that is more important for investment grade
bonds, while the second factor,
S&P Indext , the daily re-
turn on the Standard & Poor’s 500 equity index, is more
important for high-yield bonds. Both factors are scaled by
Durationj;t , the bond’s duration.

Chen, Lesmond, and Wei [13] then apply the Ami-
hud and Mendelson [3] liquidity premium to bonds. In
Amihud and Mendelson [3], observed asset prices differ
from true values because of a liquidity premium that com-
pensates investors for liquidity costs. Chen, Lesmond, and
Wei [13] state the liquidity effects on bond returns as:

Rj;t D R�j;t � ˛i; j ;

where Rj;t is the measured return, ˛2; j is the effective buy-
side cost, and ˛1; j is the effective sell-side cost for bond j.
The resulting liquidity constraint is:

Rj;t D R�j;t � ˛1 j if R�j;t < ˛1 j and ˛1 j < 0
Rj;t D 0 if ˛1 j � R�j;t � ˛2 j
R j;t D R�j;t � ˛2 j if R�j;t > ˛2 j and ˛2 j > 0 :

Combining the liquidity constraint with the return
generatingmodel, Chen, Lesmond, andWei [13] us amax-
imum likelihood method outlined in LOT to estimate
transaction costs. They specify the log-likelihood function
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as:
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where˚i; j represents the cumulative distribution function
for each bond-year evaluated at:

�
˛1; j � ˇ j1Durationj;t 
R f t



� j

�

�
ˇ j2Durationj;t 
S&P Indext



� j
:

†1 (region 1) represents the negative nonzero mea-
sured returns, †2 (region 2) represents the positive
nonzero measured returns, and †0 (region 0) represents
the zero measured returns. The difference in the buy-side
and sell-side cost estimates, ˛2; j � ˛1; j , represents round-
trip trading costs.

Themodel’s implicit assumption that informationmo-
tivates bond trades and that information is efficiently im-
pounded into bond prices is supported by the results of
Hotchkiss and Ronen [31]. The error term captures noise
trading and trades due to unanticipated public informa-
tion.

In addition to LOT estimates, Chen, Lesmond, and
Wei [13] use bid-ask spreads and zero-returns as liquidity
cost measures. The bid-ask spreads the use are bond-year
proportional bid-ask spreads, calculated as the average
of quarterly proportional spreads. Quarterly proportional
spreads are calculated from quarterly bid-ask spreads ob-
tained from Bloomberg consensus quotes among market
participants, divided by the average bid and ask price.
Zero-returns are simply the percentage of days with re-
turns equal to zero.

They find that liquidity costs are related to credit rat-
ing. Liquidity costs are much higher for high-yield bonds
than for investment grade bonds. They also find that liq-
uidity costs are related to maturity. Liquidity costs for

long-maturity bonds are higher than for short-maturity
bonds.

They also find that yield spreads generally increase
with maturity for investment grade bonds. But, they find
that yield spreads generally decrease with maturity for
high-yield bonds. They point out the endogeneity issue
stemming from the Helwege and Turner [28] finding that
relatively safer firms within the same high-yield credit rat-
ing category tend to issue longer-term bonds. This endo-
geneity issue causes the average yield spread to decline
with maturity for high-yield bonds.

To investigate whether liquidity is priced in corpo-
rate yield spreads, Chen, Lesmond, and Wei [13] first run
the following regression specification for investment grade
bonds and high-yield bonds separately:

Yield Spreadi t D �0 C �1Liquidityi t C �2Maturityi t
C �3Amount Outstandingi t C �4Couponi t
C �5Treasury Ratei t C �610Yr � 2Yr Treasury Ratei t
C �7EuroDollari t C �8Volatilityi t C �9Bond Ratingi t
C �10PreTax Coverage Dummyit
C �11Operating Income/Salesi t C �12Debt/Assetsi t

C �13Debt/Capitalizationi t C "i t ;

where the subscript it refers to bond i in year t. Liquid-
ity refers to the three liquidity cost measures – bid-ask
spread, zero-returns, or the LOT estimate. Additional vari-
ables control for bond-specific, firm-specific, and macroe-
conomic factors. Maturity is the number of years until
the bond matures relative to the year being analyzed, and
Amount Outstanding is natural logarithm of the dollar
amount outstanding, Coupon is the bond coupon rate.
Treasury Rate is the 1-year Treasury Note rate, 10Yr-2Yr
Treasury Rate is the difference between the 10-year and
2-year Treasury rates, and Eurodollar is the 30-day Eu-
rodollar rate minus the 3-month T-Bill rate. Volatility is
the equity volatility for each issuer and Bond Rating is
a credit rating scale that ranges from 1 (AAA rating) to
10 (BBB- rating) for investment grade bonds and from
1(BB+ rating) to 12 (D rating) for high-yield bonds. Pre-
Tax Coverage Dummy represents four dummy variables
corresponding to groupings of pre-tax income, Operat-
ing Income/Sales,Debt/Assets, andDebt/Capitalization are
each firm’s respective accounting ratios.

They find that all three liquidity measures are posi-
tively related to the yield spread in both the investment
grade and high-yield samples. The liquidity coefficients are
statistically significant at the 1% level in every scenario.
This provides strong evidence that liquidity is priced in
corporate yield spreads. This finding is robust to control-



Corporate and Municipal Bond Market Microstructure in the U.S. C 1583

ling for issuer influences with issuer fixed-effects regres-
sions. The only caveat is that they achieve slightly weaker
results for the zero-return liquidity cost measure than for
bid-ask spreads and LOT estimates. This finding is also
robust to controlling for potential endogeneity problems
arising from the contemporaneous measurement of the
yield spread, liquidity costs, and credit rating. They per-
form this robustness check by employing a simultaneous
equations model using three equations that correspond to
each of the potentially endogenous variables:

Yield Spreadi t D �0 C �1Liquidityi t C �2Maturityi t
C �3Couponi t C �4Treasury Ratei t
C �510Yr � 2Yr Treasury Ratei t C �6EuroDollari t
C �7Volatilityi t C �8Bond Ratingi t
C �9PreTax Coverage Dummyit
C �10Operating Income/Salesi t C �11Debt/Assetsi t

C �12Debt/Capitalizationi t C "i t ;

Liquidityi t D �0 C �1Maturityi t C �2Agei t
C �3Amount Outstandingi t C �4Bond Ratingi t
C �5Bond Volatilityi t C �6Yield Spreadi t C "i t ;

Credit Ratingi t D �0 C �1Treasury Ratei t
C �210Yr � 2Yr Treasury Ratei t
C �3PreTax Coverage Dummyit
C �4Operating Income/Salesi t
C �5Debt/Assetsi t C �6Debt/Capitalizationi t

C �7Yield Spradi t C " :

The model is estimated using twostage least squares.
The simultaneous equation model estimation results show
that the potential endogeneity does not affect the relation
between liquidity and yield spreads for either the invest-
ment grade or the high-yield bonds.

Thus, Chen, Lesmond, and Wei [13] find extremely
consistent and robust evidence that liquidity is a key deter-
minant in corporate yield spreads. This finding provides
at least a partial explanation for the findings of Collin-
Dufresne, Goldstein, and Martin [15] and others who
show that default risk does not completely explain corpo-
rate yield spreads.

Green, Hollifield, and Schurhoff (2007b)

Green, Hollifield, and Schurhoff [23] examine secondary
market trading in newly issued municipal bonds for the

first 60 trading days of their lives. They begin by descrip-
tively documenting the price behavior of newly issuedmu-
nicipal bonds. They show that municipal bonds are under-
priced when issued. But, unlike equities, the average price
rises slowly over a period of several days. Green, Holli-
field, and Schurhoff [23] also find that the observed price
patterns are complex. High levels of price dispersion are
observed for small trade sizes in the aftermarket for new
municipal bond issues.While some small traders purchase
bonds on attractive terms, others do not. In contrast, there
is very little price dispersion for large trade sizes. Virtually
all of the large traders purchase bonds on attractive terms.

They argue that the price level and dispersion pat-
terns are the result of bond dealers discriminating be-
tween informed and uninformed customers. Accordingly,
Green, Hollifield, and Schurhoff [23] develop and esti-
mate a mixed distribution model for the markups that
uninformed and informed investors pay when they pur-
chase newly issued bonds. Their model incorporates in-
vestor search costs, i. e., the costs in terms of time and ef-
fort needed for investors to become informed about new
bond issues.

The mixed distribution model of Green, Hollifield,
and Schurhoff [23] is analogous to economic models of
costly consumer search, such as the gametheoretic model
of Shilony [43] that focuses on advertising and price com-
petition among retail stores in homogeneous productmar-
kets. Shilony [43] assumes that all stores are required to
advertise, but the advertising is segmented (e. g., signs are
posted on store windows). Consumers have a preference
for the particular store that that offers them free access to
the advertising (e. g., the store right outside their house or
the one that they regularly visit) and they will pay more for
a product at this store even if it does not offer the lowest
price.

The institutional mechanisms of the primary market
and the structure of the secondary market for munici-
pal bonds fits particularly well with the informational in-
terpretation of Shilony’s [43] model. Every investor has
free information about the price that will be charged by
his broker. Also, because all firms must disseminate their
last sale information on a real-time basis, the investor can
choose to look on www.investinginbonds.com or some
other free website to find the range of prices charged by
all brokers. But, this last sale information does not identify
which broker charged the lowest price. To find this out,
the investor must incur some cost.

Green, Hollifield, and Schurhoff [23] begin with the as-
sumption that there are both observable and unobservable
sources of heterogeneity in the costs investors face in gath-
ering and using information about prices of new munici-

http://www.investinginbonds.com
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pal issues. They assume that for investor i, the difference
between the benefit and the cost of learning about a new
issue is z�i with:

z�i D wiı C �i ;

where wi is a vector of conditioning variables, ı is a pa-
rameter vector, and � is an error term. The error term is
observed by the investor, but not by the econometrician.
Investor i becomes informed about the price of a new is-
sue if and only if z�i � 0. They do not observe z�i , but they
do observewi and the price the investor pays for the bond.

An investor who is uninformed about the reoffering
price for a new bond is willing to pay the percentage
markup yU of:

yUi D xiˇ C "Ui ;

where xi is a vector of conditioning variables,ˇ is a param-
eter vector, and "Ui is an error term. Similarly, an investor
who is informed about the underwriter’s pricing of a new
bond is willing to pay the percentage markup yI of:

yIi D xi� C "Ii ;

where xi is a vector of conditioning variables, � is a pa-
rameter vector, and "Ii is an error term. The uncertainty
about the percentage markup is expected to be lower when
the investor is informed than when the investor is unin-
formed:

�I < �U :

They use this condition to empirically identify the in-
formed versus uninformed distributions from which the
observed markups, yi, are drawn:

yi D
�

yUi if z�i < 0 ;
yIi if z�i � 0 :

Green, Hollifield, and Schurhoff [23] use iterated ex-
pectations to show that investors take the markup into ac-
count when deciding whether to become informed about
an upcoming bond issue or not:

E
�
yi jwi ; xi


D E

�
yi jInformedi ;wi ; xi



Pr (Informedi jwi )
CE

�
yi jUninformedi ;wi ; xi


Pr (Uninformedi jwi ) :

They estimate their model under the assumption that
the error terms are drawn independently and identically
from a multivariate normal distribution:
0

@
ui
"Ui
"Ii

1

A � N

0

@

0

@
0
0
0

1

A ;

2

4
1 �U�U �I�I

�U�U �2U 0
�I�I 0 �2I

3

5

1

A ;

where �U is the correlation between ui and "Ui and �I is
the correlation between ui and "Ii. Denoting the cumula-
tive standard normal distribution as ˚ and the standard
normal density as ', Green, Hollifield, and Schurhoff [23]
show that the condition that investor i becomes informed
if and only if z�i � 0 implies that:

Pr (Informedi jwi ) D Pr
�
z�i � 0 jwi



D Pr (ui � �wiı jwi )
D ˚ (wiı) ;

and

Pr (Uninformedi jwi ) D 1 � ˚ (wiı) :

By combining equations and using the distributional
assumptions of the error terms, Green, Hollifield, and
Schurhoff [23] show that

E
�
yi jInformedi ;wi ; xi


D xi� C �I�I

� (wiı)
˚ (wiı)

;

and

E
�
yi jUninformedi ;wi ; xi


D xiˇC�U�U

�� (wiı)
1 � ˚ (wiı)

:

Therefore, the expected markup is:

E
�
yi jwi ; xi


D

�
xi� C �I�I

� (wiı)
˚ (wiı)

�
˚ (wiı)

C

�
xiˇ C �U�U

�� (wiı)
1 � ˚ (wiı)

�
1 � ˚ (wiı) :

Green, Hollifield, and Schurhoff [23] estimate this
equation as a switching regression. Their results are con-
sistent with two pricing regimes for newly issued mu-
nicipal bonds. Uninformed investors pay higher average
prices than informed investors and there is very little vari-
ation in prices paid by informed investors. They also find
that the upward trend in prices after issuance is related
to the change in the mix if informed and uninformed in-
vestors. Informed investors buy soon after issuance, while
uninformed investors buy later on.

With respect to the decision about whether to become
informed about a new municipal bond issue, they find
that large buyers are more likely to become informed than
small buyers. To examine how much money is left on
the table by uninformed investors who pay large markups
to dealers, Green, Hollifield, and Schurhoff [23] classify
each transaction into either the Informed or Uninformed
regime. The classification is based on whether the expected
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benefit from becoming informed about a new bond issue
is greater than the cost of doing so:

Informedi D 1, E
�
z�i jyi ;wi ; xi


� 0;

Uninformedi D 1, E
�
z�i jyi ;wi ; xi


< 0 :

The difference in the expected markup between an in-
formed investor and an uninformed investor is:

E
�
yUi yIi jUninformedi ;wi ; xi


D xi (ˇ � �)

C (�U�U � �I�I)
�� (wiı)

1 �˚ (wiı)
:

They define the money left on the table in each transaction
with an uninformed investor as


i D

8
<

:

max
˚
E
�
yUi yIi jUninformedi ;wi ; xi


; 0
�
;

if Uninformedi D 1;
0; else :

They denote the estimates of 
i as b
i and obtain a cu-
mulative measure across all sales transactions i in a given
bond issue j, and then across all issues in a bond deal:

3Money Left on the Table D
X

Issues j

X

i2 j

b
i :

Green, Hollifield, and Schurhoff [23] find that money left
on the table by uninformed investors represents a signifi-
cant fraction of the overall expected profits to the under-
writers and dealers.
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Glossary

Bayesian game An interactive decision problem consist-
ing of a set of n players, a set of types for every player,
a probability distribution which accounts for the play-
ers’ beliefs over each others’ types, a set of actions for
every player and a von Neumann–Morgenstern utility
function defined over n-tuples of types and actions for
every player.

Nash equilibrium In an n-person strategic form game,
a strategy n-tuple from which unilateral deviations are
not profitable.

von Neumann–Morgenstern utility function A utility
function which reflects the individual’s preferences
over lotteries. Such a utility function is defined over
outcomes and can be extended to any lottery  by
taking expectation with respect to .

Pure strategy (or simply strategy) A mapping which, in
an interactive decision problem, associates an action
with the information of a player whenever this player
can make a choice.

Sequential equilibrium A refinement of the Nash equi-
librium for n-person multistage interactive decision
problems, which can be loosely defined as a strategy
n-tuple together with beliefs over past information for
every player, such that every player maximizes his ex-
pected utility given his beliefs and the others’ strate-
gies, with the additional condition that the beliefs sat-
isfy (possibly sophisticated) Bayes updating given the
strategies.

Strategic (or normal) form game An interactive deci-
sion problem consisting of a set of n players, a set of
strategies for every player and a (typically, von Neu-
mann–Morgenstern) utility function defined over n-tu-
ples of strategies for every player.

Utility function A real valued mapping over a set of out-
comes which reflects the preferences of an individual
by associating a utility level (a “payoff”) with every out-
come.

Definition of the Subject

The correlated equilibrium is a game theoretic solution
concept. It was proposed by Aumann [1,2] in order to cap-
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ture the strategic correlation opportunities that the play-
ers face when they take into account the extraneous envi-
ronment in which they interact. The notion is illustrated
in Sect. “Introduction”. A formal definition is given in
Sect. “Correlated Equilibrium: Definition and Basic Prop-
erties”. The correlated equilibrium also appears as the
appropriate solution concept if preplay communication is
allowed between the players. As shown in Sect. “Corre-
lated Equilibrium and Communication”, this property can
be given several precise statements according to the con-
straints imposed on the players’ communication, which
can go from plain conversation to exchange of messages
through noisy channels. Originally designed for static
games with complete information, the correlated equilib-
rium applies to any strategic form game. It is geometrically
and computationally more tractable than the better known
Nash equilibrium. The solution concept has been extended
to dynamic games, possibly with incomplete information.
As an illustration, we define in details the communication
equilibrium for Bayesian games in Sect. “Correlated Equi-
librium in Bayesian Games”.

Introduction

Example

Consider the two-person game known as “chicken”, in
which each player i can take a “pacific” action (denoted
as pi) or an “aggressive” action (denoted as ai):

p2 a2

p1 (8; 8) (3; 10)
a1 (10; 3) (0; 0)

The interpretation is that player 1 and player 2 simulta-
neously choose an action and then get a payoff, which is
determined by the pair of chosen actions according to the
previous matrix. If both players are pacific, they both get 8.
If both are aggressive, they both get 0. If one player is ag-
gressive and the other is pacific, the aggressive player gets
10 and the pacific one gets 3. This game has two pure Nash
equilibria (p1; a2), (a1; p2) and one mixed Nash equilib-
rium in which both players choose the pacific action with
probability 3/5, resulting in the expected payoff 6 for both
players. A possible justification for the latter solution is
that the players make their choices as a function of in-
dependent extraneous random signals. The assumption of
independence is strong. Indeed, there may be no way to
prevent the players’ signals from being correlated.

Consider a random signal which has no effect on
the players’ payoffs and takes three possible values: low,
medium or high, occurring each with probability 1/3. As-
sume that, before the beginning of the game, player 1 dis-

tinguishes whether the signal is high or not, while player 2
distinguishes whether the signal is low or not. The relevant
interactive decision problem is then the extended game in
which the players can base their action on the private in-
formation they get on the random signal, while the pay-
offs only depend on the players’ actions. In this game, sup-
pose that player 1 chooses the aggressive action when the
signal is high and the pacific action otherwise. Similarly,
suppose that player 2 chooses the aggressive action when
the signal is low and the pacific action otherwise. We show
that these strategies form an equilibrium in the extended
game. Given player 2’s strategy, assume that player 1 ob-
serves a high signal. Player 1 deduces that the signal cannot
be low so that player 2 chooses the pacific action; hence
player 1’s best response is to play aggressively. Assume
now that player 1 is informed that the signal is not high;
he deduces that with probability 1/2, the signal is medium
(i. e., not low) so that player 2 plays pacific and with prob-
ability 1/2, the signal is low so that player 2 plays aggres-
sive. The expected payoff of player 1 is 5.5 if he plays pa-
cific and 5 if he plays aggressive; hence, the pacific action
is a best response. The equilibrium conditions for player 2
are symmetric. To sumup, the strategies based on the play-
ers’ private information form a Nash equilibrium in the
extended game in which an extraneous signal is first se-
lected. We shall say that these strategies form a “correlated
equilibrium”. The corresponding probability distribution
over the players’ actions is

p2 a2

p1 1
3

1
3

a1 1
3 0

(1)

and the expected payoff of every player is 7. This probabil-
ity distribution can be used directly to make private rec-
ommendations to the players before the beginning of the
game (see the canonical representation below).

Correlated Equilibrium:
Definition and Basic Properties

Definition

A game in strategic form G D (N; (˙ i)i2N ; (ui )i2N) con-
sists of a set of players N together with, for every player
i 2 N , a set of strategies (for instance, a set of actions)
˙ i and a (von Neumann–Morgenstern) utility function
ui : ˙ ! R, where ˙ D

Q
j2N ˙

j is the set of all strat-
egy profiles. We assume that the sets N and˙ i , i 2 N, are
finite.

A correlation device d D (˝; q; (P i )i2N) is described
by a finite set of signals˝ , a probability distribution q over
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˝ and a partition P i of˝ for every player i 2 N. Since˝
is finite, the probability distribution q is just a real vector
q D (q(!))!2˝ such that q(!) � 0 and

P
!2˝ q(!) D 1.

From G and d, we define the extended game Gd as fol-
lows:

� ! is chosen in˝ according to q
� every player i is informed of the element Pi (!) of P i

which contains !
� G is played: every player i chooses a strategy � i in ˙ i

and gets the utility ui (�), � D (� j) j2N .

A (pure) strategy for player i in Gd is a mapping
˛ i : ˝ ! ˙ i which is P i-measurable, namely, such that
˛ i (! 0) D ˛ i (!) if ! 0 2 Pi (!). The interpretation is that,
in Gd, every player i chooses his strategy � i as a function
of his private information on the random signal ! which
is selected before the beginning of G.

According to Aumann [1], a correlated equilibrium of
G is a pair (d; ˛), which consists of a correlation device
d D (˝; q; (P i )i2N) and a Nash equilibrium ˛ D (˛ i )i2N
of Gd. The equilibrium conditions of every player i, condi-
tionally on his private information, can be written as:

X

!02P i (!)

q(! 0jPi (!))ui (˛(! 0))

�
X

!02P i (!)

q(! 0jPi(!))ui (� i ; ˛�i (! 0)) ;

8i 2 N; 8� i 2 ˙ i ; 8! 2 ˝ : q(!) > 0 ; (2)

where ˛�i D (˛ j) j¤i .
A mixed Nash equilibrium � D (�i )i2N of G can

be viewed as a correlated equilibrium of G. By defi-
nition, every �i is a probability distribution over ˙ i ,
the finite set of pure strategies of player i. Let us
consider the correlation device d D (˝; q; (P i )i2N ) in
which ˝ D ˙ D

Q
j2N ˙

j , q is the product probabil-
ity distribution induced by the mixed strategies (i. e.,
q((� j) j2N ) D

Q
j2N �

j(� j)) and for each i, P i is the
partition of ˝ generated by ˙ i (i. e., for !; � 2 ˝ ,
� 2 Pi (!), � i D ! i). Let ˛ i : ˙ ! ˙ i be the projec-
tion over ˙ i (i. e., ˛ i (�) D � i ). The correlation device d
and the strategies ˛ i defined in this way form a correlated
equilibrium. As we shall see below, this correlated equilib-
rium is “canonical” .

Canonical Representation

A canonical correlated equilibrium of G is a correlated
equilibrium in which ˝ D ˙ D

Q
j2N ˙

j while for ev-
ery player i, the partition P i of ˙ is generated by ˙ i

and ˛ i : ˙ ! ˙ i is the projection over ˙ i . A canonical
correlated equilibrium is thus fully specified by a prob-
ability distribution q over ˙ . A natural interpretation is
that a mediator selects � D (� j) j2N according to q and
privately recommends � i to player i, for every i 2 N.
The players are not forced to obey the mediator, but
� is selected in such a way that player i cannot bene-
fit from deviating unilaterally from the recommendation
� i , i. e., � i D � i maximizes the conditional expectation of
player i’s payoff ui (� i ; ��i ) given the recommendation � i .
A probability distribution q over˙ thus defines a canoni-
cal correlated equilibrium if and only if it satisfies the fol-
lowing linear inequalities:

X


�i2˙�i

q(��i j� i)ui (� i ; ��i )

�
X


�i2˙�i

q(��i j� i)ui (� i ; ��i ) ;

8i 2 N; 8� i 2 ˙ i : q(� i ) > 0; 8� i 2 ˙ i

or, equivalently,

X


�i2˙�i

q(� i ; ��i )ui (� i ; ��i )

�
X


�i2˙�i

q(� i ; ��i )ui (� i ; ��i ) ;

8i 2 N; 8� i ; � i 2 ˙ i (3)

The equilibrium conditions can also be formulated ex ante:

X


2˙

q(�)ui (�) �
X


2˙

q(�)ui (˛ i (� i ); ��i ) ;

8i 2 N; 8˛ i : ˙ i ! ˙ i

The following result is an analog of the “revelation
principle” in mechanism design (see, e. g., Myerson [41]):
let (˛; d) be a correlated equilibrium associated with an ar-
bitrary correlation device d D (˝; q; (P i )i2N). The corre-
sponding “correlated equilibrium distribution”, namely, the
probability distribution induced over ˙ by q and ˛, de-
fines a canonical correlated equilibrium. For instance, in
the introduction, (1) describes a canonical correlated equi-
librium.

Duality and Existence

From the linearity of (3), duality theory can be used to
study the properties of correlated equilibria, in particu-
lar to prove their existence without relying on Nash’s [45]
theorem and its fixed point argument (recall that every
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mixed Nash equilibrium is a correlated equilibrium). Hart
and Schmeidler [30] establish the existence of a correlated
equilibrium by constructing an auxiliary two person zero-
sum game and applying the minimax theorem. Nau and
McCardle [47] derive another elementary proof of exis-
tence from an extension of the “no arbitrage opportuni-
ties” axiom that underlies subjective probability theory.
They introduce jointly coherent strategy profiles, which do
not expose the players as a group to arbitrage from an out-
side observer. They show that a strategy profile is jointly
coherent if and only if it occurs with positive probabil-
ity in some correlated equilibrium. From a technical point
of view, both proofs turn out to be similar. Myerson [44]
makes further use of the linear structure of correlated equi-
libria by introducing dual reduction, a technique to replace
a finite game with a game with fewer strategies, in such
a way that any correlated equilibrium of the reduced game
induces a correlated equilibrium of the original game.

Geometric Properties

As (3) is a system of linear inequalities, the set of all corre-
lated equilibrium distributions is a convex polytope. Nau
et al. [49] show that if it has “full” dimension (namely, di-
mension j˙ j � 1), then all Nash equilibria lie on its rel-
ative boundary. Viossat [60] characterizes in addition the
class of games whose correlated equilibrium polytope con-
tains a Nash equilibrium in its relative interior. Interest-
ingly, this class of games includes two person zero-sum
games but is not defined by “strict competition” proper-
ties. In two person games, all extreme Nash equilibria are
also extreme correlated equilibria [13,25]; this result does
not hold with more than two players. Finally, Viossat [59]
proves that having a unique correlated equilibrium is a ro-
bust property, in the sense that the set of n person games
with a unique correlated equilibrium is open. The same is
not true for Nash equilibrium (unless n D 2).

Complexity

From (3), correlated equilibria can be computed by linear
programmingmethods. Gilboa and Zemel [24] showmore
precisely that the complexity of standard computational
problems is “NP-hard” for the Nash equilibrium and poly-
nomial for the correlated equilibrium. Examples of such
problems are: “Does the game G have a Nash (resp., cor-
related) equilibrium which yields a payoff greater than r
to every player (for some given number r)?” and “Does
the game G have a unique Nash (resp., correlated) equi-
librium?”. Papadimitriou [50] develops a polynomial-time
algorithm for finding correlated equilibria, which is based

on a variant of the existence proof of Hart and Schmei-
dler [30].

Foundations

By re-interpreting the previous canonical representation,
Aumann [2] proposes a decision theoretic foundation for
the correlated equilibrium in games with complete infor-
mation, in which ˙ i for i 2 N, stands merely for a set of
actions of player i. Let ˝ be the space of all states of the
world; an element ! of˝ thus specifies all the parameters
which may be relevant to the players’ choices. In particu-
lar, the action profile in the underlying game G is part of
the state of the world. A partition P i describes player i’s
information on ˝ . In addition, every player i has a prior
belief, i. e., a probability distribution, qi over˝ . Formally,
the framework is similar as above except that the play-
ers possibly hold different beliefs over ˝ . Let ˛ i(!) de-
note player i’s action at !; a natural assumption is that
player i knows the action he chooses, namely that ˛ i is P i

-measurable. According to Aumann [2], player i is Bayes-
rational at ! if his action ˛ i(!) maximizes his expected
payoff (with respect to qi) given his information Pi (!).
Note that this is a separate rationality condition for every
player, not an equilibrium condition. Aumann [2] proves
the following result: Under the common prior assumption
(namely, q i D q, i 2 N), if every player is Bayes-rational at
every state of the world, the distribution of the correspond-
ing action profile ˛ is a correlated equilibrium distribution.
The key to this decision theoretic foundation of the cor-
related equilibrium is that, under the common prior as-
sumption, Bayesian rationality amounts to (2).

If the common prior assumption is relaxed, the previ-
ous result still holds, with subjective prior probability dis-
tributions, for the subjective correlated equilibrium which
was also introduced by Aumann [1]. The latter solution
concept is defined in the same way as above, by consider-
ing a device (˝; (q i)i2N ; (P i )i2N), with a probability dis-
tribution qi for every player i, and by writing (2) in terms
of qi instead of q. Brandenburger andDekel [10] show that
(a refinement of) the subjective correlated equilibrium is
equivalent to (correlated) rationalizability, another well-
established solution concept which captures players’ min-
imal rationality. Rationalizable strategies reflect that the
players commonly know that each of them makes an opti-
mal choice given some belief. Nau and McCardle [48] rec-
oncile objective and subjective correlated equilibrium by
proposing the no arbitrage principle as a unified approach
to individual and interactive decision problems. They ar-
gue that the objective correlated equilibrium concept ap-
plies to a game that is revealed by the players’ choices,
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while the subjective correlated equilibrium concept applies
to the “true game”; both lead to the same set of jointly co-
herent outcomes.

Correlated Equilibrium and Communication

As seen in the previous section, correlated equilibria can
be achieved in practice with the help of a mediator and
emerge in a Bayesian framework embedding the game in
a full description of the world. Both approaches require to
extend the game by taking into account information which
is not generated by the players themselves. Can the players
reach a correlated equilibrium without relying on any ex-
traneous correlation device, by just communicating with
each other before the beginning of the game?

Consider the game of “chicken” presented in the intro-
duction. The probability distribution

p2 a2

p1 0 1
2

a1 1
2 0

(4)

describes a correlated equilibrium, which amounts to
choosing one of the two pure Nash equilibria, with equal
probability. Both players get an expected payoff of 6.5. Can
they safely achieve this probability distribution if no me-
diator tosses a fair coin for them? The answer is positive,
as shown by Aumann et al. [3]. Assume that before play-
ing “chicken”, the players independently toss a coin and
simultaneously reveal to each other whether heads or tails
obtains. Player 1 tells player 2 “h1” or “t1” and, at the same
time, player 2 tells player 1 “h2” or “t2”. If both players use
a fair coin, reveal correctly the result of the toss and play
(p1; a2) if both coins fell on the same side (i. e., if (h1; h2)
or (t1; t2) is announced) and (a1; p2) otherwise (i. e., if
(h1; t2) or (t1; h2) is announced), they get the same effect
as a mediator using (4). Furthermore, none of them can
gain by unilaterally deviating from the described strate-
gies, even at the randomizing stage: the two relevant out-
comes, [(h1; h2) or (t1; t2)] and [(h1; t2) or (t1; h2)], hap-
pen with probability 1/2 provided that one of the players
reveals the toss of a fair coin. This procedure is known
as a “jointly controlled lottery” . An important feature of
the previous example is that, in the correlated equilibrium
described by (4), the players know each other’s recom-
mendation. Hence, they can easily reproduce (4) by ex-
changing messages that they have selected independently.
In the correlated equilibrium described by the probabil-
ity distribution (1), the private character of recommenda-
tions is crucial to guarantee that (p1; p2) be played with
positive probability. Hence one cannot hope that a sim-

ple procedure of direct preplay communication be suffi-
cient to generate (1). However, the fact that direct com-
munication is necessarily public is typical of two-person
games.

Given the game G D (N; (˙ i )i2N ; (ui )i2N ), let us de-
fine a (bounded) “cheap talk” extension ext(G) of G as
a game in which T stages of costless, unmediated preplay
communication are allowed before G is played. More pre-
cisely, let Mi

t be a finite set of messages for player i, i 2 N,
at stage t, t D 1; 2; : : : T ; at every stage t of ext(G), every
player i selects a message in Mi

t ; these choices are made
simultaneously before being revealed to a subset of play-
ers at the end of stage t. The rules of ext(G) thus deter-
mine a set of “senders” for every stage t (those players i
for whom Mi

t contains more than one message) and a set
of “receivers” for every stage t. The players perfectly recall
their past messages. After the communication phase, they
choose their strategies (e. g., their actions) as in G; they are
also rewarded as in G, independently of the preplay phase,
which is thus “cheap” . Communication has an indirect ef-
fect on the final outcome inG, since the players make their
decisions as a function of the messages that they have ex-
changed. Specific additional assumptions are often made
on ext(G), as we will see below.

Let us fix a cheap talk extension ext(G) ofG and a Nash
equilibrium of ext(G). As a consequence of the previous
definitions, the distribution induced by this Nash equilib-
rium over ˙ defines a correlated equilibrium of G (this
can be proved in the same way as the canonical represen-
tation of correlated equilibria stated in Sect. “Correlated
Equilibrium: Definition and Basic Properties”). The ques-
tion raised in this section is whether the reverse holds.

If the number of players is two, the Nash equilibrium
distributions of cheap talk extensions ofG form a subset of
the correlated equilibrium distributions: the convex hull of
Nash equilibrium distributions. Indeed, the players have
both the same information after any direct exchange of
messages. Conversely, by performing repeated jointly con-
trolled lotteries like in the example above, the players can
achieve any convex combination (with rational weights) of
Nash equilibria of G as a Nash equilibrium of a cheap talk
extension ofG. The restriction on probability distributions
whose components are rational numbers is only needed as
far as we focus on bounded cheap talk extensions.

Bárány [4] establishes that, if the number of players of
G is at least four, every (rational) correlated equilibrium
distribution of G can be realized as a Nash equilibrium of
a cheap talk extension ext(G), provided that ext(G) allows
the players to publicly check the record of communication
under some circumstances. The equilibria of ext(G) con-
structed by Bárány involve that a receiver gets the same
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message from two different senders; the message is never-
theless not public thanks to the assumption on the number
of players. At every stage of ext(G), every player can ask
for the revelation of all past messages, which are assumed
to be recorded. Typically, a receiver can claim that the two
senders’ messages differ. In this case, the record of com-
munication surely reveals that either one of the senders
or the receiver himself has cheated; the deviator can be
punished (at his minmax level in G) by the other play-
ers.

The punishments in Bárány’s [4] Nash equilibria of
ext(G) need not be credible threats. Instead of using
double senders in the communication protocols, Ben-
Porath [5,6] proposes a procedure of random monitor-
ing, which prescribes a given behavior to every player in
such a way that unilateral deviations can be detected with
probability arbitrarily close to 1. This procedure applies
if there are at least three players, which yields an analog
of Bárány’s result already in this case. If the number of
players is exactly three, Ben-Porath [6] needs to assumes,
as Bárány [4], that public verification of the record of
communication is possible in ext(G) (see Ben-Porath [7]).
However, Ben-Porath concentrates on (rational) corre-
lated equilibrium distributions which allow for strict pun-
ishment on a Nash equilibrium of G; he constructs sequen-
tial equilibria which generate these distributions in ext(G),
thus dispensing with incredible threats. At the price of
raising the number of players to five or more, Gerardi [22]
proves that every (rational) correlated equilibrium distri-
bution of G can be realized as a sequential equilibrium of
a cheap talk extension of G which does not require any
message recording. For this, he builds protocols of com-
munication in which the players base their decisions on
majority rule, so that no punishment is necessary.

We have concentrated on two extreme forms of com-
munication: mediated communication, in which a medi-
ator performs lotteries and sends private messages to the
players and cheap talk, in which the players just exchange
messages. Many intermediate schemes of communication
are obviously conceivable. For instance, Lehrer [36] in-
troduces (possibly multistage) “mediated talk”: the play-
ers send private messages to a mediator, but the latter
can only make deterministic public announcements. Me-
diated talk captures real-life communication procedures,
like elections, especially if it lasts only for a few stages.
Lehrer and Sorin [37] establish that whatever the num-
ber of players of G, every (rational) correlated equilibrium
distribution of G can be realized as a Nash equilibrium of
a single stage mediated talk extension ofG. Ben-Porath [5]
proposes a variant of cheap talk in which the players do
not only exchange verbal messages but also “hard” devices

such as urns containing balls. This extension is particularly
useful in two-person games to circumvent the equivalence
between the equilibria achieved by cheap talk and the con-
vex hull of Nash equilibria. More precisely, the result of
Ben-Porath [5] stated above holds for two-person games
if the players first check together the content of different
urns, and then each player draws a ball from an urn that
was chosen by the other player, so as to guarantee that one
player only knows the outcome of a lottery while the other
one only knows the probabilities of this lottery.

The various extensions of the basic game G consid-
ered up to now, with or without a mediator, implicitly as-
sume that the players are fully rational. In particular, they
have unlimited computational abilities. By relaxing that
assumption, Urbano and Vila [55] and Dodis et al. [12]
build on earlier results from cryptography so as to im-
plement any (rational) correlated equilibrium distribution
through unmediated communication, including in two-
person games.

As the previous paragraphs illustrate, the players can
modify their intitial distribution of information by means
of many different communication protocols. Gossner [26]
proposes a general criterion to classify them: a protocol
is “secure” if under all circumstances, the players can-
not mislead each other nor spy on each other. For in-
stance, given a cheap talk extension ext(G), a protocol P
describes, for every player, a strategy in ext(G) and a way to
interpret his information after the communication phase
of ext(G). P induces a correlation device d(P) (in the
sense of Sect. “Correlated Equilibrium: Definition and Ba-
sic Properties”). P is secure if, for every game G and every
Nash equilibrium ˛ of Gd(P) , the following procedure is
a Nash equilibrium of ext(G): communicate according to
the strategies described by P in order to generate d(P) and
make the final choice, in G, according to ˛. Gossner [26]
gives a tractable characterization of secure protocols.

Correlated Equilibrium in Bayesian Games

A Bayesian game � D (N; (Ti)i2N ; p; (Ai )i2N ; (vi )i2N)
consists of: a set of players N; for every player i 2 N,
a set of types Ti, a probability distribution pi over
T D

Q
j2N T j , a set of actions Ai and a (von Neumann–

Morgenstern) utility function vi : T � A! R, where
A D

Q
j2N Aj . For simplicity, we make the common prior

assumption: pi D p for every i 2 N . All sets are assumed
finite. The interpretation is that a virtual move of nature
chooses t D (t j) j2N according to p; player i is only in-
formed of his own type ti; the players then choose simul-
taneously an action. We will focus on two possible ex-
tensions of Aumann’s [1] solution concept to Bayesian
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games: the strategic form correlated equilibrium and the
communication equilibrium. Without loss of generality,
the definitions below are given in “canonical form” (see
Sect. “Correlated Equilibrium: Definition and Basic Prop-
erties”).

Strategic Form Correlated Equilibrium

A (pure) strategy of player i in � is a mapping � i : Ti !

Ai , i 2 N . The strategic form of � is a gameG(� ), like the
game G considered in Sect. “Correlated Equilibrium: Def-
inition and Basic Properties”, with sets of pure strategies
˙i D ATi

i and utility functions ui over ˙ D
Q

j2N ˙
j

computed as expectations with respect to p : ui (�) D
E[vi (t; �(t))], with �(t) D (� i (ti))i2N . A strategic form
correlated equilibrium, or simply, a correlated equilib-
rium, of a Bayesian game � is a correlated equilibrium, in
the sense of Sect. “Correlated Equilibrium: Definition and
Basic Properties”, of G(� ). A canonical correlated equi-
librium of � is thus described by a probability distribu-
tion Q over˙ , which selects an N-tuple of pure strategies
(� i )i2N . This lottery can be thought of as being performed
by a mediator who privately recommends � i to player i,
i 2 N, before the beginning of � , i. e., before (or in any
case, independently of) the chance move choosing the N
-tuple of types. The equilibrium conditions express that,
once he knows his type ti, player i cannot gain in unilater-
ally deviating from � i(ti ).

Communication Equilibrium

Myerson [41] transforms the Bayesian game � into
a mechanism design problem by allowing the mediator
to collect information from the players before making
them recommendations. Following Forges [15] andMyer-
son [42], a canonical communication device for � consists
of a system q of probability distributions q D (q(:jt))t2T
over A. The interpretation is that a mediator invites every
player i, i 2 N , to report his type ti, then selects anN-tuple
of actions a according to q(:jt) and privately recommends
ai to player i. The system q defines a communication equi-
librium if none of the players can gain by unilaterally lying
on his type or by deviating from the recommended action,
namely if

X

t�i2T�i

p(t�i jti)
X

a2A

q(ajt)vi(t; a)

�
X

t�i2T�i

p(t�i jti)
X

a2A

q(ajsi ; t�i)vi (t; ˛ i (ai); a�i ) ;

8i 2 N; 8ti ; si 2 Ti ; 8˛ i : Ai ! Ai

Correlated Equilibrium, Communication Equilibrium
and Cheap Talk

Every correlated equilibrium of the Bayesian game � in-
duces a communication equilibrium of � , but the con-
verse is not true, as the following example shows.

Consider the two-person Bayesian game in which
T1 D fs1; t1g, T2 D ft2g, A1 D fa1; b1g, A2 D fa2; b2g,
p(s1) D p(t1) D 1

2 and payoffs are described by

s1
a2 b2

a1 (1; 1) (�1;�1)
b1 (0; 0) (0; 0)

t1
a2 b2

a1 (0; 0) (0; 0)
b1 (�1;�1) (1; 1)

In this game, the communication equilibrium q(a1;
a2js1) D q(b1; b2jt1) D 1 yields the expected payoff of
1 to both players. However the maximal expected payoff
of every player in a correlated equilibrium is 1/2. In order
to see this, one can derive the strategic form of the game
(in which player 1 has four strategies and player 2 has two
strategies). Let us turn to the game in which player 1 can
cheaply talk to player 2 just after having learned his type.
In this new game, the following strategies form a Nash
equilibrium: player 1 truthfully reveals his type to player 2
and plays a1 if s1, b1 if t1; player 2 chooses a2 if s1, b2 if t1

. These strategies achieve the same expected payoffs as the
communication equilibrium.

As in Sect. “Correlated Equilibrium and Communi-
cation”, one can define cheap talk extensions ext(� ) of
� . A wide definition of ext(� ) involves an ex ante pre-
play phase, before the players learn their types, and an in-
terim preplay phase, after the players learn their types but
before they choose their actions. Every Nash equilibrium
of ext(� ) induces a communication equilibrium of � . In
order to investigate the converse, namely whether cheap
talk can simulate mediated communication in a Bayesian
game, two approaches have been developed. The first one
(Forges [17], Gerardi [21,22], Vida [58]) proceeds in two
steps, by reducing communication equilibria to correlated
equilibria before applying the results obtained for strategic
form games (see Sect. “Correlated Equilibrium and Com-
munication”). The second approach (Ben-Porath [6], Kr-
ishna [33]) directly addresses the question in a Bayesian
game.

By developing a construction introduced for particu-
lar two person games (Forges [14]), Forges [17] shows that
every communication equilibrium outcome of a Bayesian
game � with at least four players can be achieved as a cor-
related equilibrium outcome of a two stage interim cheap
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talk extension extint(� ) of � . No punishment is neces-
sary in extint(� ): at the second stage, every player gets
a message from three senders and uses majority rule if the
messages are not identical. Thanks to the underlying cor-
relation device, each receiver is able to privately decode
his message. Vida [58] extends Forges [17] to Bayesian
games with three or even two players. In the proof, he
constructs a correlated equilibrium of a long, but almost
surely finite, interim cheap talk extension of � , whose
length depends both on the signals selected by the cor-
relation device and the messages exchanged by the play-
ers. No recording of messages is necessary to detect and
punish a cheating player. If there are at least four players
in � , once a communication equilibrium of � has been
converted into a correlated equilibrium of extint(� ), one
can apply Bárány’s [4] result to extint(� ) in order to trans-
form the correlated equilibrium into a Nash equilibrium
of a further, ex ante, cheap talk preplay extension of � .
Gerardi [21] modifies this ex ante preplay phase so as to
postpone it at the interim stage. This result is especially
useful if the initial move of nature in � is just a mod-
elling convenience. Gerardi [22] also extends his result for
at least five person games with complete information (see
Sect. “Correlated Equilibrium and Communication”) to
any Bayesian game with full support (i. e., in which all type
profiles have positive probability: p(t) > 0 for every t 2 T)
by proving that every (rational) communication equilib-
rium of � can be achieved as a sequential equilibrium of
a cheap talk extension of � .

Ben-Porath [6] establishes that if� is a three (or more)
person game with full support, every (rational) communi-
cation equilibrium of � which strictly dominates a Nash
equilibrium of � for every type ti of every player i, i 2 N,
can be implemented as a Nash equilibrium of an interim
cheap talk extension of � in which public verification
of past record is possible (see also Ben-Porath [7]). Kr-
ishna [33] extends Ben-Porath’s [5] result on two person
games (see Sect. “Correlated Equilibrium and Communi-
cation”) to the incomplete information framework. The
other results mentioned at the end of Sect. “Correlated
Equilibrium and Communication” have also been gener-
alized to Bayesian games (see [26,37,56]).

Related Topics and Future Directions

In this brief article, we concentrated on two solution con-
cepts: the strategic form correlated equilibrium, which is
applicable to any game, and the communication equilib-
rium, which we defined for Bayesian games. Other ex-
tensions of Aumann’s [1]solution concept have been pro-
posed for Bayesian games, as the agent normal form

correlated equilibrium and the (possibly belief invariant)
Bayesian solution (see Forges [18,19] for definitions and
references). The Bayesian solution is intended to capture
the players’ rationality in games with incomplete infor-
mation in the spirit of Aumann [2] (see Nau [46] and
Forges [18]). Lehrer et al. [38] open a new perspective in
the understanding of the Bayesian solution and other equi-
librium concepts for Bayesian games by characterizing the
classes of equivalent information structures with respect
to each of them. Comparison of information structures,
which goes back to Blackwell [8,9] for individual decision
problems, was introduced by Gossner [27] in the context
of games, both with complete and incomplete informa-
tion. In the latter model, information structures basically
describe how extraneous signals are selected as a func-
tion of the players’ types; two information structures are
equivalent with respect to an equilibrium concept if, in ev-
ery game, they generate the same equilibriumdistributions
over outcomes.

Correlated equilibria, communication equilibria and
related solution concepts have been studied in many other
classes of games, like multistage games (see, e. g., [15,42]),
repeated games with incomplete information (see, e. g.,
[14,16]) and stochastic games (see, e. g., [53,54]). The
study of correlated equilibrium in repeated gameswith im-
perfect monitoring, initiated by Lehrer [34,35], proved to
be particularly useful and is still undergoing. Lehrer [34]
showed that if players are either fully informed of past
actions or get no information (“ standard-trivial” infor-
mation structure), correlated equilibria are equivalent to
Nash equilibria. In other words, all correlations can be
generated internally, namely by the past histories, on
which players have differential information. The schemes
of internal correlation introduced to establish this result
are widely applicable and inspired those of Lehrer [36]
(see Sect. “Correlated Equilibrium and Communication”).
In general repeated games with imperfect monitoring, Re-
nault and Tomala [52] characterize communication equi-
libria but the amount of correlation that the players can
achieve in a Nash equilibrium is still an open problem (see,
e. g., [28,57] for recent advances).

Throughout this article, we defined a correlated equi-
librium as a Nash equilibrium of an extension of the
game under consideration. The solution concept can be
strengthened by imposing some refinement, i. e., further
rationality conditions, to the Nash equilibrium in this def-
inition (see, e. g., [11,43]). Refinements of communication
equilibria have also been proposed (see, e. g., [22,23,42]).
Some authors (see, e. g., [39,40,51]) have also developed
notions of coalition proof correlated equilibria, which re-
sist not only to unilateral deviations, as in this article, but
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even to multilateral ones. A recurrent difficulty is that, for
many of these stronger solution concepts, a useful canoni-
cal representation (as derived in Sect. “Correlated Equilib-
rium: Definition and Basic Properties”) is not available.

Except for two or three references, we deliberately con-
centrated on the results published in the game theory
and mathematical economics literature, while substantial
achievements in computer science would fit in this sur-
vey. Both streams of research pursue similar goals but
rely on different formalisms and techniques. For instance,
computer scientists often make use of cryptographic tools
which are not familiar in game theory. Halpern [29] gives
an idea of recent developments at the interface of com-
puter science and game theory (see in particular the sec-
tion “implementingmediators”) and contains a number of
references.

Finally, the assumption of full rationality of the players
can also be relaxed. Evolutionary game theory has devel-
oped models of learning in order to study the long term
behavior of players with bounded rationality. Many pos-
sible dynamics are conceivable to represent more or less
myopic attitudes with respect to optimization. Under ap-
propriate learning procedures, which express for instance
that agents want to minimize the regret of their strategic
choices, the empirical distribution of actions converge to
correlated equilibrium distributions (see, e. g., [20,31,32]
for a survey). However, standard procedures, as the “repli-
cator dynamics”, may even eliminate all the strategies
which have positive probability in a correlated equilibrium
(see [61]).
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Definition of the Subject

Cluster concepts have been extremely useful in elucidat-
ingmany problems in physics. Percolation theory provides
a generic framework to study the behavior of the cluster
distribution. In most cases the theory predicts a geometri-
cal transition at the percolation threshold, characterized in
the percolative phase by the presence of a spanning clus-
ter, which becomes infinite in the thermodynamic limit.
Standard percolation usually deals with the problem when
the constitutive elements of the clusters are randomly
distributed. However correlations cannot always be ne-
glected. In this case correlated percolation is the appropri-
ate theory to study such systems. The origin of correlated
percolation could be dated back to 1937 when Mayer [76]
proposed a theory to describe the condensation from a gas
to a liquid in terms of mathematical clusters (for a review
of cluster theory in simple fluids see [88]). The location for
the divergence of the size of these clusters was interpreted
as the condensation transition from a gas to a liquid. One
of the major drawbacks of the theory was that the clus-
ter number for some values of thermodynamical parame-
ters could become negative. As a consequence the clusters
did not have any physical interpretation [50]. This theory
was followed by Frenkel’s phenomenological model [54],
in which the fluid was considered as made of non interact-
ing physical clusters with a given free energy. This model
was later improved by Fisher [50], who proposed a differ-
ent free energy for the clusters, now called droplets, and
consequently a different scaling form for the droplet size
distribution. This distribution, which depends on two ge-
ometrical parameters, � and � , has the nice feature that
the mean droplet size exhibits a divergence at the liquid-
gas critical point. Interestingly the critical exponents of the
liquid gas critical point can be expressed in terms of the
two parameters, � and � , and are found to satisfy the stan-
dard scaling relations proposed at that time in the theory
of critical phenomena.

Introduction

Fisher’s droplet model was very successful, to describe the
behavior of a fluid or of a ferromagnet near the critical
point, in terms of geometrical clusters. However the mi-
croscopic definition of such a cluster in a fluid or fer-
romagnet was still a challenge. While the exact defini-
tion in a continuum fluid model is still an open prob-
lem, a proper definition in the Ising model or lattice gas

model has been provided. A first attempt to define a clus-
ter in the Ising model which had the same properties of
Fisher’s droplet model was to consider a cluster as set of
parallel spins. In two dimensions, in fact, these clusters
seemed to have the properties of Fisher’s droplets, i. e. the
mean cluster size of these clusters were found to diverge
at the Ising critical point on the basis of numerical anal-
ysis [8]. This result was later proved rigorously [36,37].
However the critical exponents for the mean cluster size
in 2d was found to be larger than the corresponding crit-
ical exponent of the susceptibility [100], contrary to the
requirement of Fisher’s droplet model. Moreover numer-
ical simulations in 3d and analytical results on the Bethe
lattice showed that the critical point and the percolation
point of such clusters were different. It was clear then
that the clusters made of nearest neighbors parallel spins
were too big to describe correlated regions. A different
definition of clusters was then proposed [30] obtained by
breaking the clusters of parallel spins by introducing ficti-
tious bonds with a probability pb between parallel spins.
The new clusters are defined as a maximal set of par-
allel spins connected by bonds. For a particular choice
of pb � p D 1 � e�2J/kBT it was shown that these clus-
ters (Coniglio–Klein droplets) have the same properties
of Fisher’s droplets, namely their size diverges at the Ising
critical point with Ising exponents. Note that the bonds are
only fictitious and do not change the energy of the spins.
They only have the role of breaking the clusters made of
parallel spins. Some years earlier Kasteleyn and Fortuin
defined a random cluster model, obtained starting from
an Ising model and by changing the spin interaction J in
J D 1, with probability p, and J into J D 0, with prob-
ability 1 � p. They showed that the partition function of
this modified model, called the random cluster model, co-
incides with the partition function of the original Ising
model. In the random cluster model the clusters are de-
fined as a maximal set of spins connected by infinite in-
teractions. Although these clusters have the same prop-
erties of the droplet model, they were defined in the ran-
dom cluster model, and for this reason these clusters were
not associated with the droplets of the Ising model. It was
only after Swendsen and Wang [99] introduced a cluster
dynamics based on the Kasteleyn and Fortuin formalism,
that it was formally shown [40] that the distribution of the
Coniglio–Klein (CK) droplets are the same as the distri-
bution of Kasteleyn–Fortuin (KF) clusters in the random
cluster model. For this reason often the CK droplets and
the KF clusters are identified, however the different mean-
ings should be kept in mind.

A further development was obtained when the frac-
tal structure of the droplets was studied not only for the
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Ising model but for the full hierarchy of the q-state Potts
model, which in the limit q D 1 gives the random percola-
tion problem. It was shown that the critical droplets of the
Potts model have the same structure, made of links and
blobs, as found for the clusters in the random percolation
problem. One of the consequences of this study was a bet-
ter understanding of scaling and universality in terms of
geometrical cluster and fractal dimension [74].

The cluster approach to the phase transitions leads also
to a deeper understanding of why critical exponents do not
depend on dimensionality above the upper critical dimen-
sion, and coincide with mean field exponents. It was in
fact suggested [26] that, at least for random percolation,
the mean field behavior is due to the presence of an infi-
nite multiplicity of critical clusters at the percolation point.
This suggests that similar results may be also extended to
thermal problems.

Although the original interest in the field of correlated
percolation was the study of critical phenomena in terms
of geometrical concepts, later it was suggested that cor-
related percolation could be applied to the sol-gel transi-
tion, in particular when correlation was too large to be ne-
glected. In many cases in fact the sol-gel transition, which
is based on long range connectivity and percolation tran-
sition, interferes with large density fluctuation or critical
point. The interplay between percolation points and crit-
ical points gives rise to interesting phenomena which are
well understood within the concepts of correlated percola-
tion. Correlated percolation has been studied also in sys-
tems with different types of long range correlation [108],
and has been applied to many other fields such as nu-
clear physics [69], Gauge Theory [52] and O(n) mod-
els [7], fragmentation [15], urban growth [70], random
resistor network [6], interacting colloids [12], biological
models [1].

In Sect. “Random Percolation” we introduce random
percolation concepts. In Sect. “Percolation in the Ising
Model” in the context of the Ising model it is shown how
clusters have to be defined in order to describe corre-
lated regions corresponding to spin fluctuations. In Sub-
sects. “Ising Clusters” and “Ising Droplets” the Ising clus-
ters and droplets are respectively introduced, and in Sub-
sect. “Ising Droplets Above d D 4” it is shown how
the mapping between thermal properties and connectiv-
ity breaks down below Tc above d D 4. In Subsect. “Gen-
eralization to the q-State Potts Model” the results found
for the Ising model are extended to the q-state Potts
model, and in Subsect. “Fractal Structure in the Potts
Model: Links and Blobs” the fractal structure is stud-
ied in terms of links and blobs. In Subsect. “Fortuin–
Kasteleyn–Random Cluster Model” Fortuin–Kasteleyn–

Random Cluster Model is presented, and the connection
with the Coniglio–Klein droplets is further developed in
Appendix A. In Sect. “Hill’s Clusters” the possibility to
extend the definition of droplets to simple fluids is dis-
cussed. In Sect. “Clusters in Weak and Strong Gels” the
mechanism, leading to the formation of bound states in
gelling systems, is considered, and in Sect. “Scaling Behav-
ior of the Viscosity” the effect that finite bond lifetime has
on the behavior of viscosity in weak or colloidal gels. Fi-
nally future directions and open problems are discussed in
Sect. “Future Directions”.

RandomPercolation

In this section we define some connectivity quantities and
present some results in the context of random percolation,
which we will use in the following sections, where the cor-
related percolation will be presented.

Consider a d-dimensional hypercubic lattice of linear
dimension L. Suppose that each edge has a probability p of
being occupied by a bond. For small values of p, small clus-
ters made of sites connected by nearest-neighbor bonds
are formed. Each cluster is characterized by its size or
mass s, the number of sites in the cluster. For large val-
ues of p in addition to small clusters we expect a macro-
scopic cluster that connects the opposite boundaries. This
spanning cluster becomes infinite as the system size be-
comes infinite. For an infinite system there exists a per-
colation threshold pc below which only finite clusters are
present.

In order to describe the percolation transition [13,58,
95], one defines: an order parameter, P1(p), as the density
of sites in the infinite cluster, the mean cluster size, S(p),
of the finite clusters, and the average number of clusters,
K(p).

These quantities can be related to the average number
of clusters of s sites per site, n(s; p), and near the percola-
tion threshold the critical behavior is characterized by crit-
ical exponents:

K(p)jsing D
X

n(s; p)jsing � jp � pcj2�˛p ; (1)

P1(p) D 1�
X

sn(s; p) �
�

0 if p < pc
(p � pc)ˇp if p > pc ;

(2)

S(p) D
X

s2n(s; p) � jp � pcj��p ; (3)

where the sum is over all finite clusters, and in Eq. (1) only
the singular part has been considered. Finally one can de-
fine the pair connectedness function p f

i j as the probability
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that i and j are in the same finite cluster through

�2(p) D

P
r2i j p

f
i j

P
p f
i j

: (4)

The connectedness length, �(p), which is the critical radius
of the finite clusters, diverges as

� � jp � pcj��p : (5)

The critical exponents defined in Eqs. (1)–(4) are not all
independent. Scaling relations can be derived among them
as for ordinary second phase transitions. These scaling
laws are intimately related to the property of the incipi-
ent infinite cluster of being a self similar fractal [74] to all
length scales. The mass, s�, of a typical cluster of linear
dimension, � , scales as s� � �Dp , where Dp is the fractal
dimension of the cluster.

Scaling and Hyperscaling

To obtain scaling laws, following Kadanoff’s original idea,
we perform [26] the following three steps: (i) divide the
system into cells of linear dimension b, (ii) coarse grain
by some suitable rule, (iii) rescale the lengths by a fac-
tor b. The result is a renormalized system where the size
of the large clusters s has been reduced by factor bDp and
all lengths by a factor b:

L0 D
L
b
; � D

� 0

b
; s0 D

s
bDp

: (6)

Assuming that the large clusters do not interpenetrate,
the sum over the large clusters in an interval between
(s; sC
s)must be the same before and after rescaling, i. e.

N(s; �)
s � N(s0; � 0)
s0 (7)

where N(s; �)/Ld D n(s; �) is the number of clusters of
s sites per unit volume. Dividing by the volume Ld ,
from (6) we obtain

n(s; �) D b�d�Dp n(sb�Dp ; �b�1) : (8)

Choosing b D s1/Dp from (8) we obtain

n(s; p) D s��p f ((p � pc)s
p ) (9)

where n(s; p) D n(s; �) and

�p D
d
Dp
C 1; �p D

1
�pDp

: (10)

Equation (9) exhibits the scaling form postulated by Stauf-
fer [13,58,95]. From (1), (2) and (10) we have:

2�˛p D
�p � 1
�p

; ˇp D
�p � 2
�p

; ��p D
�p � 3
�p

(11)

and

�p D 2C
ˇp

ˇp C �p
; �p D

1
ˇp C �p

; (12)

from which the following scaling relations are obtained:

˛p C 2ˇp C �p D 2 ; (13)

1
�p

(ˇp C �p) D Dp : (14)

From (10), (11) one can also find relations which con-
tain the Euclidean dimensionality d called hyperscaling re-
lation:

2 � ˛p D �pd ; (15)

d �
ˇp

�p
D Dp : (16)

Equation (16) was originally suggested in [68]. In 2d ex-
act results give �p D 187/91 and �p D 36/91, and in 3d
the best estimates �p ' 2:18, �p ' 0:45. From mean field
theory [57] we know that for any d above the upper
critical dimension dc D 6, the critical exponents coincide
with the mean field ones, namely �˛p D ˇp D �p D 1,
�p D �p D 1/2 and �p D 5/2. These exponents satisfy the
scaling relation (13), but fail to satisfy the hyperscaling re-
lation (15) except for d D 6.

Moreover, while Eq. (14), for any d > 16, shows that
the fractal dimension is stacked at the value Dp D 4, the
hyperscaling relation (16) breaks down for d > 6.

Breakdown of Hyperscaling

By following a less conventional scaling approach, here we
want to propose a geometrical interpretation of hyperscal-
ing, why it breaks down above dc, and why the hyper-
scaling breakdown occurs when the mean field becomes
valid [26].

Let us assume that the singular behavior comes only
from the critical clusters. Say N� is the number of such
clusters in a volume of the order �d. The singular part of
the cluster number is given by

N�
�d
� �

˛p�2
�p : (17)
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At the same time, the density of sites in the infinite cluster
P1 � jp � pcjˇp scales as the total mass of the spanning
clusters N� s� in a volume of linear dimension � divided
by the volume �d, namely

N��Dp

�d
� �

�ˇp
�p ; (18)

where we have used s� � �Dp . Similarly the mean cluster
size:

N��2Dp

�d
� �

�p
�p : (19)

These equations lead to the scaling relations, Eqs. (13)
and (14). Now if N� is of the order of unity, we recover
the hyperscaling relations [48], Eqs. (15) and (16), while
if N� diverges hyperscaling breaks down. We know that
for dimension d above dc D 6, n(s; p) � s�5/2e�(p�pc)2 s

for large s. Therefore N� D �d
P

n(s; p) � �d�6, where
� � jp � pcj�1/2. This calculation shows that, above dc,
N� diverges and hyperscaling breaks down, and from
Eqs. (17) and (18) the hyperscaling relations are replaced
by 2 � ˛p D 6�p and Dp D 6 � ˇp/�p , which in fact are
satisfied for mean field exponents.

The more standard scaling approach of the previ-
ous section must be modified taking into account that
for d > 6 the large number of clusters will be reduced
by a factor b6�d , then Eq. (7) will be modified as
N(s; �)
s D b6�dN(s0; � 0)
s0 which still leads to all the
Eqs. (7)–(14), except that d is replaced everywhere by 6. In
particular, both Eqs. (14) and (16) give a fractal dimension
Dp D 4.

The multiplicity of infinite clusters above dc was nu-
merically shown in [42,53]. The average (finite) number
N� of distinct clusters below dc have been estimated theo-
retically and calculated numerically [3,63,94].

Consider now a critical cluster for d > dc just below pc
and its center of mass, 0. Say �1 is the distance from 0, be-
low which the cluster has not been penetrated by the other
critical clusters. This length can be obtained by equating
the mass density inside the region of radius �1 to the mass
density inside the region of radius � , N��4�d D �4�d1 ,
which gives �1 � �2/(d�4).

If �(r) is the density profile defined as the mass density
of all the critical clusters at a distance r from 0, we expect
that the density profile behaves as a power law rd�4 for
r < �1, as it should be for an object with fractal dimension
Dp D 4 and as a constant for r > �1 due to the penetration
of the other critical clusters. Consequently we can make
the following scaling Ansatz [2]:

�(r) D
1

rd�4
f
�

r
�1

�
; (20)

where f (x) � const for x < 1 and� xd�4 for x > 1.
In conclusion, while for d < 6 the density of the or-

der parameter fluctuates over a distance of the order � ,
for d > 6, where the mean field holds, the fluctuations are
damped by the presence of infinitely many interpenetrat-
ing clusters, and the density of the order parameter crosses
over from a power law (fractal) regime to a homogeneous
regime at a distance �1 
 � .

The mean field solution is therefore a consequence of
the presence of infinitely many interpenetrating clusters
which suppress the spatial fluctuation of the order param-
eter. The condition for the validity of mean field theory is
then given by N� 	 1. Using Eqs. (18) and (14) this con-
dition implies

N�1� �
�
�p
�p

�d�
�ˇp
�p

�
h
M2i

�dM2 
 1 ; (21)

whereM and h
M2i are the order parameter and the fluc-
tuations of the order parameter (here we used that the
mean cluster size S(p) has the same critical behavior as the
fluctuations of the order parameter [18,34]). Interestingly
enough Eq. (21) coincides with Ginzburg criterion for the
validity of mean field theory.

Cluster Structure

Nodes and Links In the previous sections we have
shown that the Incipient Infinite Cluster (IIC) is a fractal.
Here we want to show in more details the internal struc-
ture of the IIC. A very useful nodes and links picture for
the infinite cluster just above pc was introduced by Skal
and Shklowskii [89] and de Gennes [44]. In this picture
the infinite cluster consists of a superlattice made of nodes,
separated by a distance of the order of � , connected by
macrobonds. Just below pc the structure of the very large
cluster, the IIC, was expected to have the same structure as
the macrobonds.

Later on, in 1977, Stanley [90] made the important ob-
servation that in general for each configuration of bonds
at pc the IIC can be partitioned into three categories. By
associating an electric unit resistance to each bond, and
applying a voltage between the ends of the cluster, one
distinguishes the dangling bonds which do not carry cur-
rent (yellow bonds). The remaining bonds are the back-
bone bonds. The backbone can be partitioned in singly
connected bonds (red bonds) and all the others, the multi-
ply connected bonds, which lump together in “blobs” (blue
bonds). The red bonds, which carry the whole current,
have also the property that if one is cut the cluster breaks
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into two parts. This partition in three types of bonds is very
general and can be done for any cluster or aggregate.

The next major problem was to determine whether the
blobs are or not relevant. In the nodes and links picture
the assumption is that the blobs are irrelevant and only
links are relevant. A further elaboration [90] assumed that
the backbone close to pc would reduce to a self-avoiding
walk chain, which implies that the blobs are not relevant.
This self-avoiding walk Ansatz received a large amount of
attention, since it predicted a value for the crossover ex-
ponent of the dilute Heisenberg ferromagnetic model near
the percolation threshold in 2d, in good agreement with
the experimental data, although the prediction for the di-
lute Ising crossover exponent did not agree as well with the
data [9].

Syerpinsky Gasket: A Model Without Links In 1981
a completely alternative model was proposed by Gefen
et al. [55]. Based on the observation that in a computer
simulation the red bonds were hardly seen, they proposed
an alternative model, the Syerpinsky gasket, that repre-
sents the opposite extreme of the nodes and links picture.
It has a self-similar structure but only multiply connected
bonds are present. A great advantage of this model is that it
can be solved exactly. It also gives good prediction for the
fractal dimension of the backbone, but it fails to predict the
correct value for the dilute Ising crossover exponent [9].

Nodes, Links and Blobs Motivated by all these conflict-
ing models, some rigorous results were presented which
led unambiguously to the nodes, links and blobs picture of
the infinite cluster [23,24], in which both links and blobs
are relevant below d D 6, while only links are relevant
above d D 6 or in the mean field. In particular the follow-
ing relation was proven for any p and for any lattice in any
dimension:

p
dpi j
dp
D i j (22)

where pij is the probability that i and j are connected, ij is
the average number of red bonds between i and j, such that
if one is cut, i and j would have been disconnected. From
Eq. (22) it is possible to calculate the average number Lij of
red bonds between i and j under the condition that i and j
are in the same cluster:

Li j D
i j

pi j
: (23)

From the scaling form of pi j D r�dC2��p
i j f (ri j/�) it fol-

lows

Li j D r
1
�p
i j f1

�
ri j
�

�
; (24)

where f1(x) is related via Eqs. (22) and (23) to f (x) and
goes to a constant for x 
 1. In particular, by putting
ri j D � in Eq. (24) we obtain

LR � �
1
�p ; (25)

where LR � L(ri j D �) is the average number of red
bonds between two points separated by a distance of the
order of � . From Eq. (25) it follows that the fractal dimen-
sion of the red bonds is DR D 1/�p . An immediate conse-
quence is that not only the red bonds are relevant but also
the number of bonds LB in the blobs diverge. For more de-
tails, see [23,24]. Later Eq. (25) was confirmed numerically
by Pike and Stanley [83] in d D 2. Although the links are
much less in number than the backbone bonds, they can
be detected experimentally, in fact it can be shown [23,25]
that only the links determine the critical behavior of the di-
lute Ising model at pc leading to a crossover exponent 1 in
any d. While for a dilute Heisenberg system the crossover
exponent is related to the resistivity exponent, in agree-
ment with the experimental data of [9].

In conclusion we can write the following relations

yH D Dp; yT D DR (26)

where yH D d � ˇp/�p is the so-calledmagnetic field scal-
ing exponent and yT D 1/�p is the thermal scaling expo-
nent in the renormalization group language. This result is
quite interesting as it shows that the scaling exponents can
be expressed in terms of geometric quantities: The fractal
dimension Dp of the entire incipient infinite cluster, and
the fractal dimension DR of the subset made of red bonds.

Surfaces and Interfaces

The study of the structure of the surfaces and interfaces of
the large clusters below pc has not received as much atten-
tion as the study of the internal structure of the IIC. This
problem is relevant to the study of the dielectric constant
of random composite materials, the viscosity of a gel, the
conductivity of a random superconducting network, and
the relative termite diffusion model.

For simplicity, let us consider a random superconduct-
ing network in which superconducting bonds are present
with probability p and normal bonds carrying a unit resis-
tance with probability 1� p. For small values of p we have
finite superconducting clusters in a background of normal
resistor. As p! pc, the superconductivity˙ diverges. For
a finite cell of linear dimension L just below pc, the typical
configurations are characterized by two very large clusters
almost touching, each one attached to one of two oppo-
site faces. Inside these clusters there are islands of normal
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resistors. If a unit voltage is applied between the opposite
face of the hypercube, there is no current flowing through
the bonds in the island. We call these “dead” bonds, anal-
ogous to the dead ends of the percolating cluster. The re-
maining normal bonds connect one superconducting clus-
ter to the other. These bonds are made of “bridges”, also
called “antired” bonds, which have the property that if one
is replaced by a superconducting bond, a percolating su-
perconducting cluster is formed, and the remainingmulti-
ple “connecting” bonds. Similar to the red bonds, it can be
proved [26] that the fractal dimensionality of the antired
bonds is 1/�p . The proof is based on the following relation
which can be proved for any lattice in any dimension

(1 � p)
dpi j
dp
D �i j ; (27)

where pij is the pair connectedness function (the proba-
bility that sites i and j belong to the same cluster) and �ij
is the average number of antired bonds between i and j.
These are defined as non-active bonds, such that if one is
made active, i and j become connected.

The above considerations suggest that just below pc
the system can be imagined as a superlattice made of large
critical clusters whose centers are separated by a distance
of the order � . The surfaces of these clusters almost touch,
and are connected by bridges made of single bonds and
other paths made of more than one bond [33].

Finally we mention the following result which relates
the size of the critical cluster s� and the size of the entire
perimeter t� [13,58,95]

t� D
1 � p
p

s� � As�
p ; (28)

where �p D 1/(�pDp) is the critical exponent which ap-
pears in the cluster number Eq. (9) and A is a con-
stant. The last term s�
p which appears also in Fisher’s
droplet model [50] is usually interpreted as the surface
of the droplet. However, if it was a surface, �p should
satisfy the following boundary (d � 1)/d � �p � 1. The
upper bound corresponds to the fully rarefied droplets
and the lower bound to compact droplets. Surprisingly
enough for the percolation problem �p is strictly smaller
than (d � 1)/d. This paradox can be solved by using a re-
sult [25], which shows that As�
p is equal to a number
of antired bonds between critical clusters separated by
a distance of order � . Since the subset of antired bonds
is only a subset of the entire perimeter, it explains why
�p < (d � 1)/d. This result gives the best geometrical in-
terpretation of the thermal scaling exponent yT. It in fact
shows that yT D DAR, where DAR is the fractal dimension

of the antired bonds namely that part of the surface which
contributes to the surface tension.

Percolation in the Ising Model

In this section we want to extend the percolation problem
to the case in which the particles are correlated. The sim-
plest model to consider is the lattice gas or Ising model. In
the following we will use the Ising terminology. We know
that the Ising model exhibits a thermodynamic transition
for zero external field, H D 0, at a critical temperature Tc.
The question that we ask is how the percolation properties
are modified due to the presence of correlation. We first
consider the case when the clusters are made of nearest-
neighbor down spins (Subsect. “Scaling and Hyperscal-
ing”). Later in Subsect.“Breakdown of Hyperscaling” we
will modify the cluster definition in such a way that these
new clusters describe the thermal fluctuations namely we
require that the clusters satisfy the same properties as the
droplets in Fisher’s droplet model [50]. Namely, i) the size
of the clusters must diverge at the Ising critical points,
ii) the linear dimension of the clusters must diverge with
the same exponent as the correlation length, and iii) the
mean cluster size must diverge with the same exponent as
the susceptibility.

These conditions are satisfied if the cluster size distri-
bution for zero external field has the following form

n(s; T) D s�� f ((T � Tc)s
 ) : (29)

The parameters � and � are related to critical expo-
nents ˛, ˇ and � through Eqs. (10) and (11), where now
˛, ˇ and � are the Ising critical exponents. In particular
for d D 2, � D 8/15 ' 0:53 and � D 31/15 ' 2:07, and
for d D 3, � ' 0:64 and � ' 2:21.

Ising Clusters

The Hamiltonian of the Ising model is given by:

H D �J
X

hi ji

Si S j � H
X

i

Si (30)

where Si D ˙1 are the spin variables, J is the interac-
tion between two nearest-neighbor (nn) spins andH is the
magnetic field.

From the thermodynamic point of view the only quan-
tities of interest are those which can be obtained from the
free energy and those were the only quantities that On-
sager was concerned with in his famous solution of the
2d Ising model. However one can look at the Ising model
from a different perspective by studying the connectivity
properties using concepts such as clusters which have been
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Correlated Percolation, Figure 1
a Ising configuration at Tc: “down” spins are represented by filled
circles. b Correct clusters are obtained from the configuration
given in (a) by putting bonds between occupied sites with prob-
ability p D 1� e�2ˇJ

systematically elaborated in percolation theory [92]. There
are two reasons for approaching the problem also from the
connectivity point of view. One reason is that it gives a bet-
ter understanding of the mechanism of the phase tran-
sition [50]. In fact, concepts like universality and scaling
have been better understood in terms of geometrical clus-
ters and fractal dimensions [27]. A second reason is that
there are physical quantities amenable to experimental ob-
servations, which are associated to the connectivity prop-
erties and cannot be obtained from the free energy. It is
very important to note however that the definition of con-
nectivity, and therefore the definition of the cluster, is not
always the same, but may depend on the particular observ-
able associated with it.

In the Ising model, for a given configuration of spins
it is rather natural to define a cluster as a maximal set of
nn down parallel spins1 (Fig. 1). For some time these clus-
ters were believed to be responsible for the correlations
present in the Ising model. This idea was also based on nu-
merical results which showed evidence that in two dimen-
sions the mean cluster size diverges at the thermal critical
point [8]. However the idea that the clusters could describe
thermal correlations was definitively abandoned when it
was shown, by numerical simulations in the three-dimen-
sional Ising model [78] and by exact solution on the Bethe
lattice [22], that the percolation point appeared in the low
density phase of down spins on the coexistence curve at
a temperature Tp before the critical point Tc is reached
(Tp < Tc).

Later it was suggested by topological arguments [21]
that only in two dimensions does the critical point co-

1The Ising Hamiltonian, Eq. (30), is equivalent to the lattice gas
Hamiltonian HLG D �J0

P
hi ji nin j � �

P
i ni , with ni D (1 �

Si )/2; J0 D 4J and � D 2H � 4J. In the lattice gas terminology an
Ising cluster is a maximal set of nn occupied sites.

incide with the percolation point, but not necessarily in
higher dimensions. The arguments followed two steps: in
the first step it was argued that an infinite cluster of up
spins is a necessary condition for having a spontaneous
magnetization. This implies a percolation transition of
down spins on the coexistence curve Tp � Tc, in the sec-
ond step it was argued that due to topological reasons in
two dimensions it is not possible to have an infinite clus-
ter of up spins coexisting with an infinite cluster of down
spins, which implies Tp � Tc. Combining with the previ-
ous inequalities one obtains in two dimensions Tp D Tc.

Later these results were proven rigorously [36,37]
along with many other results relating connectivity and
thermodynamic quantities. For more details we refer to
the original papers.

It is clear that the Ising clusters, defined as a group of
nn parallel spins, do not have the property of describing
correlated regions corresponding to spin fluctuations as
originally expected. In fact even in two dimensions, where
the thermal critical point coincides with the percolation
point, the Ising clusters were not suitable for such descrip-
tion. Series expansion showed that the mean cluster size
diverges with an exponent, �� D 1:91˙0:001, rather dif-
ferent from the susceptibility exponent, � D 1:75 [100].
Later it has been shown exactly that �� D 91/48 [97].

Ising Droplets

From the properties mentioned in Subsect. “Ising Clus-
ters”, it appears that the Ising clusters are too big to de-
scribe the proper droplets. The reason is that there are two
contributions to the Ising clusters. One is due to correla-
tions but there is another contribution purely geometrical
due to the fact that two nn spins even in the absence of
correlation have a finite probability of being parallel. The
last contribution becomes evident in the limit of infinite
temperature and zero external field. In this case, in fact,
although there is no correlation and the susceptibility is
zero, the cluster size is different from zero. In fact in 3d
at infinite temperature there is even an infinite cluster of
“up” and “down” spins.

Binder [8] proposed to cut the infinite cluster in order
to have Tp D Tc in d D 3, but he did not give the micro-
scopic prescription to do it. Later Coniglio and Klein [30]
proposed to reduce the cluster size by introducing ficti-
tious bonds between nn parallel spins with probability pb
(Fig. 1). These new clusters are made of nn parallel spins
connected by bonds. The original Ising cluster will either
reduce its size or will break into smaller clusters. If pb D 1,
we obtain the Ising clusters again. This case is known as
the site correlated percolation problem because one looks
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at the properties of the Ising clusters just as in the ran-
dom percolation problem. The main difference is that in
random percolation the occupied sites are randomly dis-
tributed, while in this case the down (or up) spins are cor-
related according to the Ising Hamiltonian. In the infinite
temperature limit one recovers random percolation. The
case pb ¤ 1 is called site-bond correlated percolation [39].

A Hamiltonian formalism was proposed to study site
correlated percolation [79]. This formalism was gener-
alized in [30] to study site-bond correlated percolation.
In this case for the zero external field the Hamiltonian
is given by the following dilute Ising s-state Potts Model
(DIPM)2:

�HDP D Jb
X

hi ji

(ı
i
 j �1)(Si S jC1)C J
X

hi ji

Si S j ; (31)

where �i D 1; : : : ; s are Potts variables and the sum is over
all nearest neighbor sites. In the same way as the s-state
Potts model in the limit s D 1 [110] describes the ran-
dom bond percolation model, the DIPM describes per-
colation in the Ising model where the clusters are made
of parallel spins connected by bonds with probability,
pb D 1 � e�2ˇ Jb .

In particular the average number of clusters G, that
plays the role of the free energy in the percolation prob-
lem is given by G D dF/dsjsD1, where

� ˇF D lim
N!1

1
N

ln

0

@
X

f
i S ig

e�ˇHDP

1

A : (32)

At that time the DIPM was investigated in a different
context by Berker et al. [81]. The model exhibits the inter-
esting properties that by choosing Jb D J it coincides with
a pure sC 1-state Potts model. Therefore in the limit s D 1
the DIPM coincides with the s D 2 Potts model namely
with the Ising model. Consequently F becomes the Ising
model free energy and G has a singularity at the Ising criti-
cal point. This argument immediately suggested that the
site-bond correlated percolation for Jb D J namely with
the bond probability given by

pb � p D 1 � e�2ˇ J ; (33)

should reproduce the same critical behavior of the Ising
model. Namely the percolation quantities become critical
at the Ising critical point in the same way as the corre-
sponding thermal quantities.

2Originally in [30] the Hamiltonian of the DIPM,HDP, was ex-
pressed in terms of the lattice gas variables ni, and the Ising droplets
were defined as nn occupied sites connected by bonds, corresponding
to nn down spins.

In fact using real space renormalization group argu-
ments, it was possible to show that the size of the clus-
ters of parallel spins connected by bonds with probability,
pb, given by Eq. (33), diverges at the Ising critical point
with Ising exponents, exhibiting thus the same properties
as the droplets in Fisher’smodel. These clusters were called
droplets to distinguish them from the Ising clusters.

Droplets in Two and Three Dimensions

This site-bond correlated percolation problem has been
studied by real space renormalization groups in two
dimensions [30,35], by � expansion, near six dimen-
sions [31] and by Monte Carlo in two and three dimen-
sions [64,82,85,92].

The renormalization group analysis shows that in 2d
the Ising critical point is a percolation point for down or
up spins connected by bonds for all values of bond proba-
bility such that 1 � pb < 1 � e�2ˇ J . The fractal dimension
D� D (��/� C 2)/2 D 187/96 [97] being higher than the
fractal dimension D D (� /� C 2)/2 D 15/8 for the value
of pb � p D 1 � e�2ˇ J .

In the renormalization group language this means that
there are two fixed points, one corresponding to the uni-
versality class of the Ising cluster, the other one corre-
sponding to the droplets. In the first one, the variable Jb
is irrelevant, namely the scaling exponent associated with
it, yb < 0. In the second fixed point associated with the
droplets instead yb > 0. The result is that the Ising critical
point is a percolation point for a range of values of pb, at
the first sight seems counter-intuitive. In fact if the Ising
critical point corresponds to the onset of percolation for
Ising clusters (pb D 1), one would expect that for pb < 1
the clusters would not percolate anymore. The puzzle can
be clarified by studying the fractal structure of the Ising
clusters and the droplets at Tc [27]. In fact it can be shown
that yb is the scaling exponent of the red bonds, namely
LR � l yb where LR is the number of red bonds between
two connected sites separated by a distance of the order l,
consequently the droplets, characterized by yb > 0, are
made of links and blobs, like in random percolation. Due
to the presence of links the cluster breaks apart and does
not percolate anymore as the bond probability decreases.
On the contrary the Ising clusters (pb D 1), characterized
by yb < 0, are made only of blobs and no links, therefore
by decreasing the bond probability the infinite cluster does
not break and still percolates, until pb D p.

In 3d at the Ising critical point, Tc, there is an analo-
gous line of anomalous percolation points for clusters of
down spins connected by bonds, for all values of bond
probability such that 1 � pb < 1 � e�2ˇ J , although the
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probability P1 for a down spin to be in the infinite clus-
ter is different from zero. More precisely the quantity
pi j � P21 decays as a power law, where pij is the probabil-
ity that i and j are connected. For more details see [29]. As
pb decreases towards p D 1 � e�2ˇ J there is a crossover
towards a different power law characterized by the Ising
exponent, while P1 goes to 0.

Droplets in an External Field

By keeping the same definition of droplets given above,
in the case of an Ising model in an external field H > 0
one finds a phase diagram in the H; T plane or in the
M; T plane, with a percolation line of “down” spins end-
ing at the Ising critical point (see Fig. 2). Along the per-
colation line one finds critical exponents in the univer-
sality class of random percolation with a cross-over to
Ising critical exponents as the Ising critical point is ap-
proached. The Ising critical point being a higher order crit-
ical point for the percolation transition. This percolation
line, also known as the Kertesz line, has received some at-
tention [66,93,95,105] (see for more details the review by
Sator [88]). Although the Ising free energy has no singu-
larity along this line some physical interpretation is given
to the Kertesz line [17].

On the other hand this line disappears if the droplet
definition is modified in the presence of an external
field [40,104], according to Kasteleyn and Fortuin formal-
ism [65] and the Swendsen and Wang approach [99]. In
this approach the field is treated as a new interaction be-
tween each spin and a ghost site. Consequently for positive

Correlated Percolation, Figure 2
Monte Carlo simulations of the 3d lattice gasmodel for three val-
ues of the bond probability pb D 1� e�2cˇJ with the constant
c D 2:25;1;0:564 from left to right. ˚ is the density of down
spins. The Gel and the Sol indicates the percolation and non per-
colation phase. From [59]

H (negative H) an “up” (“down”) spin can be connected
to the ghost spin with a probability pH D 1 � e�2ˇ jHj .
Droplets now are defined as a maximal set of spins con-
nected by bonds where as before the bonds between near-
est-neighbor parallel spins have probability pb given by
Eq. (33) and pH between spins and the ghost spin. Note
that two far away spins can be easily connected through
the ghost spin. In this way the presence of a positive (neg-
ative) magnetic field implies always the presence of an in-
finite cluster of “up” (“down”) spins.

Exact Relations Between Connectivity
and Thermal Properties

Interestingly it was also shown [40] that the droplets so
defined have the same statistics as the clusters in the
random cluster model introduced by Kasteleyn and For-
tuin (KF) [65] (see Subsect. “Fortuin–Kasteleyn–Random
Cluster Model”), although the CK droplets and the KF
clusters have a different meaning. Using the relations be-
tween the connectivity properties of the random cluster
model and the thermal properties of the Ising model, it
was finally possible to prove that in any dimension and for
any temperature T and external fieldH > 0, provided that
the extension of the droplet definition in the external field
is considered, the following relations between connectivity
and thermal properties hold [40]:

(
�1 D m
pi j D gi j

(34)

where �1 is the density of up spins in the percolating
droplet, m is the magnetization per site, pij is the prob-
ability that i and j are connected (through both finite or
infinite droplet) and gi j D hSi S ji.

In particular, for T > Tc and zero external field
H ! 0, we have that the magnetization m D 0 and gij co-
incides with the spin-spin pair correlation function. Con-
sequently �1 D 0, namely the probability for a spin to be
in an infinite droplet is zero, and therefore pij coincides
with the probability that two spins i and j are in the same
finite droplet. For T < Tc instead we have �1 D m > 0,
and pi j D p f

i j C p1i j , where p f
i j (p

1
i j ) is the probability

that spins in i and j are in a finite (infinite) droplet. From
Eq. (34) it follows for T < Tc:

p f
i j C p1i j � �

2
1 D hSi S ji � m2 : (35)

By summing over i and j we have

S C (
�1)2 D � ; (36)



1606 C Correlated Percolation

where S is the mean cluster size of the finite clusters,
(
�1)2 is the fluctuation of the density of the infinite clus-
ter and � is the susceptibility. These exact results show
that above Tc mean cluster size and susceptibility coincide,
while below Tc there are two contributions to the suscep-
tibility, one due to the mean cluster size and the second
related to the fluctuation of the density of the infinity clus-
ter. Monte Carlo calculations [85] show that both terms
have the same critical behavior as also occurs in random
percolation [18,34], so the mean cluster size S diverges like
the susceptibility. We expect that this is the case for di-
mensions up to d D 4, the upper critical dimensionality of
the Ising model. In the mean field, as we will see, the mean
cluster size below Tc diverges with an exponent different
from the susceptibility.

One very interesting application based on the KF ap-
proach was produced by Swendsen and Wang [99,106],
who elaborated a cluster dynamics which drastically re-
duced the slowing down near the critical point of the Ising
and Potts model (see also [109] for further developments).

The droplet definition can be extended to the nn anti-
ferromagnetic Ising model [4] and to the Ising model with
any ferromagnetic interaction Jij between sites i and j [64].
In this case the CK clusters are defined as set of parallel
spins connected by bonds present between i and j with
probability pi j D 1 � exp [�2ˇJi j]. It can be shown that
also in this case the relations (34) between connectivity
and thermal quantities hold.

Ising Droplets Above d D 4

In Subsect. “Ising Droplets” we have reported the relations
Eqs. (34) and (35), which are exact and are valid in any
dimension including the mean field. As a matter of fact
in the mean field the percolation order parameter and the
magnetization are identical and go to zero with the expo-
nent ˇ D 1/2, while the mean cluster size above Tc coin-
cides with the susceptibility and diverges with the expo-
nent � D 1. The same is true for the connectedness length
above Tc, which coincides with the correlation length, and
diverges with an exponent � D 1/2. However below Tc the
mean cluster size diverges with an exponent � 0 D 1/2 and
the correlation length with an exponent �0 D 1/4. The re-
sult is a consequence that the two terms in Eq. (35), the
probability that two sites are in the same finite droplet, p f

i j ,
and the correlation of the infinite droplet density at site i
and j, p1i j � �

2
1, do not scale in the same way, giving rise

to two lengths, diverging respectively with exponents �0

and �.
These somehow anomalous results are probably a con-

sequence that the Ising model has an upper critical dimen-

sion dc D 4 while the DIPM which describes the droplet
problem has an upper critical dimension dc D 6 [31].
In fact there are arguments that for 4 � d � 6 below Tc
the critical exponents are �0 D 1/(d � 2), � 0 D 2/(d � 2),
ˇ D 1/2, � D 0 and fractal dimension Dp D 1/2(d C 2),
with an upper critical dimension dc D 6. Of course for
T > Tc the exponents are � D 1, � D 1/2 and � D 0.

Due to the breakdown of the mapping between ther-
mal fluctuations and mean cluster size below Tc above
d D 4, it is not possible to extend easily the geometrical
picture, employed in random percolation, to explain the
breakdown of hyperscaling in the Ising model. For a study
of droplets inside the metastable region see [5].

Generalization to the q-State Potts Model

All the results found for the Ising case have been ex-
tended [32] to the q-state Potts model. This model is de-
fined by the following Hamiltonian:

�Hq D qJ
X

hi ji

ı
i
 j ; (37)

where the spin variables � i can assume q values, �i D
1; : : : ; q. This model coincides with the Ising model for
q D 2, reproduces the random percolation problem in
the limit q D 1 and the tree percolation model in the
limit q D 0 [110]. The geometrical approach developed
in the previous sections for the Ising model, can be ex-
tended to the q-state Potts model. In particular one can
define the site-bond Potts correlated percolation, where
clusters are made of nn spins in the same state, con-
nected by bonds with bond probability pb. By choosing
pb D p D 1 � e�qˇ J , it is possible to show that these clus-
ters percolate at the Potts critical temperature Tc(q), with
percolation exponents identical to the thermal exponents
and therefore behave as the critical droplets.

The formalism is based on the following diluted Potts
model [32,102]:

�H q
DP D Jb

X

hi ji

(ı�i� j � 1)ı
i
 j C qJ
X

hi ji

ı
i
 j ; (38)

where the second term, which controls the distribu-
tion of spin variables, is the q-state Potts Hamiltonian,
whereas the first term contains auxiliary Potts variables
�i D 1; 2; : : : ; s and controls the bonds distribution.

As in the Ising case, Hamiltonian (37) in the limit
s! 1 describes the site-bond Potts correlated percolation
problem with pb given by pb D 1 � e�qˇ Jb . The droplets
are obtained in the particular case Jb D qJ. For this value
in fact Hamiltonian (37) for s! 1 coincides with the
q-state Potts model.



Correlated Percolation C 1607

Correlated Percolation, Table 1
Fractal dimensions, for d D 2, of thewhole cluster (D), of the Hull
(DH), and of the red bonds (DR) for the Potts droplets. It is also
reported the thermal power exponent yT

q D yT DH DR

0 2 0 2 5/4
1 91/48 3/4 7/4 3/4
2 15/8 1 5/3 13/24
3 28/15 6/5 8/5 7/20
4 15/8 3/2 3/2 0

Once the Ising and Potts model has been mapped onto
a percolation problem, we can extend some of the results
of random percolation to thermal problems.

Fractal Structure in the Potts Model: Links and Blobs

Like in random percolation, also in the q-state Potts model
it can be shown that at Tc(q) the critical droplets have
a fractal structure made of links and blobs, with a frac-
tal dimension D(q) D d � ˇ(q)/�(q), where ˇ(q) and �(q)
are respectively the order parameter and correlation length
exponent. Therefore D(q) coincides with the magnetic
scaling exponent yH(q). However the fractal dimension of
the red bonds DR(q) does not coincide with the thermal
scaling exponent yT(q), associated with the thermal vari-
able J, like in random percolation. Instead DR(q) is found
to coincide with the bond probability scaling exponent yb
associated with the variable Jb in Hamiltonian (37) [27].

Like for random percolation the fractal dimension of
the red bonds coincides with the fractal dimension of the
antired bonds. Using the mapping from the Potts model
to the Coulomb gas [87], it is possible to obtain the exact
value of the fractal dimension of the red bonds and of the
external perimeter or hull [27]. For further exact results
see also [10,97].

From Table 1 it appears that the exact value of D(q)
does not vary substantially with q, for d D 2. This observa-
tion can be understood by noting that, using this geometri-
cal approach, the driving mechanism of the critical behav-
ior can be viewed as coalescence of clusters just like in ran-
dom percolation. Then one would expect for any q that the
fractal dimension should be close to the fractal dimension
of the critical clusters in the percolation problem. This also
explains the observation of Suzuky [98], known as strong
universality, that for a large class of models the ratio � /�
or ˇ/� do not vary appreciably. Since these ratios of critical
exponents for fixed d depend only on the magnetic scaling
exponent, which is identical to the fractal dimension, the
strong universality is a consequence of the quasi-universal

feature of the fractal dimension as discussed above. Un-
likely the fractal dimension of the whole cluster,DR(q) and
DH(q) do change substantially and characterize the differ-
entmodels as function of q. Particularly sensitive to q is the
fractal dimension of the red bonds, which has its largest
value at q D 0 (tree percolation), where the backbone is
made only of links. As q approaches qc the cluster becomes
less ramified until the red bonds vanish (DR(4) D 0). This
results in a drastic structural change from a links and blobs
picture to a blobs picture only, anticipating a first order
transition. Interestingly, the fractal dimension of the red
bonds for q D 0, DR D 5/4, has been related to the abelian
sandpile model [47]. The reason why DR(q) is so model-
dependent is due to the fact that the fractal set of the red
bonds is only a small subset of the entire droplet, and
therefore this “detail” is strongly model dependent. Also
the thermal exponent yT(q) is strongly model-dependent,
however so far the geometrical characterization in terms of
a fractal dimension for such exponent has not been found
except q D 1 (random percolation).

Fortuin–Kasteleyn–Random Cluster Model

Wewill present here the random cluster model introduced
by Kasteleyn and Fortuin. Let us consider the q-state Potts
model on a d-dimensional hypercubic lattice. By freezing
and deleting each interaction of the Hamiltonian (see “Ap-
pendix: Random Cluster Model and Ising Droplets”), they
managed to write the partition function of the Potts model,
Z D

P
f
ig

e�ˇHq , in the following way

Z D
X

C

pjCj(1 � p)jAjqNC ; (39)

where C is a configuration of bonds defined in the same
hypercubic lattice, just like a bond configuration in the
standard percolation model, jCj and jAj are respectively
the number of bonds present and absent in the configura-
tion C, and NC is the number of clusters in the configura-
tion C.

In conclusion, in the KF formalism the partition func-
tion of the Potts model is identical to the partition func-
tion (39) of a correlated bond percolation model [62,65]
where the weight of each bond configuration C is given by

W(C) D pjCj(1 � p)jAjqNC (40)

which coincides with the weight of the randompercolation
except for the extra factor qNC . They called this particu-
lar correlated bond percolation model the random cluster
model. Clearly for q D 1 the cluster model coincides with
the random percolation model.
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Kasteleyn and Fortuin have related the percolation
quantities associated with the random cluster model to
the corresponding thermal quantities in the q-state Potts
model [65]. In particular for the Ising case, q D 2,

jhSiij D h�1i iW (41)

and

hSi S ji D h�i jiW ; (42)

where h: : : i is the Boltzmann average and h: : : iW is the av-
erage over bond configurations in the bond correlated per-
colation with weights given by (40). Here �1i (C) is equal
to 1 if the spin at i belongs to the infinite cluster, 0 other-
wise; �i j(C) is equal to 1 if the spins at sites i and j belong
to the same cluster, 0 otherwise.

Interestingly the connectivity properties in the KF ran-
dom cluster model can be related to the CK droplets:

�1 D h�
1
i iW ; (43)

pi j D h�i jiW ; (44)

where �1 and pij are defined in Subsect. “Ising Droplets
Above d D 4”. From Eqs. (41)–(44) it follows Eqs. (34).

Hill’s Clusters

In this section we discuss the possibility to extend the def-
inition of droplets to simple fluids. In 1955 Hill [60] in-
troduced the concept of physical clusters in a fluid in an
attempt to explain the phenomenon of condensation from
a gas to a liquid. In a fluid made of particles interacting
via a pair potential u(r) physical clusters are defined as
a group of particles pairwise bounded. A pair of particles
is bounded if in the reference frame of their center of mass
their total energy is less than zero. Namely their relative ki-
netic energy plus the potential energy is less than zero. The
probability that two particles at distance r are bounded can
be calculated [60] and is given by

pH(r) D
4
�

Z p�ˇu(r)

0
x2e�x

2
dx : (45)

More recently it was noted [16] that the bond prob-
ability Eq. (45) calculated for the interaction of the three-
dimensional nn lattice gas model is almost coincident with
the bond probability p of Eq. (33). This implies that Hill’s
physical clusters for the 3d lattice gas almost coincide with
the droplets defined by Coniglio and Klein, and in fact
Hill’s clusters percolate along a line almost indistinguish-
able from the droplets percolation line (see Fig. 2).

Correlated Percolation, Figure 3
Phase diagram of the Lennard–Jones fluid using molecular dy-
namics. The full line corresponds to percolation of cluster follow-
ing Hill’s definition. From [17]

In order to calculate percolation quantities in a fluid,
in [38] the authors developed a theory based on Mayer’s
expansion. In particular, using this theory they calculated
analytically for a potential made of a hard core plus an at-
tractive interaction, the percolation line of Hill’s physical
clusters in a crude mean field approximation and com-
pared with the liquid gas coexistence curve. They found
that the percolation line ended just below the critical point
in the low density phase but not exactly at the critical
point. For further developments of the theory see [56].

Very recently, Campi et al. [17], using molecular dy-
namics have calculated the percolation line of Hill’s phys-
ical clusters for a Lennard–Jones potential. The results
showed a percolation line ending close or at the critical
point (Fig. 3) suggesting that Hill’s clusters are good candi-
dates to describe the density fluctuations like the droplets
in the lattice gas model, although there is no proof of re-
lations analogous to those valid for the droplets in the lat-
tice gas such as Eq. (34), which would prove that their size
would diverge exactly at the critical point with thermal ex-
ponents.

Although Hill’s clusters may represent the critical fluc-
tuation near the critical point, we may wonder whether
they have a physical meaning away from the critical point.
In particular we may wonder whether we can detect ex-
perimentally the percolation line in the phase diagram.
In a Lennard–Jones fluid, molecular dynamics shows that
quantities such as viscosity or the diffusion coefficient do
not seem to exhibit any anomalous behavior through the
percolation line [17]. In some colloids instead the perco-
lation line is detected through a steep increase of the vis-
cosity. What would be the difference in the two cases? The
difference may rely on their lifetime. The possibility to de-
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tect the percolation line of these clusters is expected to de-
pend on the lifetime of the clusters which in turn depends
on the bond lifetime. The larger the cluster lifetime, the
larger the increase of the viscosity, and the better the per-
colation line can be detected. In Sect. “Scaling Behavior of
the Viscosity” we will discuss the behavior of the viscosity
as function of the lifetime of the clusters.

Clusters inWeak and Strong Gels

In the previous section we have shown the case in which
the probability of having a bond between two particles co-
incides with the probability that the two particles form
a bound state defined according toHill’s criterion. Nowwe
want to show another mechanism leading to the formation
of bound states, which is more appropriate to gels. The im-
portance of connectivity in gels was first emphasized by
Flory [51]. The application of percolation theory to gels
was later suggested by de Gennes [43] and Stauffer [91,96].
Here we consider a systemmade ofmonomers in a solvent.
Following [39] we shall assume that the monomers can in-
teract with each other in two ways. One is the usual van der
Waals interaction, and the other is a directional interac-
tion that leads to a chemical bond. A simplemodel for such
a system is a lattice gas model where an occupied site rep-
resents a monomer and an empty site a solvent. For sim-
plicity we can put the monomer-solvent interaction and
the solvent-solvent interaction equal to zero, and include
such interactions in an effective monomer-monomer in-
teraction. The monomer-monomer interaction "ij can rea-
sonably be approximated by a nearest neighbor interaction

"i j D

(
�W
�E

(46)

where �W is the van der Waals type of attraction and �E
is the bonding energy. Of course, this second interaction,
which is the chemical interaction, occurs only when the
monomers are in particular configurations. For simplicity
we can suppose that there is one configuration which cor-
responds to the interaction of strength E, and ˝ configu-
rations which correspond to the interaction of strengthW.
We expect E 	 W and ˝ 	 1. It can be easily calcu-
lated [39] that such a system is equivalent to a lattice gas
model with an effective nn interaction �" given by

eˇ" D eˇE C˝eˇW : (47)

Therefore from the static point of view the system ex-
hibits a coexistence curve and a critical temperature which
characterizes the thermodynamics of the system. However
the system microscopically behaves rather different from

a standard lattice gas. In fact in a configuration in which
two monomers are nn, in a standard lattice gas they feel
one interaction, while in the system considered here with
some probability pb they feel a strong chemical interaction
�E and with probability 1 � pb they feel a much smaller
interaction �W . The probability pb can be easily calcu-
lated and is given by

pb D
eˇE

eˇE C˝eˇW
: (48)

In conclusion, the system from the static point of
view is equivalent to a lattice gas with interaction " given
by (47). However we can also study the percolation line
of the clusters made by monomers connected by chemical
bonds. This can be done by introducing bonds between nn
particles in the lattice gas with nn interactions, the bonds
being present with probability pb given by Eq. (48). By
changing the solvent the effective interaction W changes
and one can realize three cases topologically similar to
those of Fig. 2, where the percolation line ends at the crit-
ical point or below the critical point in the low density or
high density phase (for more details see [39]).

The lifetimes of the bonds are of the order of eˇE . Since
E is very large the lifetime could be very large. For an infi-
nite bond lifetime the bonded clusters are permanent and
the viscosity diverges due to the divergence of the mean
cluster size (see for example [96]), and the percolation line
can be easily detected.We consider three particular physi-
cal systems which could be rather emblematic of a general
situation where the percolation line has been detected:

a) Microemulsions of water in oil [20]
b) Triblock copolymers in unicellular systems [71,72]
c) Gelatin water methanol systems [101].

In Figs. 4, 5 and 6 we show respectively the phase dia-
gram of the systems a), b), c), where the coexistence curve
in the temperature-concentration diagram is shown to-
gether with “percolation lines”.

In particular, in a) the system consists of three com-
ponents AOT/water/decane. For the temperature and the
concentration of interest, the system can be considered as
made of small droplets of oil surrounded by water in a sol-
vent. The droplets interact via a hard core potential plus
short range attractive interaction. Because of the entropic
nature of the attractive interaction, the coexistence curve
is “upside-down” with the critical point being the mini-
mum instead of the maximum (Fig. 4). The broken line is
characterized by a steep increase of conductivity.

In b) the system is made of triblock copolymers unicel-
lular in water solution, c is the volume fraction of the uni-
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Correlated Percolation, Figure 4
Experimental points in AOT/water/decane from [20] together
with the coexistence curve and spinodal curve based on the Bax-
ter’s model. The percolation linewhere the conductivity exhibits
a steep increase has been fitted with the Baxter’s model

Correlated Percolation, Figure 5
L/64 water system. Experimental points of the coexistence curve
and percolation line, where the viscosity exhibits a steep in-
crease. From [72]

cells (Fig. 5). The line is characterized by a steep increase
in the viscosity.

In c) the system is made of gelatin dissolved in water +
methanol; � is the gelatin concentration. The broken lines
are characterized by the divergence of the viscosity and
correspond to the sol-gel transition. Each line represents
a different value of the methanol concentration, which has
been chosen in such a way that the line ends at the con-
solute point or, below it, in the low or high density phase
(Fig. 6).

In all these experiments the consolute point is charac-
terized by a thermodynamical singularity, where the corre-
lation length and compressibility diverge. The other lines
are usually ascribed to a “percolation” transition. However
it is important to precisely identify which are the relevant

Correlated Percolation, Figure 6
Sol-Gel transition temperature (solid symbols) and the spinodal
temperature (open symbols) of gelatin-water-methanol mixtures
as function of gelatin concentration. At the sol-gel transition the
viscosity diverges. From [101]

clusters in the three different systems. Also we would like
to understand why, in system c), the viscosity diverges at
the percolation transition, while in b) it reaches a plateau,
and why in a) and b) the “percolation” lines end on the co-
existence curve close to the critical point in the low den-
sity region. It is also important to realize that for each
phenomenon is very important to define the proper clus-
ter, which is responsible for the physical phenomenon. In
the conductivity experiments inmicroemulsion the proper
clusters are made of “touching” spheres similar to nearest
neighbor particles in a lattice gas model. The viscoelastic
properties of microemulsions may be more suitably de-
scribed by clusters made of spheres pairwise bonded.

From the cluster properties of the lattice gas model
we expect the infinite cluster is a necessary condition for
a critical point therefore the percolation line ends just be-
low the critical point in the low density region, as ob-
served in the experiments described above and more re-
cently in numerical simulations of models of interacting
colloids [84].

In weak reversible gelatin the clusters are made of
monomers (or polymers) bonded by a strong interaction
which leads to chemical bond. In this case the bond prob-
ability can be changed by changing the solvent and there-
fore the percolation line, by properly choosing the solvent,
can end on the coexistence curve at or below the critical
point.

The reason why the viscosity in the gel experiments di-
verges at the percolation point, while it reaches a plateau in
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colloids, is due to the lifetime of the bonds which is much
longer in the first system than in the second [46,73,86].
In low density colloids the proper cluster to describe col-
loidal gelation also appear to be related to strong bonds
with large bond lifetime [14,41,86]. When the relaxation
time is much smaller than the bond lifetime the dynam-
ics is dominated by the clusters, otherwise a crossover is
expected towards a regime due to the crowding of the par-
ticles [41]. Percolation line of clusters pairwise bonded can
also be defined in fluids, but due to the negligible lifetime
cannot be detected.

Scaling Behavior of the Viscosity

If the lifetime of the chemical bonds is infinite, the viscos-
ity exhibits a divergence at the percolation threshold as re-
cently shown in different models [11,45,103]

� � � k̃ ; (49)

where � is the linear dimension of the critical cluster which
diverges at the percolation threshold with the exponent �.

The relation between the diffusion coefficient D(R) of
a cluster of radius R and the viscosity � would be given
by the Stokes–Einstein relation for a cluster radius much
larger than �

D(R) �
1
R�

: (50)

For cluster radius R smaller than � it has been pro-
posed [75] that the viscosity will depend also on R in
such a way as to satisfy a generalized Stokes–Einstein re-
lation Eq. (50) with � D �(R). When R D � the viscosity
�(�) D �, and from Eq. (50) one obtains the following scal-
ing behavior for R:

D(R) � R�(1Ck̃) (51)

therefore the relaxation time �(R) for a cluster of radius R
is

�(R) � R1Ck̃ : (52)

If � is the lifetime of a typical cluster, then a cluster of
radius R will contribute to the viscosity if �(R) < � , and
therefore:

� � � k̃ f
�

�

�1Ck̃

�
�

(
� k̃ � > �1Ck̃

�
k̃

1Ck̃ � < �1Ck̃
(53)

which implies that the viscosity will exhibit a steep in-
crease followed by a plateau. The higher � is, the higher
the plateau.

The viscosity data on microemulsion (Fig. 5) shows in
fact such a plateau, suggesting that the mechanism for the
appearance of the plateau is linked to the bond lifetime
which in turn is related to the cluster relaxation time.

Future Directions

In conclusion, we have discussed the interplay between the
percolation line and critical point in systems where ther-
mal correlations play an important role. The problem of
defining the droplets in spinmodels is satisfactorily solved.
However there are still some open problems. Above d D 4
in the Ising model the definition of droplets presents some
difficulties, probably related to the upper critical dimen-
sion for the percolation problem. That critical dimension
is six. This type of difficulty does not allow for a trivial ex-
tension of the arguments used in the random percolation
problem, to explain the hyperscaling breakdown. Another
open problem is the characterization of the thermal scaling
exponent 1/�, in terms of the fractal dimension of some
subset of the critical droplet, as occurs in the random per-
colation problem.

In the last decade the KF, CK approach has been ex-
tended to frustrated systems. Interestingly this approach
has led to a new frustrated percolation model, with un-
usual properties relevant to spin glasses and other glassy
systems [77,80]. However the precise definition of clusters,
which are able to characterize the critical droplets for spin
glasses, is still missing.

Although some advances have been obtained towards
a droplet definition in Lennard Jones systems [17], a gen-
eral definition for continuum models of fluids still needs
to be formulated.

Appendix: RandomClusterModel and Ising Droplets

In 1969 Kasteleyn and Fortuin (KF) [65] introduced a cor-
related bond percolation model, called the random cluster
model, and showed that the partition function of this per-
colation model was identical to the partition function of
the q-state Potts model. They also showed that the ther-
mal quantities in the Potts model could be expressed in
terms of connectivity properties of the random cluster
model. Much later in 1980 Coniglio and Klein [30] in-
dependently have used a different approach with the aim
to define the proper droplets in the Ising model. It was
only later that it was realized that the two approaches
were related, although the meaning of the clusters in the
two approaches is different. We will discuss these two ap-
proaches here, and show that their statistical properties are
the same.
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Random Cluster Model

Let us consider an Ising system of spins Si D ˙1 on a lat-
tice with nearest-neighbor interactions and, when needed,
let us assume periodic boundary conditions in both direc-
tions. All interactions have strength J and the Hamiltonian
is

H (fSig) D �
X

hi; ji

J(Si S j � 1) ; (54)

where fSig represents a spin configuration and the sum is
over nn spins. The main point in the KF approach is to
replace the original Ising Hamiltonian with an annealed
diluted Hamiltonian

H 0(fSig) D �
X

hi; ji

J0i j(Si S j � 1) ; (55)

where

J0i j D

(
J0 with probability p
0 with probability (1 � p) :

(56)

The parameter p is chosen such that the Boltzmann
factor associated with an Ising configuration of the origi-
nal model coincides with the weight associated with a spin
configuration of the diluted Ising model

e�ˇH (fSig) �
Y

hi; ji

eˇ J(Si S j�1)

D
Y

hi; ji



peˇ J

0(Si S j�1) C (1 � p)
�
;

(57)

where ˇ D 1/kBT , kB is the Boltzmann constant and T is
the temperature. In order to satisfy (57) we must have

eˇ J(Si S j�1) D peˇ J
0(Si S j�1) C (1 � p) : (58)

We take now the limit J0 7! 1. In such a case eˇ J0(Si S j�1)

equals the Kronecker delta ıSi S j and from (58) p is given
by

p D 1 � e�2ˇ J : (59)

From (57), by performing the products we can write

e�ˇH (fSig) D
X

C

WKF(fSig;C) ; (60)

where

WKF(fSig;C) D pjCj(1 � p)jAj
Y

hi; ji2C

ıSi S j : (61)

Here C is a configuration of interactions where jCj is
the number of interactions of strength J0 D 1 and jAj
the number of interactions of strength 0. jCj C jAj D jEj,
where jEj is the total number of edges in the lattice.

WKF(fSig;C) is the statistical weight associated a) with
a spin configuration fSig and b) with a set of interactions
in the diluted model where jCj edges have1 strength in-
teractions, while all the other edges have 0 strength inter-
actions. The Kronecker delta indicates that two spins con-
nected by an1 strength interaction must be in the same
state. Therefore the configuration C can be decomposed
in clusters of parallel spins connected by infinite strength
interactions.

Finally the partition function of the Ising model Z is
obtained by summing the Boltzmann factor (60) over all
the spin configurations. Since each cluster in the configu-
ration C gives a contribution of 2, we obtain:

Z D
X

C

pjCj(1 � p)jAj2NC ; (62)

whereNC is the number of clusters in the configuration C.
In conclusion, in the KF formalism the partition func-

tion (62) is equivalent to the partition function of a corre-
lated bond percolation model [62,65] where the weight of
each bond configuration C is given by

W(C) D
X

fSig

WKF(fSig;C) D pjCj(1 � p)jAj2NC (63)

which coincides with the weight of the random percola-
tion except for the extra factor 2NC . Clearly all percolation
quantities in this correlated bond model are weighted ac-
cording to Eq. (63) coincide with the corresponding per-
colation quantities of the KF clusters made of parallel spins
connected by an 1 strength interaction, whose statisti-
cal weight is given by (61). Moreover using (61) and (60)
Kasteleyn and Fortuin have proved that [65]

jhSiij D h�1i iW (64)

and

hSi S ji D h�i jiW ; (65)

where h: : : i is the Boltzmann average and h: : : iW is the av-
erage over bond configurations in the bond correlated per-
colation with weights given by (63). Here �1i (C) is equal
to 1 if the spin at site i belongs to the spanning cluster,
0 otherwise; �i j(C) is equal to 1 if the spins at sites i and j
belong to the same cluster, 0 otherwise.
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Connection Between the Ising Droplets
and the Random Cluster Model

In the approach followed by Coniglio and Klein [30], given
a configuration of spins, one introduces at random con-
necting bonds between nn parallel spins with probability
pb, antiparallel spins are not connected with probability 1.
Clusters are defined as maximal sets of parallel spins con-
nected by bonds. The bonds here are fictitious, they are
introduced only to define the clusters and do not modify
the interaction energy as in the FK approach. For a given
realization of bonds we distinguish the subsets C and B
of nn parallel spins respectively connected and not con-
nected by bonds and the subset D of nn antiparallel spins.
The union of C, B and D coincides with the total set of nn
pair of spins E. The statistical weight of a configuration of
spins and bonds is [28,40]

WCK(fSig;C) D pjCjb (1 � pb)jBje�ˇH (fSig) ; (66)

where jCj and jBj are the number of nn pairs of parallel
spins respectively in the subset C and B not connected by
bonds.

For a given spin configuration, using the Newton bi-
nomial rule, we have the following sum rule

X

C

pjCjb (1 � pb)jBj D 1 : (67)

From Eq. (67) follows that the Ising partition function, Z,
may be obtained by summing (66) over all bond configu-
rations and then over all spin configurations.

Z D
X

fSig

X

C

WCK(fSig;C) D
X

fSig

e�ˇH (fSig) : (68)

The partition function of course does not depend on
the value of pb which controls the bond density. By tun-
ing pb instead it is possible to tune the size of the clusters.
For example by taking pb D 1 the clusters would coin-
cide with nearest-neighbor parallel spins, while for pb D 0
the clusters are reduced to single spins. By choosing the
droplet bond probability pb D 1 � e�2ˇ J � p and observ-
ing that e�ˇH (fSig) D e�2ˇ JjDj, where jDj is the number
of antiparallel pairs of spins, the weight (66) simplifies and
becomes:

WCK(fSig;C) D pjCj(1 � p)jAj ; (69)

where jAj D jBj C jDj D jEj � jCj.
From (69) we can calculate the weight W(C) that

a given configuration of connecting bonds C between nn
parallel spins occurs. This configuration C can occur in

many spin configurations. So we have to sum over all spin
configurations compatible with the bond configuration C,
namely

W(C) D
X

fSig

WCK(fSig;C)
Y

hi; ji2C

ıSi S j ; (70)

where, due to the product of the Kronecker delta, the sum
is over all spin configurations compatible with the bond
configuration C. From (59) and (70) we have

W(C) D
X

fSig

pjCj(1 � p)jAj
Y

hi; ji2C

ıSi S j

D pjCj(1 � p)jAj2NC :

(71)

Consequently in (68) by taking first the sum over all
spins compatible with the configuration C, the partition
function Z can be written as in the KF formalism (62).

Z D
X

C

pjCj(1 � p)jAj2NC : (72)

In spite of the strong analogies the CK clusters and the
KF clusters have a different meaning. In the CK formalism
the clusters are defined directly in a given configuration
of the Ising model as parallel spin connected by fictitious
bonds, while in the KF formalism clusters are defined in
the equivalent random cluster model. However, due to the
equality of the weights (69) and (61) the statistical proper-
ties of both clusters are identical [40] and due to the rela-
tions between (61) and (63) both coincide with those of the
correlated bond percolation whose weight is given by (63).
More precisely, any percolation quantity g(C) which de-
pends only on the bond configuration has the same aver-
age

hg(C)iKF D hg(C)iCK D hg(C)iW ; (73)

where h: : : iKF, h: : : iCK are the average over spin and bond
configurations with weights given by (61) and (69) re-
spectively and h: : : iW is the average over bond configura-
tions in the bond correlated percolation with weights given
by (63). In view of (73) it follows [40]

jhSiij D h�1i iCK (74)

and

hSi S ji D h�i jiCK : (75)

We end this section noting that in order to generate an
equilibrium CK droplet configuration in a computer sim-
ulation, it is enough to equilibrate a spin configuration
of the Ising model and then introduce at random ficti-
tious bonds between parallel spins with a probability given
by (59).
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Glossary

Correlation A correlation describes the degree of rela-
tionship between two or more variables. The correla-
tions are viewed due to the impact of random factors
and can be characterized by the methods of probability
theory.

Correlation function The correlation function (abbrevi-
ated, as CF) represents the quantitative measure for the
compact description of the wide classes of correlation
in the complex systems (CS). The correlation func-
tion of two variables in statistical mechanics provides
a measure of the mutual order existing between them.
It quantifies the way random variables at different po-
sitions are correlated. For example in a spin system, it
is the thermal average of the scalar product of the spins
at two lattice points over all possible orderings.

Memory effects in stochastic processes through correla-
tions Memory effects (abbreviated, as ME) appear at

a more detailed level of statistical description of cor-
relation in the hierarchical manner. ME reflect the
complicated or hidden character of creation, the prop-
agation and the decay of correlation. ME are produced
by inherent interactions and statistical after-effects
in CS. For the statistical systems ME are induced by
contracted description of the evolution of the dynamic
variables of a CS.

Memory functions Memory functions describe mutual
interrelations between the rates of change of random
variables on different levels of the statistical descrip-
tion. The role of memory has its roots in the natural
sciences since 1906 when the famous Russian math-
ematician Markov wrote his first paper in the theory
of Markov Random Processes. The theory is based
on the notion of the instant loss of memory from
the prehistory (memoryless property) of random pro-
cesses.

Information measures of statistical memory in complex
systems From the physical point of view time scales of

correlation and memory cannot be treated as arbi-
trary. Therefore, one can introduce some statistical
quantifiers for the quantitative comparison of these
time scales. They are dimensionless and possess the
statistical spectra on the different levels of the statisti-
cal description.

Definition of the Subject

As commonly used in probability theory and statistics,
a correlation (also so called correlation coefficient), mea-
sures the strength and the direction of a linear relation-
ship between two random variables. In a more general

sense, a correlation or co-relation reflects the deviation of
two (or more) variables from mutual independence, al-
though correlation does not imply causation. In this broad
sense there are some quantifiers which measures the de-
gree of correlation, suited to the nature of data. Increas-
ing attention has been paid recently to the study of sta-
tistical memory effects in random processes that origi-
nate from nature by means of non-equilibrium statisti-
cal physics. The role of memory has its roots in natu-
ral sciences since 1906 when the famous Russian math-
ematician Markov wrote his first paper on the theory of
Markov Random Processes (MRP) [1]. His theory is based
on the notion of an instant loss of memory from the
prehistory (memoryless property) of random processes.
In contrast, there are an abundance of physical phenom-
ena and processes which can be characterized by sta-
tistical memory effects: kinetic and relaxation processes
in gases [2] and plasma [3], condensed matter physics
(liquids [4], solids [5], and superconductivity [6]) astro-
physics [7], nuclear physics [8], quantum [9] and classi-
cal [9] physics, to name only a few. At present, we have
a whole toolbox available of statistical methods which
can be efficiently used for the analysis of the memory ef-
fects occurring in diverse physical systems. Typical such
schemes are Zwanzig–Mori’s kinetic equations [10,11],
generalized master equations and corresponding statisti-
cal quantifiers [12,13,14,15,16,17,18], Lee’s recurrence re-
lation method [19,20,21,22,23], the generalized Langevin
equation (GLE) [24,25,26,27,28,29], etc.

Here we shall demonstrate that the presence of statis-
tical memory effects is of salient importance for the func-
tioning of the diverse natural complex systems. Particu-
larly, it can imply that the presence of large memory times
scales in the stochastic dynamics of discrete time series can
characterize catastrophical (or pathological for live sys-
tems) violation of salutary dynamic states of CS. As an
example, we will demonstrate here that the emergence of
strong memory time scales in the chaotic behavior of com-
plex systems (CS) is accompanied by the likely initiation
and the existence of catastrophes and crises (Earthquakes,
financial crises, cardiac and brain attack, etc.) in many CS
and especially by the existence of pathological states (dis-
eases and illness) in living systems.

Introduction

A common definition [30] of a correlation measure
�(X;Y) between two random variables X and Y with the
mean values E(X) and E(Y), and fluctuations ıX D X
�E(X) and ıY D Y � E(Y), dispersions �2X D E(ıX2)
D E(X2) � E(X)2 and �2Y D E(ıY2) D E(Y2) � E(Y)2 is
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defined by:

�(X;Y) D
E(ıX ıY)
�X �Y

;

where E is the expected value of the variable. Therefore we
can write

�(X;Y) D
[E(XY) � E(X) E(Y)]

(E(X2) � E(X)2)1/2 (E(Y2) � E(Y)2)1/2
:

Here, a correlation can be defined only if both of the
dispersions are finite and both of them are nonzero. Due to
the Cauchy–Schwarz inequality, a correlation cannot ex-
ceed 1 in absolute value. Consequently, a correlation as-
sumes it maximum at 1 in the case of an increasing linear
relationship, or �1 in the case of a decreasing linear re-
lationship, and some value in between in all other cases,
indicating the degree of linear dependence between the
variables. The closer the coefficient is either to �1 or 1,
the stronger is the correlation between the variables. If the
variables are independent then the correlation equals 0,
but the converse is not true because the correlation coef-
ficient detects only linear dependencies between two vari-
ables.

Since the absolute value of the sample correlation must
be less than or equal to 1 the simple formula conveniently
suggests a single-pass algorithm for calculating sample
correlations. The square of the sample correlation coeffi-
cient, which is also known as the coefficient of determina-
tion, is the fraction of the variance in �x that is accounted
for by a linear fit of xi to � y. This is written

R2
x y D 1 �

�2yjx

�2y
;

where �2yjx denotes the square of the error of a linear re-
gression of xi on yi in the equation y D aC bx ,

�2yjx D
1
n

nX

iD1

(yi � a � bxi )2

and �2y denotes just the dispersion of y.
Note that since the sample correlation coefficient is

symmetric in xi and yi, we will obtain the same value for
a fit to yi:

R2
x y D 1 �

�2xjy

�2x
:

This equation also gives an intuitive idea of the corre-
lation coefficient for random (vector) variables of higher
dimension. Just as the above described sample correlation

coefficient is the fraction of variance accounted for by the
fit of a 1-dimensional linear submanifold to a set of 2-di-
mensional vectors (xi ; yi ), so we can define a correlation
coefficient for a fit of an m-dimensional linear submani-
fold to a set of n-dimensional vectors. For example, if we
fit a plane z D aC bx C cy to a set of data (xi ; yi ; zi ) then
the correlation coefficient of z to x and y is

R2 D 1 �
�2zjx y

�2z
:

Correlation andMemory
in Discrete Non-Markov Stochastic Processes

Here we present a non-Markov approach [31,32] for the
study of long-time correlations in chaotic long-time dy-
namics of CS. For example, let the variable xi be defined
as the R-R interval or the time distance between near-
est, so called R peaks occurring in a human electrocar-
diogram (ECG). The generalization will consist in taking
into account non-stationarity of stochastic processes and
its further applications to the analysis of the heart-rate-
variability.

We should bear in mind, that one of the key moments
of the spectral approach in the analysis of stochastic pro-
cesses consists in the use of normalized time correlation
function (TCF)

a0(t) D
hhA(T)A(T C t)ii

hA(T)2i
: (1)

Here the time T indicates the beginning of a time se-
rial, A(t) is a state vector of a complex system as defined
below in Eq. (5) at t, jA(t)j is the length of vector A(t), the
double angular brackets indicate a scalar product of vec-
tors and an ensemble averaging. The ensemble averaging
is, of course needed in Eq. (1) when correlation and other
characteristic functions are constructed. The average and
scalar product becomes equivalent when a vector is com-
posed of elements from a discrete-time sampling, as done
later. Here a continuous formalism is discussed for con-
venience. However further, since Sect. “Correlation and
Memory in Discrete Non-Markov Stochastic Processes”
we shall consider only a case of discrete processes.

The above-stated designation is true only for station-
ary systems. In a non-stationary case Eq. (1) is not true and
should be changed. The concept of TCF can be generalized
in case of discrete non-stationary sequence of signals. For
this purpose the standard definition of the correlation co-
efficient in probability theory for the two random signalsX
and Y must be taken into account

� D
hhXYii
�X �Y

; �X D hjXji ; �Y D hjYji : (2)
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In Eq. (2) the multi-component vectors X, Y are de-
termined by fluctuations of signals x and y accordingly,
�2X ; �

2
Y represent the dispersions of signals x and y, and

values jXj; jYj represent the lengths of vectors X, Y, corre-
spondingly. Therefore, the function

a(T; t) D
hhA(T)A(T C t)ii
hjA(T)ji hjA(T C t)ji

(3)

can serve as the generalization of the concept of TCF (1)
for non-stationary processes A(T C t). The non-station-
ary TCF (3) obeys the conditions of the normalization and
attenuation of correlation

a(T; 0) D 1 ; lim
t!1

a(T; t) D 0 :

Let us note, that in a real CS the second limit, typically,
is not carried out due possible occurrence nonergodocity
(meaning that a time average does not equal its ensemble
average). According to the Eqs. (1) and (3) for the quan-
titative description of non-stationarity it is convenient to
introduce a function of non-stationarity

� (T; t) D
hjA(T C t)ji
hjA(T)ji

D

�
�2(T C t)
�2(T)

� 1/2

: (4)

One can see that this function equals the ratio of the
lengths of vectors of final and initial states. In case of sta-
tionary process the dispersion does not vary with the time
(or its variation is very weak). Therefore the following re-
lations

�(T C t) D �(T) ; � (T; t) D 1 (5)

hold true for the stationary process.
Due to the condition (5) the following function

� (T; t) D 1 � � (T; t) (6)

is suitable in providing a dynamic parameter of non-sta-
tionarity. This dynamic parameter can serve as a quantita-
tive measure of non-stationarity of the process under in-
vestigation. According to Eqs. (4)–(6) it is reasonable to
suggest the existence of three different elementary classes
of non-stationarity

j� (T; t)j D j1 � � (T; t)j

D

8
<

:


 1; weak non-stationarity
� 1; intermediate non-stationarity
	 1; strong non-stationarity

9
=

;
:

(7)

The existence of dynamic parameter of non-stationar-
ity makes it possible to determine, on-principle, the type of

non-stationarity of the underlying process and to find its
spectral characteristics from the experimental data base.
We intend to use Eqs. (4), (6), (7) for the quantitative
description of effects of non-stationarity in the investi-
gated temporary series of R-R intervals of human ECG’s
for healthy people and patients after myocardial infarc-
tion (MI).

Statistical Theory of Non-Stationary Discrete
Non-Markov Processes in Complex Systems

Here we shall extend the original results of the statistical
theory of discrete non-Markov processes in complex sys-
tems, developed recently in [31], for the case of non-sta-
tionary processes. The theory [31] is developed on the ba-
sis of first principles and represents a discrete finite-differ-
ence analogy for complex systems of well known Zwanzig–
Mori’s kinetic equations [10,11,12,13,14,15,16,17,18] used
in the statistical physics of condensed matter.

We examine a discrete stochastic process X(T C t),
where t D m�

X D fx(T); x(T C �); x(T C 2�); : : : ; x(T C k�);
: : : ; x(T C (N � 1)�)g ; (8)

where T is the beginning of the time and � is a discretiza-
tion time. The normalized time correlation function (TCF)

a(t) D
1

(N � m) �2

N�1�mX

jD0

ıx(TC j�) ıx(TC ( jCm) �)

(9)

yields a convenient measure to analyze the dynamic prop-
erties of complex systems. Herein, we used the variance
�2, the fluctuation ıx(T C j�), which in terms of the the
mean value hxi reads:

ıx j D ıx(T C j�) D x(T C j�) � hxi ;

�2 D
1

(N � m)

N�1�mX

jD0

fıx(T C j�)g2 ;
(10)

hxi D
1

(N � m)

N�1�mX

jD0

x(T C j�) : (11)

The discrete time t is given as t D m� .
In general, the mean value, the variance and TCF

in (9), (10) and (11) is dependent on the numbers m
andN. All indicated values cease to depend on numbersm
and N for stationary processes when m
 N. The defini-
tion of TCF in Eq. (9) is true only for stationary processes.
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Next, we shall try to take into account this important
dependence. With this purpose we shall form two k-di-
mensional vectors of state by the process (8):

A0
k D (ıx0; ıx1; ıx2; : : : ; ıxk�1) ;

Am
mCk D (ıxm ; ıxmC1; ıxmC2; : : : ; ıxmCk�1) :

(12)

When a vector of a state is composed of elements from
a discrete-time sampling, the average and scalar product
in Eq. (1) become equivalent. In an Euclidean space of vec-
tors of state (12) TCF a(t)

a(t) D
hA0

N�1�m Am
N�1i

(N � m)f�(N � m)g2
D
hA0

N�1�m Am
N�1i

jA0
N�1�mj

2 (13)

describes the correlation of two different states of the sys-
tem (t D m�). Here the brackets h: : :i indicate the scalar
product of the two vectors. The dimension dependence
of the corresponding vectors is also taken into account
in the variance � D �(N � m). As a matter of fact TCF
a(t) D cos # , where # is the angle between the two vectors
from Eq. (12). Let’s introduce a unit vector of dimension
(N � m) in the following way:

n D
A0

N�1�mp
(N � m)�2

: (14)

Then, the TCF a(t) (9) is given by

a(t) D hn(0)n(t)i : (15)

From the above discussion it is evident that Eqs. (13)–
(15) are true for the stationary processes only. In case of
non-stationary processes it is necessary to redefine TCF,
taking into account the non-stationarity in the variance �2

in a line with Eqs.(2)–(7). For this purpose we shall rede-
fine a unit vector of the final state as following

n(t) D
Am

N�1(t)
jAm

N�1(t)j
: (16)

For non-stationary processes it is convenient to write
the TCF as the scalar product of the two unit vectors of the
initial and final states

a(t) D hn(0)n(t)i D
hA0

N�1�m(0)A
m
N�1(t)i

jA0
N�1�m(0)j jA

m
N�1(t)j

: (17)

Now we shall turn to the the dynamics of a non-sta-
tionary stochastic process. The equation of motion of a the
random process xj can be written in a finite-difference
form for 0 � j � N � 1 [31,32] in the following way

dx j
dt
)


ıx j

t
D
ıx j(t C �) � ıx j(t)

�
: (18)

Then it is convenient to define the discrete evolution
single step operator Û as following:

x(TC( jC1) �) D Û(TC( jC1) �; TC j�) x(TC j�): (19)

In the case of stationary process we can rewrite the
equation of motion (18) in a more simple form


ıx j

t
D ��1

˚
Û(�) � 1

�
ıx j : (20)

The invariance of the mean value hxi is taken into ac-
count in an Eq. (20)

hxi D Û(�)hxi ;
˚
Û(�) � 1

�
hxi D 0 : (21)

In case of a non-stationary process it is necessary to
turn to the equation of motion for vector of the final state
Am
mCk(t) (k D N � 1 � m)


Am
mCk(t)

t

D iL̂(t; �)Am
mCk (t) ; (22)

where Liouville’s quasioperator is

L̂(t; �) D (i�)�1
˚
Û(t C �; t)� 1

�
: (23)

It is well known that, in general, a stochastic trajec-
tory does not obey a linear equation, so the general evolu-
tion operator and Liouville’s quasioperator should prob-
ably be non-linear. Furthermore, in statistical physics the
Liouville’s operator acts upon the probability densities of
dynamical variables, as well upon the variables itself like
in Mori’s paper [12]. The evolution of the density would
be indeed linear. But Mori used the Liouville operator
in the quantum equation of motion in [12]. In line with
Mori [12] Eqs. (20), (22) can be considered as formal and
exact equations of the motion of a complex system.

Thus, due to the Eqs. (17), (22) and (23) we may take
into account the non-stationarity of the stochastic process.
Towards this goal let’s introduce the linear projection op-
erator in Euclidean space of the state vectors

˘A(t) D
A(0)ihA(0)A(t)i
jA(0)j2

; ˘ D
A(0)ihA(0)
hA(0)A(0)i

; (24)

where angular brackets in numerator present the bound-
aries of action for the scalar product.

For the analysis of the dynamics of the stochastic pro-
cess A(t) the vector A0

k(0) from (12) can be considered
as a vector of the initial state A(0), and vector Am

mCk(t)
from (12) at value mC k D N � 1 can be considered as
the vector of the final state A(t).

It is necessary to note that the projection operator (24)
has the required property of idem-potency ˘ 2 D ˘ . The
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presence of operator˘ allows one to introduce the mutu-
ally supplementary projection operator P:

P D 1 �˘ ; P2 D P ; ˘P D P˘ D 0 : (25)

It is necessary to remark, that both projectors˘ and P are
linear and can be recorded for the fulfillment of operations
in the particular Euclidean space. Due to the property (17)
and Eq. (4) it is easy to obtain the required TCF:

˘A(t) D ˘Am
mCk(t)

D A0
k(0)hn

0
k(0)n

m
kCm(t)i�1(t)

D A0
k(0) a(t) �1(t) ;

�1(t) D
jAm

mCk(t)j
jA0

m(0)j
:

(26)

Therefore the projector ˘ generates a unit vector along
the vector of the final state A(t) and makes its projection
onto the initial state vector A(0).

The existence of a pair of two mutually supplementary
projection operators ˘ and P allows one to carry out the
splitting of Euclidean space of vectors A(A(0), A(t) 2 A)
into a straight sum of two mutually supplementary sub-
spaces in the following way

AD A0
�
C A00 ; A0 D ˘A ; A00 D PA : (27)

Substituting Eq. (27) in Eq. (23) we find Liouville’s
quasioperator L̂ in a matrix form

L̂ D L̂11 C L̂12 C L̂21 C L̂22 ; (28)

where the matrix elements are introduced

L̂11 D ˘ L̂˘ ; L̂12 D ˘ L̂P ;

L̂21 D PL̂˘ ; L̂22 D PL̂P :
(29)

The Euclidean space of values of Liouville’s quasiop-
erator W D L̂A will be generated by the vectors W of di-
mension k � 1

(W(0) 2W ; W(t) 2 W)

W D W 0
�
CW 00 ; W 0 D ˘W ; W 00 D PW :

(30)

Matrix elements L̂i j of the contracted description

L̂ D
�

L̂11 L̂12
L̂21 L̂22

�
(31)

are acting in the following way:

L̂11– from a subspace A0 to subspace W 0 ;

L̂12– from A00 toW 0 ;

L̂21– fromW 0 toW 00 and

L̂22– from A00 toW 00 :

The projection operators ˘ and P provide the con-
tracted description of the stochastic process. Splitting the
dynamic Eq. (22) into two equations in the two mutu-
ally supplementary Euclidean subspaces (see, for exam-
ple [11]), we find


A0(t)

t

D iL̂11A0(t)C iL̂12 A00(t) ; (32)


A00(t)

t

D iL̂21 A0(t)C iL̂22 A00(t) : (33)

Following [31,32] it is necessary to eliminate first
the irrelevant part A00(t) in order to simplify Liouville’s
Eq. (22) and then to write a closed equation for relevant
part A0(t). According to [32] that can be achieved by a se-
ries of successive steps (for example, see Eqs. (32)–(36)
in [32]). First a solution to Eq. (33) for the first step can
be obtained in a form


A00(t)

t

D
A00(t C �) � A00(t)

�

D iL̂21 A0(t)C iL̂22 A00(t) ;

A00(t C �) D A00(t)C i� L̂21 A0(t)C i� L̂22 A00(t)

D f1C i� L̂22gA00(t)C i� L̂21 A0(t)

D U22(t C �; t)A00(t)C i� L̂21(t C �; t)A0(t) :
(34)

We next can derive a finite-difference kinetic equation
of a non-Markov type for TCF a(t D m�)


a(t)

t

D 1a(t) � ��1

m�1X

jD0

M1(t � j�) a( j�) : (35)

Here, 1 is a eigenvalue, �1 is a relaxation parameter
of Liouville’s quasioperator L̂

1 D i
hA0

k(0) L̂A
0
k(0)i

jA0
k(0)j2

;

�1 D
hA0

k(0) L̂12 L̂21 A
0
k(0)i

jA0
k(0)j2

D
hA0

k(0) L̂
2 A0

k(0)i
jA0

k(0)j2
;

(36)

The angular brackets indicate here a scalar product of
new state vectors. FunctionM1(t � j�) on the right side of
Eq. (35) represents a modified memory function (MF) of
the first order

M1(t � j�) D
�1(t � j�)
�1(t)

m1(t � j�) : (37)

For stationary processes the function �1(t) approaches
unity. Then the memory functions M1(t) and m1(t) co-
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incide with each other. The latter equation is the first ki-
netic finite-difference equation for TCF. It is remarkable,
that the non-Markovity, discretization and non-stationar-
ity of stochastic process can be considered explicitly. Due
to the presence of non-stationarity both in TCF and in the
first memory function this equation generalizes our results
recently obtained in [31].

Following the projection technique described above,
we arrive at a chain of connected kinetic finite-difference
equations of a non-Markov type for the normalized short
memory functions mn(t) in Euclidean space of state vec-
tors of dimension (k � n) (t D m� , n � 1)


mn(t)

t

D nC1 mn(t) � ��nC1

�

m�1X

jD0

mnC1( j�)mn (t � j�)

�

�
�nC1( j�)�nC1(t � j�)

�n(t)

�
;

mnC1(t) D
hWnC1(0)WnC1(t)i
jWnC1(0)jjWnC1(t)j

;

(38)

�n( j�) D
�
jWn( j�)j
jWn(0)j

�
: (39)

Here, �n( j�) is the nth order of the non-stationarity func-
tion.

The set of all memory functionsm1(t);m2(t);m3(t); : : :
allows one to describe non-Markov processes and statis-
tical memory effects in the considered non-stationary
system. For the particular case we obtain a more sim-
ple form for the set of equations for the first three short
memory functions, namely (t D m�):


a(t)

t

D ���1

m�1X

jD0

m1( j�)
�
�1( j�)�1(t � j�)

�1(t)

�

� a(t � j�)C 1a(t) ;


m1(t)

t

D ���2

m�1X

jD0

m2( j�)
�
�2( j�)�2(t � j�)

�2(t)

�

� m1(t � j�)C 2m1(t) ;


m2(t)

t

D ���3

m�1X

jD0

m3( j�)
�
�3( j�)�3(t � j�)

�3(t)

�

� m2(t � j�)C 3m2(t) :

(40)

Here the relaxation parameters�1,�2 and�3 have al-
ready been determined and the non-stationarity functions
�n(t) have been introduced earlier. By analogy with Eq. (6)
we can introduce a set of dynamic parameters of non-sta-

tionarity (PNS) for the arbitrary nth relaxation level

�n(T; t) D 1 � �n(t) D 1 � �n(T; t) : (41)

The whole set of values of dynamic PNS �n(t) determines
the broad spectrum of non-stationarity effects of the con-
sidered process.

The obtained equations are similar to the well
known Zwanzig–Mori’s kinetic equations [10,11,12,13,14,
15,16,17,18] used in non-equilibrium statistical physics of
condensed matters. Let us point out three essential dis-
tinctions of our Eqs. (40) from the results in [10,11,12].
In Zwanzig–Mori’s theory the key moment in the analysis
of considered physical systems is the presence of a Hamil-
tonian and an operation of a statistical averaging carried
out with the help of quantum density operator or classic
Gibbs distribution function [33]. In our examined case,
both theHamiltonian and the distribution function are ab-
sent. There are exact classic or quantum equations of mo-
tion in physics; so Liouville’s equation and Liouville’s op-
erator are useful in many applications. Themotion of indi-
vidual particles and whole statistic system is described by
variables varying in continuous time. Therefore, for phys-
ical systems it is possible to use effectively the methods of
integro-differential calculus, based on the mathematically
accustomed (but from the physical point of view difficult
for understanding) representation of infinitesimal varia-
tions of values of coordinates and time. By nature, the
monitored time evolution of most complex systems is dis-
crete. As well known, discretization is inherent in a wide
variety both of classical and quantum complex systems.
This forces us to abandon the concept of an infinite small
values and continuity and instead turn to discrete-differ-
ence schemes. And, at last, the third feature is connected
with incorporating the issue of non-stationary processes
into our theory. The Zwanzig–Mori theory is typically ap-
plied only for stationary processes. Due to the introduc-
tion of normalized vectors of states and the use of the ap-
propriate projection technique [13] our theory allows to
take into account non-stationary processes as well. The lat-
ter ones can be described by the non-Markov kinetic equa-
tions together with the introduction of the set of non-sta-
tionarity functions.

The non-stationary theory [32] put forward here dif-
fers from the stationary case [31]. The external structure of
the kinetic equations remains invariant; they represent the
kinetic equations with memory. However, the functions
and the parameters, which are included in these equa-
tions, appreciably differ from each other. As we already
remarked above, non-stationarity effects enter both, in the
functions �n(t) and in spectral and kinetic parameters.



1622 C Correlations in Complex Systems

Correlation andMemory in Discrete Non-Markov
Stochastic Processes Generated by RandomEvents

Here we shall find a chain of the kinetic interconnected
finite-difference equations for a discrete correlation func-
tion a(n) and memory functions Ms(n) in the linear scale
of events E D f�1; �2; �3; : : : ; �Ng.

The Basic Assumptions and Concepts of the Theory
of Discrete Non-Markov Stochastic Processes
of the Events Correlations

As an example we shall consider the time variations of the
total X-ray flux of an astrophysical object at a succession
of events:

E D f�1; �2; �3; : : : ; �k ; : : : ; �Ng ; (42)

where � i is an event, which occurs at time instant ti, where
i D 1; : : : ;N counts the event number.

The average value hEi, fluctuations ı� and disper-
sion �2 for the set of N events are obtained as:

hEi D
1
N

NX

iD1

�i ; ı�i D �i � hEi ;

�2 D
1
N

NX

iD1

ı�2i D
1
N

NX

iD1

f�i � hEig2 :

(43)

According to [35,36,37,38], for the description of the
dynamical properties of the studied system we introduce
the correlation dependence of the discrete set of events
(see Eq. (42)) using the CF:

a(n) D
1

(N � m) �2

N�mX

iD1

ı�i ı�iCm : (44)

Here n D m�n,�n D 1 is the discretization step. The
function a(n), which emerges in this way, is the “event”
correlation function (ECF). The normalized ECF must
obey the conditions of normalization and of the attenu-
ation of correlation, i. e.: limn!1 a(n) D 1, limn!1 a(n)
D 0. We remark, however, that the second condition for
the case the physical complex systems is typically not ob-
served (at N 	 0). It is necessary to note that in [18] the
correlation function for the aftershock events has been in-
troduced:

C(n C nW ; nW ) D
[htnCnW tnW i � htnCnW ihtnW i]

�
�2nCnW

�2nW

1/2 ;

where the averages and the variance are given by

htmi D
1
N

N�1X

kDo

tmCk ;

htm t0mi D
1
N

N�1X

kDo

tmCk t0mCk ; and

�2m D ht
2
mi � htmi

2 ;

respectively.
By the direct analogy of [31,32,35] we use the fi-

nite-difference Liouville’s equation of motion in the event
scale for describing the evolution of discrete set of events
Eq. (11), (13):

��i (n)
�n

D ibL(n; 1) �i (n) : (45)

Here �i (nC 1) D U(n C 1; n) �i (n), U(n C 1; n) is the
“event” evolution operator. It determines the shift in
linear event scale to one step �n. The evolution op-
erator U(n C 1; n) and Liouville’s quasioperator bL(n; 1)
can be made explicit by writing: bL(n; 1) D (i�n)�1 (U(n
C1; n) � 1).

Let’s represent the set of values of the dynamical vari-
able ı� j D ı�( j�n), j D 1; : : : ;N as the k-component
vector of system state in linear Euclidean space:

a) the vector of initial state of studied complex system:

A1
k D fı�1; ı�2; ı�3; : : : ; ı�kg ; (46)

b) the vector of final system’s state, which is shifted on
them events along the event scale:

Am
mCk D fı�mC1; ı�mC2; ı�mC3; : : : ; ı�mCkg ; (47)

where 1 � k � N. The vectors of initial and final states,
which are submitted in a similar way, are very conve-
nient for analyzing the dynamics of the observed dis-
crete stochastic processes with the help of discrete non-
Markov processes.

To represent the ECF in a more compact form, we
use the expression for the scalar product of vectors
hA1

k � A
m
mCki D

Pk
jD1 A

1
j A

m
mC j , and the Eqs. (44), (46)

and (47):

a(n) D
hA1

k(1)A
m
kCm(n)i

hjA1
k(1)j

2i
: (48)
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Construction of Chain of Finite-Difference Non-
Markov Kinetic Equations for the Events Correlation

Let us consider the finite-difference Liouville’s equation
(Eq. (44)) for the vector of final system states:

�Am
mCk(n)
�n

D ibL(n; 1)Am
mCk (n) : (49)

We introduce the projection operator ˘ , which
projects the final vector Am

mCk(n) on the direction of ini-
tial vector, and also the orthogonal operator P. The op-
erators ˘ and P possess the following properties: ˘ D
jA1

k(1)ihA
1
k(1)j/hjA

1
k(1)j

2i,˘ 2 D ˘ , P D 1 �˘ , P2 D P,
˘P D P˘ D 0. They are idempotent and mutually com-
plementary.

The initial ECF a(n) (Eq. (48)) can be derived bymeans
of projecting the vector of final statesAm

mCk(n) on the vec-
tor of initial state A1

k(1):

˘Am
mCk(n) D

A1
k(1)hA

1
k(1)A

m
mCk (n)i

hjA0
k j
2i

D A1
k(1) a(n) :

(50)

The operators ˘ and P split Euclidean vector space
A(k) into two mutually orthogonal subspaces:

A(k) D A0(k)C A00(k) ; A0(k) D ˘A(k) ;
A00(k) D PA(k) ; Am

mCk 2 A(k) :
(51)

As a result the finite-difference Liouville’s Eq. (47) can
be represented as a system of 2 equations into mutually
orthogonal linear subspaces:

�A0(n)
�n

D ibL11 A0(n)C ibL12 A00(n) ; (52)

�A00(n)
�n

D ibL21 A0(n)C ibL22 A00(n) : (53)

HerebLi j D ˘ibL˘ j are the matrix elements of Liou-
ville’s quasioperator:

bL DbL11 CbL12 CbL21 CbL22 ;
bL11 D ˘bL˘ ; bL12 D ˘bLP ;
bL21 D PbL˘ ; bL22 D PbLP :

(54)

To solve the system of Eqs. (52), (53) we eliminate the
non-reducible part, which contains A00(n) and derive the
self-contained equation for the reducible partA0(n). In do-
ing so we solve the Eq. (52) step-by-step and shall substi-
tute the obtained solution into the Eq. (53). As a result we

arrive at the closed kinetic equation:

�A0(nC m�n)
�n

D ibL11 A0(n C m�n)

C ibL12
˚
1C i�nbL22

�m A00(n)

�bL12
mX

jD1

˚
1C i�nbL22

� j
�n

�bL21 A0(n C [m � j]�n) : (55)

By use of projection operators ˘ and P we found the
closed finite-difference kinetic equation of non-Markov
type for the initial ECF:

�a(n)
�n

D i1 a(n)��n�1

mX

jD1

M1( j�n) a(n � j�n) :

(56)

As �n D 1, solution of the last equation must be fol-
lowing:

a(nC1) D fi1C1g a(n)��1

mX

jD1

M1( j) a(n� j) : (57)

Here 1 is the proper value of Liouville’s quasiopera-
torbL, �1 is the relaxation parameter, which dimension is
square of frequency, M1( j�n) is the normalized memory
function of the first order:

1 D
hA1

k(1)bL A
1
k(1)i

hjA1
k(1)j

2i
;

�1 D
hA1

k
bL12bL21 A1

k(1)i
jA1

k(1)j
2i

;

M1( j�n) D
hA1

k(1)bL12(1C i�nbL22) jbL21 A1
k(1)i

hA1
k(1)bL12bL21 A

1
k(1)i

:

To obtain the finite-difference kinetic equation for the
normalized event memory function of first order and, fur-
ther, for the higher (s � 1)th orders as well, we have to re-
peat the foregoing procedure step-by-step. However, we
shall make use of the Gram–Schmidt orthogonalization
procedure [16]:

hWsWpi D ıs p hjWs j
2i : (58)

Where ıs p is a Kronecker’s symbol. Now we shall de-
rive the recurrence formula Ws DWs (n) for defining the
set of the orthogonal dynamic variables:

W0 D A1
k ;

W1 D fibL � 1gW0 ;

W2 D fibL � 2gW1 ��1W0; : : :

(59)
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According to the foregoing formulas we can introduce
the succession of projection operators ˘s D ˘

(s)
1 and the

set of mutually complementary projectors Ps D 1 �˘s ,
which possess the following properties:

˘s D
jWsihWs j

hjWs j2i
;

P2s D Ps ;
˘s ˘p D ıs p ˘s ;

˘ 2
s D ˘s ;

˘s Ps D Ps ˘s D 0 ;
Ps Pp D ıs p Ps :

Each of these operators pairs ˘s , Ps splits the corre-
sponding Euclidean vector space Ws into the two mutual
complementary subspaces:Ws DW 0s CW 0s ,W 0s D ˘sWs,
W 00s D PsWs. Using the projection operator technique for
the next orthogonal variablesWs , we shall obtain the chain
of interconnected kinetic finite-difference equations of the
non-Markov type for the normalized correlation functions
of the (s � 1)th order:

�M1(n)
�n

D i 2 M1(n) ��2

mX

jD1

M2( j)M1(n � j) ;

: : : ;

�Ms�1(n)
�n

D i s Ms�1(n) ��s

mX

jD1

Ms�1( j)Ms(n � j) :

(60)

In these equations the normalized events memory func-
tion of the first order: M1(n) D hW1(1C i�nbL)mW1i/
hjW1j

2i, memory function of the (s � 1)th order: Ms�1(n)
D hWs�1(1C i�nbL)mWs�1i/hjWs�1j

2i, the proper value
of the Liouville’s quasioperatorbL: s D hWsbLWsi/hjWs j

2i

and the relaxation parameter�s D hjWs j
2i/hjWs�1j

2i are
introduced.

The foregoing finite-difference kinetic Eqs. (60) pre-
sent the generalization of the statistical theory [31,32,35]
for the case of event correlations in discrete stochastic evo-
lution of non-Hamilton complex systems.

InformationMeasures ofMemory
in Complex Systems

As an information measures of memory it is useful to ap-
ply different dimensionless quantifiers. As a first measure
we use the frequency dependence of non-Markovity pa-
rameter. This measure was introduced in [31] and it is de-
fined as:

"i(�) D
�
�i�1(�)
�i (�)

� 1/2
: (61)

Here, �i (�) denotes the frequency power spectrum
of memory function of the ist order Mi(n): �i (�) D
j�n

PN
nD1 Mi(n) cos(2�n�)j2. The non-Markovity pa-

rameter "i (�) along with the memory functions enables
us to characterize quantitatively the statistical memory ef-
fects in discrete complex systems of various nature. Be-
cause the functions �i (�) exist for each of the ith levels
of relaxation, we obtain the statistical spectrum of param-
eters: "i(�), i D 1; 2; 3; : : :.

Alternatively, a study of ‘memory’ in physiolog-
ical time series for electroencephalographic (EEG)
and magnetoencephalographic (MEG) signals, both of
healthy subjects and patients (including epilepsy patients)
has been based on the detrended-fluctuation analysis
(DFA) [39,40].

The characterization of memory per se is based on a set
of dimensionless statistical quantifiers which are capable
for measuring the memory strength which is inherent to
the complex dynamics.

According to [41] a second set an informationmemory
measure can be constructed as follows:

ıi (�) D

ˇ
ˇ̌
ˇ
ˇ

M̃0i(�)
M̃0iC1(�)

ˇ
ˇ̌
ˇ
ˇ
:

Here, �i (�) D jM̃i(�)j2 denotes the power spec-
trum of the corresponding memory function Mi(t),
M̃0i(�) D dM̃i(�)/d� and M̃i(�) is the Fourier transform
of the memory function Mi(t). The measures "i(�) are
suitable for the quantification of the memory effects on
a relative scale whereas the second set ıi (�) proves to be
useful for quantifying the amplification of relative mem-
ory effects occurring on different complexity levels. Both
measures provide statistical criteria for comparison be-
tween the relaxation time scales and memory time scales
of the process under consideration. For values obeying
f"; ıg 	 1 one can observe a complex dynamics character-
ized by the short-ranged temporal memory scales. In the
memoryless limit these processes assume a ı-like mem-
ory with parameters ", ı !1. When f"; ıg > 1 one deals
with a situation with moderate memory strength, and the
case where both ", ı � 1 typically constitutes a more regu-
lar and robust random process exhibiting strong memory
features.

Manifestation of StrongMemory
in Complex Systems

A fundamental role of the strong and weak memory in
the functioning of the human organism and seismic phe-
nomena can be illustrated by the example of some situa-
tions examined next. We will consider some examples of
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the time series for both living and for seismic systems. It
is necessary to note that a comprehensive analysis of the
experimental data includes the calculation and the pre-
sentation of corresponding phase portraits in some planes
of the dynamic orthogonal variables, the autocorrelation
time functions, the memory time functions and their fre-
quency power spectra, etc. However, we start out by cal-
culating two statistical quantifiers, characterizing two in-
formational measures of memory: the parameters �1(!)
and ı1(!).

Figures 1 and 3 present the results of experimental
data of pathological states of human cardiovascular sys-
tems (CVS). Figure 2 depicts the analysis for the seismic
observation. Figures 4 and 5 indicate the memory effects
for the patients with Parkinson disease (PD), and the last
two Figs. 6, 7 demonstrate the key role of the strength of
memory in the case of time series of patients suffering
from photosensitive epilepsy which are contrasted with
signals taken from healthy subjects. All these cases con-
vincingly display the crucial role of the statistical memory
in the functioning of complex (living and seismic) systems.

Correlations in Complex Systems, Figure 1
Frequency spectrum of the first information measure of memory (first point in the statistical spectrum on non-Markovity parameter)
"1(!) for the fourth cardiac patient groups from the short time series of RR-intervals: healthy subject (a), patient with rhythm driver
migration (RDM) (b), patient aftermyocardial infarction (MI) (c), and patient afterMIwith subsequent sudden cardiacdeath (SCD) (d).
The frequency is marked in terms of units of ��1. All spectra reveal the miscellaneous faces of statistical memory’s strength. For the
healthy subject one can seeMarkov effects andweakmemory. For other three cases of cardiac diseases we note the diverse displays
of strong memory. The strong memory has been accompanied by the spikes of the weak memory: for RDM on the all frequency
regions, for patient with MI for the middle and high frequencies and for patient after MI with SSCD only for high frequencies. From
Fig. 7 in [104]

A characteristic role of the statistical memory can be
detected from Fig. 1 for the typical representatives taken
from patients from four different CVS-groups: (a) for
healthy subject, (b) for a patient with rhythm driver mi-
gration, (c) for a patient after myocardial infarction (MI),
(d) for a patient after MI with subsequent sudden car-
diac death (SSCD). All these data were obtained from the
short time series of the dynamics of RR-intervals from the
electric signals of the human ECG’s. It can be seen here
that significant memory effects typically lead to the long-
time correlations in the complex systems. For healthy we
observe weak memory effects while and large values of
the measure memory �1(! D 0) � 25. The strong mem-
ory and the long memory time (approximately, 10 times
more) are being observedwith the help of 3 patient groups:
with RDM (rhythm driver migration) (b), after MI (c) and
after MI with SSCD (d).

Figure 2 depicts the strong memory effects presented
in seismic phenomena. By a transition from the steady
state of Earth ((a), (b) and (c)) to the state of strong earth-
quake (EQ) ((d), (e), and (f)) a remarkable amplification
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Correlations in Complex Systems, Figure 2
Frequency spectra of the first three points of the first measure of memory (non-Markovity parameters) "1(!), "2(!), and "3(!) for
the seismic phenomena: a, b, c long before the strong Earthquake (EQ) for the steady state of Earth and d, e, f during the strong EQ.
Markov and quasi-Markov behavior of seismic signals with manifestation of the weak memory is observed only for "1 in state be-
fore the strong EQ. All remaining cases b, c, d and e relate to non-Markov processes. Strong non-Markovity and strong memory is
typical for case d (state during the strong EQ). In behavior of "2(!) and "3(!) one can see a transition from quasi-Markovity (at low
frequencies) to strong non-Markovity (at high frequencies). From Fig. 6 in [105]

of memory effects is highly visible. The term amplification
refers to the appearance of strong memory and the prolon-
gation of the memory correlation time in the seismic sys-
tem. Recent study show that discrete non-Markov stochas-
tic processes and long-range memory effects play a cru-
cial role in the behavior of seismic systems. An approach,
permitting us to obtain an algorithm of strong EQ fore-
casting and to differentiate technogenic explosions from
weak EQs, can be developed thereupon.

Figure 3 demonstrates an intensification of memory
effects of one order at the transition from healthy people
((a), (b) and (c)) to patient suffering from myocardial in-
farction. The figures were calculated from the long time se-
ries of the RR-intervals dynamics from the human ECG’s.
The zero frequency values �1(! D 0) at ! D 0 sharply re-
duced, approximately of the size of one order for patient
as compared to healthy subjects.

Figures 4 and 5 illustrate the behavior for patients with
Parkinson’s disease. Figure 4 shows time recording of the
pathological tremor velocity in the left index finger of
a patient with Parkinson’s disease (PD) for eight diverse
pathological cases (with or without medication, with or
without deep brain stimulation (DBS), for various DBS,
medication and time conditions). Figure 5, arranged in
accordance with these conditions, displays a wide variety
of the memory effects in the treatment of PD’s patients.
Due to the large impact of memory effects this observa-
tion permits us to develop an algorithm of exact diagnosis
of Parkinson’s disease and a calculation of the quantita-
tive parameter of the quality of treatment. A physical role
of the strong and long memory correlation time enables
us to extract a vital information about the states of vari-
ous patient on basis of notions of correlation and memory
times.



Correlations in Complex Systems C 1627

Correlations in Complex Systems, Figure 3
The frequency dependence of the first three points of non-Markovity parameter (NMP) for the healthy person (a), (b), (c) and patient
after myocardial infarction (MI) (d), (e), (f) from the time dynamics of RR-intervals of human ECG’s for the case of the long time series.
In the spectrum of the first point of NMP "1(!) there is an appreciable low-frequency (long time) component, which concerns the
quasi-Markov processes. Spectra NMP "2(!) and NMP "3(!) fully comply with non-Markov processes within the whole range of
frequencies. From Fig. 6 in [106]

According to Figs. 6 and 7 specific information
about the physiological mechanism of photosensitive
epilepsy (PSE) was obtained from the analysis of the strong
memory effects via the registration the neuromagnetic
responses in recording of magnetoencephalogram (MEG)
of the human brain core. Figure 6 presents the topographic
dependence of the first level of the second memory mea-
sure ı1(! D 0; n) for the healthy subjects in the whole
group (upper line) vs. patients (lower line) for red/blue
combination of the light stimulus. This topographic de-
pendence of "1(! D 0; n) depicted in Fig. 6 clearly demon-
strates the existence of long-range time correlation. It is
accompanied by a sharp increase of the role of the statis-
tical memory effects in the all MEG’s sensors with sensor
numbers n D 1; 2; : : : ; 61 of the patient with PSE in com-
parison with healthy peoples. A sizable difference between
the healthy subject and a subject with PSE occurs.

To emphasize the role of strong memory one can con-
tinue studying the topographic dependence in terms of the
novel informational measure, the index of memory, de-
fined as:

�(n) D
ı
healthy
1 (0; n)

ı
patient
1 (0; n)

; (62)

see in Fig. 7.
This measure quantifies the detailed memory effects

in the individual MEG sensors of the patient with PSE
versus the healthy group. A sharp increase of the role
of the memory effects in the stochastic behavior of the
magnetic signals is clearly detected in sensor numbers
n D 10; 46; 51; 53 and 59. The observed points of MEG
sensors locate the regions of a protective mechanism
against PSE in a human organism: frontal (sensor 10),
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Correlations in Complex Systems, Figure 4
Pathological tremor velocity in the left index finger of the sixth patient with Parkinson’s disease (PD). The registration of Parkin-
sonian tremor velocity is carried out for the following conditions: a “OFF-OFF” condition (no any treatment), b “ON-ON” condition
(using deep brain stimulation (DBS) by electromagnetic stimulator andmedicaments), c “ON-OFF” condition (DBS only), d “OFF-ON”
condition (medicaments (L-Dopa) only), e–h the “15 OFF”, “30 OFF”, “45 OFF”, “60 OFF” conditions – the patient’s states 15 (30, 45,
60) minutes after the DBS is switched off, no treatment. Let’s note the scale of the pathological tremor amplitude (see the verti-
cal scale). Such representation of the time series allows us to note the increase or the decrease of pathological tremor. From Fig. 1
in [107]

occipital (sensors 46, 51 and 53) and right parietal (sen-
sor 59) regions. The early activity in these sensors may re-
flect a protective mechanism suppressing the cortical hy-
peractivity due to the chromatic flickering.

We remark that some early steps towards understand-
ing the normal and various catastrophical states of com-
plex systems have already been taken in many fields of
science such as cardiology, physiology, medicine, neurol-
ogy, clinical neurophysiology, neuroscience, seismology
and so forth. With the underlying systems showing frac-
tal and complicated spatial structures numerous studies
applying the linear and nonlinear time series analysis to
various complex systems have been discussed by many
authors. Specifically the results obtained shows evidence
of the significant nonlinear structure evident in the reg-
istered signals in the control subjects, whereas nonlinear-
ity for the patients and catastrophical states were not de-
tected. Moreover the couplings between distant parts and
regions were found to be stronger for the control sub-
jects. These prior findings are leading to the hypothesis
that the real normal complex systems are mostly equipped

with significantly nonlinear subsystems reflecting an in-
herent mechanism which stems against a synchronous ex-
citation vs. outside impact or inside disturbances. Such
nonlinear mechanisms are likely absent in the occurrence
of catastrophical or pathological states of the complex sys-
tems.

From the physical point of view our results can be used
as a toolbox for testing and identifying the presence or ab-
sence of various memory effects as they occur in complex
systems. The set of our memory quantifiers is uniquely as-
sociated with the appearance of memory features in the
chaotic behavior of the observed signals. The registration
of the behavior belonging to these indicators, as elucidated
here, is of beneficial use for detecting the catastrophical
or pathological states in the complex systems. There ex-
ist alternative quantifiers of different nature as well, such
as the Lyapunov’s exponent, Kolmogorov–Sinai entropy,
correlation dimension, etc., which are widely used in non-
linear dynamics and relevant applications. In the present
context, we have found out that the employed memory
measures are not only convenient for the analysis but are
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Correlations in Complex Systems, Figure 5
The frequency dependence of the first point of the non-Markovity parameter"1() for pathological tremor velocity in the patient. As
an example, the sixth patient with Parkinson’s disease is chosen. The figures are submitted according to the arrangement of the ini-
tial time series. The characteristic low-frequency oscillations are observed in frequency dependence (a, e–h), which get suppressed
under medical influence (b–d). The non-Markovity parameter reflects the Markov and non-Markov components of the initial time
signal. The value of the parameter on zero frequency "1(0) reflects the total dynamics of the initial time signal. The maximal values
of parameter "1(0) correspond to small amplitudes of pathological tremor velocity. Theminimal values of this parameter are charac-
teristic of significant pathological tremor velocities. The comparative analysis of frequency dependence "1() allows us to estimate
the efficiency of each method of treatment. From Fig. 5 in [107]

Correlations in Complex Systems, Figure 6
The topographic dependence of the first point of the second measure of memory ı1(! D 0;n) for the healthy on average in the
whole group (upper line) vs. patient (lower line) for R/B combination of the light stimulus. One can note the singular weak memory
effects for the healthy on average in sensors with No. 5, 23, 14, 11 and 9
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Correlations in Complex Systems, Figure 7
The topographic dependence of the memory index (n) D 1(n; 0) for the the whole group of healthy on average vs. patient for an
R/B combination of the light stimulus. Strong memory in patient vs. healthy appears clearly in sensors with No. 10, 5, 23, 40 and 53

also ideally suitable for the identification of anomalous be-
havior occurring in complex systems. The search for other
quantifiers, and foremost, the ways of optimization of such
measures when applied to the complex discrete time dy-
namics presents a real challenge. Especially this objective
is met when attempts are made towards the identifica-
tion and quantification of functioning in complex systems.
This work presents initial steps towards the understanding
of basic foundation of anomalous processes in complex
systems on the basis of a study of the underlying mem-
ory effects and connected with this, the occurrence of long
lasting correlations.

Some Perspectives on the Studies of Memory
in Complex Systems

Here we present a few outlooks on the fundamental role of
statistical memory in complex systems. This involves the
issue of studying cross-correlations. The statistical theory
of stochastic dynamics of cross-correlation can be created
on the basis of the mentioned formalism of projection
operators technique in the linear space of random vari-
ables. As a result we obtain the cross-correlation memory
functions (MF’s) revealing the statistical memory effects
in complex systems. Some memory quantifiers will ap-
pear simultaneously which will reflect cross-correlation
between different parts of CS. Cross-correlation MF’s can
be very useful for the analysis of the weak and strong in-
teractions, signifying interrelations between the different
groups of random variables in CS. Besides that the cross-
correlation can be important for the problem of phase
synchronization, which can find a unique way of studying
of synchronization phenomena in CS that has a special
importance when studying aspects of brain and living
systems dynamics.

Some additional information about the strong and
weak memory effects can be extracted from the observa-
tion of correlation in CS in the random event’s scales.
Similar effects are playing a crucial role in the differen-
tiation between stochastic phenomena within astrophys-
ical systems, for example, in galaxies, pulsars, quasars, mi-
croquasars, lacertides, black holes, etc. One of the most
important area of application of developed approach is
a bispectral and polyspectral analysis for the diverse CS.
From the mathematical point of view a correct definition
of the spectral properties in the functional space of ran-
dom functions is quite important. A variety of MF’s arises
in the quantitative analysis of the fine details of memory
effects in a nonlinear manner. The quantitative control of
the treatment quality in the diverse areas of medicine and
physiology may be one of the important biomedical ap-
plication of the manifestation of the strong memory ef-
fects.

These and other features of memory effects in CS call
for an advanced development of brain studies on the ba-
sis of EEG’s and MEG’s data, cardiovascular, locomotor
and respiratory human systems, in the development of the
control system of information flows in living systems. An
example is the prediction of strong EQ’s and the clear dif-
ferentiation between the occurrence of weak EQ’s and the
technogenic explosions, etc.

In conclusion, we hope that the interested reader
becomes invigorated by this presentation of correlation
and memory analysis of the inherent nonlinear system
dynamics of varying complexity. He can find further de-
tails how significant memory effects typically cause long
time correlations in complex systems by inspecting more
closely some of the published items in [42–103].

There are the relationships between standard frac-
tional and polyfractal processes and long-time correlation
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in complex systems, which were explained in [39,40,44,45,
46,49,53,54,60,62,64,76,79,83,84,94] in detail.

Example of using the Hurst exponent over time for
testing the assertion that emerging markets are becoming
more efficient can be found in [51].

While over 30 measures of complexity have been
proposed in the research literature one can distin-
guish [42,55,66,81,89,99] with the specific designation of
long-time correlation and memory effects.

The papers [48,57] are focused on long range correla-
tion processes that are nonlocal in time and whence show
memory effects.

The statistical characterization of the nonstationari-
ties in real-world time series is an important topic in
many fields of research and some numerous methods
of characterizing nonstationary time series were offered
in [59,65,84].

Long-range correlated time series have been widely
used in [52,61,63,68,74] for the theoretical description of
diverse phenomena.

Example of the study an anatomy of extreme events in
a complex adaptive system can be found in [67].

Approaches for modeling long-time and long-
range correlation in complex systems from time se-
ries are investigated and applied to different examples
in [50,56,69,70,73,75,80,82,86,100,101,102].

Detecting scale invariance and its fundamental rela-
tionships with statistical structures is one of the most rel-
evant problems among those addressed correlation analy-
sis [47,71,72,91].

Specific long-range correlation in complex systems are
the object of active research due to its implications in the
technology of materials and in several fields of scientific
knowledge with the use of quantified histograms [78], de-
crease of chaos in heart failure [85], scaling properties
of ECG’s signals fluctuations [87], transport properties in
correlated systems [88] etc.

It is demonstrated in [43,92,93] how ubiquity of the
long-range correlations is apparent in typical and ex-
otic complex statistical systems with application to biol-
ogy, medicine, economics and to time clustering proper-
ties [95,98].

The scale-dependentwavelet and spectral measures for
assessing cardiac dysfunction have been used in [97].

In recent years the study of an increasing number of
natural phenomena that appear to deviate from standard
statistical distributions has kindled interest in alternative
formulations of statistical mechanics [58,101].

At last, papers [77,90] present the samples of the deep
and multiple interplay between discrete and continuous
long-time correlation and memory in complex systems

and the corresponding modeling the discrete time series
on the basis of physical Zwanzig–Mori’s kinetic equation
for the Hamilton statistical systems.
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Glossary

Cosmic microwave background Quasi-isotropic ther-
mal, background of electromagnetic radiation of cos-
mological (i. e. not astrophysical origin). The observed
spectrum of this radiation is consistent with a black
body with temperature T D 2:725K and represents
the best experimental confirmation of the Planck spec-
trum. According to the standard cosmological model,
the dynamics of the primordial universe is determined,
via the Einstein gravitational equations, by a hot rela-
tivistic plasma of electrons, photons and baryons. The
photons interact with the plasma through Thomson
scattering. As the universe expanded, the plasma cools
until it becomes favorable for electrons to combine
with protons and form hydrogen atoms. This occurs
at a temperature of about 3 � 103 K (corresponding to
an average energy of about 0.3 eV). At this point, the
photons scatter off the now neutral atoms and start
to travel freely through space. This process is called
recombination or decoupling (referring to electrons
combining with nuclei and to the decoupling of mat-
ter and radiation, respectively). Since the universe is
expanding the photon temperature keeps decreasing
reaching the current value of T D 2:725K. Accord-
ingly, the photons observed today (i. e. the CMB pho-
tons) come from a spherical surface, called the surface

of last scattering, corresponding to the time of decou-
pling.

Friedmann–Robertson–Walker model
Model based upon an isotropic and homogeneous
metric describing an expanding universe correspond-
ing to a solution of the Einstein gravitational equa-
tion with a perfect fluid source (described in terms of
its energy density � and its pressure p). The line ele-
ment depends on the three-dimensional constant cur-
vature k and the scale factor a(t) describing the expan-
sion: ds2 D dt2 � a2(t)(dr2/(1 � kr2) C r2(d�2 C
sin2 � d�2)). The expansion rate is given by H D ȧ/a.
Given the equation of state p D p(�), the solution for
the scale factor is obtained from the Friedmann equa-
tion H2 D 8�G�/3.

Inflation Primordial epoch in the evolution of the Uni-
verse characterized by an accelerating expansion
(ä > 0). In particular, to achieve acceleration, a non-
standard source is needed (i. e. a perfect fluid with
an effective equation of state such that �C 3p < 0).
The existence of such a phase is postulated in order
to explain the observed quasi-isotropy and homogene-
ity of the Universe on large scales, as well as to provide
a mechanism to generate primordial seeds for struc-
ture formation.

Definition of the Subject

As first predicted by Albert Einstein [1], propagation ef-
fects at finite speed in the dynamical gravitational equa-
tions yield to the existence of wave-like solutions of the
gravitational field linearized around the flat-vacuum con-
figuration. Such solutions correspond to the so-called
gravitational waves (GWs). At the theoretical level, the
work of Bondi [2] (who considered self-gravitating sys-
tems like binaries of compact objects) showed that GWs
carry energy, while observationally the discovery of the
1916C 13 binary pulsar system by Hulse and Taylor [3]
(in particular, the speed-up of the binary pulsar period),
provided an indirect evidence for the existence of GWs.

On the experimental side, after the pioneering work of
Weber in the 1960s and the subsequent development of
meter-scale, resonant bar detectors (ALLEGRO, AURIGA
EXPLORER, NAUTILUS and NIOBE), in more recent
years a number of new detectors have been designed and
built to search for GWs. Kilometer-scale interferometers
(GEO [4], LIGO [5], TAMA [6] and VIRGO [7]), sensitive
to GWs in the frequency range between 10Hz and 1 kHz,
are already producing scientific runs at the design sensitiv-
ity (or close to it, as for VIRGO). The Laser Interferomet-
ric Space Antenna (LISA) [8], a space-based, three-arms
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interferometer will be aimed at detecting GWs in the fre-
quency range between 0.1mHz and 10mHz, while a next
generation of space-detectors especially designed to detect
primordial GWs has already being planned [9,10].

Gravitational waves can be produced by violent dy-
namical phenomena involving compact astrophysical ob-
jects (like neutron stars and/or black holes), as well as by
various mechanisms related to the dynamics of the pri-
mordial universe. Those primordial GWs produce a back-
ground of gravitational radiation that can be considered as
a sort of “cosmological noise”, i. e. the gravitational coun-
terpart of the cosmic microwave background radiation
(CMB). The detection of such primordial gravitational ra-
diation can be exploited to investigate physical processes
occurring during the early stages of the evolution of the
universe, when the typical energy scales are not accessi-
ble experimentally in any other way. The reason why pri-
mordial GWs are characterized by this unique feature is
the well-known fact that in an expanding universe parti-
cles decoupled from the primordial plasma at a tempera-
ture TD carry information about the state of the Universe
at TD. In particular, for gravitons it is possible to estimate
the decoupling temperature assuming that the gravitons
are kept in thermal equilibrium through two-body scat-
tering processes (see e. g. [11]). In this case, the interac-
tion rate is1. �G � T5/M4

pl, where Mpl is the Planck mass
(� 1019 GeV). Since the energy density for relativistic par-
ticles scales with the fourth power of the temperature,
assuming an adiabatic expansion the expansion rate H
scales as H � Ṫ/T . Hence, thermal equilibrium is main-
tained provided that the typical time-scale for graviton
interaction is smaller than the expansion time-scale, i. e.
�G > H. Using the Friedmann equation, H / T2/Mpl
this yields

�
�G

H

�
�

�
T
Mpl

�3
: (1)

Gravitons are therefore decoupled just below the Planck
scale. This implies that any relic GWs retain in their spec-
trum (i. e., amplitude and frequency) unique information
about the state of the primordial universe and the corre-
sponding physical process occurring at extremely high en-
ergy scales.

The first papers addressing possible mechanisms for
the production of a cosmological background of gravita-
tional radiation date back to the 1970s. Grishchuck [12]
and Starobinsky [13] showed that metric tensor perturba-

1In the following, we will adopt units for which temperatures,
masses and energies are all measured in electron-volts (eV) or multi-
ples of it and distances are expressed as inverse of energies

tions in an expanding, homogeneous and isotropic uni-
verse can be parametrically amplified provided there is
a stage in the evolution of the universe when the char-
acteristic time scale during which the metric changes is
much smaller than the intrinsic wave period of the per-
turbations. This phenomenon, known as parametric am-
plification of vacuum fluctuations, is characteristic of in-
flationary models and its phenomenological consequences
have beenwidely investigated (see e. g. [14]). Furthermore,
asWitten [15] andHogan [16] first pointed out, cosmolog-
ical first-order phase transitions (e. g. expected to occur at
the QCD scale (T � 100MeV) and/or at the electro-weak
scale (T � 100GeV)) may be associated to the production
of gravitational radiation. In particular, Hogan andWitten
showed that in a cosmological, first-order phase transition,
both the collision of detonation waves triggered by the nu-
cleation of the low-temperature phase and the generation
of acoustic noise in the relativistic plasma could produce
a relic background of gravitational waves. Since those pi-
oneering works, detailed computations of various types of
gravitational wave signals have been performed, and data
analysis techniques for extracting this kind of signal have
been developed.

Introduction

Without loss of generality, a cosmological gravitational
background is expected to be Gaussian, isotropic, sta-
tionary and unpolarized (for a detailed discussion see
e. g. [17]). All the physical properties are then encoded into
the so-called spectrum, given by the following, dimension-
less quantity

˝gw( f ) D
1
�c

f �̃gw( f ) ; (2)

where f is the frequency, �̃gw( f ) is the gravitational wave
energy density per unit frequency, i. e.

�gw D

Z 1

0
d f �̃gw( f ) ; (3)

and �c D 3H2
0/(8�G) is the critical energy density (H0 D

h0�100 km/(sMpc) being the current value of the Hubble
constant, with h0 parameterizing the current experimental
uncertainty). Hence, to characterize any stochastic back-
ground of gravitational radiation, the combination h20˝gw
is adopted.

As a signal to be detected, a stochastic background
of gravitational waves is described in terms of a ran-
dom process that cannot be disentangled from the detec-
tor noise. Most of the theoretical predictions yield values
for the GWs spectrum much lower than the noise level
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of any current or planned earth-based detector; on the
other hand, the instrumental noise features of GW detec-
tors are not sufficiently well understood to search for ex-
cess noise. For these reasons, an optimal detection strat-
egy has been developed [18] based upon the cross-corre-
lation between two or more widely separated detectors (so
as to minimize the common noise sources). In particular,
the cross-correlation improves the sensitivity (in terms of
the spectrum) by a factor (
 f Tobs)1/2, where 
 f is the
effective detector bandwidth and Tobs is the total obser-
vation time. Using the design LIGO sensitivity, assuming
four months of observation time and a constant spectrum
a stochastic background of GWs could be detected at 90%
confidence level provided that h20˝gw > 5 � 10�6 [19]
(the recent analysis of LIGO data [20] sets a 95% confi-
dence level upper limit h20˝gw < 6:5 � 10�5), while the
advanced-LIGO design sensitivity sets a lower detection
limit ˝gw � 8 � 10�9 [19]. As for the planned, three-arm
space-based interferometer LISA, a possible strategy for
detecting a stochastic background of gravitational radia-
tion exploits some combinations of the signals from the
three spacecraft that are insensitive to any GW signal (the
so-called Sagnac combination) [21]. Such combinations
therefore provide a calibration channel to measure the in-
strumental noise power spectrum. However, beside pri-
mordial GWs, in the frequency range 0.1–10mHz an as-
trophysical background is also expected due to the in-
coherent superposition of GWs emitted by large popula-
tions (both galactic and extra-galactic) of binary systems of
compact objects. Such an astrophysical background pro-
vides an additional noise contribution for the detection
of any primordial gravitational radiation in the LISA fre-
quency band.

In general the intensity and the spectral content of
a generic cosmological background of gravitational radia-
tion depends upon the producing mechanism and the un-
derlying theoretical model. However, it is possible to char-
acterize primordial gravitational radiation in terms of both
some observational constraints and some model-indepen-
dent features.

Observational Bounds

There are three main observational bounds that a cosmo-
logical background of gravitational radiation must satisfy:
the nucleosynthesis bound, the COBE/CMB bound and
the pulsar-timing bound.

The nucleosynthesis bound [22] is related to the highly-
accurate predictions of the standard cosmological model
pertaining to the primordial abundances of light ele-
ments. Such abundances depend upon the ratio between

the number density of neutrons nn and the number den-
sity of protons np. In conditions of thermal equilibrium
nn/np � e��m/T , where 
m D mn � mp � 1:3MeV. In
particular, the process responsible for maintaining ther-
mal equilibrium is pC e� � nC �e , as long as the cor-
responding rate � is greater than the expansion rate H.
When this condition is no longer fulfilled, the ratio nn/np
freezes out at a value e��m/Tf , and this determines the
number of neutrons yielding the formation of light ele-
ments (mainlyHe4). Since the Hubble constant is given by
the Friedmann equationH2 D 8� G �/3, where the energy
density � incorporates all the possible contributions at the
nucleosynthesis epoch, its value at the freeze-out depends
also upon a possible contribution due to a gravitational ra-
diation component of cosmological origin. Hence, a con-
straint on the value of the freeze-out temperature yields an
upper-limit for the energy density associated to any extra-
contribution other than standard model particles. Assum-
ing that the only extra contribution is due to cosmologi-
cal gravitons, the corresponding spectrummust satisfy the
following bound [23]

Z 1

0
d f h20˝gw( f ) . 5 � 10�6 (4)

COBE/CMB bound. On large scales, the spectrum ampli-
tude of a stochastic background of cosmological origin
must be compatible with the measurements of the CMB
temperature fluctuations. Indeed, at large wavelengths,
a stochastic background of gravitational radiation pro-
duces a dynamical red-shift on the frequencies of the CMB
photons, thus generating fluctuations in their temperature
(according to the so-called Sachs–Wolfe effect [24]). Those
fluctuations have been measured firstly by the COBE ex-
periment [25] and more recently byWMAP [26]. Since on
large scales also density perturbations (inhomogeneities in
the matter distribution) generate fluctuations in the CMB
temperature, any gravitational wave spectrummust satisfy
the following bound [27]

h20˝gw( f ) .
�
H0

f

�2 �ıT
T

	2
; (5)

where hıT/Ti � 5 � 10�6 is the CMB temperature rms
fluctuation (taking only the quadrupole contribution). The
frequency range over which the constraint (5) holds cor-
responds to modes that are currently inside the causal
horizon today ( f > 3 � 10�8 Hz) and were associated
to super-horizon scales at the surface of last-scattering
( f < 10�16 Hz). At the maximum frequency (10�16 Hz)
the bound therefore yields an upperlimit for any primor-
dial GW spectrum h20˝gw . 10�14. This upperlimit is
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particularly relevant for gravitational backgrounds pro-
duced by the amplification of vacuum fluctuations occur-
ring during a primordial, inflationary era: the correspond-
ing spectra are indeed characterized by a wide frequency
window ranging from f � H0 � 3 � 10�18 Hz up to GHz
values.

Recently, it has been pointed out [28] that since any
cosmological background of gravitational radiation be-
haves as a gas of free-streaming particles, in addition
to its effect on the expansion rate at the nucleosynthe-
sis epoch, also the growth of density perturbations is af-
fected. In particular, if the primordial metric perturba-
tions yielding to a background of gravitational radiation
are not adiabatic (as occurs for the parametrically ampli-
fied perturbations during inflation), then the effects on the
CMB photons are different from those associated to adi-
abatic massless neutrinos. Using the recent WMAP data,
this feature allows us to put a constraint on the spec-
trum of primordial gravitational radiation down to fre-
quencies corresponding to the comoving horizon at de-
coupling ( f � 10�15 Hz). At those frequencies, the anal-
ysis carried out in [28] establishes a current 95% confi-
dence-level upper limit h20˝gw . 8:4 � 10�6, while future
CMB experiments (like Planck) could reach sensitivities
such that h20˝gw . 1:4 � 10�6 [28].

Pulsar timing bound. A consistent fraction of known
pulsars with a period in the range [1.5–30]ms (the so-
called millisecond pulsars) are characterized by an ex-
tremely stable integrated pulse profile and therefore may
be considered as natural clocks. Those astrophysical sys-
tems are natural detectors of gravitational radiation: a GW
traveling between a detector and a pulsar produces a fluc-
tuation in the arrival time of the pulse proportional to the
wave amplitude. For a total observation time Tobs and an
uncertainty
�arr in the arrival time such detectors would
be sensitive to GWs whose amplitude is h � 
�arr/Tobs
at frequencies f � T�1obs . The highest sensitivity is reached
for continuous signals (like a stochastic background) with
observation times of one or two years (corresponding
to frequencies 10�9 � 10�8 Hz). The most stringent con-
straint on a stochastic background of gravitational radia-
tion comes from the analysis of the data concerning PSR
B1855+09 [29] which gives the following 95% confidence-
level bound at f̄ D 4:4 � 10�9 Hz

h20˝gw( f̄ ) < 1:0 � 10�8 : (6)

Characteristic Frequency and Amplitude

Beside the observational constraints discussed above, pre-
dictions concerning relic GWs are poorly constrained both
because of our lack of knowledge about physics beyond

the standard model and because of large uncertainties in
the understanding of the various production mechanisms
concerning primordial GWs. Nevertheless, it is possible to
outline some general features describing the typical fre-
quency and amplitude spectrum of cosmological gravita-
tional radiation (see e. g. [11]).

The typical frequency at which a gravitational signal
could be detected can be estimated [11] disentangling the
dynamical effects associated with the production mecha-
nism from the kinematical contribution depending on the
red-shift associated to the cosmic time at which the sig-
nal is produced. Assuming that a graviton is produced at
a certain temperature TP with a frequency fP during the
epoch where the Universe was either radiation or mat-
ter dominated, the frequency at which it could be cur-
rently detected is f0 D fP/(1C zP). To compute the red-
shift zP one exploits the adiabatic expansion of the uni-
verse, i. e. the fact that the entropy per comoving volume
S / gS(T) a3(t) T3 is conserved (here a(t) is the time-de-
pendent scale factor of the Universe and gS(T) accounts
for the effective number of degrees of freedom at temper-
ature T). The result is ([11,30])

f0 � 8 � 10�14 fP
�

100
gS(TP)

�1/3 �1GeV
TP

�
(7)

The dynamics of the production mechanism enters into
the estimate of the frequency fP. It is natural to ex-
press the wavelength P corresponding to such frequency
in terms of the horizon scale H�1P at the time of pro-
duction, i. e. P D �H�1P , with � 0 1. Assuming that the
gravitational radiation is produced during the era where
the energy density is dominated by relativistic radiation,
H2

P / g(TP) T4
P /M

2
pl, g(TP) � gS(TP) (here g(TP) is the

number of degrees of freedom at temperature TP). This
yields [11]

f0 � 1:6 � 10�7
1
�

�
100
g(TP)

��1/6 � TP
1GeV

�
Hz : (8)

Hence, the physics at TeV scale could be probed by space-
borne interferometers like LISA, while earth-based inter-
ferometers could investigate phenomenawhose typical en-
ergy scale is in the range 108–1010 GeV.

As for the characteristic intensity of primordial gravi-
tational radiation, despite a strong dependence upon the
production mechanism, it is still possible to draw some
general considerations [11]. When primordial gravita-
tional waves are produced at the Planck scale by collisions
and decay together with other relativistic particles that are
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currently observed (i. e. CMB photons), it is reasonable to
assume �gw(tp) � �� (tp). In this case, taking into account
the different red-shift characterizing photons and gravi-
tons (the latter decoupling just below the Planck scale), the
present value for the GW spectrum is estimated to be [30]

h20˝gw � 1:7 � 10�5
�

100
g(TP)

�1/3
˝gw(tP) ; (9)

where ˝gw(tP) is the fraction of energy density produced
in GWs. Another possible scenario incorporates all pos-
sible mechanisms of primordial production of GWs dif-
ferent from the ones giving rise to CMB photons. Also in
this case it is possible to relate the GW spectrum to the
CMB spectrum. For instance, one may consider the spec-
trum of gravitational radiation produced by the amplifica-
tion of vacuum fluctuations during an inflationary epoch;
in particular, it is possible to estimate the spectrum ampli-
tude for a frequency corresponding to the highest curva-
ture scale Hmax reached during the inflationary phase (see
e. g. [11]). The result is

h20˝gw �

�
Hmax

Mpl

�2
h20˝� ; (10)

where h20˝� � 10�5 is the current fraction (in terms of
the critical density) of radiation energy density. Slow-
roll inflationary models are characterized by a typical
Hubble scale during the acceleration era that cannot ex-
ceed a value of about 8 � 10�6 Mpl (to be consistent
with the CMB anisotropy measurements) [31], yielding
to an almost constant spectrum in the frequency win-
dow [10�16; 109]Hz h20˝gw � 10�15 [32]. While this is
too low to be detected both by earth-based interferome-
ters (even in their advanced configurations) and by LISA
(because of the presence of a strong astrophysical back-
ground) [33], a space detector sensitive in the frequency
band [0:1; 1]Hz (which is almost free from astrophysi-
cal backgrounds) could reach the desired sensitivity [34].
Pre-big-bang models [35], string-theory-based cosmolog-
ical models, are characterized by an inflationary phase
where the curvature grows reaching amaximum threshold
value Hmax � 10�1 Mpl. Such a feature in particular pro-
duces a stochastic background characterized by a steep-
blue spectrum [36] (˝gw � f 3); the COBE bound is eas-
ily satisfied, and, for a certain range of the free param-
eters of the model, the spectrum can reach a maximum
value h20˝gw � 10�7 [37] (compatible with the nucle-
osynthesis bound) in the frequency range [10�4; 103]Hz.
This signal could be in principle detected by Advanced
LIGO.

ProductionMechanisms of Relic GWs

The main mechanisms that can produce a primordial
stochastic background of gravitational radiation can be di-
vided into two broad classes:

� Parametric amplification of metric tensor perturba-
tions occurring during an early epoch of inflationary
expansion;

� Causal process (mainly phase transitions) occurring
during the primordial stages of the evolution of the
Universe.

Parametric Amplification of Vacuum Fluctuations

In a cosmological model characterized by different dy-
namical epochs, in each of them any quantum field has
different normal modes corresponding to different sets of
creation and annihilation operators. Those sets are con-
nected by the so-called Bogoliubov transformations [38]
that mix positive frequency modes (i. e. annihilation op-
erators) with negative frequency modes (i. e. creation op-
erators). As a consequence, in an expanding universe, an
initial vacuum state (with respect to a certain set of an-
nihilation/creation operators), due to the dynamical evo-
lution of the metric, in a different epoch corresponds to
a multi-particle state. The physical idea underlying quan-
tum production of particles in an expanding universe can
be qualitatively explained as follows [11]. For the sake
of simplicity, let’s consider a cosmological model with
two different phases (A and B), where the transition be-
tween them occurs over a time scale 
� � H�1(�). For
a mode whose physical frequency at the time of transition
is f� there exist two alternative regimes: abrupt/sudden
transition (2� f�
� 
 1) or smooth, adiabatic transition
(2� f�
� 	 1). For modes characterized by a sudden
transition, while the physical state associated to the field
in the phase A has not significantly changed, the corre-
sponding particle number must be evaluated with respect
to the set of annihilation and creation operators relative
to the phase B. Furthermore, due to the mixing between
positive frequency and negative frequency modes, the vac-
uum state relative to the phase A corresponds to a multi-
particle state relative to the phase B. On the other hand,
for modes for which the transition is adiabatic, no parti-
cle production takes place. Applying this analysis to a cos-
mological scenario with a primordial phase of accelerated
expansion driven by a scalar field, vacuum metric fluc-
tuations are amplified thus producing, in the final decel-
erating radiation/matter dominated phase a final, multi-
graviton phase that gives rise to a stochastic background
of gravitational radiation. The corresponding spectrum
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is given by [11]

˝gw D
16�4

�c
nf f 4 ; (11)

where nf is the number of gravitons per cell of phase
space. As mentioned before the frequency spectrum of
such backgrounds extends over a huge range of frequen-
cies, from fmin � 3 � 10�18 Hz (corresponding to a wave-
length compatible with the size of our observable universe)
up to a maximum frequency in the GHz range (this ultra-
violet cut-off is fixed by the maximum curvature attained
during the inflationary phase). As for the strength of the
spectrum, the predictions are sensitive to the mechanism
that produces the inflationary stage (see previous section).

Causal Mechanisms: Phase Transitions

During the cosmological evolution of the Universe, phase
transitions corresponding to symmetry breaking of parti-
cle physics fundamental interactions are expected to take
place. As for the generation of relic GWs, the presence and
type of topological defects and the order of the transition
are of particular relevance.

Cosmic Strings Cosmic strings are topological defects
forming as a consequence of the spontaneous breaking of
a global U(1) gauge symmetry [39,40]. They are charac-
terized by a large mass-per-unit-length � (related to the
scale at which the symmetry is broken), a closed shape
and a typical length-scale that can be larger or smaller
than the Hubble radius rH D 1/H. Since their tension is
equal to their mass per unit length, they have relativistic
oscillations, therefore shrinking in size and emitting grav-
itational radiation. Assuming that a multi-scale network
of such strings has been formed, loops whose radius is
smaller than rH oscillate, radiate away GWs, shrink and
eventually disappear, replaced by loops broken off from
loops whose radius is larger than rH. The typical scale for
the GW spectrum is determined by the loop radius: since
in the network loops with different sizes are present, the
corresponding (almost Gaussian) spectrum is nearly flat
over a frequency range [10�8; 1010]Hz. A simple dimen-
sional analysis shows that the spectrum can be estimated
as ˝gw � ��/M2

pl, where � is a dimensionless parame-
ter encoding the radiation efficiency. Numerical simula-
tions of cosmic strings predict h20˝gw � 10�9 � 10�8 for
�/M2

pl < 10�6 [41]. Cosmic strings may also produce in-
tense bursts of gravitational radiation [42]: in particular,
the strongest bursts are produced at sections of strings
characterized by large Lorentz boosts. Though the analysis
of [42] suggests that such bursts could be detected even

with the current LIGO design sensitivity, a more recent
analysis [43] points out that large-scale earth-based inter-
ferometers at current sensitivity (such as LIGO) are un-
likely to detect such GW radiation when the string net-
work is characterized by a classical distribution of loop
sizes. On the other hand, if the size of the string loops is
much smaller than its classical value (lclassical � ��t/M2

pl)
and it is determined by gravitational back-reaction, the
burst amplitude is enhanced and those signals could be de-
tectable with the Advanced LIGO design sensitivity [43].

Cosmic strings can also be produced in some classes of
inflationary models based upon string theory [44]. Those
strings, dubbed cosmic superstrings, have two key features
distinguishing them from the usual field-theoretic strings:
(a) Due to their probabilistic interaction and to the higher
dimensionality of the underlying theory, their reconnec-
tion probability p is less than 1 (10�3 < p < 1 [45], while
for field theoretic strings p D 1); (b) different kinds of
strings can be formed. As well as strong bursts of grav-
itational radiation, cosmic superstrings can also generate
a stochastic background of GWs, as a result of the inco-
herent superposition of cusp bursts from a strings net-
work. Taking into account various effects, Siemens and
collaborators [46] have investigated the detectability of
such a background considering a wide range of experi-
ments. In particular, they have found that interferometric
GW detectors are sensitive to portions of the parameter
space [p; �/Mpl], complementary to ones constrained by
the various experimental bounds.

First-Order Phase Transitions In a first-order phase
transition, the universe is locally trapped into a meta-sta-
ble, high-temperature unbroken symmetry phase. Such
a meta-stable configuration is separated from the stable
vacuum phase by a barrier in the (temperature-depen-
dent) potential describing the order parameter of the tran-
sition. At the quantum level, a transition from the meta-
stable to the stable vacuum state takes place through tun-
neling. As a consequence, random nucleation of bubbles
occurs, where the configuration inside a generic bubble
corresponds to the true vacuum, while outside it is rep-
resented by the meta-stable phase. When the temperature
drops below a critical threshold, bubbles have enough vol-
ume to expand (the latent heat released during the transi-
tion is converted into kinetic energy for the bubbles); they
approach a velocity close to the speed of light, collide and
eventually yield to a universe in the unbroken-symmetry
phase. The occurrence of such collisions breaks the bub-
bles spherical symmetry andGWs (as well as other kinds of
radiation) are produced ([15,16,47]). The corresponding
GW spectrum is described by two parameters, the bubble
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nucleation rate per unit volume ˇ and the ratio ˛ between
the false vacuum energy density and the radiation energy
density released at the critical, transition temperature Ttr.
Since the gravitational radiation is produced by collision of
bubbles, the spectrum is strongly peaked at the frequency
characteristic of the collision rate (2� fP � ˇ). A detailed
calculation yields [47]

fP � 5 � 10�8
�
ˇ

Htr

� �
Ttr

1 GeV

�
 gtr
100

�1/6
Hz (12)

where Htr and gtr are the Hubble parameter and the
number of degrees of freedom at the transition temper-
ature Ttr. For the electroweak phase transition (EWPT)
ˇ/Htr � 102 � 103, Ttr � 100GeV and the peak fre-
quency is therefore in the range 10�4 � 5 � 10�3 Hz.
A calculation of the peak of the spectrum gives [47]

h20˝gw( fP)

� 10�6�2
˛2

1C ˛2
v3b

0:24C v3b

�
Htr

ˇ

�2 �100
gtr

�1/3

(13)

where � is the fraction of latent heat converted into bub-
ble-wall kinetic energy and vb is the Hubble expansion ve-
locity. If the Higgs mass is larger than the W-masses (as
required by current phenomenological constraints), non-
perturbative analysis based upon lattice simulations estab-
lishes that within the Standard Model the EWPT cannot
be first-order. In the class of the minimal supersymmetric
extensions of the standard model, provided that the Higgs
mass lies in the range 110–115GeV and the right-handed
stop (i. e. the supersymmetric partner of the top quark) has
a mass between 105 and 165GeV, a first-order EWPT can
take place. In this case the GWs spectrum is too weak.
Within the larger class of non-minimal supersymmetric
extensions of the standard model the strength of the tran-
sition can be enhanced: in particular, considering a class of
models where an additional gauge singlet in the Higgs sec-
tor (thus also obtaining a model explaining the observed
baryon asymmetry), for the GW spectrum peak values of
h20˝gw( fp) � 10�15 � 10�10 can be reached [48], corre-
sponding to peak frequencies fp � 10mHz.

During a first-order phase transition, the onset of
turbulent anisotropic eddies induced in the background
fluid by the rapid expansion and collision of bubbles may
also produce a GW background ([47,48,49,50]). Again
within the non-minimal supersymmetric extensions of
the standard model there are regions of the parameter
space [48] where the GW spectrum can reach peak values
h20˝gw � 10�10 for frequencies fP � 10�3 Hz. Cosmic

turbulence with additional magnetic fields (affecting the
turbulent energy spectrum) can also generate a GW back-
ground at the end of a first-order phase transition. In [51]
a scenario is analyzed where a first-order phase transition
occurs before neutrino decoupling (i. e. much later than
EWPT); the corresponding GW spectrum presents a peak
in the frequency window relevant for the LISA experiment.

Finally, phenomenologically interesting GW spectra
can be produced in non-minimal inflationary models (the
so-called extended inflation models) where the acceler-
ating phase ends with bubble collision [52]: the peak
frequency of the spectrum lies in the frequency range
of ground-based detectors. A detailed analysis [53] has
shown that in two-field models where one field performs
the first-order phase transition and the other drives the ac-
celerating phase by slowly rolling towards the minimum of
the potential, if the phase transition takes place well before
the end of inflation, the spectrum has a peak in the fre-
quency range [10; 103] Hz and can be detectable by large-
scale, earth-based interferometers.

Future Directions

The search for primordial gravitational waves is rather
challenging both experimentally and theoretically. While
so little is known about the earliest evolution of the Uni-
verse (thus rendering the predictions for a cosmological
background of gravitational waves as mere indications),
the experimental effort to detect such a signal is rather
challenging. Nevertheless, the development of space-based
detectors, combined with the possibility that future CMB
experiments could detect the tensor contributions of pri-
mordial metric perturbations hopefully will provide some
concrete chances to detect primordial gravitational waves.
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Glossary

Branes, D-branes Brane – after membrane – is the name
given generically to the “solitons” (the non-perturba-
tive states) of Superstring theory. The most impor-
tant class is that of Dirichlet- or D-branes, which are
dynamical hypersurfaces in which the fundamental
strings can end. The number of spatial dimensions
of the brane is sometimes indicated explicitly (e. g.
D3-branes, D7-branes). A D1-brane is also known as
a D-string.

Cosmic strings Cosmic strings are non-dissipative linear
concentrations of energy that form at phase transitions
in the early universe at which axial symmetries are bro-
ken. They are extremely long and thin, their length
could bemany times the size of the observable universe
while their thickness is usually subatomic.

Cusps Closed loops of string undergo periodic oscilla-
tions, with a period related to the size of the loop. The
dynamical equations predict that during each oscilla-
tion there may be a few points at which the string in-
stantaneously doubles back on itself, dubbed cusps. In
the neighborhood of the cusp, the string velocity ap-
proaches the speed of light. Such an event generates an
intense pulse of gravitational and other forms of radi-
ation, strongly beamed in the direction of motion of
the cusp (like the sound produced by the cracking of
a whip).

Deficit angle The spacetime metric around a straight
static cosmic string looks like Minkowski space in
cylindrical coordinates, except that the azimuthal co-
ordinate has a range smaller than the usual 2� . This
means that the spacetime is actually conical with
a global deficit angle ˛ D 8�G�/c2 if� is the mass per
unit length of the string. Pictorially, an angular wedge
of width ˛ is removed from the plane orthogonal to the
string and the remaining edges identified.

Horizon, cosmological Roughly speaking, the size of the
observable universe at any given time. It is the max-
imum distance light could have traveled since the Big
Bang, and therefore themaximumdistance over which
physical phenomena can be causally correlated, since
information cannot travel faster than light.

Goto–Nambu action An Action principle – in the sense
of Lagrange – that describes the relativistic motion
of an idealized, infinitely thin (Goto–Nambu) cosmic
string with no internal structure and whose energy per
unit length equals its tension. It is a generalization of
the Action for a relativistic point particle, being pro-
portional to the invariant area of the surface swept out
in spacetime by the string motion. It provides a very

good approximation to the dynamics of a relativistic
magnetic flux line whenever the effects of the string
core and of massive excitations transverse to the string
can be ignored.

Inflation, cosmological A near-exponential expansion of
the (extremely smooth) early universe in which quan-
tum fluctuations would have been frozen and blown
up to cosmological size, providing the initial inhomo-
geneities that would later grow, under the effect of
gravity, into large scale structures such as galaxies and
clusters visible in the universe today.

Kibble mechanism The inevitable formation of cosmic
strings, if they are stable, in rapid phase transitions. Af-
ter a symmetry-breaking phase transition the choice of
a minimum depends on random fluctuations, and will
be different in different regions. Neighboring regions
in different ground states will have defects separating
them. Below a critical temperature the field fluctua-
tions are not enough to change between ground states
and the domains effectively freeze. In a cosmological
context, the typical scale of defects at formation must
be smaller than the causal horizon.

Scaling The notion that a single lengthscale characterizes
the evolution of a string network, so that it always
looks the same (in a statistical sense) when relevant
quantities are re-scaled by that lengthscale. A particu-
lar case relevant for cosmology is linear scaling, where
this scale is the horizon size. A structureless (Goto–
Nambu) cosmic string network usually evolves in such
a scale-invariant manner, with about 40 strings cross-
ing any horizon volume throughout the history of the
universe. The long string network is diluted by the cre-
ation of small closed loops which oscillate and decay
into a stochastic background of radiation, cosmic rays
and gravitational waves.

Superstrings, cosmic Superstring theory is a candidate
model for a quantum theory of gravity unified with
all other interactions. It is based on the idea that the
fundamental constituents of nature are one-dimen-
sional “strings” whose vibrational modes produce all
known particles and interactions (the prefix “super”
refers to a symmetry between bosonic and fermionic
excitations, known as supersymmetry). These funda-
mental superstrings are not to be confused with cosmic
strings, but superstrings can also be cosmic in some
particular models, in which case they are known as
cosmic superstrings.

VOS model Shorthand for Velocity-dependent One-
Scale model, a quantitative and physically simple an-
alytic model for the evolution of Goto–Nambu string
networks. Comparison with numerical simulations
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shows that the model provides an accurate descrip-
tion of the large-scale features of the network through
two averaged (macroscopic) quantities, a characteristic
length scale (or correlation length) and the root-mean
square string velocity.

Worldsheet A point particle’s position as a function of
time traces a line in spacetime known as a worldline.
A one-dimensional object such as a string traces a two-
dimensional worldsheet.

Definition of the Subject

Cosmic strings are linear concentrations of energy that
form whenever phase transitions in the early universe
break axial symmetries, as originally shown by Kibble [31].
They are the result of frustrated order in the quantum
fields responsible for elementary particles and their inter-
actions. For about two decades, motivation for their study
was provided by the possibility that they could be behind
the density inhomogeneities that led to the observed large-
scale structures in the universe. Precision observations,
particularly of the cosmic microwave background radia-
tion, have limited strings to a sub-dominant role in struc-
ture formation. Instead, the inhomogeneities appear to be
consistent with a period of cosmological inflation, but it
turns out that particle-physics models of the early universe
that predict a period of inflation very often also predict the
generation of cosmic strings at the end of it [27,28].

More recently, interest has been revived with the real-
ization that there may be strong links between field theory
cosmic strings and fundamental strings. The latter are the
supposed ultimate building blocks of matter, and in their
original context of superstring theory were thought to
be microscopic. However, in its modern version – some-
times referred to as M-theory – it is possible and per-
haps even mandatory to have macroscopic (cosmological-
sized) fundamental strings [37,53]. Their behavior is ex-
pected to be quite similar to that of field theory cosmic
strings, although there are some important differences so
they may in principle be observationally distinguishable.
Being relics of the phase transitions that produced them,
cosmic strings provide us with a unique window into the
early universe. If they are stable and survive for a signifi-
cant amount of time (possibly even up to the present day),
they may leave an imprint in many astrophysical and cos-
mological observables, and provide us with information
on fundamental physics and the very early universe that
would otherwise be inaccessible to us. On the other hand,
gaining a quantitative understanding of their properties,
interactions, evolution and consequences represents a sig-
nificant challenge because of their intrinsic complexity.

Their non-linearity is particularly noteworthy, with highly
non-trivial feedback mechanisms between large (cosmo-
logical) and small (microscopic) scales affecting the net-
work dynamics. Considerable reliance, therefore, must be
placed on numerical simulations, which are technically
difficult and computationally costly. A complementary ap-
proach is the use of analytic or semi-analytic models, usu-
ally to describe the large-scale features of the networks.

The basic picture of the cosmological evolution of
string networks that has emerged for the simplest, Goto–
Nambu, networks is of a scaling solution with about 40
long strings always stretching across each horizon vol-
ume plus a population of loops (other string types can
lead to a different behavior). It is then possible to estimate
their cosmological implications quantitatively. For exam-
ple, these strings continuously source gravitational pertur-
bations on sub-horizon scales. The one parameter in these
models is the energy scale of the phase transition at which
the strings are created. The astrophysical consequences of
strings stem from the non-trivial gravitational field around
a string [58]. Particles in the vicinity of a static straight
string feel no gravitational acceleration, because in general
relativity tension is a negative source of gravity and, since
tension equals energy per unit length, their effects cancel.
The space-time around the string is locally, but not glob-
ally, flat. In fact the space is conical, with a deficit angle

˛ D 8�
G�
c2

; (1)

where � is the mass per unit length; the simple way
to picture this is to imagine a plane in which an angu-
lar wedge ˛ has been removed and the edges glued to-
gether. For cosmologically interesting strings the deficit
angle ranges from a few seconds of arc to a few millionths
of a second of arc.

Introduction

To understand the cosmological evolution and effects of
cosmic strings we start in this section with a quick sum-
mary of basic cosmology concepts that will be needed later
and a description of the simplest type of cosmic strings in
which the main features are already apparent. But, first,
a warning about units: from now on we will set the speed
of light to unity, c D 1, so we measure distances in light-
travel time, and masses in units of Energy (and vicev-
ersa, using E D mc2). Boltzmann’s constant is set to unity,
so temperature is measured in units of mass/energy (us-
ing E D KBT). Finally, we set Planck’s constant to unity,
„ D 1, and measure all lengths and masses in units of
Planck’s length and mass/energy: lP D 1:62 � 10�35 m,
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MP D 2:18 � 10�8 kg D 1:22 � 1019 GeV/c2. In these
units, Newton’s constant is given by G D M�2P .

The early universe is very smooth. To a very good ap-
proximation it is a homogeneous and isotropic spacetime
described by a single variable: the rate of expansion of
its three-dimensional spatial sections. In Einstein’s gen-
eral relativity this spacetime is described by the flat Fried-
mann–Robertson–Walker (FRW) metric

ds2 D dt2 � a2(t)[ Edx � Edx] ; (2)

where Ex are fixed (comoving) spatial coordinates and a(t)
is the scale factor that determines the fractional or Hubble
expansion rate

H(t) D
1

a(t)
da
dt
: (3)

The time coordinate t is known as cosmological time; to
analyze cosmic string evolution we will also need a dif-
ferent time parametrization known as conformal time, � .
They are related by d� D dt/a(t), leading to the metric

ds2 D a2(�)[d�2 � Edx � Edx] : (4)

The age of the universe is currently estimated to be
about 13.7 billion years [55]. The universe starts very hot
and dense and is cooled by the expansion, with the tem-
perature decreasing as T(t) � a(t)�1. The Hubble expan-
sion rate is determined by the energy contents of the
universe. In a universe dominated by radiation or very
relativistic matter (the hottest, earliest stages), the scale
factor evolves as a(t) � t1/2 and the energy density in
radiation as �radiation � a(t)�4 � t�2. The energy den-
sity of non-relativistic matter is inversely proportional to
volume �matter � a(t)�3 and eventually takes over (after
about 4000 years), leading to a period of matter domina-
tion, during which a(t) D t2/3 and therefore �matter � t�2.
More recently – about five billion years ago – we have
entered an epoch of accelerated expansion due possi-
bly to a cosmological constant or some unknown form
of dark energy whose energy density is constant in time
�dark energy � const. Dark energy should not be confused
with dark matter, an unknown form of matter whose pres-
ence we can detect through its gravitational effects but that
does not interact with electromagnetic fields and so in par-
ticular does not emit light – hence the adjective “dark”–.
In the currently accepted cosmological model the energy
density in the universe today would be dominated by dark
energy (about 74%), followed by about 22% dark matter
and only about 4% of regular (baryonic) matter [55]. Dark
matter is widely believed to be a particle still to be discov-
ered.

The universe today is far from smooth, but the struc-
ture we observe on the scale of clusters of galaxies is con-
sistent with the gravitational collapse of tiny primordial
density inhomogeneities ı�/� � 10�5 at the time the cos-
mic microwave background (CMB) radiation was emitted.
The CMB is the oldest radiation we observe, dating back to
the time when the universe was only about 380 000 years
old. At this epoch the primordial plasma cooled enough
to allow the formation of the first atoms (a process known
as recombination), and it became transparent to photons
(which is referred to as decoupling). Before that moment,
the photons behave like a fluid that is strongly coupled
to the protons and electrons. An overdense region in the
baryon fluid would like to contract but the photon pres-
sure pushes it back, causing both fluids to oscillate. These
oscillations are imprinted in the cosmic microwave back-
ground and can be detected today in the form of Doppler
peaks in its power spectrum.

The spectrum of density inhomogeneities has been ac-
curately measured in the CMB and found to be near scale-
invariant and of the right magnitude to produce the struc-
ture we observe. The perturbations to the FRW metric
can be classified as scalar (overall changes to the Newto-
nian gravitational potential), vector (associated with veloc-
ity and/or rotational effects) and tensor (transverse trace-
less perturbations to the spatial metric, such as gravita-
tional waves). Each of these affects the CMB in different
ways, so their relative contributions can in principle be
observationally distinguished. Finally, Thomson scatter-
ing of the anisotropic distribution of the CMB photons is
particularly important during decoupling and recombina-
tion, and induces a partial linear polarization of the scat-
tered radiation, at a level that is around ten percent of the
anisotropy. Detection of this polarization signal is at the
borderline of the sensitivity of ongoing experiments at the
time of writing, but is expected to become standard with
forthcoming experiments.

The energy density of a network of cosmic strings in
the linear scaling regime is �strings � t�2 and therefore it
remains a constant fraction of the dominant form of en-
ergy during matter or radiation domination. Numerical
estimates for the simplest, Goto–Nambu, networks sug-
gest the fraction is around 100G�. Provided the string
mass is not close to the Planck scale, this is small enough
not to disturb the cosmological evolution; at the same
time, for a broad range of values ofG� this is large enough
to be detectable in precision experiments today. Other
string types (see Sect. “Field Theory Strings with More De-
grees of Freedom”)may have larger or smaller fractions or
qualitatively different signatures. In particular, networks
that do not reach linear scaling may come to dominate
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Cosmic Strings, Figure 1
The effective potential energy V for a simple string-forming field
theory model. The a and b plots correspond to the high and
low temperature configurations, respectively. For simplicity the
complex field ˆ has been split into two real scalar fields, ˆ1
andˆ2

the energy density (which rules them out) or to disappear
completely.

The simplest field theory model that produces cosmic
strings has a single complex scalar field ˆ (this is short-
hand for a function ˆ(t; Ex) with complex values that do
not change under coordinate transformations). Let us as-
sume that theHamiltonian determining the field dynamics
is invariant under an axial symmetry such as a phase rota-
tion,ˆ ! ˆei� . For example, take the potential energy

Z
d3xV D

Z
d3x



2
�
jˆj2 � �2

2 (5)

where  is a dimensionless coupling constant and � is an
energy scale related to the temperature of the symmetry-
breaking transition. This has a set of degenerate ground
states: the minimum of the potential in field space is the
circle jˆj D �, known as the vacuum manifold. Any con-
figuration ˆ(t; Ex) D const. D �ei� with � real and con-
stant is a possible ground state or vacuum, irrespective of
the value of the phase �.

Figure 1 illustrates what happens. At high temperature
the field fluctuations are large enough to make the central
peak around jˆj D 0 irrelevant, and the effective poten-
tial is symmetric and has a minimum there. As the tem-
perature falls the energy will eventually be too low to per-
mit fluctuations over the peak, at which point the field will
tend to settle towards one of the ground states. The ran-
dom choice ofminimum in this condensation process then
breaks the original axial symmetry. This is the case, for in-
stance, in superfluid 4He.

When a large system goes through a phase transition
like this, each part of it has to make this random choice,
which need not be the same everywhere. The minimiza-
tion of gradient terms in the energy of the system tends

to make it evolve towards increasingly more uniform con-
figurations, but causality (the principle that no informa-
tion can travel faster than light) imposes that this evolu-
tion can only happen at a limited rate. As a result one ex-
pects many domains, each with an uncorrelated choice of
ground state. Where these domains meet there is some
probability of forming linear defects – cosmic strings –
around which the phase angle varies by 2� (or possi-
bly multiples thereof). This is the Kibble mechanism. No-
tice that the field vanishes at the string’s core, so there
is trapped potential energy (as well as gradient energy).
These strings are known as global strings because the ax-
ial symmetry that is broken below the phase transition is
“global”, that is, the transformation ˆ ! ˆei� is inde-
pendent of position.

The next step is to consider charged scalar fields in-
teracting with an electromagnetic field. The best known
example of a symmetry–breaking transition of this kind
is the condensation of Cooper pairs in a superconductor,
that has the effect of making photons massive below the
critical temperature (in this case the axial symmetry is of
the “local” of “gauge” type). The cosmic strings that result
are magnetic flux tubes that do not dissipate because the
magnetic field is massive outside the string core.

This type of vortex was first discussed by Abrikosov [1]
in the context of type II superconductors. Nielsen andOle-
sen [45] generalized these ideas to the relativistic quantum
field theory models used in particle physics, in particu-
lar the Abelian Higgs model which is a relativistic version
of the Landau–Ginzburg model of superconductivity, gov-
erned by the action

S D
Z

d4x
�
j@�ˆ � iqA�ˆj2 �

1
4
F��F��

�


2
(jˆj2 � �2)2

�
: (6)

A� is the gauge field and ˆ is a complex scalar of charge
q (q D 2e in superconductors, whereˆ is the Cooper pair
wavefunction). The second term is the usual Maxwell ac-
tion for the electromagnetic field, F�� D @�A� � @�A�.
The energy per unit length of a straight, static string lying
on the z-axis is

E D
Z

d2x
�
j@xˆ � iqAxˆj

2 C j@yˆ � iqAyˆj
2

C
1
2
B2 C



2
(jˆj2 � �2)2

�
(7)

where B D @xAy � @yAx is the z-component of the mag-
netic field. Finite energy configurations must have jˆj D �
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(the vacuum manifold is still a circle) but the phase
of ˆ is undetermined provided the gradient terms and
the magnetic field go to zero fast enough. This condi-
tion allows for finite energy solutions At D Ar D Az D 0,
ˆ(r; �) � �ein� , A� (r; �) � n/(qr), as r!1, in which
the total magnetic flux in the plane perpendicular to the
string is quantized,
Z

d2xB D
I
EA � Edl D

2�n
q

and n is the winding number of the string. If the con-
stants  and q are such that fluctuations in the scalar
fieldˆ and the gauge field A� have equal masses, it is pos-
sible to show that the string saturates an inequality of the
form

Energy per unit length � constant x | magnetic flux|

known as the Bogomolnyi bound [7]. In this case, par-
allel strings at close range exert no force on each other
and there are static multivortex solutions [56]. If the mass
of the scalar excitations is lower (higher) than that of the
gauge excitations, parallel strings will attract (repel).

More complicated particle physics models – in partic-
ular those describing the early universe – involve gauge
symmetries that generalize the electromagnetic interac-
tion, mediated by photons, to more complicated interac-
tions such as the electroweak or Grand Unified (GUT) in-
teractions. The messenger fields that play the role of the
photons may be massless in the early universe and be-
come massive following a symmetry-breaking transition,
and cosmic strings carry the magnetic flux of these other
massive gauge fields (not the electromagnetic field).

From a cosmological point of view, the gauge field has
the important effect of making the gradient terms decay
exponentially fast away from the string so the energy per
unit length of these strings is finite. Abrikosov–Nielsen–
Olesen strings have no long-range interactions, so their
evolution is dominated by their tension and is well de-
scribed in the thin string or Goto–Nambu approxima-
tion.

Field continuity implies that a string of this kind can-
not simply come to an end: it must form a closed loop
or extend to infinity, and it cannot break into segments.
For this reason, strings, once formed, are hard to elimi-
nate. In the absence of energy loss mechanisms, the strings
would eventually dominate the energy density of the uni-
verse. On the other hand, the strings can decay into ra-
diation, they may cross and exchange partners, and they
may also cross themselves, forming a closed loop which
may shrink and eventually disappear. The outcome of

these competing mechanisms is that the network is ex-
pected to reach a scale-invariant (or scaling) regime, where
the network’s characteristic length scale is proportional
to the size of the horizon. We will discuss string evolu-
tion in more detail in Sect. “String Evolution”. If a ran-
dom tangle of strings was formed in the early universe,
there would always be some strings longer than the hori-
zon, so a few would remain even today. Because cosmo-
logical phase transitions typically happen in the very early
universe, cosmic strings contain a lot of trapped energy,
and can therefore significantly perturb the matter distri-
bution. To first order there is a single parameter quantify-
ing the effects of strings, its energy per unit length. In the
simple relativistic strings, the mass per unit length and the
string tension are equal, because of Lorentz invariance un-
der boosts along the direction of the string (but this need
not be true for more elaborate models, see Sect. “Field
Theory Strings with More Degrees of Freedom”). Cos-
mic strings are exceedingly thin, but very massive. Typ-
ically, for strings produced around the epoch of grand
unification, the mass per unit length would be of order
� � 1021 kg m�1 and their thickness 10�24 m. The gravi-
tational effects of strings are effectively governed by the di-
mensionless parameterG�, whereG is Newton’s constant.
For GUT-scale strings, this is 10�6, while for electroweak-
scale strings it is 10�34.

String Formation

Spontaneous symmetry breaking is a ubiquitous feature
of our theories of fundamental particle interactions. Cos-
mic strings are formed in many symmetry-breaking phase
transitions. If the symmetry is broken from a group G
down to a subgroup H, the set of degenerate vacuum or
ground states is the manifold M D G/H, and the topology
of this manifold determines the types of defect that can
form. In our previous examplesM was a circle; in general,
strings can form if M contains closed curves that cannot
be contracted withinM (the technical term is thatM is not
simply connected, or that its first homotopy group is non-
trivial) [31].

The Kibble mechanism described in Sect. “Intro-
duction” relates the initial density of strings to the size �
of the domains over which the field is correlated,

�string � C
1
�2

with C a constant of order one reflecting the probability
that a string forms when three or more domains meet.
The correlation length cannot grow faster than the speed
of light so in the early universe an obvious upper bound
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on � is the size of the horizon at the time of the phase tran-
sition. If the dynamics of the phase transition is known,
� can be estimated more accurately. In a first order phase
transition � is given by the typical distance between bub-
ble nucleation sites, which depends on the nucleation rate.
In second order phase transitions � depends on the criti-
cal exponents and the rate of cooling through the critical
temperature, Tc, as shown by Zurek [65].

Vortex lines or topological strings can therefore appear
in a wide range of physical contexts, from cosmic strings in
the early universe through disclinations in room-tempera-
ture nematic liquid crystals, to magnetic flux tubes in some
superconductors and vortex lines in low-temperature su-
perfluid helium. These systems provide us with a range of
opportunities to test aspects of the cosmic string formation
and evolution scenario experimentally.

The Kibble mechanism in first order transitions
was confirmed in experiments on nematic liquid crys-
tals [15,16]. The Kibble–Zurek scenario for second or-
der transitions has been experimentally verified in Super-
fluid 3He [11,50] and in Josephson Tunneling Junction ar-
rays [41].

The 3He experiments in a rotating cryostat in Helsinki
also confirmed the scale invariance of the initial distribu-
tion of loops, n(R) � R�4, where n(R)dR is the number
density of loops with radii between R and RC dR, as pre-
dicted by Vachaspati and Vilenkin [61].

More recently, the formation of a defect network fol-
lowing the annihilation of 3He–A / 3He–B boundary layers
has been observed [14]. The precise type of defects is still
under investigation but this system constitutes an interest-
ing analogue to the formation of strings from the annihi-
lation of branes in brane inflation scenarios.

There are also a few systems where the string density
disagrees with the Kibble–Zurek predictions. In 4He, [21]
the reasons are understood: the strings are fuzzy and the
network does not survive long enough to be detected [36].
In the case of superconducting films the results are some-
what inconclusive [40] and also it is not completely clear
what the expected density of flux quanta should be after
a temperature quench; an alternative formation mecha-
nism with different vortex clustering properties has been
proposed in [24]. In fact the formation of defects in sys-
tems with gauge fields is clearly very relevant to cosmology
but is still not completely understood (see Kibble [33] for
a recent discussion).

String Evolution

Themotion of a cosmic string with worldsheet coordinates
� a and background space-time coordinates x� in a metric

g�� is obtainable from a variational principle applied to
the Goto–Nambu action [22,43] (a D 0; 1;� D 0; 1; 2; 3)

S D � � Area D �
Z

d� d� j det gab j2

D �

Z
d� d�

ˇ
ˇ̌
ˇdet

�
ẋ� ẋ� g�� ẋ�x� 0g��
x�0 ẋ� g�� x�0x� 0g��

�ˇˇ̌
ˇ

1
2

(8)

where � is again the string mass per unit length, and with
dots and primes respectively denoting derivatives with re-
spect to the time-like (�0) and space-like (�1 D �) coor-
dinates on the worldsheet. gab is called the inducedmetric.
We are interested in strings in a FRW background space-
time (see Eq. (4)) and can choose worldsheet coordinates
that make the induced metric diagonal

�0 D � ; ẋ � x0 D 0 ; (9)

The choice of conformal time coordinate simplifies the
microscopic evolution equations, although as we shall see
later on physical time is a more natural choice for the
macroscopic evolution (see Sect. “Introduction” for defi-
nitions of the two time choices). It is also useful to define
the coordinate energy per unit � ,

�2 D
x02

1 � ẋ2
: (10)

Then the usual variational techniques can be used to show
that the microscopic string equations of motion are

ẍC 2
ȧ
a
ẋ(1 � ẋ2) D

1
�

�
x0

�

�0
(11)

and

�̇ C 2�
ȧ
a
ẋ2 D 0 : (12)

For simplicity we are neglecting effects such as cusps and
a frictional force due to particle scattering (which for
heavy strings is only relevant during a transient period
very early in the network’s evolution). The first one is just
a wave equation with a particular damping term (provided
by the expansion of the universe). The damping also has
the effect of reducing the coordinate energy per unit � .

As wasmentioned earlier the expansion of the universe
stretches the strings, so in the absence of energy loss mech-
anisms their energy would grow with the scale factor and
the string network would eventually become the dominant
component of the universe’s energy density – which would
be in conflict with observational results. Such decaymech-
anisms do exist (at least for the simplest models), being ul-
timately due to radiation losses and to the fact that when-
ever strings interact they will reconnect [42,51]. In partic-
ular closed loops may be formed, and these subsequently
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oscillate and eventually decay. This decay is thought to be
mainly into gravitational radiation, but other forms of ra-
diation are also produced very efficiently.

Provided the decay rate is high enough, the network
will not have pathological consequences, but will instead
reach a linear scaling solution, where the string density is
a constant fraction of the background density and on large
scales the network looks the same (in a statistical sense)
at all times. Scaling is in fact an attractor solution, as has
been shown both using numerical simulations and analytic
models. Physically, the reason for this is that if one has
a high density of strings then the number of string inter-
actions increases and therefore loop production becomes
more efficient and the decay rate increases. Conversely if
the density is too low then there are few interactions and
the decay rate is correspondingly lower. Numerical sim-
ulations confirm this broad picture, but also reveal that
string evolution is a complex non-linear process, involving
non-trivial interactions between various different scales.

There have been thus far two generations of numerical
simulations of Goto–Nambu cosmic string networks in ex-
panding universes. The first (Albrecht and Turok [2], Ben-
nett and Bouchet [9], Allen and Shellard [3]) dates from
around 1990, at the peak of the interest in cosmic strings
as possible seeds for the large-scale structures we observe
today. In the last few years, the renewed interest in strings
in the context ofmodels with extra dimensions led to a sec-
ond generation of simulations (Martins and Shellard [39],
Ringeval et al. [49], Olum and Vanchurin [46]), which
build upon previous knowledge and exploit the dramatic
improvements in hardware and software in the interven-
ing decade and a half to achieve a much higher resolution.

A different approach is provided by full field theory
simulations [62]. These are closer to the microphysics of
the defects and provide important information on the in-
teractions of the defects and their energy loss mechanisms,
but their shorter dynamic range means that they are not
optimal for understanding the non-linear feedback mech-
anisms betweenwidely different scales which affect the dy-
namics of the network. From this point of view they play
a very important role as calibrators, both for Goto–Nambu
simulations and for analytic models. One can also carry
out Minkowski space simulations (either of Goto–Nambu
or field theory type). Neglecting the expansion of the uni-
verse is numerically desirable, since such simulations are
much easier to implement and evolve much faster. How-
ever, the expansion plays a non-trivial role in the network
dynamics, so these results should not be naively extrapo-
lated to realistic cosmological scenarios.

Initial conditions for the numerical simulations are
usually set up using the Vachaspati–Vilenkin algo-

rithm [61]. One often adds to it random initial velocities,
since these tend to enhance the rate of relaxation. All sim-
ulations agree on the broad, large-scale features of string
networks, and in particular on the fact that the linear scal-
ing solution is an attractor for the evolution. In Goto–
Nambu simulations, the initial fraction of the total energy
in the form of closed loops is around 20%, but in the linear
scaling regime this fraction is around 50% or even slightly
more. On the other hand, in field theory simulations this
fraction tends to be somewhat smaller.

The first-generation simulations suggested a dynami-
cal picture where the long-string network lost energy to
large, long-lived loops, with sizes of order the correlation
length. Refinements had each loop self-intersecting into
around 10 daughter loops, but loop production from the
long strings was essentially monochromatic. The second-
generation simulations, however, reveal a quite different
picture. Large loops do self-intersect (and indeed the num-
ber of daughter loops produced by each one seems to be
around 20), but there is also a direct production of large
quantities of small loops from slowly moving long-strings
with fractal-like substructure. In other words, the loop
production is in fact bi-modal. All three second-genera-
tion simulations agree on this broad picture, though not
on which of the two loop production scales is dominant.

The second-generation simulations present some ten-
tative evidence for the scaling of small-scale features of
the network. An open question is whether or not this
is expected to happen, given that gravitational backreac-
tion (which would provide a characteristic scale) is not in-
cluded in any of the network simulations carried out to
date. One possible explanation stems from the fact that
large loops are not scaled up versions of small loops. In-
deed, small loops tend to be nearly circular, whereas large
loops are not only far from circular but even far from pla-
nar. In other words, the self-intersection probability for
a given loop depends on its size, and this may be suffi-
cient to dynamically select a preferred scale. Incidentally,
the loop fragmentation processes in these networks high-
light the fact that there is a steady flow of energy from large
to small scales which is entirely analogous to a Richardson
cascade in turbulence. (In this case energy enters via long
strings falling inside the horizon, and leaves via radiative
decays.)

Figure 2 shows some relevant quantities characterizing
Goto–Nambu string networks in the linear scaling regime.
These are always plotted as a function of relative scale, to
the network’s correlation length. The top left panel shows
the correlation function for the velocity vectors. A first
striking feature is that in the expanding universe cosmic
string velocities are anti-correlated on scales around the
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Cosmic Strings, Figure 2
Characteristic small-scale properties of cosmic string networks in the linear scaling regime, for matter (solid lines), radiation (dashed)
andMinkowski spacetime (dotted) runs. In all plots the horizontal axis represents the logarithmof the physical lengthscale relative to
the correlation length of the network. The simulations leading to these results are described in [39]. Top panels show the correlation
function for the velocity vectors and the fractal dimension, bottom panels show coarse-grained mass per unit length and coherent
velocity. The plotted quantities are described in the main text

correlation length (which is smaller than but comparable
to the causal horizon), but such a feature is not present
in Minkowski space. This anti-correlation is the result of
a ‘memory’ of the network for recent reconnection events,
and it is ultimately due to the damping effect of expan-
sion. The top right panel depicts the fractal dimension of
the network: this interpolates between d D 1 (straight seg-
ments) on small scales and d D 2 (Brownian network) on
large scales, but it does so in a non-trivial way (which is
again different depending on whether or not there is ex-
pansion) and over a wide range of scales. The fractal di-
mension evolves with time, decaying on any given physi-
cal scale: the strings continually become smoother on any
scale, so as to minimize energy. Finally, the bottom panels
show the renormalized (or ‘coarse-grained’) string mass
per unit length on the left, and the corresponding coher-
ent velocity on the right panel – notice that the effect of
expansion is to reduce the velocities on any given scale.

The technical difficulty and computational cost of nu-
merical simulation provide strong motivation for alterna-
tive analytic approaches, which essentially abandon the
detailed statistical physics of the string network to con-
centrate on its thermodynamics. The best example is the
velocity-dependent one-scale (VOS) model [38], which
builds on previous work by Kibble and Bennett [8,32] and

has demonstrated quantitative success when compared
with both field theory and Goto–Nambu numerical simu-
lations. The ‘one-scale’ assumption is that the network has
a single characteristic lengthscale, which coincides with
the string correlation length and the string curvature ra-
dius. This is an approximation which can be tested numer-
ically.

The first assumption in this analysis is to localize the
string so that we can treat it as a one-dimensional line-
like object. This is clearly a good assumption for gauged
strings, such as magnetic flux lines, but may seem more
questionable for strings possessing long-range interac-
tions, such as global strings or superfluid vortex lines.
However, good agreement between the VOS model and
simulations has been found in both cases. The second step
is to average the microscopic string equations of motion
to derive the key evolution equations for suitable macro-
scopic quantities, specifically its energy E and RMS veloc-
ity v defined by

E D �a(�)
Z
�d� ; v2 D hẋ2i D

R
ẋ2�d�
R
�d�

: (13)

Notice that the energy is an ‘extensive’ quantity but the
RMS velocity is an averaged quantity (and the averaging is
weighted by the coordinate energy �). In keeping with the
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above coordinate choices, the microscopic quantities (on
the right-hand side of both equations) are defined in terms
of conformal time, but it turns out that the macroscopic
evolution that we are now considering is best described in
terms of physical time – please refer to the cosmology re-
view for the explicit relation between the two.

Any string network divides fairly neatly into two dis-
tinct populations, viz. long (or ‘infinite’) strings and small
closed loops. In the following we will focus on the long
strings. The long string network is a Brownian random
walk on large scales and can be characterized by a corre-
lation length L, which can be used to replace the energy
E D �V in long strings in our averaged description, that
is,

� �
�

L2
: (14)

A phenomenological term must then be included to ac-
count for the loss of energy from long strings by the pro-
duction of loops, which are much smaller than L. A loop
chopping efficiency parameter c̃ is introduced to character-
ize this loop production as

�
d�
dt

�

to loops
D c̃v

�

L
: (15)

In this approximation, we would expect the loop parame-
ter c̃ to be a constant; comparison with numerical simula-
tions suggests c̃ � 0:23.

From the microscopic string equations of motion, one
can then average to derive the evolution equation for the
correlation length L,

2
dL
dt
D 2HL(1C v2)C c̃v ; (16)

where H is the Hubble expansion rate defined in Eq. (3).
The first term in (16) is due to the stretching of the net-
work by the Hubble expansion which is modulated by the
redshifting of the string velocity, while the second is the
loop production term. One can also derive an evolution
equation for the long string velocity with only a little more
than Newton’s second law

dv
dt
D
�
1 � v2

 � k(v)
L
� 2Hv

�
: (17)

The first term is the acceleration due to the curvature of
the strings and the second is the damping term from the
Hubble expansion. Note that strictly speaking it is the cur-
vature radius R which should appear in the denominator
of the first term. In the present context we are identifying

R D L. The function k(v) is themomentum parameter, de-
fined by

k(v) �
h(1 � ẋ2)(ẋ � u)i

v(1 � v2)
; (18)

with ẋ the microscopic string velocity and u a unit vector
parallel to the curvature radius vector. For most relativistic
regimes relevant to cosmic strings it is sufficient to define
it as follows:

kr(v) D
2
p
2

�

1 � 8v6

1C 8v6
; (19)

while in the opposite case (v ! 0), we have the non-rela-
tivistic limit k0 D 2

p
2/� .

Scale-invariant attractor solutions of the form L / t
(or L / H�1) together with v D const., only appear to ex-
ist when the scale factor is a power law of the form

a(t) / tˇ ; 0 < ˇ D const. < 1 : (20)

This condition implies that

L / t / H�1 ; (21)

with the proportionality factors dependent on the expan-
sion rate ˇ. It is useful to introduce the following parame-
ters to describe the relative correlation length and density,
defining them respectively as

L D � t ; � � ��2 D �t2/� : (22)

By looking for stable fixed points in the VOS equations,
we can express the actual scaling solutions in the following
implicit form:

� 2 D
k(k C c̃)
4ˇ(1 � ˇ)

; v2 D
k(1 � ˇ)
ˇ(k C c̃)

; (23)

where k is the constant value of k(v) given by solving the
second (implicit) equation for the velocity. It is easy to ver-
ify numerically that this solution is well-behaved and sta-
ble for all realistic parameter values.

If the scale factor is not a power law, then simple
scale-invariant solutions like (23) do not exist. Physically
this happens because the network dynamics are unable to
adapt rapidly enough to the changes in the background
cosmology. An example of this is the transition between
the radiation and matter-dominated eras. Indeed, since
this relaxation to a changing expansion rate is rather slow,
realistic cosmic string networks are strictly speaking never
in scaling during the matter-dominated era. Another ex-
ample is the onset of dark energy domination around the
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present day. In this case, the network is gradually slowed
down by the accelerated expansion, and asymptotically
it becomes frozen in comoving coordinates. The corre-
sponding scaling laws for the correlation length and ve-
locity are L / a and v / a�1.

Despite its success in describing the large-scale fea-
tures of string networks, the VOSmodel has the shortcom-
ing of not being able to account for the small-scale features
developing on the strings as the network evolves, as clearly
shown by numerical simulations. This small-scale struc-
ture is in the form of wiggles and kinks, and can be phe-
nomenologically characterized by its fractal properties, as
we have sketched above. As a first analytic simplification,
the string wiggles can be characterized through a renor-
malized string mass per unit length that is larger than the
bare (Goto–Nambu) mass. This effectively corresponds to
considering a model with a non-trivial equation of state
(the relation between the string tension and the mass per
unit length), which turns out to be one among a larger class
of models known as elastic string models. This kind of de-
scription has interesting parallels with the coarse-graining
approaches that are typical of condensed matter.

A more radical approach is to explicitly abandon the
one-scale assumption. This is done in the three-scale
model [6], which distinguishes between the characteris-
tic lengthscale (which is simply a measure of the total
string energy in a given volume) and the persistence length
(which is defined in terms of the invariant length along
the string and corresponds to the correlation length or
inter-string distance). Additionally there is a third length-
scale which approximately describes a typical scale of the
small-scale wiggles. This kind of description is in princi-
ple highly flexible, though this can be considered a bless-
ing and a curse. The downside is that one is forced to in-
troduce a large number of (almost free) phenomenological
parameters over which one has limited control even when
comparing the model with simulations.

Having said that, the three-scale model does confirm,
at least qualitatively, the expectations for the behavior of
string networks. Scaling of the large scales (in this case the
characteristic and persistence lengths) is found to be an
attractor, just as in the VOS model. Depending on the be-
havior of small-scale structures, the two large length scales
may reach scaling simultaneously or the former may do
so before the latter – a behavior that has been seen in nu-
merical simulations. As for the behavior of the small-scale
structures, their evolution timescale is typically slower,
and generically they only reach scaling due to the effects
of gravitational backreaction (not included in numerical
simulations). In the absence of gravitational backreaction,
scaling of the small-scale characteristic length is contin-

gent on the removal of a sufficiently large amount of small-
scale structure from the long strings by radiation and loop
production, which in the model is controlled by a param-
eter whose detailed behavior is not known.

Finally, an interesting and rather different approach
starts out with the assumption that there is a range of scales
where stretching due to the expansion is the dominant dy-
namical effect, even on scales well below the cosmological
horizon. A sufficient condition for this is that one is as-
suming that the rate of string intercommutations is fixed
in horizon units. This turns out to be sufficient to allow
the construction of a statistical-type description based on
two-point correlation functions [48]. Their results are to
a first approximation dependent on a critical exponent
which physically is related to the coherent string veloc-
ity on a given scale. Comparison with numerical simula-
tions shows, as expected, that the best agreement is found
around and just below the horizon scale.

A second assumption is that loop production at those
scales is sufficiently localized to be describable as a pertur-
bation. When loop production is thus folded into the anal-
ysis, the picture that ultimately emerges is of a complicated
fragmentation cascade. In particular, this model provides
supporting evidence for the two-population loop distribu-
tion picture outlined above and clearly seen in high-res-
olution simulations. There is a population of correlation-
length sized loops, produced by direct long-string inter-
commutation, and a second population with sizes a few
orders of magnitude below (quite possibly near the grav-
itational backreaction scale) and due to loop fragmenta-
tion. Whether or not the smoothing provided by gravi-
tational radiation is necessary to yield scaling of the loop
sizes is again not entirely clear at the moment, but it is in
principle a question for which this formalism could pro-
vide an answer.

Astrophysical and Cosmological Consequences

As was mentioned in Sect. “Definition of the Subject”,
the spacetime around a straight cosmic string is flat.
A string lying along the z-direction has an equation of state
pz D ��, px D py D 0 and therefore there is no source
term in the relativistic version of the Poisson equation for
the Newtonian gravitational potential

r2� D 4�G(�C px C py C pz) D 0 : (24)

A straight string exhibits no analogue of the Newtonian
pull of gravity on any surrounding matter. However, this
does not mean the string has no gravitational impact at all.
On the contrary, we will see that a moving string has dra-
matic effects on nearby matter or propagating microwave
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background photons. It is not difficult to derive the space-
time metric about such a straight static string [58]. It has
the simple form

ds2 D dt2 � dz2 � dr2 � r2 d�2 ; (25)

which looks like Minkowski space in cylindrical coordi-
nates, except for the fact that the azimuthal coordinate �
has a restricted range 0 � � � 2�(1 � 4G�). That is, the
spacetime is actually conical with a global deficit angle

˛ D 8�G� ; (26)

where an angular wedge of width ˛ is removed and the
remaining edges identified.

This deficit angle implies that the string acts as a cylin-
drical gravitational lens, creating double images of sources
behind the string (such as distant galaxies), with a typical
angular separation ı� of order ˛ and no distortion [60].
This is illustrated in Fig. 3. A long string would yield a dis-
tinctive lensing pattern. We should expect to see an ap-
proximately linear array of lensed pairs, each separated in
the transverse direction. In each lensing event the two im-
ages would be identical and have essentially the samemag-
nitude, i. e. brightness. (Except if we happen to see only
part of one of the images.) This is a very unusual signa-
ture, because most ordinary gravitational lenses produce

Cosmic Strings, Figure 3
An illustration of the mechanism behind lensing by cosmic
strings. The thickblack dot represents a cosmic string perpendic-
ular to the page. The spacetime metric around the string can be
obtained by removing the angular wedge of width˛ and identi-
fying the edges. An observer can thus see double images of ob-
jects located on a certain zone behind the string. This zone is en-
closed by the dashed lines, while the solid lines depict light rays
and the angular separation of the two images, ı� , will depend
on the distances of the source and the observer to the string as
well as on thedeficit angle. Reprinted, with permission, from [35]

an odd number of images of substantially different mag-
nitudes. A number of string lensing event candidates have
been discussed in the past, but no confirmed one is cur-
rently known.

However, the above simple picture is complicated in
practice by the fact that cosmic strings are not gener-
ally straight or static. Whenever strings exchange part-
ners kinks are created that straighten out only very slowly,
so we expect a lot of small-scale structure on the strings.
Viewed from a large scale, the effective tension and en-
ergy per unit length will no longer be equal. Since the total
length of a wiggly string between two points is greater, it
will have a larger effective energy per unit length, U, while
the effective tension T, the average longitudinal compo-
nent of the tension force, is reduced, so T < � < U . This
means that there is a non-zero gravitational acceleration
towards the string, proportional to U � T . Moreover, the
strings acquire large velocities, generally a significant frac-
tion of the speed of light, which introduces further correc-
tions to the deficit angle.

Another effect is the formation of over-dense wakes
behind a moving cosmic string [52]. When a string passes
between two objects, these are accelerated towards each
other to a velocity

u? D 4�G�v ; (27)

where v is the string velocity. Matter therefore collides in
a sheet-like structure, leaving a wake behind the moving
string. This was the basic mechanism underlying the for-
mation of large-scale structures in cosmic string models.
This model has significant attractions, such as the early
formation of nonlinear structures, and one can get a good
match to the observed galaxy power spectrum in models
with a large cosmological constant. However, as we shall
discuss, it fails to reproduce the power spectrum of CMB
anisotropies observed by COBE, WMAP and other exper-
iments; cosmic strings, therefore, can only play a subdom-
inant role in structure formation (albeit still significant, at
the ten to twenty percent level). Cosmic strings create line-
like discontinuities in the cosmic microwave background
signal [23,34]. For the same reason that wakes form behind
a cosmic string, the CMB source on the surface of last scat-
tering is boosted towards the observer, so there is a relative
CMB temperature shift across a moving string (a red-shift
of the radiation ahead of it, and a blue-shift of that behind),
given by

ıT
T
� 8�G�v? : (28)

where v? is the component of the string velocity nor-
mal to the plane containing the string and the line of



Cosmic Strings C 1653

sight. This is known as the Kaiser–Stebbins effect. This
simple picture is again complicated in an expanding uni-
verse with a wiggly string network and relativistic matter
and radiation components. The energy-momentum tensor
of the string acts as a source for the metric fluctuations,
which in turn create the temperature anisotropies. The
problem can be recast using Green’s (or transfer) func-
tions which project forward the contributions of strings
at early times to today. The actual quantitative solu-
tion of this problem entails a sophisticated formalism to
solve the Boltzmann equation and then to follow pho-
ton propagation along the observer’s line of sight. At the
time of writing, the most recent comparisons [12] be-
tween full-sky maps of cosmic string-induced anisotropies
and WMAP data yield a cosmological constraint on the
models with

G� < few � 10�7 ; (29)

with only a weak dependence on the background cosmol-
ogy – in particular, on the magnitude of the cosmological
constant.

Apart from their scale-invariance (which follows from
the network’s attractor scaling solution discussed in
the previous section), cosmic defect-induced fluctuations
appear to be the antithesis of the standard inflation
paradigm, because they are causal or active (they are gen-
erated inside the horizon and over an extended period),
there are also large vector and tensor contributions, and
they are distinctly non-Gaussian. All these characteris-
tics leave clear signatures in the cosmic microwave back-
ground angular power spectrum, chief of which is a much
broader primary Doppler peak and little evidence of sec-
ondary oscillations. Unlike inflation, active defect sources
act incoherently with extra large-scale power from the vec-
tors and tensors. Moreover, their isocurvature nature pro-
vides a partial explanation for why the broad primary peak
ends up at larger multipoles (typically ` � 300 as opposed
to ` � 200 in a flat cosmology). Isocurvature perturba-
tions correspond to equal and opposite perturbations in
the radiation and matter densities – as opposed to equal
fractional perturbations in the number densities of the
two components for adiabatic perturbations. On the ba-
sis of knowledge from present simulations, therefore, cos-
mic defects alone are extremely unlikely to have been the
seeds for large-scale structure formation. However, they
cannot be ruled out entirely. For example, admixtures of
inflationary power spectra with significant cosmic defect
contributions (at a level around 20%, see Fig. 4) do provide
a satisfactory fit to present data. This is interesting among
other reasons because it is the sort of level at which the
non-Gaussian signatures of cosmic strings should still be

discernible, although their distinct line-like discontinuities
are only clearly identifiable on small angular scales around
a few arc minutes.

Accelerated cosmic strings are sources of gravitational
radiation [59]. Consequently, a network of long strings
and closed loops produces a stochastic gravitational wave
background [25] over a wide range of frequencies and with
a spectrum which (at least to a first approximation) has
equal power on all logarithmic frequency bins. Another
distinctive signal would come from the cusps, the points
at which the string instantaneously doubles back on itself,
approaching the speed of light. Such an event generates
an intense pulse of gravitational and other types of radi-
ation, strongly beamed in the direction of motion of the
cusp [18]. If massive cosmic strings do indeed exist, both
these pulses and the stochastic background are likely to
be among the most prominent signals seen by the grav-
itational-wave detectors now in operation or planned, in
particular LIGO and LISA.

A stringent, though indirect, limit on the string en-
ergy per unit length comes from observations of the tim-
ing of millisecond pulsars. Gravitational waves between us
and a pulsar would distort the intervening space-time, and
so cause random fluctuations in the pulsar timing. The
fact that pulsar timing is extremely regular places an up-
per limit on the energy density in gravitational waves, and
hence on the string scale. The upper limit [29] is of order
G� < 10�7, though there is still considerable uncertainty
because this depends on assumptions about the evolution
of small-scale structure.

Although gravitational waves are thought to be the
main decay byproduct of the evolution of the simplest
cosmic string networks, direct decay into particle radi-
ation is extremely efficient and there are claims that it
could be the dominant energy-loss mechanism responsi-
ble for scaling [62]. In more complicated models, there
are certainly other decay channels. If the strings are global
(rather than local), then they will preferentially produce
Goldstone bosons instead. In axion models, these Gold-
stone bosons acquire a small mass and become the ax-
ions (a prime dark matter candidate). One can estimate
the number density of axions using analytic models of
cosmic string evolution such as the VOS model. In an-
other class of string models known as superconducting
(since they have additional current-like degrees of free-
dom), then the decay products can include electromag-
netic radiation.

Finally, we should mention the claims that cosmic
strings could be responsible for a number of high energy
astrophysical and cosmological enigmas, including ultra-
high energy cosmic rays, gamma ray bursts, and baryo-
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Cosmic Strings, Figure 4
The CMB temperature power spectrum contribution from cosmic strings, normalized to match the WMAP data at ` D 10, as well as
the best-fit cases from inflation only (model PL) and inflation plus strings (PL+S). These are compared to theWMAPandBOOMERANG
data. The lower plot is a repeat but with the best-fit inflation case subtracted, highlighting the deviations between the predictions
and the data. Reprinted, with permission, from [13]

genesis (the creation of the matter-antimatter asymme-
try of the universe). Since cosmic defects can produce
high energy particles, they could contribute to the ob-
served cosmic ray spectrum, notably at ultra-high energies
E � 1011 GeV where the usual acceleration mechanisms
seem inadequate [26]. Many ideas have been explored,
such as particle emission from cosmic string cusps, but
most have been found to produce a particle flux well be-
low current observational limits. However, among the in-
teresting scenarios deserving further study are those with
hybrid defects (such as monopoles connected by strings)
or vortons.

Field Theory Strings withMore Degrees of Freedom

Kibble’s original idea was to consider strings in grand uni-
fication scenarios, in which the strong and electroweak
forces become unified at an energy scale of around
1015�16 GeV. Other studies have shown that practically
any viable Supersymmetric Grand Unified Theory has
a pattern of symmetry breaking transitions that leads to
the possibility of cosmic string formation at some point in

its history [28]. In particular, in these models the inflation-
ary phase generically ends with a phase transition at which
strings are produced. Other studies suggest that this is also
a feature of brane inflation models.

So far we have discussed the field theory realization
of the simplest model of cosmic string, the Abrikosov–
Nielsen–Olesen string, in which the mass per unit length
equals the tension and there is no internal structure apart
from the magnetic field. In fact, the situation can be much
more complex in the early Universe, and realistic parti-
cle physics models lead to networks with a much richer
phenomenology. The added complexity makes these net-
works much harder to study, whether by analytic or nu-
merical methods, and consequently they are not as well
understood as the simplest case.

We can only give here a brief description of the possi-
ble complications. The list below is not complete and fur-
thermore there are strings that fit more than one category.
For a more detailed discussion we refer the reader to the
reviews by Vilenkin and Shellard, Hindmarsh and Kibble,
Carter, and Achúcarro and Vachaspati, where references
to the original literature can also be found.
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Wiggly Strings; Varying Tension String Networks;
Cycloops

The name wiggly strings is sometimes used to refer to
any type of string whose mass per unit length is differ-
ent from its tension. We already mentioned in Sect. “As-
trophysical and Cosmological Consequences” that small
structure (wiggles) on the string produces a renormalized
effective mass per unit length U > � and an effective ten-
sion T < �. There are other effects that can affect the mass
and tension, for instance the presence of currents along the
strings.

A particular kind of small structure is found in ex-
tra dimensional models. If spacetime has more than the
three spatial dimensions we observe, strings may be able to
wrap around the extra dimensions in different ways lead-
ing to a renormalized four-dimensional tension and mass
per unit length. The effective tension can of course vary
along the strings. In extreme cases, the extra dimensional
wrapping effects concentrate around certain points along
the string which behave like ‘beads’ (see hybrid networks
below) and are called cycloops.

As discussed towards the end of Sect. “String Evolu-
tion”, the additional degrees of freedom (which can be
thought of as a mass current) make the evolution of the
networks highly non-trivial. The one-scale assumption is
no longer justified: the correlation length, inter-string dis-
tance and string curvature radius become distinct length-
scales. Depending on the exact interplay between the bare
strings and the mass current wiggles, these lengthscales
can evolve differently, and some of them might be scaling
while the others are not. The presence of extra dimensions
provides a further energy flux mechanism (as energy may
be lost into or gained from the extra dimensions) which
will affect the string dynamics, but at the time of writing
its exact effects have not been studied in detail.

Non-topological/Embedded/Electroweak/
Semilocal Strings

In the Abrikosov–Nielsen–Olesen case, the scalar field is
zero at the core of the string, and the symmetry is unbro-
ken there. The zero field is protected by the topological
properties of the vacuum manifold (the non-contractible
circle) and the string is called topological. In more realistic
models, the criterion for topological string production is
a non-simply connected vacuummanifold, however com-
plicated. These strings are unbreakable and stable.

On the other hand there are examples in which there
is no topological protection but the strings are neverthe-
less stable. The scalar field configuration at the core can
be deformed continuously into a ground state, so these

non-topological strings can break, their magnetic flux can
spread out, or be converted to a different type of flux.
But whether this happens is a dynamical question that de-
pends on the detailedmasses and couplings of the particles
present, on the temperature, etc.

The best studied examples of non-topological strings
look like Abrikosov–Nielsen–Olesen strings ‘embedded’
in a larger model such as the Glashow–Salam–Weinberg
model of electroweak interactions [44,57]. These elec-
troweak strings carry magnetic flux of the Z boson, but the
strings would only be stable for unphysical values of the
Z boson mass. They are closely related to semilocal strings,
another example of embedded strings where the symmetry
breaking involves both local and global symmetries inter-
twined in a particular way. For low scalar mass these can
be remarkably stable.

In general, non-topological strings are not resilient
enough for the networks to survive cosmological evolu-
tion. If the strings are unstable to spreading their mag-
netic flux, the network will not form. If the strings are
breakable the networkmay form initially but it will quickly
disappear (see hybrid networks below for a concrete ex-
ample). A remarkable exception to this rule are semilocal
strings with very low scalar mass: the network forms as
a collection of segments which then grow and reconnect to
form longer strings or loops. These evolve like a network
of Abrikosov–Nielsen–Olesen strings plus a small popula-
tion of segments and there is some evidence of scaling [5].

Dressed/Superconducting Strings/Vortons

In realistic particle physics models, a stable string will trap
in its core any particles or excitations whose mass is lower
inside due to the interactions with the scalar field. These
dressed strings have a more complicated core structure. In
extreme cases, the mass of these trapped particles is zero
in the core and they lead to persistent currents along the
strings, which are then known as superconducting [63]. In
some cases, the decay of a loop of superconducting string
can be stopped by these currents, leading to long-lived
remnants called vortons [20] that destroy scaling; typical
vortons will either dominate the energy density of the uni-
verse (contrary to observations) or contribute to the dark
matter if they are sufficiently light.

Hybrid Networks

Hybrid networks contain more than one type of defect,
such as for instance strings of different kinds or compos-
ite defects combining strings, monopoles and/or domain
walls.
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Composite Defects The production of strings may be
accompanied by the production of other defects such as
monopoles or domain walls, before or afterwards, that
change the behavior of the network as a whole. These net-
works can have radically different scaling properties – in
particular, linear scaling may not exist at all. Consider for
instance a sequence of breakings of the formG ! H ! K
in which a symmetry group G first breaks down to a sub-
group H which subsequently breaks to an even smaller
subgroup K at a lower temperature. Two cases are partic-
ularly relevant for strings:
� The first breaking produces stable magnetic mono-

poles, the second confines – totally or partly – the mag-
netic field to flux tubes (strings) leading to a network of
monopoles connected by strings. This can happen ei-
ther as string segments, with monopoles at the ends,
which eventually contract and disappear or as a net-
work of strings carrying heavy “beads” (themonopoles)
which can lead to a scaling solution.

� The first breaking produces stable strings, the second
makes domain walls attached to the strings (e. g. in
axion models). The network is made of pancake-like
structures that contract under the wall tension and
eventually disappear, although in some cases there may
be long-lived remnants.

Non-Abelian/(p, q) Strings Another type of hybrid net-
work contains different types of strings whose intercom-
mutation leads to three-point junctions and bridges. These
networks are also very different from the simplest ones but
the current consensus is that they also seem to reach a scal-
ing solution during cosmological evolution.

In the Non-abelian case, the magnetic flux carried by
the string is not just a number but can have different inter-
nal “orientations”. These become relevantwhen the strings
cross, limiting the ways in which they can reconnect.

Hybrid networks containing several interacting string
types are also found in superstring models (see next sec-
tion). The most interesting type, usually referred to as
(p; q) strings, contains two types of string each carrying
different type of flux that is separately conserved: funda-
mental and solitonic or D-strings, roughly corresponding
to electric and magnetic flux tubes. The numbers p and
q refer to the units of each kind of flux carried by the
strings. Since the mass per unit length depends on these
fluxes, (p; q) networks are expected to have a hierarchy
of different tensions, as well as junctions and bridges. In
fact, junctions and bridges will also form in any model in
which parallel strings have an attractive interaction, such
as Abrikosov–Nielsen–Olesen strings with extremely low
scalar to vector mass ratios.

The existence of string junctions and the hierarchy of
string tensions make the evolution of these networks con-
siderably more complicated than that of the simple Goto–
Nambu strings. Relatively simple analyses suggest that the
heavier strings will gradually decay into the lighter ones,
and scaling is eventually reached for the strings at the low
end of the spectrum (the heavier ones eventually disap-
pear), although this is still under discussion. Naive expec-
tations that the networkmight be slowed down to non-rel-
ativistic speeds and eventually freeze have so far not been
supported by the (admittedly simplistic) numerical simu-
lations performed so far. Further work is needed to under-
stand the general conditions under which scaling is (or is
not) an attractor.

Cosmic Superstrings

Superstring theory is to date the only candidate model for
a consistent quantum theory of gravity that includes all
other known interactions. In string theory, the fundamen-
tal constituents of nature are not point-like particles but
one-dimensional “strings” whose vibrational modes pro-
duce all elementary particles and their interactions. Two
important features of the theory are supersymmetry (a
symmetry between bosonic and fermionic excitations that
keeps quantum effects under control) and the presence
of extra dimensions above the four spacetime dimensions
that we observe.

It is not yet known how to formulate the theory in
its full generality but some weak-coupling regimes are
well understood. In these, the fundamental strings live
in a 10-dimensional spacetime, of which 6 dimensions
are “compactified”, resulting in an effective 4-dimensional
spacetime we live in. There is another regime, M-theory,
in which the fundamental objects are two-dimensional
“membranes” and the background spacetime is 11-dimen-
sional. These regimes are related to one another by dual-
ity transformations that interchange the role of fluctuation
quanta and non-perturbative, soliton-like states (branes),
so the expectation is that all regimes are different lim-
its of a unique, underlying theory usually referred to as
superstring/M-theory, or just M-theory for short.

Before the discovery of D-branes, the “solitons” of su-
perstring theory, the question of whether fundamental su-
perstrings could ever reach cosmological sizes was ana-
lyzed and the possibility discarded [64]. There were two
main problems. First, the natural mass per unit length
of fundamental strings is close to the Planck scale and
would correspond to deficit angles of order 2� , which
would have been observed. Second, the strings were inher-
ently unstable to either breaking or – depending on the
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type of string – becoming the boundary of domain walls
that would quickly contract and disappear. The discovery
of branes and their role in more exotic compactifications
where the six compact dimensions have strong gravita-
tional potentials (and redshifts) has changed this picture.
It is now believed that networks of cosmic superstrings
could be a natural outcome of brane-antibrane annihila-
tion, especially if the branes are responsible for a period of
cosmic inflation [17,30,53].

An important difference with previous scenarios is that
these strings are located in regions of the compactified
dimensions with very strong gravitational redshift effects
(“warping”) that reduce the effective mass per unit length
of the strings to a level with deficit angles in the region of
10�12 to 10�7, compatible with current observations. An-
other important difference is amuch lower probability that
the strings intercommute when they cross, estimated to be
10�3 to 10�1, depending on the type of strings. The lower
intercommutation rates lead tomuch denser networks. Es-
timates of the corresponding enhancement in the emis-
sion of gravitational radiation by cusps puts these strings
in a potentially observable window by future gravitational
wave detectors [19,54].

The networks are hybrid, consisting of fundamental
strings and D-strings, the latter being either one-dimen-
sional D-branes or perhaps the result of a higher dimen-
sional D-brane where all but one dimension are wrapped
around some “holes” (cycles) in the compactified space.
There may also be cycloops.

As in the case of hybrid field theory strings, whether or
not superstring networks eventually reach a scaling regime
is an open question. Analytic studies and numerical simu-
lations of simplified cases suggest that scaling is certainly
possible, though contingent on model parameters that at
the time of writing are not well understood. In this case,
in addition to the presence of junctions and a non-triv-
ial spectrum of string tensions, a third factor can affect
the evolution of these networks. If the strings are actu-
ally higher-dimensional branes partially wrapped around
some extra dimensions, then energy and momentum can
in principle leak into or out of these extra dimensions [4].
Since the effective damping force affecting the ordinary
and extra dimensions is different, one might generically
expect that this will be the case. Depending on its sign and
magnitude, such an energy flow can in principle prevent
scaling, either by freezing the network (if too much energy
leaks out) or bymaking the strings dominate the universe’s
energy density (if too much energy leaks in, though this is
less likely than the opposite case). In this sense, a some-
what delicate balance may be needed to ensure scaling. At
a phenomenological level, further work will be required in

order to understand the precise conditions under which
each of these scenarios occurs. At a more fundamental
level, it is quite likely that which of the scenarios is realized
will depend on the underlying compactifications and/or
brane inflation models, and that may eventually be used
as a discriminating test between string theory realizations.

Future Directions

One of the most exciting prospects is the discovery of
magnetic-type CMB polarization (usually referred to as
B-modes) as this would reveal the presence of vector
and/or tensor modes. Cosmic string models may be fur-
ther constrained in the near future because B-modes are
predicted to have amplitudes comparable to the electric-
type E-modes (at large angular scales). At high resolution,
one could also hope to observe defects directly through
the B-mode signal, against a relatively unperturbed back-
ground. Conversely, the detection of vector modes would
provide strong evidence against inflation without cosmic
defects. Polarization data will also strongly constrain a sig-
nificant isocurvature contribution to the mainly adiabatic
density fluctuations. Isocurvature perturbations can be
a signature of more complicated physics during inflation,
such as the effects of two or more scalar fields, or the for-
mation of defects at the end of inflation.

Ongoing and future CMB experiments, especially at
high resolution, will be probing the degree of Gaussian-
ity of the primordial fluctuations. The detection of signif-
icant and unambiguous non-Gaussianity in the primary
CMB signal would be inconsistent with simple (so called
single field slow-roll) inflation. More general inflationary
models can accommodate certain types of non-Gaussian-
ity, and one can also envisage non-Gaussianity from ex-
cited initial states for inflation. It is interesting to note that
given the existing bounds on G�, current CMB experi-
ments do not have the sensitivity or resolution to detect
cosmic string signatures directly, in particular the Kaiser–
Stebbins effect in CMB maps. However, with high-reso-
lution sensitivities becoming available in the near future,
direct constraints (or detections) will be possible. This is
just one example of the interesting new science that fu-
ture high-resolution CMB experiments might uncover in
the years ahead. In particular, ESA’a Planck Surveyor [47],
scheduled for launch in late 2009, may be able to provide
significant breakthroughs.

A deeper understanding of the evolution and conse-
quences of string networks will require progress on both
numerical simulations and analytic modelings. At the time
of writing there is still no numerical code that includes all
the relevant physics, even for the simplest (Goto–Nambu)
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strings. Inclusion of gravitational backreaction is particu-
larly subtle, and may require completely new approaches.
The expected improvements in the available hardware and
software will allow for simulations with much longer evo-
lution timespan and spatial resolution, which are needed
in order to understand the non-linear interactions be-
tween large and small scales all the way down to the level of
the constituent quantum fields. This in turn will be a valu-
able input for more detailed analytic modeling, that must
accurately describe the non-trivial small-scale properties
of the string networks as well as the detailed features of
the loop populations. Better modeling is also needed to de-
scribe more general networks – three crucial mechanisms
for which at present there is only a fairly simplistic descrip-
tion are the presence of junctions, a non-trivial spectrum
of string tensions, and the flow of energy-momentum into
extra dimensions.

At a more fundamental level, a better understanding
of the energy loss mechanisms and their roles in the evo-
lution of the networks is still missing [10] and it will re-
quire new developments in the theory of quantum fields
out of equilibrium. Such theoretical developments are also
needed to understand defect formation in systems with
gauge fields, and could be tested experimentally in super-
conductors.

The early universe is a unique laboratory, where the
fundamental building blocks of nature can be probed un-
der the most extreme conditions, that would otherwise be
beyond the reach of any human-made laboratory. Cos-
mic strings are particularly interesting for this endeavor:
they are effectively living fossils of earlier cosmological
phases, where physical conditions may have been com-
pletely different. The serendipitous discovery of cosmic
defects or other exotic phenomena in forthcoming cosmo-
logical surveys would have profound implications for our
understanding of cosmological evolution and of the phys-
ical processes that drove it. The search continues while, in
the meantime, the absence of cosmic string signatures will
remain a powerful theoretical tool to discriminate between
fundamental theories. The possibility that something as
fundamental as superstring theory may one day be vali-
dated in the sky, using tools as mundane as spectroscopy
or photometry, is an opportunity than neither astrophysi-
cists nor particle physicists can afford to miss.
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Glossary

Core The core of a cooperative cost game hN; ci is the set
of all coalitionally stable vectors of cost shares.

Cost function A cost function relates to each level of out-
put of a given production technology the minimal nec-
essary units of input to generate it. It is non-decreasing
function c : X ! RC, where X is the (ordered) space
of outputs.

Cost sharing problem A cost sharing problem is an or-
dered pair (q; c), where q 2 RN

C is a profile of indi-
vidual demands of a fixed and finite group of agents
N D f1; 2; : : : ; ng and c is a cost function.

Game theory The branch of applied mathematics and
economics that studies situations where players make
decisions in an attempt to maximize their returns. The
essential feature is that it provides a formal modeling
approach to social situations in which decision makers
interact.

Cost sharing rule A cost sharing rule is a mapping that as-
signs to each cost sharing problem under considera-
tion a vector of non-negative cost shares.

Demand game Strategic game where agents place de-
mands for output strategically.

Demand revelation game Strategic game where agents
announce their maximal contribution strategically.

Strategic game An ordered triple G D hN; (Ai )i2N ;
(-i )i2Ni, where

� N D f1; 2; : : : ; ng is the set of players,
� Ai is the set of available actions for player i,
� -i is a preference relation over the set of possible

consequences C of action.

Definition of the Subject

Throughout we will use a fixed set of agents N D f1;
2; : : : ; ng, where n is a given natural number. For subsets
S; T of N, we write S � T if each element of S is con-
tained in T; TnS denotes the set of agents in T except
those in S. The power set of N is the set of all subsets of N;
each coalition S � N will be identified with the element
1S 2 f0; 1gN , the vector with ith coordinate equal to 1 pre-
cisely when i 2 S. Fix a vector x 2 RN and S � N. The
projection of x on RS is denoted by xS, and xNnS is some-
times more conveniently denoted by x�S . For any y 2 RS ,
(x�S ; y) stands for the vector z 2 RN such that zi D xi if
i 2 NnS and zi D yi if i 2 S. We denote x(S) D

P
i2S xi .

The vector in RS with all coordinates equal to zero is de-
noted by 0S . Other notation will be introduced when nec-
essary.

This article focuses on different approaches in the lit-
erature through a discussion of a couple of basic and illus-
trative models, each involving a single facility for the pro-
duction of a finite set M of outputs, commonly shared by
a fixed set N :D f1; 2; : : : ; ng of agents. The feasible set of
outputs for the technology is identifiedwith a set X � RM

C .
It is assumed that the users of the technology may freely
dispose over any desired quantity or level of the outputs;
each agent i has some demand xi 2 X for output. Each
profile of demands x 2 XN is associated to its cost c(x), i. e.
the minimal amount of the idiosyncratic input commodity
needed to fulfill the individual demands. This defines the
cost function c : XN ! RC for the technology, compris-
ing all the production externalities. A cost sharing problem
is an ordered pair (x; c) of a demand profile x and a cost
function c. The interpretation is that x is produced and the
resulting cost c(x) has to be shared by the collectiveN. Nu-
merous practical applications fit this general description of
a cost sharing problem.

Inmathematical terms a cost sharing problem is equiv-
alent to a production sharing problem where output is
shared based on the profile of inputs. However, although
many concepts are just as meaningful as they are in the
cost sharing context, results are not at all easily estab-
lished using this mathematical duality. In this sense con-
sider [68] as a warning to the reader, showing that the
strategic analysis of cost sharing solutions is quite differ-
ent from surplus sharing solutions. This monograph will
center on cost sharing problems. For further reference on
production sharing see [51,67,68,91].

Introduction

In many practical situations managers or policy-makers
deal with private or public enterprises with multiple users.
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A production technology facilitates its users, causing ex-
ternalities that have to be shared. Applications are nu-
merous, ranging from environmental issues like pollution,
fishing grounds, to sharing multipurpose reservoirs, road
systems, communication networks, and the Internet. The
essence in all these examples is that a manager cannot di-
rectly influence the behavior of the users, but only indi-
rectly by addressing the externalities through some decen-
tralization device. By choosing the right instrument the
manager may help to shape and control the nature of the
resulting individual and aggregate behavior. This is what
is usually understood as the mechanism design or imple-
mentation paradigm. The state-of the-art literature shows
for a couple of simple but illustrative cost sharing models
that one cannot push these principles too far, as there is
often a trade-off between the degree of distributive justice
and economic efficiency. Then this is whatmakes choosing
‘the’ right solution an ambiguous task, certainly without
a profound understanding of the basic allocation princi-
ples. Now first some examples will be discussed.

Example 1 The water-resource management problem of
the Tennessee Valley Authority (TVA) in the 1930s is
a classic in the cost-sharing literature. It concerns the con-
struction of a dam in a river to create a reservoir, which
can be used for different purposes like flood control, hy-
dro-electric power, irrigation, and municipal supply. Each
combination of purposes requires a certain dam height
and accompanying construction costs have to be shared
by the purposes. Typical for the type of problem is that up
to a certain critical height there are economies of scale as
marginal costs of extra height are decreasing. Afterwards,
marginal costs increase due to technological constraints.
The problem here is to allocate the construction costs of
a specific dam among the relevant purposes.

Example 2 Another illustrative cost sharing problem dat-
ing back from the early days in the cost sharing lit-
erature [69,70] deals with landing fee schedules at air-
ports, so-called airport problems. These were often es-
tablished to cover the costs of building and maintain-
ing the runways. The cost of a runway essentially de-
pends on the size of the largest type of airplane that has
to be accommodated – a long runway can be used by
smaller types as well. Suppose there are m types of air-
planes and that ci is the cost of constructing a landing
strip suitable for type i. Moreover, index the types from
small to large so that 0 D c0 < c1 < c2 < � � � < cm . In the
above terminology the technology can be described by
X D f0; 1; 2; : : : ;mg, and the cost function c : XN ! RC
is defined by c(x) D ck where k D max fxi j i 2 Ng is the
maximal service level required in x. Suppose that in a given

year, Nk is the set landings of type k airplanes, then the
set of users of the runway is N D [kNk . The problem is
now to apportion the full cost c(x) of the runway to the
users in N, where x is the demand vector given by xi D `
if i 2 N`.

Airport problems describe a wide range of cost shar-
ing problems, ranging from sharing the maintenance cost
of a ditch system for irrigation projects [1], to sharing the
dredging costs in harbors [14].

Example 3 A joint project involves a number of activi-
ties for which the estimated durations and precedence re-
lations are known. Delay in each of these components af-
fects the period in which the project can be realized. Then
a cost sharing problem arises when the joint costs due to
the accumulated delay are shared among the individuals
causing the delays. See [21].

Example 4 In many applications the production technol-
ogy is given by a networkG D (V ; E) with nodesV and set
of costly edges E � V � V , and cost function c : E ! RC.
The demands of the agents are now parts of the infrastruc-
ture, i. e. subsets of E. Examples include the sharing the
cost of infrastructure for supply of energy and water, or
transport systems.

For example, the above airport problem can be mod-
eled as such with

V D f1; 2; : : : ;mg [ fˇg ;
E D f(ˇ; 1); (1; 2); : : : ; (m � 1;m)g :

Graphically, the situation is depicted by the line graph in
Fig. 1.

Imagine that the runway starts at the special node ˇ,
and that the edges depict the different pieces of runway
served to the players. An airplane of type k is situated at
node k, and needs all edges towards ˇ. The edge left to
the kth node is called ek D (k � 1; k), and the correspond-
ing cost is c(ek) D ck � ck�1. The demand of an airplane
at node k is now described by the edges on the path from
node k toˇ.

Example 5 In more general network design problems,
a link facilitates a flow; for instance, in telecommunication
it is data flowing through the network, in road systems it is
traffic. [49] discusses a model where a network planner al-
locates the fixed cost of a network based on the individual

Cost Sharing, Figure 1
Graphical representation of an airport problem
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demands being flows. [77,124] discuss congested telecom-
munication networks, where the cost of a link depends on
the size of the corresponding flow. Then these positive net-
work externalities lead to a concentration of flow, and thus
to hub-like networks. Economies of scale require coopera-
tion of the users, and the problem now is to share the cost
of these so-called hub-like networks.

Example 6 As an insurance against the uncertainty of the
future net worths of its constituents, firms are often reg-
ulated to hold an amount of riskless investments, i. e. its
risk capital. Given that returns of normal investments are
higher, the difference with the riskless investments is con-
sidered as a cost. The sum of the risk capitals of each con-
stituent is usually larger than the risk capital of the firm
as a whole, and the allocation problem is to apportion this
diversification effect observed in risk measurements of fi-
nancial portfolios. See Denault [28].

Solving Cost Sharing Problems: Cost Sharing Rules

A vector of cost shares for the cost sharing problem
(x; c) is an element y 2 RN with the property thatP

i2N yi D c(x). This equality is also called budget-bal-
ancing condition. Central issue addressed in the cost shar-
ing literature is how to determine the appropriate y. The
vast majority of the cost sharing literature is devoted to
a mechanistic way of sharing joint costs; given a class of
cost sharing problems P, a (simple) formula computes the
vector of cost shares for each of its elements. This yields
a cost sharing rule� : P ! RN where�(P) is the vector of
cost shares for each P 2 P.

At this point it should be clear to the reader that many
formula’s will see to a split of joint cost and heading for
the solution to cost sharing problems is therefore an am-
biguous task. The least we want from a solution is that it is
consistent with some basic principles of fairness or justice
and, moreover, that it creates the right incentives. Clearly,
the desirability of solution varies with the context in which
it is used, and so will the sense of appropriateness. More-
over, the different parties involved in the decision making
process will typically hold different opinions; accountants,
economists, production managers, regulators and others
all are looking at the same institutional entity from dif-
ferent perspectives. The existing cost sharing literature is
about exploring boundaries of what can be thought of de-
sirable features of cost sharing rules. More important than
the rules themselves, are the properties that each of them
is consistent with. Instead of building a theory on single
instances of cost sharing problems, the cost sharing litera-
ture discusses structural invariance properties over classes
of problems. Here the main distinction is made on the ba-

sis of the topological properties of the technology, whether
the cost sharing problem allows for a discrete or continuous
formulation. For each type of models, divisible or indivis-
ible goods, the state-of-the-art cost sharing literature has
developed into two main directions, based on the way in-
dividual preferences over combinations of cost shares and
(levels of) service are treated. On the one hand, there is
a stream of research in which individual preferences are
not explicitly modeled and demands are considered inelas-
tic. Roughly, it accommodates the large and vast growing
axiomatic literature (see e. g. [88,129]) and the theory on
cooperative cost games [105,130,136,145]. Secondly, there
is the literature on cost sharing models where individ-
ual preferences are explicitly modeled and demands are
elastic. The focus is on non-cooperative demand games in
which the agents are assumed to choose their demands
strategically, see e. g. [56,91,141].

As an interested reader will soon find out, in the liter-
ature there is no shortage of plausible cost sharing tech-
niques. Instead of presenting a kind of summary, this ar-
ticle focuses on the most basic and most interesting ones,
and in particular their properties with respect to strategic
interplay of the agents.

Outline

The article is organized as follows. Section “Cooperative
Cost Games” discusses cost sharing problems from the
perspective of cooperative game theory. Basic concepts
like core, Shapley value, nucleolus and egalitarian solu-
tion are treated. Section “Non-cooperative Cost Games”
introduces the basic concepts of non-cooperative game
theory including dominance relations, preferences, and
Nash-equilibrium. Demand games and demand revelation
games are introduced for discrete technologies with con-
cave cost function. This part is concluded with two the-
orems, the strategic characterization of the Shapley value
and constrained egalitarian solution as cost sharing solu-
tion, respectively. Section “Continuous Cost SharingMod-
els” introduces the continuous production model and it
consists of two parts. First the simple case of a produc-
tion technology with homogeneous and perfectly divisi-
ble private goods is treated. Prevailing cost sharing rules
like proportional, serial, and Shapley–Shubik are shortly
introduced. We then give a well-known characterization
of additive cost sharing rules in terms of corresponding
rationing methods, discuss the related cooperative and
strategic games. The second part is devoted to the het-
erogeneous output model and famous solutions like Au-
mann–Shapley, Shapley–Shubik, and serial rules. We fi-
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nalize with Sect. “Future Directions” where some future
directions of research are spelled out.

Cooperative Cost Games

A discussion of cost sharing solutions and incentives needs
a proper framework wherein the incentives are formal-
ized. In the seminal work of von Neumann and Morgen-
stern [140] the notion of a cooperative game was intro-
duced as to model the interaction between actors/players
who coordinate their strategies in order to maximize joint
profits. Shubik [122] was one of the first to apply this the-
ory in the cost sharing context.

Cooperative Cost Game

A cooperative cost game among players in N is a func-
tion c : 2N ! Rwith the property that c(¿) D 0; for non-
empty sets S � N the value c(S) is interpreted as the cost
that would arise should the individuals in S work together
and serve only their own purposes. The class of all cooper-
ative cost games for N will be denoted by CG.

Any general class P of cost sharing problems can be
embedded in CG as follows. For the cost sharing problem
(x; c) 2 P among agents in N define the stand-alone cost
game cx 2 CG by

cx (S) :D
�

c(xS ; 0NnS ) if S � N; S ¤ ¿
0 if S D ¿ :

(1)

So cx (S) can be interpreted as the cost of serving only the
agents in S.

Example 7 The following numerical example will be fre-
quently referred to. An airport is visited by three airplanes
in the set N D f1; 2; 3g, which can be accommodated at
cost c1 D 12; c2 D 20, and c3 D 33, respectively. The situ-
ation is depicted in Fig. 2.

The corresponding cost game c is determined by asso-
ciating each coalition S of airplanes to the minimum cost
of the runway needed to accommodate each of its mem-
bers. Then the corresponding cost game c is given by the
table below. Slightly abusing notation we denote c(i) to in-
dicate c(fig), c(ij) for c(fi; jg) and so forth.

S ¿ 1 2 3 12 13 23 123
c(S) 0 12 20 33 20 33 33 33

Cost Sharing, Figure 2
Airport game

Cost Sharing, Figure 3
Minimum cost spanning tree problem

Note that, since we identified coalitions of players in N
with elements in 2N , we may write c to denote the coop-
erative cost game. By the binary nature of the demands the
cost function for the technology formally is a cooperative
cost game. For x D (1; 0; 1) the corresponding cost game
cx is specified by

S ¿ 1 2 3 12 13 23 123
cx (S) 0 12 0 33 12 33 33 33

Player 2 is a dummy player in this game, for all S � Nn f2g
it holds cx (S) D cx (S [ f2g).

Example 8 Consider the situation as depicted in the Fig. 3
below, where three players, each situated at a different
node, want to be connected to the special node ˇ using
the indicated costly links. In order to connect themselves
to ˇ a coalition S may use only links with ˇ and the di-
rect links between its members, and then only if the costs
are paid for. For instance, the minimum cost of connect-
ing player 1 in the left node to ˇ is 10, and the cost of
connecting players 1 and 2 to ˇ are 18 – the cost of the
direct link from 2 and the indirect link between 1 and 2.
Then the associated cost game is given by

S ¿ 1 2 3 12 13 23 123
c(S) 0 10 10 10 18 20 19 27

Notice that in this case the network technology exhibits
positive externalities. The more players want to be con-
nected, the lower the per capita cost.

For those applications where the cost c(S) can be deter-
mined irrespective of the actions taken by its complement
NnS the interpretation of c implies sub-additivity, i. e. the
property that for all S; T � N with S \ T D ¿ implies
c(S [ T) � c(S)C c(T). This is for instance an essential
feature of the technology underlying natural monopolies
(see, e. g., [13,120]). Note that the cost games in Example 7
and 8 are sub-additive. This is a general property for air-
port games as well as minimum cost spanning tree games.
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Cost Sharing, Figure 4
Non-concave MCST game

Sometimes the benefits of cooperation are even
stronger. A game is called concave (or sub-modular) if for
all S; T � N we have

(S [ T)C c(S \ T) � c(S)C c(T) : (2)

At first this seems a very abstract property, but one may
show that it is equivalent with the following that

c(S [ fig) � c(S) � c(T [ fig) � c(T) (3)

for all coalitions S � T � Nn fig. This means that the
marginal cost of a player i with respect to larger coalitions
is non-increasing, i. e. the technology exhibits positive ex-
ternalities. Concave games are also frequently found in the
network literature, see [63,75,93,121].

Example 9 Although sub-additive, minimum cost span-
ning tree games are not always concave. Consider the fol-
lowing example due to [17]. The numbers next to the edges
indicate the corresponding cost. We assume a complete
graph and that the invisible edges cost 4. Note that in this
game every three-player coalition is connected at cost 12,
whereas c(34) D 16. Then c(1234)�c(234) D 16�12 D 4
whereas c(134) � c(34) D �4. So the marginal cost of
player 1 is not decreasing with respect to larger coalitions.

Incentives in Cooperative Cost Games

The objective in cooperative games is to share the prof-
its or costs savings of cooperation. Similar to the general
framework, a vector of cost shares for a cost game c 2 CG
is a vector x 2 RN such that x(N) D c(N). The question is
what cost share vectors make sense if (coalitions of) play-
ers have the possibility to opt out thereby destroying co-
operation on a larger scale.

In order to ensure that individual players join, a pro-
posed allocation x should at least be individual rational
so that xi � c(i) for all i 2 N. In that case no player has
a justified claim to reject x as proposal, since going alone
yields a higher cost. The set of all such elements is called

the imputation set. If, in a similar fashion, x(S) � c(S) for
all S � N then x is called stable; under proposal x no coali-
tion S has a strong incentive to go alone, as it is not possi-
ble to redistribute the cost shares afterwards and make ev-
ery defector better of. The core of a cost game c, notation
core(c), consists of all stable vectors of cost shares for c. If
cooperation on a voluntary basis by the grand coalition N
is conceived as a desirable feature then the core and cer-
tainly the imputation set impose reasonable conditions for
reaching it. Nevertheless, the core of a game can be empty.

Call a collection B of coalitions balanced, if there is
a vector of positive weights (S )S2B such that for all i 2 N

X

S2B;S3i
S D 1 :

A cost game c is balanced if it holds for each balanced col-
lection B of coalition that
X

S2B
S c(S) � c(N) :

It is the celebrated theorem below which characterizes all
games with non-empty cores.

Theorem 1 (Bondareva–Shapley [20,117]) The cost
game c is balanced if and only if the core of c is non-empty.

Concave cost games are balanced, see [119]. Concavity is
not a necessary condition for non-emptiness of the core,
since minimum cost spanning tree games are balanced as
well.

Example 10 Consider the two-player game c defined by
c(12) D 10; c(1) D 3; c(2) D 8. Then core(c) D
f(x; 10 � x)j2 � x � 3g. Note that, opposed to the gen-
eral case, for two-player games sub-additivity is equivalent
with non-emptiness of the core.

Cooperative Solutions

A solution on a subclassA ofCG is a mapping� : A! RN

that assigns to each c 2 A a vector of cost shares �(c);
�i (c) stands for the charge to player i.

The Separable Cost Remaining Benefit Solution Com-
mon practice among civil engineers to allocate costs of
multipurpose reservoirs is the following solution. The sep-
arable cost for each player (read purpose) i 2 N is given
by si D c(N)� c(Nn fig), and the remaining benefit by
ri D c(i) � si . The separable cost remaining benefit solu-
tion charges each player i for the separable cost si and the
non-separable costs c(N)�

P
j2N s j are then allocated in
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proportion to the remaining benefits ri, leading to the for-
mula

SCRB i (c) D si C
riP
j2N r j

2

4c(N)�
X

j2N

s j

3

5 : (4)

In this formula it is assumed that c is at least sub-ad-
ditive to ensure that the ri’s are all positive. For the
two-player game c in Example 10 the solution is given by
SCRB(c) D (2C 1

2 (10 � 9); 7C 1
2 (10 � 9)) D (2 1

2 ; 7
1
2 ).

In earlier days the solution was as well known as ‘the
alternate cost avoided method’ or ‘alternative justifiable
expenditure method’. For references see [144].

Shapley Value One of the most popular and oldest so-
lution concepts in the literature on cooperative games is
due to Shapley [116], and named Shapley-value. Roughly
it measures the average marginal impact of players. Con-
sider an ordering of the players � : N ! N so that
�(i) indicates the ith player in the order. Let ��(i)
be the set of the first i players according to � ; so
��(1) D f�(1)g ; ��(2) D f�(1); �(2)g, etc. The marginal
cost share vector m
 (c) 2 RN is defined by m



(1)(1) D
c(�(1)) and for i D 2; 3; : : : ; n

m

(i)(c) D c(��(i)) � c(��(i � 1)) : (5)

So according to m
 each player is charged with the in-
crease in costs when joining the coalition of players before
her. Then the Shapley-value for c is defined as the average
of all n! marginal vectors, i. e.

˚(c) D
1
n!

X




m
 (c) : (6)

Example 11 Consider the airport game in Example 7.
Then the marginal vectors are given by


 (123) (132) (213) (231) (312) (321)
�� (c) (12,8,13) (12,0,21) (0,20,13) (0,20,13) (0,0,33) (0,0,33)

Hence the Shapley value of the corresponding game is
˚(c) D (4; 8; 21). Following [69,107], for airport games
this allocation is easily interpreted as the allocation ac-
cording to which each player pays an equal share of the
cost of only those parts of the runway she uses. Then c(e1)
is shared by all three players, c(e2) only by players 2 and 3,
and, finally, c(e3) is paid in full by player 3. This interpre-
tation extends to the class of standard fixed tree games,
where instead of the lattice structure of the runway, there
is a cost of a tree network to be shared, see [63].

If cost game is concave then the Shapley-value is in the
core. Since then each marginal vector specifies a core-

element, and in particular the Shapley-value as a con-
vex combination of these. Reconsider the minimum
cost spanning tree game c in Example 9, a non-con-
cave game with non-empty core and ˚(c) D (2 2

3 ; 2
2
3 ;

6 2
3 ; 4). Note that this is not a stable cost allocation

since the coalition f2; 3g would profit by defecting,
c(23) D 8 < 9 1

3 D ˚2(c)C˚3(c). [50] show that in gen-
eral games˚(c) 2 core(c) precisely when c is average con-
cave. Although not credited as a core-selector, the classic
way to defend the Shapley-value is by the following prop-
erties.

Symmetry Two players i; j are called symmetric in the
cost game c if for all coalitions S not containing i; j it holds
c(S [ fig) D c(S [ f jg). A solution � is symmetric if sym-
metric players in a cost game c get the same cost shares. If
the cost game does not provide any evidence to distinguish
between two players, symmetry is the property endorsing
equal cost shares.

Dummy A player i in a cost game c is dummy if
c(S [ fig) D c(S) for all coalitions S. A solution � satis-
fies dummy if �i (c) D 0 for all dummy players i in c. So
when a player has no impact on costs whatsoever, she can
not be held responsible.

Additivity A solution is additive if for all cost games
c1; c2 it holds that

�(c1)C �(c2) D �(c1 C c2) : (7)

For accounting reasons, in multipurpose projects it is
a common procedure to subdivide the costs related to
the different activities (players) into cost categories, like
salaries, maintenance costs, marketing, et cetera. Each cat-
egory ` is associated with a cost game c` where c`(S) is the
total of category ` cost made for the different activities in S;
then c(S) D

P
` c`(S) is the joint cost for S. Suppose a so-

lution is applied to each of the cost categories separately,
then under an additive solution the aggregate cost share
of an activity is independent from the particular cross-sec-
tion in categories.

Theorem 2 (Shapley [116]) ˚ is the unique solution on
CG which satisfies all three properties dummy, symmetry,
additivity.

Note that SCRB satisfies dummy and symmetry, but that
it does not satisfy additivity. The Shapley-value is credited
with other virtues, like the following due to [144].

Consider the practical situation that several division
managers simultaneously take steps to increase efficiency
by decreasing joint costs, but one division manager estab-
lishes a greater relative improvement in the sense that its
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marginal contribution to the cost associated with all possi-
ble coalitions increases. Then it is more than reasonable
that this division should not be penalized. In a broader
context this envisions the idea that each player in the cost
game should be credited with the merits of ‘uniform’ tech-
nological advances.

Strong Monotonicity Solution � is strongly monotonic
if for any two cost games c; c it holds for all i 2 N that
c(S [ fig) � c(S) � c(S [ fig) � c(S) for all S � Nn fig
implies �i (c) � �i (c).

Anonymity is the classic property for solutions declaring
independence of solution with respect to the name of the
actors in the cost sharing problem. See e. g., [3,91,106].
Formally, the definition is as follows. For a given per-
mutation � : N ! N and c 2 CG define � c 2 CG by
� c(S) D c(�(S)) for all S � N .

Anonymity Solution � is anonymous if for all permuta-
tions � of N , and all i 2 N , �	(i)(� c) D �i (c) for all cost
games c.

Theorem 3 (Young [144]) The Shapley-value is the
unique anonymous and strongly monotonic solution.

[99] introduced the balanced contributions axiom for the
model of non-transferable utility games, or games without
side-payments, see [118]. Within the present context of
CG, a solution � satisfies the balanced contributions ax-
iom if for any cost game c and for any non-empty subset
S � N , fi; jg � S 2 N it holds that

�i (S; c)��i (Sn f jg ; c) D � j(S; c)�� j(Sn fig ; c) : (8)

The underlying idea is the following. Suppose that play-
ers agree on using solution � and that coalition S forms.
Then �i (S; c) � �i (Sn f jg ; c) is the amount player i gains
or loses when S is already formed and player j resigns.
The balanced contributions axiom states that the gains
and/or losses by other player’s withdrawal from the coali-
tion should be the same.

Theorem 4 (Myerson [99]) There is a unique solution
on CG that satisfies the balanced contributions axiom, and
that is ˚ .

The balanced contribution property can be interpreted in
a bargaining context as well. In the game c and with so-
lution � a player i can object against player j to the so-
lution �(c) when the cost share for j increases when i
steps out of the cooperation, i. e. � j(N; c) � � j(N n fig).
In turn, a counter objection by player j to this objection
is an assertion that player i would suffer more when j
ends cooperation, i. e. � j(N; c) � � j(N n fig) � �i (N; c)

��i (N n f jg). The balanced contribution property is
equivalent to the requirement that each objection is bal-
anced by a counter objection. For an excellent overview of
ideas developed in this spirit, see [74].

Another marginalistic approach is by [44]. Denote
for c 2 CG the game restricted to the players in S � N
by (S; c). Given a function P : CG ! R which associates
a real number P(N; c) to each cost game c with player
set N, the marginal cost of a player i is defined to be
DiP(c) D P(N; c) � P(Nn fig ; c). Such a function P with
P(¿; c) D 0 is called potential if

P
i2N DiP(N; c) D c(N).

Theorem 5 (Hart & Mas-Colell [44]) There exists
a unique potential function P, and for every c 2 CG the re-
sulting payoff vector DP(N; c) coincides with ˚(c).

Egalitarian Solution The Shapley-value is one of the
first solution concepts proposed within the framework
of cooperative cost games, but not the most trivial. This
would be to neglect all asymmetries between the players
and split total costs equally between them. But as one can
expect egalitarianism in this pure form will not lead to
a stable allocation. Just consider the two-player game in
Example 10 where pure egalitarianism would dictate the
allocation (5; 5), which violates individual rationality for
player 1.

In order to avoid these problems of course we can
propose to look for the most egalitarian allocation within
the core (see [7,31]). Then in this line of thinking what
is needed in Example 10 is a minimal transfer of cost 2
to player 2, leading to the final allocation (3; 7) – the
constrained egalitarian solution. Although in the former
example is was clear what allocation to chose, in gen-
eral we need a tool to evaluate allocations for the degree
of egalitarianism. The earlier mentioned papers all sug-
gest the use of Lorenz-order (see, e. g. [8]). More pre-
cisely, consider two vectors of cost shares x and x0 such
that x(N) D x0(N). Assume that these vectors are or-
dered in decreasing order so that x1 � x2 � � � � � xn and
x01 � x02 � � � � � x0n . Then x Lorenz-dominates x0 – read x
is more egalitarian than x0 – if for all k D 1; : : : ; n � 1 it
holds that

kX

iD1

xi �
kX

iD1

x0i ; (9)

with at least one strict inequality. That is, x is better for
those paying the most.

Example 12 Consider the three allocations of cost 15
among three players x D (6; 5; 4); x0 D (6; 6; 3), and
x00 D (7; 4; 4). Firstly, x Lorenz-dominates x00 since x1 D
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6 < 7 D x001 , and x1 C x2 D x01 C x02. Secondly,
x Lorenz-dominates x0 since x1 D x01; x1 C x2 < x01 C x02.
Notice, however, that on the basis of only Eq. (9) we
can not make any judgment what is the more egalitar-
ian of the allocations x0 and x00. Since x01 D 6 < 7 D x001
but x01 C x02 D 6C 6 > 7C 4 D x001 C x002 . The Lorenz-or-
der is only a partial order.

The constrained egalitarian solution is the set of Lorenz-
undominated allocations in the core of a game. Due to the
partial nature of the Lorenz-order there may be more than
one Lorenz-undominated elements in the core. And what
if the core is empty? The constrained egalitarian solution
is obviously not a straight-forward solution. The original
idea of constrained egalitarianism as in [30], focuses on
the Lorenz-core instead of the core. It is shown that there
is at most one such allocation, that may exist even when
the core of the underlying game is empty.

For concave cost games c, the allocation is well defined
and denoted by �E(c). In particular this holds for airport
games. Intriguingly, empirical studies [1,2] show there is
a tradition in using the solution for this type of problems.

For concave cost games c, there exists an algorithm
to compute �E(c). This method, due to [30], performs
the following consecutive steps. First determine the max-
imal set S1 of players minimizing the per capita cost
c(S)/jSj, where jSj is the size of the coalition S. Then
each of these players in S1 pays c(S1)/jS1j. In the next
step determine the maximal set S2 of players in NnS1
minimizing c2(S)/jSj, where c2 is the cost game de-
fined by c2(S) D c(S1 [ S) � c(S1). The players in S2 pay
c2(S2)/jS2j each. Continue in this way just as long as not
everybody is allocated a cost share. Then in at most n steps
this procedure results in an allocation of total cost, the
constrained egalitarian solution. In short the algorithm is
as follows

� Stage 0: Initialization, put S�0 D ¿; x� D 0N , go to
stage t D 1.

� Stage t: Determine

St 2 argmax
S¤¿

c(S [ S�t�1) � c(S�t�1)
jSj

:

Put S�t D S�t�1 [ St and for i 2 St ,

x�i :D
c(S�t )� c(S�t�1)

jStj
:

If S�t D N , we are finished, put�E(c) D x�. Else repeat
the stage with t :D t C 1.

For example, this algorithm can be used to calculate
the constrained egalitarian solution for the airport game in

Cost Sharing, Figure 5
Standard fixed tree

Example 7. In the first step we determine S1 D f1; 2g, to-
gether with cost shares 10 for the players 1 and 2. Player 3
is allocated the remaining cost in the next step; hence the
corresponding final allocation is �E(c) D (10; 10; 13).

Example 13 Consider the case where six players share the
cost of the following tree network that connects them toˇ.
The standard fixed tree game c for this network associates
to each coalition of players the minimum cost of connect-
ing cost of connecting each member to ˇ, where it may
use all the links of the tree. This type of games is known
to be concave we can use the above algorithm to calcu-
late�E(c). In the first step we determine S1 D f1; 3; 4g and
each herein pays 8. Then in the second step the game re-
mains where the edges e1; e3; e4 connecting S1 have been
paid for. Then it easily follows that S2 D f2; 5g, so that
players 2 and 5 pay 9 each, leaving 10 as cost share for
player 6. Thus, we find �E(c) D (8; 9; 8; 8; 9; 10).

Nucleolus Given a cost game c 2 CG the excess of
a coalition S � N with respect to a vector x 2 RN is de-
fined as e(S; x) D x(S) � c(S); it measures dissatisfaction
of S under proposal x. Arrange the excesses of all coali-
tions S ¤ N;¿ in decreasing order and call the result-
ing vector #(x) 2 R2n�2. A vector of cost shares x will be
preferred to a vector y, notation x � y, whenever #(x) is
smaller than #(y) in the lexicographic order, i. e. there ex-
ists i� such that for i � i� � 1 it holds #i(x) D #i(y) and
#i�(x) < #i�(y). Schmeidler [115] showed that in the set
of individual rational cost sharing vectors there is a unique
element that is maximal with respect to �, which is called
the nucleolus. This allocation, denoted by �(c), is based
on the idea of egalitarianism that the largest complaints
of coalitions should consistently be minimized. The con-
cept gained much popularity as a core-selector, i. e. it is
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a one-point solution contained in the core when it is non-
empty. This contrasts with the constrained egalitarian so-
lution which might not be well defined, and the Shapley-
value which may lay outside the core.

Example 14 Consider in Example 7 the excesses of the
different coalitions with respect to the constrained egal-
itarian solution �E(c) D (10; 10; 13) and the nucleolus
�(c) D (6; 7; 20):

S 1 2 3 12 13 23
e(S;�E(c)) �2 10 �20 0 �10 �10
e(S; �(c)) �6 �13 �13 �7 �7 �6

Then the ordered excess vectors are

#(10; 10; 13) D (10; 0;�2;�10;�10;�20) ;
#(6; 7; 20) D (�6;�6;�7;�7;�13;�13) :

Note that indeed #(�(c)) � #(�E(c)) since

#1(6; 7; 20) D �6 < 10 D #1(10; 10; 13) :

The nucleolus of standard fixed tree games may be calcu-
lated as a particular home-down allocation, as was pointed
out by Maschler et al. [75].

For standard fixed tree games and minimum cost span-
ning tree games the special structure of the technology
makes it possible to calculate the nucleolus in polynomial
time, i. e. with a number of calculations bounded by amul-
tiple of n2 (see [39]). Sometimes one may even express
the nucleolus through a nice formula; Legros [66] showed
a class of cost sharing problems for which the nucleolus
equals the SCRB solution. But in general calculations are
hard and involve solving a linear program with a number
of inequalities which is exponential in n. [124] suggests to
use the nucleolus on the cost game corresponding to hub-
games.

Instead of the direct comparison of excesses like above,
the literature also discusses weighted excesses as to model
the asymmetries of justifiable complaints within coali-
tions. For instance the per capita nucleolus minimizes
maximal excesses which are divided by the number of
players in the coalition (see [105]).

Cost Sharing Rules Induced by Solutions

Most of the above numerical examples deal with cost shar-
ing problems which have a natural and intuitive represen-
tation as a cost game. Then basically on such domains of
cost sharing problems there is no difference between cost
sharing rules and solutions. It may seem that the cooper-
ative solutions are restricted to this kind of situations. But

Cost Sharing, Figure 6
Induced cost sharing rules

recall that each cost sharing problem (x; c) is associated its
stand-alone cost game cx 2 CG, as in Eq. (1). Now let �
be a solution on a subclass of A � CG and B a class of
cost sharing problems (x; c) for which cx 2 A. Then a cost
sharing rule � is defined on B through

�(x; c) D �(cx ) : (10)

The general idea is illustrated in the diagram on the left.
For example, since the Shapley value is defined on the class
of all cost games, it defines a cost sharing rule ˚ on the
class of all cost sharing problems. The cost sharing rule
�E is defined on the general class of cost sharing prob-
lems with corresponding concave cost game. Cost sharing
rules derived in this way, game-theoretical rules according
to [130], will be most useful below.

Non-cooperative Cost Games

Formulating the cost sharing problem through a coopera-
tive cost game assumes inelastic demands of the players. It
might well be that for some player the private merits of ser-
vice do not outweigh the cost share that is calculated by the
planner. She will try to block the payment when no service
at no cost is a preferred outcome. Another aspect is that
the technology may operate at a sub-optimal level if bene-
fits of delivered services are not taken into account. Below
the focus is on a broader framework with elastic demands,
which incorporates preferences of a player are defined over
combinations of service levels and cost shares. The theory
of non-cooperative games will provide a proper frame-
work in which we can discuss individual aspirations and
efficiency of outcomes on a larger scale.

Strategic Demand Games

At the heart of this non-cooperative theory is the notion
of a strategic game, which models an interactive decision-
making process among a group of players whose decisions
may impact the consequences for others. Simultaneously,
each player i independently chooses some available action
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ai and the so realized action profile a D (a1; a2; : : : ; an)
is associated with some consequence f (a). Below we will
have in mind demands or offered contributions as actions,
and consequences are combinations of service levels with
cost shares.

Preferences Over Consequences Denote by A the set
of possible action profiles and C as the set of all conse-
quences of action. Throughout we will assume that play-
ers have preferences over the different consequences of ac-
tion. Moreover, such preference relation can be expressed
by a utility function ui : C ! R such that for z; z0 2 C it
holds ui (z) � ui (z0) if agent i weakly prefers z0 to z. Be-
low the set of consequences for agent i 2 N will consist of
pairs (x; y) where x is the level of service and y a cost share,
so that a utilities are specified throughmulti-variable func-
tions, (x; y) 7! ui (x; y).

Preferences Over Action Profiles In turn define for
each agent i and all a 2 A, Ui (a) D ui ( f (a)); then Ui as-
signs to each action profile the utility of its consequence.
We will say that the action profile a0 is weakly preferred
to a by agent i if Ui (a) � Ui (a0); Ui is called agent i’s util-
ity function over action profiles.

Strategic Game and Nash Equilibrium A strategic
game is an ordered triple G D hN; (Ai )i2N ; (Ui )i2N i
where

� N D f1; 2; : : : ; ng is the set of players,
� Ai is the set of available actions for player i,
� Ui is player i’s utility function over action profiles.

Rational players in a game will choose optimal actions
in order to maximize utility. The most commonly used
concept in game theory is that of Nash-equilibrium, a pro-
file of strategies from where unilateral deviation by a sin-
gle player does not pay. It can be seen as a steady state of
action in which players hold correct beliefs about the ac-
tions taken by others and act rationally. An important as-
sumption here is the level at which the players understand
the game; usually it is taken as a starting point that players
know the complete description of the game, including the
action spaces and preferences of others.

Nash Equilibrium (Nash 1950) An action profile a�

in a strategic game G D hN; (Ai)i2N ; (ui )i2N i is a Nash-
equilibrium if, for every player i it holds ui (a�) �
ui (ai ; a��i) for every ai 2 Ai .

The literature discusses several refinements of this equilib-
rium concept. One that will play a role in the games below
is that of strong Nash equilibrium due to Aumann [9]; it is

a Nash equilibrium a� in a strategic game G such that for
all S � N and action profile aS there exists a player i 2 S
such that ui (aS ; a�NnS ) � ui (a�). This means that a strong
Nash-equilibrium guarantees stability against coordinated
deviations, since within the deviating coalition there is at
least one agent who does not strictly improve.

Example 15 Consider the following two-player strategic
game with N D f1; 2g, A1 D fT; Bg and A2 D fL;M; Rg.
Let the utilities be as in the table below

L M R
T 5,4 2,1 3,2
B 4,3 5,2 2,5

Here player 1 chooses a row, and player 2 a column. The
numbers in the cells summarize the individual utilities
corresponding to the action profiles; the first number is
the utility of player 1, the second that of player 2. In this
game there is a unique Nash-equilibrium, which is the ac-
tion profile (T; L).

Dominance in Strategic Games In the game
G D hN; (Ai)i2N ; (Ui )i2Ni, the action ai 2 Ai is weakly
dominated by a0i 2 Ai if Ui (ai ; a�i ) � Ui(a0i ; a�i ) for
all a�i 2 A�i , with strict inequality for some profile of
actions a�i . If strict inequality holds for all a�i then ai
is strictly dominated by ãi . Rational players will not use
strictly dominated strategies, and, as far as prediction of
play is concerned, these may be eliminated from the set
of possible actions. If we do this elimination step for each
player, then we may reconsider whether some actions
are dominated within the reduced set of action profiles.
This step-by-step reduction of action sets is called the
procedure of successive elimination of (strictly) dominated
strategies. The set of all action profiles surviving this pro-
cedure is denoted by D1.

Example 16 In Example 15 actionM of player 2 is strictly
dominated by L and R. Player 1 has no dominated actions.
Now eliminate M from the actions for player 2. Then the
reduced game is

L R
T 5,4 3,2
B 4,3 2,5

Notice that action L for player 1 was not dominated in the
original game, for the reason that B was the better of the
two actions againstM. But ifM is never played,T is strictly
better than B. Now eliminateB, yielding the reduced game

L R
T 5,4 3,2
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In this game, L dominates R; hence the only action profile
surviving the successive elimination of strictly dominated
strategies is (T; L).

A stronger notion than dominance is the following. Call
an action ai 2 Ai overwhelmed by a0i 2 Ai if

max fUi (ai ; a�i)ja�i 2 A�ig
< min

˚
Ui (a0i ; a�i)ja�i 2 A�i

�
:

Then O1 is the set of all action profiles surviving the suc-
cessive elimination of overwhelmed actions. This notion is
due to [34,37]. In Example 15 the actionM is overwhelmed
by L, not by R. Moreover, the remaining actions in O1
are B; T; L, and R.

Demand Games

Strategic games in cost sharing problems arise when we as-
sume that the users of the production technology choose
their demands strategically and a cost sharing rule sees to
an allocation of the corresponding service costs. The ac-
tion profiles Ai are simply specified by the demand spaces
of the agents, and utilities are specified over combina-
tions of (level of) received service and accompanying cost
shares. Hence utilities are defined over consequences of ac-
tion, ui (qi ; xi ) denotes i’s utility at receiving service level
qi and cost share xi; ui is increasing in the level of re-
ceived service xi, and decreasing in the allocated cost yi.
Now assume a cost function c and a cost sharing rule �.
Then given a demand profile a D (a1; a2; : : : ; an) the cost
sharing rule determines a vector of cost shares �(a; c),
and in return also the corresponding utilities over de-
mands U i(a) D ui (ai ; �i (a; c)). Observe that agents in-
fluence each others utility via the cost component. The de-
mand game for this situation is then the strategic game

G(�; c) D hN; (Ai )i2N ; (U i )i2N i : (11)

Example 17 Consider the airport problem in Example 7.
Each player now may request service (1) or not (0). Then
the cost function is fully described by the demand of
the largest player. That is, c(x) D 33 if 3 requires ser-
vice, c(x) D 20 for all profiles with x2 D 1; x3 D 0 and
c(x) D 12 if x D (1; 0; 0), c(0; 0; 0) D 0. Define the cost
sharing rule ˚(x; c) D ˚(cx ), that is, ˚ calculates the
Shapley-value for the underlying cost game cx as in Eq. (1).
Assume that the players’ preferences over ordered pairs of
service level and cost shares are fully described by

u1(q1; x1) D 8q1 � x1 ;
u2(q2; x2) D 6q2 � x2 ;
u3(q3; x3) D 30q3 � x3 :

Here qi takes values 0 (no service) or 1 (service) and xi
stands for the allocated cost. So player 1 prefers to be
served at unit cost instead of not being served at zero cost,
u1(0; 0) D 0 < 7 D u1(1; 1). The infrastructure is seen as
an excludable public good, so those with demand 0 do
not get access to the technology. Each player now actively
chooses to be served or not, so her action set is specified
by Ai D f0; 1g. Recall the definition of cx as in Eq. (1).
Then given a profile of such actions a D (a1; a2; a3) and
cost shares ˚(a; c), utilities of the players in terms of ac-
tion profiles become Ui (a) D ui (ai ; ˚i (a; c)), so that

U1(a) D 8a1 �˚1(a; c) ;

U2(a) D 6a1 �˚2(a; c) ;

U3(a) D 30a3 � ˚3(a; c) :

Now that we provided all details of the demand game
G(˚; c), let us look for (strong) Nash-equilibria. Suppose
that the action profile a� D (1; 0; 1) is played in the game.
Then in turn the complete infrastructure is realized just for
players 1 and 3 and the cost allocation is given by (6; 0; 27).
Then the vectors of individual utilities is given by (2; 0; 3).
Now if we consider unilateral deviations from a�, what
happens to the individual utilities?

U1(0; 0; 1) D 0 < 2 D U1(1; 0; 1) ;

U2(1; 1; 1) D 6 �˚2((1; 1; 1); c)
D 6 �˚(c) D 6 � 8
D � 2 < 0 D U2(1; 0; 1) ;

U3(1; 0; 0) D 0 < 3 D U3(1; 0; 1) :

This means that for each player unilateral deviation does
not pay, a� is a Nash-equilibrium. The first inequality
shows as well why the action profile (0; 0; 1) is not. It is
easy to see that the other Nash equilibrium of this game is
the action profile (0; 0; 0), no player can afford the comple-
tion of the infrastructure just for herself. Notice however
that this zero profile is not a strong Nash equilibrium as
players 1 and 3 may well do better by choosing for service
at the same time, ending up in (1; 0; 1). The latter profile is
the unique strong Nash-equilibrium of the game.

Similar considerations in the demand game G(�E; c)
induced by the constrained egalitarian solution lead to the
unique strong Nash-equilibrium (0; 0; 0), nobody wants
service.

With cost sharing rules as decentralization tools, the lit-
erature postulates Nash-equilibria of the related demand
game as the resulting behavioral mode. This is a delicate
step because – as the example above shows – it is easy
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to find games with many equilibria, which causes a selec-
tion problem. And what can we do if there are no equi-
libria? This will not be the topic of this text and the inter-
ested reader is referred to any standard textbook on game
theory, for instance see [103,104,109]. If there is a unique
equilibrium then it is taken as the prediction of actual play.

Demand Revelation Games

For a social planner one way to retrieve the level at which
to operate the production facility is via a pre-specified de-
mand game. Another way is to ask each of the agents for
the maximal amount that she is willing to contribute in
order to get service, and then, contingent on the reported
amounts, install an adequate level of service together with
a suitable allocation of costs. Opposed to demand games
ensuring the level of service, in a demand revelation game
each player is able to ensure amaximum charge for service.

The approach will be discussed under the assumption
of a discrete production technology with binary demands,
so that the cost function c for the technology is basically
the characteristic function of a cooperative game. More-
over assume that the utilities of the agents in N are quasi-
linear and given by

ui (qi ; xi) D ˛i qi � xi (12)

where qi 2 f0; 1g denotes the service level, xi stands for
the cost share, and ˛i is a non-negative real number. [93]
discusses this framework and assume that c is concave,
and [64,148] moreover take c as the joint cost function for
the realization of several discrete public goods.

Demand Revelation Mechanisms Formally, a revela-
tion mechanism M assigns to each profile � of reported
maximal contributions a set S(�) of agents receiving ser-
vice and x(�) a vector of monetary compensations. Here
we will require that these monetary compensations are
cost shares; given some cost sharing rule � the vector x(�)
is given by�(1S(�); c) where c is the relevant cost function.

Moreover, note that by restricting ourselves to cost
share vectors we implicitly assume non-positive mone-
tary transfers. The budget balance condition is crucial here,
otherwise mechanisms of a different nature must be con-
sidered as well, see [23,40,41]. There are other ways that
a planner may use to determine a suitable service level is
by demanding pre-payment from the players, and deter-
mine a suitable service level on the basis of these labeled
contributions, see [64,148].

Manymechanisms come tomind, but in order to avoid
too much arbitrariness from the planner’s side, the more

sensible ones will grant the players some control over the
outcomes. We postulate the following properties:

� Voluntary Participation (VP) Each agent i can guar-
antee herself the welfare level ui (0; 0) (no service, no
payment) by reporting truthfully the maximal willing-
ness to pay, which is ˛i under Eq. (12).

� Consumer Sovereignty (CS) For each agent i a report
yi exists so that she receives service, irrespective of the
reports by others.

Now suppose that the planner receives themessage � D ˛,
known to her as the profile of true player characteris-
tics. Then for economic reasons she could choose to serve
a coalition S of players that maximizes the net benefit
at ˛, �(S; ˛) D ˛(S) � c(S). However, problems will arise
when some player i is supposed to paymore than ˛i, so the
planner should be more careful than that. She may want
to choose a coalition S with maximal �(S; ˛) such that
�(1S ; c) � ˛ holds; such set S is called efficient. But in gen-
eral the planner cannot tell whether the players reported
truthfully or not, then what should she do then? One op-
tion is that she applies the above procedure thereby naively
holding each reported profile � for the true player charac-
teristics. In other words, she will pick a coalition that solves
the following optimization problem

max
S�N

�(S; �) D �(S) � c(S)

s.t. �(1S ; c) � � :
(13)

Denote such a set by S(�; �). If this set is unique then the
demand revelation mechanism M(�) selects S(�; �) to be
served at cost shares determined by x(�) D �(1S ; c). This
procedure will be explained through some numerical ex-
amples.

Example 18 Consider the airport problem and utilities of
players over service levels and cost shares as in Example 7.
Moreover assume the planner uses the Shapley cost shar-
ing rule ˚ as in Example 17 and that she receives the true
profile of preferences from the players, ˛ D (8; 6; 30). Cal-
culate for each coalition S the net benefits at ˛:

S ¿ 1 2 3 12 13 23 N
	 (S; ˛) 0 -4 -14 -3 -6 8 3 11

Not surprisingly, the net benefits are the highest for the
grand coalition. But if N were selected by the mechanism
the corresponding cost shares are given by ˚(1N ; c) D
(4; 8; 21), and player 2 is supposed to contribute more
than she is willing to. Then the second highest net
benefits are generated by serving S D f1; 3g, with cost
shares ˚(1S ; c) D (6; 0; 27). Then f1; 3g is the solution to
Eq. (13).
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What happens if some of the playersmisrepresent their
preferences, for instance like in � D (13; 6; 20)? The plan-
ner determines the conceived net benefits

S ¿ 1 2 3 12 13 23 N
	 (S; �) 0 1 -14 -13 -1 0 -7 6

Again, if the planner served the coalition with the high-
est net benefit, N , then player 2 would refuse to pay.
Second highest net benefit corresponds to the singleton
S D f1g, and this player will get service underM(˚) since
�3 D 13 > 12 D c(1; 0; 0).

Example 19 Consider the same situation but now with
�E instead of˚ as cost sharing rule. Now consider the fol-
lowing table, restricted to coalitions with non-negative net
benefits (all other will not be selected):

S ¿ 13 23 N
	 (S; ˛) 0 8 3 11
�E(1S; c) (0,0,0) (12,0,21) (0; 332 ;

33
2 ) (10; 10; 13)

Here only the empty coalition S D ¿ satisfies the require-
ment�E(1S ; c) D (0; 0; 0) � (8; 6; 30); hence according to
the mechanism M(�E) nobody will get service.

In general, the optimization problem Eq. (13) does not
give unique solutions in case of which a planner should
still further specify what she does in those cases. For con-
cave cost functions, consider the following sequence of
coalitions

S1 D N; St D f i 2 St�1 j �i � �i (1St ; c)g :

So, starting with the grand coalitionN, at each consecutive
step those players are removed whose maximal contribu-
tions are not consistent with the proposed cost share – un-
til the process settles down. The set of remaining players
defines a solution to Eq. (13) and taken to define S(�; �).

Strategyproofness The essence of a demand revelation
mechanism M is that its rules are set up in such a way
that it provides enough incentives for the players not to
lie about their true preferences. We will now discuss the
most common non-manipulability properties of revela-
tion mechanisms in the literature.

Fix two profiles ˛0; ˛ 2 RN
C, where ˛ corresponds to

the true maximal willingness’ to pay. Let (q0; x0) and (q; x)
be the allocations implemented by the mechanism M on
receiving the messages ˛0 and ˛, respectively. The mecha-
nismM is called strategy-proof if it holds for all i 2 N that
˛0Nnfig D ˛Nnfig implies ui (q0i ; x

0
i) � ui (qi ; xi ).

So, given the situation that the other agents report
truthfully, unilateral deviation by agent i from the true

preference never produces better outcomes for her. Sim-
ilarly, M is group strategy-proof if deviations of groups of
agents does not pay for all deviators, i. e., for all T � N the
fact that ˛0NnT D ˛NnT implies ui (q0i ; x

0
i) � ui (qi ; xi ) for

all i 2 T . So, under a (group) strategy-proof mechanism,
there is no incentive to act untruthfully by misrepresent-
ing the true preferences and this gives a benevolent plan-
ner control over the outcome.

Cross-Monotonicity Cost sharing rule � is called cross-
monotonic if the cost share of an agent i is not increas-
ing if other agents demand more service, in case of a con-
cave cost function c. Formally, if x � x and xi D xi then
�i (x; c) � �i (x; c); each agent is granted a (fair) share of
the positive externality due to an increase in demand by
others.

Proposition 1 (Moulin & Shenker [93]) The only group
strategy-proof mechanisms M(�) satisfying VP and CS are
those related to cross-monotonic cost sharing rules �.

There are many different cross-monotonic cost sharing
rules, and thus just as many mechanisms that are group
strategy-proof. Examples include the mechanisms M(˚)
andM(�E), because˚ and�E are cross-monotonic. How-
ever, the nucleolus is not cross-monotonic and does there-
fore not induce a strategy-proof mechanism.

Above we discussed two instruments a social planner
may invoke to implement a desirable outcome without
knowing the true preferences of the agents. Basically, the
demand revelation games define a so-called direct mech-
anism. The announcement of the maximal price for ser-
vice pins down the complete preferences of an agent. So
in fact the planner decides upon the service level based
on a complete profile of preferences. In case of a cross-
monotonic cost sharing rule, under the induced mecha-
nism truth-telling is a weakly dominant strategy; announc-
ing the true maximal willingness to pay is optimal for the
agent regardless of the actions of others. This means good
news for the social planner as the mechanism is self-or-
ganizing: the agents need not form any conjecture about
the behavior of others in order to know what to do. In the
literature [24] such a mechanism is called straightforward.
The demand games define an indirect mechanism, as by
reporting a demand the agents do no more than signaling
their preferences to the planner.

Although in general there is a clear distinction be-
tween direct and indirect mechanisms, in the model pre-
sented in this section these are nevertheless strongly con-
nected. Focus on a demand gameG(�; c); recall that in this
game the agents simultaneously and independently decide
upon requesting service or not and costs are shared us-
ing the rule� amongst those agents receiving service. Sup-
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pose that for each profile of utility functions as in Eq. (12)
the resulting game G(�; c) has a unique (strong) Nash-
equilibrium. Then this equilibrium can be taken to de-
fine a mechanism. That is, the mechanism elicits u and
chooses the unique equilibrium outcome of the reported
demand game. Then this mechanism is equivalent with
the demand revelation mechanism. Observe that indeed
the strong equilibrium (1; 0; 1) in the game G(˚; c) in Ex-
ample 17 corresponds to players chosen by M(˚) under
truthful reporting. And where no player is served in the
strong equilibrium of G(�E; c), none of the players is se-
lected by M(�E). It is a general result in implementation
theory due to [24] that a direct mechanism constructed
in this way is (group) strategy-proof provided the under-
lying space of preferences is rich. It is easily seen that the
above sets of preferences meet the requirements. To stress
importance of such a structural property as richness, it is
instructive to point at what is yet to come in Sect. “Unique-
ness of Nash-Equilibria in P1-Demand Games”. Here, the
strategic analysis of the demand game induced by the pro-
portional rule shows uniqueness of Nash equilibrium on
the domain of preferences L� if only costs are convex.
However, this domain is not rich, and the direct mech-
anism defined in the same fashion as above by the Nash
equilibrium selection is not strategyproof.

Efficiency
and Strategy-Proof Cost Sharing Mechanisms

Suppose cardinal utility for each agent, so that inter-com-
parison of utility is allowed. Proceeding on the net benefit
of a coalition, we may define its value at ˛ by

v(N; ˛) D max
S�N

�(S; ˛) ; (14)

where�(S; ˛) is the net benefit of S at ˛. A coalition S such
that v(N; ˛) D �(S; ˛) is called efficient. It will be clear
that a mechanism M(�) that is defined through the opti-
mization problem Eq. (13) will not implement an efficient
coalition of served players, due to the extra constraint on
the cost shares.

For instance, in Example 7 the value of the grand coali-
tion at ˛ D (8; 6; 30) is given by v(N; ˛) D ˛(N)�c(N) D
44 � 33 D 11. At the same profile the implemented out-
come by mechanism M(˚) gives rise to a total surplus of
38�30 D 8 for the grand coalition – which is not optimal.
The mechanism M(�E) performs even worse as it leads to
the stand alone surplus 0, none is served.

This observation holds for far more general settings,
and, moreover, it is a well known result from implementa-
tion theory that – under non-constant marginal cost – any
strategy-proof mechanism based on full coverage of total

costs will not always implement efficient outcomes. For the
constant marginal cost case see [67,71]. Then, if there is an
unavoidable loss in using demand revelation mechanisms,
can we still tell which mechanisms are more efficient? Is it
a coincidence that in the above examples the Shapley value
performs better than the egalitarian solution?

The welfare loss due to M(�) at a profile of true pref-
erences ˛ is given by

L(�; ˛) D v(N; ˛) � f˛(S(�; ˛)) � c(S)g : (15)

For instance, with ˛ D (8; 6; 30) in the above examples we
calculate L(˚; ˛) D 11 � 8 D 3 and L(�E; ˛) D 11� 0 D
11. An overall measure of quality of a cost sharing rule �
in terms of efficiency loss is defined by

� (�) D sup˛ L(�; ˛) : (16)

Theorem 6 (Moulin & Shenker [93]) Among all mech-
anisms M(�) derived from cross-monotonic cost sharing
rules �, the Shapley rule ˚ has the unique smallest max-
imal efficiency loss, or � (˚) < � (�) if � ¤ ˚ .

Notice that this makes a strong case for the Shapley-value
against the egalitarian solution. The story does, however,
not end here.

[98] considers a model where the valuations of
the agents for the good are independent random vari-
ables, drawn from a distribution function F satisfying the
monotone hazard condition. This means that the func-
tion defined by h(x) D f (x)/(1 � F(x)) is non-decreas-
ing, where F has f as density function. It is shown that
the constrained egalitarian solution maximizes the prob-
ability that all members of any given coalition accept the
cost shares imputed to them.Moreover, [98] characterized
the solution in terms of efficiency. Suppose for the mo-
ment that the planner calculated cost share vector x for the
coalition S, and that its members are served conditional
on acceptance of the proposed cost shares. The proba-
bility that all members of S accept the shares is given by
P(x) D

Q
i2S(1 � F(xi)), and if we assume that the sup-

port of F is (0;m) then the expected surplus from such an
offer can be calculated as follows

W(x) D P(x)�

"
X

i2S

Z m

xi

ui
1 � F(xi)

dF(ui) � c(S)

#

: (17)

The finding of [98] is that for log-concave f , i. e.
x 7! ln( f (x)) is concave [5], the mechanism based on the
constrained egalitarian solution not only maximizes the
probability that a coalition accepts the proposal, but it
maximizes its expected surplus as well. Formally, the re-
sult is the following.
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Theorem 7 (Mutuswami (2004)) If the profile of valu-
ations (ui )i2N are independently drawn form a common
distribution function F with log-concave and differentiable
density function f , then W(�E(1S ; c)) � W(�(1S ; c)) for
all cross monotonic solutions � and all S � N.

Extension of the Model: Discrete Goods

Suppose the agents consume idiosyncratic goods pro-
duced in indivisible units. Then given a profile of de-
mands the cost associated with the joint production must
be shared by the users. Then this model generalizes the bi-
nary good model discusses so far and it is a launch-pad to
the continuous framework in the next section. In this dis-
crete good setting [86] characterizes the cost sharing rules
which induce strategyproof social choice functions defined
by the equilibria of the corresponding demand game. As
it turns out, these rules are basically the sequential stand
alone rules, according to which costs are shared in an in-
cremental fashion with respect to a fixed ordering of the
agents. This means that such a rule charges the first agent
for her stand alone costs, the second for the stand alone
cost for the first two usersminus the stand alone cost of the
first, et cetera. Here the word ‘basically’ refers to all discrete
cost sharing problems other than those with binary goods.
Then here the sufficient condition for strategyproofness is
that the underlying cost sharing rule be cross monotonic,
which admits other rules than the sequential ones – like
�E and ˚ .

Continuous Cost SharingModels

Continuous Homogeneous Output Model,P1

This model deals with production technologies for one
single perfectly divisible output commodity. Moreover, we
will restrict ourselves to private goods. Many ideas below
have been studied for public goods as well, for further ref-
erences see, e. g., [33,72,82].

The demand space of an individual is given by
X D RC. The technology is described by a non-decreasing
cost function c : RC ! R such that c(0) D 0, i. e. there are
no fixed costs. Given a profile of demands x 2 RN

C costs
c(x(N)) have to be shared. Moreover, the space of cost
functions will be restricted to those c being absolutely con-
tinuous. Examples include the differentiable and Lipschitz-
continuous functions. Absolute continuity implies that ag-
gregate costs for production can be calculated by the total
of marginal costs

c(y) D
Z y

0
c0(t) dt :

Denote the set of all such cost functions by C1 and the
related cost sharing problems by P1. Several cost sharing
rules on P1 have been proposed in the literature.

Average Cost Sharing Rule This is the most popular
and oldest concept in the literature and advocates Aristo-
tle’s principle of proportionality.

�AV(x; c) D
� x

x(N) � c(x(N)) if x ¤ 0N
0 if x D 0N

(18)

Shapley–Shubik Rule Each cost sharing problem
(x; c) 2 P1 is related to the stand-alone cost game cx
such that cx (S) D c(x(S)). Then the Shapley–Shubik rule
is determined by application of the Shapley-value to this
game:

�SS (x; c) D ˚(cx ) :

Serial Rule This rule, due to Moulin and Shenker [91],
determines cost shares by considering particular inter-
mediate cost levels. More precisely, given (x; c) 2 P1 it
first relabels the agents by increasing demands such that
x1 � x2 � � � � � xn . The intermediate production levels
are

y1 D nx1; y2 D x1 C (n � 1)x2; : : : ;

yk D
k�1X

jD1

x j C (n � k C 1)xk ; : : : ;

yn D x(N) :

These levels are chosen such that at each new level one
agent more is fully served his demand: at y1 each agent is
handed out x1, at y2 agent 1 is given x1 and the rest x2, etc.
The serial cost shares are now given by

�SR
i (x; c) D

kX

`D1

c(y`) � c(y`�1)
n � `C 1

:

So according to �SR each agent pays a fair share of the in-
cremental costs in each stage that she gets new units.

Example 20 Consider the cost sharing problem (x; c) with
x D (10; 20; 30) and c(y) D 1

2 y
2. Then first calculate the

intermediate production levels y0 D 0; y1 D 30; y2 D 50,
and y3 D 60. Then the cost shares are calculated as follows

�SR
1 (x; c) D

c(y1) � c(y0)
3

D 150 ;
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�SR
2 (x; c) D�SR

1 (x; c)C
c(y2) � c(y1)

2

D 150C
1250 � 450

2
D 550 ;

�SR
3 (x; c) D�SR

2 (x; c)C c(y3) � c(y2) D 550C 550
D 1100 :

The serial rule has attracted much attention lately in the
network literature, and found its way in fair queuing
packet scheduling algorithms in routers [27].

Decreasing Serial Rule De Frutos [26] proposes serial
cost shares where demands of agents are put in decreas-
ing order. Resulting is the decreasing serial rule. Consider
a demand vector x 2 RN

C such that x1 � x2 � � � � � xn .
Define recursively the numbers y` for ` D 1; 2; : : : ; n by
y` D `x` C x`C1 C � � � C xn , and put ynC1 D 0. Then the
decreasing serial rule is defined by

�DSR
i (x; c) D

nX

`Di

c(y`) � c(y`C1)
`

: (19)

Example 21 For the cost sharing problem in Example 20
calculate y1 D 90; y2 D 70; y1 D 60, then

�DSR
3 (x; c) D

c(y3)� c(y4)
3

D
4050 � 0

3
D 1350 ;

�DSR
2 (x; c) D�DSR

3 (x; c)C
c(y2) � c(y3)

2

D 1350C
2450 � 4050

2
D 550 ;

�DSR
1 (x; c) D�DSR

2 (x; c)C (c(y1)� c(y2))
D 550C (1800 � 2450) D �100 :

Notice that here the cost share of agent 1 is negative, due
to the convexity of c! This may be considered as an unde-
sirable feature of the cost sharing rule. Not only are costs
increasing in the level of demand, in case of a convex cost
function each agent contributes to the negative externality.
It seems fairly reasonable to demand a non-negative con-
tribution in those cases, so that none profits for just be-
ing there. The mainstream cost sharing literature includes
positivity of cost shares into the very definition of a cost
sharing rule. Here we will add it as a specific property:
Positivity � is positive if �(x; c) � 0N for all (x; c) in its
domain. All earlier discussed cost sharing rules have this
property, except for the decreasing serial rule.

The decreasing serial rule is far more intuitive in case
of economies of scale, in presence of a concave cost func-
tion. The larger agents now are credited with a lower price

per unit of the output good. [47,57] propose variations on
the serial rule that coincide with the increasing (decreas-
ing) serial rule in case of a convex (concave) cost function,
meeting the positivity requirement.

Marginal Pricing Rule A popular way of pricing an out-
put of a production facility is marginal cost pricing. The
price of the output good is set to cover the cost producing
one extra unit. It is frequently used in the domain of public
services and utilities. However, a problem is that for con-
cave cost functions the method leads to budget deficits. An
adapted form of marginal cost pricing splits these deficits
equally over the agents. The marginal pricing rule is de-
fined by

�MP
i (x; c) D xi c0(x(N))C 1

n
�
c(x(N)) � x(N)c0(x(N))

�
:

(20)

Note that in case of convex cost functions agents can re-
ceive negative cost shares, just like it is the case with de-
creasing serial cost sharing.

Additive Cost Sharing and Rationing

The above cost sharing rules for homogeneous production
models share the following properties:

Additivity �(x; c1 C c2) D �(x; c1)C �(x; c2) for all
relevant cost sharing problems. This property carries the
same flavor as the homonymous property for cost games.

Constant Returns �(x; c) D #x for linear cost func-
tions c such that c(y) D # y for all y. So if the agents do
not cause any externality, the fixed marginal cost is taken
as a price for the good.

It turns out that the class of all positive cost sharing rules
with these properties can be characterized by solutions to
rationing problems –which are the most basic of all models
of distributive justice. A rationing problem amongst the
agents in N consists of a pair (x; t) 2 RN

C �RC such that
x(N) � t; t is the available amount of some (in)divisible
good and x is the set of demands. The inequality sees to
the interpretation of rationing as not every agent may get
all she wants.

A rationing method r is a solution to rationing prob-
lems, such that each problem (x; t) is assigned a vector of
shares r(x; t) 2 RN

C such that 0N � r(x; t) � x. The latter
restriction is a weak solidarity statement assuring that ev-
erybody’s demand be rationed in case of shortages.

For t 2 RC define the special cost function � t by
�t(y) D min fy; tg. The cone generated by these base
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Cost Sharing, Figure 7
Intermediate production levels

functions lays dense in the space of all absolutely contin-
uous cost functions c; if we know what the values �(x; �t)
are, then basically we know�(x; c). Denote byM the class
of all cost sharing rules with the properties positivity, ad-
ditivity, and constant returns.

Theorem 8 (Moulin& Shenker [88,92]) Consider the fol-
lowing mappings associating rationing methods with cost
sharing rules and vice versa,

r 7! � : �(x; c) D
Z x(N)

0
c0(t)dr(x; t) ;

� 7! r : r(x; t) D �(x; �t) :

These define an isomorphism betweenM and the space of
all monotonic rationing methods.

So each monotonic rationing method relates to a cost
sharing rule and vice versa. In this way �P is directly
linked with the proportional rationing method, �SR to the
uniform gains method, and �SS to the random priority
method. Properties of rationing methods lead to proper-
ties of cost sharing rules and vice versa [61].

Incentives in Cooperative Production

Stable Allocations, Stand-Alone Core Suppose again,
like in the framework of cooperative cost games, that
(coalitions of) agents can decide to leave the cost sharing
and organize their own production facility. Under the abil-
ity to replicate the technology the question arises whether
cost sharing rules induce stable cost share vectors.

Theorem 9 (Moulin [85]) For concave cost functions c,
if� is an anonymous and cross-monotonic cost sharing rule
then �(x; c) 2 core(cx ).

Under increasing returns to scale, this implies that�P ; �SR

are core-selectors but �MC is not. [137] associates to each
cost sharing problem (x; c) a pessimistic one, (x; c�); here
c�(y) reflects the maximum of marginal cost on [0; x(N)]
to produce y units,

c�(y) D

8
<̂

:̂

sup
˚R

T c0(t)dt j T � [0; x(N)]; (T) D y
�

if y � x(N) ;
c(y) else :

(21)

Here  denotes the Lebesgue measure.

Theorem 10 (Koster [60]) For any cost sharing problem
(x; c), it holds core(c�x ) D f�(x; c) j� 2Mg.
In particular this means that for � 2M it holds that
�(x; c) 2 core(cx ) whenever c is concave, since this im-
plies c� D c. This result appeared earlier as a corollary to
Theorem 8, see [88]. [47,57,61] show non-linear cost shar-
ing rules yielding core elements for concave cost functions
as well, so additivity is only a sufficient condition in the
above statement. For average cost sharing, one can show
more, �P(x; c) 2 core(cx ) for all x precisely when the av-
erage cost c(y)/y is decreasing in y.

Strategic Manipulation Through Reallocation of De-
mands In the cooperative production model, there are
other ways that agents may use to manipulate the final al-
location. In particular, note that the serial procedure gives
the larger demanders an advantage in case of positive ex-
ternalities; as marginal costs decrease, the price paid by the
larger agents per unit of output is lower than that of the
smaller agents. In the other direction larger demanders are
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punished if costs are convex. Then as the examples below
show, this is just why the serial ideas are vulnerable to mis-
representation of demands, since combining demands and
redistribute the output afterwards can be beneficial.

Example 22 Consider the cost function c given by
c(y) D min f5y; 60C 2yg. Such cost functions are part of
daily life, whenever one has to decide upon telephone or
energy supply contracts: usually customers get to choose
between a contract with high fixed cost and a low variable
cost, and another with low or no fixed cost and a high vari-
able price. Now consider the two cost sharing problems
(x; c) and (x0; c) where x D (10; 20; 30); x0 D (0; 30; 30).
The cost sharing problem (x0; c) arises from (x; c) if
agent 2 places a demand on behalf of agent 1 – without
letting agent 3 know. The corresponding average and se-
rial cost shares are given by

�P(x; c) D (30; 60; 90) �P(x0; c) D (0; 90; 90)
�SR(x; c) D (40; 60; 80) �SR(x0; c) D (0; 90; 90) :

Notice that the total of average cost shares for 1 and 2 is
the same in both cost sharing problems. But if the serial
rule were used, these agents can profit by merging their
demands; if agent 2 returns agent 1’s demand and requires
a payment from agent 1 between €30 and €40, then both
agents will have profited by suchmerging of demand.

Example 23 Consider the five-agent cost sharing
problems (x; c) and (x; c) with x D (1; 2; 3; 0; 0); x D
(1; 2; 1; 1; 1) and convex cost function c(y) D 1

2 y
2. (x; c)

arises out of (x; c) if agent 3 splits her demand over
agents 4 and 5 as well. Then

�P(x; c) D (6; 12; 18; 0; 0) �P(x; c) D (6; 12; 6; 6; 6) ;
�SR(x; c) D (3; 11; 22; 0; 0) �SR(x; c) D (5; 16; 5; 5; 5) :

The aggregate of average cost shares for agents 3, 4, and 5
does not change. But notice that according to the serial
cost shares, there is a clear advantage for the agents. In-
stead of paying 22 in the original case, now the total of
payments equals 15. Agent 3 may consider a transfer be-
tween 0 and 7 to 3 and 4 for their collaboration and still
be better of. In general, in case of a convex cost function
the serial rule is vulnerable with respect to manipulation
of demands through splitting.

Note that in the above cases the proportional cost shar-
ing rule does prescribe the same cost shares. It is a non-
manipulable rule: reshuffling of demands will not lead to
different aggregate cost shares. The rule does not discrim-
inate between units, when a unit is produced is irrelevant.
It is actually a very special feature of the cost sharing rule
that is basically not satisfied by any other cost sharing rule.

Theorem 11 Assume that N contains at least three agents.
The proportional cost sharing rule is the unique rule that
charges nothing for a null demand and meets any one of the
following properties:

� Independence of merging and splitting,
� No advantageous reallocation,
� Irrelevance of reallocation.

The second property shows even a stronger property than
merging and splitting: agents may redistribute the de-
mands in any preferred way without changing the aggre-
gate cost shares of the agents involved. The third property
states that in such cases the cost shares of the other agents
do not change. Then this makes proportional cost sharing
compelling in situations where one is not capable of de-
tecting the true demand characteristics of individuals.

Demand Games forP1

Consider demand games G(�; c) as in Eq. (11), Sect. “De-
mand Games”, where now � is a cost sharing rule on P1.
These games with uncountable strategy spaces are more
complex than the demand games that we studied before.

The set of consequences for players is now given by
C D R2

C, combinations of levels of production and costs
(see Sect. “Strategic Demand Games”). Then an individ-
ual i’s preference relation is convex if for the correspond-
ing utility function ui and all pairs z; z0 2 C it holds

ui (z) D ui (z0)
H) u(tz C (1 � t)z) � ui (z) for all t 2 [0; 1] :

(22)

This means that a weighted average of the consequences is
weakly preferred to both consequences, if these are equiv-
alent. Such utility functions ui are called quasi-concave.
An example of convex preferences are those related to lin-
ear utility functions of type ui (x; y) D ˛x � y. Moreover,
strictly convex preferences are those with strict inequality
in Eq. (22) for 0 < t < 1; the corresponding utility func-
tions are strictly quasi-concave. Special classes of prefer-
ences are the following.

� L: the class of all convex and continuous preferences
utility functions that are non-decreasing in the service
component x, non-increasing in the cost component y,
non-locally satiated and decreasing on (x; c(x)) for x
large enough. The latter restriction is no more than as-
suring that agents will not place requests for unlimited
amounts of the good.
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Cost Sharing, Figure 8
Linear, convex preferences, u(x; y) D 2x � y. The contours in-
dicate indifference curves, i. e. sets of type f(x; y)ju(x; y) D kg,
the k-level curve of u

� L�: the class of bi-normal preferences in L. Basically,
if such a preference is represented by a differentiable
utility function u then the slope dy/dx of the indiffer-
ence contours is non-increasing in x, non-decreasing
in y. For a concise definition see [141]. Examples in-
clude Cobb–Douglas utility functions and also those of
type ui (x; y) D ˛(x) � ˇ(y) where ˛ and ˇ are con-
cave and convex functions, respectively. A typical plot
of level curves of such utility functions is in Fig. 9. Note
that the approach differs from the standard literature
where agents have preferences over endowments. Here
costs are ‘negative’ endowments. In the latter interpre-
tation, the condition can be read as that the marginal
rate of substitution is non-positive. At equal utility, an
increase of the level of output has to be compensated by
a decrease in the level of input good.

Nash-Equilibria of Demand Games in a Simple Case

Consider a production facility shared by three agents
N D f1; 2; 3g with cost function c(y) D 1

2 y
2. Assume

that the agents have quasi-linear utilities in L, i. e.
ui (xi ; yi ) D ˛i xi � yi for all pairs (xi ; yi ) 2 R2

C. Below
the Nash-equilibrium in the serial and proportional de-
mand game is calculated in two special cases. This numer-
ical example is based on [91].

Proportional DemandGame Consider the correspond-
ing proportional demand game,G(�P ; c), with utility over
actions given by

UP
i (x) D ˛i xi � �

P(x; c) D ˛i xi � 1
2 xi x(N) : (23)

Cost Sharing, Figure 9
Strictly convex preferences, u(x; y) Dpx � e0:5y. The straight
line connecting any two points on the same contour lays in the
lighter area –with higher utility. Fix the y-value, then an increase
of x yields higher utility, whereas for fixed x an increase of y
causes the utility to decrease

In a Nash-equilibrium x� of G(�P ; c) each player i gives
a best response on x��i , the action profile of the other
agents. That is, player i chooses x�i 2 argmax

t
UP

i (t; x
�
�i ).

Then first order conditions implies for an interior solution

˛i �
1
2 x
�(N) � 1

2x
�
i D 0 (24)

for all i 2 N . Then x�(N) D 1
2 (˛1 C ˛2 C ˛3) and x�i D

2˛i � 1
2 (˛1 C ˛2 C ˛3).

Serial DemandGame Consider the same production fa-
cility and the demand game G(�SR ; c), corresponding to
the serial rule. Then the utilities over actions are given by

U SR
i (x) D ˛i xi � �SR (x; c) : (25)

Now suppose x is a Nash equilibrium of this game, and
assume without loss of generality that x1 � x2 � x3. Then
player 1 with the smallest equilibrium demand maximizes
the expression

U SR
1 ((t; x2; x3) D ˛1t � c(3t)/3 D ˛1t � 3

2 t
2

at x1, from which we may conclude that ˛1 D 3x1. In ad-
dition, in equilibrium, player 2, maximizes

U SR
2 (x1; t; x3) D ˛2 t�( 13 c(3x1)C

1
2 (c(x1C2t)�c(3x1)) ;

for t � x1, yielding ˛2 D x1 C 2x2. Finally, the equilib-
rium condition for player 3 implies ˛3 D x(N). Then it
is not hard to see that actually this constitutes the serial
equilibrium.
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Comparison of Proportional and Serial Equilibria (I)

Now let’s compare the serial and the proportional equilib-
rium in the following two cases:

(i) ˛1 D ˛2 D ˛3 D ˛

(ii) ˛1 D ˛2 D 2; ˛3 D 4 :

Case (i): Then we get x� D ( 12˛;
1
2˛;

1
2˛) and xi D

( 13˛;
1
3˛;

1
3˛) for all i. The resulting equilibrium payoff

vectors are given by

UP(x�) D ( 18˛
2; 18˛

2; 18˛
2) and

U SR (x) D ( 16˛
2; 16˛

2; 16˛
2) :

Not only the average outcome is less efficient than its serial
counterpart, it is also Pareto-inferior to the latter.

Case (ii): The proportional equilibrium is a boundary solu-
tion, x� D (0; 0; 2) with utility profile UP(x�) D (0; 0; 8).
The serial equilibrium strategies and utilities are given by

x D ( 23 ;
2
3 ;

8
3 );U

SR (x) D ( 23 ;
2
3 ; 4) :

Notice that the serial equilibrium is now less efficient,
but is not Pareto-dominated by the proportional utility
distribution.

Uniqueness of Nash-Equilibria inP1-Demand Games

In the above demand games there is a unique Nash-equi-
librium which serves as a prediction of actual play. This
need not hold for any game. In the literature strategic char-
acterizations of cost sharing rules are discussed in terms
of uniqueness of equilibrium in the induced cost games,
relative to specific domains of preferences and cost func-
tions. Below we will discuss the major findings of [141].
These results concern a broader cost sharing model with
the notion of a cost function as a differentiable function
RC ! RC. So in this paragraph such cost function can
decrease, fixed cost need not be 0. This change in setup is
not crucial to the overall exposition since the characteriza-
tions below are easily interpreted within the context of P1.

DemandMonotonicity Themapping t 7! �i ((t; x�i ); c)
is non-decreasing; � is strictly demand monotonic if this
mapping is increasing whenever c is increasing.

Smoothness The mapping x 7! �(x; c) is continuously
differentiable for all continuously differentiable c 2 C1.

Recall that L� is the domain of all bi-normal preferences.

Theorem 12 (Watts [141]) Fix a differentiable cost func-
tion c and a demand monotonic and smooth cost sharing
rule �. A cost sharing game G(�; c) has a unique equilib-
rium whenever agents’ preferences belong to L�, only if, for
all x D (x1; : : : ; xn)

� Every principal minor of the matrix W with rows wi is
non-negative for all

wi 2

��
@�i

@x1
; : : : ;

@�i

@xn

�
;

�
@2�i

@x1@x1
; : : : ;

@2�i

@xi@xn

��
:

(26)

� The determinant of the Hessianmatrix corresponding to
the mapping x 7! �(x; c) is strictly positive.

A sufficient condition to have uniqueness of equilibrium
is that the principle minor of the matrix W is strictly posi-
tive.

The impact of this theorem is that one can characterize
the class of cost functions yielding unique equilibria if the
domain of preferences is L�.
� G(�SR ; c);G(�DSR ; c): Necessary condition for unique-

ness of equilibrium is that c is strictly convex, i. e.
c00 > 0. A sufficient condition is that c is increasing and
strictly convex. Actually, [141] also shows that the con-
clusions for the serial rule do not change whenL is used
instead of L�. As will get more clear below, the serial
games have unique strategic properties.

� G(�P ; c): The necessary and sufficient conditions
are those for the serial demand game, including
c0(y) > c(y)/y for all y ¤ 0. Notice, that the latter
property does not pose additional restrictions on cost
functions within the framework of P1.

� G(�SS ; c): Necessary condition is c00 > 0. In general it
is hard to establish uniqueness if more than 2 players
are involved.

� G(�MP ; c): even in 2 player games uniqueness is not
guaranteed. For instance, uniqueness is guaranteed
for cost functions c(y) D y˛ only if 1 < ˛ � 3. For
c(y) D y4 there are preference profiles in L� such that
multiple equilibria reside.

Decreasing Returns to Scale The above theorem ba-
sically shows that uniqueness of equilibrium in demand
games related to P1 can be achieved for preferences in
L� if only costs are convex, i. e. the technology exhibits
decreasing returns to scale. Starting point in the litera-
ture to characterize cost sharing rules in terms of their
strategic properties is the seminal paper by Moulin and
Shenker [91]. Their finding is that on L basically �SR is
the only cost sharing rule of which the corresponding de-
mand game passes the unique equilibrium test like in The-
orem 12.

Call a smooth and strictly demand monotonic cost
sharing rule � regular if it is anonymous, so that the name
of an agent does not have an impact on her cost share.
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Theorem 13 (Moulin & Shenker [91]) Let c be a strictly
convex continuously differentiable cost function, and let �
be a regular cost sharing rule. The following statements are
equivalent:

� � D �SR ,
� for all profiles (u1; u2; : : : ; un) of utilities in L, G(�; c)

has at most one Nash-equilibrium,
� for all profiles (u1; u2; : : : ; un) of utilities in L every

Nash-equilibrium of G(�; c) is also a strong equilib-
rium, i. e., no coalition can coordinate in order to im-
prove the payoff for all its members.

This theorem makes a strong case for the serial cost shar-
ing rule, especially when one realizes that the serial equi-
librium is the unique element surviving successive elimi-
nation of strictly dominated strategies. Then this equilib-
riummay naturally arise through evolutive or eductive be-
havior, it is a robust prediction of non-cooperative behav-
ior. Recent experimental studies are in line with this theo-
retical support, see [22,108]. Proposition 1 in [141] shows
how easy it is to construct preferences in L such that reg-
ular cost sharing rules other than �SR give rise to multi-
ple equilibria in the corresponding demand game, even in
two-agent cost sharing games.

Besides other fairness concepts in the distributive lit-
erature the most compelling is envy-freeness. An allocation
passes the no envy test if no player prefers her own alloca-
tion less than that of other players. Formally, the definition
is as follows.

No Envy Test Let x be a demand profile and y a vector of
cost shares. Then the allocation (xi ; yi )i2N is envy-free if
for all i; j 2 N it holds ui (xi ; yi ) � ui (x j; y j).

It is easily seen that the allocations associated with the se-
rial equilibria are all envy-free.

Increasing Returns to Scale As Theorem 12 already
shows, uniqueness of equilibrium in demand games for all
utility profiles in L� is in general inconsistent with con-
cave cost functions.

Theorem 14 (de Frutos [26]) Let c be a strictly concave
continuously differentiable cost function, and let� be a reg-
ular cost sharing rule. The following statements are equiva-
lent:

� � D �DSR or � D �SR .
� For all utility profiles u D (ui )i2N in L the induced de-

mand game G(�; c) has at most one Nash equilibrium,
or

Cost Sharing, Figure 10
Scenario (ii). The indifference curves of agent 1 together with the
curve � : t 7! �SR

1 ((t; x�1); c). Best response of player 1 against
x�1 D ( 23 ;

8
3 ) is the value of x where the graph of � is tangent to

an indifference curve of u1

� For all utility profiles u D (ui )i2N in L, every Nash
equilibrium of the game G(�; c) is a strong Nash equi-
librium as well.

Moreover, if the curvature of the indifference curves is big-
ger than that of the curve generated by the cost sharing
rule as in Fig. 10 then the second and third statement are
equivalent with � D �DSR .

Theorem 15 (Moulin [85]) Assume agents have prefer-
ences in L�. The serial cost sharing rule is the unique con-
tinuous, cross-monotonic and anonymous cost sharing rule
for which the Nash-equilibria of the corresponding demand
games all pass the no-envy test.

Comparison of Serial and Proportional Equilibria (II)

Just as in the earlier analysis in Sect. “Efficiency and Strate-
gy-Proof Cost Sharing Mechanisms”, performance of cost
sharing rules can be measured by the related surpluses in
the Nash-equilibria of the corresponding demand games.
Assume in this section that the preferences of the agents
are quasi-linear in cost shares, and represented by func-
tions Ui (xi ; yi) D ui (xi) � yi . Moreover, assume that ui
is non-decreasing and concave, ui (0) D 0. Then the sur-
plus at the demand profile x and utility profile is the num-
ber

P
i2N ui (xi) � c(x(N)). Define the efficient surplus or

value of N relative to c and U by

v(c;U) D supx2RN
C

X

i2N

ui (xi ) � c(x(N)) : (27)
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Denote the set of Nash-equilibria in the demand game
G(�; c) with profile of preferences U by NE(�; c;U).
Given c; � the guaranteed (relative) surplus of the cost
sharing rule � for N is defined by

� (c; �) D inf
U ;x2NE(�;c;U)

P
i2N ui (xi ) � c(x(N))

v(c;U)
: (28)

Here the infimum is taken over all utility profiles discussed
above. This measure is also called the price of anarchy of
the game, see [65]. Let C� be the set of all convex increas-
ing cost functions with limy!1 c(y)/y D 1. Then [89]
shows that for the serial and the proportional rule the
guaranteed surplus is at least 1/n. But sometimes the dis-
tinction is eminent. Define the number

ı(y) D
yc00(y)

c0(y) � c0(0)
;

which is a kind of elasticity. The below theorem shows
that on certain domains of cost functions with bounded ı
the serial rule prevails over the proportional rule. For
large n the guaranteed surplus at �SR is of order
1/ ln(n), that of �AV of order 1/n. More precise, write
Kn D 1C 1

3 C � � � C
1

2n�1 � 1C ln n
2 , then:

Theorem 16 (Moulin [89]) For any convex increasing
cost function c with limy!1 c(y)/y D 1 it holds that

� If c0 is concave and inf fı(y)jy � 0g D p > 0, then

� (c; �SR) �
p
Kn

� (c; �AV) �
4

nC 3

� If c0 is convex and sup fı(y)jy � 0g D p <1 then

� (c; �SR ) �
1

2p � 1
1
Kn

4
nC 3

� � (c; �AV) �
4(2p � 1)

n

AWord on Strategy-Proofness inP1

Recall the discussion on strategyproofness in Sect. “Strate-
gyproofness”. The serial demand game has a unique strong
Nash equilibrium in case costs are convex and preferences
are drawn from L. Suppose the social planner aims at de-
signing a mechanism to implement the outcomes associ-
ated with these equilibria. [91] show an efficient way to
implement this serial choice function by an indirectmecha-
nism. It is defined through a multistage game which mim-
ics the way the serial Nash equilibria are calculated. It is
easily seen that here each agent has a unique dominant
strategy, in which demands result from optimization of

the true preferences. Then this gives rise to a strategyproof
mechanism.

Note that the same approach can not be used for the
proportional rule. The strategic properties of the propor-
tional demand game are weaker than that of the serial de-
mand game in several aspects. First of all, it is not hard
to find preference profiles in L leading to multiple equi-
libria. Whereas uniqueness of equilibrium can be repaired
by restricting L to L�, the resulting equilibria are, in gen-
eral, not strong (like the serial counterparts). In the pro-
portional equilibria there is overproduction, see e. g. the
example in Sect. “Proportional Demand Game” where
a small uniform reduction of demands yields higher utility
for all the players. Besides, a single-valued Nash equilib-
rium selection corresponds to a strategyproof mechanism
provided the underlying domain of preferences is rich, and
L� is not. Though richness is not a necessary condition,
the proportional rule is not consistent with a strategyproof
demand game.

BayesianP1-Demand Games

Recall that at the basis of a strategic game there is the as-
sumption that each player knows all the ingredients of the
game. However, as [56] argues, production cost and out-
put quality may vary unpredictably as a consequence of
the technology and worker quality. Besides that, changes
in the available resources and demands will have not fore-
seen influences on individual preferences. On top of that,
the players may have asymmetrical information regard-
ing the nature of uncertainty. [56] study the continuous
homogeneous cost sharing problem within the context of
a Bayesian demand game [43], where these uncertainties
are taking into account. The qualifications of the serial rule
in the stochastic model are roughly the same as in the de-
terministic framework.

Continuous Heterogeneous Output Model,Pn

The analysis of continuous cost sharing problems for
multi-service facilities are far more complex than the sin-
gle-output model. The literature discusses two different
models, one where each agent i demands a different good,
and one where agents may require mixed bundles of
goods. As the reader will notice, the modeling and analysis
of solutions differs in abstraction and complexity. In order
to concentrate on the main ideas, here we will stick to the
first model, where goods are identified with agents. This
means that a demand profile is a vector x 2 RN

C, where xi
denotes the demand of agent i for good i. From now we
deal with technologies described by continuously differ-
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entiable cost functions c : RN
C ! RC, non-decreasing and

c(0N ) D 0; the class of all such functions is denoted by Cn .

Extensions of Cost Sharing Rules The single-output
model is connected to the multi-output model via the
homogeneous cost sharing problems. Suppose that for
c 2 Cn there is a function c0 2 C such that c(x) D
c0(x(N)) for all x. For instance, such functions are found
if we distinguish between production of blue and red
cars; the color of the car does not affect the total produc-
tion costs. Essentially, a homogeneous cost sharing prob-
lem (x; c) may be solved as if it were in P1. If � is the
compelling solution on P1 then any cost sharing rule on
Pn should determine the same solution on the class of
homogeneous problems therein. Formally the cost shar-
ing rule on Pn extends � on P1 if for all homogeneous
cost sharing problems (x; c) it holds �(x; c) D �(x; c0).
In general a cost sharing rule � on P1 allows for a whole
class of extensions. Below we will focus on extensions of
�SR ; �P ; �SS .

Measurement of Scale Around the world quantities of
goods are measured by several standards. Length is ex-
pressed in inches or centimeters, volume in gallons or
liters, weight in ounces to kilos. Here measurement con-
version involves no more than multiplication with a fixed
scalar. When such linear scale conversions do not have
any effect on final cost shares, a cost sharing rule is called
scale invariant. It is an ordinal rule if this invariance ex-
tends to essentially all transformations of scale. Scale in-
variance captures the important idea that the relative cost
shares should not change, whether we are dividing 1 Euro
or 1,000 Euros. Ordinality may be desirable, but for many
purposes too strong as a basic requirement. Formally,
a transformation of scale is a mapping f : RN

C ! RN
C such

that f (x) D ( f1(x1); f2(x2); : : : ; fn(xn)) for all x and each
of the coordinate mappings f j is differentiable and strictly
increasing.

Ordinality A cost sharing rule � on Pn is ordinal if for
all transformations of scale f and all cost sharing problems
(x; c) 2 Pn , it holds that

�(x; c) D �( f (x); c ı f�1) : (29)

Scale Invariance A cost sharing rule � on Pn is scale in-
variant if Eq. (29) holds for all linear transforms f . Under
a scale invariant cost sharing rule final cost shares do not
change by changing the units in which the goods are mea-
sured.

Path-Generated Cost Sharing Rules Many cost sharing
rules on Pn calculate the cost shares for (x; c) 2 Pn by
the total of marginal costs along some production path
from 0 toward x. Here a path for x is a non-decreasing
mapping � x : RC ! RN

C such that � (0) D 0N and there
is a T 2 RC with � x (T) D x. The cost sharing rule gener-
ated by the path collection � D

˚
� x jx 2 RN

C

�
is defined by

�
�
i (x; c) D

Z 1

0
@i c(� x (t))(� xi )

0(t)dt : (30)

Special path-generated cost sharing rules are the fixed-path
cost sharing rules; a single path �� : RC ! RN

C with the
property that limt!1 �

�
i (t) D 1 defines the whole un-

derlying family of paths. More precisely, the fixed path
cost sharing rule � generated by �� is the path-gen-
erated rule for the family of paths

˚
� x jx 2 RN

C

�
de-

fined by � x (t) D ��(t) ^ x, the vector with coordinates
min

˚
��i (t); xi

�
. So the paths are no more than the projec-

tions of ��(t) on the cube [0; x]. Below we will see many
examples of (combinations of) such fixed-path methods.

Aumann–Shapley Rule The early characterizations
by [15,79] on this rule set off a vast growing literature on
cost sharing models with variable demands. [16] suggested
to use the Aumann–Shapley rule to determine telephone
billing rates in the context of sharing the cost of a tele-
phone system. This extension of proportional cost sharing
calculates marginal costs along the path �AS(t) D tx for
t 2 [0; 1]. Then

�AS
i (x; c) D xi

Z 1

0
@i c(tx)dt : (31)

The Aumann–Shapley rule can be interpreted as the Shap-
ley-value of the non-atomic game where each unit of the
good is a player, see [11]. It is the uniform average over
marginal costs along all increasing paths from 0N to x. The
following is a classic result in the cost sharing literature:

Theorem 17 (Mirman & Tauman [79], Billera &
Heath [15]) There is only one additive, positive, and scale
invariant cost sharing rule on Pn that extends the propor-
tional rule, and this is �AS .

Example 24 If c is positively homogeneous, i. e. c(˛y) D
˛c(y) for ˛ � 0 and all y 2 RN

C, then

�AS
i (x; c) D

@i c
@xi

(x)

i. e. �AS calculates the marginal costs of the ith good at the
final production level x. The risk measures (cost functions)
as in [28] are of this kind.
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Friedman–Moulin Rule This serial extension [36] cal-
culates marginal costs along the diagonal path, i. e.
� FM(t) D t1N ^ x

�FM
i (x; c) D

Z xi

0
@i c(� x (t))dt : (32)

This fixed path cost sharing rule is demandmonotonic. As
far as invariance with the choice of unit is concerned, the
performance is bad as it is not a scale invariant cost sharing
rule.

Moulin–Shenker Rule This fixed-path cost sharing rule
is proposed as an ordinal serial extension by [125]. Sup-
pose that the partial derivatives of c 2 Cn are bounded
away from 0, i. e. there is a such that @i c(x) > a for all
x 2 RN

C. TheMoulin–Shenker rule�MS is generated by the
path �MS as solution to the system of ordinary differential
equations

� 0i (t) D

( P
j2N @ j c(�(t))
@i c(�(t))

if �i(t) < xi ;
0 else :

(33)

The interpretation of this path is that at each moment
the total expenditure for production of extra units for the
different agents is equal; if good 2 is twice as expensive
as good 1, then the production device �MS will produce
twice as much of the good 1. The serial rule embraces
the same idea – as long as an agent desires extra pro-
duction, the corresponding incremental costs are equally
split. This makes�MS a natural extension of the serial rule.
Call t�i the completion time of production for agent i, i. e.
�MS
i (t) < xi if t < t�i and �MS

i (t�i ) D xi . Assume without
loss of generality that these completion times are ordered
such that 0 D t�0 � t�1 � t�2 � � � � � t�n , then the Moulin–
Shenker rule is given by

�MS
i (x; c) D

iX

`D1

c(�MS(t�
`
)) � c(�MS(t�

`�1))
n � `C 1

: (34)

Note that the path varies with the cost function, and that
this is the reason why �MS is a non-additive solution. Such
solutions – though intuitive – are in general notoriously
hard to analyze. There are two axiomatic characteriza-
tions of the Moulin–Shenker rule. The first is by [125],
in terms of the serial principle and the technical condition
that a cost sharing rule be a partial differentiable functions
of the demands. The other characterization by [60] is more
in line with the ordinal character of this serial extension.

Continuity A cost sharing rule � on Pn is continuous if
q 7! �(q; c) is continuous onRN

C for all c.

Continuity is weaker than partial differentiability, as it
requires stability of the solution with respect to small
changes in the demands.

Upperbound A cost sharing rule � satisfies upperbound
if for all (q; c) 2 Pn ; i 2 N

�i (q; c) � max
y2[0;q]

@i c(y) :

An upperbound provides each agent with a conservative
and rather pessimistic estimate of her cost share, based on
the maximal value of the corresponding marginal cost to-
ward the aggregate demand.

Suppose that d is a demand profile smaller than q.
A reduced cost sharing problem is defined by (q � d; cd )
where cd is defined by cd (y) D c(y C d) � c(d). So cd

measures the incremental cost of production beyond the
level d.

Self–consistency A cost sharing rule � is self-consis-
tent if for all cost sharing problems (q; c) 2 Pn with
qNnS D 0NnS for some S � N , and d � q such that
�i (d; c) D � j(d; c) for all fi; jg � S, then �(q; c)S D
�(d; c)S C �(q � d; cd )S .

So, self-consistency is expresses the idea that if cost shares
of agents with non-zero demand differ, then this is not due
to the part of the problem that they are equally charged for,
but due to the asymmetries in the related reduced prob-
lem. The property is reminiscent of the step-by-step nego-
tiation property in the bargaining literature, see [54].

Theorem 18 (Koster [60]) There is only one continuous,
self-consistent and scale invariant cost sharing rule satisfy-
ing upper bounds, which is the Moulin–Shenker rule.

Shapley–Shubik Rule For each demand profile x the
stand-alone cost game cx is defined as before. Then the
Shapley–Shubik rule is no more than the Shapley value
of this game, i. e. �SS(x; c) D ˚(cx ). The Shapley–Shubik
rule is ordinal.

A Numerical Example Consider the cost sharing prob-
lem (x; c) with N D f1; 2g ; x D (5; 10), and c 2 C2 is
given by c(t1; t2) D e2t1Ct2 � 1 on [0; 10] � [0; 10]. We
calculate the partial derivatives @1c(t1; t2) D 2e2t1Ct2 D

2@2c(t1; t2) for all (t1; t2) 2 R2
C. The Aumann–Shapley

path is given by � (t) D (5t; 10t) for t 2 [0; 1] and

�AS
1 (x; c) D

Z 1

0
@1c(5t; 10t) � 5dt
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D

Z 1

0
2e20t � 5dt D 1

2
�
e20 � 1



�AS
2 (x; c) D

Z 1

0
@2c(5t; 10t) � 10dt

D

Z 1

0
e20t � 10dt D 1

2
�
e20 � 1


:

The Friedman–Moulin rule uses the path

� FM (t) D t1N ^ q D

(
(t; t) if 0 � t < 5 ;
(5; 5C t) if 5 � t ;

and the corresponding cost shares are calculated as fol-
lows:

�FM
1 (x; c) D

Z 5

0
@1c(t; t)dt

D

Z 5

0
2e3tdt D 2

3
�
e15 � 1


;

�FM
2 (x; c) D

Z 5

0
@2c(t; t)dt C

Z 10

5
@2c(5; 5C t)dt

D 1
3
�
e15 � 1


C e20 � e15 :

Note that both discussed cost sharing rules use one and
the same path for all cost sharing problems with demand
profile x. This is characteristic for additive cost sharing
rules (see e. g. [35,42]).

Now turn to the Moulin–Shenker rule. Since @1c D
2@2c everywhere on [0; 10] � [0; 10], according the solu-
tion �MS of Eq. (33), until one of the demands is reached,
for each produced unit of good 1 two units of good 2
are produced. In particular there is a parametrization �

Cost Sharing, Figure 11
Paths for�MS;�AS;�FM

of �MS such that �(t) D (t; 2t) for 0 � t � 5. The corre-
sponding cost shares are equal since � reaches both co-
ordinates of x at the same time, so �MS

1 (x; c) D �MS
2 (x; c)

D 1
2 c(� (5)) D

1
2 c(5; 10) D

1
2 (e

20 � 1). Now suppose that
the demands are summarized by x� D (10; 10). In order
to calculate �MS(x�; c), notice that there is a parametriza-
tion of �� of the corresponding path �MS such that

��(t) D

(
(t; 2t) if t � 5 ;
(t; 10) for 5 < t � 10 ;

Notice that this path extends � just to complete service for
agent 1, so that – like before – agent 2 only contributes
while t < 5. Then the cost shares are given by

�MS
2 (x�; c) D 1

2 c(�
�(5)) D 1

2 c(5; 10) D
1
2 (e

20 � 1) ;
�MS
1 (x�; c) D�MS

2 (x�; c)C c(��(10)) � c(��(5))

D e30 � 1
2 (e

20 C 1) :

For x� the cost sharing rules �AS and �FM use essentially
the same symmetric path � (t) D (t; t), so that it is easily
calculated that �AS(x�; c) D �FM (x�; c) D ( 23

�
e30 � 1


;

1
3
�
e30 � 1


.

Axiomatic Characterization of Fixed-Path Rules Re-
call demand monotonicity as a weak incentive constraint
for cost sharing rules. Despite the attention that the Au-
mann–Shapley rule received, it fails to meet this standard.
To see this consider the following

c(y) D
y1y2

y1 C y2
; and �AS

1 (x; c) D
x1x22

(x1 C x2)2
:

Cost Sharing, Figure 12
Paths for�MS;�AS;�FM
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Then the latter expression is not monotonic in x1. One
may show that the combination of properties in Theo-
rem 17 are incompatible with demandmonotonicity. Now
what kind of rules are demand monotonic? The classifica-
tion of all such rules is too complex. We will restrict our
attention to the additive rules with the dummy property,
which comprises the idea that a player pays nothing if her
good is for free:

Dummy If @i c(y) D 0 for all y then �i (x; c) D 0 for all
cost sharing problems (x; c) 2 Pn .

Theorem 19 (Friedman [35])

� A cost sharing rule � satisfies dummy, additivity and
demand monotonicity if and only if it is an (infinite)
convex combination of rules generated by fixed paths
which do not depend on the cost structure.

� A cost sharing rule � satisfies dummy, additivity and
scale invariance if and only if it is an (infinite) convex
combination of rules generated by scale invariant fixed
paths which do not depend on the cost structure.

This theoremhas some important implications. The Fried-
man–Moulin rule is the unique serial extension with the
properties additivity, dummy and demand monotonicity.
As we mentioned before, �FM is not scale invariant. The
only cost sharing rules satisfying all four of the above prop-
erties are random order values, i. e. a convex combination
of marginal vectors of the stand-alone cost game [142].�SS

is the special element in this class of rules, giving equal
weight to each marginal vector. Consider the following
weak fairness property:

Equal Treatment Consider (x; c) 2 Pn . If cx (S [ fig) D
cx (S [ f jg) for all i; j and S � Nn fi; jg then �i (x; c) D
� j(x; c).

Within the class of random order values,�SS is the unique
cost sharing rule satisfying equal treatment.

Strategic Properties of Fixed-Path Rules [34] shows
that the fixed-path cost sharing rules essentially have the
same strategic properties as the serial rule. The crucial re-
sult in this respect is the following.

Theorem 20 (Friedman [34]) Consider the demand game
G(�; c)where� is a fixed path cost sharing rule and c 2 Cn

has strictly increasing partial derivatives. Then the corre-
sponding set O1 of action profiles surviving the successive
elimination of overwhelmed actions consists of a unique el-
ement.

As a corollary one may prove that the action profile in
O1 is actually the unique Nash-equilibrium of the game

G(�; c), and that it is strong as well. Moreover, [34] shows
that this Nash-equilibrium can be reached through some
learning dynamics. Then this means that the demand
games induced by�FM and�MS have strong strategic prop-
erties. Notice that the above theorem is only one-way.
There are other cost sharing rules, like the axial serial rule,
having the same strategic characteristics.

Future Directions

So far, a couple of standard stylized models have been
launched providing a theoretical basis for defining and
studying cost sharing principles at a basic level. The list
of references below indicates that this field of research is
full in swing, both in theoretical and applied directions.
Although it is hard to make a guess where developments
lead to, a couple of future directions will be highlighted.

Informational Issues

So far most of the literature is devoted to deterministic
cost sharing problems. The cost sharing problems we face
in practice are shaped by unsure events. Despite its rel-
evance, this stochastic modeling in the literature is quite
exceptional, see [56,138].

The presented models assume the information of costs
for every contingent demand profile. Certainly within
the continuous framework this seems too much to ask
for. Retrieving the necessary information is hindered not
only by technical constraints, but leads to new costs as
well. [48] discusses data envelopment in cost sharing prob-
lems. A stochastic framework will be useful to study such
estimated cost sharing problems. Other work focusing on
informational coherence in cost sharing problems is [126].
Related work is [4], discussing mixtures of discrete and
continuous cost sharing problems.

Budget Balance

In this overview, the proposed mechanisms are based on
cost sharing rules. Another stream in implementation the-
ory – at the other extreme of the spectrum – deals with cost
allocation rules with no restrictions on the budget. [89]
compares the size of budget deficits relative to the overall
efficiency of a mechanism.

Performance

Recall the performance indices measuring the welfare im-
pact of different cost sharing rules. [90] focuses on the
continuous homogeneous production situations, with cost
functions of specific types. There is still a need for a more
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general theory. In particular this could prove to be in-
dispensable for analyzing the quality of cost sharing rules
in a broader set-up, the heterogeneous and Bayesian cost
sharing problems.

Non-linear Cost Sharing Rules

Most of the axiomatic literature is devoted to the analy-
sis of cost sharing rules as linear operators. The additiv-
ity property is usually motivated as an accounting conven-
tion, but it serves merely as a tool by which some math-
ematical representation theorems apply. Besides the prac-
tical motivation, it is void of any ethical content. As [88]
underlines, there are hardly results on non-additive cost
sharing rules – one of the reasons is that the mathemati-
cal analysis becomes notoriously hard. But – as a growing
number of authors acknowledges – the usefulness of these
mathematical techniques alone cannot justify the contri-
bution of the property.

I thank Hervé Moulin as a referee of this article, and
his useful suggestions.
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Glossary

Aseismic Occurring without detectable radiated seismic
energy.

Cascadia The region of the Pacific Northwest dominated
by the Cascade Range and affected by subduction of
the Juan de Fuca plate beneath North America.

Coseismic Occurring during an earthquake.
Elastic A form of behavior of a solid when subjected to

stress. Elastic solids deform in response to stress by
an amount proportional to a constant known as the
“rigidity”.When any applied stress is removed, an elas-
tic solid recovers its original shape.

Geodesy The study of the shape and area of the Earth,
including large-scale variations that affect the rotation
dynamics of the planet of the whole, down to smaller
length scales of earthquakes, landslides, etc.

Forward model A description of what a model of some
process would predict about behavior of the system,
e. g., how a given distribution of subsurface slip on
a fault during an earthquake should affect observations
of ground deformation at the surface.

GPS Global Positioning System. A network of satellites
that transmit a signal that can be used by receivers
(small transportable and/or permanent affixed to the
ground) to infer three-dimensional positions.

InSAR Interferometric Synthetic Aperture Radar. The
combination of Synthetic Aperture Radar imagery
(generally acquired from airborne or satellite-based
platforms) to infer changes in ground deformation,
digital elevationmodels, variations in atmospheric wa-
ter vapor, etc.

Interseismic deformation Occurs in the time period be-
tween earthquakes, usually associated with gradual in-
crease in elastic stress to be released in future earth-
quakes.

Inverse theory The approach to determining the values
for parameters of a given physical model that best de-
scribe observations of the system of interest.

Leveling The field of geodesy involved in the determi-
nation of variations in angle from horizontal between
nearby fixed points on the Earth’s surface, usually con-
verted to changes in elevations.

Locked zone The portion of the fault zone that does not
slip during the interseismic period, therefore accumu-
lating stress and eventually rupturing coseismically.

Paleoseismology The study of individual earthquakes
that occurred in the past, usually before the advent of
instrumental recordings of seismic events.

Plate tectonics The theory governing how discrete plates
on the Earth’s surface move relative to each other over
geologic time.

Postseismic deformation Deformation occurring in the
hours to years following an earthquake.

Seismic cycle The combination of strain build-up and re-
lease that occurs on plate margins and along faults
within plates, accommodated by processes within the
coseismic, postseismic and interseismic time scales.

Seismogenic The region of a fault zone that is capable of
producing earthquakes. Also refers to effects caused by
an earthquake.

Subduction The process by which one tectonic plate de-
scends beneath another, usually accompanied by vol-
canism and seismicity.
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Triangulation The field of geodesy related to measuring
horizontal angles and changes in angles between net-
works of fixed points.

Trilateration The field of geodesy related to measuring
distance and changes in distance between networks of
fixed points.

Viscoelastic A material behavior that is a combination
of viscous and elastic behavior, resulting in some per-
manent deformation when the material is subjected to
changes in stress.

Viscosity Amaterial property describing its ability to flow
in response to an applied stress. A measure of the re-
sponse of a material to a stress, resulting in permanent
deformation. The deformation rate of a viscous mate-
rial depends on both the viscosity and applied stress.

Definition of the Subject

The seismic cycle consists of the processes associated with
the accumulation and release of stress on seismogenic
faults. The cycle is commonly divided into 3 periods: the
coseismic interval for events occurring during an earth-
quake, the postseismic interval after an earthquake, and
the interseismic period in between earthquakes (Fig. 1).
Some of this deformation during these different periods
is related directly to the motion on the fault during the
earthquake – the ground is translated in one direction or
another, there is crushing of rock, rotation or heaving of
blocks of earth, and landslides triggered by the shaking.
There is also ground deformation that results because of
secondary effects – movement of ground water within the
crushed and strained rock, cascades of earthquakes trig-
gered by stress changes during the first event, continued
slip on the fault interface, as well as flow of deeper, more
ductile layers of the crust and mantle in response to the

Crustal Deformation During the Seismic Cycle, Interpreting
Geodetic Observations of, Figure 1
Cartoon illustrating map view (view from overhead) of ground
deformation during the seismic cycle for a strike-slip fault (af-
ter [73]). Similar models exist for other fault types

changes in stress. By examining these different behaviors
and studying crustal deformation we can learnmore about
the underlying cause.

Earthquakes and other motion along fault zones are
some of the ways that the Earth’s crust accommodates
far-field forcings due to plate tectonic motions. One of
the prime features of interest as we study the seismic cy-
cle is the magnitude of motion along these fault zones at
different temporal and length scales. However, the only
place where we can directly observe this motion is within
the shallowest (< several meters) parts of the fault zone,
through maps of features that are offset across the fault.
The field of paleoseismology involves the search for infor-
mation about previous earthquakes on a fault zone, often
through trenches dug across the fault and the use of ra-
diogenic dating to determine how frequently earthquakes
have occurred in the past.

In order to infer what is occurring throughout the
whole seismogenic zone (often the upper �15 km within
the continental crust), we rely on an arsenal of tools that
include seismology (the study of how seismic waves travel
through the earth) and geodesy (the study of changes to
the shape of the earth’s surface). In this chapter, we will ex-
plore how we can draw conclusions about fault zone slip at
depths far greater than are directly accessible to us, based
on how the earth’s surface deforms during, before and af-
ter earthquakes.

Introduction

Ground shaking due to earthquakes can be felt over most
of the Earths’ surface, both on land and underwater. Earth-
quakes are also associated with volcanic activity, landslides
and tsunami – they are often concentrated near discrete
tectonic plate boundaries but also occupy diffuse zones
where the Earth’s crust is deforming [12,57]. The seis-
mic energy that is released during an earthquake passes
through deep portions of the Earth and helps us to learn
about material properties we could not illuminate any
other way, including details of the structure of the Earth’s
crust, core and everything in between. However, the de-
structive cost of large earthquake requires that the pri-
mary goal of earthquake research is that of determining
when and where damaging earthquakes will occur [99]. To
achieve this goal, we first have to understandwhat happens
during each earthquake, i. e., where it was located, how big
it was, how it’s location relates to the distribution of previ-
ous earthquakes, etc.

One of the most common methods that we use to
study earthquakes relies on the feature most apparent to
humans – the rapid and often destructive movements of
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the ground that occur during the earthquake. Seismology
studies how the ground shakes during earthquakes and
howwe can use that information to better understand seis-
mogenesis. However, this ground shaking is also always
accompanied by some amount of permanent deformation
of the ground. After all, the primary driving force behind
most earthquakes is the slow motion of tectonic plates rel-
ative to each other. In this chapter we will not cover seis-
mology, although combinations of seismic data and ob-
servations of geodetic displacements are often very pow-
erful tools. Instead, we cover the geodetic observations of
ground deformation during earthquakes and some of the
methods that we use to interpret this deformation in terms
of what actually happened on and around the fault zone.

Highlights of Earthquake Geodesy

Geodesy is defined as the branch of mathematics con-
cerned with the shape and area of the Earth. In this chap-
ter we will examine how the use of geodesy to quantify
changes in the shape of the Earth can help us learn about
earthquakes. We begin with a brief history of how the use
of geodesy to study earthquakes has evolved, along with
a description of some of the more interesting individual
earthquakes and other seismic cycle behaviors that have
been observed geodetically. We then explain the mechan-
ics of how we use these measurements of surface defor-
mation to understand processes deep beneath the Earth’s
surface.

Observations of Coseismic Displacements

The history of earthquake geodesy begins even before
we really understood what earthquakes were. The key
observations began when scientists began to associate
earthquakes with observable deformation of the terrain.
In Charles Lyell’s Principles of Geology [46], he noted
that earthquakes often accompany abrupt changes in the
ground surface. The 1819 Ran of Cutch, India [64] and
1855 Wairarapa, New Zealand earthquakes were some of
the first events where the accompanying ground deforma-
tion was observed. In 1835, during Charles Darwin’s voy-
age on the H.M.S. Beagle, he experienced a large earth-
quake near Concepcion, Chile. During his reconnaissance
of the area, he noted that the coastline had risen several
meters in areas, exposing barnacles that had previously
been underwater. He also found fossils hundreds of me-
ters above sea level, indicating that numerous earthquakes
had raised the cliffs over many millennia.

Several large earthquakes in the second half of the 19th
century helped to advance the theory that earthquakes
were caused by motion on faults. The 1872 Owens Val-

ley, California, earthquake [19], the 1888 Amuri/Marl-
borough, New Zealand, earthquake [50], the 1891 Nobi,
Japan, earthquake [36] and the 1893 Baluchistan earth-
quake [21] were each accompanied by visible deforma-
tion of the ground surface. These observations, and the
fact that much of the deformation was consistent with re-
gional, long-term topographic relief, helped counter argu-
ments that earthquakes were primarily caused by volcanic
activity [48].

Around the same time interval, the practice of sur-
veying was coming into more widespread use, notably in
India where Britain was involved in mapping the areas
under its control. Surveyors installed permanent “monu-
ments” or benchmarks, which they could then return to
and re-survey at a later date. The May 17, 1892 Tapanuli,
Sumatra, earthquake occurred during a triangulation sur-
vey by JJA Muller [58]. They noted changes in their sur-
veyed angles between benchmarks that were consistent
with two meters of deformation on a branch of the great
Sumatran fault. In the foothills of the Himalaya, triangu-
lation/leveling surveys measured deformation due to the
1897 Assam earthquake [64] and the 1905 Kangra earth-
quake [53]. In Italy, the 1915 Avezzano earthquake [94]
was also spanned by early geodetic surveys.

In North America, the first great earthquake to be sur-
veyed was the 1906 earthquake that destroyed most of the
city of San Francisco, CA [40]. HF Reid [72] used three
sets of triangulation surveys across San Andreas Fault to
show that there had been approximately 3.2 meters of slip
across the fault. During the 1920s and 1930s, there was
a great deal of leveling work done in Japan which cap-
tured deformation associated with the 1927 Tango earth-
quake, and the 1944 and 1946 earthquakes associated with
oceanic plate subduction in southwestern Japan [63,93].
Tide gauges along the coasts have also proved useful in
earthquake studies, especially near subduction zones.

There was a boom in the use of the three main ground-
based geodetic techniques (triangulation, trilateration and
leveling) in the middle of the twentieth century, with ob-
servations of the 1940 Imperial Valley and 1962 Tehachapi
earthquakes in California and the first observation of shal-
low interseismic creep on faults in the San Francisco Bay
Area and in the Salton Trough/Imperial Valley region
in Southern California. Next, the development of space-
based geodesy began to allow for more precise and spa-
tially extensive surveys of areas before and after earth-
quakes. Very Long Baseline Interferometry (VLBI) sta-
tions scattered around the world placed strong constraints
on the relative motion of individual tectonic plates, as
did the widespread use of Global Positioning System
(GPS) [22,83].
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GPS can be used either in continuous mode at perma-
nent stations, which allows for high precision observations
that can catch temporal changes in deformation, or in sur-
vey/campaignmode, where researchers take GPS receivers
out to fixed benchmark stations in the field (sometimes
previously studied using earlier surveyingmethods). Some
of the first large earthquakes to be studied using GPS were
the Ms 6.6 Superstition Hills, CA, earthquake in 1987 [39]
and the 1989 Mw 7.1 Loma Prieta, CA earthquake [3].
The precise locations and descriptions of ground defor-
mation allowed researchers to begin to examine how in-
dividual earthquakes fit in with the long-term topogra-
phy, including the estimation of possible recurrence inter-
vals [35,41].

InSAR The advent of Interferometric Synthetic Aper-
ture Radar (InSAR), and it’s application to the 1992 Lan-
ders, California, earthquake [17,49], ushered in a new era
of geodesy with its unparalleled spatial density of deforma-
tion observations [23,76]. Synthetic Aperture Radar (SAR)
images are acquired from a variety of platforms that send
out radar signals, including satellites and airplanes (Fig. 2),
and contain information about the phase and amplitude of
the reflected return from the earth’s surface.

A SAR interferogram is the difference in phase be-
tween two SAR images, and reflects a variety of factors
that change the path length between the satellite and
the ground. After correcting for some of these factors,
such as topography (Fig. 3), the resulting interferomet-
ric phase is a function of any ground deformation that
occurred between the two SAR acquisitions, in addition
to variations in atmospheric water vapor, the ionosphere,
etc. [11,20,100]. The high spatial resolution of InSAR (pix-
els commonly 5m × 20m or smaller) combined with its
large areal coverage (�100 km) produces images with so
many pixels that they can become unwieldy to deal with
computationally, especially when multiple interferograms
are studied at once. Most researchers use various down-
sampling methods to reduce the number of data points
considered without significantly reducing the amount of
information retained [43].

The interferometric phase is only sensitive to ground
deformation towards or away from the satellite, in a direc-
tion known as the satellite line of sight (LOS). Also, since
the interferometric phase can only be measured as a frac-
tion of the radar wavelength, an interferogram does not
immediately give us an absolute measurement of the mag-
nitude of ground deformation (Fig. 4). We need to add up
the interferometric “fringes” to solve for the total defor-
mation field. This “unwrapped” deformation field, along
with information about the line-of-sight direction, can be

Crustal Deformation During the Seismic Cycle, Interpreting
Geodetic Observations of, Figure 2
Formation of a Synthetic Aperture Radar (SAR) interferogram:
Two satellite radar images of the ground surface, separated
by a spatial baseline, B, are combined to solve for the ı�,
the difference in line length (�) between the satellite and the
ground along the satellite viewing direction (˛). Knowledge of
the satellite orbital path and the relative distance between the
two image acquisitions (B) is necessary to convert ı� to ele-
vation. If the two images are obtained simultaneously, or over
a small time interval, the interferogram will only reflect topo-
graphic relief throughout the imaged area. However, if changes
in ground surface elevation (e. g., the volcanic inflation shown in
this figure between the blue and red), or changes in the atmo-
sphere/ionosphere (e. g., water vapor content) occur between
the two image acquisitions, this will also be reflected in the final
interferogram

combined in attempts to model the earthquake source pa-
rameters, or for models of deformation throughout other
parts of the seismic cycle.

InSAR observations have improved the spatial com-
plexity of these observations, allowing over a dozen large
earthquakes to be studied in detail by a wide range of ob-
servers. Some noteworthy events that had various portions
of their coseismic-postseismic activity covered by combi-
nations of InSAR and GPS include the 1992 Landers, CA,
earthquake [13,17,49], the 1995 Antofagasta, Chile, earth-
quake [70,77], the 1997 Hector Mine, CA earthquake [85],
the 1999 Chi-Chi, Taiwan earthquake [8,98], the 2003
Bam, Iran earthquake [18], and the 2005 Nias–Simeulue
earthquake [28]. In other cases, InSAR can help to deter-
mine the location of small- to moderate-sized earthquakes
in areas with little other geophysical or field-based infor-
mation [44].
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Crustal Deformation During the Seismic Cycle, Interpreting
Geodetic Observations of, Figure 3
Overview of steps in forming and interpreting an interferogram.
An interferogram requires the combination of two sets of ampli-
tude a and phase b observations from two separate image ac-
quisitions (here, on two different dates separated by a month
over an area along the Persian Gulf, Iran). While phase in the
individual SAR images appear to be random noise, when the
two images are combined, the phase changes vary coherently
to form the interferogram in c. If we remove the effects of the
satellite orbital geometry (the “curved earth effect”), we are left
with d, which reflects both topography, ground surface defor-
mation and any atmospheric changes between the two image
acquisitions. The area in the lower left still looks like white noise
due to the fact that water (here, the Persian Gulf) changes its re-
flectivity over short time scales and the phase does not remain
coherent. If we remove the effects of topography e we are left
with a map that clearly shows the effects of a small Mw 5 earth-
quake that occurred during this time interval (black dots show
the seismically-determined locations for this event). Other fea-
tures are due primarily to changes in atmospheric water vapor

Crustal Deformation During the Seismic Cycle, Interpreting
Geodetic Observations of, Figure 4
Illustration of how the inherent 2� ambiguity affects the ob-
served deformation. The “true” ground deformation vs. distance
profile (black signal) would appear as the segmented blue curve
(“wrapped” signal) when viewed using InSAR, since interferome-
try only retains information about the relative phasewithin a 2�
cycle, not about the absolute phase, or number of cycles be-
tween the satellite and the ground. Reconstructing the original
deformation field requires a process known as phase unwrap-
ping, and therewill also be an ambiguity as to the absolute value
of the deformation field as a whole

Observations Throughout the Seismic Cycle

Early Models As the body of information about earth-
quakes grew, scientists were able to begin hypothesizing
about the processes controlling their occurrence. Reid’s
observations of the 1906 San Francisco earthquake led
him to propose his elastic rebound theory [73], where he
hypothesized that the crust behaves like an elastic solid
driven from the far field at a constant rate, which rup-
tures in earthquakes at periodic intervals to allow the two
blocks to slide past each other (Fig. 1). In the interseismic
period, the ground deforms smoothly in a manner that de-
pends on the relative plate velocities, the thickness of the
elastic plate, the elastic plate rigidity, etc. The size of the
largest potential earthquake on a fault would depend on
the length and depth of the elastic zone, and the timing un-
til the next earthquake would depend on how much strain
had built up since the last one.

This simple model, where each earthquake releases all
of the built-up stress along the fault zone at a regular in-
terval, does not seem to hold in the real world. On most
faults, the magnitude of fault slip and rupture area ap-
pears to vary significantly between earthquakes (Fig. 5).
Additionally, large amounts of accelerated deformation
and other types of postseismic behavior are observed to
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Crustal Deformation During the Seismic Cycle, Interpreting Geodetic Observations of, Figure 5
Cartoon illustrating theories governing the temporal distribution of large earthquakes [88], each assuming a constant increase in
stress vs. time in the interseismic interval (black lines), and coseismic behavior (gray) that depends on the accumulated stress in
variousways. In the periodicmodel [73], earthquakes occur at constant intervals and always have the samemagnitude, releasing the
sameamount of built-up stress. In the time-predictablemodel, earthquakes always occurwhen amaximumstress,�2, is reached, but
the slip in each event varies. The time of the next earthquake depends on howmuch stress was released in the previous event. In the
slip-predictable model, earthquakes occur at varying times, but always release the amount of built-up stress down to the minimum
level, �1. The amount of slip, therefore, depends on the time since the previous earthquake

occur immediately after earthquakes, indicating that stress
release is not accommodated in a simple manner. Obser-
vations such as these can help us improve and expand on
the models that we utilize to explain earthquake occur-
rence.

Postseismic Behavior Earthquakes may primarily re-
lease built-up strain due to plate motions, but they also
produce stress increases in both the near-field within the
crust and within the underlying mantle. Observations of
postseismic deformation, which is driven by the preceding
coseismic stress changes [25,79,92], span a wide range of
behaviors that may be explained by equally large range of
constitutive properties. For some shallow strike-slip earth-
quakes, the observed postseismic deformation is as large as
the fault slip during the earthquake [38,86].

Observed postseismic behaviors include poroelastic
deformation [13,33], where fluid flow following gradients
in coseismic stress changes results in ground deformation,
frictional afterslip [5,28,55,81,82] and viscoelastic relax-
ation of the lower crust [25,26,68,74,79]. Afterslip is some-
times triggered not only on the fault that caused the earth-
quake, but also on surrounding faults within the stress
field [1,12]. Another very noticeable consequence of an
earthquake is the series of aftershocks following it, which
may be triggered by combinations of stress changes as the
lower crust relaxes after an earthquake as well as those due
to motion during the earthquake itself [90].

In cases where the coseismic slip distribution (and it’s
associated stress change) is well-constrained by combina-
tions of geodetic and seismic data, we can explore models
of crustal and mantle properties, or place bounds on labo-
ratory-derived rock mechanics laws [7], in order to fit the
postseismic response to the coseismic stress change. For
instance, the distribution of afterslip places constraints on
the frictional behavior of the fault zone [32,55]. However,
any such study requires good understand of the processes
occurring during the earthquake itself.

Interseismic Behavior Although it is usually less dra-
matic than deformation occurring during and immedi-
ately after earthquakes, interseismic deformation can also
tell us a great deal about the fault zone. The depth of the
“locked” or “coupled” zone that will eventually rupture
seismically [24,29], the rate at which stress is accumulating
along the fault zone [59,92], and even variations in crustal
elastic properties when rocks of different types are brought
into contact across the fault zone [14], can all be addressed
by examination of interseismic deformation across a fault.
In addition, data types that span a finite amount of time,
such as InSAR or campaign GPS observations, will always
contain some amount of interseismic strain that may need
to be removed before studying measurements spanning
an earthquake. The steadiest interseismic deformation is
mainly due to flow of the lower crust and mantle beneath
the elastic upper crust, but there are also observations of
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steady creep in the shallowest portions of several strike-
slip fault zones [31,37,47,73].

Transient Behavior One of the most intriguing fault be-
haviors observed recently are isolated deformation events
that are often not directly associated with an earthquake
at all. These “slow” or “silent” earthquakes have been ob-
served around the world in subduction zones, especially
within the Cascadia subduction zone ([51,54], Fig. 6),
Japan [27,56,65],Mexico [45], andChile [64]. Along-strike
variations in the amount of plate convergence that is taken
up by these aseismic slip processes vs. large coseismic
eventsmay persist over very long timescales, as is indicated
by the correlation of potentially aseismic “seismic gaps”
in subduction zones and gravity anomalies [89,95]. Al-
though most transient fault zone activity has been noticed

Crustal Deformation During the Seismic Cycle, Interpreting
Geodetic Observations of, Figure 6
Episodic slow slip events in Cascadia. OP=Olympic Peninsula,
VI=Vancouver Island. Black arrows indicate interseismic con-
vergence, red arrows indicate motion during one of the slow
slip events recorded by continuous GPS (yellow triangles). Inset
shows detrended component of deformation recorded by sta-
tions ALBHon Vancouver Island,withmore than a decadeof reg-
ular slow slip events (vertical green bars). Figure after [54]

along subduction zones, there are also observations of
transient aseismic creep along the San Andreas Fault [60]
and within the Imperial Valley, CA [42]. Further observa-
tions will help us understand how great of a contribution
combinations of steady interseismic and transient aseismic
behaviors make to the release of plate motion across many
of the major tectonic boundaries around the world.

Modeling of Geodetic Observations

Overview of Inverse Theory

All of the observations discussed above involve measure-
ments of surface deformation.We can learn nothing about
processes occurring below the surface, within fault zones,
without the ability to infer how those observations were
generated. Inverse theory spans the range of problems
relating to identifying which model of real-world behav-
ior is consistent with observed data. Some of the simplest
inverse problems include that of fitting a line to a series of
data points, or even calculating the mean value of a set of
observations. Good treatments of the field of inverse the-
ory and it’s applications to geophysical problems in gen-
eral can be found in books by Parker [66] andMenke [52],
as well as in key papers by Backus and Gilbert [4] and
Tarantola and Valette [91].

Before a geophysical inversion can be performed (i. e.,
determining the size of an earthquake based on ground de-
formation) the “forward model” must be defined and un-
derstood. A forward model is a description of how we be-
lieve the system of interest, here, the Earth’s crust, will be-
have in response to the process we are studying (i. e., fault
slip). For inversions for fault slip, the forward model is our
best guess at how the deformation field produced by mo-
tion on the fault surface will propagate through the solid
earth to the ground surface where we can observe it. Lab-
oratory, seismological and field observations support the
idea that the crust behaves as an elastic solid on the short
timescales associated with earthquakes and their immedi-
ate aftermath, although parts of the crust deform viscously
at longer time scales under prolonged stress. The response
of the elastic crust surrounding a plane that undergoes
fault slip can be described mathematically [62]. Figure 7
shows the predicted ground deformation for strike-slip
motion on fault “patches” at varying depths. The ground
deformation response is linear, i. e., the deformation from
multiple sources is just the sum of deformation from the
individual fault patches. Therefore, we can predict the ex-
pected ground deformation from arbitrarily complicated
fault zone geometries and slip distributions.

In an inverse problem, we consider the behavior of
a forward model or family of forward models from a num-
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Crustal Deformation During the Seismic Cycle, Interpreting
Geodetic Observations of, Figure 7
Predicted ground surface deformation for a vertical, left-lateral
strike-slip fault a, using Okada [62]. Fault slip on a shallow fault
patch (red, panel b) produces a larger amount of deformation
over a smaller area than does fault slip on a deeper region of the
fault plane c. Here, deformation of the grid indicates vertical de-
formation and color indicates the amount of northward (red) or
southward (blue) deformation. The amount of total deformation
from a complicated fault slip distribution is achieved by sum-
ming the components from all parts of the fault d

ber of possible sources that could potentially explain our
data, and we find the combination these sources that best
fits the data. In this section, the family of forward models
is represented by slip on a fault plane that has been divided
up into a number of fault patches, and the best-fit model
would be the distribution of fault slip magnitude along this
fault plane that best matches the observed ground defor-
mation.

Linear vs. Nonlinear Inverse problems can be divided
up into two major families: Linear and Nonlinear. In a lin-
ear problem, we solve for the sum of forward models that
best fits the data, without any size constraints on the in-
dividual contributions from each forward model (fault
patch). One example of a linear problem is where we find
the best-fit fault slip distribution on a fixed fault plane,
without any constraints such as requiring that the fault
slip has a positive or negative sign (i. e., right-lateral vs. left
lateral). Linear problems are essentially extensions of the
problem of fitting a line to a set of data, and are quite easy
to solve [52].

Nonlinear problems exist when the functional shape
and form of the predicted data varies with the parameter
choice. An inversion for the location of the fault plane it-
self, where quantities such as the x, y, z, location or fault
plane strike and dip are varied, is very nonlinear. The
process of solving a nonlinear problem involves finding
a model that best fits the data in some pre-defined way,
usually by finding the model that produces the lowest sum
of squared residuals with the data (least-squares fit). Non-
linear problems may have multi-dimensional misfit func-
tions with poorly defined ormultiple minima, and the only
way to find the absolute or “global” minimum is by ex-
haustively searching the parameter space.

Methods for searching the parameter space in a non-
linear problem fall into two main camps. Gradient-based
methods determine the slope and gradient of the misfit
surface (often in many dimensions) and follow it downhill
in an iterative way. These methods work well if the misfit
surface has a single, well defined minimum. If the search
begins near one of the local minima, it is possible that the
true, global minimumwill never be found. Global methods
involve variations that range from simply sampling the pa-
rameter space very densely, to iterative methods that track
many initial samples or families of samples in gradient-
based searches. One method that performs very well in
the �9-dimensional parameter space of finding the best-
fit fault plane and slip that fits data for a small earthquake
is the Neighborhood Algorithm [44,78]. In the Neighbor-
hood Algorithm (NA), the misfit values at many initial
points are used to iteratively focus in on regions of the pa-
rameter space with lower misfit values. The NA method
has the strength of being able to track and define multiple
minima instead of just choosing one. A survey of several
other nonlinear optimization methods applied to earth-
quake location problems can be found in Cervelli [6].

Smoothing The specific problem of inverting for fault
slip on a particular fault plane has an interesting twist to it
that is shared by many geophysical inverse problems. Just
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as an inversion for the best-fit line to data usually requires
at least two data points, other inversions also effectively re-
quire the existence of more data than unknown quantities.
For fault-slip problems the question does not boil down
to simple numbers of data points vs. the number of fault
patches – parts of the fault plane are better-resolved than
others, and some data points contribute more information
than is provided by their neighbors. For instance, if we had
a thousand GPS receivers within 100 feet of the fault zone,
but extended our target fault plane down to 100 km, the
GPS data would be able to tell us little about what was go-
ing on at depth, even if we only divided the fault plane up
into a few fault patches. Conversely, data points very close
together and far from the fault contribute essentially the
same information about what occurred – combining them
can help to reduce noise, but it does not help us to isolate
variations in fault slip along the fault.

Because of these inherent variations in resolution, both
in model and data, an inversion can run into problems if
we simply solve for the best-fit fault slip distribution on
a finely-divided fault plane. Since the forward models for
two fault patches at great depth are very similar on the sur-
face, the inversion cannot determine the relative strength
of fault slip that should be assigned to each. The differ-
ence between [0 1] and [-1000 1001] is very small when
you propagate it up to the surface, often smaller than the
noise in the data (or even machine precision!). Therefore,
the “best-fit” model would have unrealistically large vari-
ations that have nothing to do with what really occurred
during the earthquake (Fig. 8). This effect is often known
as “checkerboarding”.While some of the features in the in-
ferred slip distribution are related to the earthquake, much
of the complexity is due to the attempt of the inversion to
fit noise within the data.

There are several methods for dealing with this ef-
fect, all of which place some bounds on how large or spa-
tially rough the variations in fault slip can be. The sim-
plest method (although one of the hardest to optimize)
is to parametrize the fault plane in a way that the fault
patches are never so small that there are large tradeoffs in
their predicted surface deformation [70]. The extreme of
this would be to only use one fault patch. In most cases
where we have a lot of data, this solution would not fit the
data well nor tell us much about the earthquake.

Another method is to place a penalty during the least
squares inversion on fault slip solutions that are very large
(usually involving large variations) or that are spatially
rough. These “regularized” inversions result in spatially
smooth slip distributions that usually fit the data almost as
well as the rough, unregularized inversions. Regularization
always involves some choice of how much weight needs to

Crustal Deformation During the Seismic Cycle, Interpreting
Geodetic Observations of, Figure 8
Example of how noisy data can affect fault slip inversion. Top:
Deformation from a vertical strike slip fault, with added noise.
Middle: Best fit slip distribution inferred from noisy data. The
large fluctuations mostly cancel each other out at the surface,
producing (bottom) predicteddata thatmatches both the under-
lying deformation signal and the noise

be placed on the roughness penalty vs. the fit to the data,
which can be a difficult procedure. Too large of a penalty
weight and the slip distribution will be too smooth and will
not fit the data (the logical extension of this is the single
fault patch model discussed above). Too small of a weight-
ing and the slip distribution will be arbitrarily rough, with
unrealistic changes in sign throughout the fault zone.
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Crustal Deformation During the Seismic Cycle, Interpreting
Geodetic Observations of, Figure 9
Typical L-curve. Each point on the curve corresponds to a slip dis-
tribution inferred using a different value of�. In most cases, the
“penalty error” will be ameasure of model roughness

There are two main families of methods for choos-
ing the appropriate smoothing weight (apart from ran-
dom guessing, which often performs surprisingly well!).
In general, as the amount of regularization is increased,
the fault slip distribution becomes smoother and the fit
to the data worsens. Ideally, we would choose the value
where the proportion of the slip distribution that is just
fitting data noise is as small as possible, without smooth-
ing so much that we fit neither the noise nor the under-
lying signal due to the earthquake. The first method re-
quires choosing the smoothing weight from a plot of data
fit vs. model roughness, often referred to as an “L-curve”
because of the characteristic shape of such curves (Fig. 9).
The smoothing value at the corner of the “L” generally fits
the data well without being “too rough”. This type of pa-
rameter choice is slightly arbitrary and not easy to auto-
mate, but it does allow the researcher to include some in-
tuition about characteristics of the earthquake.

The other family relies on the concept that a good
choice of smoothing would be able to reproduce another,
independent set of data spanning the earthquake fairly
well. Too much smoothing and the slip model would fit
neither the original nor the additional data sets well. If the
choice of smoothing were too small, the resulting complex
slip distribution would mainly be fitting noise in the orig-
inal data set and would not, therefore, fit the independent
noise in the second data set.

Of course, we rarely have the luxury of multiple data
sets – if they do exist, we should use them for the main
inversion! Data resampling procedures, known variously
as the bootstrap, jacknife or cross-validation [10] are used
to simulate the existence of multiple, independent data
sets in cases where only one exists. Du et al. [9] com-
pared cross-validation and other techniques for choos-
ing smoothing parameters for geodetic data spanning the
1983 Borah Peak earthquake. Another powerful parameter
choice method is the Akaike Bayesian Information Crite-
rion (ABIC) that can be used to choose smoothing weights
or other inversion characteristics [1,30,97].

Noise Although finding the best-fit model to our data is
certainly important, knowing how confident we are in that
estimate is just as crucial. Studies of postseismic behav-
ior, for instance, rely on good estimates of the coseismic
slip distribution [25], and are improved further when we
know what constraints we can place on that slip distribu-
tion. A variety of techniques exist for estimating these con-
fidence limits – for linear problems, and when we know
the character of the noise (magnitude, spatial correlation),
it is quite simple to propagate data errors through to error
bounds on the inversion results [52]. However, for non-
linear problems, and for cases where we are not quite sure
how much of our signal is noise (usually the case with In-
SAR data), we need to rely on other methods for estimat-
ing the noise.

The same data resampling procedures described above
can be used to generate multiple sets of inversion results
that should reflect the noise structure of the data, even
when it is not understood ahead of time. For nonlinear
problems, such as the 3-D location of the best fit fault plane
and earthquake mechanism for a particular earthquake,
knowledge about the data noise can be used to construct
multiple synthetic data sets that can then each be inverted
using the nonlinear method of choice. Any conclusions
about the problem (i. e., error bounds on fault slip) should
be drawn from the ensemble as a whole [44].

Case Examples

Here we examine case examples for two earthquakes. In
each case, we review the data and discuss characteristics of
the inferred slip distributions.

Mw 7.6 Manyi, Tibet, Earthquake The 1997 strike-slip
earthquake that occurred Tibet produced a very long rup-
ture (170 km) with up to 7 meters of offset. It was such
a long rupture that it takes three overlapping SAR tracks
(Fig. 10) to cover its full length! Here, we show the effects
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Crustal Deformation During the Seismic Cycle, Interpreting
Geodetic Observations of, Figure 10
Three overlapping interferograms spanning the 1997 Manyi
earthquake

of variations in the spatial smoothing weights () on an
inversion of the deformation field for fault slip. Figure 11
illustrates the differences in inferred slip distributions for
various magnitudes of , resulting in a spectrum between
very smooth slip distributions that do not fit the data very
well, to impossibly rough slip distributions that only fit the
data marginally better than the “optimal” model (center
panel). Our optimalmodel predicts up to 10meters of fault
slip with most slip occurring in the upper 10 km. Here, we
chose the optimal value of  using cross-validation, but the
other methods discussed above can also be applied to this
problem.

Crustal Deformation During the Seismic Cycle, Interpreting Geodetic Observations of, Figure 11
L-curve for the Manyi EQ, showing slip distributions inferred using 3 different values of smoothing, each with the same color scale.
Small� (toppanel) produces an unrealistically rough slip distribution, whereas very large� (bottompanel) produces a smoothmodel
that doesn’t fit the data

Asymmetries in the profiles of deformation across the
fault during the Manyi earthquake have led some re-
searchers to think that the elastic behavior of the crust may
be different on one side of the fault vs. the other [67]. The
magnitude of horizontal groundmotion for a straight, ver-
tical, strike-slip fault should be symmetric across the fault,
if there are no other complications. However, variations in
fault plane dip can affect the resulting ground deformation
as much as variations in crustal properties, requiring that
such studies carefully consider the fault geometry used in
their inversions.

Mw7.1HectorMine, CA, Earthquake The 1999Hector
Mine earthquake [16,85] occurred in the Mojave Desert
of Southern California, and was widely studied due to it’s
proximity to large population centers and the San Andreas
fault, it’s very complete data coverage (GPS, InSAR, seis-
mic data), and the fact that it occurred only a few years
after another very large earthquake on a neighboring fault
(1992 Landers earthquake). The combination of the two
earthquakes within such a short time interval suggests that
series of earthquakes may occur separated by long in-
tervals of quiescence instead of events always occurring
at semi-regular time intervals of strain buildup and re-
lease [61,69].

In Fig. 12, we show a subset of the available InSAR
data spanning the Hector Mine earthquake. Both continu-
ous and campaign GPS data were also recorded on either
side of the Y-shaped rupture. In Fig. 13, we show the re-
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Crustal Deformation During the Seismic Cycle, Interpreting
Geodetic Observations of, Figure 12
Three representations of the Hector Mine EQ. a “Ascending” and
b “descending” wrapped interferograms, where the satellite is
moving in the direction indicated by the yellow arrow and view-
ing in the direction of the black arrow. Note how the same defor-
mation field looks very different depending on the viewing di-
rection. Color cycles correspond to�3 cm of deformation. c Un-
wrapped version of interferogram in b. Now the color scale cor-
responds to 3 meters and spans the entire dynamic range of the
data

sults of inverting the GPS and all the InSAR data for the
best-fit fault slip distribution, with up to 6 meters of fault
slip. Note how themaximum fault slip is not at the surface,
but peaks at a few km depth. If we plot the average slip vs.

Crustal Deformation During the Seismic Cycle, Interpreting
Geodetic Observations of, Figure 13
3D representation of inferred fault slip that occurred during the
Hector Mine earthquake

Crustal Deformation During the Seismic Cycle, Interpreting
Geodetic Observations of, Figure 14
Fault slip during the Hector Mine earthquake, averaged along
strike and plotted vs. depth. Red dashed lines indicate the ex-
pected error bounds introduced by atmospheric noise

depth (Fig. 14), the profile clearly shows how the shallow
slip deficit is robust even given the amount of noise in the
data.

Future Directions

The spatial and temporal coverage of geodetic data sets
such as InSAR andGPS is increasing to the point where we
can observe new types of fault zone behavior and solve for
characteristics on a scale and precision that could hardly
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have been imagined a few decades ago. As we increase
our ability to understand and describe the kinematics of
crustal deformation, we can begin to explore the dynamic
processes driving seismic and volcanic deformation in tec-
tonically active regions around the world. Three of the
main fields that show the most promise in the near future
are discussed below:

Transient Deformation and Slow, Silent Earthquakes

The episodic slow slip events that show up with amaz-
ing regularity (�14 months) in Cascadia ([51,54], Fig. 6),
and that are also observed in Japan [27,56,65] and Mex-
ico [45], are some of the most exciting new types of fault
zone behavior that scientists have observed in recent years.
The idea that earthquakes contained energy that was re-
leased by slower ruptures was noticed using seismic data
far earlier than it was ever observed geodetically (1960
Chilean earthquake [34]). The slow slip events are often
associated with heightened levels of spatially-correlated,
low-level seismicity, or seismic tremor [87]. Currently,
the process that allows these slow earthquakes to initiate
and propagate at the observed speeds is still unknown, al-
though they may be occurring at depths where dehydra-
tion of subducted sediments becomes important.

Apart from their intrinsic interest (since we always
seek to explain processes that we do not understand), these
slow/silent events release a not insignificant amount of the
accumulated strain across the fault boundaries. In some
ways this is a boon to people living nearby – any plate
tectonic motion that is accommodated aseismically means
that there is that much less accumulated strain that could
be released in a destructive earthquake. However, there are
indications that aseismic slip events are often closely fol-
lowed by earthquakes [42,75], indicating that the changes
in stress during the slow event can push other, nearby, re-
gions past the brink until they rupture coseismically. This,
also, can be seen in a positive light – perhaps close mon-
itoring of aseismic deformation along active plate bound-
aries can serve as an early warning system, or at least a sig-
nal to raise the forecasted earthquake hazard whenever
heightened activity is observed.

Reduction or Modeling of Atmospheric Noise

One of the largest hurdles for researchers approaching In-
SAR data is the atmospheric noise present in all interfer-
ograms. GPS data is affected by this problem as well, but
the atmospheric signal can be solved for or averaged out
due to the long observation times allowed by GPS. An area
of active research is the modeling and removing of the at-
mospheric noise signal from InSAR data, using a variety

of tools that range from other satellite-based observations
of atmospheric water vapor content to simplistic mod-
els of correlations between elevation and interferometric
phase [96].

The first-order layering of the atmosphere results in
profiles of water vapor that tend to decrease vs. elevation
in a manner that often appears essentially linear when two
SAR images are combined in an interferogram. However,
lateral variations with distance from water bodies and gra-
dients from one side of a mountain belt to the other, re-
sult in the fact that the appropriate elevation vs. signal can
vary quite a bit across a typical SAR image. For some tar-
get problems, such as the location of a small earthquake or
the fault slip distribution for an earthquake in a relatively
flat area, these elevation-dependent signals will likely affect
the inversion to only a limited extent. However, in stud-
ies where the signal of interest is correlated with elevation,
such as fold growth or subsidence caused by lake loading,
great care should be taken when removing overly simple
models of atmospheric water vapor from the data.

A more promising, albeit still problematic, approach
is the modeling of water vapor content based on obser-
vations from satellite-based platforms. Water vapor mea-
surements are made by a variety of satellites, but two in
particular have the spatial scale and temporal resolution
that make them potentially very useful in InSAR applica-
tions. The Moderate Resolution Imaging Spectroradiome-
ter (MODIS) instruments on both the Terra and Aqua
satellites acquire almost daily observations over most of
the Earth’s surface at fairly high resolution (1 km spacing).
They are not acquired at exactly the same time as the SAR
images, but they can still be used to track seasonal trends
or to seek individual features that may persist between
the SAR andMODIS image acquisition times. While these
cannot be used to quantitatively remove the atmospheric
signal, they can be very useful from a qualitative stand-
point in determining whether a particular interferometric
signal may or may not be tectonic in origin.

The Medium Resolution Imaging Spectrometer
(MERIS) is physically located on the same satellite (EN-
VISAT) that acquires much of the SAR imagery used
today. Since MERIS observations are made at essentially
the same time as the SAR imagery, they see the same at-
mosphere and can not only be used in the same qualitative
way as MODIS, but also show promise of allowing the
actual removal of atmospheric contributions to the in-
terferometric phase. Some difficulties lie in the fact that
MERIS and MODIS measurements of atmospheric water
vapor can only be made in cloud-free images, and that
“double-bounce” effects of the signal bouncing off the
base of both visible and invisible clouds can bias the ob-
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servations and introduce spurious water vapor features.
Still, these satellite-based methods show great promise.
The most robust method for reducing the contribution
from atmospheric noise to our inversions remains the use
of multiple independent data sets, whenever available.

Data Assimilation

As mentioned in Sect. “Highlights of Earthquake
Geodesy”, the vast quantity of data now available to us
can prove troublesome – if it takes hours to perform one
forward model of a possible earthquake scenario with the
available data, then the inverse problem quickly becomes
unmanageable (or at least can begin to extend past the
length of a normal graduate thesis). Parallel computing
methods and the rapid decrease in cost for computing re-
sources nowmakes the operation of large, multi-processor
machines feasible within individual research departments.
These large machines allow us to approach inverse prob-
lems with the “big hammer” of stochastic, or Monte Carlo,
methods, which rely on the use of many randomly gener-
ated simulations of a system [6]. However, the expected
continuing increase of both spatial and temporal coverage
of deformation observations requires that we need to con-
tinue developing new tools that allow us to capitalize on
data time series as well as individual snapshots of ground
deformation.

Kalman filters and related methods are one very pow-
erful tool now in widespread use, especially within the
GPS community [51,84]. The incorporation of InSAR data
into such methods is slightly more difficult, in part be-
cause of the large number of data points, but also because
of the varying character of noise between interferograms
and difficulties in dissociating the description of noise vs.
modeling of the geophysical signal of interest. Data as-
similationmethods developed in the atmospheric sciences,
which also deal with data sets of varying spatial and tem-
poral scales and resolutions, are a potentially rich source of
tools that the geodetic community can explore in the near
future.
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Glossary

Cryosphere All forms of terrestrial snow and ice.
Newtonian viscous body A body whose stress at each

point is linearly proportional to its strain rate at that
point.

Definition of the Subject

The cryosphere comprises all terrestrial forms of snow and
ice – snow cover, floating ice, glaciers, ice sheets, frozen
ground and permafrost. It is a critical element of the cli-
mate system because of its high reflectivity, its insulating
effects on the land and ocean, and its storage of water on
short and long time scales. Numerical models of compo-
nents of the cryosphere have been developed over the last
30 years or so, and some elements of these are now incor-
porated in coupled climate models and earth systemmod-
els.

Introduction

Currently there are no comprehensive models of the en-
tire cryosphere. Rather there is a wide range of models
of components of the cryosphere – snow cover, floating
ice, glaciers, ice sheets, frozen ground and permafrost –
and various components are treated with varying de-
grees of detail in coupled atmosphere-ocean-land models.
Cryospheric processes are generally parametrized in such
earth system models.

Models developed for each of the main cryospheric
components are discussed in turn.

Snow Cover

Snow cover is observed in situ at hydromeoteorlogical sta-
tions, from daily depth measurements, (monthly) snow
courses and in special automated networks such as the
western United States Snow Telemetry (SNOTEL) net-
work of snow pressure pillows. Its extent is also observed
and mapped daily (since June 1999) over the Northern
Hemisphere from operational satellites of the National
Oceanic and Atmospheric Administration (NOAA) in the
USA. Snow covers about 47 million km2 at maximum in

January and there is only a small area in South Amer-
ica in July. Hemispheric snow water equivalent estimates
are routinely made from passive microwave data (1979-
present) with a 25-km resolution (Armstrong et al. [4]).

There are numerous models of the formation and dis-
appearance of snow cover. Many have a hydrological fo-
cus aimed at estimating seasonal runoff. Some use sim-
ple temperature degree-day formulations while others in-
corporate a full energy balance calculation. Dozier and
Painter [14] examine the use of multispectral and hyper-
spectral remote sensing to estimate the snow’s spectral
albedo, along with other properties such as grain size, con-
taminants, temperature, liquid water content, and depth
or water equivalent.

The U.S. Army Cold Regions Research and Engi-
neering Laboratory Model SNTHERM (SNow THERmal
Model) is a 1-D energy balance model for snow and
soil that is forced by meteorologically determined sur-
face fluxes [41]. It simulates in-snow properties and pro-
cesses, such as heat conduction, water flow, melt, vapor
flow, compaction, grain growth, and solar absorption (see
Fig. 1). The output provides snow depth, profiles of snow
temperature, water content, density, grain size, and surface
fluxes of sensible heat and evaporation. Surface boundary
conditions require: incoming solar and longwave radia-
tion; wind speed, air temperature and humidity at some
reference height; and precipitation. The model will esti-
mate solar and longwave radiation from cloud cover, if
data on these variables are not available. Lower boundary
conditions include soil textural properties (currently clay
or sand used as defaults), wetness and temperature profile.

A comparative study of three snow models with differ-
ent complexities was carried out by Jin et al. [39] to assess
how a physically detailed snow model can improve snow
modeling within general circulation models. The three
models were (a) SNTHERM; (b) a simplified three-layer
model, Snow–Atmosphere–Soil Transfer (SAST), which
includes only the ice and liquid-water phases; and (c) the
snow submodel of the Biosphere –Atmosphere Transfer
Scheme (BATS), which calculates snowmelt from the en-
ergy budget and snow temperature by the force–restore
method. SNTHERM gave the best match to observations
with the SAST simulation being close. BATS captured the
major processes in the upper layers of a snow pack where
solar radiation is the main energy source and gave satisfac-
tory seasonal results.

CROCUS is a model of the Centre d’Etudes de la
Neige, Grenoble [10]. It is a 1-D physical model that de-
termines mass and energy balance for a snow cover and
is used for operational avalanche forecasting. The snow
cover is represented as a pile of layers parallel to the
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Cryosphere Models, Figure 1
The snowpack energy balance as characterized by SNTHERM (US Army Corps of Engineers)

ground. Energy exchanges are projected orthogonally to
the slope. The model describes the evolution of the inter-
nal state of the snow cover as a function of meteorolog-
ical conditions. The variables describing the snow cover
are temperature, density, liquid water content, and snow
type of each layer. To match the natural layers, the thick-
ness and number of layers are adjusted by the model. The
model simulates the heat conduction, melting/refreezing
of snow layers, settlement, metamorphism, and percola-
tion. It simulates dry and wet snow metamorphism with
experimental laws derived from laboratory data. Snow
grains are characterized by their size and type. This allows
an accurate albedo of the snow cover to be calculated.

Bartelt and Lehning [7] also present a 1-D physical
model of the snow pack (SNOWPACK) with equations
for heat transfer, water transport, vapor diffusion and me-
chanical deformation. New snow, snow drift and ablation
are treated. The snow layers are treated in terms of height,
density and microstructure (grain size, shale and bond-
ing). The model is used for avalanche warnings in Switzer-
land.

Interception Models

A physically-based snowfall interception model that scales
snowfall interception processes from branch to canopy is
now available [25]. It takes account of the persistent pres-
ence and subsequent unloading of intercepted snow in
cold climates. To investigate how snow is intercepted at
the forest stand scale, measurements of wind speed, air

temperature, above- and below-canopy snowfall, accumu-
lation of snow on the ground and the load of snow inter-
cepted by a suspended, weighed, full-size conifer were col-
lected from spruce and pine stands in the southern boreal
forest. Interception efficiency is found to be particularly
sensitive to snowfall amount, canopy density and time
since snowfall. Further work resulted in process-based al-
gorithms describing the accumulation, unloading and sub-
limation of intercepted snow in forest canopies (Pomeroy
et al. [70]). These algorithms are unique in that they scale
up the physics of interception and sublimation from small
scales, where they are well understood, to forest stand-
scale calculations of intercepted snow sublimation.

Blowing SnowModels

Physically-based treatments of blowing snow and wind
are used to develop a distributed model of blowing snow
transport and sublimation over complex terrain for an
Arctic tundra basin by Essery et al. [18]. A reasonable
agreement with results from snow surveys is obtained
when sublimation processes are included. Sublimation
typically removes 15–45% of the seasonal snow cover. The
model is able to reproduce the distributions of snow mass,
classified by vegetation type and landform, which can be
approximated by lognormal distributions. The representa-
tion used for the downwind development of blowing snow
with changes in wind speed and surface characteristics is
shown to have a moderating influence on snow redistribu-
tion.
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Spatial fields of snow depth have power spectra in one
and two dimensions that occur in two frequency intervals
separated by a scale break between 7 and 45m [84]. The
break in scaling is controlled by the spatial distribution
of vegetation height when wind redistribution is minimal
and by the interaction of the wind with surface concavities
and vegetation when wind redistribution is dominant.

In mountainous regions, wind plays a prominent role
in determining snow accumulation patterns and turbulent
heat exchanges, strongly affecting the timing and mag-
nitude of snowmelt runoff. Winstral and Marks [90] use
digital terrain analysis to quantify aspects of the upwind
topography related to wind shelter and exposure. They
develop a distributed time-series of snow accumulation
rates and wind speeds used to force a distributed snow
model. Terrain parameters were used to distribute rates
of snow accumulation and wind speeds at an hourly time
step for input to ISNOBAL, an energy and mass balance
snow model. ISNOBAL forced with accumulation rates
and wind fields generated from the terrain parametriza-
tions accurately models the observed snow distribution
(including the formation of drifts and scoured wind-ex-
posed ridges) and snowmelt runoff. By contrast, ISNOBAL
forced with spatially constant accumulation rates and
wind speeds taken from the sheltered meteorological site
at Reynolds Mountain in southwest Idaho, a typical snow-
monitoring site, overestimated peak snowmelt inputs and
tended to underestimate snowmelt inputs prior to the
runoff peak.

Avalanche Models

Avalanches range in size from sluffs with a volume of
< 10m3 to extreme releases of 107–108 m3; corresponding
impact pressures range from < 103–106 Pa. There are two
main types – loose snow avalanches and slab avalanches.
Commonly, they begin with the failure of snow layers with
densities less than 300 kg m�3. An avalanche path com-
prises a starting zone, the track, and a runout–deposition
zone. Loose snow avalanches are initiated when the an-
gle of repose is exceeded – about 45°. The angle increases
as temperatures rise due to increased cohesion. Slush
avalanches can occur on slopes <10°. Downslope propa-
gation continues to the kinetic angle of repose at about
17° [52,69]. Slab avalanches occur when a cohesive slab is
released over an extensive plane of weakness on slopes of
35–40°. Slab thicknesses are 0.1–4m and have a mean den-
sity of � 200 kg m�3. Bed surface temperatures are near
0°C.

The variables of interest for forecasting are velocity,
run-out distance and impact pressure. The acceleration of

an avalanche is resisted by surface friction, air drag at the
front and upper boundary, and ploughing at the advanc-
ing front and underneath surface. According to Perla [69],
maximum velocities range from 20–30m s�1 for path
lengths up to 500m and slope angles of 25–35°. The mean
run-out length on 67 Colorado avalanche paths was 380m
(Bovis andMears [9]). On occasion, the run-out may cross
a valley floor and continue up the facing slope. Impact
pressures are a maximum at 1–2m above the surface and
range in value from about 1–10 � 105 Pa (Perla [69]).

Land Surface Schemes in GCMs

Snow cover is treated in Land Surface Models (LSMs), but
snow and ice albedo parametrizations differ widely in their
complexity [5]. A Snow Model Intercomparison was con-
ducted using 24 snow cover models developed in ten dif-
ferent countries [17]. The models differ as to being multi-
layer or not, the inclusion of a soil model, variable heat
conductivity, variable snow density, and the treatment of
liquid storage. Only four of the models met all five criteria.

27 atmospheric general circulation models (GCMs)
were run under the auspices of the Atmospheric Model
Intercomparison Project (AMIP). The AMIP models re-
produce a seasonal cycle of snow extent similar to the
observed cycle. However, GCMs tend to underestimate
autumn and winter snow extent (especially over North
America) and overestimate spring snow extent (especially
over Eurasia). The majority of models displays less than
half of the observed interannual variability. No temporal
correlation is found between simulated and observed snow
extent, even when only months with extremely high or low
values are considered [20]. The second generation AMIP-
II simulations gave better results [21].

Floating Ice

Lake ice formation is dependent on the density charac-
teristics of fresh water, which reaches a maximum den-
sity at 4°C. As a water body cools in the autumn it be-
comes isothermal at 4°C. Further cooling of the surface al-
lows a less dense layer to form and eventually frazil ice or
sheet ice forms depending on the wind conditions. Snow
accumulation on lake ice depresses the ice surface below
the water level, causing the snow to become saturated and
leading to the formation of white snow-ice (in contrast
with the black lake water ice). In rivers the flow motion
leads to frazil ice, which builds up into pancakes. A 1-D
energy balance model of lake ice growth is described by
Liston and Hall [47] that treats lake-ice freeze-up, break-
up, total ice thickness and ice type (Fig. 2). The model is
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Cryosphere Models, Figure 2
The elements of a model of lake ice [47]

forced by daily atmospheric data on precipitation, wind
speed and air temperature.

Sea ice grows thermodynamically by freezing of sea
water at near –1.8°C due to the salinity, by the accumu-
lation of snow cover on its surface, and by dynamic pro-
cesses such as ridging and rafting. It decays thermodynam-
ically, by wave action and by export to areas of warmer
ocean. Ice types include new ice, young ice, first year and
multi-year ice (World Meteorological Organization [91]).
Typical first year ice thickness in the spring in the Arc-
tic is about 1.5–2m; multi year unridged ice may be 3–
4m thick. Ridging produces keels that may extend to 20–
30m depth. Ice draft (below the sea surface) is measured
by upward looking sonars that are moored or deployed on
submarines in the Arctic. Ice extent and concentration –
the fractional coverage of ice – are determined by aerial
reconnaissance, and primarily by satellite remote sensing
(optical, passivemicrowave, synthetic aperture radar, scat-
terometry and laser altimetry). Weekly or 10-day charts
of ice conditions are produced by national operational ice
services (see [94]).

Modeling sea ice in either a stand-alone model or
a GCM involves the solution of the following equa-
tions [19]:

i. for momentum, to obtain the ice velocity fields;
ii. for thermodynamic processes to obtain net ice

growth/melt; and
iii. conservation equations including deformation ands

transport of ice, plus the thermodynamic sources and
sinks.

Ice dynamics is based on five stresses: wind stress, water
stress, internal ice stress, Coriolis force, and the stress from

the tilt of the sea surface. The Coriolis force and the tilt
term are an order of magnitude less than the other three
terms. The air and water stresses assume a constant turn-
ing angle of 25° in the Arctic and –25° in the Antarc-
tic [28]. Internal ice stress is highly variable depending
on ice conditions. It can be negligible when the ice cover
is not compact and there are “free-drift” conditions, but
it can be the largest force when there is thick, compact
ice cover. The force due to ice resistance to deformation
involves the relationship between stress and strain rate,
which is termed the rheology (Flato [19]). Early work as-
sumed that stress is linearly dependent on strain rate as
in a linear viscous fluid [12]. Pritchard et al. [71] used an
elastic-plastic rheology where the stress is linearly depen-
dent on strain up to a yield strength where failure occurs.
Hibler [27] developed a viscous-plastic model with an el-
liptical yield curve; the pre-yield stress states are linearly
related to the strain rate. Advances by Hunke and Dukow-
icz [35] address the response of the ice on the timescales
associated with wind forcing through an elastic viscous-
plastic (EVP) rheology. The model was modified so that
it reduces to the viscous–plastic model at these timescales,
whereas at shorter timescales the adjustment process takes
place by a mathematically efficient elastic wave mecha-
nism. Recently, Lagrangian [33,45] sea ice models using
a granular rheology have been developed (Tremblay and
Mysak [83]; Overland et al. [65]). They have advantages
in that they model individual sea ice “floes”, but are also
computationally intensive and are still in their infancy.

Ice dynamics have been extensively treated by Hi-
bler [27]. He couples the dynamics to the ice thick-
ness characteristics by allowing the ice interaction to be-
come stronger as the ice becomes thicker and/or con-
tains a lower area percentage of thin ice. The dynamics
in turn causes high/low oceanic heat losses in regions of
ice divergence/convergence. The ice is considered to in-
teract in a plastic manner with the plastic strength de-
pending on the ice thickness and concentration. These
in turn evolve according to continuity equations that in-
clude changes in ice mass and percent of open water due
to advection, ice deformation and thermodynamic effects.
Anisotropic dynamic behavior of sea ice has also been in-
vestigated [13,30], though such approaches are computa-
tionally intensive and currently are not commonly used
in models. The standard model treats sea ice as a visco–
plastic material that flows plastically under typical stress
conditions but behaves as a linear viscous fluid where
strain rates are small and the ice becomes nearly rigid.
The standard viscous–plastic model has poor dynamic re-
sponse to forcing on a daily timescale. Models do not
generally account for high-frequency (sub-daily) inertial
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and tidal effects on dynamics, though research has shown
that such effects can be important in the evolution of the
ice cover [26,43]. The thermodynamics and dynamics are
coupled through the ice thickness distribution. Essentially,
deformation leads to pressure ridging and the formation
of open water areas while thermodynamic processes act
to ablate ridges and remove open water by ice forma-
tion in winter and create thinner ice/open water in sum-
mer. Thus, deformation acts to spread out the thickness
distribution by promoting thick and thin ice categories
while thermodynamic processes work towards a central ice
thickness value [28].

Sea ice models typically feature processes of ice ther-
modynamics and dynamics although the earliest studies
essentially used only thermodynamic ice growth and de-
cay. The steady state Stefan relationship is written after Hi-
bler and Flato [29]:

�IL
dH
dt
�

ki
H
(Tm � TB) ;

where L = latent heat of fusion, Tm = melting point of
the ice, TB = upper boundary temperature of the ice, H
= ice thickness, ki = ice conductivity and �I = ice den-
sity. Ice growth/melt at the underside is a result of the dif-
ference between the upward ocean heat flux and the heat
conducted away from the ocean/ice interface into the ice.
The first 1-D model of sea ice thermodynamics was de-
veloped by Maykut and Untersteiner (1971) [51]. A fuller
treatment was made by Parkinson and Washington [66].
The model had four layers – ice, snow, ocean, and atmo-
sphere – and 200 km horizontal resolution.

The incorporation of detailed thermodynamic pro-
cesses includes the presence of snow on the sea ice, leads
and polynyas, melt ponds, the effect of internal brine-
pocket melting on surface ablation, the storage of sensible
and latent heat inside the snow-ice system, and the trans-
formation of snow into slush ice when the snow-ice inter-
face sinks below the waterline due to the weight of snow.
Models with enthalpy conservation improve the thermo-
dynamic component of sea ice models [8]. These are start-
ing to be included in larger-scale climate models.

An intermediate one-dimensional thermodynamic sea
ice model developed by Ebert and Curry [15] includes
leads and a surface albedo parametrization that interacts
strongly with the state of the surface, and explicitly in-
cludes meltwater ponds (see Fig. 3). Four important posi-
tive feedback loops were identified: (1) the surface albedo
feedback, (2) the conduction feedback, (3) the lead-so-
lar flux feedback, and (4) the lead fraction feedback. The
destabilizing effects of these positive feedbacks were mit-
igated by two strong negative feedbacks: (1) the outgo-

ing longwave flux feedback, and (2) the turbulent flux
feedback. A review of thermodynamic models is given by
Steele and Flato [80].

Conservation equations are needed for ice area (con-
centration) and ice volume (thickness).

@h/@t D �r�(uh)C Sh
@A/@t D �r�(uA)C SA ;

where u is the ice velocity vector and Sh and SA are source
terms for mean ice thickness and concentration, respec-
tively. The second equation must also have the constraint
that the area A � 1. The ice strength is parametrized only
in terms of ice thickness h and A [27].

An atmospheric GCM was coupled to a global 1-de-
gree, 20-level ocean GCM with dynamic and thermody-
namic sea ice byWashington andMeehl [86] and run with
increasing atmospheric CO2. The Coupled Model Inter-
comparison Project (CMIP) allows a comparison of pre-
dicted Arctic sea ice [53]. Of the 12models, only seven in-
clude sea ice motion and only four of these have a prog-
nostic solution to the momentum equation. Apart from
errors and approximations in the sea ice representation,
the models also suffer from errors in the atmospheric and
oceanic forcing fields. While the northern hemisphere ice
extent in winter is well simulated overall, the ice thick-
ness does not capture the proper spatial distribution with
thicker ice toward North America and Greenland and
thinner ice in the Eurasian basin. The simulations for the
southern hemisphere show a wider range of extents and
thickness. Flato [19] examines the sea ice extent simulated
by two GCMs for AD 1900–2100 with the ‘business as
usual’ scenario of greenhouse gases and aerosol concen-
trations. Both show a progressive decrease in ice in both
hemispheres although the two models differ significantly
in the initial southern hemisphere ice extent.

Martin and Gerdes [50] make a comparison of sea
ice drift results from different Arctic Ocean Model In-
tercomparison Project (AOMIP) sea ice-ocean coupled
models and observations for 1979–2001. The models are
capable of reproducing realistic drift pattern variabil-
ity. However, one class of models has a realistic mode
at drift speeds around 3 cm s�1 and a short tail toward
higher speeds. Another class shows unrealistically a more
even frequency distribution with large probability of drift
speeds of 10 to 20 cm s�1. Reasons for these differences lie
in discrepancies of wind stress forcing as well as sea ice
model characteristics and sea ice-ocean coupling. Hunke
and Holland [36] underscore the sensitivity of Arctic sea
ice and ocean to small changes in forcing parameters.
A comparison of three sets of forcing data, all variants of
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Cryosphere Models, Figure 3
The configuration of a one-dimensional thermodynamic model of sea ice awinter; b summer [15]
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National Centers for Environmental Prediction (NCEP)
forcing, give significant differences in ice thickness and
ocean circulation using a global, coupled, sea ice-ocean
model.

A study of GCMs used for the IPCC Fourth Assess-
ment Report shows that while they produce reasonably
similar ice extents in the Arctic, their equilibrium ice
thickness values have a wide range due to differences in
downwelling infrared radiation [16]. Holland et al. [32]
found that in some scenarios of future CO2 concentrations
the sea ice cover can respond non-linearly with large de-
creases in extent within only 5–10 years, indicating that the
current fitted to observations linear trendsmay not hold in
the future. Stroeve et al. [81] showed that the IPPC models
substantially underestimate the observed decline in Arctic
sea ice extent compared to observations over the past 50
years. Hence their application in future scenarios is ques-
tionable.

Johnson et al. [40] examine the simulated sea ice con-
centration from nine ice-ocean numerical models in the
AOMIP. The models have similar characteristics in winter
(100% cover is produced), and most models reproduce an
observedminimum in sea ice concentration for September
1990.

An assessment of coupled climate models with re-
spect to the development of Arctic sea ice thickness dur-
ing the 20th century is examined by Gerdes and Koe-
berle [22]. Model behavior is compared with results from
an ocean–sea ice model using the AOMIP atmospheric
forcing for the period 1948–2000. The hindcast exhibits
virtually no trend in Arctic ice volume over its integra-
tion period 1948–2000. Most of the coupled climate mod-
els show a negative trend over the 20th century that accel-
erates towards the end of that century.

Glaciers

Glaciers are built up from snow that persists over many
years. Initial densification leads to firn (densities of 400–
830 kg m�3) and at some depth, where the air passages be-
tween grains are sealed off (�15–70 m according to wet-
ness), to glacier ice with a density of 830–917 kg m�3 [67].
The glacier has upper accumulation and lower ablation
areas, that are annually varying, and the ice slowly flows
downhill towards the glacier terminus. Some glaciers oc-
casionally display surges when the ice advances rapidly for
a year or two and then stabilizes or retreats.

Glacier models consider either the mass balance and
the rate of change of total mass, or the glacier dynamics
and interactions between the ice and the bed. The flow ve-
locity is modeled along the centerline of the glacier.

Glacier flow is determined from a relation between
the shear strain rate ("xy) and shear stress (�xy) known as
Glen’s flow law [23]:

�

("x y )
D A� nx y ;

where n � 3. A depends on ice temperature, impurities
and crystal orientation.

Recommended values of A decrease from 6:8 � 1015

s�1 kPa�3 at 0°C to 3:6 � 10�18 at –50°C (see Ta-
ble 5.2 in [67]). Stress causes ice to deform by exten-
sion/compression, and shear leading to rotation.

Ice flows only by internal deformation when the bed is
frozen, but where temperate conditions exist at the base,
sliding becomes important. The sliding law relates basal
velocity, shear stress, water pressure and the glacier bed
characteristics. Weertman’s [88] theory of sliding involved
regelation and plastic deformation. Regelation operates
over small bumps in the bed (<1m dimension). All the ice
is at pressuremelting point. There is excess pressure on the
upstream side of the bump so that the ice there is colder
than on the downstream side. This causes heat to flow to-
wards the upstream side through the bump and surround-
ing ice. The heat transferred melts ice on the upstream side
and melt water flows around the bump, refreezing on the
downstream side because it is colder than the ice there.
Ice also deforms plastically. Near a bump, the longitudinal
stress in the ice and, therefore, the strain are above average.
The greater the distance over which the stress is enhanced,
the greater is the ice velocity. This mechanism works best
over larger bumps. Both processes are equally effective at
the “controlling obstacle” size, about 1–10 cm.

Paterson [67] shows that the sliding velocity:

u D constant (�0:5/R)4 ;

where R = roughness and � = basal shear stress.
Water from surface ablation penetrates to the glacier

bed and has been shown to lift the ice by as much as 40
cm on the Unteraargletscher, Switzerland (Iken et al. [38]).
During rapid uplift events the glacier velocity increased 3–
6 times. When the water pressure at the bed exceeds a cer-
tain value (the separation pressure) that depends on the
bed roughness, cavities form in the lee of bumps. When
the water pressure exceeds a second critical value, sliding
becomes unstable.

A numerical ice flow model has recently been used
to study the advance of tidewater glaciers into a deep
fiord [56]. The results suggest that irrespective of the calv-
ing criterion and the accumulation rate in the catchment,
the glacier cannot advance into deep water (>300m) un-
less sedimentation at the glacier front is included.
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Using a first-order theory of glacier dynamics, Oer-
lemans [61] related changes in glacier length to changes
in air temperature. He constructed a temperature history
for different parts of the world from 169 records of glacier
length. The reconstructed warming in the first half of the
20th century is 0.5°C. The warming signals from glaciers
at low and high elevations appear to be very similar.

Ice Sheets

There are currently two major ice sheets in Greenland and
Antarctica, but during the Last Glacial Maximum about
20,000 years ago there were massive ice sheets over north-
ern North America and Fennoscandia. The Antarctic ice
sheet covers 12.4million km2 and reaches thicknesses in
excess of 4500m; it represents a sea level equivalent of
64.3m. The Greenland ice sheet has an area of 1.8 mil-
lion km2 and a maximum thickness of 3200m; it has a sea
level equivalent of 7.5m. Both ice sheets have a parabolic
profile and gentle slopes (1–2°) away from the margins.
Greenland has a suite of snow facies; from the interior out-
ward these are: the dry-snow zone, percolation zone, wet-
snow zone, superimposed ice zone, and the ablation area.
The equilibrium line is between the ablation area and the
higher zones. At its base, Greenland is close to sea level ex-
cept for fringing coastal mountains, through which the ice
reaches the sea in some 20major outlet glaciers. Antarctica
is mostly dry snow and is little affected bymelting except at
the margins and in the Antarctic Peninsula. In the Antarc-
tic there are major ice shelves (e. g. the Ross Ice Shelf and
the Filchner–Ronne Ice Shelf) that buttress large sections
of the ice sheet (see Fig. 4) and extend around 44% of the
coastline of the continent.

Cryosphere Models, Figure 4
Schematic of an ice sheet and shelf showing the processes at work (after Wikipedia)

The major problems in ice sheet dynamics, following
Paterson (see p. 238 in [66]), are (i) to calculate the dis-
tribution of ice thickness and velocity that will maintain
a steady state, given the accumulation and ablation rates
and surface temperature. The flow parameters, ice thick-
ness at the ice divide, and geothermal heat flux must be
specified. Flow lines, the time that ice takes to travel along
them, and the age of the ice at different depths, can be
calculated from the velocity distribution. (ii) to determine
how the system will react to changes in accumulation, ab-
lation or surface temperature.

The earliest ice sheet models assumed that ice de-
formed as a Newtonian viscous body. Orowan [64] and
Nye [59] assumed that ice behaved as a perfectly plastic
material, but Glen [23] established the relationship be-
tween strain rate and stress in ice as non-linear (see above).

The surface profile of an ice sheet on a horizontal bed
of half width L, thickness h and thickness at the centre H
is:

h2 D
2�0
�g

(L � x) ;

where � = density, g = acceleration due to gravity, �0 =
the basal shear stress (�0–100 kPa), and (L � x) is the dis-
tance from the edge measured along a flow line. The equa-
tion describes a parabola. The ice thickness at the centre is
H D (2�0L/�g)0:5.

The mass balance (B) can be expressed in a mass con-
servation equation as:

B D
@q
@x

: C
@h
@t
;
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where h = ice thickness, t = time, and the flux q = h u,
where u is the velocity averaged over the ice thickness (see
p. 246 in Paterson [67]).

If the flow term @q/@x is small, then the surface
elevation will vary in response to the local accumula-
tion/ablation, which will determine the profile. ‘Balance
velocities’ are steady state velocities that are calculated
from accumulation rate and ice thickness. Paterson [67]
shows that for a 1000 km radius circular ice sheet, of per-
fectly plastic ice with a yield stress of 199 kPa, an accu-
mulation rate of 150mm of ice/year, and ablation by ice-
berg calving at the margin, the ice in the centre would be
4700m thick. Balance velocities would increase from 1,5m
a�1 at 100 km from the centre to 45m a�1 at 900 km and
the travel time for ice to move from the center to the edge
would be 150,000 years.

In Greenland and Antarctica much of the ice trans-
port is accomplished by fast flowing ice streams – regions
where the ice flow is much faster than on either side. Most
occupy deep channels with beds below sea level and termi-
nate either as a floating glacier tongue (an outlet glacier) or
become part of an ice shelf. Morgan et al. [54] indicate that
while ice streams and outlet glaciers account for only 13%
of the coastline of Antarctica, they drain about 90% of the
accumulation of the interior.

A hierarchy of land ice models is presented by van der
Veen and Payne [85]. The simple lamellar flow model, in-
volves a balance between driving stress and basal drag. The
surface and bed topography must be nearly level for lamel-
lar flow, which is a good approximation to conditions in
the interior of an ice sheet. In cases where an ice stream
is bounded by a rock wall or stagnant ice on one or both
sides, lateral drag needs to be incorporated. The propor-
tion of driving stress that is supported by drag at the bed is
termed the shape factor [60]; it is less than one for narrow
ice streams. An important issue in Antarctica is the inter-
action between the ice sheet and ice shelves. The peripheral
ice shelves are thought to exert a back stress that stabilizes
the inland ice sheet where it is grounded below sea level, as
in most ofWest Antarctica [82].Where the bedrock slopes
down towards the ice sheet interior, the grounding line is
unstable; If the grounding line initially retreats, the ice at
the grounding line becomes thicker due to the bedrock
slope, and the creep thinning (thinning associated with
along-flow gradients in the ice velocity) increases caus-
ing the grounding line to retreat further – a positive feed-
back. The dynamics of ice sheet grounding lines is exam-
ined by Schoof [76]. A boundary layer theory for ice flux
through the transition zone shows that the flux increases
sharply with ice thickness at the grounding line. He finds
that marine ice sheets have well-defimed, discrete equilib-

rium profiles, and steady grounding lines cannot be stable
on reverse bed slopes. Also, marine ice sheets with over-
deepened beds may undergo hysteresis with variations in
sea level, accumulation rate, bed slipperiness and ice vis-
cosity.

Two general types of an ice sheet model have been de-
veloped. One is prognostic, based on the original work
by Budd et al. [11]; the other category is diagnostic, ad-
dressing specific aspects of ice sheet processes. Prognos-
tic models involve four sets of equations (van der Veen
and Payne [85]). These are: (i) diagnostic equations for
the horizontal velocity components as functions of local
ice geometry and ice rheology (Glen’s law); (ii) prognos-
tic equations for the evolution of internal ice temperature,
given appropriate boundary conditions at the upper and
lower ice surfaces; (iii) a diagnostic equation for ice ver-
tical velocity via the divergence of the horizontal veloc-
ity; and (iv) a prognostic equation for ice thickness based
on the snow accumulation, snow/ice melt and the diver-
gence/convergence of horizontal ice flow. The effects of
bedrock depression under the changing weight of the ice
load must also be taken into account. Such models have
been used to reconstruct ice sheet history over glacial cy-
cles, as well as to assess the responses to future climate
change.

Diagnostic models do not address time evolution of
the ice sheet and treat the internal stress regime in much
greater detail, particularly the contributions of longitudi-
nal and lateral stresses. Recently, models have been devel-
oped that do not assume negligible vertical shear. Huy-
brechts and de Wolde [38] have combined prognostic
model elements with a detailed diagnostic model to study
the multi-century behaviour of the Antarctic and Green-
land ice sheets. A fully dynamic 3-D thermo-mechanical
ice sheet model was coupled to a two-dimensional climate
model.

Amodel validation exercise was undertaken by the Eu-
ropean Ice Sheet Modeling Initiative (EISMINT). Payne et
al. [68] examined the effects of thermo-mechanical cou-
pling while MacAyeal et al. [49] test ice shelf models for
the Ross Ice Shelf. Overall, the models agreed in the main
features that were simulated.

Frozen Ground and Permafrost

The surface layers of soil and rock may be seasonally
or perennially frozen. Perennially frozen ground or per-
mafrost is frozen for at least two successive summers. The
ground need not contain ice but may be rock below 0°C.
Ground ice may be segregated, in veins, or massive in oc-
currence. The spatial extent of permafrost ranges from
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Cryosphere Models, Figure 5
The flowchart of amodel processing the effects of snow cover on frozen soil, used to study the timing, duration, number of days, and
areal extent of near-surface soil freeze/thaw status [92]

continuous (>90% of the surface is underlain), to discon-
tinuous (50–90% of the surface), sporadic (10–50%) and
isolated (<10%). Continuous permafrost is associated with
mean annual temperatures below about –7°C. Its thick-
ness ranges from a few meters up to 1500m in Yakutia.
Subsea permafrost also occurs offshore in the Eurasian
shelf seas and in the Beaufort Sea; it is a relic of previ-
ous glacial intervals when the sea bed was exposed by sea
level lowering of up to 135m under low temperature con-
ditions.

Ground temperatures are largely determined by heat
conduction, although in areas of seasonal freezing and
discontinuous permafrost localized circulation of ground-
water may need to be considered. The thermal proper-
ties of the ground vary with the mineral composition,
organic content, moisture content (as vapor, water and
ice), and temperature, as well as the overlying vegetation
and snow cover. A frozen soil algorithm has been devel-
oped [92] to detect the near-surface soil freeze/thaw cy-
cle over snow-free and snow-covered land in the United
States (see Fig. 5).

The conductive heat transfer is given [89] as:

G D �K(dT/dz)

where K = the thermal conductivity (W m�1 K�1).

For steady state conditions, the temperature at depth
Tz is written:

Tz D Ts C (G/K)z

where Ts = surface temperature.
The heat conduction equation is:

@T/@t D �@2T/@z2

where � = thermal diffusivity (m2 s�1), the coefficient of
heat diffusion. To simulate soil freezing and thawing pro-
cesses, soil water phase change has to be considered (for
details, see Lunardini [48]).

Permafrost models can be broadly classified as either
equilibrium or process-based transient models according
to their underlying methodology. Equilibrium models are
based on empirical and semi-empirical relationships be-
tween permafrost occurrence and topoclimatic factors (al-
titude, slope, aspect) and mean air temperature, freezing
and thawing indices, and snow cover. They are often used
to predict the lateral “boundaries” of permafrost distribu-
tion, or to estimate “average” geocryological parameters.
thawing indices, snow cover and solar radiation, for ex-
ample [77]. A ‘frost index’ model was developed by Nel-
son and Outcalt [55] for the Arctic and has been applied to
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mountain areas [31]. A wide spectrum of explicit equilib-
rium permafrost models is available to estimate the thick-
ness of the active layer. The simplest approaches are based
on several variations of the analytical Stefan solution to
the heat conduction problem with phase change. These
methods have been used to estimate regional-scale active
layer thickness [56,79]. Kudryavtsev et al. [42] developed
amore comprehensive equilibrium permafrost modelwith
analytical solutions that has been adapted and used with
Geographical Information System (GIS) technology to es-
timate active layer thickness at regional [74,78] and cir-
cum-arctic [2] scales. The advantages of equilibriummod-
els are their relative simplicity and low data requirements.
The major drawback of such models is their inability to
resolve seasonal and inter-annual variability [77], which is
frequently required for ecological and hydrological studies
in the Arctic. These limitations have led to recent spatial
adaptations of process-based transient numerical mod-
els.

Process-oriented transient models detail one-dimen-
sional heat transfer in soils with phase change driven
by either surface temperature [24] or the energy bal-
ance components [46]. They account for the major phys-
ical processes governing development of the ground ther-
mal regime, simulate soil freezing/thawing processes, and
provide insight into the response of soil thermal regime
to changes in environmental conditions. These mod-
els can provide good results for simulating active layer
thickness and permafrost temperatures when driven with
known boundary conditions and forcing parameters mea-
sured at site-specific locations [73,93]. Recently, such
one-dimensional heat transfer models with phase change
have been used to simulate regional-scale soil thermal
regime [62,63]. However, their adaptation from point-spe-
cific to regional-scale is not a straightforward process. It
requires simplification, careful selection of climate forcing
data, and treatment of surface and subsurface parameters
with largely unknown distributions over the modeled do-
main.

Most GCMs do not treat permafrost dynamics. How-
ever, Nikolsky et al. [58] show that in the Community
Land Model (CLM3) GCM improvements can be made
to the representation of permafrost dynamics and their
climate feedbacks. They do this by increasing the total
soil depth by adding new layers, incorporating a surface
organic soil layer, and modifying the model’s numerical
scheme to include unfrozen water dynamics and more re-
alistic treatment of the model phase changes between ice
and water.

The Community Climate System Model (CCSM) has
a 5-layer snow model over a 10 layer 3.4m deep soil

model that treats thermal and hydrologic frozen soil pro-
cesses. A projection made for the 21st century shows se-
vere degradation of the permafrost in the Northern Hemi-
sphere.

Some models address only the active layer that is the
top layer of soil that thaws during the summer and freezes
again during the autumn. The thaw depth can be analyzed
by the Stefan solution for heat transfer in a medium with
phase change (Anisimov et al. [3]):

z D [(2ntT)/(�wL)]0:5

where z = active layer thickness (m), n = the ra-
tio of seasonal ground surface and air temperature de-
gree-day sums,  = thermal conductivity of thawed soil
(Wm�1 K�1), t = warm season duration > 0°C (s), T =
mean warm season temperature (°C), � = soil density (kg
m�3),w = relative water content (decimal proportion) and
L = latent heat of fusion (J kg�1).

A dynamic 3-D terrain model is currently being devel-
oped and tested in Svalbard (Humlum [34]). The model
takes topographic data, terrain surface characteristics (ge-
omorphology and vegetation) and meteorological vari-
ables (air temperature, wind speed and direction, and
cloud cover) as input and provides output on phenomena
such as terrain surface net radiation balance, snow cover
thickness and duration, glacier mass, active layer thick-
ness, stable permafrost thickness and the amount of sum-
mer melt water discharge.

A stochastic model was developed by Anisimov et
al. [3] and used to calculate the probability density func-
tion of active-layer thickness (ALT). Equations for the
mean, variance, and higher moments of ALT were de-
rived by applying stochastic averaging to a semi-empirical
model of seasonal thawing. The stochastic model was ap-
plied in a case study in the Kuparuk River basin, north-
central Alaska.

Shiklomanov et al. [77] compare three models of ac-
tive layer thickness (ALT) for northern Alaska. One model
(NSIDC) is very accurate in the topographically homo-
geneous Coastal Plain but overestimates (ALT) in the
Brooks Range Foothills. The UAF-GIPL 2.0model repro-
duced site-specific active layer values well but overesti-
mated ALT on the Coastal Plain. Large differences in ALT
fields mainly result from differences in model approaches
for characterizing largely unknown spatial distribution of
surface (vegetation, snow) and subsurface (soil properties
and moisture) conditions.

Data set limitations are a major problem (Anisimov
et al. [3]). A permafrost model, forced with available cli-
mate data sets, was used to calculate the large-scale char-
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acteristics of permafrost in northern Eurasia. Zonal-mean
air and ground temperatures, depth of seasonal thawing,
and area occupied by near-surface permafrost in Eurasia
north of 45° N were analyzed. The 0.5–1.0 °C difference in
zonal-mean air temperature between the data sets trans-
lates into a 10–20% uncertainty in estimates of near-sur-
face permafrost area, which is comparable to the extent of
changes projected for the following several decades.

GCMs have been used to simulate changes in per-
mafrost conditions with global warming. Anisimov and
Nelson [1] were the first to study this. Most recently, Saito
et al. [74] use a coupled global climate model at high
horizontal resolution (0.5° land mesh) with a five-layer,
4.0 m deep soil to evaluate changes in the distribution
of frozen ground and subsurface hydrothermal regimes
under global warming. Two types of frozen ground were
classified according to monthly soil temperatures: “per-
mafrost” for regions with a maximum active layer thick-
ness less than 4m and “seasonally frozen ground.” Ap-
proximately 60% of present-day permafrost would de-
grade into seasonally frozen ground by 2100 in the circum-
Arctic basins.

Future Directions

In the next 5–10 years we can expect to see more com-
prehensive treatment of cryospheric processes in climate
models. Already, steps are being taken to incorporate ice
sheet processes and to enhance the treatment of frozen
ground and permafrost. Increased model resolution will
place new demands for cryospheric data sets for bound-
ary conditions and as validation data. Mountain glaciers,
as well as lake ice, will need to be incorporated especially
in regional climate models.
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Glossary

WT1D The one-dimensional Wavelet Transform as de-
fined in [53]. See also�Numerical IssuesWhenUsing
Wavelets.

WT2D The two-dimensional Wavelet Transform.
Discrete ridgelet trasnform (DRT) The discrete imple-

mentation of the continuous Ridgelet transform.
Fast slant stack (FSS) An algebraically exact Radon

transform of data on a Cartesian grid.
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First generation discrete curvelet transform (DCTG1)
The discrete curvelet transform constructed based on
the discrete ridgelet transform.

Second generationdiscrete curvelet transformx
(DCTG2) The discrete curvelet transform constructed

based on appropriate bandpass filtering in the Fourier
domain.

Anisotropic elements By anistropic, we mean basis ele-
ments with elongated effective support; i. e. length >
width.

Parabolic scaling law Abasis element obeys the parabolic
scaling law if its effective support is such that width �
length2.

Definition of the Subject

Despite the fact that wavelets have had a wide impact in
image processing, they fail to efficiently represent objects
with highly anisotropic elements such as lines or curvilin-
ear structures (e. g. edges). The reason is that wavelets are
non-geometrical and do not exploit the regularity of the
edge curve.

The Ridgelet and the Curvelet [16,17] transforms were
developed as an answer to the weakness of the separable
wavelet transform in sparsely representing what appears
to be simple building atoms in an image, that is lines,
curves and edges. Curvelets and ridgelets take the form
of basis elements which exhibit high directional sensitiv-
ity and are highly anisotropic [9,18,32,68]. These very re-
cent geometric image representations are built upon ideas
of multiscale analysis and geometry. They have had an
important success in a wide range of image processing
applications including denoising [42,64,68], deconvolu-
tion [38,74], contrast enhancement [73], texture analy-
sis [2], detection [44], watermarking [78], component sep-
aration [70,71], inpainting [37,39] or blind source sepa-
ration [6,7]. Curvelets have also proven useful in diverse
fields beyond the traditional image processing applica-
tion. Let’s cite for example seismic imaging [34,42,43], as-
tronomical imaging [48,66,69], scientific computing and
analysis of partial differential equations [13,14]. Another
reason for the success of ridgelets and curvelets is the avail-
ability of fast transform algorithms which are available in
non-commercial software packages following the philoso-
phy of reproducible research, see [4,75].

Introduction

Sparse Geometrical Image Representation

Multiscale methods have become very popular, espe-
cially with the development of the wavelets in the last

decade. Background texts on the wavelet transform in-
clude [23,53,72]. An overview of implementation and
practical issues of the wavelet transform can also be found
in� Numerical Issues When Using Wavelets.

Despite the success of the classical wavelet view-
point, it was argued that the traditional wavelets present
some strong limitations that question their effectiveness in
higher-dimension than 1 [16,17]. Wavelets rely on a dic-
tionary of roughly isotropic elements occurring at all scales
and locations, do not describe well highly anisotropic el-
ements, and contain only a fixed number of directional
elements, independent of scale. Following this reason-
ing, new constructions have been proposed such as the
ridgelets [9,16] and the curvelets [17,18,32,68]. Ridgelets
and curvelets are special members of the family of multi-
scale orientation-selective transforms, which has recently
led to a flurry of research activity in the field of compu-
tational and applied harmonic analysis. Many other con-
structions belonging to this family have been investigated
in the literature, and go by the name contourlets [27],
directionlets [76], bandlets [49,62], grouplets [54], shear-
lets [47], dual-tree wavelets and wavelet packets [40,46],
etc.

Throughout this paper, the term ‘sparsity’ is used and
intended in a weak sense. We are aware that practical im-
ages and signals may not be supported in a transform do-
main on a set of relatively small size (sparse set). Instead,
they may only be compressible (nearly sparse) in some
transform domain. Hence, with a slight abuse of terminol-
ogy, we will say that a representation is sparse for an image
within a certain class, if it provides a compact description
of such an image.

Notations

We work throughout in two dimensions with spatial vari-
able x 2 R2 and � a continuous frequency-domain vari-
able. Parentheses (:; :) are used for continuous-domain
function evaluations, and brackets [:; :] for discrete-
domain array indices. The hat ˆnotation will be used for
the Fourier transform.

Ridgelets

The Continuous Ridgelet Transform

The two-dimensional continuous ridgelet transform inR2

can be defined as follows [10]. We pick a smooth univari-
ate function  : R! R with sufficient decay and satisfy-
ing the admissibility condition

Z
j ̂(�)j2/j�j2 d� <1 ; (1)
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Curvelets and Ridgelets, Figure 1
Few Ridgelets examples – The second to fourth graphs are obtained after simple geometric manipulations of the first ridgelet,
namely rotation, rescaling, and shifting

which holds if, say,  has a vanishing mean
R
 (t)dt D 0.

We will suppose a special normalization about  so thatR1
0 j ̂(�)j

2��2d� D 1.
For each scale a > 0, each position b 2 R and each

orientation � 2 [0; 2�), we define the bivariate ridgelet
 a;b;� : R2 ! R by

 a;b;�(x) D a;b;�(x1; x2)

D a�1/2 �  ((x1 cos � C x2 sin � � b)/a) ;
(2)

A ridgelet is constant along lines x1 cos � C x2 sin � D
const. Transverse to these ridges it is a wavelet. Figure 1
depicts few examples of ridgelets. The second to fourth
panels are obtained after simple geometric manipulations
of the ridgelet (left panel), namely rotation, rescaling, and
shifting.

Given an integrable bivariate function f (x), we define
its ridgelet coefficients by

R f (a; b; �) :D
˝
f ;  a;b;�

˛
D

Z

R2
f (x) a;b;� (x)dx :

We have the exact reconstruction formula

f (x) D
Z 2	

0

Z 1

�1

Z 1

0
R f (a; b; �) a;b;� (x)

da
a3

db
d�
4�
(3)

valid almost everywhere for functions which are both in-
tegrable and square integrable. This formula is stable and
one can prove a Parseval relation [16].

Ridgelet analysis may be constructed as wavelet analy-
sis in the Radon domain. The rationale behind this is that
the Radon transform translates singularities along lines
into point singularities, for which the wavelet transform
is known to provide a sparse representation. Recall that
the Radon transform of an object f is the collection of line

integrals indexed by (�; t) 2 [0; 2�) �R given by

R f (�; t)D
Z

R2
f (x1; x2)ı(x1 cos �Cx2 sin �� t) dx1dx2 ;

(4)

where ı is the Dirac distribution. Then the ridgelet
transform is precisely the application of a 1-dimensional
wavelet transform to the slices of the Radon transform
where the angular variable � is constant and t is vary-
ing. Thus, the basic strategy for calculating the continuous
ridgelet transform is first to compute the Radon transform
R f (t; �) and second, to apply a one-dimensional wavelet
transform to the slices R f (�; �). Several digital ridgelet
transforms (DRTs) have been proposed, and we will de-
scribe three of them in this section, based on different im-
plementations of the Radon transform.

The RectoPolar Ridgelet Transform A fast implemen-
tation of the Radon transform can be proposed in the
Fourier domain, based on the projection-slice-theorem.
First the 2D-FFT of the given image is computed. Then
the resulting function in the frequency domain is to be
used to evaluate the frequency values in a polar grid of rays
passing through the origin and spread uniformly in angle.
This conversion from Cartesian to Polar grid could be ob-
tained by interpolation, and this process is well known by
the name gridding in tomography. Given the polar grid
samples, the number of rays corresponds to the number of
projections, and the number of samples on each ray cor-
responds to the number of shifts per such angle. Applying
one dimensional inverse Fourier transform for each ray,
the Radon projections are obtained.

The above described process is known to be inaccu-
rate due to the sensitivity to the interpolation involved.
This implies that for a better accuracy, the first 2D-FFT
employed should be done with high-redundancy.
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Curvelets and Ridgelets, Figure 2
Illustration of the pseudo-polar grid in the frequency domain for
an n by n image (n D 8)

An alternative solution for the Fourier-based Radon
transform exists, where the polar grid is replaced with
a pseudo-polar one. The geometry of this new grid is illus-
trated in Fig. 2. Concentric circles of linearly growing ra-
dius in the polar grid are replaced by concentric squares of
linearly growing sides. The rays are spread uniformly not
in angle but in slope. These two changes give a grid vaguely
resembling the polar one, but for this grid a direct FFT
can be implemented with no interpolation. When apply-
ing now 1D-FFT for the rays, we get a variant of the Radon
transform, where the projection angles are not spaced uni-
formly.

For the pseudo-polar FFT to be stable, it was shown
that it should contain at least twice as many samples, com-
pared to the original image we started with. A by-product
of this construction is the fact that the transform is orga-
nized as a 2D array with rows containing the projections as
a function of the angle. Thus, processing the Radon trans-
form in one axis is easily implemented. More details can
be found in [68].

One-Dimensional Wavelet Transform To complete
the ridgelet transform, we must take a one-dimensional
wavelet transform (WT1D) along the radial variable in
Radon space. We now discuss the choice of the digital
WT1D.

Experience has shown that compactly-supported
wavelets can lead to many visual artifacts when used

in conjunction with nonlinear processing, such as hard-
thresholding of individual wavelet coefficients, particu-
larly for decimated wavelet schemes used at critical sam-
pling. Also, because of the lack of localization of such
compactly-supported wavelets in the frequency domain,
fluctuations in coarse-scale wavelet coefficients can in-
troduce fine-scale fluctuations. A frequency-domain ap-
proach must be taken, where the discrete Fourier trans-
form is reconstructed from the inverse Radon transform.
These considerations lead to use band-limited wavelet,
whose support is compact in the Fourier domain rather
than the time-domain [28,29,68]. In [68], a specific over-
complete wavelet transform [67,72] has been used. The
wavelet transform algorithm is based on a scaling function
� such that �̂ vanishes outside of the interval [��c ; �c ].
We define the Fourier transform of the scaling function as
a re-normalized B3-spline

�̂(�) D
3
2
B3(4�);

and  ̂ as the difference between two consecutive resolu-
tions

 ̂(2�) D �̂(�) � �̂(2�):

Because  ̂ is compactly supported, the sampling the-
orem shows than one can easily build a pyramid of
nC n/2C � � � C 1 D 2n elements, see [72] for details.

This WT1D transform enjoys the following useful
properties:

� The wavelet coefficients are directly calculated in the
Fourier space. In the context of the ridgelet transform,
this allows avoiding the computation of the one-di-
mensional inverse Fourier transform along each radial
line.

� Each sub-band is sampled above the Nyquist rate,
hence, avoiding aliasing –a phenomenon typically en-
countered by critically sampled orthogonal wavelet
transforms [65].

� The reconstruction is trivial. The wavelet coefficients
simply need to be co-added to reconstruct the input sig-
nal at any given point. In our application, this implies
that the ridgelet coefficients simply need to be co-added
to reconstruct Fourier coefficients.

This wavelet transform introduces an extra redundancy
factor. However, we note that the goal in this imple-
mentation is not data compression or efficient coding.
Rather, this implementation would be useful to the prac-
titioner whose focuses on data analysis, for which it
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Curvelets and Ridgelets, Figure 3
Discrete ridgelet transform flowchart. Each of the 2n radial
lines in the Fourier domain is processed separately. The 1-D in-
verse FFT is calculated along each radial line followed by a 1-D
nonorthogonal wavelet transform. In practice, the one-dimen-
sional wavelet coefficients are directly calculated in the Fourier
space

is well-known that over-completeness through (almost)
translation-invariance can provide substantial advantages.

Assembling all above ingredients together gives the
flowchart of the discrete ridgelet transform (DRT) de-
picted in Fig. 3. The DRT of an image of size n � n is
an image of size 2n � 2n, introducing a redundancy fac-
tor equal to 4.

We note that, because this transform ismade of a chain
of steps, each one of which is invertible, the whole trans-
form is invertible, and so has the exact reconstruction
property. For the same reason, the reconstruction is sta-
ble under perturbations of the coefficients.

Last but not least, this discrete transform is compu-
tationally attractive. Indeed, the algorithm we presented
here has low complexity since it runs in O(n2 log n) flops
for an n � n image.

The Orthonormal Finite Ridgelet Transform

The orthonormal finite ridgelet transform (OFRT) has
been proposed [26] for image compression and filtering.
This transform is based on the finite Radon transform [55]
and a 1D orthogonal wavelet transform. It is not redun-
dant and reversible. It would have been a great alternative

Curvelets and Ridgelets, Figure 4
The backprojection of a ridgelet coefficient by the FFT-based
ridgelet transform (left), and by the OFRT (right)

Curvelets and Ridgelets, Figure 5
Part of original noise-free Boat image (left), and reconstruction
after hard thresholding its OFRT coefficients (right)

to the previously described ridgelet transform if the OFRT
were not based on an awkward definition of a line. In fact,
a line in the OFRT is defined algebraically rather that ge-
ometrically, and so the points on a ‘line’ can be arbitrar-
ily and randomly spread out in the spatial domain. Fig-
ure 4 shows the back-projection of a ridgelet coefficient by
the FFT-based ridgelet transform (left) and by the OFRT
(right). It is clear that the backprojection of the OFRT is
nothing like a ridge function.

Because of this specific definition of a line, the thresh-
olding of the OFRT coefficients produces strong artifacts.
Figure 5 shows a part of the original image Boat, and its
reconstruction after hard thresholding the OFRT of the
noise-free Boat. The resulting image is not smoothed as
one would expect, but rather a noise has been added to the
noise-free image as part of the filtering !

Finally, the OFRT presents another limitation: the im-
age size must be a prime number. This last point is how-
ever not too restrictive, because we generally use a spatial
partitioning when denoising the data, and a prime number
block size can be used. The OFRT is interesting from the
conceptual point of view, but still requires work before it
can be used for real applications such as denoising.
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The Fast Slant Stack Ridgelet Transform

The Fast Slant Stack (FSS) [3] is a Radon transform of
data on a Cartesian grid, which is algebraically exact and
geometrically more accurate and faithful than the previ-
ously described methods. The back-projection of a point
in Radon space is exactly a ridge function in the spatial
domain (see Fig. 6). The transformation of an n � n im-
age is a 2n � 2n image. n line integrals with angle between�
�	4 ;

	
4
�
are calculated from the zero padded image on the

y-axis, and n line integrals with angle between
�
	
4 ;

3	
4
�
are

computed by zero padding the image on the x-axis. For
a given angle inside

�
�	4 ;

	
4
�
, 2n line integrals are calcu-

lated by first shearing the zero-padded image, and then in-

Curvelets and Ridgelets, Figure 6
Backprojection of a point at four different locations in the Radon space using the FSS algorithm

Curvelets and Ridgelets, Figure 7
Slant Stack Transform of an image

tegrating the pixel values along all horizontal lines (resp.
vertical lines for angles in

�
	
4 ;

3	
4
�
). The shearing is per-

formed one column at a time (resp. one line at a time)
by using the 1D FFT. Figure 7 shows an example of the
image shearing step with two different angles (5	4 and
�	4 ). A DRT based on the FSS transform has been pro-
posed in [33]. The connection between the FSS and the
Linogram has been investigated in [3]. A FSS algorithm is
also proposed in [3], based on the 2D Fast Pseudo-polar
Fourier transform which evaluates the 2-D Fourier trans-
form on a non-Cartesian (pseudo-polar) grid, operating in
O(n2 log n) flops.

Figure 8 left exemplifies a ridgelet in the spatial domain
obtained from the DRT based on FSS implementation. Its
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Curvelets and Ridgelets, Figure 8
a Example of a ridgelet obtained by the Fast Slant Stack implementation. b Its FFT superimposed on the DRT frequency tiling

Fourier transform is shown on Fig. 8 right superimposed
on the DRT frequency tiling [33]. The Fourier transform
of the discrete ridgelet lives in an angular wedge. More
precisely, the Fourier transform of a discrete ridgelet at
scale j lives within a dyadic square of size� 2 j .

Local Ridgelet Transforms

The ridgelet transform is optimal for finding global lines
of the size of the image. To detect line segments, a par-
titioning must be introduced [9]. The image can be de-
composed into overlapping blocks of side-length b pixels
in such a way that the overlap between two vertically ad-
jacent blocks is a rectangular array of size b by b/2; we use
overlap to avoid blocking artifacts. For an n by n image,
we count 2n/b such blocks in each direction, and thus the
redundancy factor grows by a factor of 4.

The partitioning introduces redundancy, as a pixel be-
longs to 4 neighboring blocks. We present two competing
strategies to perform the analysis and synthesis:

1. The block values are weighted by a spatial window w
(analysis) in such a way that the co-addition of all
blocks reproduce exactly the original pixel value (syn-
thesis).

2. The block values are those of the image pixel values
(analysis) but are weighted when the image is recon-
structed (synthesis).

Experiments have shown that the second approach leads
to better results especially for restoration problems,
see [68] for details. We calculate a pixel value, f [i1; i2]
from its four corresponding block values of half-size m D
b/2, namely, B1[k1; l1], B2[k2; l1], B3[k1; l2] and B4[k2; l2]

with k1; l1 > b/2 and k2 D k1 � m; l2 D l1 � m, in the
following way:

f1 D w(k2/m)B1[k1; l1]C w(1 � k2/m)B2[k2; l1]
f2 D w(k2/m]B3[k1; l2]C w(1 � k2/m)B4[k2; l2]

f [i1; i2] D w(l2/m) f1 C w(1 � l2/m) f2:
(5)

where w(x) D cos2(�x/2) is the window. Of course, one
might select any other smooth, non-increasing function
satisfying, w(0) D 1, w(1) D 0, w0(0) D 0 and obeying the
symmetry property w(x)C w(1 � x) D 1.

Sparse Representation by Ridgelets

The continuous ridgelet transform provides sparse repre-
sentation of both smooth functions (in the Sobolev space
W2

2 ) and of perfectly straight lines [11,31]. We have just
seen that there are also various DRTs, i. e. expansions
with countable discrete collection of generating elements,
which correspond either to frames or orthobases. It has
been shown for these schemes that the DRT achieves near-
optimal M-term approximation – that is the non-linear
approximation of f using the M highest ridgelet coeffi-
cients in magnitude - to smooth images with disconti-
nuities along straight lines [16,31]. In summary, ridgelets
provide sparse presentation for piecewise smooth images
away from global straight edges.

Curvelets

The First Generation Curvelet Transform

In image processing, edges are curved rather than straight
lines and ridgelets are not able to efficiently represent such
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Curvelets and Ridgelets, Figure 9
Local ridgelet transform on bandpass filtered image. At fine scales, curved edges are almost straight lines

images. However, one can still deploy the ridgelet machin-
ery in a localized way, at fine scales, where curved edges
are almost straight lines (see Fig. 9). This is the idea un-
derlying the first generation curvelets (termed here Curve-
letG1) [18].

First Generation Curvelets Construction The Curve-
letG1 transform [18,32,68] opens the possibility to ana-
lyze an image with different block sizes, but with a single
transform. The idea is to first decompose the image into
a set of wavelet bands, and to analyze each band by a lo-
cal ridgelet transform as illustrated on Fig. 9. The block
size can be changed at each scale level. Roughly speak-
ing, different levels of the multiscale ridgelet pyramid are
used to represent different sub-bands of a filter bank out-
put. At the same time, this sub-band decomposition im-
poses a relationship between the width and length of the
important frame elements so that they are anisotropic and
obey approximately the parabolic scaling law width �
length2.

The First Generation Discrete Curvelet Transform
(DCTG1) of a continuum function f (x) makes use of
a dyadic sequence of scales, and a bank of filters with the
property that the bandpass filter �j is concentrated near
the frequencies [22 j; 22 jC2], i. e.

� j( f ) D �2 j  f ; b� 2 j(�) D b� (2�2 j�) :

In wavelet theory, one uses a decomposition into dyadic
sub-bands [2 j; 2 jC1]. In contrast, the sub-bands used in
the discrete curvelet transform of continuum functions
has the nonstandard form [22 j; 22 jC2]. This is nonstan-
dard feature of the DCTG1 well worth remembering (this

is where the approximate parabolic scaling law comes into
play).

The DCTG1 decomposition is the sequence of the fol-
lowing steps:

� Sub-band Decomposition. The object f is decomposed
into sub-bands.

� Smooth Partitioning. Each sub-band is smoothly win-
dowed into “squares” of an appropriate scale (of side-
length� 2� j).

� Ridgelet Analysis. Each square is analyzed via the DRT.

In this definition, the two dyadic sub-bands [22 j; 22 jC1]
and [22 jC1; 22 jC2] are merged before applying the ridgelet
transform.

Digital Implementation It seems that the isotropic
“à trous” wavelet transform (� Numerical Issues When
Using Wavelets), [72] is especially well-adapted to the
needs of the digital curvelet transform. The algorithm de-
composes an n by n image f [i1; i2] as a superposition of
the form

f [i1; i2] D cJ[i1; i2]C
JX

jD1

wj[i1; i2];

where cJ is a coarse or smooth version of the original image
f and wj represents ‘the details of f ’ at scale 2� j . Thus, the
algorithm outputs J C 1 sub-band arrays of size n � n.
A sketch of the DCTG1 implementation is given in Algo-
rithm 1.
The side-length of the localizing windows is doubled at
every other dyadic sub-band, hence maintaining the fun-
damental property of the curvelet transform which says
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Require: Input n � n image f [i1; i2], type of DRT (see
above).

1: Apply the à trous isotropic WT2D with J scales,
2: Set B1 D Bmin,
3: for j D 1; : : : ; J do
4: Partition the sub-band wj with a block size Bj

and apply the DRT to each block,
5: if jmodulo 2 D 1 then
6: BjC1 D 2Bj ,
7: else
8: BjC1 D Bj .
9: end if
10: end for

Curvelets and Ridgelets, Algorithm 1
DCTG1

that elements of length about 2� j/2 serve for the analy-
sis and synthesis of the jth sub-band [2 j ; 2 jC1]. Note also
that the coarse description of the image cJ is left intact. In
the results shown in this paper, we used the default value
Bmin D 16 pixels in our implementation. Figure 10 gives
an overview of the organization of the DCTG1 algorithm.

This implementation of the DCTG1 is also redundant.
The redundancy factor is equal to 16J C 1 whenever J

Curvelets and Ridgelets, Figure 10
First Generation Discrete Curvelet Transform (DCTG1) flowchart. The figure illustrates the decomposition of the original image into
sub-bands followed by the spatial partitioning of each sub-band. The ridgelet transform is then applied to each block

scales are employed. The DCTG1 algorithm enjoys ex-
act reconstruction and stability, as each step of the analy-
sis (decomposition) algorithm is itself invertible. One can
show that the computational complexity of the DCTG1 al-
gorithm we described here based on the DRT of Fig. 3 is
O(n2(log n)2) for an n � n image.
Figure 11 shows a few curvelets at different scales, orienta-
tions and locations.

Sparse Representation by First Generation Curvelets
The CurveletG1 elements can form either a frame or
a tight frame for L2(R2) [17], depending on the WT2D
used and the DRT implementation (rectopolar or FSS
Radon transform). The frame elements are anisotropic by
construction and become successively more anisotropic
at progressively higher scales. These curvelets also ex-
hibit directional sensitivity and display oscillatory com-
ponents across the ‘ridge’. A central motivation lead-
ing to the curvelet construction was the problem of
non-adaptively representing piecewise smooth (e. g. C2)
images f which have discontinuity along a C2 curve.
Such a model is the so-called cartoon model of (non-
textured) images. With the CurveletG1 tight frame
construction, it was shown in [17] that for such f ,
the M-term non-linear approximations f M of f obey,
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Curvelets and Ridgelets, Figure 11
A few first generation curvelets

for each � > 0,

k f � fMk2 � C�M�2C� ; M !C1 :

TheM-term approximations in the CurveletG1 are almost
rate optimal, much better thanM-term Fourier or wavelet
approximations for such images, see [53].

The Second Generation Curvelet Transform

Despite these interesting properties, the CurveletG1
construction presents some drawbacks. First, the con-
struction involves a complicated seven-index structure
among which we have parameters for scale, location
and orientation. In addition, the parabolic scaling ratio
width � length2 is not completely true (see Subsect. “First
Generation Curvelets Construction”). In fact, CurveletG1
assumes a wide range of aspect ratios. These facts make
mathematical and quantitative analysis especially delicate.
Second, the spatial partitioning of the CurveletG1 trans-
form uses overlapping windows to avoid blocking effects.
This leads to an increase of the redundancy of the DCTG1.
The computational cost of the DCTG1 algorithmmay also
be a limitation for large-scale data, especially if the FSS-
based DRT implementation is used.

In contrast, the second generation curvelets (Curve-
letG2) [15,20] exhibit a much simpler and natural in-
dexing structure with three parameters: scale, orienta-
tion (angle) and location, hence simplifying mathemati-
cal analysis. The CurveletG2 transform also implements
a tight frame expansion [20] and has a much lower redun-
dancy. Unlike the DCTG1, the discrete CurveletG2 im-
plementation will not use ridgelets yielding a faster algo-
rithm [15,20].

Second Generation Curvelets Construction

Continuous Coronization The second generation
curvelets are defined at scale 2� j , orientation �l and
position x j;lk D R�1

�l
(2� j k1; 2� j/2k2) by translation and

rotation of a mother curvelet ' j as

' j;l ;k(x) D ' j(R�l (x� x j;lk )) ; (6)

where R�l is the rotation by �l radians. �l is the equi-
spaced sequence of rotation angles �l D 2�2�b j/2c l , with
integer l such that 0 � �l � 2� (note that the number of
orientations varies as 1/

p
scale). k D (k1; k2) 2 Z2 is the

sequence of translation parameters. The waveform ' j is
defined by means of its Fourier transform '̂ j(�), written
in polar coordinates in the Fourier domain

'̂ j(r; �) D 2�3 j/4ŵ(2� j r)v̂

 
2b j/2c�
2�

!

: (7)

The support of '̂ j is a polar parabolic wedge defined by
the support of ŵ and v̂, the radial and angular windows
(both smooth, nonnegative and real-valued), applied with
scale-dependent window widths in each direction. ŵ and
v̂ must also satisfy the partition of unity property [15]. See
the frequency tiling in Fig. 12a.

In continuous frequency �, the CurveletG2 coefficients
of data f (x) are defined as the inner product

c j;l ;k :D
˝
f ' j;l ;k

˛
D

Z

R2
f̂ (�)'̂ j(R�l �)e

ix j;lk �d� : (8)

This construction implies a few properties: (i) the
CurveletG2 defines a tight frame of L2(R2), (ii) the effec-
tive length and width of these curvelets obey the parabolic
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Curvelets and Ridgelets, Figure 12
a Continuous curvelet frequency tiling. The dark gray area represents a wedge obtained as the product of the radial window (an-
nulus shown in gray) and the angular window (light gray). b The Cartesian grid in space associated to the construction in a whose
spacing also obeys the parabolic scaling by duality. c Discrete curvelet frequency tiling. The window ûj;l isolates the frequency near
trapezoidal wedge such as the one shown in dark gray. d The wrapping transformation. The dashed line shows the same trapezoidal
wedge as in c. Theparallelogramcontains thiswedge andhence the support of the curvelet. After periodization, thewrappedFourier
samples can be collected in the rectangle centered at the origin

scaling relation (2� j D width) D (length D 2� j/2)2,
(iii) the curvelets exhibit an oscillating behavior in the
direction perpendicular to their orientation. Curvelets
as just constructed are complex-valued. It is easy to ob-
tain real-valued curvelets by working on the symmetrized
version '̂ j(r; �)C '̂ j(r; � C �).

Discrete Coronization The discrete transform takes as in-
put data defined on a Cartesian grid and outputs a col-

lection of coefficients. The continuous-space definition of
the CurveletG2 uses coronae and rotations that are not es-
pecially adapted to Cartesian arrays. It is then convenient
to replace these concepts by their Cartesian counterparts.
That is concentric squares (instead of concentric circles)
and shears (instead of rotations), see Fig. 12c.

The Cartesian equivalent to the radial window
ŵ j(�) D ŵ(2� j�) would be a bandpass frequency-
localized window which can be derived from the differ-
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ence of separable low-pass windows Hj(�) D ĥ(2� j�1)
ĥ(2� j�2) (h is a 1D low-pass filter):

ŵ j(�) D
q
H2

jC1(�) � H2
j (�);8 j � 0 ;

and ŵ0(�) D ĥ(�1)ĥ(�2) :

Another possible choice is to select these windows inspired
by the construction of Meyer wavelets [20,57]. See [15] for
more details about the construction of the Cartesian ŵ j ’s.

Let’s now examine the angular localization. Each
Cartesian coronae has four quadrants: East, North, West
and South. Each quadrant is separated into 2b j/2c orienta-
tions (wedges) with the same areas. Take for example the
East quadrant (��/4 � �l < �/4). For theWest quadrant,
we would proceed by symmetry around the origin, and for
the North and South quadrant by exchanging the roles of
�1 and �2. Define the angular window for the lth direction
as

v̂ j;l (�) D v̂
�
2b j/2c

�2 � �1 tan �l
�1

�
; (9)

with the sequence of equi-spaced slopes (and not angles)
tan �l D 2�b j/2c l , for l D �2b j/2c; : : : ; 2b j/2c � 1.We can
now define the window which is the Cartesian analog of '̂ j
above,

û j;l (�) D ŵ j(�)v̂ j;l (�) D ŵ j(�)v̂ j;0(S�l �); (10)

where S�l is the shear matrix. From this definition, it can
be seen that û j;l is supported near the trapezoidal wedge
f� D (�1; �2)j2 j � �1 � 2 jC1;�2� j/2 � �2/�1 �
tan �l � 2� j/2g. The collection of û j;l (�) gives rise to the
frequency tiling shown in Fig. 12c. From û j;l (�), the digital
CurveletG2 construction suggests Cartesian curvelets that
are translated and sheared versions of a mother Cartesian
curvelet '̂D

j (�) D û j;0(�), 'D
j;l ;k(x) D 23 j/4'D

j



ST
�l
x �m

�

wherem D (k12� j; k22� j/2).

Digital Implementation The goal here is to find a dig-
ital implementation of the Second Generation Discrete
Curvelet Transform (DCTG2), whose coefficients are now
given by

c j;l ;k :D
D
f 'D

j;l ;k

E
D

Z

R2
f̂ (�)'̂D

j (S
�1
�l
�)eiS

�T
� l

m�d� : (11)

To evaluate this formula with discrete data, one may think
of (i) using the 2D FFT to get f̂ , (ii) form the windowed
frequency data f̂ û j;l and (iii) apply the the inverse Fourier
transform. But this necessitates to evaluate the FFT at
the sheared grid S�T

�l
m, for which the classical FFT algo-

rithm is not valid. Two implementations were then pro-
posed [15], essentially differing in their way of handling
the grid:

� A tilted grid mostly aligned with the axes of û j;l (�)
which leads to the Unequi-Spaced FFT (USFFT)-based
DCTG2. This implementation uses a nonstandard in-
terpolation. Furthermore, the inverse transform uses
conjugate gradient iteration to invert the interpolation
step. This will have the drawback of a higher compu-
tational burden compared to the wrapping-based im-
plementation that we will discuss hereafter.We will not
elaborate more about the USFFT implementation as we
never use it in practice. The interested reader may refer
to [15] for further details and analysis.

� A grid aligned with the input Cartesian grid which
leads to the wrapping-based DCTG2.

The wrapping-based DCTG2 makes a simpler choice of
the spatial grid to translate the curvelets. The curvelet co-
efficients are essentially the same as in (11), except that
S�T
�l

m is replaced by m with values on a rectangular grid.
But again, a difficulty rises because the window û j;l does
not fit in a rectangle of size 2 j � 2 j/2 to which an inverse
FFT could be applied. The wrapping trick consists in peri-
odizing the windowed frequency data f̂ û j;l , and reindex-
ing the samples array by wrapping around a � 2 j � 2 j/2

rectangle centered at the origin, see Fig. 12d to get a gist of
the wrapping idea.

The wrapping-based DCTG2 algorithm can be sum-
marized as in Algorithm 2.

The DCTG2 implementation can assign either
wavelets or curvelets at the finest scale. In the Curve-
Lab toolbox [75], the default choice is set to wavelets at the
finest scale, but this can be easily modified directly in the
code.

Require: Input n � n image f [i1; i2], coarsest decom-
position scale, curvelets or wavelets at the finest
scale.

1: Apply the 2D FFT and obtain Fourier samples
f̂ [i1; i2].

2: for each scale j and angle l do
3: Form the product f̂ [i1; i2]û j;l [i1; i2].
4: Wrap this product around the origin.
5: Apply the inverse 2D FFT to the wrapped data to

get discrete DCTG2 coefficients.
6: end for

Curvelets and Ridgelets, Algorithm 2
DCTG2 via wrapping
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We would like to apologize to the expert reader as
many technical details are (deliberately) missing here
on the CurveletG2 construction. For instance, low-pass
coarse component, window overlapping, windows over
junctions between quadrants. This paper is intended to
give an overview of these recent multi-scale transforms,
and the genuinely interested reader may refer to the origi-
nal papers of Candès, Donoho, Starck and co-workers for
further details (see bibliography).

The computational complexity of the wrapping-based
DCTG2 analysis and reconstruction algorithms is that of
the FFTO(n2 log n), and in practice, the computation time
is that of 6 to 10 2D FFTs [15]. This is a faster algorithm
compared to the DCTG1. The DCTG2 fast algorithm has
participated to make the use of the curvelet transform
more attractive in many applicative fields (see Sect. “Styl-
ized Applications” for some of them). The DCTG2, as it
is implemented in the CurveLab toolbox [75], has rea-
sonable redundancy, at most � 7:8 (much higher in 3D)
if curvelets are used at the finest scale. This redundancy
can even be reduced down to 4 (and 8 in 3D) if we re-
place in this implementation the Meyer wavelet construc-
tion, which introduces a redundancy factor of 4, by an-
other wavelet pyramidal construction, similar to the one
presented in Sect. “One–dimensionalWavelet Transform”
which has a redundancy less than 2 in any dimension. Our
experiments have shown that this modification does not
modify the results in denoising experiments. DCTG2 re-
dundancy is anyway much smaller than the DCTG1 one
which is 16J C 1. As stated earlier, the DCTG2 coefficients
are complex-valued, but a real-valued DCTG2 with the
same redundancy factor can be easily obtained by prop-
erly combining coefficients at orientations �l and �l C � .

The DCTG2 can be extended to higher dimen-
sions [21]. In the same vein as wavelets on the inter-
val [53], the DCGT2 has been recently adapted to han-
dle image boundaries by mirror extension instead of pe-
riodization [25]. The latter modification can have imme-
diate implications in image processing applications where
the contrast difference at opposite image boundaries may
be an issue (see e. g. the denoising experiment discussion
reported in Sect. “Stylized Applications”).

We would like to make a connection with other mul-
tiscale directional transforms directly linked to curvelets.
The contourlets tight frame of Do and Vetterli [27] imple-
ments the CurveletG2 idea directly on a discrete grid using
a perfect reconstruction filter bank procedure. In [51], the
authors proposed a modification of the contourlets with
a directional filter bank that provides a frequency parti-
tioning which is close to the curvelets but with no re-
dundancy. Durand in [35] recently introduced families of

non-adaptive directional wavelets with various frequency
tilings, including that of curvelets. Such families are non-
redundant and form orthonormal bases for L2(R2), and
have an implementation derived from a single nonsepara-
ble filter bank structure with nonuniform sampling.

Sparse Representation by Second Generation Curvelets
It has been shown by Candès and Donoho [20] that with
the CurveletG2 tight frame construction, theM-term non-
linear approximation error of C2 images except at discon-
tinuities along C2 curves obey

k f � fMk2 � CM�2(logM)3 :

This is an asymptotically optimal convergence rate (up to
the (logM)3 factor), and holds uniformly over theC2 � C2

class of functions. This is a remarkable result since the
CurveletG2 representation is non-adaptative. However,
the simplicity due to the non-adaptivity of curvelets has
a cost: curvelet approximations loose their near optimal
properties when the image is composed of edges which are
not exactly C2. Additionally, if the edges are C˛-regular
with ˛ > 2, then the curvelets convergence rate exponent
remain 2. Other adaptive geometric representations such
as bandlets are specifically designed to reach the optimal
decay rate O(M�˛) [49,62].

Stylized Applications

Denoising

Elongated Feature Recovery The ability of ridgelets to
sparsely represent piecewise smooth images away from
discontinuities along lines has an immediate implication
on statistical estimation. Consider a piecewise smooth im-
age f away from line singularities embedded in an ad-
ditive white noise of standard deviation � . The ridgelet-
based thresholding estimator is nearly optimal for recover-
ing such functions, with a mean-square error (MSE) decay
rate almost as good as the minimax rate [12].

To illustrate these theoretical facts, we simulate a ver-
tical band embedded in white Gaussian noise with large
� . Figure 14 (top left) represents such a noisy image. The
parameters are as follows: the pixel width of the band
is 20 and the signal-to-noise ratio (SNR) is set to 0.1.
Note that it is not possible to distinguish the band by
eye. The wavelet transform (undecimated wavelet trans-
form) is also incapable of detecting the presence of this
object; roughly speaking, wavelet coefficients correspond
to weighted averages over approximately isotropic neigh-
borhoods (at different scales) and those wavelets clearly do
not correlate very well with the very elongated structure
(pattern) of the object to be detected.
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Curvelets and Ridgelets, Figure 13
An example of second generation real curvelet. Left: curvelet in spatial domain. Right: its Fourier transform

Curvelets and Ridgelets, Figure 14
Original image containing a vertical band embedded in white noise with relatively large amplitude (left). Denoised image using the
undecimated wavelet transform (middle). Denoised image using the DRT based on the rectopolar Radon transform (right)

Curve Recovery Consider now the problem of recover-
ing a piecewise C2 function f apart from a discontinuity
along a C2 edge. Again, a simple strategy based on thresh-
olding curvelet tight frame coefficients yields an estima-
tor that achieves a MSE almost of the order O(�4/3) uni-
formly over the C2 � C2 class of functions [19]. This is the
optimal rate of convergence as the minimax rate for that
class scales as �4/3 [19]. Comparatively, wavelet threshold-
ing methods only achieves a MSE of order O(�) and no
better. We also note that the statistical optimality of the
curvelet thresholding extends to a large class of ill-posed
linear inverse problems [19].

In the experiment of Fig. 15, we have added a white
Gaussian noise to “War and Peace”, a drawing from Pi-
casso which contains many curved features. Figure 15 bot-
tom left and right shows respectively the restored images

by the undecimated wavelet transform and the DCTG1.
Curves are more sharply recovered with the DCTG1.

In a second experiment, we compared the denois-
ing performance of several digital implementations of the
curvelet transform; namely the DCTG1 with the rectopo-
lar DRT, the DCTG1 with the FSS-based DRT and the
wrapping-based DCTG2. The results are shown in Fig. 16,
where the original 512 � 512 Peppers image was cor-
rupted by a Gaussian white noise � D 20 (PSNR= 22dB).

Although the FSS-based DRT is more accurate than
the rectopolar DRT, the denoising improvement of the
former (PSNR=31.31dB) is only 0.18 dB better than the
latter (PSNR=31.13dB) on Peppers. The difference is al-
most undistinguishable by eye, but the computation time
is 20 higher for the DCTG1 with the FSS DRT. Conse-
quently, it appears that there is a little benefit of using the
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Curvelets and Ridgelets, Figure 15
The Picasso picture War and Peace (top left), the same image contaminated with a Gaussian white noise (top right). The restored
images using the undecimated wavelet transform (bottom left) and the DCTG1 (bottom right)

FSS DRT in the DCTG1 for restoration applications. De-
noising using the DCTG2 with the wrapping implementa-
tion gives a PSNR=30.62 dB which is � 0:7 dB less than
the DCTG1. But this is the price to pay for a lower re-
dundancy and a much faster transform algorithm. More-
over, the DCTG2 exhibits some artifacts which look like
‘curvelet ghosts’. This is a consequence of the fact that
the DCTG2 makes a central use of the FFT which has the
side effect of treating the image boundaries by periodiza-
tion.

Linear Inverse Problems

Many problems in image processing can be cast as invert-
ing the linear degradation equation y D H f C ", where
f is the image to recover, y the observed image and " is
a white noise of variance �2 < C1. The linear mapping
H is generally ill-behavedwhich entails ill-posedness of the

inverse problem. Typical examples of linear inverse prob-
lems include image deconvolution where H is the convo-
lution operator, or image inpainting (recovery of missing
data) whereH is a binary mask.

In the last few years, some authors have attacked the
problem of solving linear inverse problems under the
umbrella of sparse representations and variational for-
mulations, e. g. for deconvolution [19,24,38,41,74] and
inpainting [37,39]. Typically, in this setting, the recov-
ery of f is stated as an optimization problem with
a sparsity-promoting regularization on the representation
coefficients of f , e. g. its wavelet or curvelet coefficients.
See [37,38,39,74] for more details.

In Fig. 17 first row, we depict an example of deconvo-
lution on Barbara using the algorithm described in [38]
with the DCTG2 curvelet transform. The original, de-
graded (blurred with an exponential kernel and noisy) and
restored images are respectively shown on the left, middle
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Curvelets and Ridgelets, Figure 16
Comparison of denoising performance of several digital implementations of the curvelet transform. Top left: original image. Top
right: noisy image � D 20. Bottom left: denoised with DCTG1 using the rectopolar DRT. Bottommiddle: denoised with DCTG1 using
the FSS DRT. Bottom right: denoised with DCTG2 using the wrapping implementation

and right. The second row gives an example of inpainting
on Claudia image using the DCTG2 with 50% missing
pixels.

Contrast Enhancement

The curvelet transform has been successfully applied to
image contrast enhancement by Starck et al. [73]. As the
curvelet transform capture efficiently edges in an image,
it is a good candidate for multiscale edge enhancement.
The idea is to modify the curvelet coefficients of the in-
put image in order to enhance its edges. The curvelet co-
efficients are typically modified according to the function
displayed in the left plot of Fig. 18. Basically, this plot says
that the input coefficients are kept intact (or even shrunk)
if they have either low (e. g. below the noise level) or high
(strongest edges) values. Intermediate curvelet coefficient
values which correspond to the faintest edges are ampli-
fied. An example of curvelet-based image enhancement on
Saturn image is given in Fig. 18.

Morphological Component Separation

The idea to morphologically decompose a signal/image
into its building blocks is an important problem in sig-
nal and image processing. Successful separation of a signal
content has a key role in the ability to effectively analyze it,
enhance it, compress it, synthesize it, and more. Various
approaches have been proposed to tackle this problem.

The Morphological Component Analysis method
(MCA) [70,71] is a method which allows us to decompose
a single signal into two or more layers, each layer contain-
ing only one kind of feature in the input signal or image.
The separation can be achieved when each kind of feature
is sparsely represented by a given transformation in the
dictionary of transforms. Furthermore, when a transform
sparsely represents a part in the signal/image, it yields non-
sparse representation on the other content type. For in-
stance, lines and Gaussians in a image can be separated us-
ing the ridgelet transform and the wavelet transform. Lo-
cally oscillating textures can be separated from the piece-
wise smooth content using the local discrete cosine trans-
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Curvelets and Ridgelets, Figure 17
Illustration of the use of curvelets (DCTG2 transform) when solving two typical linear inverse problems: deconvolution (first row),
and inpainting (second row). First row: deconvolution of Barbara image, original (left), blurred and noisy (middle), restored (right).
Second row: inpainting of Claudia image, original (left), masked image (middle), inpainted (right)

Curvelets and Ridgelets, Figure 18
Curvelet contrast enhancement. Left: enhanced vs original curvelet coefficient. Middle: original Saturn image. Right: result of
curvelet-based contrast enhancement

form and the curvelet transform [70]. A full description of
MCA is given in [70].

The first row of Fig. 19 illustrates a separation result
when the input image contains only lines and isotropic

Gaussians. Two transforms were amalgamated in the dic-
tionary; namely the à trous WT2D and the DRT. The left,
middle and right images in the first row of Fig. 19 rep-
resent respectively, the original image, the reconstructed
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Curvelets and Ridgelets, Figure 19
First row, from left to right: original image containing lines and Gaussians, separated Gaussian component (wavelets), separated line
component (ridgelets). Second row, from left to right: original Barbara image, reconstructed local discrete cosine transform part
(texture), and piecewise smooth part (curvelets)

component from the à trous wavelet coefficients, and
the reconstructed layer from the ridgelet coefficients. The
second row of Fig. 19 shows respectively the Barbara
image, the reconstructed local cosine (textured) compo-
nent and the reconstructed curvelet component. In the
Barbara example, the dictionary contained the local dis-
crete cosine and the DCTG2 transforms.

Future Directions

In this paper, we gave an overview of two important
geometrical multiscale transforms; namely ridgelets and
curvelets. We illustrate their potential applicability on
a wide range of image processing problems. Although
these transforms are not adaptive, they are strikingly effec-
tive both theoretically and practically on piecewise images
away from smooth contours.

However, in image processing, the geometry of the
image and its regularity is generally not known in ad-
vance. Therefore, to reach higher sparsity levels, it is nec-

essary to find representations that can adapt themselves
to the geometrical content of the image. For instance,
geometric transforms such as wedgelets [30] or ban-
dlets [49,50,62] allow to define an adapted multiscale ge-
ometry. These transforms perform a non-linear search for
an optimal representation. They offer geometrical adaptiv-
ity together with stable algorithms. Recently, Mallat [54]
proposed a more biologically inspired procedure named
the grouplet transform, which defines a multiscale asso-
ciation field by grouping together pairs of wavelet coeffi-
cients.

In imaging science and technology, there is a remark-
able proliferation of new data types. Beside the traditional
data arrays defined on uniformly sampled cartesian grids
with scalar-valued samples, many novel imaging modali-
ties involve data arrays that are either (or both):

� acquired on specific “exotic” grids such as in astron-
omy, medicine and physics. Examples include data de-
fined on spherical manifolds such as in astronomical
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imaging, catadioptric optical imaging where a sensor
overlooks a paraboloidal mirror, etc.

� or with samples taking values in a manifold. Examples
include vector fields such as those of polarization data
thatmay rise in astronomy, rigid motions (a special Eu-
clidean group), definite-positive matrices that are en-
countered in earth science or medical imaging, etc.

The challenge faced with this data is to find multi-
scale representations which are sufficiently flexible to ap-
ply to many data types and yet defined on the proper
grid and respect the manifold structure. Extension of
wavelets, curvelets and ridgelets for scalar-valued data on
the sphere has been proposed recently by [66]. Construc-
tion of wavelets for scalar-valued data defined on graphs
and some manifolds was proposed by [22]. The authors
in [63][see references therein] describe multiscale repre-
sentations for data observed on equispaced grids and tak-
ing values in manifolds such as: the sphere, the special
orthogonal group, the positive definite matrices, and the
Grassmannian manifolds. Nonetheless many challenging
questions are still open in this field: extend the idea of
multiscale geometrical representations such as curvelets
or ridgelets to manifold-valued data, find multiscale geo-
metrical representations which are sufficiently general for
a wide class of grids, etc. We believe that these directions
are one of the hottest topics in this field.

Most of the transforms discussed in this paper can
handle efficiently smooth or piecewise smooth functions.
But sparsely representing textures remains an important
open question, mainly because there is no consensus on
how to define a texture. Although Julesz [45] stated simple
axioms about the probabilistic characterization of textures.
It has been known for some time now that some trans-
forms can sometimes enjoy reasonably sparse expansions
of certain textures; e. g. oscillatory textures in bases such
as local discrete cosines [70], brushlets [56], Gabor [53],
complex wavelets [46]. Gabor and wavelets are widely used
in the image processing community for texture analysis.
But little is known on the decay of Gabor and wavelet
coefficients of “texture”. If one is interested in synthe-
sis as well as analysis, the Gabor representation may be
useless (at least in its strict definition). Restricting them-
selves to locally oscillating patters, Demanet and Ying have
recently proposed a wavelet-packet construction named
WaveAtoms [77]. They showed that WaveAtoms provide
optimally sparse representation of warped oscillatory tex-
tures.

Another line of active research in sparse multiscale
transforms was initiated by the seminal work of Olshausen
and Field [59]. Following their footprints, one can push

one step forward the idea of adaptive sparse representa-
tion and requires that the dictionary is not fixed but rather
optimized to sparsify a set of exemplar signals/images, i. e.
patches. Such a learning problem corresponds to finding
a sparse matrix factorization and several algorithms have
been proposed for this task in the literature; see [1] for
a good overview. Explicit structural constraints such as
translation invariance can also be enforced on the learned
dictionary [5,58]. These learning-based sparse represen-
tations have shown a great improvement over fixed (and
even adapted) transforms for a variety of image process-
ing tasks such as denoising and compression [8,36,52], lin-
ear inverse problems (image decomposition and inpaint-
ing) [61], texture synthesis [60].
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Glossary

Cell Structural and functional elementary unit of all life
forms. The cell is the smallest unit that can be charac-
terized as living.

Eukaryotic cell Cell that possesses a nucleus, a small
membrane-bounded compartment that contains the
genetic material of the cell. Cells that lack a nucleus
are called prokaryotic cells or prokaryotes.

Domains of life archaea, bacteria and eukarya – or in En-
glish eukaryotes, and made of eukaryotic cells – which
constitute the three fundamental branches in which
all life forms are classified. Archaea and bacteria are
prokaryotes. All multicellular organisms are eukary-
otes, but eukaryotes can also be single-cell organisms.
Eukaryotes are usually classified into four kingdoms:
animals, plants, fungi and protists.

Motility Spontaneous, self-generated movement of a bio-
logical system.

Cytoskeleton System of protein filaments crisscrossing
the inner part of the cell and which, with the help of
the many proteins that interact with it, enables the cell
to insure its structural integrity and morphology, exert
forces and produce motion.

Amoeboid motility Crawling locomotion of a eukaryotic
cell by means of protrusion of its leading edge.

Molecular motor Motor of molecular size. In this con-
text, protein or macromolecular complex that converts
a specific source of energy into mechanical work.

http://dx.doi.org/10.1117/12.731244
http://www.curvelet.org
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Filament Here, extended unidimensional structure made
of an assembly of repeated protein units that hold
together via physical interactions (without covalent
bonds). A filament will be either a single polymer (or
here biopolymer), a linear assembly of such polymers,
or a linear assembly of molecular motors.

Active gel Cross-linked network of linear or branched
polymers interacting by physical means, and that is dy-
namically driven out of equilibrium by a source of en-
ergy.

Definition of the Subject

We, as human beings, are made of a collection of cells,
which are most commonly considered as the elementary
building blocks of all living forms on earth [5]. Whether
they belong to each of the three domains of life (ar-
chaea, bacteria or eukarya), cells are small membrane-
bounded compartments that are capable of homeostasis,
metabolism, response to their environment, growth, re-
production, adaptation through evolution and, at the cel-
lular as well as multicellular level, organization. In addi-
tion, spontaneous, self-generatedmovement – also known
as motility – is one of the properties that we most closely
associate with all life forms. Even in the case of appar-
ently inanimate living forms on macroscopic scales, like
most plants and fungi, constitutive cells are constantly re-
modeling their internal structure for the entire organism
to perform its metabolism, growth and reproduction [29].
In animals like human beings, cell motility is at the basis of
most – if not all – essential processes participating in their
lifetime, from their development, maintenance, to even-
tual death. It is indeed crucially involved for example in
embryonic development (where individual as well as col-
lective motions of cells underly morphogenesis), wound
healing and recovery from injuries (where cellular mi-
gration is essential for tissue repair and regeneration), as
well as immune response and most of disease progres-
sions. There, on a biomedical point of view, cellular motil-
ity is involved in processes as diverse as neutrophils (white
blood cells) and macrophages (cells that ingest bacteria)
progressions, axonal regrowth after injuries, multiple scle-
rosis and cancermetastases. In addition, motility defects of
the animal cells themselves can lead to a variety of inher-
ited health problems, including male infertility, deafness
and chronic inflammatory diseases.

Introduction

Cell movement was observed and reported for the first
time as early as 1674, when Anthony van Leeuwenhoek
brought a glass bead that served him as a primitive mi-

croscope close to a drop of water taken from a pool. His
astonishment was immediate, as he later reported: “. . . the
motion of these animalcules in the water was so swift
and various, upwards, downwards and round about, that
it was wonderful to see . . . ” [29]. The organisms he saw
were probably ciliated protozoa – unicellular non-photo-
synthetic eukaryotic organisms – a fraction of a millime-
ter in length, swimming by the agitated but coordinated
motion of sometimes thousands of hairlike cilia on their
surface (see Fig. 1). Despite this very early observation,
only relatively recent advances of the past few decades
in microscopy, molecular biology and biochemistry have
enabled the discovery of the basic underlying molecu-
lar mechanisms by which cells are able to feel their en-
vironment, exert forces and move in a directed way in
search for nutrients or any other task they need to per-
form. The cytoskeleton, defined as the system of protein
filaments that enable the cell to insure its structural in-
tegrity and morphology, exert forces and produce mo-
tion, was first observed by H. E. Huxley and J. Hanson in

Cytoskeleton and Cell Motility, Figure 1
Electronmicrographs of different species of ciliated protozoa. Al-
most all members of the protozoan group are non-pathogenic
free-living organisms. Source: Foissner, W. and Zankl, A. (unpub-
lished)



1740 C Cytoskeleton and Cell Motility

Cytoskeleton and Cell Motility, Figure 2
Skeletal-muscle thick and thin filaments as seen by H. E. Huxley in 1957 [112] (Reproductions from the original 1953 paper [93] were
poor). Left panel: Thin longitudinal sections of rabbit psoasmuscle fibers, showing a single layer of a filament lattice, with individual
thick and thin filaments as well as crossbridges between them. Right panel: Higher-magnification view of a thin longitudinal section.
The relative dimensions were distorted due to axial compression during sectioning: crossbridges’ axial spacing is'40nm and thick
filaments’ diameter is '12 nm. Source: reprinted from [114] with permission from Blackwell Publishing Ltd. (based on an original
micrograph of 1957, see also [112])

1953, when they discovered the double array of filaments
in cross-striated muscles using electron-microscopy tech-
niques [93,110,111]. In parallel with A. F. Huxley and R.
Niedergerke, but independently, they published the next
year the “sliding-filament model”, which explains mus-
cle contraction via the relative sliding of two different
types of filaments, originally called “thick” and “thin” fila-
ments [109,115] (see Fig. 2). This, with the help of further
genetic, biochemical and crystallographic studies, dated
the beginning of a scientific understanding of the subcel-
lular mechanisms that underly cell motility.

In addition to the characterization of the biochemical
composition and organization of these subcellular struc-
tures, tremendous advances in the past two decades on
both physical micro-manipulation and fluorescence-mi-
croscopy techniques have enabled the characterization of
the processes involved with minute details. On the one
hand, thanks to the help of micro-pipettes, atomic-force
microscopes and optical tweezers, one can characterize the
forces that cells are able to exert as well as their responses
to applied stimuli. On the other hand, fluorescence-mi-
croscopy techniques provide information on the micro-
scopic dynamics of single molecules in vivo. Finally, com-
bined with biochemistry and gene-expression control, as
well as the micro-fabrication of bio-mimetic artificial sys-
tems in in vitro assays, these techniques have enabled the
study of simplified systems, where some specific aspects of
the processes involved can be characterized separately.

In addition to these biochemical and behavioral char-
acterizations, understanding the generic principles that

underly cell motility needed an integrated approach to ex-
plain how this complex molecular machinery can self-or-
ganize and lead to a coherent, purposeful movement at
the cellular level. Nothing better than a eukaryotic cell
can indeed be categorized as a complex system, in that
its behavior integrates the coordinated interplay of more
than ten thousand different protein types, numbering to-
gether millions and representing 60% of its dry mass [5].
The cytoskeletal machinery is made of hundreds of dif-
ferent molecular players. For example, in 2003, about 160
proteins were known to bind to actin, one of the major
biopolymers participating in cell structure and dynami-
cal behavior [53]. Knowledge about this biomolecular ma-
chinery is constantly evolving, and its undergoing com-
plexity can be appreciated by consulting up-to-date in-
formation on available databases1. Therefore, understand-
ing this complexity and describing how it is integrated at
the cellular level was made by biophysical studies, both
on experimental and theoretical grounds, which helped
to identify the generic principles behind cell motility. At
the molecular level first, the conversion of chemical energy
stored in covalent bounds into mechanical work relies on
out-of-equilibrium thermodynamic principles and asym-
metrical properties – or polarity – of the structures in-
volved, and happens in a highly-fluctuating environment
of brownian particles [13,233]. On larger length scales,
the appearance of coordinated motion in large collections
of proteins relies on collective phenomena, self-organi-

1See, for example, http://www.cytoskeletons.com/database.php.

http://www.cytoskeletons.com/database.php
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zation and dynamical symmetry breakings [129]. On yet
larger length scales, swimming of microorganisms has at-
tracted the attention of physicists for years [228,263], and
morphogenesis and pattern formations in cellular tissues
rely on self-organization phenomena, as was envisioned
for the first time by Turing in 1952 [141,269]. Therefore,
in addition to biophysical experimental techniques, vari-
ety of theoretical physics’ disciplines spanning the the-
ory of stochastic processes, statistical physics, out-of-equi-
librium thermodynamics, hydrodynamics, nonlinear dy-
namics and pattern formation have contributed and still
contribute to our understanding of cell motility.

The present article will mainly focus on the eukary-
otic cytoskeleton and cell-motility mechanisms. Bacterial
motility as well as the composition of the prokaryotic cy-
toskeleton will be only briefly mentioned. The article is or-
ganized as follows. In Sect. “The Diversity of Cell Motil-
ity”, we will first present an overview of the diversity of cel-
lular motility mechanisms, which might at first glance be
categorized into two different types of behaviors, namely
“swimming” and “crawling”. Intracellular transport, mi-
tosis – or cell division – as well as other extensions of
cell motility that rely on the same essential machinery will
be briefly sketched. In Sect. “The Cell Cytoskeleton”, we
will introduce the molecular machinery that underlies cell
motility – the cytoskeleton – as well as its interactions with
the external environment of the cell and its main regu-
latory pathways. Sections “Other Cytoskeleton-Associated
Proteins” to “The Prokaryotic Cytoskeleton” are more de-
tailed in their biochemical presentations; readers primar-
ily interested in the theoretical modeling of cell motil-
ity might want to skip these sections in a first reading.
We will then describe the motility mechanisms that rely
essentially on polymerization-depolymerization dynamics
of cytoskeleton filaments in Sect. “Filament-DrivenMotil-
ity”, and the ones that rely essentially on the activity of
motor proteins in Sect. “Motor-Driven Motility”. Finally,
Sect. “Putting It Together: Active Polymer Solutions” will
be devoted to the description of the integrated approaches
that have been developed recently to try to understand the
cooperative phenomena that underly self-organization of
the cell cytoskeleton as a whole.

The Diversity of Cell Motility

Swimming

At the cellular level, viscous hydrodynamic forces are
several orders of magnitude higher than inertial forces.
Therefore, simple reciprocal motions cannot produce for-
ward motion, and cellular swimming patterns need to be
asymmetric in space and time for the cell to advance. This

hydrodynamic problem faced by cells attempting to swim
have been eloquently summarized by Purcell as “life at
low Reynolds number” [228]. To solve this problem, bac-
teria use the rotation of a short helical or corckscrew-
shaped flagellum, which is a relatively rigid structure made
of a collection of hundreds of identical protein subunits
called flagellins [20]. The swimming of a single bacterium
can be impressively rapid, as bacteria such as Escherichia
coli - the common intestinal bacterium – swim at speeds
of 20 to 30 micrometers per second, for the cell itself is
only about two-micrometer long and half a micrometer
in diameter. The bacterium possesses multiple flagella that
gather together during swimming, and can fly apart as the
bacterium switches direction. Other bacteria such as Vib-
rio cholerae - the causative agent of cholera – use a sin-
gle flagellum located at one of their pole, but the propul-
sion mechanism relies always on the presence of a ro-
tary molecular motor located in the cell membrane, and
which is sensitive to modifications of the chemical envi-
ronment of the cell. Under normal conditions, the bac-
terium changes direction in an intermittent chaotic way
by reversing the rotational direction of its motors, a phe-
nomenon known as tumbling. When placed in a concen-
tration gradient of nutrients however, the cell can adapt
its tumbling frequency to swim towards nutrient-rich re-
gions, a phenomenon known as chemotaxis [181].

Even though it shares the same name, the eukaryotic
flagellum shares little structures and propulsion mecha-
nisms with its bacterial counterpart. It is indeed at least
ten times larger than a bacterial flagellum in both diame-
ter and length, and instead of being a rigid passive struc-
ture animated by a remote motor, it bears its motor activ-
ity along its length. Propulsion occurs by the propagation
of a bending wave along the flagellum as a result of the
relative sliding of a group of about 10 long parallel fila-
ments, which are engulfed in the cell’s plasma membrane
and are animated by hundreds of motor proteins in a co-
ordinated manner. Eukaryotic cells also use another type
of protrusions to swim, the cilia, which are much like flag-
ella in their internal structure, but which are shorter and
work usually in numbers, covering sometimes the whole
cell surface as in the case of paramecia or other ciliated
protozoa (see Fig. 1). Their beating pattern is then coor-
dinated at the cellular level, most often in a wave-type of
manner known as the metachronal wave. Beating cilia are
also found in animals, as for example in humans where cil-
iated cells play major roles in several organs like the brain,
the retina, the respiratory tract, the Fallopian tube and the
kidney [117].

Other strategies of swimming include the elegant
movement used by Eutreptiella - called metaboly – which
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Cytoskeleton and Cell Motility, Figure 3
Two pictures of amoeba proteus displaying different shapes of its pseudopodia. Note the dramatic change in cell shape during loco-
motion. Source: courtesy of Sutherland Maciver

consists in gradually changing the contour of the cell sur-
face to locally increase the drag exerted by the viscous
fluid around and move the cell forward [67]. Other organ-
isms like most motile species of Chrysophytes – a group of
marine photosynthetic protozoa – possess a flagellum at-
tached at their front instead of their back. The flagellum is
covered with stiff hairs projecting from its side that allow
the cell to move forward as a planar wave propagates from
the base to the tip of the flagellum [29]. Finally, one should
mention yet another type of motility – namely walking –
in which cells use also cilia and flagella animated in a co-
ordinated manner to enable the cell to literally “walk” over
surfaces. Walkingmotility relies on the same essential bio-
chemical structures as the ones employed in swimming
with collections of cilia.

Crawling

Cell crawling is the common mechanism employed by
most eukaryotic animal cells as they move through an-
imal tissues, constituted of other cells or filaments of
the extracellular matrix [5,29]. In contrast to swimming
cells, crawling cells in general do not employ conspicuous
motile organelles that are external to the cell, and which
can be studied in isolation. In general however, they either
move by means of wormlike cycles of extensions and con-
tractions of their cell body or of some specific protrusions,
or slide without visible means of protrusion, a process also
referred to as gliding. Most of crawling mechanisms rely
on the protrusion of specific dynamic extensions at the
leading edge of the cell, but gliding seems to rely some-
times on different mechanisms [67,96]. Even though glid-
ing mechanisms are widespread in bacteria, algae and par-
asitic protozoa, we still do not know for sure the molec-
ular machinery as well as the essential mechanisms that
underly these different phenomena [29,96].

The best characterized crawling mechanism is the so-
called amoeboid motility, referring to the locomotion of all
eukaryotic cells that move by means of protrusion of their
leading edge. Originally, the term was referring uniquely
to the crawlingmechanism ofAmoeba proteus, a particular
species of amoebae, whose protrusions are stubby three-
dimensional projections called pseudopodia2 (see Fig. 3)3.
But other types of protrusions exist, that are classified with
respect to their shape and dimensional organization. Two-
dimensional protrusions are the flat veil-shaped projec-
tions called lamellipodia, as they occur in fibroblasts’ or
fish epidermal keratocytes’ motility for wound healing4.
One-dimensional projections are the long thin projec-
tions called either filopodia or microspikes, and which oc-
cur for example in neuronal-growth-cone progressions5.
Filopodia usually protrude as small extensions of a lamel-
lipodium, and are used by the cell to extend its lamel-
lipodium in a given direction [136,257] (see Fig. 4). To

2Note that some zoologists also use the term “pseudopodia” or
“pseudopods” rather generally to refer to a variety of cell-surface pro-
trusions. These include the different types of protrusions described
here as playing a role in amoeboidmotility, but also the long extended
processes that some cell types use only as feeding apparatus, like ax-
opodia.

3A short video of a locomoting Amoeba proteus can be seen
on the following website: http://www.bms.ed.ac.uk/research/others/
smaciver/A.prot.Loc.mov.

4Fibroblasts are the cells that synthesize and maintain the ex-
tracellular matrix in most animal connective tissues. They provide
a structural framework (stroma) for many tissues, and play a cru-
cial role in wound healing. Keratocytes are epithelial cells that have
been characterized in the epidermis of fish and frogs, and that have
been named so because of their abundant keratin filaments. They are
specialized in wound healing, and are one of the most spectacular ex-
ample of fast and persistent locomotion in cells, with velocities up to
30 μm/min [5,158].

5Growth cones are structures that are found at the tip of axons
and dendrites, by means of which neuron cells extend.

http://www.bms.ed.ac.uk/research/others/smaciver/A.prot.Loc.mov
http://www.bms.ed.ac.uk/research/others/smaciver/A.prot.Loc.mov
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Cytoskeleton and Cell Motility, Figure 4
Two examples of lamellipodia. Left panel: A living fish keratocyte extends its leading lamellipodium during crawling. This is a phase-
contrast micrograph, a single frame from a video sequence (the whole movie can be seen on the following webpage: http://cmgm.
stanford.edu/theriot/movies.htm.). The lamellipodium and the cell body are labeled. The large arrow indicates the direction of mo-
tion. Source: reprinted from [36] with permission from Nature Publishing Group. Right panel: Snail neuronal growth cone by means
of which the nerve fiber elongates at its tip. Clearly visible are the radially-aligned bundle structures that project into filopodia at
the leading edge of the lamellipodium. Source: courtesy of Feng-quan Zhou; reprinted from [291] with permission from Rockefeller
University Press

these must be added the spherical membrane protrusions
called blebs, which occur as a result of cortical contrac-
tility, and which have been proposed recently to partici-
pate in the initiation of lamellipodium formation and the
elaboration of cell polarity for directed motion [211], as
well as in the amoeboid motility itself for example in Dic-
tyostelium, a model species of amoebae [289]. Finally, one
should mention a motility mechanism that can be classi-
fied as rolling, in which some organisms such as helizoa
use coordinated shortening and lengthening of long radi-
ating needlike extensions called axopodia to roll over sur-
faces. Axopodia happen also to be sticky extensions that
are most often used for catching preys in numerous proto-
zoa.

Depending on authors, the process of amoeboidmotil-
ity can be decomposed into three to five steps that occur
simultaneously. First the cell makes a protrusion, where
the membrane is pushed forward by means of the poly-
merization of cytoskeletal filaments. Then the protrusion
adheres to the substrate via the formation of anchoring
points, and subsequent contraction of the cell cytoskeleton
drags the cell body forward. Finally at the rear end, the cell
de-adheres and retracts [156,192]. Of these five steps, the
two last ones – namely de-adhesion and retraction – in-

volve similar structures and mechanisms as the formation
of the anchoring points and cell body drag, which led orig-
inally Abercrombie to describe his observation as a three-
step cycle [1]. The speed of amoeboid motility can range
from less than a micrometer per hour to more than one
micrometer per second, depending on cell type and stim-
ulation6.

Extensions of Cell Motility

In addition to moving the whole cell body, the machinery
that is responsible for cellular movement can be employed
for quite different tasks, which are as essential to the cell
survival and reproduction as its motility per se. As we have
earlier stated, even in the case of macroscopically non-am-
inated live forms, the constitutive cells need constantly to
displace their internal organelles for their metabolism to
be maintained [241]. When looked under the light micro-
scope, mitochondria, vesicles, lysosomes and ingested par-
ticles display a rapid and sporadic movement that is inter-
spaced with relatively long periods of quiescence. Veloci-
ties are typically of the order of micrometers per second, as
the fastest known organelle transport is performed in the

6Cell-motility videos can be seen at http://cellix.imba.oeaw.ac.at.

http://cmgm.stanford.edu/theriot/movies.htm
http://cmgm.stanford.edu/theriot/movies.htm
http://cellix.imba.oeaw.ac.at
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Cytoskeleton and Cell Motility, Figure 5
a to h Fluorescence micrographs of mitosis in fixed newt lung cells stained with antibodies to reveal the microtubules (MT, green)
see Sect. “Biopolymers”, and with a dye (Hoechst 33342) to reveal the chromosomes (blue). The spindle forms as the separating
astral MT arrays, associated with each centrosome (a to c), interact with the chromosomes. Once the chromosomes are segregated
into daughter nuclei (f and g), new MT-based structures known as stem-bodies form between the new nuclei (g). These play a role
in cytokinesis (h), the actual cleavage of the two daughter cells. Source: reprinted from [237] with permission from The American
Association for the Advancement of Science

green algae Chara, whose chloroplasts are transported at
velocities that can achieve 60micrometers per second [39].
Of all cell types, the need for organelle transport is best il-
lustrated by the mammalianmotor neurons whose longest
extensions – the axons – even though typically only a few
micrometers in diameter, can reach lengths up to one me-
ter. Characteristic times that would be required for a mi-
tochondrion to naturally diffuse that distance in such a ge-
ometry range from 10 to 100 years. Instead, membrane
vesicles and organelles are actively transported in both di-
rections at speeds of about one to five micrometers per
second, which allows the whole journey to be made in
just a few days [29]. Finally, the probably most-spectacular

event of intracellular transport occurs during the essential
process of eukaryotic mitosis, by which duplicated chro-
mosomes are segregated from the mother cell and deliv-
ered to each of the nascent daughter cells. For this process
to occur, major structural reorganizations of the whole-
cell cytoskeleton are needed, during which a large and
complex cellular structure – the mitotic spindle - assem-
bles and drives the chromosomes apart in a coordinated
manner [193] (see Fig. 5).

Cell motility can also occur bymeans of molecularma-
chineries located outside the cell that needs to move. This
is the case in particular for mammalian pathogene bacte-
ria such as Listeria monocytogenes and Shigella and Rick-
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ettsia species, but also for some viruses like vaccinia virus.
These organisms propel themselves within and across the
cells they invade by utilizing the cytoskeleton of their
hosts [41,83,87,266]. Among these organisms, Listeria in
particular has become a model organism for studying
actin-based motility, a simplified version of the whole
amoeboid motility, and which can be seen as a represen-
tation of just the first step of this complex process in the
original Abercrombie description [36,194,222]. Other par-
ticular systems use different specific structures from purely
cell-cytoskeleton-based motility. Among these, vertebrate
skeletalmuscles contrast with standard cellularmotility, in
that they are structured in enormous multinucleated cells
that evolved specifically to generate extremely rapid, repet-
itive and forceful movements. The cytoplasm of these giant
cells is crammed full of a highly-organized, almost-cryt-
salline array of cytoskeletal filaments, whose only func-
tion is to produce contractile forces [29,113]. Another es-
sential event of cell division, namely cytokinesis – the ac-
tual cleavage of the two daughter cells – also involves the
contraction of relatively-sliding cytokeletal filaments, this
time under the form of a dividing ring [82].

Finally, other types of cells usemechanisms that do not
rely on their cytoskeleton for their motility. Of the most
spectaculars is the motility based on the stored mechano-
chemical energy in some supra-molecular springs, which
can then contract at velocities as high as eight centimeters
per second [179]. Yet another mechanism relies on some
stored purely-elastic energy that allows some insect-eat-
ing plants to catch their preys. This is the case for exam-
ple of the Venus flytrap Dionaea muscipula, whose leafs
can close in about 100ms, one of the fastest movements
in all plant kingdom. To achieve such a performance, the
plant relies on a snap-buckling instability, whose onset is
actively controlled by the plant after the arrival of a fly has
triggered some biochemical response via the disturbance
of mechano-sensitive hairs located inside the trap [69].

The Cell Cytoskeleton

The eukaryotic cytoskeleton is defined as the system of pro-
tein filaments that enable the cell to insure its structural
integrity and rigidity, regulate its shape and morphology,
exert forces and produce motion. As a framework that in-
sures structural integrity, the cytoskeleton is mainly con-
stituted of a cohesive meshwork of protein filaments that
extend throughout the cytoplasm of the cell. But being the
essential structure that produces movement at the cellu-
lar level, and thereby needing to be highly adaptable to
extracellular stimuli or rapid environmental changes, the
cytoskeleton has evolved into a highly-dynamic structure.

In fact, cytoskeletal filaments constantly grow and shrink,
associate and dissociate via multiple linkages, organize on
large scales into a dynamic network, and serve as an intri-
cated set of tracks to motor proteins that transport cargos
from one part of the cell to the other, or slide filaments
with respect to one another to produce contractile forces.
This section is devoted to the biochemical description of
this very-complex structure. In addition, its interaction
with the cell’s external world and its regulatory pathways
will be briefly presented, as well the prokaryotic cytoskele-
ton which, even though biochemically different, appears
more and more to resemble its eukaryotic counterpart on
a functional point of view.

Biopolymers

How can a eukaryotic cell, with a diameter of 10 microns
or more, be spatially organized by cytoskeletal proteins
that are typically 2000 times smaller in linear dimensions?
The answer lies in polymerization, this ability of the el-
ementary protein subunits (called monomers) to assem-
ble via physical interactions into extended linear struc-
tures that are made of a large number of them, typically
thousands (called thereby polymers, or here more pre-
cisely biopolymers). There are three types of biopolymers
in a given eukaryotic cell, namely actin filaments, micro-
tubules and intermediate filaments (see Fig. 6). Although
they are classified according to their respective thick-
ness, more interesting for cellular structures and functions
are their rigidity, which at thermodynamic equilibrium is
characterized by their persistence length Lp 7 [81].

Actin filaments – or F-actin – have a persistence
length that is usually accepted to be of the order of 15
to 17 μm [81,210], even though it has been reported that
actin rigidity should depend on the way it is decorated,
ranging from 9˙ 0:5 μm for bare F-actin to 20˙ 1 μm
for tropomyosin-bound actin filaments in skeletal-muscle
structures [119]. Actin filaments are two-stranded helical
polymers, 5 to 9 nm in diameter, and are built from dimer
pairs of globular-actin monomers – or G-actin – that are
polar in nature [5,29]. The two halves of an actinmonomer
are separated by a cleft that can bind adenosine triphos-

7The persistence length Lp is defined as follows: consider a thin
flexible rod of fixed length L, submitted to thermal forces. Its shape
is completely specified by the tangent angle �(s) in three dimen-
sions along the arc length of the rod [154]. The persistence length
Lp is defined as the characteristic arc length above which ther-
mal fluctuations of the angle �(s) become uncorrelated. Specifically,
hcos [��(s)]i D exp (�s/Lp), where��(s) is the three-dimensional
angle change over the arc length s. Lp is related to the rod’s mate-
rial Young modulus E and its geometrical moment of inertia I by
Lp D EI/kBT , where kBT represents thermal energy [81].
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Cytoskeleton and Cell Motility, Figure 6
Animal cells as seen in the fluorescencemicroscope after fixation
and labeling with specific probes. Actin filaments are stained in
red, microtubules in green, and the nuclei in blue. Source: cour-
tesy of Mark Shipman, James Blyth and Louise Cramer,MRC-Lab-
oratory Molecular Cell Biology and Cell Biology Unit, UCL, Lon-
don UK (unpublished)

phate (ATP) or its hydrolyzed form adenosine diphos-
phate (ADP)8. This is responsible for the existence of two
distinct ends to the whole filament, namely a fast growing
end – called “plus end” or “barbed end” – where mostly
ATP-bound monomers are located, and a slow growing
end – known as “minus end” or “pointed end” – that is
rich in ADP-bound monomers. The minus end has a criti-
cal actin-monomer concentration that is roughly six times
as high as that of the plus end. At steady state, and with the
help of monomeric diffusion, this drives the phenomenon
of treadmilling, a dynamic evolution of the actin filament
where actin monomers are added to the plus end, and re-
moved from the minus end at the same rate. During this
process, the total length of the treadmilling filament is kept
constant, while its center of mass is displaced at a con-
stant velocity, even though each individual polymerized
monomer do not move on average9 (see Fig. 7). For pure
actin at physiological concentrations, this process is rather

8The hydrolysis reaction of ATP (ATP • ADPC Pi , where
Pi designates inorganic phosphate) breaks a high-energy chemical
bond – here a phosphoanhydride bond – to drive many chemical re-
actions in the cell.

9Animated movies of this process can be seen at http://
www.uni-leipzig.de/~pwm/kas/actin/actin.html or http://cellix.imba.
oeaw.ac.at/actin-polymerisation-drives-protrusion.

Cytoskeleton and Cell Motility, Figure 7
Schematic representation of a treadmilling actin filament. The
arrows indicate the polarity of the filaments. Monomers are
added to the plus end and removed from the minus end at the
same rate, such that while the filament’s length remains con-
stant, its center ofmass is advancing. Top to bottom shows three
subsequent times. Source: courtesy of Karsten Kruse

slow and occurs at velocities of the order of a few microm-
eters per hour. But as we shall see in the following, special-
ized actin-binding proteins allow the cell to increase this
speed substantially, which makes actin forces exerted via
polymerization-depolymerization mechanisms one of the
key players in cellular motility.

Actin is the most abundant protein in a eukaryotic
cell (several grams per liter), and has been highly con-
served throughout evolution. It organizes into a variety of
structures, namely linear bundles, two-dimensional net-
works or three-dimensional gels, and is mainly concen-
trated in a layer located just beneath the plasmamembrane
and called the actin cortex. Of primary importance for cell
motility are the two-dimensional highly cross-linked net-
works that actin forms in lamellipodia, and the linear bun-
dles that are found in filopodia and which protrude from
the lamellipodia in a directed way. There, as we shall see
in Sect. “Filament-Driven Motility”, actin polymerization
plays a crucial role in driving cell motility. Finally, one
should mention the cortical rings that contract during the
process of cytokinesis to cleave the two daughter cells, as
well as the formation of stress fibers, which are force-pro-
ducing structures that are attached to anchoring points,
and which enable the cell to exert traction forces on the
substrate on which the cell is crawling10 (see Sect. “Cell
Anchoring and Regulatory Pathways”).

Microtubules are the stiffest of all polymers, with per-
sistence lengths ranging from 100 μm up to 6mm [213].
They are hollow cylinders with an outer diameter
of '25 nm and are made of tubulin subunits arranged
in 13 adjacent protofilaments. Tubulin is a heterodimer
formed of ˛- and ˇ-subunits, which can bind either

10Illustrations of these structures can be found at http://cellix.imba.
oeaw.ac.at. See also [136,257].

http://www.uni-leipzig.de/~pwm/kas/actin/actin.html
http://www.uni-leipzig.de/~pwm/kas/actin/actin.html
http://cellix.imba.oeaw.ac.at/actin-polymerisation-drives-protrusion
http://cellix.imba.oeaw.ac.at/actin-polymerisation-drives-protrusion
http://cellix.imba.oeaw.ac.at
http://cellix.imba.oeaw.ac.at
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guanosine triphosphate (GTP) or guanosine diphosphate
(GDP)11. Microtubules share some important properties
with actin filaments, in that they are polar, treadmill, and
can exert forces [51]. They typically organize radially from
a single microtubule-organizing center called the centro-
some, and connect to the actin cortex with their plus ends
towards the cell edge. In addition to giving the cell its
structural rigidity and shape, they actively participate in
regulating the actin cortex dynamics, focal-adhesion as-
sembly and disassembly, and in some cell types participate
in determining the cell polarity and its subsequent migrat-
ing direction (see Sect. “Cell Anchoring and Regulatory
Pathways”).

Intermediate filaments are the most flexible polymers
of the cell cytoskeleton, with persistence lengths of the or-
der of 0.3 to 1.0 μm. They range in diameter from 7 to
12 nm, in-between that of actin and microtubules. There
are different classes of intermediate filaments such as vi-
mentin, desmin, keratin, lamin and neurofilaments, and
they constitute together a large and heterogeneous fam-
ily, of which different cells possess different members. Un-
like actin filaments and microtubules, they are not polar,
do not treadmill, and are therefore thought to contribute
essentially to the structural and elastic properties of the
cell, but little to its dynamics and motility. One particular
example of intermediate-filament structure is the nuclear
lamina, located just beneath the inner nuclear membrane,
and that is responsible for its structural integrity.

Molecular Motors

Molecular motors constitute the subset of proteins and
macromolecular complexes that convert a given source
of energy into mechanical work [5,103]. The energy they
need is generally stored into either of two forms by the
cell: high-energy chemical bonds, such as the phosphoan-
hydride bonds found in ATP and GTP, and asymmetric
ion gradients across membranes. Known molecular mo-
tors can be classified into roughly five categories, namely
(1) rotary motors, (2) linear-stepper motors, (3) assembly-
disassembly motors, (4) extrusion nozzles, and (5) pre-
stressed springs. A nice table of the major different cell-
movements’ categories with the different cellular struc-
tures and molecular motors they rely on, can be found
in [67].

All known biological rotary motors use ion-gradient-
based sources of energy, and most of them use electro-
chemical forces based on hydrogen-ion (or proton) gra-
dients, also known as proton-motive forces. This is the case

11Similarly to ATP, GTP is a stored source of energy for the cell
that is consumed via a hydrolysis reaction, here GTP• GDPC Pi .

for example for the propulsion motor of bacteria that is re-
sponsible for their flagella to rotate [20,181], as well as for
the surprising rotary motor F0F1-ATPase that is responsi-
ble for ATP synthase in mitochondria and bacteria [290].
This rotary machine usually converts the electrochemical
energy stored in proton-concentration gradients, first into
mechanical motion, and then back into chemical energy
under the form of ATP. But the motor is also reversible, in
that it can harness the chemical energy of ATP to produce
or maintain the transmembrane electrochemical gradient
of proton concentration. This reversibility is best seen in
bacteria, when they switch from aerobic to anaerobic con-
ditions [5].

Most of the motors used in amoeboid motility are lin-
ear-stepper motors [103,246,258]. We shall therefore fo-
cus on this class of motor proteins in the remaining of the
present article. They walk on the linear tracks formed by
the polymerized cytoskeletal filaments, and can be clas-
sified into two different categories, namely processive and
non-processivemolecularmotors, sometimes designated as
“porters” and “rowers” [159]. The processivity is linked to
the duty ratio, the proportion of time that the molecule
spends attached to the filament as compared to the whole
motor cycle, namely one ATP-hydrolysis cycle [102] (see
Fig. 8). Typically, porters are individual walkers that carry
cargos across the cell, and therefore most often partic-
ipate in intra-cellular traffic. Rowers however work in
numbers, and are usually involved in generating contrac-
tile forces, like it is the case in skeletal-muscle fibers,
stress fibers or contractile rings that form during cytokine-
sis [82,109,113,115]. Structurally, all these motor proteins
can be divided into a motor domain, called the head, and
a tail or base. The head is the site of conformational change
of the protein during ATP-hydrolysis, and with which the
motor attaches to the filament. The tail connects the mo-
tor to its cargo or to other motors. Processive motors are
(homo-)dimers, such that as one head is attached to the
filament, the other can move to a new binding site. In that
case, the two tails of the associated monomers wind up to-
gether to hold to each other. Non-processive motors can
also be found in dimeric forms, one of the two heads being
then just unused.

Motor Families

Eukaryotic cytoskeletal motor proteins are divided into
three superfamilies, namelymyosins, kinesins and dyneins.
The motor proteins known longest belong to the myosin
superfamily [21], because of their high concentration
in skeletal muscles. All myosin motors walk on actin
filaments through a general four-step process: binding,
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Cytoskeleton and Cell Motility, Figure 8
a ATP-hydrolysis cycle, with the respective durations�on and�off of the attached and detached states of the motor. These durations
define theduty ratio r as r D �on/(�on C �off).bDuring the attached phase, the head of themotormakes aworking stroke ofworking
distance ı. The motor then unbinds from the filament, and makes a recovery stroke during the detached phase. By recovering its
initial conformation while detached, the motor avoids stepping backwards and so progresses by a distance equal to the working
stroke during each cycle. Source: reprinted from [102] with permission from Nature Publishing Group

power-stroke, unbinding, and recovery-stroke12 [102] (see
Fig. 8). Today, they are classified into 18 different classes,
with possibly dozens of different members in each class,
even in a single organism. The skeletal-muscle myosins
belong to the Myosin II family; they have long tails that
form dimeric ˛-helices and associate into the so-called
“thick filaments” originally observed by H. E. Huxley
and J. Hanson, while the “thin filaments” are F-actin
polymers [93,110,111] (see Fig. 2 and 9). Most myosin
molecules are plus-ended directed (to the exception of
Myosin VI), and non-processive (to the exception of
Myosin V, which is involve in vesicular transport). Their
very diverse mechanical features, in terms of step sizes,
duty ratios and stepping speeds, are very fine-tuned to
their functions13 [102].

Kinesin proteins share very similar structural features
with myosins in their head domain and are therefore
thought to have branched from a common ancestor with
myosins, but diverge in their tail structures [273]. They
walk on microtubules instead of actin filaments, are pro-
cessive, and are involved mainly in intracellular transport
like the transport of organelles along nerve axons14. The
kinesin superfamily has been divided into 14 families, and
a number of “orphans” that are so far ungrouped [189].
Most kinesin motors are plus-ended directed, like the con-

12Animated movies of myosin skeletal fibers’ detailed motion
can be seen at http://www.scripps.edu/cb/milligan/research/movies/
myosin.mov, or http://valelab.ucsf.edu.

13Up-to-date information about myosin motors can be found at
http://www.proweb.org.

14Animated movie of kinesin’s detailed motion can be seen at
http://www.scripps.edu/cb/milligan/research/movies/kinesin.mov or
http://valelab.ucsf.edu.

ventional kinesin I that founded the family [274]. Mem-
bers of the Kinesin-13 family are unconventional, in that
they can processively induce microtubule depolymeriza-
tion, a process that is essential to chromosome segregation
during mitosis15 [107] (see next Section).

Dynein proteins are less well-characterized. It is also
unknown whether they share a common ancestor with
myosins and kinesins, or whether they are the result of
convergent evolution. Two major groups of dyneins ex-
ist: axonemal dyneins, which drive the bending of eukary-
otic cilia and flagella by inducing the relative sliding of mi-
crotubules [226], and cytoplasmic dyneins, which are in-
volved in organelle and vesicular transport, as well as cell
division [133]. Most dyneins are minus-ended directed,
and interestingly, some dyneins can be non-processive at
high, but processive at low ATP concentrations.

Other Cytoskeleton-Associated Proteins

The coordination of the numerous different processes that
happen during amoeboid motility rely on a tight regula-
tion of the activity of the cell cytoskeleton, as well as its
anchoring to the substrate. In particular, as we shall see
below, the protrusion of the leading edge of the cell –
the first step of amoeboid motility – relies on the for-
mation of a highly-cross-linked and dynamic network of
actin filaments. Its formation and dynamical regulation
are carried out with the help of numerous accessory pro-
teins [224,257]. Following Pollard’s presentation [223,225]
(see Fig. 10), we can focus on the main proteins that
are involved in the formation, structure and dynamics of

15Up-to-date information about kinesin motors can be found at
http://www.proweb.org.

http://www.scripps.edu/cb/milligan/research/movies/myosin.mov
http://www.scripps.edu/cb/milligan/research/movies/myosin.mov
http://valelab.ucsf.edu
http://www.proweb.org
http://www.scripps.edu/cb/milligan/research/movies/kinesin.mov
http://valelab.ucsf.edu
http://www.proweb.org
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Cytoskeleton and Cell Motility, Figure 9
Schematic representation ofmusclemyofibrils, the basic contractile fibers of skeletalmuscles. Actin andmyosin filaments are period-
ically arranged in a polarity-alternated fashion. Between two “Z discs” is found the elementary structure that is periodically repeated,
the sarcomere, and where relative sliding of actin andmyosin filaments leads to contraction. Source: courtesy of Karsten Kruse

Cytoskeleton and Cell Motility, Figure 10
Dynamical organization of the actin network at the leading edge of a protruding lamellipodium. (1) External cues activate signalling
pathways that lead to GTPases and PIP2 activation (2). These then activate proteins of the WASP family (3), which in turn activate
Arp2/3 complexes that initiate new filaments as branching from existing ones (4). Each new filament grows rapidly (5), fed by a high
concentration of profilin-bound actin stored in the cytoplasm, and this pushes the plasmamembrane forward (6). Capping proteins
bind to the growing ends, terminating elongation (7). Actin-depolymerizing factor (ADF)/cofilin sever and depolymerize the ADP
filaments, mainly in the “older regions” of the filaments (8, 9). Profilin re-enters the cycle at this point, promoting dissociation of ADP
and binding of ATP to dissociated subunits (10). ATPactin binds to profilin, refilling the pool of subunits available for assembly (11).
Source: reprinted from [223] with permission from Nature Publishing Group (image based on an original figure of [224])

the actin network. Nucleation of the network starts after
biochemical signals have been integrated via G-protein-
linked membrane receptors, namely small GTPases and
PIP2 pathways [174] (see Sect. “Cell Anchoring and Regu-

latory Pathways”). Then members of the Wiscott Aldrich
syndrome protein (WASP) family that are anchored to the
cell’s plasma membrane (like Scar [175]), activate Arp2/3
(for actin-related proteins 2 and 3) complexes that are re-
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sponsible for the nucleation and maintenance of branch-
ing points in the network16. Then, in order to promote
growth of the actin gel, recycling of G-actin monomers as
well as the creation of new F-actin plus ends are stimu-
lated by mainly two types of proteins: (1) Actin-binding
proteins – such as profilin – that bind to actin monomers,
catalyze the exchange of ADP for ATP, and inhibits ATP
hydrolysis, a process that is antagonized by monomer-
sequestering proteins – like thymosineˇ-4 – that stabi-
lize ADP-bound G-actin. (2) Actin-depolymerizing fac-
tors (ADF) – such as cofilin (or ADF/cofilin) – that sever
and depolymerize ADP-actin filaments, thereby increasing
the pool of available G-actin monomers. The structure of
the network is further controlled by capping proteins that
can bind to F-actin plus ends to terminate their growth,
and thus limit the increase of free-growing plus ends. Fi-
nally, cross-linked structures are formed with the help of
actin cross-linkers like filamin, and actin-bundling pro-
teins like fascin, fimbrin and ˛-actinin. ˛-actinin and fil-
amin are most present in lamellipodium structures, as fim-
brin and fascin and most observed in filopodia [257]. Fi-
nally, the same as well as other actin-binding proteins (like
espin, fascin, fimbrin and villin) exist in other structures
where actin-bundles are formed, like bristles, microvilli
and stereocilia [234]. In skeletal muscles, tropomyosin
strengthens the actin filaments and prevents myosin mo-
tors from binding to actin when muscles need to be at
rest17. For a relatively recent review on the actin-binding
proteins, see [53].

Microtubule-associated proteins (MAPs) have been
classified into two types, and participate to microtubules’
stability and organization. MAPs of Type I are large fil-
amentous proteins that comprise a microtubule-binding
domain and a projection domain, thereby controlling the
spacing of microtubules. MAPs of Type II have simi-
lar structures and cross-link microtubules to membranes,
intermediate filaments or other microtubules. In addi-
tion, both types of MAPs promote microtubule assem-
bly and stability, and compete with motor proteins for
binding sites, such that they participate in microtubule-
transport regulation. Other MAPs that do not belong to
these classes are denoted XMAPs, as they have been orig-
inally identified in the Xenopus-frog eggs. Among these
are the plus-end-binding proteins (or +TIPs) that bind to
the microtubule growing ends and participate in their sta-

16In addition to Arp2 and Arp3, which are members of the Actin
related proteins (Arp) family in that they have sequences and struc-
tures that are similar to actin, the Arp2/3 complex contains five other
smaller proteins.

17Up-to-date informations can be found at http://www.bms.ed.ac.
uk/research/others/smaciver/Cyto-Topics/actinpage.htm.

bility, and the highly-conserved stathmin or oncoprotein
18 which, instead, destabilizes microtubules [10,249]. The
best understood microtubule end-binding proteins are
the MCAKs (for mitotic centromere-associated kinesins),
also known as Kin I kinesins, which are unusual kinesins
in that, instead of moving along the surface of micro-
tubules like other kinesin proteins do, they bind to micro-
tubules’ ends and trigger depolymerization in a processive
way [47]. In particular, they depolymerize microtubules
during mitosis to drive chromosome segregation [180].
For a review, see [104].

Cell Anchoring and Regulatory Pathways

The two first steps of cell crawling in the Abercrombie
classification consist in the protrusion of the leading edge
and its adhesion to the substrate [1,156]. Although they
were thought to be largely independent processes, evi-
dences are accumulating that adhesion and protrusion
are highly interrelated [9,24,90,236]. Protrusion results
primarily from actin polymerization at the leading edge
of the migrating cell (see Sect. “Filament-Driven Motil-
ity”), and is regulated by the small GTPases Rho, Rac and
Cdc42 [25,235]. As Rho is known to activate actomyosin
contractility, Rac and Cdc42 induce actin polymeriza-
tion and the formation of actin-filled protrusions such
as lamellipodia and filopodia [91]. Through these path-
ways, the cell can respond to the chemical composition
of its environment, an example of chemotaxis: as a func-
tion of the gradients of chemoattractants or chemorepel-
lants in its environment, the cell regulates its sites of fastest
actin polymerization in order to move towards or away
from the source18 [215]. Of primary importance for the
accurate spatial regulation of these processes is the role
of microtubules, which in some cell types play a crucial
role in determining cell polarity and directional migra-
tion [136,204,236,255,256]. Microtubules have been pro-
posed to activate Rac and Rho, the latest via the release
of the GDP-GTP exchange factor GEF-H1 during micro-
tubule depolymerization [143,283].

Adhesion occurs via the formation of adhesion sites,
which rely primarily on molecules such as integrins, also
involved in regulating the cell behavior via different sig-
nal-transduction pathways [24,78,190]. An important as-
pect of that process is that it allows the cell to “feel” the
mechanical properties of its environment. This has been
shown to be important for the migration of fibroblasts, in
that they seem to migrate preferentially towards regions of

18See the movies associated with ref [215], as well as the one of
a neutrophil cell that chases a bacterium at http://www.biochemweb.
org/fenteany/research/cell_migration/movement_movies.html.

http://www.bms.ed.ac.uk/research/others/smaciver/Cyto-Topics/actinpage.htm
http://www.bms.ed.ac.uk/research/others/smaciver/Cyto-Topics/actinpage.htm
http://www.biochemweb.org/fenteany/research/cell_migration/movement_movies.html
http://www.biochemweb.org/fenteany/research/cell_migration/movement_movies.html
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stiff substrates, a process referred to as durotaxis [169]. In
addition, the mechanical properties of the cell’s environ-
ment have been proposed to be relevant for tissue-growth
directionality, as well as cell differentiation [56,243]. Ad-
hesion sites can be roughly divided into two broad cate-
gories, namely focal complexes, which locate beneath mi-
crospikes or filopodia, and focal adhesions, which locate at
the termini of stress fibers and serve in long-term anchor-
age [136] (See Fig. 11). Interestingly, these adhesion sites
are also regulated by small GTPases of the Rho, Rac and
Cdc42 families: focal complexes are signaled via Rac1 and
Cdc42, and can either turnover on a minute time-scale or
differentiate into long-lived focal adhesions via the inter-
vention of RhoA [136]. A schematic representation of the
integrated role of the small GTPases in regulating cell mi-
gration can be seen in Fig. 12. Such regulations are crucial

Cytoskeleton and Cell Motility, Figure 11
Schematic representationof theactin cytoskeleton in apolarised
fibroblast. The different organisational forms of actin filaments
and their relations to adhesion sites to the substrate are de-
picted: diagonal actin filament meshwork in the lamellipodium,
with associated radial bundles that sometimes protrude into
filopodia; contractile bundles of actin (stress fibers) in the cell
body and at the cell edge; and a loose actin network through-
out the cell. Arc-shaped bundles are sometimes observed that
move inwards under the dorsal cell surface (arc). The diagram
shows an idealized cell: in reality, actin arrays are interconnected
in various combinations and geometries. Adhesion sites are in-
dicated in red. The flat region behind the lamellipodium and in
front of the nucleus (N) is termed the lamella. At the cell front,
in lamellipodia and filopodia, actin filaments are all polarized in
one direction, with their fast-growing ends directed forward for
producing pushing forces and inducing protrusion; in the cell
body, actin filaments form bipolar assemblies with myosin pro-
teins (stress fibers) for retraction. Source: courtesy of Vic Small;
modified from [136] with permission from Elsevier Limited

for cell migration to occur optimally. Indeed, whereas ad-
hesion sites are necessary at the leading edge of the cell to
provide anchoring points on which the cell can exert trac-
tion forces, these need to be released at the rear for the cell
to move forward. This results in a biphasic response of the
cell-migration speed as a function of adhesive-ligand con-
centrations, in that too-low or too-high ligand concentra-
tions prevent either the traction forces to be exerted, or the
rear to be released [131,156]. How these regulatory path-
ways lead to a spatio-temporal feedback mechanism be-
tween actomyosin regulation and the focal-adhesion sys-
tem is still under investigation [24,90].

The Prokaryotic Cytoskeleton

This section is completely independent of the rest of the
article. Readers not interested in the biochemical compo-
sition of the prokaryotic cytoskeleton might want to skip
this section.

As cytoskeletal proteins’ structures are highly con-
served throughout the three domains of life (archaea, bac-
teria and eukarya), prokaryotic cytoskeletal proteins dif-
fer strongly in their sequences from their eukaryotic coun-
terparts. For this reason, and the fact that prokaryotes
have a relatively simple organization as compared to eu-
karyotic cells, it was long thought that they were lack-
ing a cytoskeleton. It is only in the 1990s that prokary-
otic homologs of tubulin, actin and intermediate filaments
started to be discovered. The first bacterial cytoskeletal
proteins to be brought to knowledge was the protein FtsZ,
whose relation to tubulin was discovered independently by
three groups in 1992 [43,200,232]. Later, it was found that
FtsZ could assemble into protofilaments that can be either
straight or curved as a function on the state of the nu-
cleotides, similarly to microtubules [58,104], and that its
structure at the level of protein folding was nearly iden-
tical to that of tubulin [171,206]. The second prokary-
otic cytoskeletal proteins to be discovered were MreB and
ParM also in 1992, and were shown to be distant relative
of the actin superfamily by sophisticated sequence-align-
ment techniques [26]. Later, it is only in 2001 that MreB
was proven to be capable of self-assembly into cytoskele-
tal filaments that resemble much closely F-actin struc-
tures [126,276]. Finally, an homolog of intermediate fila-
ments has been found recently in the bacterium Caulobac-
ter crescentus, but only in this particular species so far [16].
Since it is responsible for giving the bacterium its crescent
shape, it was given the name of crescentin.

Despite their sequencial differences with their eukary-
otic counterparts, prokaryotic cytoskeletal proteins share
with them strong homologies in their structural as well as
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Cytoskeleton and Cell Motility, Figure 12
Schematic representation of the integrated roles of Rho, Rac and Cdc42 proteins in regulating cell migration. By inducing actin-
filament assembly, filopodia and focal-complexes formations, Cdc42 regulates the direction of migration (1). Rac induces actin poly-
merization at the cell periphery (2) and promotes lamellipodia protrusion. It also induces the formation of focal complexes at the
leading edge (3). Rho plays a role in regulating longer-lived structures, namely activating actomyosin contraction in the stress fibers
located in the cell body and at the rear (4), as well as promoting the assembly of focal-adhesion complexes. Source: courtesy of Alan
Hall; reprinted from [229] with permission from Elsevier Limited

functional properties [8,188]. They are classified into four
groups [253]: (i) Actin homologs are constituted by MreB
and MreB homologs, ParM, and MamK. MreBs play an
important role in a number of cellular functions, such as
regulation of cell shape, chromosome segregation, estab-
lishment of cell polarity and organization of membranous
organelles. ParM proteins are involved essentially in plas-
mid partitioning, andMamK is involved in the subcellular
organization of membrane-bounded organelles. Similarly
to actin, MreB and ParM protein families present poly-
merization-depolymerization dynamics that are driven by
ATP hydrolysis. Less is known about MamK. (ii) Tubulin
homologs contain FtsZ and the BtubA/B proteins, which
constitute two other families of GTPases as compared to
tubulin. As FtsZ is crucially involved in cytokinesis via its
ability to form contractile rings and spiral structures, the
role of BtubA/B proteins, which are much less widespread
in the bacterial kingdom, has less been characterized so far.
(iii) The intermediate filaments’ homolog crescentin has
only been found in Caulobacter crescentus and, as for its
eukaryotic counterparts, is mainly involved in cell shape
and structural integrity. (iv) Finally, the large MinD/ParA
superfamily is made of prokaryotic cytoskeletal proteins
that have no counterparts in eukaryotes. They however
have the ability to organize into polymeric filaments, and
present ATPase activity. Proteins of the MinD group are

involved in placement of the bacterial and plasmid divi-
sion sites, whereas proteins of the ParA subgroup are pri-
marily involved in DNA partitioning.

Interestingly, cytoskeletal proteins seem to have been
strongly conserved throughout evolution in each of the
three separate domains of life, but differ quite substan-
tially across domains [57]. Bacterial FtsZs proteins are 40–
50% identical in sequence across species, and share even
the same amount of similarities with their archaeal coun-
terparts. Bacterial MreBs are generally 40% conserved.
Among eukaryotes, the conservation is even stronger: it
reaches 75–85% for tubulin and 88% for actin, one of the
most conserved protein in the eukaryotic domain. In the
case of archaea, MreB and actin homologs have not yet
been identified for sure [57].

Filament-DrivenMotility

Many kind of movements in eukaryotic cells are driven
by polymerization-depolymerization mechanisms of cy-
toskeleton filaments, for which motor proteins per se
are not required. Instead, the chemical energy stored in
high-energy hydrogen bounds (under the form of ATP or
GTP) is converted into movement via treadmilling mech-
anisms [264]. Two types of filaments have this ability,
namely microtubules and actin filaments.
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Microtubule Growth and Catastrophes

Microtubules are the stiffest of all cytoskeletal filaments,
which confers them the ability to organize and stabilize
both the cell structure and its transport network for in-
ternal communication and distribution. Depending on the
cell need, they constantly reorganize or exert forces on
the cell membrane or other organelles they transport. This
is the case for example during the organization of the
mitotic spindle, the structure formed prior to chromo-
somal segregation during mitosis [248]. There, chromo-
somes gather in a plane halfway from two microtubule-
organizing centers – the centrosomes – that are located
at each pole of the future dividing cell, and from which
the microtubules tear the chromosome pairs apart [6,118]
(see Fig. 6, especially panels C to F). For this mecha-
nism to happen, microtubules constantly exert pulling
and pushing forces both on the chromosomes and the
cell membrane, a mechanism that allows for correct po-
sitioning of the site of cell-division [288]. Coupled with
kinesin-motor activity, correct positioning of the centro-
somes relies crucially on the ability of microtubules to
grow and shrink spontaneously, a dynamics that provides
feedback to centrosome positioning and leads to oscil-
lations orthogonal to the cell spindle axis [85,86]. Such
a mechanism is also responsible for the correct position-
ing of the nucleus in the fission yeast Schizosaccharomyces
pompe [268].

Understanding microtubules’ polymerization-depoly-
merization dynamics started with the first observation that
they display phases of relatively slow growth, alternated
with phases of rapid shrinkage [191]. Changes from one
type of behavior to the other are referred to as catastrophes
for the conversion from growing to shrinking, and rescues
for the opposite transition. Observations of this behavior
were further made in culture cells [244] and cellular ex-
tracts [19], which confirmed the existence of such dynamic
instabilities in vivo. During mitotic-spindle formation, it
has later been shown that the specialized structures that
connect the microtubules to the chromosomes, the kineto-
chores, can “capture” and stabilize growing microtubules,
preventing them from undergoing catastrophes [95]. For
a review, see [134].

Further characterization of microtubules’ biomechan-
ical properties came from experimental studies of the
forces produced by their polymerization-based growth.
Analyzing force-induced microtubule buckling [50], mi-
crotubule forces were characterized as being potentially
as high as those produced by motor proteins – typically
a few pico-Newtons [123] – and to be able to deform
membranes [74] or center asters in mirofabricated cham-

bers [62,101], a mechanism that imitates nucleus position-
ing in fission yeast. For reviews, see [51,104].

Actin Gels

As earlier stated, the first step of amoeboid motility in
the original Abercrombie classification occurs via protru-
sion of the leading edge of the cell. This mechanism re-
lies mainly on the polymerization dynamics of actin fil-
aments [194,214,225]. Actin polymerization is known to
play a primary role at the plasma membrane, where it
is nucleated by proteins of the WASP family via Arp2/3
complexes (see Sect. “Other Cytoskeleton-Associated Pro-
teins”). It has also been proposed to be responsible for
driving endocytosis and the movement of endosomes,
both in cultured cells and yeast [132,186].

Our understanding of eukaryotic actin-based motil-
ity has grandly benefitted from the motility mechanism
of the bacterium Listeria monocytogenes. This pathogene
moves at velocities of the order of severalmicro-meters per
minute by nucleating the formation of an actin “comet-
tail” that, while polymerizing thanks the host’s cytoskele-
tal machinery, pushes the pathogene forward [265] (see
Fig. 13). This particular motility mechanism, studied in
in vitro assays, has allowed for the identification of the
minimal set of proteins needed to actin-based motility, as
well as the role of several of the main actin-related pro-
teins [170,284]. It has also been used as a probe for the cell
cytoskeleton network structures and visco-elastic proper-
ties in a position-dependent manner [153], and has shed
light into the basic elementary principles of actin-based
motility [71,87,194,214].

Except for very recent reports [68], nearly no force
measurement has yet been done on single actin filaments.
Due to their smaller bending rigidity, the corresponding
stall force is expected to be orders of magnitude smaller
than that of microtubules because of buckling phenom-
ena. Instead, large forces can only be obtained when highly
cross-linked actin filaments work as a whole and form
a relatively rigid network, as it is the case in filopodia pro-
trusion. Forces generated during actin-based propulsion
have been measured on polymerizing actin gels, in par-
ticular using in vitro assays based on artificial biomimetic
systems. Forces in the range of a few nano-Newtons have
been found for gel comets originating from 2-μm-size
polystyrene beads [182].

Other bio-mechanical characterizations of actin net-
work’s properties concern the study of its gel-like vis-
coelastic properties. In particular, transitions between
a solid-like elastic material and a solution-like viscous ma-
terial have been observed [73]. These could rely in part on
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Cytoskeleton and Cell Motility, Figure 13
Listeria bacteria moving in a cell via actin-based motility. This
is a phase-contrast micrograph, a single frame from a video se-
quence (thewholemovie canbe seen on the followingwebpage:
http://cmgm.stanford.edu/theriot/movies.htm). The kidney ep-
ithelial cell was infected about five hours before the acquisition
of this video sequence. All of the bacteria in this cell are clonal
descendants of a single individual. A bacterium and its associ-
ated comet tail are labeled. Bacteria are moving in the direction
of the arrows. Source: reprinted from [36] with permission from
Nature Publishing Group

the biochemical-dependent mechanical properties of the
actin filaments themselves [119], on the generic proper-
ties of such semiflexible-filament networks [75], or on the
activity of motor proteins that help disentangling the net-
work and thereby lead to its fluidization [106]. It has also
been observed that cross-linked actin networks display
an increase of their elastic modulus as a function of the
stress applied, a nonlinear behavior known as stress-stiff-
ening [63,259]. This might explain partly the interestingly
rich properties of cellular rheology [99,135], which have
been partly reproduced in in vitro measurements [77].
Among these, dynamical scaling of the stress stiffening
(see e. g. [76]) has been proposed to be the signature of
underlying self-similar mechanical properties of the cell
cytoskeleton [18,61]. Finally, the intermediate filaments as
well as the biochemical environment or preparation of the
actin network have been proposed to play an important

role inmodulating its rheological properties [75,122]. This
might contribute to the observed local changes in the elas-
ticity of the cell as it moves, a crucial aspect for driving its
motility [9,73].

Modeling Polymerization Forces

With general thermodynamic considerations, growth ve-
locities of polymerizing filaments can be understood as
follows: if kon and koff are the association and dissocia-
tion constants for monomers at the polymer tip, and ı is
the distance a filament grows under addition of a single
monomer, a typical growth velocity of the polymerizing
filament is given by: v D ı[kon � koff].When experiencing
a force f opposing polymerization, like the cellular mem-
brane resistance at the leading edge of the advancing cell,
filament-growth velocity becomes:

v( f ) D ı
�
kon exp

�
�q

f a1
kBT

�

� koff exp
�
(1 � q)

f a1
kBT

��
: (1)

In this expression, kBT represents thermal energy, f a1
is the most probable work needed to add a monomer
in the presence of the force f , and q is a parameter de-
scribing how much the force f influences the on-rate as
compared to the off-rate. Under these assumptions, the
maximal force a given filament can produce via polymer-
ization, or stall force, is expressed as fs D (kBT/a1) �
ln (kon/koff). Even though good overall agreement with ex-
perimental data was obtained for individual microtubules
while choosing 13a1 D a and q D 1 (with a being the size
of a tubulin monomer) [50], the so-derived stall force was
too large as compared with experimental measurements.
This led to revising the dynamics of the microtubule-poly-
merizing end, proposing a1 ' a and q ' 0:22 as better
fitting parameters, pointing to a rich dynamics of micro-
tubule polymerization [140].

To understand the origin of polymerization forces, the
standard microscopic model relies on the ratchet mecha-
nism, a rectified Brownian motion originally introduced
in this context by Peskin et al. [219] to explain filopodia
protrusion, Listeria propulsion as well as protein translo-
cation. Filopodia protrusion in particular is thought to rely
essentially on actin-polymerization forces: when reaching
the cell membrane, growing F-actin filaments feel a force
opposing their growth, and therefore exert a force on the
membrane. Because of thermal fluctuations and mem-
brane’s as well as actin-filaments’ finite bending rigidities,
some space is constantly opened between the growing fila-
ment and the membrane. From time to time, an additional

http://cmgm.stanford.edu/theriot/movies.htm
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monomer can thereby be added to the growing filament,
which pushes the membrane forward19. In the simplest
case of a single stiff protofilament, the distribution P of dis-
tances x between the filament and the membrane is given
by the following Fokker–Planck equation:

@tP(x) D D@2x P(x)C f
D
kBT

@x P(x)

C konP(x C ı) � koffP(x) for x < ı

@tP(x) D D@2x P(x)C f
D
kBT

@x P(x)

C kon[P(x C ı)� P(x)]
� koff[P(x) � P(x � ı)] for x > ı ;

(2)

where notations are similar to the ones used in Eq. (1), and
to whichmust be added the effective diffusion coefficientD
for the distances x between the filament and the mem-
brane. The time-dependence of P is implicit. Using van-
ishing-current conditions at the leading edge x D 0, the
stall force can be obtained and is given by an expression
analog to that of microtubules models, with a1 D ı being
the size of a G-actin monomer. Including bending fluctua-
tions of the growing filament, this led to the Elastic Brow-
nian Ratchet Model [195], a generalization of which is the
Tethered Elastic Brownian Ratchet Model [197] that con-
siders that some filaments are attached to the membrane
via protein complexes (as it has been observed in the Lis-
teria-propulsion mechanism for example) and therefore
do not exert polymerization forces. When typical param-
eter values are plugged into these models, single actin-fil-
ament force generation is estimated to be of the order of
5–7 pN [198]. Taken into account that at the leading edge
several hundreds of actin filaments per micron work to-
gether to drive the cell forward, the resulting force is of
the order of nanonewtons per micron [197], a force large
enough to tackle the membrane load and resistance. How-
ever, it has since then been claimed that motor proteins,
called end-tracking motors, should be required to explain
observed forces in the case of Listeria propulsion for ex-
ample [49]. This work has been reviewed in [194].

Lateral interactions between filaments in an actin net-
work have been investigated via models that take into
account the branching structure of the network [37,38].
In particular, Autocatalytic Models assume that new
branches are generated from existing ones, which leads
to a growth velocity that is independent of the load [38].
To investigate the consequences of these models, two ap-
proaches have been followed, namely stochastic simula-
tions of the growing actin network, tracking each filament

19For an animated illustration, see http://www.jhu.edu/cmml/
movies/anim/eBRatchet2.swf.

position and orientation [37], and deterministic rate equa-
tions that include growth, capping and branching rates,
and which led to a comparison between ratchet and au-
tocalytic models [38]. Experimental tests of the two mod-
els have been performed in in-vitro systems, using Liste-
ria propulsion as well biomimetic systems [271] (see next
paragraph). While some Listeria studies favored the Teth-
ered Elastic Brownian Ratchet Model [184], some stud-
ies using biomimetic systems favored the Autocatalytic
Model [285], and several others neither of them. A possi-
ble explanation for these apparently contradictory results
may be that different experimental studies led to analyzing
different regimes of the force-velocity curve.

AModel System for Studying Actin-Based Motility:
The Bacterium Listeria monocytogenes

As earlier stated, our understanding of eukaryotic actin-
based motility has grandly benefited from the motility
mechanism of the bacterium Listeria monocytogenes (see
Sect. “Actin Gels”). While velocities of Listeria bacteria in
a homogeneous environment are typically constant, some
mutants progress in a saltatory manner [155]. This obser-
vation has been later reproduced in in vitro motility assays
using latex beads coated with the bacterium transmem-
brane protein ActA (that further recruits Arp2/3) [35], or
directly with VCA proteins, a sub-domain of WASP that
is responsible for actin-branching and polymerization nu-
cleation [22]. Such biomimetic systems have allowed for
the direct measurement of the characteristic polymeriza-
tion force that is produced by an actin gel [182], and for the
overall study of actin-basedmotilitymechanisms in simple
and well-controlled conditions [194,222,271].

Theoretical understanding of such actin-based propul-
sion mechanisms has come from two different angles,
namely molecular and mesoscopic, continuum models.
We have already reviewed the molecular models that
rely on brownian-ratchet mechanisms. They, in partic-
ular, have led to force-velocity curves that are consis-
tent with some observations of Listeria motion [184,197].
Continuum models describe the actin network as a com-
pressible elastic gel with an elastic modulus of about
5000 Pa [79,182,207] (see also Sect. “Macroscopic Phe-
nomenological Approaches: The Active Gels”). When
growing over a curved surface like the bacterium Listeria
or a coated bead, the gel deforms as it grows by monomer
additions on the particle surface, which in turn gener-
ates a stress that pushes the particle forward [79,207].
Monomer transport to the inner surface of the growing gel
is purely diffusive, with a diffusion constant that has been
estimated to be of the order of 2 μm2/s for actin monomers

http://www.jhu.edu/cmml/movies/anim/eBRatchet2.swf
http://www.jhu.edu/cmml/movies/anim/eBRatchet2.swf
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in an ActA-produced gel [221]. When originally initiated
on a spherical object like a rigid bead, the growth of the
gel layer starts isotropic, but ruptures into a comet-type
growth because of mechanical instability. The instability
relies on a positive feedback that involves creation of a ten-
sile stress as the gel grows because of geometrical effects,
and enhancement of the depolymerization rate or rupture
of the gel in regions of enhanced tensile stress [252]. The
instability occurs less rapidly with increasing bead size,
which explains why movement is more often observed
with small beads. This mechanism of tensile-stress accu-
mulation and rupture can also explain the saltatorymotion
observed with Listeria mutants and coated beads in some
conditions [22]: rapid phases of motion are due to the sud-
den rupture of the gel that pushes the particle forward, as
slow phases of motion correspond to progressive build-up
of lateral tensile stress. Depending on the size of the bead
as well as the concentration of proteins at its surface, this
dynamic instability can be present or not, which explains
the observation of both continuous and saltatory regimes
with coated beads as well as Listeria bacteria [22,23].

To further explore the properties of the actin gel and
the Listeria-propulsion mechanism, experiments with soft
objects like liposomes [80,270], endosomes [262] and oil
droplets [28] have been performed. They show that the
actin gel squeezes the object, compressing its sides and
pulling its rear, an effect that gives it a pear-like shape (see
Fig. 14). Analysis of the contour of the deformed objects
provides informations on the distribution of the normal
stress on the surface of the object. This could in princi-
ple allow for the derivation of the total force exerted on
the load in the case for example of oil droplets, where in-
terfacial tension is measurable and normal stress can be
deduced from Laplace’s law [28]. But in fact, assuming
a constant surface tension, the integration of the normal

Cytoskeleton and Cell Motility, Figure 14
Actin-based propulsion with liquid drops. Oil drops are covered with VCA, placed in cell extracts that are supplemented with actin,
and observed by fluorescence microscopy. Left panel: Note the bright actin comet and the pear-like shape of the droplet due to
squeezing forces exerted by the actin gel. Scale bar is 4 µm. Right panel:VCA is labeledwith fluorescin isothiocyanate (FITC). Note the
inhomogeneous distribution of the actin-polymerization promoter on the surface of the droplet. Scale bar is 3 µm. Source: reprinted
from [28] with permission from The American Physical Society

stress over the surface of the droplet gives a zero net value
of the force that is independent of the droplet shape, the
latest being regulated by the variation of the polymeriza-
tion velocity with normal stress. Instead, the distribution
of actin-polymerization promoters on the surface of the
droplet follows the gel elastic deformations, which in turn
creates pressure variations inside the droplet, and thereby
surface-tension gradients along its surface (see Fig. 14);
and these are at the origin of the final non-zero net pushing
force [28]. Finally, direct observation of the actin comet
during its growth on coated beads has shown that the
actin gel constantly undergoes deformations that depend
on the protein composition of the motility medium they
are placed in [212]. As a function of bead size and the con-
centration of cross-linkers or regulatory proteins, the bead
velocity can be limited either by diffusion of themonomers
to the coated surface, by polymerization velocity at the
surface of the bead, or by the elastic stress built up in
the gel. These findings, supported by experimental results,
buttress the idea that actin-based movement is governed
by the mechanical properties of the actin network, them-
selves tightly regulated by the proteins that are involved in
actin dynamics and assembly (see Sect. “Other Cytoskele-
ton-Associated Proteins”).

Another Example of Filament-Driven Amoeboid
Motility: The Nematode Sperm Cell

Even though, as described above, protrusion of the lead-
ing edge in amoeboid motility is most commonly actin-
driven, other cells, the nematode sperm cells, use an-
other cytoskeletal protein to drive their motility: the Ma-
jor Sperm Protein (MSP) [240]. Nematodes constitute one
of the most common phyla of all animal kingdom, with
over 80.000 different described species, and their sperm is
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thought to be the only eukaryote cell type that do not pos-
sess the globular protein G-actin. These cells offer an ideal
to study cell crawling since, dislike actin, MSP is a sim-
pler, more specialized protein that do not possess as many
regulatory or associated proteins, and in particular is not
known to bind any molecular motor (at the exclusion of
end-tracking proteins). MSPs being also apolar [31], the
nematodemotility constitutes one of the simplest of all cy-
toskeleton-driven motility mechanisms known to operate
in vivo [240,286].

Similarly to what has been done with biomimetic sys-
tems to study actin-based propulsion, motility assays us-
ing vesicles derived from the leading-edge of nematode
sperm cells of Ascaris species, have shed light into the
mechanisms at play [120]. In the presence of ATP, growth
of MSP fibers are capable of pushing the vesicle forward,
their polymerization being driven by specialized proteins
located within the vesicle membrane, a mechanism that
ressembles very much the Listeria-propulsionmechanism.
But, contrary to ATP-driven actin treadmilling, MSPs as-
semble into apolar filaments and lack a nucleotide binding
site for ATP hydrolysis. To power membrane protrusion,
it has recently been proposed thatmotor end-tracking pro-
teins processively polymerize MSP filaments, while keep-
ing the elongating filaments’ ends in contact with mem-
brane-associated proteins [48]. For cell progression how-
ever, a second force is required, namely a traction force
that pulls the cell body forward once the advancing lamel-
lipodium has been anchored to the substrate on which the
cell is crawling. In actin-based amoeboidmotility, this pro-
cess is motor-driven, but nematode sperm cells use instead
the sensitivity of their MSP to pH, whose decrease pro-
vokes reorganization, depolymerization and in fine con-
traction of the network [121,187,286]. Polarity in the cell
is maintained by an influx of protons close to the cell body,
which creates a pH gradient in the lamellipodium and
powers this process [137].

To quantitatively understand the mechanism underly-
ing this motility, both microscopic and phenomenologi-
cal models have been proposed. In the proposed micro-
scopic models, mechanisms underlying the traction-force
generation by solely cytoskeletal disassembly can be quali-
tatively understood as follows [27,286]: because of pH gra-
dient, MSP filaments tend to bundle at the front, and split
apart and disassemble at the rear [187]. A bundle with N
filaments being much stiffer than N isolated individuals
(with an effective persistence length of N2Lp as each in-
dividual has a persistence length Lp), it pushes the cell
membrane at the leading edge where filaments are bun-
dled, while splitting filaments exert contractile forces at the
rear. Indeed, because of entropic effects, filaments tend to

retract once split apart. Finally, even further decrease in
pH creates weakening of the attachments and dissociation
of the filaments for monomeric MSPs to be recycled at the
front [286] (see also [196]). In the proposed phenomeno-
logical approach however [124], the sensitivity to pH is de-
scribed as influencing the equilibrium swelling properties
of the gel only. As the gel treadmills towards the rear end
where acidic conditions are found, it tends to contract by
an isotropic multiplicative factor� that is position-depen-
dent. General elasticity theory of continuous media allows
to express the strain tensor as:

u˛ˇ D 1
2 (1 ��

2)ı˛ˇ C 1
2 (@˛uˇ C @ˇu˛) ; (3)

where u˛ are the components of the displacement vec-
tor (with ˛ D x; z). Assuming linear elasticity theory20,
the stress tensor is then obtained as �˛ˇ D u�� ı˛ˇ C
2�u˛ˇ , where  and � are the Lamé coefficients, which
further leads to a position-dependent tensile stress as was
introduced phenomenologically in [27]. While traveling
through the lamellipodium, tangential stress builds up,
which leads to rupture of the adhesion points once a crit-
ical force has been passed, and eventually drags the cell
body forward. Therefore, within this framework, only one
parameter is directly controlled by the pH – namely � –
and the pH in particular does not need to influence di-
rectly adhesion strength.

Motor-DrivenMotility

Generic Considerations

Despite the major role played by polymerization forces
in cellular motility, and in particular as we have previ-
ously seen in amoeboid motility, a vast amount of di-
verse motile processes in eukaryotic cells is driven by mo-
tor proteins (see Sect. “Molecular Motors”). Theoretical
studies of molecular motors started with the cross-bridge
model published independently by A. F. Huxley and H.
E. Huxley to explain the relative sliding of myosin fil-
aments with respect to actin filaments in cross-striated
muscle fibers [108,112]. This approach was later formal-
ized by Hill [97], who introduced the notion of different
“states” of a motor protein, each of these corresponding
to a thermodynamic-equilibrium state. Interpretation of
these different states was given in terms of different con-
formations of the motor protein and its interaction with
the filament, or in terms of the state of the hydrolysis re-
action of ATP, or both [54,159]. Justification for consider-
ing different thermodynamic-equilibrium states relied on

20For an introduction to the elasticity of continuous media, see,
e. g., [154].
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the observation that for the transient response of muscles,
the fastest response was known to be in the range of mil-
liseconds, as thermal equilibrium on molecular character-
istic length scales of 10 nm occurs after at most a few hun-
dreds of nanoseconds. In this class of models, progression
of the motor along the filament relies on asymmetric tran-
sition rates of the particle between the different states, for
which asymmetry of the filament and energy consumption
by the motor is required. Typically, after one cycle of con-
formational states, the motor protein has progressed by
one or several allowed binding sites on the periodic lat-
tice represented by the cytoskeletal filament. In between,
up to five or six different states could be involved [97,172].
Experimental confirmation came later with the direct ob-
servation of walking steps displayed by advancing molec-
ular motors [258]. Such observations were first obtained
studying kinesin motors in in-vitro motility assays, and
later with myosin motors displacing a filament that was
attached to two glass beads placed in laser-trap poten-
tials [32]. For a review, see [246].

Another class of models relies on the generalization of
Feynman’s famous “thermal ratchet”, in which the pres-
ence of different heat baths (namely thermal baths at dif-
ferent temperatures) can rectify the brownian motion of
a given particle and lead to its directed motion [64]. For
motor proteins, as we have already discussed, temper-
ature inhomogoneities in the system cannot hold long
enough to ground the mechanism. Instead, various differ-
ent isothermal rectifying models have been discussed to
describe the underlying mechanisms of different biophys-
ical processes [13,177]. Among these, one can mention
the translocation of proteins and force-generation by lin-
ear molecular motors (which includes cytoskeletal motors,
but also motors acting on DNA or RNA, like DNA-poly-
merases, RNA-polymerases and helicases), the ion trans-
port in ion pumps, and the rotary-motor processes such as
the one found in the F0F1-ATPase or the bacterial flagel-
lar motor. Such isothermal rectifying processes and their
underlying physical principles have been extensively re-
viewed in [129,233]. They all rely on a Langevin type of de-
scription of an overdamped particle of position x, moving
in a spatially-periodic potentialW(x) that reflects the mo-
tor-filament interaction, and subjected to a viscous friction
with coefficient � and a fluctuating force f (t) that reflects
the stochasticity of thermal fluctuations:

�
dx
dt
D �@xW(x)C f (t) : (4)

To rectify brownian motion, three different approaches
have been mainly followed, namely (i) random forces f (t)

whose fluctuations do not satisfy the fluctuation-dissipa-
tion (FD) relation, (ii) fluctuating potentials W(x; t) that
are time-dependent, and (iii) particle fluctuating between
states, where different states indexed by i D 1; : : : ;N re-
flects different conformations of the protein and interac-
tions with the filament.

In the following, no attempt will be made to exten-
sively present the literature on molecular motors. We shall
instead only briefly sketch the generic considerations of
the main proposed models, and focus more closely on
a particular example of them, the two-state model, which
has allowed for an understanding of the appearance of
spontaneous oscillations in systems of coupled motors.
This generic mechanism has been proposed to underly ax-
onemal beating, the generic mechanism that powers eu-
karyotic flagellar and ciliary-based motilities.

Phenomenological Description Close
to Thermodynamic Equilibrium

Sufficiently close to thermal equilibrium, out-of-equilib-
rium perturbations can be described using a generic lin-
ear-response theory that introduces generalized forces
which drive generalized currents [45]. In the context of
molecularmotors, the generalized forces that drive the sys-
tem out of equilibrium are the mechanical force fext acting
on the motor (including drag), and the chemical-potential
difference
� of the chemical reaction ATP• ADPC Pi
that drivesmotor power [129,217]. Linear-response theory
then gives:

v D 11 fext C 12
� (5)

r D 21 fext C 22
� ; (6)

where the coefficients ij are phenomenological response
coefficients. Here 11 and 22 can be viewed respectively
as a standard and generalized mobilities, and 12 and
21 as mechano-chemical couplings. Onsager relations
impose that 12 D 21, and the Second Law of Ther-
modynamics insures that the dissipation rate is positive:
TṠ D fextv C r
� � 0. Whenever both of the two terms
that appear in this inequality are positive, the system is
passive, but it works as a motor when fextv < 0, and as
generator of chemical energy when r
� < 0. The latter
function is not known for linear motors, but is the com-
monmode of operation of F0F1-ATPase, the protein com-
plex that synthetizes ATP from electro-chemical energy
that is stored in proton gradients [5,290] (see Sect. “Molec-
ular Motors”). The reversibility of this rotary engine can
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be related to the predicted reversibility that comes out of
linear-response theory: in the absence of an external force,
reversing the chemical potential difference 
� should re-
verse the sign of the velocity v without a need for a change
in the mechanism.

Hopping and Transport Models

Within the first class of models that we have mentioned
earlier, namely hopping models between different discrete
equilibrium states of the motor-filament system, generic
transition rates and periodicity in theses transition rates,
related to periodicity of the filament, are generally as-
sumed.Within this framework, one can calculate themean
velocity v and the diffusion coefficient D of the molecular
motor from analyzing the generic associatedMaster Equa-
tion [46]. For non-zero mean velocity to occur, at least one
of the transitions between states must break detailed bal-
ance, a feature that can be associated with chemical en-
ergy consumption. In the simplest case of only two possi-
ble states of themotor protein, one can derive simple com-
pact expressions for v andD [66]. Their dependence on the
external force further leads to the derivation of the force-
velocity curve, as well as a simple expression for the stall
force, namely the force at which the motor protein ceases
to progress on average.

To describe protein trafficking on a filament where
many motors are simultaneously engaged, like it is com-
monly the case for example in organelle transport by ki-
nesin proteins along microtubules, one can reduce the
number of states that a motor can occupy to one per fil-
ament binding site. Motors are then represented by par-
ticles that move on a one-dimensional lattice with homo-
geneous transition rates, to which attachment and detach-
ment rates from and toward the bulk can be added. This
description belongs to a class of driven lattice-gas models
that are used to study various transport phenomena, like
ionic transport in solids or traffic flow with bulk on-off
ramps [247]. In the simplest case of the absence of parti-
cle attachment and detachment, the model reduces to the
Asymmetric Simple Exclusion Process (ASEP) [250], orig-
inally introduced to describe the translation of messen-
ger RNA by ribosomes [173]. Including attachment-de-
tachment rates, the next simplest case describes the space
surrounding the filament as a reservoir of uniformly-dis-
tributed particles [147,216]. A second possibility is to in-
clude the dynamics of unbound particles explicitly, for
example on a cubic lattice [161]. Boundary terms can
also play an important role, and different possible choices
have been considered depending on the biological situa-
tion [138].

Consequences of these models are illustrated by vari-
ous important phenomena. Among these, one can find the
followings: anomalous transport due to repeated attach-
ments and detachments [4,161,205], domain walls that
separate regions of high and low motor densities in the
filament [161,216], phase separation in systems with two
motor species [60], and phase transitions when coopera-
tive binding-unbinding is introduced [139]. For a recent
review on these collective traffic phenomena, see [40] and
references therein.

The Two-State Model

One model that proved to be particularly useful for de-
scribing the rectification of brownian motion via coupling
to chemical hydrolysis reactions, is the so-called “two-state
model”. In this description, the molecular motor switches
stochastically between two different interaction states with
the filament, that are described by two different asymmet-
ric and l-periodic potentialsW1 andW2 representing po-
larity and periodicity of the filament [14,15,128,129,178,
217,218,227] (see Fig. 15a). The dynamics of this system
can be conveniently represented in terms of two coupled
Fokker–Planck equations that describe the evolution of
the probability density Pi (x; t) of the motor to be in state
i D 1; 2 at position x at time t. Explicitly, we have:

@tP1 C @x J1 D �!1P1 C !2P2
@tP2 C @x J2 D !1P1 � !2P2 :

(7)

The currents Ji(i D 1; 2) result from diffusion, interaction
with the potentialsWi, and the external force fext:

Ji D �i [�kBT@x Pi � Pi@xWi C Pi fext] : (8)

The transition rates!i(x)(i D 1; 2) between the two states
are driven out of equilibrium by ATP consumption, whose
strength can be represented by a single parameter˝ using
the following form:

!1(x) D !2(x) exp
�
W1(x) �W2(x)

kBT

�
C˝	(x) ; (9)

where 	(x) is a l-periodic function of integral one over
one period. For ˝ D 0, detailed balance is satisfied.
Within this formalism, it has been shown that both spatial
symmetry and detailed balance need to be broken for di-
rectedmotion to occur, which has been quantified in terms
of an effective potentialWeff [227].

Coupled Motors and Spontaneous Oscillations

Directly interesting for eukaryotic cellular motility driven
by cilia and flagella, is the motion of motors with respect
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Cytoskeleton and Cell Motility, Figure 15
Schematic representation of the two-statemodel as used in [128] for the calculation of the collective behavior of rigidly-coupled non-
processive motors. a, left panel:W1 represents the attached state of the motor to the filament and is therefore asymmetric and l-pe-
riodic; W2 represents the detached state where no interaction with the filament occurs. a, right panel: Illustration of the l-periodic
function� (x) as it appears in Eq. (9) and which represents ATP consumption in the system, here at preferred locations of the motor
on the filament, or at preferred configurations of the motor protein for ATP hydrolysis. b Schematic representation of a collection of
rigidly-coupled motors with periodicity q interacting with the filament, and coupled to its framework by a spring of stiffness K . Un-
der some conditions, this model leads to spontaneous oscillations. Both structures and behaviors are reminiscent of skeletal-muscle
myofibrils’ oscillations or axonemal beating (see Sect. “Axonemal Beating”). Source: reprinted from [128] with permission from The
American Physical Society

to their associated cytoskeletal filament when a collection
of them is rigidly coupled. Such structures are typical of
skeletal-muscle structures (where Myosin II motors asso-
ciate into the so-called “thick filaments”), or of the axone-
mal structure that drives oscillatory motions in cilia and
flagella. Such systems have been studied using the two-
state thermal-ratchet model [127,128], and a crossbridge
model [30,97,108,112,279,280]. Here we shall discuss es-
sentially the case of an ensemble of motors that are rigidly
linked to each other and walk collectively on a cytoskele-
tal filament whose interaction with the motors is described
by the two-state model [129]. In the case of randomly dis-
tributed motors, or motors distributed periodically with
a period q that is incommensurate with the filament pe-
riod l, the probability density P(�; t) of finding a particle at
position � D x mod l in either state i D 1 or 2, approaches
the value 1/l in the case of an infinitely-large number of
motors. In a mean-field approximation, equations of mo-

tion for the probability densities read:

@tP1 C v@�P1 D �!1P1 C !2P2
@tP2 C v@�P2 D !1P1 � !2P2 :

(10)

The force-velocity curve can then be computed using the
fact that fext D �v � f , where fext is the external force ap-
plied, � is the friction coefficient per motor protein, and
f is the force per motor protein exerted by the potentials:

f D �
Z a

0
d�(P1@�W1 C P2@�W2) : (11)

Expressing P2 as P2 D 1/l � P1, and P1 as a series expan-
sion in powers of the velocity v, one finds a generic se-
ries expansion for the force-velocity curve fext as a func-
tion of v in the steady state. As a function of the dis-
tance to thermal equilibrium ˝ , controlled by ATP con-
sumption by the motors, and which appears as a control
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parameter for the dynamics with a critical value ˝c, the
curve fext(v) can be strictly monotonic for ˝ � ˝c, or
present some multi-valuated regions for ˝ > ˝c, where
two stable velocity regimes exist for a given external force.
For symmetric potentials, the system is quiescent with
v D 0 at zero force for ˝ � ˝c, but present two possi-
ble opposite spontaneous velocities for ˝ > ˝c, a spon-
taneous symmetry breaking that is characteristic of sec-
ond-order phase transitions with characteristic mean-field
exponents. Such a reversible spontaneous movement has
been observed in a motility assay with NK11 proteins,
a mutant of the kinesin protein Ncd that has lost its di-
rectionality [55]. In addition, when the external force is
varied, a hysteresis is found for ˝ > ˝c, an experimen-
tal observation of which has been reported for a myosin
II motility assay under near-stalling conditions induced
by electric fields [239]. Numerical simulations of both sit-
uations have been performed using the two-state model
with a finite number of motors and in the presence ther-
mal noise [17].

Axonemal Beating

The previous and related models have been used to de-
scribe the spontaneous oscillations that have been ob-
served in skeletal-muscle myofibrils’ oscillations or ax-
onemal beating [72,209,287]. In these cases, it has been
proposed that the coupling of the motor backbone to
a spring prevents spontaneous steady-state velocities to
occur, but instead leads to spontaneous oscillations [128]
(see Fig. 15b). In the case of axonemal beating, of most rel-
evance for eukaryotic cell swimming, the elastic force re-
sults from bending of the microtubules and leads to self-
organization of the dynein motors. This collective behav-
ior has been proposed to explain the bending waves of cilia
and flagella [30,176] and analyzed in the framework of the
two-state model [33,34]. Close to the oscillatory instability,
wave-patterns can be computed, whose frequencies and
shapes depend on the filament length and boundary con-
ditions, and which are in good agreement with observed
flagellar beating patterns [278].

In the case of cilia however, beating patterns are typ-
ically assymetric, like it is at best exemplified in the case
of the two cilia of the green alga Chlamydomonas [29], an
observation that cannot be accounted for by investigating
beating patterns at the oscillatory instability only. Using
the same underlying model, it has been proposed that this
assymetry originates from the presence of transverse ex-
ternal flow that occurs as the organism is swimming [89].
In that case, the cilium tends to beat faster and quite
straight in the direction of the flow, whereas it comes back

slower and more curved against it, a beating pattern that
evokes power and recovery strokes. Hydrodynamics has
also been proposed to be responsible for dynamic coupling
of adjacent cilia, which results in both spontaneous sym-
metry breaking and synchronization of their beating pat-
tern [89]. This effect could be at the basis of the observed
beating waves that propagate for example on the surface of
paramecia21 as they swim, which originate from a constant
phase difference in the beating of the adjacent cilia, and
which have been calledmetachronal waves [29,88,89]. This
could also underly the breaking of symmetry that occurs in
mammalian development during gastrulation, and which
is responsible for left-right asymmetry. In that case, it has
been shown that beating of cilia located in a transiently-
formed epithelial chamber known as the node, create a di-
rectional flow which transports signaling molecules pref-
erentially to one side [29,117,185]. There, beating patterns
are unusual in that cilia swirl in vortical fashion rather
than beat [208], and hydrodynamic-driven synchroniza-
tion of these three-dimensional beating patterns has also
been studied [281].

Putting It Together: Active Polymer Solutions

The last part of this review is devoted to the presenta-
tion of some generic descriptions of the cell cytoskeleton,
when considered as a network of long protein filaments
that are cross-linked by a variety of smaller proteins. As
already discussed, filamentous proteins that are involved
in the cell-cytoskeleton dynamics are mostly F-actin and
microtubules (made of G-actin and tubulin monomers),
with which interact cross-linkers that can be either pas-
sive and stationary (such as ˛-actinin), or active and
mobile, consisting then of clusters of molecular motors
(mostly myosin and kinesin motors) (see Sect. “The Cell
Cytoskeleton”). Tomodel these systems, different comple-
mentary approaches have been developed, namely com-
puter simulations [202,203,260], and analytical descrip-
tions that can be roughly divided into three categories,
namely microscopic, mesoscopic, and macroscopic or
phenomenological hydrodynamic descriptions. The first
analytical approaches that have been developed corre-
spond to mesoscopic descriptions. There, starting from
a microscopic description of the filaments, the effect of
active cross-linkers is described via motor-induced rela-
tive velocities of paired filaments, where the form of such
velocities is inferred from general symmetry considera-
tions [144,145,148,201,251]. Microscopic approaches start
from what is known about the properties of the different
molecular players involved and their interactions, and aim

21An illustration of a paramecium can be seen in Fig. 1, center.
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to build large-scaled coarse-grained theories from statisti-
cal physics’ principles [2,3,11,12,146,165,166,168]. Finally,
macroscopic hydrodynamic approaches have adopted
a more phenomenological point of view: they harness the
generic symmetry and dynamical properties of the play-
ers involved, to derive directly effective continuous theo-
ries in terms of a few coarse-grained fields [94,125,130,150,
151,152,157,231,245,254,267,282,295]. Recently, attempts
have been made to bridge microscopic to macroscopic
models, and compare what results in being similar and dif-
ferent in the two types of approaches [3,164,166].

Interests for describing the cytoskeleton as an ensem-
ble of filamentous polymers actively connected by cross-
linkers have come to the scene since self-organizations
of motor-filament mixtures were observed experimen-
tally [203,260,272]. Among these, complex patterns that
include asters, vortices, spirals and connected poles or
networks have been observed in confined quasi-two-di-
mensional systems in in vitro experiments [203,260] (see
Fig. 16). Patterns where shown to be selected in a way that
is dependent on motor and ATP concentrations, and nu-
merical simulations based on microscopic models of rigid

Cytoskeleton and Cell Motility, Figure 16
Different large-scale patterns formed through self-organization of microtubules and kinesin motors as reported in [203]. Initially
uniform mixtures of proteins heated to 37°C displayed different patterns after 7min of self-organization. Patterns are shown at
equal magnification; the samples differ in kinesin concentration. a A lattice of asters and vortices obtained at 25 gml�1 kinesin con-
centration. b An irregular lattice of asters obtained at 37.5gml�1 kinesin concentration. cMicrotubules form bundles at 50 gml�1

kinesin concentration (scale bar, 100µm); insert: at higher magnification (scale bar, 10µm). d A lattice of vortices obtained at a ki-
nesin concentration smaller than 15gml�1. Source: courtesy of François Nédélec; reprinted from [203] with permission fromNature
Publishing Group

rods connected by active elements have shown to be ca-
pable of reproducing the experimental results [260]. Fur-
ther experiments were performed on systems that resem-
ble more closely a living cell, and which, while being sim-
plified versions of it, still exhibit some of its behaviors.
Along these lines, formations of bipolar spindles that do
not contain any microtubule-organizing center were ob-
served using cell extracts [116], and cell fragments that
contain only the actin cortex where found to self-prop-
agate on a substrate, with coexistence of locomoting and
stationary states [59,277].

Mesoscopic Approaches

Theoretical modeling of the cell cytoskeleton have benefit-
ted from the knowledge accumulated in equilibrium statis-
tical physics of polymer solutions and liquid crystals [44].
However, the cell cytoskeleton is an active medium for
which new analysis techniques needed to be developed in
order to describe, for example, its ability to actively self-
organize, exert forces and create motion. First, theoretical
models have aimed to describe pattern formations in sys-
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tems of actively-driven rigid filaments in one-dimensional
geometries [144]. Such configurations are represented in
vivo for example by stress fibers that are important for
cell-force generation, contractile rings that form during
cytokinesis, or the formation of filopodia for forward pro-
trusion during amoeboidmotility. There, dynamical equa-
tions that govern individual filaments were introduced us-
ing “mesoscopic” mean-field models, where the relative
sliding of paired polar filaments is described by an effec-
tive relative velocity that is induced by many individual
events of motor activity. General constraints on these rel-
ative velocity fields are imposed by symmetry considera-
tions that rely on the orientational polarity of the filaments
(see, e. g., [144]). In such systems, polarity sorting [201],
contraction [144,251], as well a propagating waves [148]
emerge from the models. Interestingly, it has been shown
that relative velocity of filaments of the same orientation is
important for contraction to occur [144], a phenomenon
that has been suggested to rely on motor-density inhomo-
geneities along the filament that create inhomogeneous fil-
ament interactions along their lengths [147]. More gen-
erally, the whole bifurcation diagram of this generic one-
dimensional model has been established, and motor-dis-
tribution dynamics has been introduced that lead to con-
tractile states with the generation of contractile forces,
of most relevance for stress fibers’ as well as contractile
rings’ dynamics [145]. Interestingly, the simplest version
of these models, when only one possible polymer orien-
tation is considered, has been mapped to hopping mod-
els that describe driven-diffusive systems [199]. In the ab-
sence of active cross-linkers, themodel reduces to a class of
hopping models known as the Zero Range Process (ZRP),
for which exact analytical solutions of the steady state as
well as one-dimensional phase transitions have been de-
scribed [92]. In the generic case however, the dynamics
defines a new class of driven-diffusive systems, which can
still be mapped in some cases to the ZRP analytic solution,
even though with a different criterium for condensation to
occur [199].

Microscopic Approaches

Microscopic approaches to describing the cell cytoskele-
ton dynamical behavior model explicitly all the consid-
ered different processes and interactions that occur be-
tween the differentmolecular players, and aim to derive ef-
fective dynamical equations for the different density fields
that enter the description, by coarse-graining the micro-
scopic dynamics. Most studies that have done so model
the motor-filament system as an ensemble of rigid rods
of fixed lengths, which interact via point-like cross-linkers

that can induce relative sliding as well as rotational mo-
tions [2,3,146,165,166]. Exceptions to this rule are theoret-
ical descriptions of the mechanical response of active-fila-
ment solutions to high frequency stimuli [162,168]. There,
anomalous fluctuations occur that are dominated by the
bending modes of the filaments in combination with the
activity of the cross-linkers. Inspired by polymer physics
at thermodynamic equilibrium, excluded-volume interac-
tions as well as entanglements are taken into account in
the description. In particular, the system exhibits acceler-
ated relaxation at long times due to directed reptation that
relies on active phenomena.

Attempts at deriving the motor-mediated interac-
tion between filaments from microscopic descriptions
have been performed in [2,3,11,12,165]. See also the re-
view [163]. In [11,12], a generalization of the Maxwell
model of binary collisions in a gas is used to describe the
dynamics of polar rods whose inelastic and anisotropic in-
teractions reflect the presence of active crosslinkers. Ori-
entational instabilities lead to bundling as well as the
formation of asters and vortices patterns. In [2,3,165], fil-
aments are described as rigid rods of fixed length, and
hydrodynamics is obtained by coarse-graining the Smo-
luchowsky equation for rods in solution, coupled via
excluded-volume andmotor-mediated interactions. There
are two main motor-mediated mechanisms for force
exchange among filaments. First, active crosslinkers in-
duce bundling of filaments, building up density inhomo-
geneities. Second, they induce filament sorting as a func-
tion of their polarization state. As a result, phase dia-
grams are derived that show instabilities of the homo-
geneous states at high filaments’ and crosslinkers’ den-
sities. In particular, all homogeneous states are rendered
unstable by the same mechanism of filament bundling,
a fact reminiscent of the effect described in [144] where
the interaction between filaments of the same orientation
has been shown to be important for contraction to oc-
cur. Interestingly, the broken directional symmetry of the
polarized state yields an effective drift velocity that de-
scribes filament advection. This convective-type term de-
scribes a genuine out-of-equilibrium contribution that is
structurally not present in phenomenological descriptions
based on systematic linear expansions close to thermody-
namic equilibrium (see below). Such a term is reminiscent
of the one introduced in earlier studies of self-propelled
nematic particles [230,254,267], as well as of the explicit
flow of the solvent taken into account in [150,151,282].
Other effects of higher-order nonlinear terms have also
been discussed in [292,293], where pattern selection be-
tween stripe patterns and periodic asters occurs via non-
linear interactions.
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Macroscopic Phenomenological Approaches:
The Active Gels

The third category of approaches that have been devel-
oped to try to understand the dynamical behavior of the
cell cytoskeleton as a whole, are effective phenomenologi-
cal theories which rely on the hypothesis that large length-
and time-scales behaviors of the cytoskeleton are largely
independent of the microscopic details that underly its dy-
namics, but depend instead only on a few macroscopic
fields that capture the relevant behavior. Sufficiently close
to thermodynamic equilibrium, these relevant fields de-
scribe the hydrodynamic modes (or slow modes) of the
dynamics, namely the modes whose relaxation rates go
to zero at long wavelengths. As for equilibrium systems
close to a critical point, such hydrodynamic modes cor-
respond to the conserved densities on the one hand, and
the order parameters that break continuous symmetries
on the other hand [45,100]. To write generic theories for
the dynamics of these hydrodynamic modes, standard ap-
proaches consist in writing systematic expansions in the
different couplings that are allowed by the symmetry prop-
erties of the system. In the vicinity of a critical point, which
occurs generally when a continuous symmetry is spon-
taneously broken after a second-order phase transition
has been traversed, the concept of renormalization group
has given a theoretical framework to identify universality
classes: starting from the full nonlinear expansions of the
underlying stochastic dynamics, only a few relevant pa-
rameters matter for the asymptotic scaling laws that oc-
cur at the transition [65,100,294]. Even though originally
developed to study equilibrium critical points, the renor-
malization-group concept has allowed for the characteri-
zation of some out-of-equilibrium universality classes (see
e. g. [70,238,261] and the review [98]).

Away from such remarkable points however, any term
allowed by symmetry in a systematic expansion is a pri-
ori relevant. The standard approach for systems close to
thermodynamic equilibrium consists in writing general-
ized thermodynamic forces and fluxes that are related to
each other by linear-response theory. Constraints on the
generic coupling constants to linear order emerge from the
spatio-temporal symmetries of the system, and correspond
to the Onsager relations and the Curie principle [45]. In-
spired by the dynamics of liquid crystals [44,183], a hydro-
dynamic theory has been developed that describes the cy-
toskeleton as a visoelastic polar gel, driven out of equilib-
rium by a source of chemical energy [150,151,152,282,295]
(this work has been reviewed in [130]). Among other ap-
plications, such or similar approaches have been applied
to the description of pattern formation in motor-micro-

tubule mixtures [157,245], as well as the collective dynam-
ics of self-propelled particles [52,94,254,267].

Originally, this hydrodynamic theory has been pre-
sented as a generic theory for active viscoelastic materi-
als made of polar filaments, referred to as active polar
gels [151]. Within the framework of the previously-de-
scribed general formalism, here applied to the cytoskele-
ton, conserved quantities are the different number densi-
ties that enter the dynamics, namely the number densi-
ties of subunits in the gel, of free monomers, and of re-
spectively bound and unbound motors to the filaments.
To these must be added the solvent density and the to-
tal mechanical momentum. Source terms in the conser-
vation equations correspond to polymerization and de-
polymerization of cytoskeleton filaments, attachment and
detachment of motor proteins to the filaments, and the
potential presence of an external force. Order parameters
correspond to orientational order parameters that origi-
nate from the polarity of the filaments. Namely, they cor-
respond to momenta of the local polarization vector of
individual filaments u, and most often only the first mo-
mentum p D hui is considered that represents the locally-
averaged polarity in the gel22. To these must be added
a crucial parameter that drives the system out of equi-
librium, and which originates from the actively-main-
tained source of chemical energy in the cell, correspond-
ing to out-of-equilibrium concentrations of ATP versus
ADP and Pi . This parameter 
� is expressed as the dif-
ference in chemical potentials of ATP versus ADP plus
Pi : 
� D �ATP � (�ADP C �Pi ). After identification of
the different conjugated generalized fluxes and forces, that
are split into dissipative and reactive parts as a function of
their properties under time-reversal symmetry, the con-
stitutive equations that specify the dynamics are written in
terms of a generalizedMaxwell model, which describes the
viscoelastic dynamical properties of the gel. Under its sim-
plest form and for nonpolar viscoelastic gels, the Maxwell
model writes
�
1C �

D
Dt

�
� 0˛ˇ D 2�

�
v˛ˇ �

1
d
ı˛ˇ v��

�
C �̄ı˛ˇ v�� ;

(12)

in d dimensions. Here v˛ˇ and � 0
˛ˇ

are the symmetric
parts respectively of the velocity-gradient tensor @˛vˇ and
the viscous stress tensor, � and �̄ are respectively the shear
and bulk viscosities, and � D E/� is the viscoelastic relax-
ation time that is related to the Young elastic modulus E

22The next momentum q˛ˇ D hu˛uˇ � d�1 p2 ı˛ˇi, where d is
the dimension of space, is a symmetric traceless tensor of order two
that corresponds to nematic order.
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and to the shear viscosity �. This relaxation time describes
the crossover between an elastic behavior at short times
that resembles that of a solid gel and a viscous behavior at
long times that resembles that of a fluid23. Finally, D/Dt
represents a convective corotational derivative that takes
into account invariance with respect to translations and
rotations in the system. In the general framework of active
polar gels close to thermodynamic equilibrium, generic
linear couplings are added to this model following the gen-
eral procedure described above. Extensive presentations of
the complete formalism can be found in refs. [130,151],
which also include discussions about its limitations and
some of its possible extensions. In particular, in [130], ex-
tensions that aim to include the contributions of rotational
viscoelasticity, of some nonlinear couplings and of passive
as well as active sources of noise are briefly discussed. The
main developed extension so far concerns the generaliza-
tions of this formalism tomulti-component active gels that
are now being developed [125,167]. These allow in partic-
ular to take into account the possible permeation of the cy-
tosol through the cytoskeletal gel, which affects force bal-
ance in the system, and which might be of importance for
cell motility.

Despite its recent development, this generic theory of
active polar gels has been applied to the description of
some systems that are of particular relevance for cell motil-
ity or experimental situations observed in vitro. Its first ap-
plication was the study of topological defects in the polar-
ity field of the gel that lead to the formation of patterns
such as asters, vortices and spirals [150]. As a function
of two dimensionless parameters representing the relative
strength of the coupling to the chemical potential
� and
to the bend and splay moduli of the polar gel, a phase dia-
gram was derived where vortices and asters give rise to ro-
tating spirals via dynamic instabilities. These relate to the
spatial patterns that have been observed in vitro [203,260],
as well as to the creation of spontaneous motion, of most
relevance for cell motility. In a different geometry, namely
a cylinder of finite diameter and length, the formalism has
been applied to establish a phase diagram of ring forma-
tion that contains phases of one or multiple rings, and
which can be quiescent or oscillating [295]. This is relevant
for understanding the formation and localization of corti-
cal rings that form prior to cytokinesis and for which dou-
ble-ring formation has been observed with certain plant
cells [84]. To understand the generation of active flows

23Note that only one relaxation time is assumed to characterize the
system, as some experiments suggest that a power-law distribution of
relaxation times is better suited to describe cytoskeleton dynamics,
potentially because of some scale-invariant dynamical properties in
the system [18,61].

that might be of relevance for cell crawling, a generic phase
diagramhas been derived for a two-dimensional active po-
lar film that is compressible [282]. Compressibility here
might refer to different thicknesses in a three-dimensional
incompressible gel that is described in two dimensions
after integration of the density fields over its thickness.
Within this framework, density fluctuations couple gener-
ically to polarity splay, and different topological phases of
the gel-polarity organization are found that could corre-
spond to some of the previously-observed patterns in the
experimental literature. Finally, the description of sponta-
neous movements of thin layers of active gels has been ap-
plied to the study of cell locomotion on a solid substrate
that occurs via the protrusion of the actin-filled lamel-
lipodium at the leading edge of the cell [152]. Reducing
the lamellipodium description to a two-dimensional gel
protruding in one dimension, and with a spatially-depen-
dent thickness, the steady-state thickness profile as well as
the flow and force fields have been computed. One par-
ticularly striking aspect of cell crawling that is described
by this formalism is the presence of a retrograde flow of
the gel as the cell is crawling. This aspect has been quan-
tified in earlier experiments performed on fish epidermal
keratocytes [275]. It has been shown that while the cell
is crawling, treadmilling of actin filaments happens faster
than global motion of the cell, such that the actin cortex
is moving rearward with respect to the substrate, in a di-
rection opposite to the movement of the cell [42,131,160].
Similar questions have been addressed using different the-
oretical frameworks in [7,142,242].

Comparisons of the Different Approaches
to Describing Active Polymer Solutions

With these different ways of approaching the descrip-
tion of the dynamics of the cell cytoskeleton as a whole,
a natural question is to ask to what extent these differ-
ent approaches are similar and different, and which as-
pects of the cytoskeleton or cell behavior can be or not de-
scribed by each of the theories. For answering these ques-
tions, connections between the different approaches have
been made, first between mesoscopic and hydrodynamic
descriptions [149,164]. In [164], a generalization of the
mesoscopic model introduced in [144,148] is developed to
obtain a set of continuum equations in unconfined geome-
tries. A phase-diagram is derived that results from the sta-
bility analysis of the homogeneous state of actively cross-
linked polymers, taking into account excluded-volume in-
teractions and estimates of entanglement in two and three
dimensions. It is found that an instability occurs as the
bundling rate between filaments of the same orientation is
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increased, which at low filament density happens first via
a density-fluctuation instability, and at high filament den-
sity via an orientational-fluctuation instability. In the pres-
ence of a finite sorting rate between filaments of different
orientations, propagating modes appear that reflect oscil-
latory behavior. In [149], the continuum theory is related
to nonlocal descriptions of filament-motor systems, since
filaments can transmit stresses over finite distances. The
effective parameters of the continuum theory are recov-
ered from the previously-published mesoscopic descrip-
tion [144], even though with missing coefficients that are
thought to correspond tomicrosocpic multi-particle inter-
actions, not described in [144]. Effects of polymerization-
depolymarization dynamics via effective source and sink
terms in the local filament densities are also discussed (see
also [125,167]) – like it is the case in the effective macro-
scopic theories – as well as the role of polarity. In particu-
lar, it is found that nonpolar arrangements of filaments do
not exhibit oscillatory instabilities and propagating modes,
which might be of relevance for muscle sarcomeric struc-
tures. As seen previously, in these systems, spontaneous
oscillations that have been observed correspond more to
oscillatory instabilities of rigidly-coupled collective mo-
tors than to solitary-wave solutions, as they are found in
systems of active polar filaments.

Microscopic theories present the advantage of being
able in principle to give rise to a full description of a given
system with arbitrary precision and specificity, and to
take into account the nonlinear effects that are of direct
relevance for the system’s behavior. However, they rely
on the microscopic knowledge that one has on the sys-
tem under consideration, and are therefore limited by the
available information on the different agents. In addition,
they end up with effective descriptions that are model-
dependent, in that the different parameters of the so-ob-
tained theory, which describe its physical behavior, de-
pend on the interactions that are taken into account at
the microscopic level. Also, an important aspect of ac-
tive cytoskeleton dynamics that is usually not described in
such microscopic approaches is the very important phe-
nomenon of treadmilling that relies on polymerization-
depolymerization dynamics of cytoskeletal polymers, and
which we have seen to be of crucial importance for some
mechanisms of cellular motility such as Listeria propul-
sion or nematode-sperm-cell locomotion (see Sect. “Fil-
ament-Driven Motility”). However, despite the absence
of these effects, which are taken into account effectively
in macroscopic hydrodynamic descriptions, such micro-
scopic approaches allow for the derivation of the forces
exchanged between the motors and the filaments frommi-
croscopic knowledge, while they appear as effective pa-

rameters of unknown explicit origin in effective macro-
scopic descriptions. Thereby, questions can be addressed
that concern the role played by the specific physical prop-
erties of motor-filament interactions at the microscopic
level in controlling the system behavior on large scales.
Indeed, the richness of the observed self-organized struc-
tures raises the question of how much is generic, and how
much is specific in cytoskeleton behavior. For example,
experiments have shown that very different self-organiz-
ing structures occur with processive as opposed to non-
processive motor proteins: at high motor concentrations,
microtubule-kinesin mixtures self-organize in a variety of
spatial patterns [203,260], as homogeneous states aremore
robust with acto-myosin systems [106], an effect that can
be thought of as the influence of motor processivity on the
dynamical large-scale parameters [164].

Extensions and Future Directions

Cell motility is a complex and integrated process that re-
lies on self-organization of the cytoskeleton, carefully and
precisely orchestrated by the cell with the help of numer-
ous different types of molecular players. If one includes
the subcellular movements that are responsible for intra-
cellular traffic and material exchange between the inner
parts and external parts of the cell, cell-motility mecha-
nisms are found to ground the activity of all life forms on
earth. When looked under the microscope, motility mech-
anisms and structural changes of the diverse cell types
appear so vast and various that a comprehensive under-
standing of their underlying mechanisms seems to be an
overwhelming challenge. However, as we have seen from
the literature covered in the present article, our under-
standing of cell motility has tremendously progressed over
the past two decades. On the one hand, complexity has
even further emerged, since the biochemical characteriza-
tion of the molecular players involved has revealed that
at least hundreds of different protein types participate in
the structural and dynamical organization of the cell cy-
toskeleton. On the other hand, despite the existence of
such very complex regulation processes that rely on the
integrated interplay of the whole set of different molec-
ular players, the characterization of the cell cytoskeleton
has revealed that its main structures and functions are due
to just a few types of key proteins, namely three types of
biopolymers and three superfamilies of molecular motors.
Even more striking is the evolutionary conservation of the
mainmolecular players involved in building the cytoskele-
ton dynamical filaments, both within the eukaryotic do-
main of life on the direct sequence point of view, and even
across the three domains of life when structural and func-
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tional properties are considered. These striking observa-
tions indicate that the different underlying mechanisms of
cell motility all rely on generic principles that can be un-
derstood on a biophysical point of view. In addition, fur-
ther help from micro-manipulation and fluorescence-mi-
croscopy techniques, as well as the development of sim-
plified systems based on gene-expression control and bio-
mimetic artificial systems, has enabled the experimental
biophysical investigation of the different specific aspects
of the processes at play.

The theoretical analyses reviewed in this article have
shown that central concepts that underly the cytoskele-
ton dynamics are self-organization and dynamic insta-
bilities, here grounded on out-of-equilibrium nonlinear
dynamics’, thermodynamics’ and statistical physics’ prin-
ciples. Such concepts are at the basis of all the theo-
retical approaches that have been developed to under-
stand the mechanisms of diverse phenomena such as poly-
merization-depolymerization force and movement gener-
ation, molecular motors’ individual behaviors and collec-
tive phenomena, as well as the generic behaviors of active-
polymer solutions which lead to a description of the cy-
toskeleton dynamics as a whole. On all of these topics, mi-
croscopic as well coarse-grained effective macroscopic ap-
proaches have been developed. As already discussed, they
both have their advantages, powers and limitations, and
represent important complementary steps in the ultimate
goal of an integrated description of the universal principles
that underly cell motility.

As we have seen in this article, our understanding of
cell motility and cell cytoskeleton dynamics has grandly
benefitted from the interplay between experiments and
modeling, each for its own reasons guiding the other in
its directions of investigation. To further understand the
integrated processes at play in cell motility, such fruitful
interactions will certainly be further required and devel-
oped. On the theoretical point of view, bridges between
understanding simplified systems or some particular as-
pects of cell motility and the phenomenon of cell motil-
ity as a whole at the global cellular level, have already
started being investigated, but further developments of
these two different ways of approaching the cytoskele-
ton dynamics as well as understanding the links that ulti-
mately relate them are required. Another important aspect
whose understanding represents a challenge is the poten-
tially crucial role of noise that has been so far most of the
time absent from the macroscopic effective theoretical ap-
proaches. Indeed, noise in nonlinear dynamical systems
is known to potentially have important constructive ef-
fects, whose main representatives are stochastic resonance,
coherence resonance and noise-induced transitions, as

well as the extensive gallery of different spatially-extended
phenomena such as array-enhanced stochastic and co-
herence resonance, or noise-enhanced synchronization of
nonlinear oscillators (see e. g. [220]). Such phenomena
have already been recognized to play an important role
in some biological cytoskeleton-based pattern formations
(see e. g. [105]), and could play a crucial role in driving
other cytoskeletal self-organization phenomena, especially
close to dynamical instabilities, where the effect of noise is
highest. Finally, having at hand the underlying biochemi-
cal and biophysical mechanisms of cell forces andmotility,
a great challenge is to understand self-organization at yet
larger scales, namely in animal tissues, where collections of
cells present integrated coherent behaviors that drive di-
verse key processes such as morphogenesis, wound heal-
ing, immune response, tumor development and metas-
tases formations. There, the same scheme involving “mi-
croscopic” as well as effective “macroscopic” approaches
can certainly play an equallymajor role, “microscopic” ap-
proaches then potentially integrating the whole knowledge
acquired at the level of a single cell, and partially reviewed
in this article.
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